Commentationes Mathematicae Universitatis Caroline

Zdeněk Hedrlín; Aleš Pultr
 On categorial embeddings of topological structures into algebraic

Commentationes Mathematicae Universitatis Carolinae, Vol. 7 (1966), No. 3, 377--400
Persistent URL: http://dml.cz/dmlcz/105071

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicao Universitatis Carolinae

7,3(1966)

ON CATEGORIAL EMBEDDINGS OF TOPOLOGICAL STRUCTURES INIO
ALGEBRAIC
Zdenck HEDRIfN and Alex PULIR, Praha
J.R. Isbell investigated in [3] the categories which can be fully embedded into a category of algebras and later on - he has proposed to call such categories boundable.

The aim of the present paper is to prove that categories of a certain type are boundable. Among these categories are (under an assumption on non-existence of measurable cardinals): the category of topological spaces with continous mappinge, category of uniform spaces with uniformly continueaa mappinge, the category of proximity epaces with proximity mappinge, category of topological algebras of a givon type with continuous homomorphiame, trivial category of ordinals etc.

To show the main idea of this paper we shall discuss as an example the category of topological spaces with continuous mappings. Denote by P^{-}the contravariant functor associating with every set X its power set $P(X)$ and with every mapping $f: X \rightarrow Y$ a mapping $\tilde{f}: P(Y) \rightarrow$ $\rightarrow P(X)$ defined by $\tilde{f}\left(Y_{1}\right)=f^{-1}\left(Y_{1}\right)$ for every $Y_{1} \subset Y_{\text {. }}$ A topology τ on X may be considered as a unary relation π on $P(X)$, namely, $X_{1} \in r$ if and only if X_{1} ia
open; a mapping $f:(X, \tau) \rightarrow(Y, \sigma)$ is continuous if and only if $P^{-}(f)$ is compatible with relations just deacribed. Similarly, some other categories studied in mathematics are given in the following way:
given a set functor F and a type Δ, the objects are couples (X, R), where R is a system of relations of the type Δ on $F(X)$ and $f:(X, R) \rightarrow(Y, S)$ is morphlem if and only if $F(f)$ is compatible. We shall show that if the functor F has a certain property - we call it selectivity - then the category described above is boundable. Roughly speaking, a set functor F is selective, if there is a canonical relational syatem on the sets $F(X)$ such that the compatibility with respect to this system selects exactly the mappinge of the type $F(f)$ among all mappings $g: F(X) \rightarrow F(Y)$.

The categorice defined by relational systems have been studied in [1]. There has been proved that any auch a category can be fully embedded into the category of algebras with two unary operations - denoted by $\mathcal{C}(1,1)$ - or into the category \mathcal{R} (the objects of \mathcal{X} are sets each with a binary relation and morphiems are all compatible mappings). In fact, \mathcal{X} is the category of directed graphs and their graph-homomorphisme. This result will be helpfull for the proof that categories we have mentioned are boundable. We remark that from [1] also follows that a category is boundable if and oniy if it is isomorphic with a full aubcategory of $\mathcal{R}(\operatorname{er}(1,1)$, reap.).

The paper is divided into four paragraphe. Paragraph 1
contains conventions concerning notation. In the paragraph 2 we define the notion of a selective functor and prove a Pew theorems about it. Further, in the paragraph 3 we show that certain functors are selective. It is also given an example of a functor which is not selective. Paragraph 4 contains some. consequenees of the previous ones with applications of the theory to some often discussed categories.

Among the results of this paper there are also new proofs of two thearems by J.R. Isbell - to whom we thank for a very atimulating correapondence - namely, that a dual of a boundable category is boundable and that the triVial category of ordinals is boundable. We are indebted to P. Vopanka for valuable advice and to L. Bukovaky, who cal1ed our attention to a paper [4], ore part of which concerns the selectivity of the functor P^{-}.

8 1. Convention concerning notation. Throughout this paper we mean under a set functor any functor from the category of sets into the category of sets. The identical functar from the catlgory of sets onto itself will be denoted by I.

If \mathbb{Q}, \mathscr{L} are categories, we wite $\mathbb{Q} \Longrightarrow \mathscr{L}$, if there exists a full embedding of \mathbb{Q} into \mathscr{L}, i.e. $\mathbb{Q} \Longrightarrow$ $\Longrightarrow \mathcal{L}$ meane that there exists a one-to-one covariant functor which mape Q onto a full subcategory of \mathscr{L}. If we want to express that a functor Φ has this property, we write $\Phi: \mathbb{Q} \Rightarrow \mathscr{L}$. If there is anj (covariant or contravariant) one-to-one functor which mape Q onto a full.
subcategory of \mathscr{L}, we write $\mathbb{Q} \simeq \mathscr{L}$, The dual category to a category a is denoted by $d a$. Evidently, it holds

$$
\begin{aligned}
& Q=\mathscr{L} \Longleftrightarrow d \mathbb{Q} \Rightarrow d \mathscr{L}, \\
& \mathbb{Q} \leadsto \mathscr{L} \Longleftrightarrow \mathbb{Q} \Rightarrow \mathscr{L} \text { or } \quad d Q \rightarrow \mathscr{L} .
\end{aligned}
$$

A type Δ means a sequence $\Delta=\left\{\alpha_{\beta} \mid \beta<\gamma\right\}$, whe re $\alpha_{\beta}, \beta, \gamma$ are ordinals. The sum of the type $\Delta, \sum \Delta$, means $\sum_{\beta<\gamma} \alpha_{\beta}$ in the usual sense of the sum of ordinals. If $\Delta_{L}=\left\{\alpha_{\beta}^{L} \mid \beta<\gamma^{c}\right\} \quad$ are types indexed by ordinals $l<\sigma^{\gamma}$, then the sum of these types $\sum_{l} \Delta_{l}$ is a type $\Delta=\left\{\alpha_{\beta} \mid \beta<\Sigma \gamma^{\iota}\right\}$, where $\alpha_{\partial+\beta}=\alpha_{\beta}^{l}$ holds for every $x=\Sigma\left\{\gamma^{\boldsymbol{\lambda}} \mid \lambda<\iota\right\}$.

Let r be an α-nary relation on a set X, s an α-nary relation on a set Y. A mapping $f: X \rightarrow Y$ is called rs -compatible, if the following implication holds: $\left\{x_{\iota} \mid \iota<\alpha\right\} \in r \Rightarrow\left\{f\left(x_{\iota}\right) \mid \iota<\alpha\right\} \in s$.
Under a relational system R of a type $\Delta=\left\{\alpha_{\beta} \mid \beta<\gamma\right\}$ on a set X we mean a system $R=\left\{r_{\beta} \mid \beta<\gamma\right\}$, where every κ_{β} is a α_{β}-nary relation on X. If $R=\left\{\kappa_{\beta}\right\}$ ($S=\left\{s_{\beta}\right\}$, reap.) is a relational system of the type Δ on a set $X(Y$, reap.), then $f: X \rightarrow Y$ is called $R S$ compatible, if it is $n_{\beta} s_{\beta}$-compatible for every $\beta<\gamma$. The following category will play an important role in this paper:
Gategory $\gamma\left(\left\{F_{L}, \Delta_{\iota} \mid \iota \in J\right\}\right):$ Let J be a set, $F_{L}(L \in J)$ set functors, Δ_{L} types. The objects of $\mathcal{V}\left(\left\{F_{L}, \Delta_{L} \mid \iota \in J\right\}\right)$ are aystems $\left(X,\left\{R_{\iota} \mid \iota \in J\right\}\right)$, where
X is a set and R_{ι} are relational systems of the type Δ_{C} on $F_{l}^{\prime}(X)$. Morphiems from $\left(X,\left\{R_{l}\right\}\right)$ into $\left(Y,\left\{S_{l}\right\}\right)$ are all mappings $f: X \rightarrow Y$ such that $F_{L}(f)$ is $R_{L} S_{L}-$ compatible if F_{L} is covariant or $F_{l}(f)$ is $S_{L} R_{\iota}$-compatible, if F_{L} is contravariant - for every $\iota \in J$. Exactly, we should say that morphisms are triples $<(X$, $\left.\left.\left\{R_{\iota}\right\}\right), f,\left(Y,\left\{S_{\imath}\right\}\right)\right\rangle$, but certainly there is no danger of misunderstanding.

Remarks. 1) Sometimes we shall write $\gamma\left(\left\{F_{L}, \Delta_{L}\right\}\right)$ instead of $\gamma\left(\left\{F_{L}, \Delta_{l} \mid \iota \in J\right\}\right)$, if it is clear which set J is meant. If J is a one-point eet, we write simply $\gamma(F, \Delta)$. If $J^{\prime}=J \cup\left\{\iota_{0}\right\}$ we write often $\gamma\left(\left\{F_{L}\right.\right.$, $\left.\left.\left.\Delta_{\iota} \mid \iota \in J\right\},\left(F_{L_{0}}, \Delta_{L_{0}}\right)\right\}\right)$ instead of $\gamma\left(\left\{F_{L}, \Delta_{L} \mid \iota \in J^{\prime}\right\}\right)$ etc. A void type, i.e. $\left\{\alpha_{\beta} \mid \beta<0\right\}$, is denoted by \varnothing. Evidently, $\gamma(I, \varnothing)=\gamma$, where γ denotes the category of sets.
2) The category $\gamma(I, \Delta)$ is the same category as $\mathcal{R}(\Delta)$ in the notation of [1].
3) If $F_{l}=F$ for $L \in J^{\prime} \subset J$, then $\gamma\left(\left\{F_{L}, \Delta_{l} \mid \iota \in J\right\}\right)$ is isomorphic with the category $\gamma\left(\left\{F_{L}, \Delta_{\iota} \mid \iota \in J \backslash J^{\prime}\right\}\right.$, $\left.\gamma E, \sum_{\{ }^{\dot{c}}\left\{\Delta_{\mathcal{L}} \mid\left(\in J^{\prime}\right\}\right)\right)$, where the last sum is taken by a well ordering of the set J^{\prime}.
4) Evidently, the categary of topological spaces with continuous mappings is isomorphic with a full subcategory of $\gamma\left(P^{-},\{1\}\right)$.
§ 2. Selective functore. The symbol a will denote the obvious forgetful functor from the category $\gamma\left(\left\{F_{L}, \Delta_{\llcorner } \mid L^{\prime} \in J\right\}\right)$
into $\boldsymbol{\gamma}$.
Definition 1. One-tomone set functor F into will be called Δ-selective, if there is Δ^{\prime} and a functor $\Phi: \gamma(I, \Delta) \xrightarrow{\sim} \gamma\left(I, \Delta^{\prime}\right)$ such that $\square \bullet \Phi=$ F•口 .
wiv The functor F will be calléd selective, if it is Δ-selective for every type Δ.

Theorem. Let functors F and G be naturally equivalent and the functor F be Δ-selective. Then G is Δ-selective.

Proof. Let $T: F \rightarrow G$ and $T^{\prime}: G \rightarrow F$ be tranaformations such that $T \cdot T^{\prime}$ is the identity transformation of G and $T^{\prime} \cdot T$ is the identity tranaformation of F. Let $\Phi: \gamma(I, \Delta) \sim \gamma\left(I, \Delta^{\prime}\right)$ and $\square^{\circ} \Phi=F \cdot \square$. If (X, R) is an object of $\gamma(I, \Delta)$, we have $\Phi(X, R)=$ $=(F(X), \bar{R})$. Let $\Delta^{\prime}=\left\{\beta_{\alpha} \mid \alpha<\gamma\right\}$. If $\bar{R}=\left\{\bar{\pi}_{i}\right\}$, then $\bar{r}_{\alpha} \subset(F(X))^{\beta_{\alpha}}$. Put

$$
\bar{\pi}_{r_{c}}=T_{x}^{\beta_{\alpha}}\left(\bar{r}_{\alpha}\right), \quad \overline{\bar{R}}=\left\{{\overline{r_{\alpha}}}\right\}
$$

and define $\Psi(X, R)=(G(X), \bar{R}), \Psi(f)=G(f)$. Purther, we shall give the proof for G contravariant (and, hence, F contravariant). Por covariant G the proof would be eimilar.

Let $f:(X, R) \rightarrow(Y, S)$ be morphism. Then $F(f):$ $(F(Y), S) \rightarrow(F(X), \bar{R})$ is a morphian. Let $\left\{X_{\iota}\right\} \in \bar{\delta}_{\alpha}$. Then $x_{L}=T_{Y}\left(y_{l}\right)$, where $\left\{y_{l}\right\} \in \bar{S}_{\alpha}$ and we get

Thus, Ψ is a functor from- $\boldsymbol{\gamma}(I, \Delta)$ into $\boldsymbol{P}\left(I, \Delta^{\prime}\right)$. Ψ is evicently one-tomon and it remaine only to prove
that it mape $\gamma(I, \Delta)$ onto a full subcategory of $\gamma\left(I, \Delta^{\prime}\right)$ ．Let $g:(G(y), \bar{亏}) \rightarrow(G(X), \bar{R})$ be a morph－ ism．Put $\bar{g}=T_{x} \cdot g \cdot T_{y}$ ．If $\left\{x_{\iota}\right\} \in \bar{S}_{\alpha}$ ，then $\left\{g \circ T_{y}\left(x_{L}\right)\right\} \in \bar{r}_{\alpha}$ ．As T and T^{\prime} are mutually inverse tranaformations，$\left\{T_{x}^{\prime} \cdot g \cdot T_{y}\left(x_{L}\right)\right\} \in \bar{\pi}_{\alpha}$ ．Hence， $\bar{g}:(F(Y), \bar{S}) \rightarrow(F(X) ; \bar{R})$ is a morphism and $\bar{g}=F(f)$ ， where $f:(X, R) \rightarrow(Y, S)$ is a morphism．We get $F(f)=T_{x}^{\prime} \circ g \cdot T_{y}$ and

$$
g=T_{x} \cdot F(f) \cdot T_{y}^{\prime}=G(f) \cdot T_{y} \cdot T_{y}^{\prime}=G(f)
$$

The proof is finished．
Theoren 2．A composition of a finite number of selec－ tive functors is a selective functor．

Prope．It suffices to consider only two functors．Let F and G be selective functors，Δ a type．There ex－ ist
$\Phi: \gamma(I, \Delta) \simeq \gamma\left(I, \Delta^{\prime}\right)$ and $\Psi: \gamma\left(1, \Delta^{\prime}\right) \simeq \gamma\left(1, \Delta^{\prime \prime}\right)$ such that $\square \circ \Phi=F \cdot \square$ and $\square \cdot \Psi=G \circ \square$ ．We have $\Psi \cdot \Phi: \gamma(I, \Delta) \simeq \gamma\left(I, \Delta^{\prime \prime}\right)$
and ロ．$\Psi \cdot \Phi=G \circ \square \circ \Phi=G \cdot F \circ 口$ ．
Theorem 3．If there exists a contravariant Δ－selec－ tive functor，then
$d \gamma(I, \Delta) \Longrightarrow \mathcal{R} \quad(\because \varphi R(1,1)$ etc．$)$ ．
proop．Let F be the contravariant Δ－selective functor，Φ the correaponding functor from $\gamma(I, \Delta)$ into $\gamma\left(I, \Delta^{\prime}\right) . \Phi$ mast be also contravariant，and we get

$$
d \gamma(I, \Delta) \Rightarrow . \gamma\left(I, \Delta^{\prime}\right) \quad\left(=\mathscr{R}\left(\Delta^{\prime}\right) \text { in }[1]\right) \text {. }
$$

It is proved in $[1]$ that $\mathcal{R}\left(\Delta^{\prime}\right) \Longrightarrow \mathcal{R}$ ．We get $d \gamma(I, \Delta) \Longrightarrow R$ ．

Theorem_4. If F_{L} are Δ_{L}-selective functors, then $\gamma\left(\left\{G_{L}, \Delta_{L}\right\}\right) \Longrightarrow \gamma\left(\left\{F_{\iota} \circ G_{L}, \Delta_{L}^{\prime}\right\}\right)$
for some types Δ_{L}^{\prime}.
Proor. Let $\Phi_{L}: \mathcal{P}\left(I, \Delta_{L}\right) \xrightarrow{\sim} \gamma\left(I, \Delta_{L}^{\prime}\right)$ be functors such that $\square \circ \Phi_{L}=F_{\llcorner } \circ \square$. Let $\left(X,\left\{R_{\iota}\right\}\right)$ be an object in $\gamma\left(\left\{G_{L}, \Delta_{\iota}\right\}\right)$. For any relational system R_{ι} on $G_{\iota}(X)$ we choose R_{ζ}^{\prime} such that

$$
\Phi_{L}\left(\left(G_{L}(x), R\right)\right)=\left(\left(F_{L} \circ G_{L}\right)(x), R_{L}^{\prime}\right)
$$

Put $\Phi\left(\left(X,\left\{R_{L}\right\}\right)\right)=\left(X,\left\{R_{L}^{\prime}\right\}\right)$, which is an object in $\boldsymbol{\gamma}\left(\left\{F_{L} \circ G_{L}, \Delta_{L}^{\prime}\right\}\right)$, and $\Phi(f)=f$, If f is a marphism from $\left(X,\left\{R_{\iota}\right\}\right)$ into $\left(Y,\left\{S_{\iota}\right\}\right)$, then $G_{\iota}(f)$ is either $R_{\zeta} S_{\zeta}$-compatible (G_{L} covariant) or $S_{L} R_{L}$-compatible (G_{L} contravariant). Hence, $\left(F_{L} \circ G_{L}\right)(f)=\Phi_{L}\left(G_{L}(f)\right)$ is either $R_{L}^{\prime} S_{L}^{\prime}$-compatible or $S_{L}^{\prime} R_{L}^{\prime}$-compatible. Hence, $\Phi(f)=f$ is a morphism from $\left(X,\left\{R_{\iota}^{\prime}\right\}\right)$ into $\left(Y,\left\{S_{\iota}^{\prime}\right\}\right)$ and Φ is a Punctor from $\gamma\left(\left\{G_{L}, \Delta_{\iota}\right\}\right)$ into $\gamma\left(\left\{F_{\llcorner } \circ G_{L}\right.\right.$, $\left.\left.\Delta_{\iota}^{\prime}\right\}\right)$. Φ is evidently one-to-one. It remains to prove that its image is a full aubcategory.

Let $f:\left(X,\left\{R_{L}^{\prime}\right\}\right) \rightarrow\left(Y,\left\{S_{L}^{\prime}\right\}\right)$ - be a moxphiam. Then $\Phi_{L}\left(G_{L}(f)\right)=\left(F_{L} \circ G_{L}\right)(f)$ is either $\quad R_{L}^{\prime} S_{L}^{\prime}$-compatible or $S_{L}^{\prime} R_{L}^{\prime}$-compatible. There mast be $g_{L}: G_{L}(X) \rightarrow G_{L}(Y)$ $\left(g_{l}: G_{l}(y) \rightarrow G_{l}(X), \quad\right.$ if G_{L} is contravariant, resp.) such that g_{l} ie either $R_{\zeta} S_{\zeta}$-compatible or $S_{L} R_{\zeta}$-compatible and $\Phi_{L}\left(G_{\zeta}(f)\right)=\Phi_{\iota}\left(g_{\iota}\right)$. Since Φ_{ι} is a one-toone functor, we get $G_{L}(f)=g_{L}$ and $G_{L}(f)$ is either $R_{\iota} S_{\iota}$-compatible or $S_{\iota} R_{\iota}$-compatible. Thus, $S=\Phi(f)$, where $f:\left(X,\left\{R_{L}\right\} \rightarrow\left(Y,\left\{S_{\iota}\right\}\right) \quad\right.$ is a morphisme The proof is finished.

Theorem 5. Let F be a \varnothing-selective functor, F_{C} be arbitrary set functors. Then $\left.\gamma\left(\left\{F_{L} \circ F, \Delta_{L}\right\}\right) \xrightarrow{\sim} \gamma\left(\left\{F_{L}, \Delta_{L}\right\}\right),(I, \Delta)\right)$ for some Δ. If F is covariant, we may write \Longrightarrow instead of $\xrightarrow{\sim}$. Proof. Let $\Phi: \gamma \Longrightarrow \gamma(I, \Delta)$ be a functor such that $\square \circ \Phi=F \quad\left(F\right.$ is ϕ-selective!). Denote by R_{x} a relational system such that $\Phi(X)=\left(F(X), R_{X}\right)$. Let $\left(X,\left\{R_{\iota}\right\}\right)$ be an object in $\gamma\left(\left\{F_{\iota} \circ F, \Delta_{\iota}\right\}\right)$. Put
$G\left(\left(X,\left\{R_{\iota}\right\}\right)\right)=\left(F(X),\left\{R_{\iota}\right\}, R_{x}\right), G(f)=F(f)$. Evidently, $G\left(\left(X,\left\{R_{\iota}\right\}\right)\right)$ is always an object in $\gamma\left(\left\{F_{c}, \Delta_{b}\right\},(I, \Delta)\right)$. If $f:\left(X,\left\{R_{l}\right\}\right) \rightarrow\left(Y,\left\{S_{c}\right\}\right)$ is a morphism, then $F(f)$ is $R_{x} R_{y}$-compatible (or $R_{y} R_{x}-$ compatible) and ($\left.F_{L} \circ F\right)(f)=F_{L}(F(f))$ is $R_{L} S_{L}$-compatible (or $S_{L} R_{L}$-compatible, if F is contravariant). Thus, G is evidently one-tomone functor into $\mathcal{J}\left(\left\{F_{L}, \Delta_{c}\right\}\right.$, $(I, \Delta))$. Let $g:\left(F(X),\left\{R_{\iota}\right\}, R_{X}\right) \rightarrow\left(F(Y),\left\{S_{\iota}\right\}, R_{y}\right)$ (if F is contravariant, then $g:\left(F(y),\left\{S_{\iota}\right\}, R_{y}\right) \rightarrow(F(X)$, $\left.\left\{R_{L}\right\}, R_{x}\right)$) be a morphism. As g is $R_{x} R_{y}$-compatible ($R_{Y} R_{X}$-compatible, resp.), $g=F(f)$ for some $f: X \rightarrow Y$. Since $F_{L}(g)=F_{L} \cdot F(f)$ is $R_{L} S_{L}$-compatible $\left(S_{c} R_{L}\right.$ compatible, reap.), we get $f:\left(X,\left\{R_{\iota}\right\}\right) \rightarrow\left(Y,\left\{S_{\iota}\right\}\right)$ and $g=G(f)$.

Theorem i. Let F_{l} be selective functors. If there exist selective functors G_{L} such that $G_{L} \circ F_{l}=F$, then $r\left(\left\{F_{L}, \Delta_{L}\right\} \Rightarrow R \quad(\Leftrightarrow \operatorname{er}(1,1) \quad\right.$ etc. $)$.

Proof. By theorem 4 and remark 3 in the paragraph 1 , $\gamma\left(\left\{F_{L}, \Delta_{l}\right\}\right) \Longrightarrow \gamma(F, \Delta)$, where $\Delta=\sum \Delta_{L}^{\prime}$. By theorem 5, $\gamma(F, \Delta) \simeq \gamma\left((I, \Delta),\left(I, \Delta^{\prime \prime}\right)\right)$.

Hence, by remark 3 in $\S 1, \gamma(F, \Delta) \simeq \dot{\sim} \gamma^{\prime}\left(I, \Delta^{\prime}\right)$, where it suffices to put $\Delta^{\prime}=\Delta \dot{+} \Delta^{\prime \prime}$. If F is covariant, then $\gamma(F, \Delta) \Rightarrow \gamma\left(I, \Delta^{\prime}\right)$, and by $[1], \gamma(F, \Delta) \Longrightarrow \gamma \sim$ If F is contravariant, then $d \gamma(F, \Delta) \Longrightarrow \gamma\left(1, \Delta^{\prime}\right)$ and $\gamma(F, \Delta)=d^{2} \gamma(F, \Delta) \Longrightarrow d \gamma\left(I, \Delta^{\prime}\right)$. As F is selective and contravariant, we obtain, by theorem $3, d \gamma\left(I, \Delta^{\prime}\right) \Longrightarrow \gamma$. The proof is finished.

Corollary 1. Let $F_{1}, F_{2}, \ldots, F_{n}$.be selective functors. Then

$$
\gamma\left(\left(F_{1}, \Delta_{1}\right),\left(F_{2} \circ F_{1}, \Delta_{2}\right), \ldots,\left(F_{n} \cdot F_{n-1} \cdots \cdot F_{1}, \Delta_{n}\right)\right) \Rightarrow \mathscr{R}
$$

83. Some apecial functore. Functor Q_{A} : Let A be a non-void set. If X is a set, we put $Q_{A}(X)=X^{A}$ (i.e. the set of all mappings from. A into X); if f is a mapping from X into Y we define $Q_{A}(f)$ by

$$
Q_{A}(f)(\varphi)=f \cdot \varphi
$$

Q_{A} is evidently one-tomone functor into.
Remarke. 1) If A is a one-point set, then Q_{A} is naturailly equivalent with the identical functor, if A is a two-point set, Q_{A} is naturally equivalent with the functor Q, which is defined by $Q(X)=X \times X, Q(f)=f \times f$.
2) Evidentiy, if card $A=$ card B, then Q_{A} is naturally equiveilent with Q_{B}.

Theorem_7. Q_{A} is a selective functor.
proof. By previous remark and by theorem 1, we may assume that A^{\prime} is an ordinal number σ^{\prime} (i.e. the set of all ordinals less than δ^{\prime}). Let $\Delta=\left\{\beta_{\alpha} \mid \alpha<\gamma\right\}$, and let

-

$\Delta^{\prime \prime}$ be sequence of the length σ^{\prime}, every element of which 1s the number 2. Let (X, R) be an object in' $S(I, \Delta)$,
$R=\left\{\kappa_{\alpha}\right\}$. For $\propto<\gamma^{2}$, define $\bar{\pi}_{\alpha}$ by $\left\{\mathscr{\varphi}_{L}\right\} \in \bar{r}_{\alpha} \Longleftrightarrow\left\{\mathscr{\varphi}_{L}(0)\right\} \in \kappa_{\alpha}$.
(We remark that 0 is an ordinal, and therefore it is an element of A.) Put $\Delta^{\prime}=\Delta \dot{+} \Delta^{\prime \prime}$. Further, define $\bar{r}_{\gamma+a}$, for $a \in A$, by

$$
(\varphi, \psi) \in \bar{r}_{\gamma+a} \Longleftrightarrow \varphi(a)=\psi(0)
$$

Thus, $\bar{R}=\left\{\bar{r}_{\alpha}, \alpha<\gamma+\sigma\right\}$ is a relational system of the type Δ^{\prime} on $Q_{A}(X)$.

Let $f:(X, R) \rightarrow(Y, S)$ be a morphism, and $\left\{\mathscr{S}_{L}\right\} \in \bar{r}_{\alpha}$, $\alpha<\gamma^{\prime}$. It means $\left\{\varphi_{c}(0)\right\} \in r_{\alpha}$. Thus, $\left\{\left(Q_{A}(f)\left(\varphi_{L}\right)\right)(0)\right\}=\left\{f \circ \varphi_{L}(0)\right\}=\left\{f\left(\varphi_{L}(0)\right)\right\} \in>_{\alpha}$ and $\left\{Q_{A}(f)\left(\varphi_{L}\right)\right\} \in \bar{\Phi}_{\alpha}$.
Let $(\varphi, \psi) \in \bar{\pi}_{\gamma+a}$; hence, $\varphi(a)=\psi(0)$ and $f \circ \varphi(a)=f \circ \psi(0)$, i.e. $\left(Q_{A}(f)(\varphi), Q_{A}(f)(\psi)\right) \in h_{\gamma+a}$. If $f:(X, R) \rightarrow(Y, S)$ is a moxphism, we put $\Phi(X, R)=\left(Q_{A}(X), \bar{R}\right)$ and $\Phi(f)=Q_{A}(f)$. Evidently, Φ is a onemomone functor from $\gamma(I, \Delta)$ into $\gamma\left(I, \Delta^{\prime}\right)$. As $\square \cdot \Phi=Q_{A} \cdot \square$, it remains to prove that Φ maps $\gamma(I, \Delta)$ onto a full subcategory of $\gamma\left(I, \Delta^{\prime}\right)$. Let $g:\left(Q_{A}(x), \bar{R}\right) \rightarrow\left(Q_{A}(y), \bar{S}\right), \dot{\varphi}(a)=\psi(b)$.
Take $\chi \in Q_{A}(X)$ such that $\tau(0)=\varphi(a)$. Hence; $(\varphi, X) \in \bar{r}_{\gamma+a},(\psi, x) \in \bar{r}_{\gamma+b}$. Since g is $\bar{R} \bar{S}$-compatible, $(g(\varphi), g(x)) \in \bar{\delta}_{\gamma+a},\left(g(\psi), g(x) \in \bar{\pi}_{\gamma+b}\right.$.
We have $g(\varphi)(a)=g(x)(0)=g(\psi)(b)$. If $x=c \rho(a)$, we define a mapping $f: X \rightarrow Y$ by $f(x)=g(\varphi)(a)$. Evident$i y$, for every x there exist \mathcal{P} and a such that $x=$ $=\mathscr{C}(a)$. By previous considerations, $g(\varphi)(a)$ is defined uniquely. It holds: $f \circ c(a)=g(\varphi)(a)$ for any φ and a.

Hence, $q=Q_{A}(f)$. It remains to prove that the mapping f we have constructed is $R S$-compatible. Let $\left\{x_{\iota}\right\} \in r_{c}$. Define a mapping $\varphi_{L}: A \rightarrow X$ by $\varphi_{L}(a)=x_{L}$ for all $a \in$ $\in A$. Hence, $\left\{\varphi_{l}\right\} \in \bar{\pi}_{\alpha}$ and $\left\{f \circ \varphi_{l}\right\}=\left\{g\left(\varphi_{l}\right)\right\} \in \bar{J}_{\alpha}$. Finally, $\left\{f\left(x_{\nu}\right)\right\}=\left\{f \circ \mathscr{\varphi}_{L}(0)\right\} \in \delta_{\alpha}$. The proof is Pinished.

Definition. If X is a set, we put $P(X)=\left\{X_{1} \mid X_{1} \subset X\right\}$ If $f: X \rightarrow Y$ is a mapping, we define $P^{-}(f): P^{-}(Y) \rightarrow P^{-}(X)$ by $P^{-}(f)(A)=f^{-1}(A)$, where $f^{-1}(A)$ denotes, as uaual, the preimage of the set A by the mapping f.

Remark. The functor P^{-}is naturally equivalent with functor F, which associates with every set X the set 2^{X} of all mappinge from X into $2=\{0,1\}$, and with every $f: X \rightarrow Y$ a mapping from 2^{y} into 2^{X} defined by $F(f)(\varphi)=\varphi$ of for all $\varphi \in 2^{y}$.

Theorem 8. Designate by (M) the following assertion:
(M) There exists a cardinal of such that evary σ^{\sim}-additive tro-valued measure is γ-additive, γ any cardinal.

If (M) holds, then P^{-}is a selective functor.
Proof. First, we remarik that the condition (M) may be formulated also in the following way: There exists a cardinal σ° such that any ultrafilter, which is closed under the intersections of σ^{\sim} sets, is trivial (in another terminology fired).
Let $\Delta=\left\{\beta_{\alpha} \mid \propto<\gamma\right\}, \Delta^{\prime \prime}=\left\{1,2, \sigma^{\prime}+1\right\} ;$ put $\Delta^{\prime}=\Delta+\Delta^{\prime \prime}$. If (X, R) is an object in $S(I, \Delta)$, we define relatione on $P^{-}(X)$ w: for $\alpha<\gamma^{\prime}$,

$$
\left\{x_{\iota}\right\} \in \bar{\pi}_{\alpha} \Longleftrightarrow\left(\left(x_{\iota} \in X_{\iota} \text {, for every } \iota\right) \Rightarrow\left\{x_{\iota}\right\} \notin r_{\alpha}\right),
$$

$$
A \in \bar{n}_{\gamma} \Longleftrightarrow A=\varnothing,
$$

$$
\begin{aligned}
&(A, B) \in \bar{r}_{\gamma+1}\Longleftrightarrow A=C(B) \quad \text { i.e. } A=X \backslash B), \\
&\left\{A_{\iota}\right\} \in \bar{r}_{\gamma+2} \Longleftrightarrow A_{\sigma} \\
&=\cap\left\{A_{\iota} \mid \iota<\sigma^{\sigma}\right\} .
\end{aligned}
$$

Put $\bar{R}=\left\{\bar{r}_{\alpha} \mid \propto<\gamma+3\right\}, \overline{P-}(X, R)=\left(P^{-}(X), \bar{R}\right)$. Let $f:(X, R) \rightarrow$ $\rightarrow(Y, S)$ be a morphism, $\alpha<\gamma,\left\{Y_{L}\right\} \in \bar{J}_{\alpha}$. Let $\left\{f^{-1}\left(Y_{L}\right)\right\} \notin \pi_{\alpha}$. Hence, there are $x_{\iota} \in f^{-1}(y)$ such that $\left\{x_{\iota}\right\} \in r_{\alpha}$. Then we have $\left\{f\left(x_{\iota}\right)\right\} \in s_{\alpha}$ and $f\left(x_{\iota}\right) \in Y_{\iota}-$ a contradiction. The cases $\alpha=\gamma, \gamma+1, \gamma+2$ are obvious.

We get: $\overline{P^{-}}$is a (evidently, one-to-one) functor from $\gamma(I, \Delta)$ into $\gamma\left(I, \Delta^{\prime}\right)$. It remaine to prove that it maps $\gamma(I, \Delta)$ onto a full subcategory of $\gamma\left(I, \Delta^{\prime}\right)$. Let $g:\left(P^{-}(Y), \bar{S}\right) \rightarrow\left(P^{-}(X), \bar{R}\right)$ be a morphism. Since g is $\bar{B}_{\alpha} \bar{r}_{\alpha}$-compatible, for $\alpha=\gamma, \gamma+1, \gamma+2$, we derive easily:

$$
\begin{gathered}
g\left(c\left(Y_{1}\right)\right)=c\left(g\left(Y_{1}\right)\right), \\
g(Y)=X, g\left(\cap\left\{Y_{a} \mid a \in \cdot A\right\}\right)=\cap\left(g\left(Y_{a} \mid a \in A\right) \text { for cand } A \leq \sigma^{\prime},\right. \\
g\left(Y_{1} \cup Y_{2}\right)=g\left(Y_{1}\right) \cup g\left(Y_{2}\right), Y_{1} \in Y_{2} \Rightarrow g\left(Y_{1}\right) \subset g\left(Y_{2}\right), \\
Y_{1}, Y_{2} \text { disjoint } \Rightarrow g\left(Y_{1}\right), g\left(Y_{2}\right) \cdot \text { disjoint, }
\end{gathered}
$$

Thus, the family $\{g(\{y\}) \mid y \in Y\}$ contains only mutually disjoint sets. We shall prove that this family is a cover of X. Let $x \in X$. Put $J=\{Z \mid Z \subset Y, x \in g(Z)\}$.
J is an ultrafilter on Y, closed under the intersection of δ^{\sim} sets. By the assumption, J is trivial and contains a one-point set $\{y\}$. We get $x \in g(\{y\})$. Now, def:ne $f: X \rightarrow Y$ by $f(x)=y \Leftrightarrow x \in g(\{y\})$. By the previous considerations, f is well defined.

If $x \in f^{-1}\left(Y_{1}\right)$, then $f(x)=y \in Y_{1}$ and $x \in g\left(y_{y}\right)_{c}$ eg $\left(Y_{1}\right)$. We get $f^{-1}\left(Y_{1}\right) \in g\left(Y_{1}\right)$ for every $Y_{1} \subset Y$. Eapecially, $C\left(f^{-1}\left(Y_{1}\right)\right)=f^{-1}\left(C\left(Y_{1}\right)\right) \subset g\left(C\left(Y_{1}\right)\right)=C\left(g\left(Y_{1}\right)\right)$, and, finally, $g=P^{-}(f)$.

It remaine to prove that f 1s $r_{\alpha} b_{\alpha}$-compatible far every $\alpha<\gamma$. Let $\left\{x_{L}\right\} \in r_{\alpha},\left\{f\left(x_{L}\right)\right\} \in s_{\alpha}$. Then $\left\{\left(f\left(x_{\iota}\right)\right)\right\} \in \bar{B}_{\alpha}$, and, consequently, $\left\{f^{-1}\left(f\left(x_{L}\right)\right)\right\} \in K_{\alpha}$. But $x_{\iota} \in f^{-1}\left(f\left(x_{\iota}\right)\right)$, and we have got a contradiction. We remark that the laet proof uses the same idea as the proofs in [5] and the proof of 2.5 in [2].

Definition. If X is a set, we put $P^{+}(X)=\left\{X_{1} \mid X_{1} \subset X\right\}$. If $f: X \rightarrow Y$, we define $P^{+}(f): P^{+}(X) \rightarrow P^{+}(y)$ by $P^{+}(f)\left(x_{1}\right)=f\left(x_{1}\right)=\mathcal{U}_{x \in x_{1}}\{f(x)\}$.

Theorem 2. The functor P^{+}is not selective (even not \varnothing-selective).

Remark. At this point we must emphaeize that we work in the Gödel-Bernaya set theory with the axiom of infinity. of course, if we assume the negation of the axiom of infinity, the functar P^{+}would be selective.
peoof. Assume P^{+}is selective. Then there exists a type $\Delta=\left\{\beta_{\alpha} \mid \alpha<\gamma\right\}$ and a functor $F: \gamma \Rightarrow \gamma(1, \Delta)$, such that $\square \cdot F=P^{+} \cdot \square$. We denote δ_{k}^{\prime} card muh $\left\{\beta_{\alpha} \mid \alpha<\gamma\right\}$. Let X be an infinite set such that card $X>2{ }^{\circ}$. Choose an arbitraxy $x_{0} \in X$ and a mapping $f: X \rightarrow X \backslash\left\{x_{0}\right\}$, which 1s one-to-one onto. Define $g: p^{+}(x) \rightarrow p^{+}(X)$ by:
$g\left(x_{1}\right)=f\left(X_{1}\right)$ for cand $X_{1} \leqslant 2^{\alpha}$,
$g\left(x_{1}\right)=\sigma\left(x_{1}\right) \cup\left\{x_{0}\right\} \quad$ for card $x_{1}>2^{\sigma}$.
Ividently, $g \neq P^{+}(h)$ for any $h: X \rightarrow X$.

Let $F(X)=\left(P^{+} X,\left\{r_{\alpha}\right\}\right.$. There exists $\alpha<\gamma$ and $\left\{X_{\iota}\right\} \in r_{\alpha}$ such that $\left\{g\left(X_{\iota}\right)\right\} \notin r_{\alpha}$. If card $X_{c} \leqslant 2^{\sigma^{\alpha}}$ for every $l, P^{+}(f)$ would not be $\xi_{c} r_{c}$-compatible. Hence, card $X_{x}>2^{o}$ for some x.
Put $X^{*}=\cup\left\{X_{\iota} \mid \iota<\beta\right\}$. We define a system er of subsets of X^{*} by: .
$A \in e r \Longleftrightarrow A=\cap\left\{A_{\iota} \mid c<\beta_{\alpha}\right\}$,
where every A_{c} is either X_{c} or $X^{*} \backslash X_{c}$. It is easoy to see that $\varphi<$ forms a disjoint cover of X^{*}. Define $\varphi r_{\iota}=\left\{A \mid A \in \mathscr{C}, A \subset X_{\iota}\right\}$. Evidently, $\quad X_{c}=$ $=\cup \mathscr{C} \ell_{L}$. Further, define $\varphi x_{c}^{1}=\left\{A \mid A \in \varphi r_{c}\right.$, card $\left.A \leqslant 2^{\delta}\right\}, \quad \varphi r_{L}^{2}=\varphi r_{c} \backslash \varphi r_{c}^{1}$, $\varphi r^{i}=U\left\{\varphi r_{L} \mid \iota<\beta_{\alpha}\right\}, i=1,2$. Since card $\varphi K \leqslant 2^{\sigma}$, we have card $X_{L}>2^{\sigma} \Rightarrow \operatorname{er}_{L}^{2} \neq \varnothing$. If $A \in \varphi$, card $A>2^{\sigma}$, choose any fixed $a \in A$. Since card $f(A)=\operatorname{card}(A-\{a\})$, the re exists $h_{A}: A \rightarrow f(A) \cup\left\{x_{0}\right\}$, which is onto and $h_{A}(a)=x_{0}$. Denote $Y=\left(X \backslash X^{*}\right) \cup \cup \varphi K^{1}$ and define $h: X \rightarrow Y$ by:

$$
\begin{aligned}
& h(x)=f(x) \text { for } x \in Y, \\
& h(x)=h_{A}(x) \text { for } x \in A \in \operatorname{er}^{2}
\end{aligned}
$$

If card $X_{\iota} \leqslant 2^{\sigma^{\alpha}}$, we have $X_{L}=U \varphi r_{\iota}^{1}$ and

$$
\begin{aligned}
P^{+} h\left(x_{L}\right) & =h \cdot\left(U\left\{A \mid A \in \varphi r_{L}^{1}\right\}=U\left\{h(A) \mid A \in \varphi r_{L}^{1}\right\}=\right. \\
& =U\left\{f\left(A \mid A \in \varphi r_{L}^{1}\right\}=f\left(x_{L}\right)=g\left(x_{L}\right) .\right.
\end{aligned}
$$

If card $X_{c}>2^{0^{2}}$, then φx_{c}^{2} is non-void and we have $P^{+} h\left(X_{L}\right)=U\left\{h(A) \mid A \in \varphi x_{L}^{1}\right\} \cup \cup\left\{h(A) \mid A \in \varphi r_{L}^{2}\right\}=$ $=\cup\left\{f(A) \mid A \in \varphi \varkappa_{\iota}^{1}\right\} \cup \cup\left\{f(A) \cup\left\{x_{0}\right\} \mid A \in \varphi \ell_{L}^{2}\right\}=f\left(X_{L}\right) \cup\left\{x_{0}\right\}=g\left(X_{L}\right)$. Thus, $P^{+} h\left(X_{L}\right)=g\left(X_{L}\right)$ for every L and, hence, $\mathrm{P}^{+} h$ is not compatible. We have got a contradiction.
§_4. Applicationge As the assumption (M) will be frequently used in this paragraph, we remark that (M) is consistent with the Gödel-Bernays set theary and is not in contradiction with the existence of inaccessible cardinale.

Theorem 10. Assuming (M), the dual to a boundable category is boundable.

Proof. The proof follows immediately from theorems 3 and 8 .

Theorem_11. Aseuming (M), the category of topological apaces and all their continuous mappings is boundable.
proof. As we sketched in the introduction, this category may be considered as a full subcategory of $\gamma\left(P^{-},\{1\}\right)$.

Theorem 12. Assuming (\mathbf{M}), the category $\mathcal{I}(\Delta)$ of topological algebras of the type Δ and their continuous homomorphisms is boundable.
proof. If $\Delta=\left\{\alpha_{\beta} \perp \beta<\gamma\right\}$, put $\Delta^{\prime}=\left\{\alpha_{\beta}+11 \beta\right.$ Evidently, an algebraical structure of the type Δ is a special case of a relational oystem of the type Δ^{\prime}, and the property "to be homomorphism" is the same as the compatibility with reapect to the correaponding relational system. Similarly as in the proof of the previous theorem, $\mathcal{F}(\Delta)$ can be considered as a full subcategary of $\mathcal{P}\left(\left(P^{-},\{1\},\left(1, \Delta^{\prime}\right)\right)\right.$. Hence, by theoreme 6 and 8 , $\mathcal{I}(\Delta) \Rightarrow$ 。

Theorem 13. The category $\mathcal{\alpha}^{2}$ of closure apaces ([4]) and their continuous mappinga is - under the asgumption
(u) - boundable.

Proot. We shall show that $\alpha^{-} \Longrightarrow \partial^{\prime}\left(P^{-},\{2\}\right)$. Then the theorem will follows from theorems 6 and 8 .

Let X be a set, μ the closure function on X. We define a relation μ^{\prime} on $P-(X)$ by:

$$
(A, B) \in \mu^{\prime} \Longleftrightarrow A \supset \mu(B) .
$$

By definition, a mapping $f:(X, u) \rightarrow(Y, v)$ is continuous if and only if $f^{-1}(\sim(A)) \supset \mu\left(f^{-1}(A)\right)$ for every $A \subset Y$, i.e. $P^{-} f(v(A)) \geq u\left(P^{-} f(A)\right)$. The proof will be finished, if we prove that f is continuous if and oniy if $p-f$ is $v^{\prime} \mu^{\prime}$-compatible.

Let f be continous, $(A, B) \in v^{\prime}$. Hence $A \supset v(B)$
and $P^{-} f(A)>P^{-} f(v(B))>\mu\left(P^{-} f(B)\right)$.Thus, $\left(P^{-} f(A)\right.$, $\left.P^{-} f(B)\right) \in \mu^{\prime}$, and P^{-f} is $v^{\prime} \mu^{\prime}$-compatible. Now, let P^{-f} be $v^{\prime} u^{\prime}$-compatible, $A \subset Y$. We have $(v(A), A) \in v^{\prime}$ and $\left(P^{-} f(v(A)), P^{-f}(A)\right) \in \mu^{\prime}$, i.e. $f^{-1}(v(A)) \supset \mu\left(f^{-1}(A)\right)$. The mapping f is continuous.

Theorem_14. Asouming (M), the category \mathcal{R} of proximity spaces and all their proximal mappings is boundable.

Proofe If $\left(X, \sigma_{1}^{r}\right),\left(Y, \delta_{2}^{\sim}\right)$ are proximity apaces, (δ_{i}^{\sim} relatione "to be proximal"), then, by definition, $f:\left(X, \delta_{1}\right) \rightarrow\left(Y, \delta_{2}^{\sim}\right)$ is a proximal mapping if and only if
(1) $(A, B) \in \delta_{1}^{\prime} \Rightarrow(f(A), f(B)) \in \delta_{2}^{\sim}$ for every $A, B \subset X$. Denote by $\overline{\delta_{1}}, \overline{\sigma_{2}^{\prime}}$ the complementary relations to δ_{1}^{\sim} and δ_{2}^{\sim}. Evidently, $f:\left(X, \sigma_{1}^{\sim}\right) \rightarrow\left(Y, \delta_{2}^{\sim}\right)$
is proximal if and only if
(2) $(A, B) \in \bar{\delta}_{2} \Rightarrow\left(f^{-1}(A), f^{-1}(B)\right) \in \bar{\delta}_{1} \quad$ for all $(A, B) \in \bar{\sigma}_{2}$.

Thus, if we describe the proximities by complementary rele tion "to be far", the category η can be considered as a full subcetegory of $\cdot \gamma(P-,\{2\})$. By theorems 6 and 8 , $p \rightarrow x$.

Theoren 15. Assuning (M), the category U of uniform apaces and their uniforaly contimous mappings is boundable.

Proof. If we describe the uniformitiea by means of sya tems of neighbourhoods of diagonals, then the uniformity on X is a unany relation on $P^{-} 。 Q(X)$. Since $f ;(X, U) \rightarrow(Y, V)$ 1s unfformly continuous if and only if $P^{\circ} \cdot Q(f)$ is $V \mathscr{C}$ compatible, U can be considered as a full subcategory of $\gamma\left(P^{-} \cdot Q,\{1\}\right)$. Hence, by theorems $2,6,7$ and $8, \mathcal{U} \rightarrow \mathcal{H}$.

Remark. Theorems $13,14,15$ could be strengthened in the same way as theorem 11 in theorem 12. Thus, e.g. the catego ry of uniform algebras of the given type with all their uniformly continuous homomorphiams is boundable etc.

Theorem 16. Let $O M$ denote the trivial category of orm dinals, i.e. the objects are all ordinals, morphisms all couples (α, β) where $\alpha \in \beta,(\beta, \gamma) \cdot(\alpha, \beta)=(\alpha, \gamma)$. Assuming (M), 220 is boundable.

Proof. venote by 2$)^{\prime}$ the full subcategory of $\mathcal{P}^{\prime}\left(P^{\prime},\{2\}\right)$ generated by objects (α, κ_{α}), where α are non-zero ordinals, μ_{α} binary relation on $P^{-}(\alpha)$ defined by: $(m, n) \in \kappa_{\alpha} \rightleftarrows$ either $n=0$ and $m=\alpha$ or $m=\gamma+1(\gamma<\alpha)$ and $n \cap m=\{\gamma\}$. We are going to prove that 2$)^{\prime}$ is isomorphic with 210 . It suffices to prove that, for $f: \alpha \rightarrow \beta, p^{-}(f)$ is $H_{\beta} N_{\alpha}$-compatible if and only if $\alpha \leqslant \beta$ and $f(\gamma)=\gamma$ for all $\gamma<\alpha$.

Let $\alpha \leqslant \beta, f: \alpha \rightarrow \beta$ delined by $f(\gamma)=\gamma$ for all $\gamma<\alpha$. Hence, $p-f(a)=\alpha \cap a$ for every $a \subset \beta$. Let $(m, n) \in n_{\beta}$. If $n=0$, then $m=\beta$ and further $(\alpha \cap m, \alpha \cap u)=(\alpha, 0) \in \pi_{\alpha}$. If $n \subset \beta-\alpha$, we have $m=\gamma^{+}$ $+1, \gamma \in n$. Thus, $\gamma \leq \alpha$ and $(\alpha \cap m, \alpha \cap n)=(\alpha, 0) \in \pi_{\alpha}$. Finally, let $m=\gamma+1, \gamma<\alpha, m \cap n=\{\gamma-\}$. Then $(\alpha \cap m, \alpha \cap n)=$ $=(m, \alpha \cap n) \in \mu_{\alpha}$, as $\{\gamma\} \geq m \cap \alpha n \in \gamma$ and we get $m \cap(\alpha \cap$ $n n)=\{\gamma\}$.

Let $f: \alpha \rightarrow \beta$ be a mapping such that $P^{-} f$ is $\pi_{\beta} \pi_{\alpha}{ }^{-}$ compatible. First, we shall show that $\gamma<\sigma^{\sim}<\alpha$ implies $f(\gamma)<f\left(\sigma^{2}\right)$. We have $(f(\gamma)+1,\{f(\gamma)\}) \in \pi_{\beta}$. Since $\gamma \in$ є $P^{-} f(\{f(\gamma)\}), \sigma^{\gamma} \notin P^{-} f(f(\gamma)+1)$, 1.e. $f\left(\sigma^{\sim}\right) \notin f(\gamma)+1$, and consequently, $f(\gamma)<f\left(\sigma^{\nu}\right)$. Thus $\alpha \leqslant \beta$. Let γ be the least element in α such that $f(\gamma) \neq \gamma$. As f is increasing, we get $f(\gamma)>\gamma, P^{-} f(\{\gamma\})=0 \quad \operatorname{and} P^{-} f(\gamma+1)=$ $=\gamma$. Since $(\gamma+1,\{\gamma\}) \in \kappa_{\beta}$, we get $(\gamma, 0) \in \mu_{\alpha}$ and $\gamma=\alpha$. This is a contradiction, w $\gamma \in \alpha$. Hence $f(\gamma)=\gamma$ for all $\gamma<\alpha$. The proof is finished.

Definition. Let A be a non-void eet. We define a categary $Y(A)$ by: The objects are couples (X, r), where X is a set and $r \subset A^{X}$ (i.e. π is a set of mappinge from X into A; the set r will be called an inverse A-rejation on X); a mapping $f: X \rightarrow Y$ will be morphien from (X, r) into $(Y,>)$ if and oniy if $\varphi \cdot f \in \pi$ for everyçes.

1) The notion of the inverse relation and the correaponding choice of mappinge can be considered in scme sense as a dual notion to the relations and compatible mappinga. Actually, an α-nary relation is a subeet of X^{α} (here
X^{α} is the set of all mappings from \propto into X, and the compatible mappinge are then exactly the mappinge $f:(X, r) \rightarrow(Y, \infty)$ which fulfill the condition $f \circ \varphi \in$ $\in \Delta$ for every $\boldsymbol{S} \in \boldsymbol{C}$.
2) Topology can be considered as an inverse binary relation. Let $A=2=\{0,1\}$. If τ is a topology on a set X, put $\bar{\tau}$ is the set of all characteriatic funco tions of open sets. Evidently, $f:(X, \tau) \rightarrow(Y, \sigma)$ is continuous if and only if f is a morphism from $(X, \bar{\tau})$ into $(Y, \bar{\sigma})$ in $Y(2)$.
3) Similarly, a differential structure on a manifold is essentially an inverse E_{1}-relation. Let M and N be two differentiable manifolds, $r(s$ resp.) the set of all differentiable mappings from $M(N$ resp.) into the real line $E_{1}, f: M \rightarrow N$ is differentiable if and only if $\varphi \circ f \in \pi$ for every $\varphi \in S$.

Theorem 17. Assuming (M), $Y(A)$ is boundable for ans set A.

Proge. Evidently, if card $A=$ card B, then $Y(A)$ and $Y(B)$ are isomorphic. Thus it suffices to prove that $y(\alpha)$ is boundable, where α is any ordinal number.

We shall prove that $y(\alpha) \Longrightarrow \gamma\left(P^{-},\{\alpha\}\right)$. Let (X, μ) be an object in $Y(\alpha)$. We define on $P^{-}(X)$ an α-nary pelation $\bar{\pi}$ by:

$$
\begin{array}{r}
\left\{m_{\beta} \mid \beta<\alpha\right\} \in \pi \Longleftrightarrow \text { there exists } \varphi \in \pi \text { such that } \\
m_{\beta}=\varphi^{-1}(\beta) \text { for every } \beta<\alpha .
\end{array}
$$

Now, let $f:(X, \mu) \rightarrow(Y, s),\left\{m_{\beta}\right\} \in \bar{万}$. Then there
exists $\varphi \in \sim$ such that $m_{\beta}=\varphi^{-1}(\beta)$ for every $\beta<\alpha$. We have $P^{-}(f)\left(m_{\beta}\right)=P^{-}(f)\left(\varphi^{-1}(\beta)\right)=P^{-}(f) P^{-}(\varphi)((\beta))=P^{-}(\varphi \circ f)($ $((\beta))=(\varphi \circ f)^{-1}(\beta)$. As $\varphi \circ f \in \pi$, we $\operatorname{get}\left\{P^{-}(f)\left(m_{\beta}\right)\right\} \in \pi$. Let $f:(X, \bar{r}) \rightarrow(Y, \bar{万}), \varphi \in s . \operatorname{Then}\left\{\varphi^{-1}(\beta) \mid \beta<\alpha\right\} \in \bar{万}$, and $\left\{P^{-}(f)\left(\varphi^{-1}(\beta)\right)\right\}=\left\{(\varphi \circ f)^{-1}(\beta)\right\} \in \bar{\pi}$. Thus there exists $\psi \in r$ such that $(\varphi \circ f)^{-1}(\beta)=\psi^{-1}(\beta)$ for every $\beta<\alpha$. Now, we easily derive $\varphi \circ f=\psi$.
The proof is finished.
Corollary. Assuming (M), the category of differentiable manifolds and all their differentiable mappings is boundable.

Amendment. It follows from § 2 that the selective functors play an important role in full embeddings into categories of algebras. However, the fact that P^{+}is not selective does not mean e.g. that $\gamma\left(P^{+}, \Delta\right)$ cannot be fully embedded into \mathcal{Z}. Now, we are going to show that the concept of selectivity can be generalized in a natural way. By this generalization we shall show as an example that $\gamma\left(p^{+}, \Delta\right)$ is boundable.

Return for a moment to the definition of a selective functor. The reason why we have used the categories $\gamma(I, \Delta)$ in the definition is the fact that we knew beforehead that $\gamma(I, \Delta)$ is boundable. Now we have a wider supply of boundable categories. It turns out to be worthwhile to define a more general notion.

Let $\mathbb{Q}=\mathcal{P}\left(\left\{F_{L}, \Delta_{L} \mid\llcorner\in J\}, \mathscr{L}=\mathscr{P}\left(\left\{G_{x}, \Delta_{x} \mid x \in \mathbb{R}\right\}\right)\right.\right.$
be categories. A set functor F is called selective from

Q by means of \mathscr{L}, if thore is $\Phi: \mathbb{Q} \underset{\rightarrow}{\sim} \mathscr{L}$ suoh that $\square \cdot \Phi=F \cdot \square$ and F is one-tomone.

An evident analogon of theorems 5 and 6 is:
Theoren 18. Let F be a selective functor from $\left.\gamma\left\{F_{L}, \Delta_{\iota} \mid L \in J\right\}\right)$ by meane of $\gamma\left(\left\{G_{x}, \Delta_{x} \mid x \in K\right\}\right)$. Then $\gamma\left(\left\{F_{L}, \Delta_{\iota} \mid L \in J\right\},(F, \Delta)\right) \xrightarrow{\rightarrow} \gamma\left(\left\{G_{x}, \Delta_{x} \mid x \in K\right\},(I, \Delta)\right)$.

Theoren 12. P^{+}is a solective functor from γ by meane of $\gamma\left(\left(P^{-},\{1\}\right)(I,\{1,3\})\right)$.

Proof. If X is a set, $f: X \rightarrow Y$ a morphienin γ, we put $\Phi(X)=\left(P^{+}(X), r_{1}, r_{2}, n^{*}\right), \Phi(f)=P^{+}(f)$, where: n_{1} is a unary relation on $\mathrm{P}^{+}(X)$ defined by $X_{1} \in \kappa_{1} \leftrightarrows$ $\Leftrightarrow X_{1}=\{x\}$ (i.e. X_{1} is a one point set; n_{2} is a ternary relation on $\mathrm{P}^{+}(X)$ dofined by:

$$
\left\{x_{1}, x_{2}, x_{3}\right\} \in r_{2} \Leftrightarrow x_{1} \cup x_{2}=x_{3} ;
$$

r^{*} is a unary relation on $\mathrm{P}^{-}\left(\mathrm{P}^{+}(x)\right)$ defined by: if er $\epsilon^{\prime} P^{-}\left(P^{+}(x)\right)$ (i.e. er is a aystem of oubsete of x), then $\{4 \pi\} \in r^{*}$ if and only if $\left\{x_{i}\right\} \in \varphi(, i \in J$, maplice ${ }_{i} \int_{j}\left\{x_{i}\right\} \in$ er (i.e. if er containe a family of one point eets, then it containe also ite union).

Evidently, if $f: X \rightarrow Y$, then $P^{+}(f)$ is compatiole with κ_{1} and $\kappa_{2}, P^{\sim}\left(P^{+}(f)\right)$ 1s compatible with κ^{*}. Let $F^{\prime}: P^{+}(X) \rightarrow P^{+}(y)$ be compatible with k_{1} and $\kappa_{2}, P-(f)$ be compatible with κ^{*}. Considering compatibility with K_{1}, we get that the image of every one point aet under \tilde{f} is a one point set. If $a \in A$, then $A \cup\{a\}=A$, und - uning compatibility with $n_{2}-f(A) \cup$ $u f(\{a\})=f(A)$, i.e. $\tilde{f}(A) D_{a} \bigcup_{A} \tilde{f}(\{a\})$ foe evers $A c$ $c X$. The proof will be finiahed if we show that
$f(A)=\bigcup_{a \in A} \tilde{f}(\{a\})$ for every $A \subset X$. Assume $f(A) \backslash$ $\bigcup_{a \in A} \tilde{f}(\{a\}) \neq \varnothing$. Let \mathcal{b} be a system of all nonvoid subsets of $a \in \mathcal{U}(\{a\})$. Evidently, $\{\mathscr{E}\} \in \kappa^{*}$. Hence the image of \& under $P^{-}(\tilde{f})$ mut be also in the nary relation π^{*}. But $\{a\} \in P^{-}\left(\mathcal{F}^{m}\right)(\mathscr{B})$ for every $a \in A$ and $A \notin P^{-}(\tilde{f})(\mathscr{E})$. We have got a contradiction. The theo rem is proved.

It follows from boundability of P^{-}, theorems 18,19 and corollary 1:

Thecrem 20. Assuming (M), $\gamma\left(P^{+}, \Delta\right)$ is boundable for any type

Observe, that this way we have obtained a new proof of Theorem 14, as the category of proximity spaces is a full subeategory of $\gamma\left(P^{+},\{2\}\right)$.

A very general notion is defined in [4], namely a merotopic space. It is easy to see that the category of merotopic spaces and all their merotopically continuous mappinga is a full subcategory of $\gamma^{\prime}\left(P^{+}, P^{+},\{1\}\right)$. We are going to sketch a proof that also this category is (assuming (M)) boundable. It is possible to show - applying two times a alightly modified proof of Theorem 19 - that $P^{+} 。 P^{+}$ is selective from γ by means of $\left.\operatorname{Jr}\left(P^{-},\{1,1\}\right),(1,\{1,1,1,3,3\})\right)$. First, we consider only systems containing one set (we distinguish them by means of a unary relation on 1), then we distinguish systems containing only one one-point set and repeat the proof of Theorem 29. Then we proceed to syatems containing mare sets and apply once more the proof of theorem 19.

References
[1] Z. HEDRLIN, A. PULTR: On full embeddings of catego ries of algebras, to appear in Illinois Journal of Mathematics.
[2] J.R. ISBELL: Adequate subcategories, Illinois J. of Math., $4(1960), 541-552$.
[3] J.R. ISBELW: Subobjects,adequacy,completeness and categories of algebras, Rozprawy matematycsne XXXVI, Warszawa 1964.
[4] M. XAIBTOV: On contimuity structures and spaces of mappings, Comment.Math.Univ.Carolinae 6 (1965),257-278.
[5] R. SIKORSKI: On the inducing of homomorphisme by mappings, Fundamenta Math., 36(1949),7-22. (Received May 12,1966)

