Commentationes Mathematicae Universitatis Caroline

Stanislav Tomášek
 Some remarks on tensor products

Commentationes Mathematicae Universitatis Carolinae, Vol. 6 (1965), No. 1, 85--96

Persistent URL: http://dml.cz/dmlcz/104996

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
6,1(1965)
$$

SOME REMARKS ON TENSOR PRODUCTS

S. TOMÅEK, Liberec
§ 1. A locally convex topology in $E \otimes F$.
Let E and F be two topological vector spaces over the field of real mubers. We shall define in the tensor product E (8) F a topology, which may be identified with the projective tensor topology (see [2]) in case, when E and F are locally convex spaces. We denote for a subset A of E, B subset of F, by $A \otimes B$ the set of all $x \otimes y \in E$ (B, where x is in A, y in B.

For any neighborhood \mathcal{U} of zero element in E, \mathcal{V} neighborhood of zero element in F and for any positive integer n we set
(1) $K^{n}(u, v)=2^{-n}(u \odot v+\ldots+u \odot v)\left(2^{n}\right.$ summands on the right side)
(2) $\Omega_{u, v}=\bigcup_{n=1}^{\infty} K^{n}(u, v)$.

The system of all $\Omega u, \mathcal{v}$, where U varies in the neighborhood system U of zero element in E, V in neighborhood system V in F, defines a topology on the tensor product E (F. This topology is called in following discussion C_{y}-topology. It suffices to prove the relation $\Omega_{u, v}+$ $+\Omega_{u, v} \equiv \Omega_{W, V}$, where $W \in U, U \in U, V \in V, U+U \subseteq W$. The proof of the last statement is obvious. \mathscr{C}-topology in E (8) is locally convex. In order to prove this fact it suffices to show the equality (see [3]) $\frac{1}{2}\left(\Omega_{u, v}+\Omega_{u, v}\right)=$ $=\Omega_{\mu, v}$. This follows immediately from the definition (2).

The fundamental system of locally convex neighborhoods in E (4) F is formed by the collection of all interiors $\Omega_{u, v}^{\circ}$ of $\Omega_{\mu, v}$. The geometric significance of the neighborhoods $\Omega_{u, v}$ is clear: if we denote by $c \sigma(U \otimes v)$ the convex hull of $U \otimes V$ in $E \otimes F$, then $\Omega_{u, v}$ containing the interior of $\cos (U \odot v)$ is contained in $\cos (U \otimes v)$. It follows at once that the closure of $\Omega_{u, v}$ is equal to the closed convex huli of U © V in E (F. If E and F are locally convex spaces, then the equivalence of the \mathcal{G} topology with the projective tensor topology (see [2]) follows from the inclusions:

$$
\cos (U \otimes v) \equiv \Omega_{w, v}^{0} \equiv \Omega_{w, v} \equiv \cos (W \otimes v),
$$

where $U+U \leq W$.
We may define the \mathscr{G}-topology in $E \odot F$ in the following manner, too; we set for any neighborhood U of O in E, V in F, and any positive integer n :
(1*) $K^{\prime n}(u, v)=\frac{1}{n}(u \odot v+\ldots+u$ © $)$ (n summands on the right aide)
(2') $\Omega_{u, v}^{\prime}=\bigcup_{n=1}^{\infty} K^{\prime n}(U, v)$.
It is clear that for any neighborhood U in E, V in holds

$$
\Omega_{u, v} \equiv \Omega_{u, v}^{\prime} \equiv \cos (u \otimes v)
$$

The last definition of the \mathscr{G}-topology can be acceptably generalized for tensor products of Abelian groups (see [6]).

From (2) it follows at once that the natural bilinear mapping $(x, y) \rightarrow x \odot y$ of $E \times F$ in $E \odot F \quad$ is continuous.

Theoram. Let E and F be two topological vector spaces. There exists a unique locally convex topology on the tensor product $E \times F$ having the following properties:
(a) the natural mapping $(x, y) \rightarrow x \otimes y$ of $E \times F$ in $E \subset F$
is continuous on $E \times F$.
(b) If G is a locally convex vector space, $f(x, y)$ a bilinear continuous mapping of $E \times F$ in G, the associatdd linear mapping f^{*}, defined by the algebraic isomorphism of the space $\mathscr{L}(E, F ; G)$ of all bilinear. mappings $E \times F \rightarrow G$ onto the space $\mathscr{L}(E \oplus F ; G)$ of all linear mappings $E \otimes F \rightarrow G$, is continuous on $E \oplus F$.
Proof. The G-topology has properties (a) and (b). Indeed, (a) was established above, (b) follows from the fact that $f(U, V) \subseteq W$, where U, V, W are neighborhoods of 0 in E, F, G, implies $f^{*}\left(\Omega_{u, v}\right) \subseteq W^{W}$. The uniqueness of a topology having properties (a) am (b) is clear. If E is a topological vector space, τ a topology in E, then there exists a locally convex topology in E coarser than τ. For example the topology having as neighborhood of 0 in E the set E only (the coarsest topology in E). The supremum of all locally convex topologies in E coarser than τ is a locally convex topology in E coarser than τ. We denote this topology by τ^{*}. It is well-known that a linear function f is continuous on (E, τ) if and only if f is continuous on (E, τ^{*}). The topological dual of E with the topology τ will be denoted by $E^{\prime}, \sigma\left(E, E^{\prime}\right)$ means the weak topology in E defined by E^{\prime}, τ_{0} a topology in E having as neighborhood the set E only.

The following statements are equivalent:
(a) E^{\prime} contains an element different from zero-element,
(b) τ^{*} is larger than τ_{0},
(c) $\sigma\left(E, E^{\prime}\right)$ is larger than τ_{0}.

Proof. If $0 \neq f \in E^{\prime}$, then $\sigma\left(E, E^{\prime}\right)$ is larger than τ_{0}, hence τ^{*} is larger than τ_{0}. It suffices to prove (b)
implies (a). If (b) is satisfied, the factor space $E / \overline{0}$, where $\bar{\delta}$ is closure of zero-element in (E, τ^{*}) is separated locally convex space containing an element different from zero. Clearly E^{\prime} has the property (a).

The topology τ^{*} associated to τ in E has as fundamentail system of neighborhoods the collection of all co U, when re co U is the convex hull of U in E, U in U.

Proposition 1. Let E and F be two topological vector spaces, τ_{1}, τ_{2} topologies on E and F. Then the \mathscr{g}_{g} topology in $E \otimes F$ defined by τ_{1} and τ_{2} is identical with the C-topology in $E \otimes F$ defined by τ_{1}^{*} and τ_{2}^{*}. Proof. In order to prove this proposition, it suffices to prove the inclusions $\Omega_{u, v} \equiv \Omega_{c o u, c o v} \subseteq \cos (U$ (V), where $\cos A$ denotes the convex hull of A. It is evident that $\Omega_{u, v} \equiv \Omega_{c o u, \operatorname{cov} v}$. Let $z \in \Omega_{a \sigma}^{\prime} u$, cor $v ;$ there exist x_{i} in $\cos U(1 \leqslant i \leqslant n)$ and y_{i} in $\operatorname{cov} V(1 \leqslant i \leqslant n)$ such that

$$
z=\frac{1}{n}\left(x_{1} \otimes y_{1}+\ldots+x_{n} \otimes y_{n}\right)
$$

As x_{i} is in co $U(1 \leqslant i \leqslant n)$, we may assume that x_{i} is of the form $x_{i}=\lambda_{1}^{i} x_{1}^{i}+\ldots+\lambda_{n_{i}}^{i} x_{n_{i}}^{i} \quad$ where $\sum_{k=1}^{n_{i}} \lambda_{k}^{i}=1$, $\lambda_{k}^{i} \geqslant 0\left(1 \leqslant k \leqslant n_{i}, 1 \leqslant i \leqslant n\right)$ and $x_{n}^{i} \in U\left(1 \leqslant r \leqslant n_{i}, 1 \leqslant i \leqslant n\right)$. Similarly $\quad y_{i}=\mu_{1}^{i} y_{1}^{i}+\ldots+\mu_{m_{i}}^{i} y_{m_{i}}^{i}$, where $\sum_{j=1}^{m_{i}} \mu_{j}^{i}=1$, $\left\langle\mu_{j}^{i} \geqslant 0\left(1 \leqslant j \leqslant m_{i}, 1 \leqslant i \leqslant n\right)\right.$ and $y_{s}^{i} \in V\left(1 \leqslant s \leqslant m_{i}, 1 \leqslant i \leqslant n\right)$. The rest of the proof follows from the fact that

$$
x=\frac{1}{n}\left(\sum_{k=1}^{n_{1}} \sum_{j=1}^{m_{1}} \lambda_{k}^{1}\left(\mu_{j}^{1}\left(x_{k}^{1} \otimes y_{j}^{1}\right)+\ldots\right) \text { is in } \cos (U \otimes v)\right.
$$

From the discussion it follows that \mathscr{C}-topology in tensor product $E \otimes F$ of two topological vector spaces $\left(E, \tau_{1}\right)$, $\left(F, \tau_{2}\right)$ is larger than the coarsest topology in $E \otimes F$ if and only if τ_{1}^{*} is larger than the coarsest topology in
E and τ_{2}^{*} is larger than the coarsest topology in F. Similarly \mathcal{G}-topology in E (F is separated if and only if τ_{1}^{*} and τ_{2}^{*} are separated topologies in E and F respectively.

$$
\text { §2. W-topology in E } \odot F \text {. }
$$

We assume as in § $1 E$ and F to be topological vector spaces, U the system of all neighborhoods of 0 in E, V the syatem of all neighborhoods of 0 in F. For any sequence $\left(u_{i}, i=1,2, \ldots\right), u_{i} \in U$, and for any sequence $\left(v_{i}, i=1,2, \ldots\right), v_{i} \in V$, we define

$$
\text { (3) } \Omega\left(u_{i}\right),\left(v_{i}\right)=\left\{x \in E \otimes F ; x \in \sum_{i}^{*} u_{i} \otimes v_{i}\right\}
$$ where $\sum_{i}^{*} u_{i} \otimes v_{i}$ means the set of all $x_{1} \otimes y_{1}+\ldots+$ $+x_{n} \otimes y_{n}, x_{i} \in U_{i}(1 \leqslant i \leqslant n), y_{i} \in V_{i}(1 \leqslant i \leqslant n), n$ arbitrary integer. If we choose $U_{k}^{\prime} \in U, V_{k}^{\prime} \in V(k=1,2, \ldots)$ satisfying

$$
U_{k k}^{\prime} \subseteq U_{2 k-1} \cap U_{2 k}, V_{k}^{\prime} \subseteq V_{2 k-1} \cap V_{2 k}(k=1,2, \ldots), \text { then }
$$

$$
\Omega_{\left(u_{k}^{\prime}\right),\left(v_{p_{c}}^{\prime}\right)}+\Omega_{\left(u_{p_{k}^{\prime}}^{\prime}\right),\left(v_{k}^{\prime}\right)} \leq \Omega_{\left(u_{k}\right),\left(v_{k}\right)}
$$

That proves that the collection of all sets of the form (3) defines a topclogy in $E \otimes F$ compatible with the structure of a vector space (see [7]). This topology is called in further discussion a W-topology.

The natural bilinear mapping $(x, y) \rightarrow x \otimes y \quad$ of $E \times F$ in $E \otimes F$ is continuous on $E \times F$.

Lemma. Let G be a topological vector space, W a neighborhood of zero element in G. We choose a neighbar hood W_{1} satisfying $W_{1}+W_{1} \subseteq W_{\text {. }}$. If $W_{i}(1 \leqslant i \leqslant k-1)$ are defined, we choose a neighborhood W_{k} of 0 such that $W_{k}+W_{k}=W_{k-1}$. Then for any te nolds

$$
W_{1}+W_{2}+\ldots+W_{k}+W_{k}=W((k+1) \text { summands on the }
$$

right side).
The proof can be carried outeasily by induction.

Theorem_2. If f is a continuous bilinear mapping of $E \times F$ in a topological vector apace G, then the associated linear mapping f^{*} of E (0.F in G defined by (4) $\quad f^{*}(x \otimes y)=f(x, y)$
is continuous on E (2) F. The corresponderce $f \longleftrightarrow f^{*}$ defines an isomorphism of the space $\mathcal{B}(E, F ; \dot{G})$ of all bilinear continuous mappings $E \times F \rightarrow G$ onto the space $\mathscr{L}(E \otimes F ; G)$ of all. linear continuous map pings $E \otimes F \rightarrow G$.
Proof. If $f \in \mathcal{B}(E, F ; G), W$ any neighborhood of zero element in G, we choose $\mathcal{W}_{i}(i=1,2, \ldots)$ as in precedent lemma. For suitable neighborhoods $\boldsymbol{u}_{i}, V_{i}(i=1,2, \ldots)$ of zero element in E and F respectively we have $f\left(U_{i}, V_{i}\right) \leq$ c $W_{i}(i=1,2, \ldots)$. The continuity of f^{*} follows from $f^{*}\left(\Omega\left(u_{i}\right),\left(v_{i}\right)\right) \leq w . \quad$ For any $x \in \Omega\left(u_{i}\right),\left(v_{i}\right)$ there exist x_{i} in $u_{i}(1 \leqslant i \leqslant n), \quad y_{i}$. in v_{i} $(1 \leqslant i \leqslant n)$ such that $x=x_{1} \otimes y_{1}+\ldots+x_{n} \otimes y_{n} \cdot$ From $f^{*}(x)=\sum_{i=1}^{m} f\left(x_{i}, y_{i}\right) \in W_{1}+W_{2}+\ldots+W_{n} \leq W$ we derive $\quad f^{*}\left(\Omega\left(u_{i}\right),\left(v_{i}\right)\right) \leq W$. This concl udes the proop.

Conseguence. On the tensor product $E \oplus F \quad W$-topology
is the unique topology compatible with the structure of a vector space satisfying following conditions:
(a) The natural bilinear mapping $(x, y) \rightarrow x \otimes y \quad$ of $E \times F$ in $E \oplus F$ is continuous.
(b) If $f(x, y)$ is a bilinear continuous mep ping of $E \times F$ in a topological vector space G, then the linear mapping f^{*} associated to f is continuous on E © F
The proof is evident.
If E and F are two finite dimeneional separated topological spaces, then \boldsymbol{y}-topology on $E \oplus F$ is identical

With the W-topology on $E \subset F$. This follows from ([7], theorem 26). Making use of theorem 2 we may conclude that W-topology on $E \otimes F$ is larger or equal to \mathscr{g}-topology on $E \otimes F$. In general these topologies are different.

Example. Let $(X, \mathscr{O},(\mu)$ be a measure space, \mathscr{M} a σ-algebra of subsets in X, μ a finite, atomic-free measure on $\mathscr{H L}$. By $\mathscr{Y}=\mathscr{\mathscr { O }}(X, \mathscr{Z}, \mu)$ we denote the space of all almost everywhere finite measurable functions on X with respect to \mathcal{M}. We may define in \mathcal{J} a topology τ by a metric ρ :

$$
\rho(f, g)=\int \frac{|f(x)-g(x)|}{1+|f(x)-g(x)|} d \mu .
$$

In \mathscr{f} there exists a unique open convex set, hence the associated locally convex topology τ^{*} is the coarsest topology in \mathscr{S}. For every k there exists a decomposition $\left(X_{i}\right)_{i \in J}$, J finite, $X_{i} \cap X_{j}=\emptyset \quad$ for $i \in J, j \in J, i \neq j, X_{i} \in \nexists(i \in J)$, $X=\bigcup_{i \in J} X_{i}$ and $\mu\left(X_{i}\right) \leqslant \frac{1}{\text { 员 }}$ (see [5]). For any $f \in \mathscr{S}$ we set

$$
f_{i}(x)=\left\{\begin{array}{cl}
f(x), & x \in X_{i}, \\
0, & x \notin X_{i}, \quad i \in J
\end{array}\right.
$$

Hence $f_{i} \in \mathscr{S}(i \in \mathcal{Z}), f(x)=\frac{1}{n} \sum_{i \in J} n f_{i}(x)$, where n is the cardinal of J.
If we define a bilinear continuous mapping $\boldsymbol{f} \times \boldsymbol{f} \rightarrow \boldsymbol{\mathcal { S }}$ by $(f, g) \rightarrow f \cdot g, \quad$ we may conclude that $f \otimes g \rightarrow f \cdot g$ is a continuous mapping of \boldsymbol{f} © $\boldsymbol{\mathcal { O }} \rightarrow \boldsymbol{\rho}$ with respect to the W-topology. From the proposition 1 of $\S 1$ it follows that linear mapping $f(g \rightarrow f \cdot g \quad$ is not continuous in G -topology. This proves W-topology is larger than \mathcal{G} topology in $\mathcal{S} \propto \mathcal{S}$.

If E and F are E^{\prime} - and F^{\prime}-separated, W-topology in $E \odot F$ is of course separated.

Proposition 2. Let $E_{i}(i=1,2), F_{i}(i=1,2)$ be topological vectar spaces, $\mu_{i}(i=1,2)$ a linear continuous. mapping of E_{i} in $F_{i}(i=1,2)$. Then the linear mapping $u_{1} \otimes u_{2}$ of $E_{1} \otimes F_{1}$ in $E_{2} \otimes F_{2}$ defined by
(5) $\left(\mu_{1} \otimes \mu_{2}\right)(x \otimes y)=\mu_{1}(x) \otimes \mu_{2}(y)$,
where $x \in E_{1}, y \in F_{1}$, is continuous on $E_{1} \otimes F_{1}$. The proof is evident.

Proposition 3. If we denote $E_{i}, F_{i}, \mu_{i}(i=1,2)$ as in proposition 2, then $\mu_{1} \otimes \mu_{2}$ is an open mepping whenever $u_{i}(i=1,2)$ are open.
Proof. It auffices to prove
(6) $\left(u_{1} \otimes u_{2}\right) \Omega_{\left(u_{i}\right),\left(v_{i}\right)} \geq \Omega_{\left(u_{1}\left(u_{i}\right)\right),\left(u_{2}\left(v_{i}\right)\right),}$
where $U_{i} \in U, V_{i} \in V(i=1,2, \ldots)$.
For a given x^{\prime} in $E_{2} \otimes F_{2}$ and x^{\prime} in $\Omega_{\left(u_{1}\left(u_{i}\right)\right),\left(u_{2}\left(v_{i}\right)\right)}$ we may choose suitable $x_{i}^{\prime} \in \mu_{1}\left(u_{i}\right)(1 \leqslant i \leqslant n), y_{i}^{\prime} \in \mu_{2}\left(v_{i}\right)$ $(1 \leqslant i \leqslant n)$ satisfying $x^{\prime}=x_{1}^{\prime} \otimes y_{1}^{\prime}+\ldots+x_{n}^{\prime} \otimes y_{n}^{\prime}$. There exist $x_{i} \in U_{i}(1 \leqslant i \leqslant n), y_{i} \in V_{i}(1 \leqslant i \leqslant n)$, $\mu_{1}\left(x_{i}\right)=x_{i}^{\prime}(1 \leqslant i \leqslant n), \mu_{2}\left(y_{i}\right)=y_{i}^{\prime}(1 \leqslant i \leqslant n)$. If we define $x=x_{1} \otimes y_{1}+\ldots+x_{n} \otimes y_{n}$ we have $\left(\mu_{1} \otimes \mu_{2}\right)(x)=x^{\prime}$, $z \in \Omega\left(u_{i}\right),\left(v_{i}\right)$

Proposition 4. If $E_{i}(1 \leqslant i \leqslant n), F$ are topological vector spaces, then the tensor product $\left(\prod_{i=1}^{n} E_{i}\right) \otimes F$ is algebraic and topological isomorphic to $\prod_{i=1}^{n}\left(E_{i} \otimes F\right)$. Proof. The isomorphism φ of $\left(\prod_{i=1}^{n} E_{i}\right) \in F$ on $\prod_{i=1}^{n}\left(E_{i} \otimes F\right)$ is given by (see [7])

$$
\varphi\left(\left(x_{1} \otimes y\right), \ldots,\left(x_{n} \otimes y\right)\right)=\left(x_{1}, \ldots, x_{n}\right) \otimes y .
$$

The continuity of φ^{-1} follows from the continuity of
$\left(\left(x_{1}, \ldots x_{n}\right), y\right) \rightarrow x_{i} \not y(1 \leqslant i \leqslant n)$. Similarly one proves the continuity of φ.

Proposition 5. Let E and F be two topological vector spaces, M subspace in E, N subspace in F. Then the factor space $E \otimes F / \Gamma(M, N)$ is algebraic and topological isomorphic to $(E / M) \otimes(F / N)$, where $\Gamma(M, N)$ is a subspace in $E \otimes F$ generated by the set of all $x \otimes y, x$ is in M or y is in N.
Proof. We denote by ω, φ, ψ the natural mapping of $E \otimes F$ in $E \otimes F / \Gamma(M, N), E$ in $E / M, F$ in F / N. The natural isomorphiam Φ of $E \otimes F / \Gamma(M, N)$ on $(E / M) \otimes(F / N) \quad$ is defined (see $[1])$ by
$\Phi(\omega(x \otimes y))=\varphi(x) \otimes \psi(y)$.
The continuity of Φ follows from the continuity of $x \otimes y \rightarrow$ $\rightarrow \varphi(x) \otimes \psi(y)$ and $\Phi(\omega(\Gamma(M, N)))=0$. From (6) we may conclude that $\Phi\left(\omega\left(\Omega_{\left(u_{i}\right),\left(v_{i}\right)}\right)\right) \supseteq \Omega_{\left(\varphi\left(u_{i}\right)\right),\left(\psi\left(v_{i}\right)\right)}$. This proves Φ is open.

> §3. W-topology on the tensor product $G \otimes K$ of Abelian groups.

Let G and K be two Abelian topological groups written in the additive form, $G \otimes K$ their tensor product. Every Abelian group may be regarded as a module over the ring Z of all integers. By a Z-linear (Z-bilinear) mapping we mean a linear (bilinear) mapping of the module with respect to the ring Z.

Every element x of $G \otimes K$ is of the form

$$
x=x_{1} \otimes y_{1}+\ldots+x_{n} \otimes y_{n},
$$

where $x_{i} \in G(1 \leqslant i \leqslant n), y_{i} \in K(1 \leqslant i \leqslant n)$ and n is a positive integer.

Por any sequence $\left(U_{i}, i=1,2, \ldots\right)$ of neighborhoods of zero in G and for any sequence $\left(v_{i}, i=1,2, \ldots\right)$ of neighborhoods of zero in K we define (as in $\S 2$)
(3') $\Omega_{\left(u_{i}\right),\left(v_{i}\right)}=\left\{x \in G \oplus K, x \in \sum_{i}^{*} u_{i} \otimes v_{i}\right\}$, where $\sum_{i}^{*} u_{i} \odot v_{i}$ means the set of all $x_{1} \oplus y_{1}+\ldots+x_{n} \oplus y_{n}$, $x_{i} \in U_{i}(1 \leqslant i \leqslant n), y_{i} \in V_{i}(1 \leqslant i \leqslant n)$ and n is any integer.

The collection of all $\Omega\left(u_{i}\right),\left(v_{i}\right)$ defines in $G \not K$ a topology compatible with the structure of a group $G \oplus K$. This topology is called W-topology in $G \otimes K$. The proof of this statement is similar as in § 2. The natural Z-bilinear mapping $(x, y) \rightarrow x \oplus y \quad$ of $G X K \rightarrow G \oplus K$ is continuous in (0,0). In general this mapping is not separated continuous on $G \times K$. For example we may conaider G additive group of the real numbers with the usual topology, K a discrete group with basis ($\left.e_{i}\right)_{i \in J}$. The mappings $x \rightarrow x \otimes e_{i}(i \in J)$ are not continuous on G.

Theorem 3. If f is a Z-bilinear mapping of $G \times K$ in a topological group H continuous in $(0, O)$, then the limear mapping f^{*} of G (4) in H associated to f and defined by

$$
\left(4^{\prime}\right) \quad f^{*}(x \otimes y)=f(x, y)
$$

is continuous on G (1) K.
The proof is similar as in § 2.
Consequence. W-topology is the unique topology on $G \otimes K$ compatible with the structure of a group and having the following properties:
(a) The natural Z-bilinear mapping $(x, y) \rightarrow x$ y is continuous in $(0,0)$.
(b) If f is a Z-bilinear mapping of $G \times K$ in a topological group H continuous in $(0, O)$ then the associated

> mapping f^{*} defined by $\left(4^{\prime}\right)$ is continuous on $G O K$.
> If G or K is a discrete group, then $G O K$ is discrete. Hence, W-topology is equal to π-topology on $G O K$ (see [6]), when $G \odot K$ is toraion-free. From theorem 3 it follows that in general W-topology is larger or equal to $\pi-$ topology.

Example. We denote by D the ring of all pr-adic numbers. Any element x in D is of the form $x=\left(k_{1}, k_{2}, \ldots k_{n}, \ldots\right)$, where h_{n} is a positive integer, $h_{n+1}=h_{n}\left(\bmod p^{n}\right)$, $0 \leqslant k_{n}<r^{n}$. A neighborhood $U_{n}(0)$ of zero element in D is defined by (see [4])

$$
U_{n}(0)=\left\{x \in D ; h_{1}=\ldots=k_{n}=0\right\}, n=1,2, \ldots
$$

For any $x \in D, y \in D$ we set $f(x, y)=x^{\cdot} y$, It is clear that f is continuous in $\{0,0\}$. The associated mapping f^{*} is continuous on D (D with the W-topology. Making use of the fact that π-topology on D (D, has as a neighborhood the' set D (D only (see [6]), we may conclude that f^{*} is not continuous on $D \otimes D$ with the π-topology. . Hence, W-topology and π-topology are not identical.

If G and K are (b)-groups, (see [6]) (i.e. for any x in G, y in K and any neighborhood U of O in G, V of 0 in K, there exist positive integrs m, n satisfying $x \in m U, y \in n V \quad$, then $(x, y) \rightarrow x \in y$ is continuous on $G \times K$ (see [6]).

Similarly as in § 2 for W-topology in the tensor product $G \otimes K$ of two Abelian groups hold propositions 2,3,4 and 5 .

If G and K are two topological groups, then every character (see [4]) of G © K may be regarded as a Z-bilinear mapping of $G \times K$ in R / Z, where R / Z is the additive group of real numbers modilo 1 continuous in $(0,0)$ and
conversely. Eapecially the natural Z-bilinear mapping $(x, X) \rightarrow\langle x, \chi\rangle=X(x)$ is a character of $G \odot G^{*}$ where G is a locally compact group, G^{*} the group of all characters of G.

References:
[1] N. BOURBAKI, Algèbre multilinéaire,Paris,Hermann 1948.
[2] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Memoirs,Amer.Mat h.Soc., 1955.
[3] J. von NEUMANN, On complete topological spaces, Trans. Amer.Math.Soc. 37 (1935) , pp.1-20.
[4] L.S. PONTRJAGIN, Continuous groups,Moscow 1954(Russian).
[5] S. SAKS, Addition to the note on some functionals, Trans. Amer.Math. Soc. 53 (1933) , pp. 965-970.
[6] S. TOMÁSEEK, On tensor products of Abelian groups,this Journal, pp.73-83.
[7] H. WHITNEY,Tensar prodets of Abelian groups, Duke Math. Journal , 4(1938), pp. 495-528.

