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Commentationes Mathematicae Univers i tat is Carolinae 

6, 1 (1965) 

SOME REMARKS ON TENSOR PRODUCTS 

S. TOM ŜEK, Liberec 

§ 1« A l o c a l l y convex topology in £ ® F . 

Let E and F be two topological vector spaces over the 

f i e l d of real numbers. We sha l l define i n the tensor product 

£ ® F a topology, which may be ident i f i ed with the pro jec t i 

ve tensor topology (see [2J) in case, when E and F are 

loca l ly convex spaces. We denote for a subset A of B , 3 

subeet of F , by A ® B the set of a l l x ® <y € £ <S> F ; 

where M s in A . ^ in ft • 

For any neighborhood U of zero element in E7 V neigh

borhood of zero element in F and for any pos i t ive integer f t 

we set 

(1) Km(U, V)-Z~"(U<*V+... + UQ IT) ( Ln summands on the r igh t 

s ide) 

(2) i l „ « (3 K ~ f t t f V> . 

The system of a l l JCLU ^ } where U varies in the 

neighborhood sy9tem U of zero element in £ , V in neigh

borhood system V in F ; defines a topology on the tensor pro

duct E Q F . This topology i s ca l led in following d i scussion 

fy -topology. I t suf f ices to prove the re la t ion Jlu ^ + 

+**%,* c ^ r > w h e r e vr€ u> U e U l r* v> u + u'* w* 

The proof of the last statement is obvious. ^ -topology in 

£ ® F is locally convex. In order to prove this fact it 

suffices to show the equality (see f3j) J ̂ A ^ <y *^"u ir^* 

"-Aft y • This follows immediately from the definition (2). 

- 85 • 



The fundamental system of locally convex neighborhoods in 

£ <2> F i s formed by the collection of a l l interiors -ft^ y. 

txffL y, • The geometric significance of the neighborhoods 

jfl^ ^ i s clear: i f we denote by ar(U& IT) the convex 

hull of U 0 V in £ # F , then i l ^ ^ containing the 

interior of or (U 9 V) i s contained in cxr (U ® V) . i t 

follows at once that the closure of -fl-v y i s equal to the 

closed convex hull of I t « V in E S> F , i f £ and F 

are locally convex spaces, then the equivalence of the ^ " 

topology with the projective tensor topology (see f2j) follows 

from the inclusions: 

cxr (U * V-)m tl^y. * -K^ir s w CUr® r) ' 
where U + U £ VT. 

We may define the ty -topology in £ 9 F in the follow

ing manner, too; we set for any neighborhood U of 0 in E, 

V in F and any positive integer 4* : 

<l') K<"(U,V)=i(U9V+...+Ue>V) ( * aummands on the 

right side) 

It is clear that for any neighborhood U in E , V in 

holds 
JA,ii,tr tf-f 

The last definition of the <§ -topology can be acceptably gene

ralized for tensor products of Abelian groups (see 16}). 

From (2) i t follows at once that the natural bilinear mapp

ing (X,^> —+ * 0 V of £ * F in £ 0 F i s continuous. 

Theorem 1. Let £ aifĤ  F be two topological vector spaces. 

There exists a unique locally convex topology on the tensor pro-

duet £ 9 F having the following properties: 

(a) the natural mapping <xt/y> —»x$ /y o f E x F i n £ # F 
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is continuous on £ .* F . 

(b) If G is a locally convex vector apace, f C^'jj) a bi

linear continuous mapping of £ <* F in G - the associated 

linear mapping -F*, defined by the algebraic isomorphism of 

the space Zt CE ., F; G ) of all bilinear mappings £ x F-* £ 

onto the space ^6 CE # F ; G ) 0f a n linear mappings 

E ® F —> G" , is continuous on E ® F . 

Proof. The ^ -topology has properties (a) and (b). Indeed, 

(a) was established above, (b) follows from the fact that 

4(11, V) & UT , where VL, V, W are neighborhoods of Q 

in E ; f 7 Gr , implies i * C A ^ ^ ) £ W~ . The unique

ness of a topology having properties (a) arri (b) is clear. 

If E is a topological vector space, X a topology in E , 

then there exists a locally convex topology in E coarser 

than X . For example the topology having as neighborhood of 

0 in £ the set £ only (the coarsest topology in £ ). 

The supremum of all locally convex topologies in £ coarser 

than x is a locally convex topology in £ coarser than T . 

We denote this topology by X .It is well-known that a li

near function f is continuous on ( £ , f ) if and only if f 

is continuous on C £ , t ) . The topological dual of E with 

the topology X will be denoted by E', 6 CE f E' ) means 

the weak topology in £ defined by £ , X0 a topology 

in £ having as neighborhood the set £ only. 

The following statements are equivalent: 

(a) £ contains an element different from zero-element , 

(b) X* is larger than t0 , 

(c) 6CE, E' ) is larger than X0 . 

Proof. If 0 * f e £' , then 6CEf E' ) is larger than Tm, 

hence f * is larger than X0 . It suffices to prove (b) 
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implies (a). If (b) ia 9atiafied, the factor space E/0 9 

where u is closure of zero-element in (B f f *) ±3 3eparated 

locally convex apace containing an element different from zero. 

Clearly E haa the property (a). 

The topology X asaociated to t in £ ha9 as fundamen

tal sy3tem of neighborhoode tne collection of all ccr U ? whs re 

ay U ia the convex hull of U in £ 7 U in (J. 

Proposition 1. Let £ and F be two topological vector 

spaces, f., , f 2 topologies on £ and F. Then the <§ -

topology in E ® F defined by T,, and t£ is identical 

with the ^-topology in £ ® P defined by T * and f * . 
1 2. 

Proof• In order to prove t h i s proposit ion, i t suf f ices to pro

ve the i n c l u s i o n H & IL u & <*r (U G V ) 7 where 

tor A denote9 the convex hul l of A . It i3 evident that 

•*Vtr S *\*U,vrV ' L e t x € A ^ * , * • * " > there e x i s t s 
i n cor U (4 4 i 4 n ) and <y± in ccr VC4 £ i 4 <n ) such 
that 4 . 

X m 1 r ^ &% + -.. + **,* V«t. ) ' 

As *• ia in co- U (14 i 4 n ) we may asaume that X • ia of 
. . . *n%, . 

the form Xj * A* ** + . . . •«- A* . X* w m r e 2 A N 7 , 
X^> 0 (l4M4n4,l4i4«,) and * £ € U (14 * 4 n^, l4i 4n). 

* * • • "*** • 
Similarly 4 ^ * ^ 1j*+ • • • V 4*-* *A^ , where .X ^ j * 1 ' 

<Uj *0 (I4j4mi t44i 4<n ) and ^ € f C 4 4 * 4m<fl4i 4 n). 

The reat of the proof follows from the fact that 

X ' k C& jF< A * t*V (** 9 "ip*"' >-«» - a urClLvV)-

Prom the discus3ion it follow9 that ^ -topology in tenaor 

product E ® F of two topological vector apaces (B , "C^ ) ; 

( F , t^ ) ia larger than the eoareeet topology in £ # F 

if and only if X^ is larger than the coar8eet topology in 

- 88 -



£ and tf̂  is larger than the coarsest topology in F . 

Similarly % -topology in E ® F is separated if and 

only if t^ and t^ are separated topologies in £ and F 

respectively. 

§ 2. W -topology in E & F" * 

We assume as in § 1 £ and F to be topological vector 

spaces, U the system of all neighborhoods of 0 in E, V 

the system of all neighborhoods of 0 in F, For any sequence 

(W-i , i * ^ 2 . » " ) , W^ € 1/ f and for any sequence 

(% > + s 1$ *-t " ' ) > T € V 9 we def ine 
(3) ^vtV*1*6***'' **$*«<<*%*> 

where X -^ 3> t £ means the set of a l l **,, <» y^ + • • • * 
> ^ ® ' ^ ' » t ? x i c ^ i ^ * * ***-), % 6 2 £ ^ - t * *t}narb i trary integer . 

If we choose 11^ e U, l£ € V (<k = 1, 2, . . . ) sa t i s fy ing 

K s ^i*-< n tti*> fc'fi % M n & C*= ̂  V ' ^ t h e n 

That proves that the co l lec t ion of a l l sets of the form (3) de

fines a topology in £ ® F compatible with the structure 

of a vector space (see 11]). This topology i s cal led in further 

d iscussion a W -topology. 

The natural b i l inear mapping f*, ^ ) —* -X ® ^ o f E « P 

in £ <g> F i s continuous on £ x F • 

Lemma. Let 6 be a topological vector space, VT a neigh

borhood of zero element in & * We choose a neighborhood V^ 

satisfying % + W^ £ W. I f VK Cl^i^A-l) are de

fined , we choose a neighborhood Wj^ of 0 such that 

Wj^ + W^ £ # £ ^ . Then for any Jk holds 

t ( f + U£ +... + 2 £ * - ^ £ c W C Cfc + 1) summands on the 

right s i d e ) . 

The proof can be carried ouft£asily by induction. 
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Theorem 2. If f i s a continuous bi l inear mapping of 

E x F in a topological vector space <r , then the asso

ciated l inear mapping f* of £ ® F in <r defined by 

(4) -P*OS> V ) - f Cx, y) 

i s continuous on E O F . fihe correspondence "f «—* *f 

defines an isomorphism of the space J&CE9F} G ) 0 f a l l b i 

l inear continuous mapping8 E x F --* (r onto the space 

y^CEGFyG") of a l l . l inear continuous mappings 

E ® F —+ G- * 

Proof. I f +€ftCE,F;G)y yf any neighborhood of zero 

element in G-, we choose V% Ci ~1, 2.,... ) as in precedent 

lemma. For suitable neighborhooda 1C^ , 1% Ci*1y29...) of 

zero element in £ and F reapectlvely we have fCU^, V^)S 

£ tt£ ( t * f , 2;**.?. The continuity of f* follow* from 

f * ^ i ) , C t A i ) ) * ^ ' F ° r 8 n y X C " ^ i > ."5> 
there ex i s t x^ in ^ d 4 t 4 n ) , ^ in t£ 

(4 * i ^ n ) such that Z ~ *<, ® % + • -• + •*<*, • 1*<n. * 

Prom **<-%)-..£ * C j f 4 , ^ ) c 1di;+WZ+...+ U£ s UT 

we derive ^ * ^ \ f / . ) rirr) * s ^ " # T h i s <-onclu<te8 the proof. 

Consequence. On the tensor product E & F W -topology 

i s the unique topology compatible with the structure o f a vec

tor space sat i s fy ing following conditions: 

(a) The natural bi l inear mapping Cx7n^ ) - * x <S) sy of £ x F 

in E ti> F i s continuous. 

(b) I f fCy^y) i s a bi l inear continuous mapping of E x F 

In a topological vector space (r , then the l inear mapping i* 

associated to f i s continuous on E ® F • 

The proof i s evident. 

I f E and F are two f i n i t e dimensional aeparated topo

l o g i c a l spaces | then % -topology on E • F i 8 ident ical 
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with the W -topology on E & F . This follows from C[7Jt 

theorem 26) . .Making use of theorem 2 we may conclude that 

W -topology on E ® F i s larger or equal to %, -topology 

on £ ® F . j n general these topologies are d i f f erent . 

Example. Let ( X , 7?L 7 (tc) be a measure space, KTt a 

6 -algebra of subsets in X 7 (U, a f i n i t e , atomic-free 

measure on TXt . By tf ~ if(X , 79t , (-<-) we denote the 

space of a l l almost everywhere f i n i t e measurable functions 

on X with respect to 7tl . We may define in if a topology 

f by a metric ro : 

r '* S 1 + lf(x)-$(x)\ *<"-

In t!f there exists a unique open convex set, hence the asso-
•k 

ciated l o c a l l y convex topology f i s the coarsest topology 

in if. For every Jk there ex i s t s a decomposition (X^)i€j t 

J f i n i t e , XinXj=0 for ie d,j€ J, i+j, X^€ Wld € J), 

K't^X-L a^d (uCX^)4 £ (see C5j). For any -f € if 

we set 
f Cx ) , X € Xt , 

0 , * **i , i * J 

Hence 4.e *# Ci c i ) . -f{x)sl £ /nt-C*), where TL is the 

cardinal of J . 

If we define a bilinear continuous mapping if x if —> if 

by r f , ^ ) — > * ^ * 9 - > we may conclude that f # $ —> *£ * £ 

is a continuous mapping of if 0 if —+ if with respect to 

the W -topology. From the proposition I of § 1 it follows 

that linear mapping $ & £, —> -f * £. is not continuous in 

% -topology. This proves W -topology is larger than *% -

topology in if 0 if . 
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If £ and F are E'- and F' -separated , W - topo lo 

gy in £ 0 P i s of course separated . 

Proposition 2 . Let Ei Ci * 1, I ) , £• Ci m 1,1) be topo

log ica l vector spaces, 44*± Ci * 1? -2 ) a l inear continuous-

mapping of £± in F̂  (i a 1 . 1 ) . Then the l inear mapping 

^ ® U,£ of £, ® ^ in £^ ® ^ defined by 

(5) Ci,, ® *.* > C* <8> ^ > - *k, C* ) <S> ^ Cy ) , 

where x 6 £1 , *y € F7 ., i s continuous on £^ ® F1 • 

The proof i s evident. 

Proposition 3 . If we denote E± , Fi , ^ f t « f, 2 ) 

as in proposition 2 , then ^ <8> AJLt i s an open mapping when

ever 44,1 ( i • 4, t) are open* 

Proof. I t suf f ices to prove 

(6) ^ • ^ 1 > ^ ^ ) | f n ) « ^ ^ a . V ' ) i f « t c f ^ ; ; > 

where U^ € U , 1 j c 1/ Ci - 4 , £ , . . . >. 

For a given s&' i n E- G> F, and z' in i l . ,# y .. , . ss 

we may choose suitable X+ € AJL^ CU^ ) (14 i 4 n ) , sy',. € u,± (t% ) 

( 4 4 i 4 n ) sat i s fy ing x'« x^® ^ + .• • + x^ <8> ^ 4 , • 

There ex i s t x4 6 t t . C4 « i 4 n ) , 1fc* Z£ C? « i « n), 

UiCxi)sxX^(l4i4^t"i7 ^Oy^U/y^d^i^nXjf we define 

X m *i <8 *yn + ' " + <*„, ® ^tv w e n a v « f ^ f ® ^ > f ̂  > ** *-'t 

% € ^ c i i ^ - C ^ ) ' 
Proposition 4. If £^ C4 4 4 * m) , F0 are t o p o l o g y 

cal vector spaces, then the tensor piodict f,7T E^ ) ® F i§ 
%c* m. 

algebraic and topological isomorphic to .77 C£. <g> F ) • 

Proof. The isomorphism ^ of C TT £. ) 4p F on TT f £ . # F ) 

i s given by (see [7J> 

9 f f x . f 0 ? >* • • • t f - *^0 ^ >>* f * . , , - • • > * * * > • y ' 

The continuity of <f follows from the continuity of 
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« * . - , . . . x ^ ) , <y)^> X+ 0 q C1 *i 4 *i). Similarly one 

proves the continuity of <-f * 

Proposition 5. Let E and F be two topological vector 

spaces, M subspace in £" ? N subspace in F . Then the 

factor space B 0 F /pr/^j fj ) i s algebraic and topological 

isomorphic to ( E / M ) <3> ( F / ^ ) ^ where PCM ; N) i s a 

subspace in E @ F generated by the set of a l l x ® ij, * 

i s in M or /^ i s in W • 

Proof. We denote by CJ, 9 - V the natural mapping of 

E® F i n E ® F / p C M ? N ) 1 £ in E / M , F in F/N . 

The natural isomorphism $ of E Q F / p ^ ^ on 

( E/^ ) ® ( F / N ) ia defined (see f l ] ) by 

$ (o(x® <y)) <* <?(*) ® V (y) • 

The continuity of $ follows from the continuity of x® *y-> 

->Cf(x ) © y C/y ) and $ to ( P C M , N ))) -» 0 . p r o m (6) 

we may conclude that $&> f-fl^ ) ^) >) 2 - ^ r ^ r ^ ' ) ) , <y ft£ )) ' 

This proves <J> i s open. 

§ 3« iV -topology on the tensor product (r ® K of 

Abelian groups. 

Let G- and K be two Abelian topological groups written 

in the add it ive form, G <© K their tensor product. Every Abe

l i a n group may be regarded as a module over the ring Z of a l l 

integers . By a Z - l inear ( Z -b i l inear ) mapping we mean a l i 

near (b i l inear) mapping of the module with respect to the ring 

2 . 
Every element x of G <& K i s of the form 

X - X1 <8> f + ' ' • + •**. <® V*. > 

where X^ € & (4 4 i * *n) ,%* K (1414 <n) and n i s a p o s i 

t ive integer. 
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For any sequence (U^ , t • 1 , 2 7 . . . ) of neighborhoods 

of zero in G and for any sequence (V± , j> - f. 17... ) of 

neighborhoods of zero in K we define (as in § 2) 

where ^ \ 0 Yi means the set of a l l x 1 « ^ t + . . . ^ xn * $«, > 

*i € % M* i 4 **- *» ^ieK to** * * * and n i s any integer. 

The collection of a l l Sl(U ) cy, ^ defines in G 0 K 

a topology compatible with the structure of a group O 0 K • 

This topology i s called W-topology in G <2> K * 

The proof of t h i s statement i s similar as in § 2. The natural 

Z -bi l inear mapping (xyy) -~+ * Q y o f ( r * K - » & ® K 

id continuous in f 0, 0 ) . i n general th ia mapping i s not s e 

parated continuous on G x K . For example we may consider G 

additive group of the real numbers with the usual topology, 

K a discrete group with ba8ia (*•: ^ ^ 3 * The mappings 

x —.• x <2> -e± (i € 3 ) are not continuous on G . 

Theorem 3 . If f i s a Z - b i l i n e a r mapping of fr x K i n 

a topological group H continuous in (0^0) 9 then the l i 

near mapping +* of Cr ® K in H associated to f and 

defined by 

(4 ' ) f*(x <3> y) ~ 4 Cxty) 

is continuous on G <S> K • 

The proof is similar as in § 2. 

Consequence. k/ -topology is the unique topology on G 0 K 

compatible with the structure of a group and having the follow

ing properties: 

(a) The natural Z -bilinear mapping (x, *j) -> x ® y, is 

continuous in (0, 0) 

(b) If f is a Z-bilinear mapping of G K K in a topolo

gical group H continuous in ^0^ 0 ) then the associated 
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mapping f * defined by U') is continuous on G ® K. 

If Q or K is a discrete group, then Cr 9 tC ie dis

crete. Hence, W -topology is equal to ST -topology on & 9 K 

(see f6j), when G 9 K is torsion-free. From theorem 3 it 

follows that in general W -topology is larger or equal to rr -

topology. 

Example^ We denote by D the ring of all p> -adlc numbers* 

Any element * in D is of the form x~ (<k>i, ̂ 2 >" * ^m,4** " h 

where -&.«, is • positive integer, ^^^ m ^^ ("»<** {*>)?> 

0 * M^ < fi*, x neighborhood %^ (°) of zero element in D 

is defined by (see UJ) 

K.(oi 9 f*€ *; *,-•*• m **> m°t' ** " 1f l'"' 
For any x e P , <y e T> we set f C*f V > m * ' H • It is 

clear that i is continuous in fD$ D} , ^he associated, mapp

ing *f is Continuous on D ® " with the to/ -topology. Ma

king uae of the fact that TT -topology on 0 9 M ̂  has as a 

neighborhood thef aet D ® £ only (see [6J), we may conclude 

that -f* is not continuous on D <8 D with the IT -topology. 

.Hence, W-topology and ft -topology are not identical. 

H G and K are (b)-groups, (see £6j) (i.e. for any x 

in G , <y in K and any neighborhood 11 of 0 in Cr7 V of 

0 in K , there exist positive Integra in 7 m satisfying 

x € in U, Aj % n V ) f then (X, "4) -* * 0 ^ is conti

nuous on ^ K (see f6j) • 

Similarly as in § 2 for IV-topology in the tensor product 

G ® K of two Abelian groups hold propositions 2,3,4 and 5 • 

If G and K are two topological groups, then every charac

ter (see [4 .]) of G-® K may QQ regarded as a Z -bilinear 

mapping of G- * K in R/ z > where R/^ la the additi

ve group of real numbers modulo A continuous in (0f 0) and 
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conversely . Espec ia l ly the n a t u r a l Z - b i l i n e a r mapping 

(*f 1[ ) - * < X, \ > * \(x) i s a character of G 0 G* wre re 

& i s a l o c a l l y compact group, 0- the group of a l l charac te rs 

of G--
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