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6, 1 (1965)

SOME REMARKS ON TENSOR PRODUCTS
S. TOMASEK, Liberec

§ 1. A locally convex topology in E G' F.

Let E and F be two topological vector spaces over the l
field of real numbers. We shall define in the tensor product
E®F a topology, which may be identified with the projecti-
ve tensor topology (see [2]) in case, when E and F are
locally convex spaces. We denote for a subset A of E, B
subset of F , by A ® B the set of all x®y¢€¢ E® F ,
where ¥ 18 in A, 4 in B..

For any neighborhood U of zero element in E, 7 neigh-
borhood of zero element in F and for any positive integr <
we set .

(1) K™(U, V)= ™URV+...+UB V) ( 2™ sumands on the right
side)
@ Q, ., - O k™ cu, V).

The system of all .ﬁ.u'v, , where U varies in the
neighborhood system U of zero element in E, 7 in neigh-
borhood system V in F s defines a topology on the tensor pro-
duet E @ F + This topology is ea}led in following discussion

% -topology. It suffices to prove the relation .flu',, +
+0y , & -O.“,’,, , Where Wel, UelU, VeV, U+U s W.
The proof of the last statement is obvious. ‘9. -topology in
E® F 1s locally convex. In order to prove this fact it
suffices to show the equality (see [3]) %lﬂ,‘ﬂ, r Ay =

-ﬂu r This follows immediately from the definition (2),
7
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The fundamental system of locally convex neighborhoods in

E ®F  1s formed by the collaction of all interiors ‘Q;c,v
or_n.x,v . The geometr_ic significance of the neighborhoods

n is clear: if we denote by coo (U ® V') the convex
hull' of WSV in E® F, then ’Q‘-u,zr containing the
interior of co (U @ V') 1s contained in e (U ® V). 1t
follows at once that the closure of ‘Qu,v is equal to the
closed convex hull of U® YV n E® F. 1 E ema F
are locally convex spaces, then the equivalence of the ‘} -
topology with the projective tensor topology (see [2]) follows

from the inclusions:
: wUeVIed, &2, & (Wol),
where U+ U S W .

We may define the ¥ -topology in E ® F  1in the follow-
ing manner, too; we set for any neighborhood U of 0 in E,
¥ in F - and any positive integer 7 :
1) Kl"('u.;V‘)=£- cueV+---‘+ue V) (m sumands on the
right side) - )
@) ny = 0K, .

It is clear that for any neighborhood % in E, 7 1in

holds )
_ﬂ_u’v s _Q.“'V € cor (U V) .

The last definition of the % -topology can be acceptably gene-
ralized for tensor products of Abelian groups (see [6]).
From (2) it follows at once that the natural bilinear mapp-
ing (x,4) > X® ¥ of ExF inE®F is continuous.
Theorem 1. Let E mﬂ\F be two topological vector spaces.
There exists a unique local.fy‘ convex topology on the tensor pro-
duct E® F having the following propefties: .
(a) the natural mapping (X, ) —»x®4Y ofE x F inE® F
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is continuous on E x F .
(b)) I G is a locally convex vector space, f(X,4) a bi-
linear continuous mapping of E x F in G, the associatdd
linear mapping £* , defined by the algebraic isomorphism of
the space &£ (E,F; ) of all bilinear mappings Ex F—> G
onto the space £ (E®F ; G ) of all linear mappings
E® F— &, is continuous on E® F.
Proof. The <% =-topology has properties (a) and (b). Indeed,
(a) was established.above, (b} follows from the fact that
f(U, V)& W, where %, UV, W are neighborhoods of O
in E, F, 6 , implies f'(ﬂu,v, )€ W . The unique~
ness of e topology having properties (a) amd (b) is clear.
If E 1s a topological vector space, T & topology in E,
then there exists a locally convex tofnology in E coarser
than T . For example the topology having as neighborhood of
0 in E the set E only (the coarsest topology in E ).
The supremum of all locally convex topologies in E coarser
than 1 1is a locally convex topology in E coarser than T.
We denote this topology by 1:*. It is well=-known that a li-
near function f is continuous on (E, ®) if and only if f
1s continuous on € €, T™). The topological dual of E with
the topology % will be denoted by E’, 6 (E, E’) peams
the weak topology in E  defined by E', T, & topology
in £ having as neighborhood the set E only.

The following statements are equivalent:
(a) E’ contains an element different from zero-element ,
(b) ©* 1s larger tham T, , '
(¢) 6CE,E’) is larger than T, -
Proof. If O #* fe& E’, then 6CE, E’) 1s larger than T,
hence T * is larger than 7T, . It suffices to prove (b)
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-

implies (a). If (b) 1s satisfied, the factor space E/0 ,
where 0 is closure of zero-element in (E, T*) is separated
locally convex space containing an element different from zero.
Clearly E’ has the property (a).

The topology x* associated to 2 in E has as fundamen-
tal system of neighborhoods tne collection of all co U , Wlere
e U 1is the convex hull of %4 in E, % 4in U .

Propogition 1. Let E and F be two topological vectar
spaces, T, , T, topologies on E and F. Then the & -
topology in E @ F defined by 7, and T, is identical
with the % -topology in E ® F  defined by z,* and 7,* .

2
Proof. In order to prove this proposition, it suffices to pro-
ve the inclusions L2 & {1 s o (U®V) , where

U,V colU,coV )
eor A denotes the convex hull of A . It is evident that
'n‘u,tr € nw?l,wlf . Let z e {2 s U,e0 ¥~ ;  there exist xy
incoU (161 €m) and 4; inco¥V(1si £€m) sguch
that p )
X == (X, @Yy +...+ X @Y, ) -

As X; is in 0 U 1¢4 €7 ), we may assume that X; 1is of
the form X; = A X7 +...+ Jl"‘ ,,'; where Zah -1,
1i>0 (1eksn,, 46i<'h.) and .x,lGZL(’I‘/z‘-n. 46;671.).
Similarly 4, = “r ry, +oen "'{“m ym where,Z !“'j
5&,‘-»0(4‘;'4 y16 €m ) ang %eVM‘,asm 441,‘11)

The rest of the proof follows from the fact that

“"(Za 4-2 Mo 47 Fu @ Ys. V10 1n e (UB V) -

From the discussion it follows that ‘9 -topology in tensor
product E @ F  of two topological vector spaces (E , T,)
(F, %, ) 1is larger than the coarsest topology in E @ F

, 1f and only if "C‘,,* is larger than the coarsest topology in

»
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E and “t’; is larger than the coarsest topology in F .

Similarly %4 -topology in E ® F  is separated if and
only if ’t': and 'r,_"‘ are separated topologies in E and F
respectively.

§ 2. W -topology in E®@F .

We assume g8 in § 1 E and F to be topological vector
spaces, U the system of all neighborhoods of 0 4n E, V
the system of all neighborhoods of 0 in F. For any sequence )
(U; ,i=1,2,...), U; € U , and for any sequence
(’lfi ,1=12,...), Vﬁ V we define

E®F; z€ 21@?/‘
3) £, mr,)"{xe b3 ¢,

where 2 U, @ 7{ means the set of all X, ® Y, +---+
+x“®«4n, X;€eU;(1¢isn) o, eV (161 é n )narbitrary integer.
If we choose ' e U, 'eV (k=1,2,...) gatisfying
Up € Upgey uzu '€ Yp s Yp CR=1,2..0) then
'O'cuj,.) (vg,) ,n_m Nevg) S Ry, ) *
That proves that the collection of all sets of the form (3) de-
fines a topclogy in E® F compatible with the structure
of a vector space (see [7]). This topology is called in further
discussion a W ~-topology.

The natural bilinear mapping (X,y)—» X ® % ofEx F
in E ® F  is continuous on E = F .

Lemma. Let G be a topological vector space, %/~ a neigh-
borhood of zero element in G . We choose a neighbarhood 21/.',
satistying W+ W[ € W'. 1 W, (1s4i<hR-1) are de-
fined, we choose a neighborhood W, of 0 such that
U + W s W,_, . Then for any 4 holds i

W+ W, +...+W +U s W ((k+1) sumands on the
right side).
The proof can be carried outé’asily by induction.
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Thgorem 2. If £ 1s a continuous bilinear mapping of
E x F in a topological vector space G, then the asso-
ciated linear mapping f* of E ® F in G defined by
(4) +F*(x@y)= f(x, )
18 continuous on E ® F . Rhe correspondemce f «>» ¥
defines an isomorphism of the space R(E, F;'G)  of all bi-
linear continuous mappings ExF -G onto the space
L(E®F; G) of all linear continuous map pings
E®F—G . -
Proof. If f€ B (E, F; G), U eny neighborhood of zero
element in &, we choose W, (i =1,2,...) as in precedent
lemma. For suitable neighborhoods U, ¥ ({=1,2,...) of
zero element in E and F reapectively we have £(¥%,, s
e W, (i=1,2,...).The continuity of f* follows from
’"(‘D?ua,w;)) s wW. For any x € _Q(ui ), CVZ)
there exist x; in ’M,i (1s1 € m), Yg in U
(1$71 €mn) suchthat T =X, @ Y +...+% @ Y *
From f‘(x)=‘_§ fex, , 9y, )€ U+ Wj+...+ W, s W
we derive £* (.Q(u‘ ), CU5) )€ W. This concludes the proof.
Consequence, On the tensor product E® F W -topology
is the unique topology compatible with the structure of a vec-
tor space satisfy'ing following conditions:
(a) The natural bilinear mapping (X,4y)—> x® y of ExF
in E® F  1is continuous. ‘
(b) If £(x,4y) is a bilinear continuous mepping of E x F
in a topological vector space G 5 then the linear mapping +*
associated to ¥ 1is continmuous on E @ F .
The proof is evident.
It E and F are two finite dimensional separated topo-
logical spaces, then % -topology on E @ F 1 1dentical
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with the W -topology on E ® F . This follows from ([7],

theorem 26). Making use of theorem 2 we may conclude that

W =-topology on E® F is larger or equal to 4 =-topology

on E® F. 1In general these topologies are different.
Exapple. Let ( X,2T, t¢) be a measure space, #L a

6 -algebra of subsets in X, , a finite, atomic-free

measure on #L . By Y= F(X, 1, ) we denote the

space of all almost everywhere finite measurable functions

on X with respect to . ve may define in & a topology

T by a metric :

¢.a) = Af(x) - g (x)1
£ e /1+I-F(x)—-9(x)l

In & there exists a unique open convex set, hence the asso-
ciated locally convex topology 't'* is the coarsest topology

in ¥. For every k there exists a decomposition (K,'_ ),-‘_7 ’
J finite, X;nX; = F  toried,jeJ,ivj, X6 M (i€),
X '4513 X and < (X;) € i (see [5]). For any fe &

we set

foa {FO0 X%

0, x€&X;, teJd .
Hence £, € ¥ (i e 1), #(x):%‘%‘:’nﬁ (x), vwhere m is the
cardinal of J .
If we define & bilinear continuous mapping I S >
by (£,3)—> f-g , we may conclude thatf®@g—>¥-g
is a continuous mapping of Y @ ¥ —> ¥ with respect to
the W -topology. From the proposition ] of § 1 it follows
that linear mapping f ® ¢ = £-g is not continuous in
% -topology. This proves W =-topology is larger than ‘9 -
topology in Y@ ¥ .
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If € and F ere E'- and F’ -separated, W -topolo-
gy in E® F is of course separated.

Proposition 2. Let E; (i=1,2), F; (i=1,2) be topo-
logical vectar spaces, «; (i=1,2) a linear continuous.
mapping of E; in F; (i =1,2). Then the linear mspping
W, ®u, ofE ®F in E ®@F, defined by

(5) (i, @a,)(x DY) =i (x) ® «, ),
where x€ E,, ye F, , 1s continuous on E @ F, -
The proof is evident.

Propogition 3. If we denote E;, F;, #; (¢ =1,2)
as in proposition 2, then «, ® 4, is an open mepping when-
ever «; (i =1,2) are open.

Proof. It suffices to prove

(6) (uy ® w)) Loy y )2 R cupn, cay ctfn
where u_‘.‘e u, 112‘ eV (¢=1,2,...).
For o given 2’ in E, ® F, and z’' in .rl[‘“m‘»,[“‘(%»
we may choose sultable X € &, (U;)(1¢i<n), ylew, (V)

(161 €7n) satisfying x'= X @Y 4ot Xp ® Ym *

There exist X, ¢ U, (16i&m), %€ U (1sism),

()= x; (163 6 m ), 4y Yy )=y (1€ién )T we define

=X, ® Y, + -o-"‘.’éﬂe Y, We have (w, ® «,)(z)= z.”
ey, cy

Proposition 4. If E; (1 s 1 &m), F, are topologi-

cal vector spaces, then the tensor product f‘,ff:f_;) ® F ig
algebraic and topological iaomorihic to ‘,'Z'); (E::‘@ F-
Proof. The isomorphism ¢ of (JL E)o F on TT(E.@F)
is given by (see [7])

Xy @ Y)yerey (.x,._@ry))=(x1,...,xn)®,y .
" The continuity of 9"' follows from the continuity of
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((Xgye0e Xp ), ) > X, @Y (1€1 § m), Sipilarly one
proves the continuity of < - '

Proposition 5. Let E and F be two topological vector
spaces, M subspace in E, N subspace in F. Then the
factor space E @ F /p (M, N) is algebraic end topological
isomorphic to (E/p) ® (F/p ) , where M(M, N) is a
subspace in E @ F generated by the set of all X @ 4, X
is in M or 4y is in N.

Proof. We denote by w, ¢, ¥ the natural mapping of .
E®F in E®F/nem,N)» E 1n E/y , F in F4y.
The natural isomorphism $ of E @ F/f' (M,N) oOm
(E/M)Q(F/N) is defined (see [1]) by
Plwox@y))=@(x)®y (y).

The continuity of Q follows from the continuity of x® ¢y —>
29x)Q® vy (y) snd ¢ (@ (M"(M,N)))=0. From (6)
we may conclude that b (flm‘),(z, N2 "Q(y(?t,-' n, ) °
This proves ¢ 1is open.

§ 3. W -topology on the tensor product G ® K of

Abelian groups.

Let G and K be two Abelian topological groups written
in the additive form, G ® K their tensor product. Every Abe-
lian group may be regarded as a module over the ring Z of all
integers. By a Z -linear ( Z -bilinear) mapping we mean a li=-
near (bilinear) mapping of the module with respect to the ring
Z .

Every element x of G @ K 1is of the form

X® X @Y+ X, D Yy s
where X; € G (18i&n),yeK(1§i$m) amd n 1s a posi-

~

t>ive integer.
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For any sequence (U, , t = 1,2,...) of neighborhoods
of zero in G and for any sequence (¥;, ¢ « 1, 2,...) of
neighborhoods of zero in K we define (as in § 2)

(39 ﬂ(‘l&ﬁ,(‘lfi) «c{zxeCGeok, ze{"u‘ ®Y },
where ;:* Uer; means the set of allx, @4, +...+ Xp ® Yn »
x €U, (16iém), ;€Y (1¢i ém) ana n 1e any integer.

The collection of all .Q.(u‘ ), (%) defines in G @ K
a topology compatible with the astructure of a group G @ K -
This topology is called W -topology in G @ K -

The proof of this statement is similar as in § 2. The natural
Z -bilinear mapping (x,y) —> X @ 4 of GrK—>G@K
is continuous in (0,0) . 1In general this mapping is not se-
parated continuous on G x K . For example we may consider G
additive group of the real numbers with the usual topology,
K a discrete group with basis (ey )-.;e 7 ° The mappings
x—> x ®¢ (i€J) are not continuous on G .

Theorem 3. If f 1is a Z ~bilinear mapping of G x K in
a topological group H continuous in (0,0) , then the 1li-
mear mapping f* of G ® K in H associated to f and
defined by

(4%) £*(x ® Y= fix,q)
is continuous on G ® K
The proof is similar as in § 2.

Congeauence. W -topology is the unique topology on G @ K
compatible with the structure of a group and having the follow=-
ing properties:

(a) The natural Z ~bilinear mapping (X, %y )—> x @ 4 is
continuous in (0, 0)

(b) I f 1s a Z-bilinear mepping of ¢ x K in a topolo-
gical group H continuous in (0,0)  then the associated
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mapping f* defined by (4°) is continuous on G @ K. -

If G or K 13 a discfeto group, then G- @ K ie dis-
crete. Hence, W =topology is equal to JT -topology on G @ K
(see [6]), when G @ K is torsion-free. From theorem 3 it
follows that in general W =topology is larger or equal to s7 -
topology.

Examplg. We denote by D  the ring of all f» -adic numbers.
Any. element X in D  is of the form X = (hy,Ryseee Rpyee ),
where A, 18 & positive integer, s .4 = 4n (Mmod 'f’“’ r
0¢€ k, <n”, A neighborhood U, (0) of zero element in D

is defined by (see ,[41) _ ,
um(0)={xeb; h,:... '*’”'0};0‘1"' 1’ )

Forany x€D,yeD weset f(x,y)e X' 4 . It is
clear that f is continuous in 10, 0} . the associated. mapp~
ing " 15 continuous on D @ P with the W -topology. Ma-

ses o

king use of the fact that JT ~topology on P ® P. has as a
neighborhood the'set D @ D only (see [6]), we may conclude
that ¥* is not continuous on D ® D  with the J7 -topology.
.Hence, W=-topology and T -topology are not identical.
I# G and K are (b)-groups, (see [6]) (i.e. for any X

in G,y in K and any neighborhood U of 0 in G, ¥ of

0 1in K, there exist positive integrse M, 7 satisfying
xemU, yenl ), then (X, ) > X ® Y% is conti-
nuous on O x K (see [6]) .

Similarly as in § 2 for W =topology in the tensor product
G ® K of two Abelian groups hold propositions 2,3,4 and 5 .

If G and K are two topological groups, then every charac-
ter (see [4]) of G ® K may be regarded as a Z -bilinear
mapping of G * K in R/, , where R /7 is the additi-
ve group of real numbers modilo 4 continuous in (0, 0) anmd
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conversely. Especially the natural Z ~-bilinear mapping
(x, ) > <x,x>= 1 (x) 1is a character of G ® G* wmre
G 1s a locally éompact group, G the group of all characters
of G-
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