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FUNDAMENTAL CENTRAL DISPERSION
IN A SIMPLE SYSTEM
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1. INTRODUCTION

The classical Bortivka’s theory of dispersions is concerning especially the sets
of all linear differential equations of the 2nd order

() y" = q(t)y

where € R, q : R — R is a continuous function and the equation (q) is oscillatoric
on both sides. In this introductory part we shall denote by the symbol (q) partly
the equation y” = g(t) y itself, and partly the set of all its solutions. An arbitrary
ordered couple <u, v) of its linearly independent solutions will be called a basis of
the equation (g). Every function ¢ that is a coefficient of the differential equation (g)
of the mentioned properties is called a carrier.

It is the matter of transformation of solutions ¥ of the equation (@) to solutions g
of the equation (Q) of the form

Y (a)

Vloci

where a : R — R are suitable functions. It appears that « has always a continuous
derivative of the 3rd order, the lst derivative s 0, there holds
lim «(t) = &4 oo sgn o and moreover

(1) Y=

t >+ ©

@ 9 —{a, 1} + Qo) o222 = Q(2),

where {a, t} = l o 3o __V| 3 1 ’ is the Schwarz derivative
BUTY T L wr * ( 70 :

By a symbol (@, Q ) we shall denote partly the mentioned differential equatlon itself,
partly the set of all its solutions.

The set G of all functions « : R — R having the continuous 3rd derivative, the
Ist derivative # 0 and such that lim of(f) = 4 oo sgn &’ form a group with regard

t—>+ o0

to composition of functions. Each of such functions is called a phase and ® is the
group of all phases. It appears that & = (J(g, @) where ¢, @ range over, independently
on each other, the set of all carriers. Subsets (¢, @) in G are called complexes and are
of the following properties

@) 2.9 = (@9
3) (@ 9@ Q) = (¢ Q)



From the relations (2), (3) it follows that (¢, q) are subgroups in & and that
for arbitrary A€ § there holds

4) (2. 9) A= (7, Q)

iff Ae(g,@Q),
since we have (¢,9) A < (¢,9Q), (g,9) < (7,Q) A1 = (¢, ¢) for Ae(¢,Q). On the
contrary if (4) holds for some Ae ®, then necessarily Ae (g, Q ) since there exist
a€ (g, q) and B e (¢, @) such that «A = f and thus A = "' € (¢, 9)(q, Q) = (¢, Q)-
The phases o € (¢, @) are also called dispersions (g, @), for ¢ = Q the dispersions
of the carrier ¢ as well, or the dispersions of the differential equation (g, q).
Choose a carrier ¢ fixed. Then all other carriers @ can be determined by the formula

(5) Q) = —{o, t} + q(a) 2

where « is let to range over (. For @ # Q the complexes (g, @) and (g, Q) are disjoint
and there holds (J(¢g,Q) © G so that there cxists a decomposition of the group
Q

& = U (¢. Q) to the complexes (g, @). Call x € (g, Q) by g-phase of the carrier @.

Q
Since, according to (4), there holds (q, q) A = (¢, Q) iff A€ (q,Q), the mentioned
decomposition of the group 6 to the classes of g-phases of carriers () equals the decom-
position G,(g.q). Of course, (g, ) is the element of the decomposition which contains
the unit ¢ of the group 6.

For an arbitrary carrier @ the subgroup (@, @) = A™Y(g, ¢) A where A€ (g, Q)
is an arbitrary g-phase of the carrier . Similarly it holds (Q, Q) = A-1(q, q) A for
arbitrary A€ (¢, @), Ac (q, Q).

The formula (1) represents a certain multiplication between elements Y of the
space (@) and dispersions o of the equation (@, Q) with _values in the space Q). Tt
appears that for o € & there holds (@) x = (@) iff & € (@, Q). Since for f = a7t there

holds Y = gi(ﬂ)a we have an inclusion (@) f < (@) and thus @) < Q) = (@).

Vi1’
So we get
(6) (@) o = (Q) iff x € (. Q).
Hence there follows also the formula '

(6%) @@, Q) = (@)

In the classical theory of dispersions there exists a significant carrier g=—1I1.
The subgroup § = (—1, —1) is called fundamental, the elements « € (—1, @) are
called phases of the equation (@), or phases of the carrier Q. The corresponding
decomposition of the group G into the phases according to the carriers is then G/,

The space (—1) of all solutions of the differential equation (—1) has a significant
. . sin o CcOoS &
basis (sin t, cos t). For arbitrary ae(—1, Q) put U = W—T = T/l:ﬁ
o o

Then (U, V) is a basis of the space (@) of all solutions of the differential equation
(@)- We can see that for any a € (—1, @) there exist bages (U, V) of the equation (€)

such that there holds tg « = —g—



It appears that, on the contrary as well, for any basis (U, V> of the space (@)

there exist phases a € (—1, @) fulfilling the equation tg « = All these phases

Ve
are then called phases of the equation (@), corresponding to the basis <U, V). If &
is one of them, then they are all a + vz where v € Z (Z is the set of all integers).

All bases (U,, V,> of the space (@) consist of all linearly independent linear
combinations of arbitrarily fixed chosen linearly independent solutions (U;. V>
of the equation (Q).

Hence we have that all phases A; e (—1, @) are characterized by the relation
tg A, = h tg A, where h ranges over all real homographies and A, is arbitrarily
fixed chosen phase corresponding to the basis <U;, V).

The relation A, ~ A; defined by tg A, = h tg A; where % is a real homography,
is an equivalence on the group ® and the corresponding decomposition is just &/,& .

The set of all phases x € &, for which tg o« = tg ¢ holds, is «(f) = ¢ 4 vz where
v € Z, and thus forms an infinite cyclic subgroup J with the generator e(t) = ¢ - &
which is called the fundamental central dispersion of the carrier —1. The second
generator is e~ (f) =t — .

Note that the phases of the equation (—1) are identical with the dispersions of
the equation (—1, —1). Further, the group ® is decomposed into the class P of
increasing phases and the class ¢ of decreasing phases. The subgroup B has the
index 2 in 6.

1.1. Theorem. The infinite cyclic group J is the centre of the subgroup B N F
whereas the centre of the fundamental subgroup is trivial.

Proof. I. We are going to prove that ae = e for arbitrary « € P N . By this
will be ascertained that J is a part of the centre of the group 0 N §&.

For arbitrary constants &, 1 € R there exist constants k,1e R — and vice versa —
such that the general solution of the equation (—1), i.e. Y(z) = k sin (x 4 1) accord-
ing to (1) is mapped on ¥ where

Vl—of(iﬁ sin ((oc(x) + 1)) = ksin (x + 1.

Take ¢t € R fixed. The function « is increasing and maps the interval [¢, ¢(f)[ on
the interval [a(f), xe(t)[. Choose the constants k, 1€ R such that Y@)=0. It is
sufficient to choose | € (Zr — «(t)). According to (7) the function Y in the interval
[t, t + z[_has the unique root in number £. According to (7), the first root of the
function Y on theright after ¢ is a(t) + 7 = ea(t), but this must not be in the interval
[a(t), ce(t)[ so that it fulfils ae(t) < «(t) + #. Thus we have ae(t) < ea(t) for all

7 Y(z) =

e R.
The function a maps the basis (sin ¢, cos t) on the basis which, according to (7),
has for suitable constants a, b, ¢, d € R the expression ];—12 =q sin (¢t + b),
| o’ |
cos ©osin ae sin eoc cos ae cos &u

——— =c¢ sin (¢t + d). Hence we get = , e -
Via'| ! Ve Vel Vie@ Viwd

so that tg ae = tg e and thus ae = e 4 um where y € Z. By differentiation we
get '(e) = «' so that there even hold the formulas sin ae = sin ea, cos ae = cos ex
and thus o& = ea 4+ 2y where » € Z. Nevertheless, for further considerations
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the relation ae = « + um where yeZ will be sufficient enough. Since o is
increasing and &(t) = ¢ + ® > t, we have ae — o« > 0 and thus p > 0.

Altogether we have ae = o + usm where 0 < u < 1 and thus there holds ae =
= o + T = &x.

II. We shall prove on the contrary that an arbitrary element y of the centre of
PN F, resp. F, belongs to J. With regard to I, this will prove 3 to be the centre
of P N F and the centre of F to be a subgroup of 3.

For any € PN §, resp. a € §, there holds ay = yo. Since y, x € §, real homo-
graphies H, h exist such that tg ¢y = H tg t, tg o = h tg t. Then there holds hH =
= Hh for all real homographies %, and thus H is the identity in R. Then we have
tg y = tg t and consequently y € 3.

IIT. We shall prove that for an arbitrary « €PN § there holds ae = e 1a.
Consequently for arbitrary y € 3 and arbitrary o € P N F there holds ay = p-le.

Choose t € R fixed. The function « is decreasing and maps the interval [¢, &(t)[
on the interval Jae(t), «(t)]. Choose constants k, 1€ R such that Y(t) =0, see 1.
According to (7), ¥ in the interval [¢, t + =[ has the unique root t. According to (7)
the lmmedlately preceding root of ¥ before t is a(t) — 7 = e-la(t) and because it
cannot be in the interval Jae(t), «(t)] it fulfils the inequality «(f) — m < ag(t). Thus
we have ¢-1x(t) < ag(t) for all £ € R.

In the same way as in I, we get ae = o + um where u € Z. Since « is decreasing
and &(t) > t, we have a¢ — o < 0 and consequently — 7 < ae(f) — a(t) = un < 0
so that y = —1. Thus we have ag(t) = a(t) — m = e~lx(t) for all £ € R.

IV. We shall prove the centre of the subgroup & to be trivial. Let  be an arbitrary
element of the centre of §. According to II. there is y € 3. For all f € ¢ N & there
hold at the same time By = yf and Sy = y~18 and thus y = p~1 or y2 = (. But
y = & for suitable » € Z. Because of 3 being an infinite cyclic group, &2* = is
possible only for » = 0, and consequently y = .

Note that for arbitrary » € Z and arbitrary y € (—1) the dispersion ¢” € 3 trans-
forms, according to (1), the solution y to (—1)* y. Other dispersions y € (—1, —1)

are not of this property because if ];,1|n V[ = 4 sin ¢, _l/(—}]gu’r = + cos t with the
Y 7
same sign, then tg y = tg t and therefore y € 3.

For an arbitrary carrier ¢ the group (¢, ¢) consists of dispersions of the equation
def

(g, q). For an arbitrary phase « € (—1, g) the conjugate subgroup «13x = 34 is
the centre of PN (¢, ¢) = (P n §F) « and consists just of all central dispersions
of the equation (g, g). The centre 3, is then an infinite cyclic group. Its generator
@ > ¢ is called the fundamental central dispersion of the carrier ¢. We can write

= VireZ-
3qun§faEdispersions y € 3qare characterized by the fact that, in the sense of formula
(1), they transform solutions y € (g) on 4y, where the sign does not depend on y
and equals to (—1)* for y = @*. Even if some y € (g, ¢) transforms all y € (g) to +y
without any supposition about the sign, then the sign is necessarily independent
on y and thus y € J¢. The solutions y € (¢) are namely infinitely many, whereas
the sings being only two. Therefore two linearly independent solutions u, v € (q)
necessarily exist transforming with the same sign. Then for phases a of the basis
{u, vy there holds tg ay = tg o and accordingly ay = e*a for a suitable e Z or
Y=o le%x = ¥ € Jq.

An important role in the theory of dispersions is played by the so-called Abelian




relations. For the fundamental central dispesion & of the carrier —1, for the funda-
mental central dispersion @ of the carrier ¢ and for any phase o € (—1, g) there
holds

(8) ap = e¥le

with the sign + according to the fact if x€P or x € ¢P. In the consequence of (8)
there holds ag” = ¢*"« for any » € Z.

From the Abelian relations the mentioned relation ae” = ¢+*o already follows
for o € (—1, —1) with the sign 4 according to the fact if o € p or « € ¢PB. By means
of the automorphism z — -1z # of the group ® for e (—1, @) the mentioned
relation will be transferred to (@, @). For arbitrary A € (@, @) and the fundamental
central dispersion @€ Jq there holds A@* = @+»A with the sign 4 according to
that if Ae‘® or Aeop. .

The differential equation (€, @) is equivalent with two differential equations

. 1
@0 [ (V&T

-~ I ] 4 .
Q. Q) —a’ (——:—:’:> = Qo) &2 + Q).
J—a

)+mwwzém

All solutions of (Q, Q)+, in case if Q, § range over all carriers, form the subgroup B
of increasing phases, whereas the solutions of (¢, @)~ form the coset ¢3 of decreasing
phases.

If we consider only the increasing phases, we get a simplified modification of the
theory of dispersions which, however, preserves on principle the main transformation
properties of the original theory and is used in favour with many authors.

The basis of the abstract theory of dispersions will be an arbitrary abstract group
® (with the unit ¢) the elements of which will be called phases. In this group a sub-
group §, called the fundamental subgroup, will be given. Similarly as in the classical
theory it will be a matter of the decomposition &/,&. To each class Fu, x€ G a
symbol g, the so-called carrier, is assigned in such a way that the correspondence
between classes o, « €  and carriers ¢ may be one-to-one. The carrier that is
assigned to the subgroup §& will be denoted by e. We introduce the denotation:
Fo = (e, q) iff a € (e, g). The elements « € (e, g) will be called the phases of the carrier
q. For every ordered couple (g, @> of the carriers we denote by the symbol (g, @)
the complex a~1§FA where o € (e, q), A € (¢, @). There evidently holds (g, @) = «"1FA
independently on the choice of « in (e, ¢) and A in (e, Q). Specially, = (e, ¢) and
the subgroup (g, ) = o1&« is conjugate with § by means of elements xe(e, g). The
elements « € (¢, @) are called dispersions (g, @), when g = @ also dispersions of the
carrier g. Specially o € § are both phases and dispersions of the carrier e at the
same time. Evidently every complex «~1§A, «, A € ® is of the form (g, @) for suitale
carriers q, @), where x € (¢, q), A€ (e, Q).

2. System (®). Following the classical theory we investigate an abstract modi-
fication which corresponds to the classical modification with only increasing phases.

2.1. Definition. Let & be an arbitrary group. Let A = ®, A #~ @ be an arbitrary
subset. By the symbol ®A we shall denote the normalizator, by ?A the centralizator, by
{4 the invertor, and by 3A the centre of subset A in the group ®.



2.2. Definition. By the system (&) we shall call an arbitrary group ® (with the
unit 1), where a so-called fundamental subgroup & is given, the centre 3§ of which isan
infinite cyclic group (with a generator ¢).

2.3. Lemma. For an arbitrary infinite cyclic group € = & there holds "€ =
=2Q U C.

Proof. The Theorem was introduced by O. BORUVKA, see [4], and follows
from the fact that the infinite cyclic group has with one generator y still just one
generator »~1 more, and that for x € ® fixed the restriction of the automorphism
o — x~lorw of the group G to the infinite cyclic subgroup € transforms € to an infinite
cyclic subgroup € iff it transforms some genrator of € to some generator of €. The
disjunctivity of summands follows from the absence of involutory elements, i.e.
p # ¢ such that y2 = ¢, in an infinite cyclic group.

2.4. Lemma. There hold inclusions § < % < m§.

2.5. Lemma. For «, & ® there holds oa—lex = f-1ef iff B! € 2%.

2.6. Lemma. For o, f € ® there holds o 1o = B-1FH iff Bl € M.

2.7. Theorem. For an arbitrary carrier q the centre 3(q, q) of the subgroup (g, q)
18 an infinite cyclic group. For all o € (e, q) there holds 3(q, q) = a~1iFa. One of its
generators 18 o lex independently on the choice of o in (e, q).

Proof. Let a€(e, q). Put y = a~'xa, y = a~'Ba. Then yed(q, q) = yy = py
for any y € (¢, q) = a'xfo = a~!fxx for any x € § = f €3F. By that it is proved
that 3(q, q) = a 1Fa. Evidently (g, ¢) is an infinite cyclic group with a generator
o~1gee which is the same for any « € (e, ¢) according to 2.5. and 2.4.

2.8. Definition. For eve; Yy carrier q put @q = plef where B € (e, q). Iff for any
a € ® there holds {q, ¥(¢. q) = a¥Fa} = {g. pq = a'ea}, we shall call ®q the funda-
mental central dispersion of the carrier ¢, and (&) will be called a system with funda-
mental central dispersions.

2.9. Remark. In a system {®> with fundamental central dispersions the same centres
have the same fundamental central dispersion without regard to which carriers they belong.

2.10. Theorem. If ¢ is a fundamental central dispersion, then @1 is not a funda-
mental central dispersion for any carrier.

Proof. If ¢! = olea for some a € (e, g), then @-1€i(q, g) and also @ €3(g, ¢)
where ¢ = o~lea. Hence -1 = a—1e-1¢ and thus € -1 = ¢ which is a contradiction.

2.11. Theorem. If for one a€ G there is {q, 3(q. q) = o BFa} = {q. pg = a lea}.
then B == O. )

Proof. Put N = {q, 3(q, q) = a~"¥Fa} and suppose that also N = {q, ¢, = o~ lea}.
First of all it holds that |J (e, ¢) = (®F) « because f € (MF) x = P! € B =

QeN
= [ UuFL = o~ 133«1 =fe(eq) for gqe N. Let yemg. Put f = ya so that fe
€ (MF) o« = U q) and thus f-1¢8 = alea, or y = Pfa~l€2iF. Then MF < »F

and consequentvly 0¥ = 0.

2.12. Theorem. If &5 = @, then (®) is asystem with fundamental central dispersions.

Proof. If #F = @, then mF = #F and for any « € ® there holds {g, (g, q) =
= o WFa} = {g, g = aleat}.

2.13. Corollary. 4 necessary and sufficient condition for (&> to be a system with
Jundamental central dispersions is that g = 0.

2.14. Theorem. Let i = 0. Then for any carrier q, an arbitrary phase f € (e, q) and
both fundamental central dispersions @ €3(q, q). € € 3 fulfil the Abelian relation B¢ =

= gff.
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Proof. The fundamental central dispersion is, by means of arbitrary 8 € (e, ¢),
defined by the formula ¢ = f-1¢f.

2.15. Definition. Let (&) be an arbitrary system in the sense of definition 2.2. A
binary relation < on the group ® be called a pseudo-order of the system <&, if it holds

aa< f=>a# B, L
b)x < f=xx < zf forany x € G
c)a < f=>ar < frforany xe®
d) the generator ¢ of the entre § fulfils ¢ < ¢.

2.16. Theorem. Let % = @ hold in a system {®>. Then the relation < between
elements a, B € ®, defined by the relation

9) o« < = fa~t = y-lgy for some y € §,
s a pseudo-order of the system (®>.

Proof. Let & < . Then there exists y € G such that fa-1 = p-ley.

a) If o = B, then we have ¢ = y~ley and therefore yt = ¢y or ¢ = ¢, which is a
contradiction.

If f < a held, then we should have afi~1 = a-lex for some z e &, or fo-l =
= x~le7lx and accordingly a~le-lx = y~legy, or x-ly e 8 F which is impossible.

b) Let x € ® be arbitrary. By multiplication from the left side by x and from the
right side by =1 we get (xf)(ra)~! = 2fatw! = wy~leyx! = (yar-1)~le(yax-1) and
consequently it holds xa < af.

c) Let x € ® be arbitrary. Then (fx)(ox)-1 = fo! = y tepy and thus it holds
ax < fa.

d) ¥or ¢ € ® there holds tlet = ¢ = &=t and therefore ¢ < «.

2.17. Corollary. Let & = 0 hold in a system {&>. Then in the pseudo-order 9)
for any fundamental central dispersion @ there holds ¢ < .

Proof. To the fundamental central dispersion ¢ therc exists € ® such that
o lex = ¢ = g1 and thus ¢ < ¢.

2.18. Theorem. Have a system {®) with an arbitrary pseudoorder relation <.
Then it holds 3§ = 0.

Proof. Let x € m§. Then xe = e*1x. Since 1 < g, we have ¢l < (, ¥ < xe, e7lr <
< z. Therefore xe = e¢~x cannot hold, because xe < x would be and at the same time
x < xe. Therefore it holds necessarily xe = ex and thus x € zg. We have then
mF < % and consequently 4§ = 0.

2.19. Corollary. For a system (&) the following statements are equivalent:

a) W¥ =0,

b) in (®) it s possible to define a pseudo-order relation,

¢) in {®) fundamental central dispersions can be defined by the relation ¢ = o—leot
for e 6.

2.20. Corollary. Let a system (®) be pseudo-ordered. Then for arbitrary u < veZ
and for any fundamental central dispersion @ there holds ¢" < @ and accordingly
every centre {@* }» ez ts completely ordered by the relation <.
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