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ON P O L I T I C A L R E A L I Z A T I O N O F A G I V E N L U X U R Y 
G O O D S S U P P L Y 

J a n C h r a s t i n a and Václav Polák, B r n o 

To Professor Otakar Borůvka at his Seventieth Birthday 

Received April 30, 1969 

A certain version of Brouwer fixed point theorem is derived and by 
means of which one theorem from mathematical politology is presented. 

Let S be a ^-simplex in Ed.1) A map /: bd 8 -> bd 8 is said to have 
an a-property if it holds (for each L e ^r(S)-L-{S}) 

(a) f(L)(\(—L)=0. 
We say / has the property (a) in Z e JJT(S) if (a) holds for all L^Z. 

Evidently / has the a-property in Z\ U Z2 if the same holds on Z\ 
and Z2.fi, f2 are said to be a-homotopic, if they are homotopic and all/$, 
0 S t ^ 1 of the homotopy considered have the a-property. / is called 
a-deformation if it is a-homotopic with the identity. A map f: 8 -> S 
is called to have a-property if/(bd S)cz bd 8 and/ | bd 8 has a-property. 

Lemma: Let L e ^(S)—^^), f : bd S -> bd S have oc-property and 
f | rlbd L be the identity. Tten f is oc-homotopic to g : bd S -> bd S with 
g | ^(L) = f | ^(L) and g \ L being the identity. 

Proof: For k = 0, 1, 2, ... put Zk = : (UK) U ^(L), where the sum 
operates on all K e ^(S)~{S}, dim K ^ dim L + k. Evidently Z0 = 
= tf(L) U L c Zx c ... c= Z-k == bd S (for some Jc). I t is / | L : L -> 
-> bd 8~~(—L) (because of (a)) and hence in a simple way this a-homo-
topy ft can be constructed as ft : Z0 -> bd 8, 0 ^ t ^ 1 with f0\ Z0 = 
= f\Z0,ft\ <£(Z) = / ! ^(L) and/i | L being the identity. Let Z0 ^ bd S 
and choose some V e W(S), dim V = dim L + 1. Put Z = : rlbd V, 
T = : Z u V, U = : bd S—(—V), gt=ft\Z and using the extension 
theorem construct a homotopy / * : V -> bd S~(—V), f*\Z =gt. 
Define /* : Z0 u V-> bd 8 (on £0 by /*, on V by ft), ft has on Z0 U V 
the a-property (because the same holds on Z0 and V). Step by step in 
this way we extend/$ first on the whole Zu then Z2, ..., Zk = bd S and 
dutg = / i ; Q . E . D . 

Theorem 1 : -A map / : bd 8 -> bd $ with the oc-property is an oc-de-
formation. 

Proof: Order the set 3F(8)-^{8} into a sequence {Li}f^x in such a way 
that first in the row are all vertices, then edges, then triangles etc. and 
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put Mi = : \J Lj. In a simple way one constructs an a-homotopy 

ft : bd S-> bd 8 with f0 =f and fx | Xi being the identity. For i > 1, 
/i__i being a-homotopic to / and /<_i | iW^i being the identity construct 
(according to our Lemma) an a-homotopy ft ' bd S -> bd S, i — 1 ^ 
<L t S i with /c | Jf< being the identity. Evidently fa is the identity, 
Q.E.D. 

Theorem 2: For a mapf : S -> 8 having the oc-property it holds f(S) = S. 

Proof: Because of /(bd S) = bd S it suffices to consider this case: 
# e i n t S exists with x$f(S). Map linearly the interval [0, 1] on each 
edge [v, x], v e vert S (the corresponding point to t denote by fv), °v = v, 
lv = x, and choose t0E (0,1) such that f(bdconv {tv}v everts) is suffi­
ciently close to f(x). Project from x on bd S the map/1 bd conv {lv}veverts 
(the projected map denote by ft)- Evidently ft is bd S -> bd S and ft, 
0 ^ t ^ t0 is a homotopy with/o = / | bd 8 and/^0(bd S) =-)= bd S. Hence 
fto is inessential, i.e. / | bd S is inessential—a contradiction to the 
theorem 1; Q.E.D. 

Let n kind of goods be given, n production branches, in each branch 
(say i) only the good i be produced and fcr the production of one unit 
of good i aij units of good j be destroyed. Put A = : (o^) and let the set 
N= : {1, 2, ...,n} of goods be divided in two nonvoid sets I, II (called 
production means and consumer goods). Let, for each ieN, it hold 
A\ > To, A\ > To. Denote by P = {p e En | p ^ o, Tep = 1} the set 
(called price simplex) of all so called price vectors p. Denote by S = 
= {s E En | s ^ o, Tes = 1} the set (called power supply simplex) of 
all so called intensity production vectors s. One says a branch i to be 
profitable for a given p e P if (E — A)1 p > 0 (denote by n(p) the set 
of all profitable i's). Let at least one price vector (say p) exist with 
7i(p) = N. Evidently n(p) is nonvoid for all p e P. One says p e P (or 
s e 8) is degenerous if it is not p > o (s > o). One calls a map s(p) :P->S 
a psychology if î  holds s(p)n(v) ^ o for all p e P and s(p, is degenerous 
if the same holds for p. The pair (A, s(p)) with above considered properties 
is said to be a simple commodity production society (see [3]). Put 
Z = {z E En | Tz = TsA, s e 8} and such z call a suitable stock. Put 
C = {x G En | x ^ o, Tx = Ts(E — A), se 8} and call such x a luxury 
goods supply (the corresponding s's are said to be reproductive). One 
says x E C to be economically realizable according to z E Z if a reproduc­
tive s E 8 exists with Tz = TsA and Tx = Ts(E —A). Evidently each 
x E C is economically realizable according to some ZEZ. One says XEC 
to be politically realizable according to z E Z if it is economically realizable 
according to z and the mentioned s be such that s = s(p) for some 
PEP. 
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Theorem 3: In each simple commodity production society (A, s(p)) 
to each y e En, y^o such a number X > 0 and a suitable stock z exist 
that Xy is politically realizable (according to z) luxury goods supply. 

Proof: Because conv(T(K—-4)*)«e2V is the ( n—l)-simplex conta­
ining the (n — l)-simplex {x e En \ x = o} f] aff(r(K — A))UN (because 
of A\ >̂ To, A\\ ^ To and the existence of p), it exists to each y ^ o 
such a number X > 0 that Xy is economically realizable according to 
Ty(E—A)~XAX. It suffices now to prove s(P) = S, but it follows from 
the theorem 2 because s(p) : P -> S has the a-property if we identify 
the points from P with those from S having the same coordinates, Q. E. D. 
Many applications of homotopies in the economy are given in [2]. 
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]) A Euclidean d-dimensional space denote by Ed. Each point x E Ed is considered 
as to be a column of d reals xvs, o means the column of zeros, e tha t with l 's . For 
X a Ed denote by aff X the smallest space containing X and by dim X the dimension 
of aff X. For a finite X a Ed the X's convex hull denote by conv X. Denote by TA 
(or A-1) a transpose (or inverse) to a matrix A, Av (or At/), the A's submatrix 
consisting from the rows (or columns) indexed by elements from V (or U). A ;> B 
means A ^ B (i.e. an _• by) but not A = B. AB means, the row-by-column matrix 
multiplication, E the unit matrix. For a d-simplex S (i.e. dim S = d) denote by 

d 
&}:(S) the set of all S's k-faces, vert S = : ̂ o(S)- &(S) = : U ^k(S), J f (S) = 

k—0 
= {Z\Z = U T, ^ a3?(S)},c€(L) = : U T (where .F = {T eP(S) | T 4= L, L $ 

Te& TeJT 
$ &(T)}) for L e &(S) and —L = : conv {vert S~ vert L}. The boundary of S denote 
by bd S, S's interior by int S, the relative boundary of L 6 ^(S) by rlbd L. Pu t 

d 
d = : S (dk1)' A continuous transformation / : X -> Y be called a map (/ | Z 

k=--l 
i s / b u t on Z c X only), ft, 0 ^ t ^ 1 denote a homotopy , /o , / i are called homotopic. 
A map / : bd S -> bd S is called a deformation if it is nomotopic to the identity. 
A map / is called inessential if it is homotopic to a constant map. Recall, tha t 
a deformation is never inessential (see [1], pp. 25—26), tha t a m a p / : bd S -> bd S 
with / (bd S) =j= bd S is inessential (by a suitable homotopy we contract / (bd S) 
into a point), and this extension theorem: if Z, T eJf(S), ZczT, V6 &(S), U = 
= : bd S— V,/0 : T -> U, gt : Z -> U, 0 ^ t ^ 1, g0 = f0 \ Z, then/o admits a homo­
topy ft : T -> U, 0 ^ t ^ 1 with ft \Z = gt (see [1], p . 20). 
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