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A C O M P A R I S O N T H E O R E M I N T H E T H E O R Y 
OF T H E S E C O N D - O R D E R L I N E A R 

D I F F E R E N T I A L T R A N S F O R M A T I O N S 

V. Seda 

Received June 20, 1968 

In the paper a comparison theorem for the solutions of some nonlinear 
differential equations which have the fundamental meaning for the 
transformation theory of linear differential equations of the second 
order is proved. In some special cases this theorem will be sharpened. 
In deriving the results the transformation theory as it is mentioned in 
the book [2] will be used. To emphasize the inclusion of the Jacobi's 
differential equation into the theory of linear differential equations, we 
shall consider it in the form y" + q(t) y = 0. The sign {x, t} will have the 
usual meaning. The signs j , J will denote open intervals. 

The comparison theorem will be proved step by step. As the first one 
will serve the 

Lemma l.Let t0ej,x0, x'0 ^ 0, x0 be arbitrary numbers. Letqi(t)eC0(j), 
i = 1,2 and qx(t) <j q2(t) for t ej. Let X{(t), i = 1,2, be the solution of the 
differential equation 

(i) {*,*} = »(*). 

satisfying the initial conditions 

xt(t0) = x0, x'i(t0) = x'0, x\(t0) = x0 

and let jt be its interval of definition. Then j 2 C ji and if x'0 > 0 (x0 < 0) 
then 

(2) x'x(t)Sx2(t) {x[(t) ^ x2(t)), tej2 

and 
Xi(t) ^ x2(t) (x,(t) £ x2(t))fortej2, t S k, 

xi(t) S x2(t) {xx(t) ^ x2(t)) for tej2, t^t0. 

If for h ej2, ti < t0 and t2 ej2, t2 > t0, respectively x^h) = x2(tx) and 
X\(t2) = x2(t2), respectively, then Xi(t) = x2(t), qt(t) = q2(t) in (ti,t0} 
and (t0, t2y, respectively. 

Proof. Because with x(t) is also —x(t) a solution of (1) it is sufficient 
to prove the lemma only for x'0 > 0. Let, therefore, x0 > 0 and let 
W*W> vi(t) >̂e a fundamental system of solutions of the equation 



(3) y"+qi(t)y = o, i = l,2, 

such that Xi(t) = Ui(t)jvi(t). We can assume that ux(t), u2(t) as well as 
V\(t), v2(t) satisfy the same initial conditions at t0. The inequality (2) is 
equivalent to the inequality v\(t) ^ v\(t), tej2. Consider the function 
V\(t). I t can be written in the form 

t 

(4) Vl(t) = v2(t) + [K(1, T) [q2(T) — ^I(T)] VX(T) dT, t ej, 

ь 

•/• 
ta 

where K(t, T) as the function of t (T being fixed) is the solution of (3) 

fori = 2 which satisfies the initial conditions K(T, T) = 0, —-— = 1. 
o t 

Since v2(t) ^ 0 in j 2 = (a2, b2), K(t, T) S 0 for a2 < t fg T ^ t0 while 
K(t, T) ^ 0 for t0 ^ T S t < b2 (K(t, T) = 0 only for t = T). If v2(t) > 0 
in j 2 , then v\(t) > 0 in the neighborhood of t0. Then from (4) it follows 
that V\(t) ̂  v2(t) first in that neighborhood and then in the whole 
interval j 2 . Similarly we get the inequality vx(t) ^ v2(t), t s j 2 , if v2(t) < 0 
in j 2 . In both cases v\(t) ^ v\(t), t ej2. Thus the inclusion j 2 <= j x is also 
proved. 

If x2(h) =xi(h) for ti < t0,hej2, then step by step we get x[(t) = 
= x2(t), v\(t) = v\(t) and on basis of (4) qi(t) = q2(t) in (h, t0y. 

Lemma 2. Let t0ej, oc0,oc'0=£ 0, a0be arbitrary numbers. Let qi(t) e C0(j), 
i = 1,2, and qi(t) <; q2(t) for t ej. Let oci(t), i = 1,2, be the solution of the 
differential equation 

(5) • {octt} + oc'*=qi(t) 

satisfying the initial conditions 

(6) oci(t0) = ao, <x\(t0) = a0, a-(t0) = a0. 

Then, if a0 > 0 (a0 < 0), 

oci(t) ^ oc2(t) (ai(0 S oc2(t)) fortej, t ^ t0 

oct(t) ^ oc2(t) (od(t) ^ oc2(t)) fortej,, t ^ t0. 

If oci(h) = oc2(h) and oci(t2) = oc2(t2), respectively, for h e j , h < t0 and 
t2ej, t2 > t0, respectively, then oci(t) = oc2(t), qx(t) = q2(t) in (h, t0} and 
(t0, t2y, respectively. 

Proof. Similarly as in the preceding case the lemma will be proved 
only for a0 > 0. Let ut(t), Vi(t), i = 1,2, form a fundamental system of 
the solutions of the equation (3) with the property that tg oa(t) = 
= u>i(t)lvi(t) for such all t ej where Vi(t) -?-- 0. Let ut(t), u2(t), as well as 
Vi(t), v2(t), satisfy the same initial conditions at t0. If v2(t) ^ 0 for 



te(a2, b2) whereby t0 e (a2, b2) and if v2(a2) = v2(b2) = 0 (provided 
#2, o2 ej), then the lemma 2 in (a2, b2) follows from the lemma 1. Let us 
assume now that (a3, b3) is the maximal open interval in which the lemma 
2 is true and let b3 < b, where j = (a, b). Then it must be ai(63) == 
= oc2(b3) = a3. These cases can arise. 

If oci(t) = oc2(t) for £0 __ £ __ 63, then also qt(t) = q2(t) in (t0, b3} and 
we can extend the validity of the lemma 2 to a larger interval than 
(a3, b3) is. In the case that oci(t) = oc2(t) for t0 __ t __ t0 < b3 we should 
take the point t0 as the initial point t0. If suffices, therefore, to consider 
the case oci(t) < oc2(t) for t0 < t < b3. Here two possibilities can arise. 

If a3 — ao i_; n, then there exist the points t2, t2, t0 ̂  t2 ̂ 12 < b3 

(whereby two equahties hold simultaneously) such that oci(t2) = a2(*2) = 
= a3 — n. Then the function yt(t) = sin [oci(t) + n — oc3]/]/oc^t) is 
a solution of the equation (3) for i = 1,2, with the property yi(i2) = 

= Vifo) == 0, y2(t2) = y2(b3) = 0, y2(t) ^ 0, t2 < t < b3. In the case 

t2 < t2 this leads to the contradiction with the Sturm's comparison 

theorem ([1], p. 259) and in the case t2 = t2 from that theorem we get 
the equality (_i(£) = q2(t) in (t0, 63> what is in contradiction with the 
assumption oci(t) < oc2(t) for t0 < t < b3. 

If a3 — a0 < n, then for sufficiently small e > 0 we consider the 

linear independent solutions Ui(t) = sin \oci(t) —oc3 + —— e \l]/oc'{(t), 

it(t) = cos I oti(t) —oc3 +~ e j /J /a^) of the equation (3) (i == 1,2). 

One solution of the equation tg oct(t) = Ui(t)j~i(t) is di(t) = oct(t) —a 3 + 

+ — e, whereby — < oa(t) < —, t0 ^ t ^ b3. Therefore rtf) =£ 0 
z _' _J 

in <^0, 63> and, by what was already proved, Lemma 2 is true in an open 
interval which contains (t0, b3}. Hence di(t) = a2(t) in <^0, ^3>, what is 
in contradiction with oci(t) < oc2(t) for t0 < t< b3. Therefore b3 = b 
must be. 

Similarly it can be shown that a3 = a. 
By using Lemma 2 the main theorem of the paper will be proved which 

reads as follows. 

Theorem 1. Let t0 ej, X0 eJ,X0^z 0, X"Q be arbitrary numbers. Let 
qt(t) G C0(j), Qi(T) e C0(J), % = 1,2 and let qx(t) g q2(t) for t ej, Q2(T) __ 
_. Qi(T) for T eJ. Let Xi(t), i = 1,2, be the solution of the equation 

(7) {X,t}+Qi(X)X'*=qi(t) 
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satisfying the initial conditions 

Xi(t0) = X0, X^to) = X0, X\(t0) = K0 

and let ji be its interval of definition. Then j 2 C ji • Further, if X0 > 0 
(X0 < 0) then 

(8) ' Xi(t) ;> X2(t) (Xi(t) ^ X2(t)) for tej2, t £ t0 

Xx(t)^X2(t) (Xi(t) ^ X2(t)) for tej2, t ^ t0. 

If Xi(ti) = X2(ti) and Xi(t2) = X2(t2), respectively, for lx ej2, h < t0 

and t2ej2, t2 > t0, respectively, then Xx(t) = X2(t), qi(t) = q2(t) in 
(ft, to) and in (t0, t2), respectively, as well as Qi(T) = Q2(T) in Xi((ti,t0y) 
and Xi((t0, t2y), respectively. 

Proof. By [2], p . 193, Xi(t), i = 1,2, is the solution of the equation 

(9) Ai(X) = oa(t), 

where Ai(T) is the solution of the equation 

(10) {A,T}+A'*=Qi(T), 

which satisfies the initial conditions 

(11) Af(X0) = 0, A\(X0) = 1, A\(X<>) = 0 

and oci(t) is the solution of the equation (5) determined by the initial 
conditions 

(12) oct(t0) = 0, oc\(t0) = K0', QL&o) = Ko" • 

Let X0 > 0 (X0 < 0). By Lemma 2, oc2(t) ^ oa(t) < 0 (0 < oci(t) g 
^ oc2(t)) for t ej2, t < t0 and there exists the solution K22 = X2(t) of the 
equation A2(X) = oc2(t). From the continuity and the increase of A2(T) 
also the existence of the solution X2i of the equation A2(X) = oci(t) 
follows, whereby K22 ̂  -̂ 2i(-K2i =* X22). Again on basis of Lemma 2 
-Ai(K2i) ^ oti(t) (Ai(K2i) *= oci(t)) and since AX(T) is also continuous 
and increasing, there exists the solution l n = Xx(t) of the equation 
AX(X) = oci(t), whereby K21 ̂  Kii(Kii Hk X2X). From this if follows 
that Xi(t) £ X2(t) (Xx(t) <: X2(t)). 

If tej2, t > t0, from Lemma 2 it follows that 0 < oci(t) ^ oc2(t) 
(0 > oci(t) ^ oc2(t)) and all preceding assertions in the parenthesis 
interchange their place with those outside the parenthesis. Hence 
Xi(t) g X2(t) (Xi(t) ;> X2(t)) and at the same time we have proved 
j 2 a j t . If there exists £1 ej2, tt < t0 such that Ki(^i) = X2(ti), then in 
the preceding considerations only the sign of equality holds at the point 
t = ti and therefore the equalities oci(tx) = a2(*i) and Ai[Xi(ti)] = A2[Xi(h)] 
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must hold. From this, using Lemma 2, we get the last part of the assertion 
of the theorem. A similar result is true when X\(t2) = X2(t2) for some 
t2ej2, t2 > t0. 

In what follows we shall find a sufficient condition that certain 
inequality also hold between the first derivatives of the solutions Xi(t) 
already mentioned in Theorem 1. It will be based on the following 

Lemma 3, Let the open intervals hi, Ki, i = 1, 2, satisfy the relations 
k2 <=• ki,Ki c K2.Let t0ek2, X0e Ki, X0 =£ 0, X"0 be arbitrary numbers. 
Let the functions Bt(T) e C3(Kf), bi(t) e C3(ki), i = 1, 2, have the following 
properties: 

1. Bi(X0) = bt(t0) = bo, Bl(Xo) X0 = b'^to) = 60 ^ 0, 
B'KXo) K0

2 + B\(Xo) X"0 = 6J(«o) = b"0. 

2. If b'0 > 0(b'0< 0),then0 < b[(t) S b'2(t) (0 > b[(t) ^ b'2(t)) for t ek2. 

3. IfB\(Xo) > 0(B'i(Xo) < 0),then0 < B2(T) g B[(T) 
(0 > B'2(T) ^ B[(T))for TeK,. 

4. Either a) B2(X0) . B"i(T) ^ 0, T e K2, T ^ X0 

B2(X0) . B'2(T) S 0, TeK2, T^X0 

is true or 

b) Ki = K2, and B[(X0) B\(T) ^ 0, TeKu T ^ X0 

B[(Xo) B\(T) ^ 0, TeKl9 T ^ X0 

is valid. 

Then for the solution Xi(t), i = 1,2 of the equation 

(13) Bi(X) = bt(t) 

it holds: If j t is the interval of definition of Xi(t), then j2 a j t . Moreover, 
ifX'o > 0(X0 < 0), thenO < X[(t) ^ X'2(t) (0 > X[(t) ^ X'2(t))fortej2. 

Proof. With respect to the fact that (13) is equivalent to the equation 
—Bi(X) = —h(t), it suffices to consider the case B'^XQ) > 0. 

Let X0 > 0 (X'0 < 0). Then 6̂  > 0 (6^ < 0) and from the properties 2 
and 3 of the functions bi(t), Bi(T) the inequalities b2(t) g 6i(f).<-60 

(b2(t) ^ b.x(t) > b0) for t e k2, t < t0 and 60 < bx(t) ^ b2(t) (b2(t) ^ b^t) < 
< bo) for t E k2, t > t0 follow. At the same time BX(T) ^ B2(T) < b0 for 
T e K!, T < X0 and BX(T) ^ B2(T) > b0 for T e Ki, T > X0. In similar 
manner as in the proof of Theorem 1, from these inequalities the relation 
j2 c j 1 } and the inequalities (8) follow. Further from (13) the equality 
Xl(t) = b'i(t)jB'i[Xi(t)'\, teji, i = 1,2, follows, from where, using the 
inequalities 2, 3 and 4a, as well as the inequalities (8), we get 
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0 < X[(t) 5 b2(t)\B'l[Xl(t)] < b2(t)jB'2[X1(t)] <, X'2(t) 
(Xf

2(t) <i b[(t)IB'2[X2(t)] g b'^IB^XM] S X[(t) < 0) 

f o r * e j 2 . 
If instead of inequalities 4a) the property 4b) of the function B\(T) is 

considered, then for t ej2 

0 < X[(t) ^ b'MIB'JiXiit)] ^ b2(t)IB[[X2(t)] S X'2(t) 
(X'2(t) £ b[(t)IB2[X2(t)] S KMIB'mt)] ^ X[(t) < 0) 

hold. 
With respect to the meaning of the equation (9) where it suffices that 

Ai(T) and 0Ci(t), i = 1,2, satisfy the initial condition 
0H(t0) = At(X0), c*l(t0) = Al(X0) X'0, ocl(t0) = A^X0) X'02 + A'{(X0) X'0 

([2], p. 194) it will be suitable to consider the solution Ai(T) of the 
equation (9) and the solution oa(t) of the equation (5), respectively, as the 
function Bi(T) and bi(t), i = 1,2, respectively, in Lemma 3. 

The solution oti(t) of the equation (5) satisfying the initial conditions (6) 
can be also determined in the following manner. 

Let for i = 1,2 ut(t), vt(t) be the fundamental system-of the solutions 
of the equation (3) given by the conditions 

(14) m(to) = 0 u^to) = (sgn a0) V| a0 | 

(15) Vi(t0) = 1 / V K T v'iito) = - (»gn a0) oc'0l(2]/\^^). 

Then the function 

(16) n(t)=)lul(t)+v\(t), tej, 

is the solution of the differential equation 

(17) r" + qt(t) r = r~* ([2], p. 32) 

which satisfies the initial conditions 

(18) n(t0) = l/V 1^1 , r{(t0) = - (sgn a0) a0 /(2V[^P). 
t 

Therefore the function ao + (sgn OCQ) f Ar/r^r) is the solution of the 
h 

differential equation (5) ([2], p. 35) which satisfies the conditions (6) and 
hence on basis of the Uniqueness theorem ([2], p. 193) we get the relation 

t 

(19) oa(t) = oo + (sgn a0) / dT/rl(T), t ej. 
h 

Using this we shall prove 
Lemma 4, Let all assumptions of Lemma 2 be satisfied and let oa(t), 

i = 1,2, have the same meaning as in that lemma. Let (a2, b2) a j be the 
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maximal interval containing t0 such that the solution v2(t) of the differential 
equation (3) for i = 2 determined by the conditions (15) is positive in 
(a2i b2). Then, if oc'0 > 0, (oc0 < 0) then the inequalities 

(20) 0 < oc[(t) S oc'2(t) (0 > oc'x(t) :> oc2(t)), te(a2i b2), 
hold. 

Proof. With regard to the equality (19) the inequality (20) is equivalent 
to the inequality r\(t) ^ r\(t), te(a2, b2), where u(t), i = 1,2, is given by 
the relation (16) and Ui(t), Vi(t) mean the solutions of the differential 
equation (3) satisfying (14) and (15), respectively. In the proof of Lemma 1 
the inequality v\(t) ^ v\(t), t e (a2, b2), was proved. If the notations from 
that proof are used, we can write 

t 

(21) ux(t) = u2(t) + / K(t, r) [q2(r) — qt(r)] ux(r) dT, t ej. 
to 

If oc'0 > 0, then ux(t) < 0 and ux(t) > 0, respectively, for t0 — e < t < t0 

and for t0 < t < t0 + e, respectively, where e > 0 is a small number. 
Then from (21) it follows that ux(t) <; u2(t) ^ 0 for t e (a2, t0) and ux(t) > 
;> u2(t) ^ 0 for t e (t0, b2). Hence u\(t) ^ u\(t) for te(a2, b2). The same 
inequality will be got if oc0 < 0. 

If q2(t) ^ 0 in j and ao = 0, then the solution v2(t) of the equation (3) 
for i = 2 determined by the conditions (15) has no zero in j , as it follows 
from the identity (v2(t) v'2(t))f = —q2(t) v\(t) + v'2

2(t), tej. Hence then 
(#2> b2) = j . At the same time the solution r2(t) of the equation (17) 
for i = 2 satisfying the initial conditions (18) is convex and thus, on 
basis of (19), for oc2(t) the inequalities 

oc'2(t0)oc'2(t)ŁO, tєj, tѓ t0 

oc'2(t0) oc"2(t) й 0, tєj, t Ł <o 

are true. A similar result also holds for the solution A\(T) of the dif­
ferential equation (10) for i = 1 if A\(X0) = 0 and QX(T) S 0, TeJ. 

Hence, if Q2(T) g QX(T) S 0,TeJ, qx{t) S q2(t) S 0, t ej, as well as 
X"0 = 0, then the solution Ai(T) of the equation (10) which is determined 
by the initial conditions (11) and the solution a*(£) of the equation (5) 
given by the initial conditions (12), respectively, satisfies, on basis of the 
last consideration, and Lemma 4, all assumptions of Lemma 3. From that 
the following sharpening of Theorem 1 in a special case follows. 

Theorem 2. Let t0ej, X0eJ, X0 ^ 0 be arbitrary numbers. Let 
qt(t)eC0(j), Qt(T)eC0(J), i = l,2, and qx(t) g q2(t) ^ 0 for tej, 
Qi(T) S Qi(T) S 0 for TeJ. Let Xt(t), i = 1,2, be the solution of the 
differential equation (7) satisfying the initial conditions 

Xi(t0) = X 0 , K;(*0) = X0, X\(t0) = 0 
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and jibe its interval of definition. Then for X'0 > 0 (X'0 < 0), the inequalities 
0 < X[(t) S X2(t) (0 > X[(t) ^ X'2(t)) for t ej2 hold. 

A further sharpening of Theorem 1 is based on the following 

Lemma 5. Let t0ej = (a, b), ao be arbitrary numbers. Let qt(t) e C0(j), i = 
= 1,2, have these properties: 

L 0 < c2 = qi(t) ^ qi(t) for all t ej. 

2. The closed interval (t0 — 7tl(2\/q2(t0)), 
to + 7tl{2]/q^(M) }=<a2, b2} <= j . 

3. q2(t) = q2(t0) for all te(a2, b2}, q2(t) is nonincreasing in (a, a2> and 
nondecreasing in (b2,b). 

Let oci(t), i = 1,2, be the solution of the differential equation (5) satisfying 
the initial conditions 

(22) oct(t0) = a0, oc\(t0) = c, a-(*0) = 0. 

Then, for c > 0 (c < 0) the inequalities 

0 < oc[(t) S oc2(t) (0 > oc[(t) ^ oc'2(t)) for tej 
hold. 

Proof. It is sufficient to prove the lemma only for c > 0. Hence, 
let c > 0. From Lemma 4 the validity of Lemma 5 follows in (a2, b2). 
The* solution of the differential equation (5) for i = 1 satisfying the 
initial conditions (22) is ai(£) = a0 + c(t —£0)- Therefore 

(23) c £ oc'2(t), t e (a2, b2). 

Since q2(t) is nonincreasing in (a, 62> and nondecreasing in (a2, b), on 
basis of a theorem in [2], p. 115, the fundamental central dispersion cp(t) 
of the differentia] equation (3) for i = 2 satisfies the inequalities (p'(t) ^ 1 
for t € (a, a2y and cp'(t) <; 1 for t e <a2, b). Using the last inequalities in the 
equality oc2[(p(t)] = oc'2(t)l<p'(t), which follows from the Abelian functional 
equation ([2], p. 118), we get that the inequality (23) will be also satisfied 
in further intervals tp the left and to the right from (a2, b2) in which the 
nontrivial solution v2(t) of the differential equation (3) for i == 2 satisfying 
the condition v'2(t0) = 0 is different from 0. By the continuity of v2(t) (23) 
also holds at the zeros of that function. 

Similarly will be proved 

Lemma 6. Let t0ej = (a, b), oc0 be arbitrary numbers. Let qi(t) e Oo(j)> 
% = 1,2, have these properties: 

1. qx(t) S c2 = q2(t) > 0 for all t ej. 
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2. The closed interval <t0 — Jt\(2]/qi(t0)), 
t0 + 7i\{2]/q~JM) > = <a1,bl} c j . 

3. qv(t) = qxt0) > 0 for all te<ai, bi>, qx(t) is nondecreasing in (a, ai> 
and nonincreasing in <bi, b). 

Let oct(t), i = 1,2, be the solution of the differential equation (5) satisfying 
the initial conditions (22). Then, for c > 0 (c < 0) the inequalities 

0 < oc[(t) ^ oc2(t) (0 > a[(t) ^ oc2(t)) forte j 
hold. 

Proof. The assertion of the lemma will be proved only in <a, bi>. 
Further the proof continues similarly as that of the preceding lemma. 
Let c > 0. The inequality (20) in <«i, bi> is equivalent to the inequality 
r\(t) ^ r\(t) in that interval, where rt(t), i = 1,2, is given by the relation 
(16) and Ui(t), Vi(t) are the solutions of the equation (3) satisfying the 
initial conditions (14) and (15), respectively, for a0 = c, a0 = 0. A simple 
calculation shows that r\(t) = 1/c + (c2 —c\)\(c\c) sin2 Ci(l —t0) ^ 1/c = 
= r2

2(t), t ej, where c\ = qx(t0). 
Combining Lemma 5 and Lemma 6, on basis of Lemma 3, we get some 

sharpenigs of Theorem 1. From them only the following will be mentioned 
as 

Theorem 3. Let t0ej = (a, b), X0 e J = (A, B) be arbitrary numbers. 
Let qi(t) e C0(j), Qi(T) e C0(J), i = 1,2, have the following properties: 

1. The functions q\(t), q2(t) have the properties 1.—3. from Lemma 5. 

2. Q2(T) ^ C2 = Qt(T) > 0 for all TeJ. 

3. The closed interval <X0 — TZ\(2]/Q2(X0)), 

Xo + 7r/(2]/^(Z0j)> = <^42, B2} c= J. 

4. Q2(T) = Q2(X0) > 0 for all Te<A2, H2>, Q2(T) is nondecreas­
ing in (A, A2y and nonincreasing in <B2, B). 

Let Xi(t), i = 1,2, be the solution of the differential equation (7) satisfying 
the initial conditions 

Xt(t0) = X0, X$o) = c\C, X]{t0) = 0 

and let ji be its interval of definition. Then for c\C > 0 (c\C < 0) the 
inequalities 0 < X[(t) ^ X'2(t) (0 > X[(t) ^ X'2(t)) for tej2 hold. 

Further the following theorem is true. 

Theorem 4. Let all assumptions of Theorem 1 be satisfied and let the 
solution Xi(t) and the interval ji, i = 1,2, have the same meaning as in that 
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theorem. Let, further, QX(TX) ^ Qi(T2)f au f2< Ti< X0,as well as for 
all Xo^Ti^ T2. Let Q2(T) ^OforTeJ. Then for X'0 > 0 (X0 < 0) 
the following inequalities are true; 

(24) 0 < X[(t) £ X2(t) (0 > X[{t) g j'2(t)) for t ej2 

(25) Xl(t)IX[(t) £ X"2(t)IX>m ten, t S k 
Xl(t)IX[(t) S X"2(t)IX'z[t) tej2, t Z to 

and 

(26) X\(t)< X'2(t), tej2, tZk 
(X'[(t) <, X"2(t)), tej2, tiito. 

Proof. If we denote X\(t)l(2X[(t)) ^ Zi(t), teji, i = 1,2, then zt(t) 
satisfies the differential equation z' =-= qt{t) + z2 +fi(t), where fi(t) = 

t 

= ~Qi[Xi(t)]X'0
2exV(4: f Zi(t)dT). 

to 

Assume, first, that qi(t) < q2(t), tej. Then Zi(tQ) = z2(t0) and 
z'i(to) < z2(t0), hence there exists a neighbourhood of the point t0 in 
which Zi(t) > z2(t) for t < t0 and zx(t) < z2(t) for t > t0. Let (ta, %) be 
the maximal open interval in which these inequalities are valid and let 
h <b2, where j 2 = (a2, b2). Then it must be Zi(h) = z2(tb). At the same 
time on basis of Theorem 1 and of properties of the function Qi(T), 
fi(t) < f2(t) for| ta <t< to, as well as for t0 <t < tb. Further there 
exists a constant M > 0 such that \zi(t)\ <l M for t e (t0, tby. Hence for t e 
e (£0 — e, tb + e), ze(— M — 1, M + 1), e > 0 being sufficiently 
small, #i(£) + z2 + fi(t) < q2(t) + z2 + f2(t) is true and at the same time 
both functions satisfy a Lipschitz condition in the variable z there. By 
the Corollary to Comparison theorem ([1], p. 23) from the equality 
Zi(h) = z2(tb) the equality Zi(t) = z2(t) in (to,tby follows. By a simple 
transformation we get that the mentioned corollary (with the opposite 
inequality) is also valid to the left from t0 and hence, if ta > a, then 
Zi(t) = z2(t) for te(ta, t0y. In both cases we have come to a contradiction. 
Therefore the inequalities (25) are valid in j 2 . From them after integra­
tion we get the inequalities (24) and (26), step by step. 

If qt(t) ^ q2(t), let us consider the solution Xln(t), n = 1, 2, 3, . . . , of 
the differential equation 

{X, t} + Q,(X) X'2 = qx(t) — 1/n 

satisfying the same initial conditions as Xi(£). Then the inequalities (24), 
(25) and (26) are valid where instead of Xi(t) will stand XXn(t). From 
these inequalities, as well as from Theorem 1, it follows, that the values 
of the functions X\n(t), X[n(t), Xln(t), as well as those of the functions 
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X\(t), X[(t), X\(t) for t from the compact subinterval of the interval^ 
lie in a compact set of the space of the variables (t, X, X\ X") which 
does not contain X' ^ 0. Further the Uniqueness theorem holds for the 
solutions of the equation (7) ([2], p. 193). From that, using the Theorem 
on continuous dependence of solution on the parameter, [3], p. 58, we get 
the uniform convergence Xin(t) to X\(t), X[n(t) to X[(t) and X[n(t) 
to X'[(t) on each compact subinterval of the interval j 2 . Thus the inequa­
lities (24), (25) and (26) are proved also in this case. 
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