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ON CAUCHY PROBLEM FOR THE EQUATIONS
OF REACTOR KINETICS

JAN KyNcL
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Summary. In this paper, the initial value problem for the equations of reactor kinetics is
solved and the temperature feedback is taken into account. The space where the problem is
solved is chosen in such a way that it may correspond best of all to the mathematical properties
of the cross-section models. The local solution is found by the method of iterations, its uniqueness
is proved and it is shown also that existence of global solution is ensured in the most cases.
Finally, the problem of mild solution is discussed.

Keywords: Initial value problem, reactor kinetics, analytical solution, neutron flux, temperature
feedback, local, global and mild solution.

INTRODUCTION

Let us consider a nuclear reactor and study the behaviour of the neutron field and
the changes of the material composition of such an equipment in time. In a good
approach, the differential flux ¢ and the material density N; (i = 1,2,...,n) are
described by the equations

(1) aa—(p + JVQ2E)oVe = A(N, T,x,E, t) ¢ + Ao, N, T, x, E, 0, 1) +
t
N + A3(N, T, x, E, t) + /(2E) So(x, E, o, 1)
and
aNi n .
(2a) e Y Bifo, N, T, x,t) + Si(x, 1) (i=1,2,...,n).
t ji=1
Here N = (N, N,, ..., N,) means the vector of material density and the following
notation is used:

A = —JQE) LN (5. 1) (0ulE. T) + oulE. )

A, = J(2E)Y Nix,1) [§ dE' [q do’ ¢(x, E', &', 1) [6(E' > E, o' > 0, T) +
=1
+ o 2dE) vi(E', T) o E', T)];
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J(2E) ZlN {x, 1) A; 2 E);
B, = Njx,1){[7 dE [qdo ¢(x, E, o, 1) [a;;0,(E, T) + b;jo,(E, T) +
+ civ(E, T) o, T)] + dij};

x,E, o, t ... coordinates of location, kinetic energy, direction and time, respectively;

2 ... surface area of the unit sphere;

T ... absolute temperature;

0,(E, T), 04, 0,; ... microscopic effective cross-sections for scattering, absorption
and fission, respectively;

o(E' = E, 0 - 0,T) ... microscopic differential cross-section for scattering;

v(E', T), x{(E) ... the number of neutrons created in the process of fission and the
fission spectrum;

So, S; ... external source terms;

n ... the number of different nuclei;

«;, A; ... nonnegative constants;

dij, b;j, ¢ij, d;j ... constants;

Equations (1a) and (2a) together with the initial conditions

(1b) ' o(x, E, ©,0) = ¢y(x, E, )

and

(2b) Ni(x,0) = Noy(x), (i=1,2,....,n)

express mathematically the problem of reactor kinetics. Temperature T can be
understood either as a given quantity or as a function of the neutron flux and of the
material density which is governed in general by some equations (the temperature
feedback effect). The problem in the above formulation has not yet been solved in
general and only some particular cases were analyzed.

For instance, the case of multigroup transport approximation in plane geometry
was studied in the paper [1]. The delayed neutrons were taken into account but
changes of material properties were not considered in the equation for the neutron
flux. Next, in the book [2], the temperature feedback effect was studied both for
the one-speed transport approximation and for the energy-dependent equation.
Furthermore, delayed neutrons and xenon poisoning were considered. On the other
hand, it was assumed there that

{E’ T} € [O’ Emax] X [Tmin’ Tmax]

where E,_ .., Tnin and T, are finite positive numbers, and the material densities
N{x,ft) (i =1,2,...,n) were assumed to be bounded functions. Moreover, the
dependence of the integral term in Eq. (1a) on the time changes of the material
densities was not considered there. Discussion of the problem for the case of one-
group diffusion approximation can be found in the book [3]. In this paper we will
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deal with the initial value problem having the form (1) and (2). First, the basic physical
properties of the medium will be stated in four generalizing suppositions (which are
satisfied in all known real cases, of course). Then a space of functions will be chosen
appropriately with respect to these properties. Next, considering the temperature
feedback effect, we will investigate the question of existence and uniqueness of a solu-
tion to this problem. Finally, we will show conditions under which the global
solution exists and we will also look for the so called mild solution to this problem.

BASIC ASSUMPTIONS

Suppesition 1. For any element i = 1, 2, ..., n the following assertions hold:

a) The effective cross-sections oy;, o,; and o; are real nonnegative functions of
energy E € (0, o0) and of temperature Te (0, o). These quantities together with the
‘functions

2 ou(E.T). a,,,(E T) and aiaf,(E T)

are finite, continuous in the variable T for any E and sectionally continuous in the
variable E for any T.

b) There exist continuous functions a(T), b(T): (0, c0) — (0, o) such that

0i(E, T) = 0(E, T) + 0,(E, T) < 9%;) + b(T).
Supposition 2. For any element i = 1,2,...,n the differential effective cross-

section o(E' > E, @' — @, T): (0, ) X(O oc) x 2 x 2 x (0, )~ (0, oo] has
the form
0(E > E o > o0,T)=a0E E o, 0,T) +

Ji
+ a? Z o/(E,E, 0,0, T)§(E — E' + E,) +

+ a3 Z 03’(E' E,0',0,T))E — E) oo’ — g{E)).
=1
Here J; is a positive integer, E; and a® (j =1,2,..,J; k = 1,2, 3) are nonnegative
constants, g(E): (0, 0) » [—1,1] are sectionally continuous functions and
8(E' — E) is the Dirac function. The functions oy;, 63/ and o/ (j = 1,2,...,J))
are nonnegative.

Let f(E) be a positive function of energy. For brevity, we denote

Fi(/,E,0',E, 0, T) = JQ2E)=~* E) 04 (E' > E 0 > o,T),

1(E)
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Fi(f,E',0E,0,T) = J(QE) x(E) o (E, T) v{(E, T)fj%; ,
F?(fa EI, (D', Ea , T) = f(EI) aai(E'a T) H
F{(f,E,o ,E,0,T)=f(E)e(E,T), i=12,..,n.
Suppoesition 3. There exist functions f, and f,: (0, ) — (0, 0o) with the following
properties:
a) They are bounded, sectionally continuous and such that
a(l + VE) fo(E) < f1(E)
where a > 0 is a finite constant.
b) For any given T € (0, ), the functions
e} 0
dE' | do' F{f, E',0',E,»,T) and 9 dE’J do’ Fi(fo, E', @', E, 0, T)
0 o aT 0 f)

(i=1,2,..,nj=1,...,4; k =0,1) are bounded a.e.

¢) For any T, € (0, o0) there exist finite positive constants §, and C; such that the
inequalities

]
j dE’j do'|F{(f, E', o', E,0,T) — F{(f, E, o, E,0,T')| £ C,|T - T|,
0 o .

j\dE’j‘dw’ d
0 e 0

“%F{(fm E’a w” E» , T) - 5% F{(an El,‘”’) E: , T’)\ é CllT_ T,\

(i=12..,nj=1,2 k=0,1),
|Fi(fe, E', @', E, 0, T) — Fi(f\, E, 0, E, 0, T")| £

< C|T—- T'|Fi(fi. E, 0, E, 0, Ty)
and

IIA

o _; F
— Fi(f, E'o',E,0,T) — — Fi(fi, E', o', E,0, T’
EE ) - L )
< C|T - T|F{f, E, 0, E, 0, T))

(i=1,2,..,n;j=3,4k=0,1)hold forany T, T' € (T, — 6, T + ;).

It can be shown that Suppositions 1, 2 and 3 are satisfied for all models of scattering
and fission cross-sections usually employed (see e.g. [4]).

Consider a number 7 > 0, a function f(E): (0, o) — (0, o), and denote by M,
and M’ the sets Ry x (0, 00) x 2 x [0, 7] and R; x [0, 7], respectively.

Definition. We will say that a function ®(x, E, ,t): M_— R, belongs to the
linear space m(f, 7) if:
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i) For almost all pairs {E, o}, the function & is continuous in the variables x
and t while the functions (8/ox,) ® (I =1,2,3) and (0/3t) ® are finite in these
variables a.e.

ii) The number

vraimax
M-

is finite. Similarly, the function ¥ is said to belong to the linear space m(x) if:
j) ¥ is continuous on M, the function (8/0x,) ¥ (I = 1,2, 3) and (0/0t) ¥ being
finite a.e.

ji) The number
vraimax | %|

M

is finite. The norms in the spaces m(f,t) and m(t) are defined as ||®|;. =
= vraimax |®/f| and |¥|, = vraimax ||, respectively.
Py

T

In what follows, the symbols |®||, . and ||¥], will mean the values vraimax |®/f|
Me
and vraimax | ¥| but not necessarily @ € m(f, t) and ¥ e m(z), respectively.
iy
For any ¢ € m(f,7) and N;e m(z) (i = 1,2, ...,n), let us denote

¢°(x, E, 0,1) = ¢(x, E, »,0),
Ni(x.0) = N(x,0) and [N, =Y |N]..

In the majority of practical cases, the following assumption can be expected to be
satisfied (see e.g. [5]):

Supposition 4. The temperature is a positive quantity, T = T(x, t, @, N). There
exist positive numbers T°, 8, 8, a; (j = 1,...,5) such that, if we denote
M= &{x,t,¢,N;xe Ry, 1€[0,5,], @em(fy,d0), Nyem(s),
|8 = %100 + [N = N5, = 0}
then the following assertions hold:
a) T(x, 0, ¢°, N° = T° and T(x,t,¢, N} < a; on M.

b) The function T(x, t, 0, N) is continuous in the variables x and ¢ for any pair
{o,N}, {x,t,¢,N} e M and

lT(x, t, (P” N’) — T(x, t, (P", N;/)\ <
< 010" = e+ 10° = 0L + [N = N+ [N = N[
for any quadruplets {x,t, ¢', N'}, {x,1,¢",N"} e M.

i=12,..,n;
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C)

d 0

— T(x,t, ¢, N)| < + — @°lsc + + = +

st o M) s ool 210l o]+ e
[N+ ]+ —"’—N #lE N Y, (=123
Vi 0xp |l 0%, t
on the set M.

d) For any quadruplets {x, t, o, N}, {x, t, ', N'} € M we have

a ’ ’ a ’
l_(T(xy t, @, N)~ T(x; t (Pl,N))' §a5(“q’_ qD“f;,t+ ’—*(q)_ (p) +
0x; 0x, fiot

- v ]

+ 2o = 0%l + H—«o o)

S1at

b N e | v - v

), (1=1,2,3).

SOLUTION TO THE CAUCHY PROBLEM

In what follows, we will assume that the basic suppositions 1—4 are satisfied.
Keeping the above notation we will suppose that the constant > 0 in the definition
of the set M is chosen in such a way that Supposition 3c) is also satisfied.

Theorem 1. Let the following assumptions be satisfied:
a) The functions ¢o and No; (i = 1,2,...,n) are finite, nonnegative, and the

functions
2 (2 wna LN, (1=1,2,3)
0%\ f1 0x,

are bounded. Furthermore,

. o
vraimax $o =< -
Ryx(0,0)%2 fo 6

b) There exists a number t, >0 such that J(2E) Sy(x, E, o, t) € m(f,, t,),
So = 0 and Sy(x, t)e m(t;) (i = 1,2, ..., n) while the functions

Ja—(*/——(ZE)SO and % (I1=1,23)
6x, fl 6x, 7

are bounded on the sets M, and M"', respectively.
c) In the expression for B, the constants a;j, b;j, c;; and d;; are nonnegative
(nonpositive) in case i + j (i =j)(i,j = 1,2,...,n).
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Then there exists a number t, > 0 such that the Cauchy problem (1) and (2)
has a uniquesolution ¢ and N; (i = 1,2, ..., n) which belongs to the space m(f, t,)
and m(t,), respectively.

Proof. Let us confine ourselves to the set M (see Supposition 4). It is seen that
1
Ielrie < - I“ls0.e» 7€(0, ).

Then, by virtue of Suppositions 1b), 3c) and 4b) we have

(3a) \A'I(N, T, x, E, t)| gi(NOi + 8) VQE) o (E, To) (1 + C4|T — Ty|) £

§i§1¢(2E) (a(To) '[/IE + b(T0)> (Ng; + 0) M4(5),

<3b) IAZ((P9 N5 'I': X, E: , t)l é fO(E) M2(5)

-and, similarly,

(42) |Ay(N, T, %, E, 1)| < fo(E) Ms(3)

(4b) |Bij(¢. N, T, x, E, )] £ My(d) (i,j=1,2,...,n)

where M(8) (I = 1,2, 3, 4) are finite constants. From the relations (3b) and (4) it
follows that there exists a number 03 > 0 such that the inequalities

(5a) J' ;ds(Mz(é) + My3)) < g
and

t )
(sb) J M) S

are fulfilled for any t € [0, §5]. Next, by assumption a) of Theorem 1 and by the
estimates (3a) and (5b) there exists a number 85 > 0 such that

) |00(x, E, 0) — polx — V(2E) o1, E, 0).
. exp {J“ds A(N,T,x — J(2E) ot — s), E, s)} < 5!@ ,

[

(6b)  [Noi(x)| égf‘,, (i=1,2..n)

t
1 — exp {J ds L B.(o, N, T, x, S)}

0 Ni(xs S)

hold for any te [0, 53] Finally, by assumption b) of the theorem, there exists
a number 83 > 0 such that the inequalities

(6¢) Jt ds /(2E) So(x — /(2E) oo(t — ), E, o, 5) < fO(E)—g

0
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and

(6d) Jﬂds |Si(x, 5)| £ % (i=12,...,n)

0

hold for any t € [0, §3]. Now we see that the constant §, which occurs in Supposi.tion
4 can be chosen in such a way that, for any quadruplet {x, t, ¢, N} € M, the relations
(3)—(6) are fulfilled at the same time. In what follows we will assume this property.

Consider ¢ € [0, t,], where without loss of generality we put t; = Jo, and examine
the following iterative process:

¢ O(x, E, 0, 1) = ¢o(x, E, ®) ,
No(x, 1) = Ny(x) = (Noy(x), ..., Nyi(x)) »
TO(x, t, ¢, N) = T(x, t, 9o, No)
(7a)  ¢®(x,E, o, 1) = [4ds P“=V(x, E, o, t, 5) {/(2E) So(y(5), E, @, 5) +

+ A" D(y(s), E, o, 5) + ASD(y(s), E, s)} +
+ ¢o((0), E, o) P (x, E, ©,1,0),

(76) NP¥(x, 1) = [6ds Q¥ V(x, t,5) { ¥ Bij(o* ™, NV, T¢=Y x,5) +
j¥i

+ Si(x,5)} + Noi(x) Q¥ (x,1,0)

(i=12,....n)
and

T®(x,t, ¢, N) = T(x, 1, ®, N®) (k=1,2,...).

Here we have put

¥s)=x— JQE)o(t —s5), se[0,1),

AP(y(s), E, s) = A(N® T® y(s),E,s) (i=1,3),

AP(¥(s), E, o, s) = Ay(p®, N®, T®, y(s), E, 0,5) (k=1,2, )

P(x,E, o, t,5) = exp {[tds; A(N, T, ¥(s1), E, s,)} ,

PY(x, E, o,1,5) = exp { [ ds, AP(¥(sy), E, sy)}

Qi(x, 1,5) = exp {[sds,(N(x,5,)) " Bil(@, N, T, x, 5,)} and

Q. 1,5) = exp L[ dsy(VO(e,51)* Bulo™, N, T, x,5,)
for brevity. Obviously, for any {x, t} € M®, the quadruplet {x, t, p'*, N} belongs
to the set M. Using the estimates (5a), (62) and (6c) we find by (7a)

(0906, ) — ¢ B0, 0] 5 1)
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while by (7b), using (5b), (6b) and (6d) we have
INO(x, 1) — NO(x 1)] < zi (i=1,2,..n).
n
Therefore
6 = 005, + [N~ N, 55

so that again {x, , ¢, N’} ¢ M for any pair {x, t} € M*. Recurrently, using (7)
together with the estimates (5) and (6) we obtain

®) lo® = 0 @lsos0 + [N® = Ny < 6

so that the quadruplet {x, t, ), N®} belongs to M for any {x, t} € M® and any
k=0,1,....

Now, we will examine the convergence of the iteratives. Using (7) we find the
following recurrent integral formulas:

(%a) e**Y(x, E, 0,1t) — ¢®(x, E, 0, 1) =
= [, ds{[P®(x, E, o, 1,5) — P*V(x, E, o, t, 5)] [AP(¥(s), E, @, 5) +
+ AP(y(s), E, s) + V(2E) So(¥(s), E, », s)] +
+ P4 V(x, E, o, t,5) [AP(¥(s), E, @, 5) +
+ ADO(S), E.5) = ASD((), E, 0, 5) — AL O0(0) E, 9]} +
+ ¢o(¥(0), E, ©) [P¥(x, E, o, t,0) — P*"I(x, E, ®,1,0)],

(9b) NE*FD(x, ) — NO(x, £) = 5 ds{[Q¥(x, t,5) — Q¥ V(x, 1,5)] .

LY B(0®, N®, T® x,5) + Sfx,s)] +

J¥Fi
+ Q¥ V(x, 1,5) Y [Bif(0®, NO, T®, x,5) — Byy(9* " DVNED, TE=D, x 5)]} +
Jj¥i
+ Noi(x) [Q¥(x,1,0) — Q¥ V(x,1,0)] (i=1,2,....n k=1,2,..).

Suppositions 3c), 4b) and relations (8) imply
(10) |AP(»(1), E, @, t) — AF™D(y(1), E, @, 1)| £
< CfB) {[l0® = 0Py + [NO = NV} +
+ Cofo| T = TV < C3 f1(E) {0 = 0%V, + [ V¥ = NP}

for any k= 1,2,... and any t€[0,8,]. Here C,, C, and Cj are positive finite
constants. Similarly, we find

(1) |AP((0), B 1) — AFTO0(), B 1)] <
< Cof(B) {0 = 0 P50+ [NV = NP,
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|APG0), E. 1) — ALD(3(0), E, )] <
< Csa(l + VE) {[0® = ¢* P50 + [N® — N[},
IBij((p(k)’ N(k)a T(k)a X, t) - Bij((P(k_l)’ N(k—1)9 T(k.—l)’ X, t)‘ é
= Co{llo® = 0“7 Vlp,,e + [N = NET[}

(i,j = 1,2,..., n) where C,, Cs and Cg are finite positive constants and k ~ 1,2, ...
Define functions

P = [ = o], and GEEI() = [NOTD - N,
te[0,6,], k=0,1,....
Using the stimates (10), (11) and the relation
le*—e?| S |x—y, x,y20

we get from (9) the recurrent inequalities
(12) _ F& (1) < A [§ ds(F®(s) + G¥(s)) ,

G** (1) 5 A 5 ds(FO(s) + G(s))
where A < oo is a constant. Clearly,

FO(t) + 6P = C

where C < oo is a constant and, therefore,
(13) Fe+ (1) 4 G+ (1) < c(_z-’,:ﬂ‘, k=0,1,2,....

Taking into account this inequality we see that, for any E e (0, co) the iteration
process (7) is uniformly convergent in the variables x, @, t on the set R; x @ x
x [0, 8o] a.e. By inequalities (8), the numbers @™, 5, and [N|;, (i = 1,2, ..., n)
are uniformly bounded with respect to k = 1,2,.... Next, by virtue of the basic
assumptions, for any k, the functions N and ¢® (i = 1, ..., n) are continuous in
the variables x and ¢ (for almost all pairs {E, ®} in the case of the function ¢).
Therefore, the limit functions

Ni(x, 1) = I}im N¥(x,1) and o¢(x,E, o, 1) = iim o®(x, E, o, 1)

have these properties, too. Obviously, they satisfy the Egs.

(14a) o(x,E, 0,t) = [odsexp {[ids; A, (N, T, y(sy), E, 5,)} -
. [Ax(o, N, T, y(s), E, o, s) + Ay(N, T, y(s), E, s) +
+ V(2E) So(¥(s), E, o, 5)] + ¢o(»(0), E, ®) exp {[; ds, A(N, T, Ws1), E; $1)}
where y(s) = x — J/(2E) o(t — s), T = T(y(s), s, ¢, N), and
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(14b) Nx, 1) = [ ds{éiBij((p, N, T, x,s) + Sx, 1)} Qix,1,5) +

+ Noi(x) Q(x,1,0) (i=1,2,...,n)
where T = T(x, s, @, N).

Now, let us examine the functions 9¢p®[dx, and ONY¥[ox, (i = 1,...,n;1 = 1,2, 3;
k=01, ) The necessary recurrent relations can be obtained by differentiating
Egs. (7) with respect to the spatial variables. Clearly, the right hand sides of these
formulas will be linear with respect to the functions d¢%~[dx,, SN~ 1/dx, and to

the first spatial derivatives of the effective cross-sections, external sources and of
initial values. Set

F®(t) = max

a(P(k)

’x;

k)

(
and §¥(f) = max oN
1

, tel0,6]
Xy

t

st

and recall that the effective cross-sections depend on the spatial variables only via

the temperature dependence. Considering the estimate (8), Suppositions 3b), 4c) and
assumptions a) and b) of the theorem we find

(15) FOU) < A fh ds(F*I(s) + g*~(s)) + B,
GO S Ao ds(F4(s) + g* V() + B (k=1,2,...)
where A and B are finite positive constants. Therefore
(16) FO>t) + g®(1) < 2Be*4*, te[0, 5]
forall k = 0,1,..., Finally, let us set

a(P(k+ 1) 6(,0(")

FO+ (1) = max
1 ax, 6x,

aN(k+ 1) aN(k)

0x,; 0x;

and G**V(1) = max
S1st !

(k=0,1,..).

t

Appropriate recurrent formulas for these functions will be obtained by differentiating

(9) with respect to the spatial variables. If the estimates (8), (13) and (16) are applied
together with Suppositions 3 and 4, we get

Fle+ 1)(1) < A'rds(ﬁ(k)(s) + G(k)(s)) + %)j ’

0

G+ D(r) < Afds(F‘“(s) + G®(s)) + %?wk (k=1,2,..)

0

where A € (0, 0) is a constant. Therefore,

(17) ‘ F(k+1)(t) + G("“)(t) < _(_QL_A_tL' , te [()’ 50] .

= (k-1
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So, we have come to the following conclusion: Sequences

(k)) (k) @
{aqo } and {6N‘ } (I=1,23i=1,...,n)
k=0

0x, X1 Jk=o0

are uniformly convergent in the corresponding variables a.e. and their limit values
are the functions d¢[dx, and ON,;[dx,, respectively. Further, ¢ € m(f,,d,) and
N;em(5y) (i =1,2,...,n).

Now, applying the operator d/dt to Egs. (14), we obtain Egs. (1) and (2). Conversely,
let ¢ and N; (i = 1,2,...,n) be solutions to problem (1) and (2), ¢ € m(f,, d,),
N;e m(d,). Let us substitute t » s, x > x — J/(2E) @(t — s) in Eq. (1a) and multiply
this equation by the factor exp {[;ds; A(N, T, x — /(2E) o(t — s,), E, 5,)}.

Finally, integrate the whole expression with respect to the variable s over the
interval [0, t], t € [0, &, ]. In this manner we obtain Eq. (14a). In Eq. (2a) the variable
x has the meaning of a parameter. Integrating (2a) over the interval [0, 1], t € [0, 6]
with respect to the time variable, we obtain Eq. (14b). By virtue of the basic as-
sumptions, all operations just mentioned are justified.

It remains to prove uniqueness of the solution. Suppose there exists another
solution ¢, € m(fy, t,) and N} e m(t,) to problem (1) and (2). Denote

Py =0Q — @y,
N} =N;-N; (i=1,2,...,n),
F() = loals. and 6() = [V?],, r1e0.c].

Using (14) we obtain equations of the form (9) for the functions ¢, and N7. Then,
applying Suppositions 3 and 4, we find

(18) F(t) + G(t) < A [o dt,(F(ty) + G(t,)), te[0,1,]
where A < oo is a constant (the derivation of this inequality is analogous to the
derivation of (12) from Egs. (9)). Obviously, we have
F)+ Gty = C, tel0,t,]
where C € (0, o) is a constant (the first estimate). Using (18) recurrently, we get
Ayt

F(t) + 6() = C (%1)7)7

for the k-th estimate. Therefore,
F(t) + G(1) =0

on the set [0, t,] and the theorem is proved.

Theorem 1 ensures existence and uniqueness of the solution to the Cauchy problem
(1) and (2) only for a certain finite time interval. Here we will show that, under very
general assumptions, the solution can be extended to the whole interval [0, oo).
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Supposition 5. a) There exists a constant B € (0, o0) such that
0<N(x,t)£B (i=1,2,...,n)
everywhere on the set M®,
b) There exist constant B; and B, € (0, o) such that Te [By, B,] for any pair
{x, t} € M® and Supposition 3c) holds for any T, T' € [ By, B, ].
¢) V(2E) Sy € m(f,, 0) and S; € m(co) while the functions

YCE) Sy g 25 (i=1,2,.,n 1=1,23)
fo(E) ax, ax,

are bounded on the sets M, and M®, respectively. Furthermore, Supposition 4
holds for arbitrary option of the time scale origin and arbitrary 6 > 0.

As for Supposition 5a), it is fulfilled automatically in the case of fission elements
[3]. In all practical cases, kinetic equations (2) have the property that, independently
of the particular form of the neutron flux ¢, they do not permit infinite increase of
material density in finite time. The validity of assumption 5a) can be ensured also
by a suitable choice of sources S; (i = 1,2, ...,n) which in practice corresponds
to the exchange of burnup fuel or the removal of superfluous material. By manipu-
lating the control rods and the coolant system properly we can ensure the validity
of assumption 5b).

Now, consider the Cauchy problem (1) and (2) and assume that Suppositions
1—5 are satisfied. Take € (0, t,) (see Theorem 1) and put

(ﬁo(x, E’ 0)) = qo(x9 E5 (D, 1:) )
No.‘(x) = Ni(x, 7) (i =1,2,..., n)

where ¢ and N; are solutions to the problem in the spaces m(f,,t,) and m(t,),
respectively. Clearly, ‘
|@o| < 50 fo(E) -

But, according to Supposition 5, the value of the constant ¢ in Supposition 4 can
“be replaced by the value § = 75. Then the functions @, and Ny, (i = 1,2, ..., n)
as new initial values will satisfy the requirements of Theorem 1 in which the value
of the constant ¢ is replaced by the value 79. Therefore, there exists an interval
[, t;] where a solution to the Cauchy problem can be found. In principle, repeating
this procedure for the interval [1:, t3]', etc., we can extend the solution to some
maximum interval [0, t,). Suppose t, < co. By virtue of Supposition 5 we get
from (14a) the inequality

. lolso.e = D{fo ds(l + [elo) + 13, 1e[0,tm),

Il < (D + 1) P — 1

where D < oo is a constant. Next, the constant A in the estimate (16) depends on
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the values |||, and [N, (i =1,2,...,n), and if these values are finite it is
finite, too. So, we have

i

0x,

%
0x,

< oo and
S1stm

<w (i=1,..,n1=1273).

tm

Therefore, the functions go(x, E, o, t,,,) and N ,-(x, t,,) again satisfy the requirements
of Theorem 1 which are set on the initial values. Then the solution to the Cauchy
problem can be extended to an interval [O, t*), t*¥ > t,,. This is a contradiction and,
therefore, t,, = oo.

It can be easily shown that, under Suppositions 1 —5, Theorem 1 remains true if
the condition

. o
vraimax (20) <2
R3x(0,0)x2 \ fo 6
of the theorem is replaced by the condition

vraimax Yo < .
R3x(0,m)x2 \ fo

Remarks. 1. In practice, we must be very cautious when applying the theory
mentioned above to the description of a working nuclear reactor. The spatial structure
of such an equipment is strongly heterogeneous and, clearly, the assumptions of
Theorem 1 are not satisfied. Then there is no other possibility than to model this
heterogencous structure by a homogeneous one. However, sometimes it is necessary
to stick to the heterogeneous model. Then we see that the jump changes of material
properties, the movement of control rods and the insertion or removal of an external
neutron source imply that source terms which have the form of the Dirac J-function
will appear in the integro-differential description (1) and (2). In such a case, it is
better to start from the integral form (14). We know that if Theorem 1 holds then the
both formulations of the Cauchy problem are equivalent but it is not so in general.

Let t be a real positive number. Denote by m’(f,, 7) the linear space of measurable
functions ®(x, E, o, 1): M, - R, which have a finite norm || @], = [P0,
and by m’(7) the linear space of measurable functions N(x, t); M® — R, which have
a finite norm |N||, .y = |N|.. It is seen that the spacees m'(f,, ) and m'(z) have
sufficiently general properties which comply with the practical requirements men-
tioned above.

Theorem 2. Let the following conditions be fulfilled:

a) The functions ¢o and Ny; (i = 1, ..., n) are nonnegative, bounded and

. q o

vraimax Po < -

R3x(0,0)x@ \ fo 6

0 being the constant which occurs in Supposition 4.
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b) There exists a number t; > 0 such that J(2E) So e m'(fo, t;), So = 0 and
S;em'(t) (i=1,...,n).

c) In the expression for B, the constants a;j, bj, ¢;j and d;, are nonnegative
(nonpositive) in case i # j (i =j) (i,j = 1,...,n). Then there exists a number
t,€(0,t,] such that Egs. (14) have unique solutions ¢ and N; (i = 1,..., n) which
belong to the spaces m'(fo, t,) and m'(t,), respectively.

This theorem can be proved by repeating the first part of the proof of Theorem 1.
The solutions ¢ and N; (i = 1,..., n) of Egs. (14) are called mild solutions to the
Cauchy problem for the kinetic equations.

2. Let us replace Eqs. (14b) by the equations

(19) N(x, 1) = [5ds{ ;.BU(‘/” N, T,y,,s) + S{y1,5)} Qys, 1.5) +
Jj¥i

+ Nol(») Q1 1,0) (i=1,....n)

Vo= {xy, %, x5 — [idt; v(xy, x5, 15)} and  p = {xq, x5, x5 — [ dt, v(xy, X2, 1)}

and v: R, x [0, ©0) - R, is a bounded function. Of course, Eqs. (14a) and (19)
describe the situation better if the movement of the control rods or of the fuel ones
is taken into account. We can construct an iteration process which is based on these
equations (see (7)). Obviously, the estimating relations (8) will hold again so that
boundedness of iteratives will be ensured in some time interval [0, ¢5], 73 > 0.
Similarly, the estimate (13) for the differences of iteratives can be obtained. Therefore,
Theorem 2 holds also for the problem (14a) and (19).
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Souhrn
O CAUCHYOVE ULOZE PRO ROVNICE KINETIKY REAKTORU
JAN KyNcL
V &lanka je ¥eSena uloha s pocateCni podminkou pro rovnice kinetiky reaktoru, pfi¢emZ se
uvaZuje efekt tepelné zpEtné vazby. Obor feSeni je vybran tak, aby pokud moZno nejlépe odpo-
vidal vlastnostem modela G€innych prafeza. Metodou iteraci je nalezeno lokalni ¥eSeni, dokazana

jeho jednoznatnost a ukazano, Ze ve vétsing pripadu je zarufena také existence globalniho reSeni
dlohy. Nakonec se diskutuje problém zobecnéného feSeni.

Pesiome
O 3AJIAYE KOUIM JJISI YPABHEHUM KMHETUKI PEAKTOPA
JAN KyNCL

Pabota kacaercsi aHAIMTHYECKOro penieHus 3agayu Kowmw it ypaBHeHH KUHETHKH peakTopa
C Y4€TOM TeIUIOBOU 00paTHOM cBs3u. IIpocTpancTBO GYHKUME Ui peIeHns npodaeMbl BEIGpaHO
TaKUM CIIOCOBOM, YTOOBI II0 BOZMOXHOCTH OTBEYAJIO CBOKCTBAM HCIIOJIB3yeMEBIX Mozene ddhdexTrB-
HBIX CeyeHHid. MeTonoM HWTepauuil HAaWIEHO DPelIeHHE 3aJaYd HA OTPAHMYECHHOM IIPOMEXYTKE
BPEMEHH, JOKa3aHa ero OJHO3HAYHOCTh ¥ IIOKA3aHO, YTO B OOJIBIIMHCTBE CIIy4aeB CyIIECTBYET
penreHne B mesioM. M3ydaeTcs Takxke 0OOOIIEHHOE PEIeHHEe 3a1a4H.
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