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INTRODUCTION

In many diverse scientific fields, interest has recently been developing in the recon-
struction of transaxial images from sets of line integrals. Perhaps the first practical
application of the theory [19] was in radio astronomy where brightness temperature
maps were reconstructed from interferograms [1] Later on, in electron microscopy
a similar approach made it possible to display molecular biological structures [3].
A most dramatic advance of this method, however, is associated with clinical radiology
[9] and nuclear medicine [2].

Known as computerized tomography (CT) or transaxial tomography the technique
permits computation and visualization of density (X- or y-ray absorption coefficients)
distribution over a cross-sectional anatomic plane from a set of projections. Three-
dimensional reconstruction may then be obtained as a stack of parallel planes.
Similarly, emission computerized tomography (ECT) in nuclear medicine provides
reconstruction of the three-dimensional distribution of an isotope which has been
introduced into the body.

The distribution of some substances (nuclei of hydrogen, phosphorus or sodium)
in living organisms can now be displayed using nuclear magnetic resonance [11].
The equivalent of a projection is obtained by the excitation of nuclei in a given anato-
mic plane and by the Fourier analysis of the resulting NMR signal (nuclear magnetiza-
tion and relaxation times as given by the Bloch equation) in the presence of magnetic
field with linear gradient. By changing the direction of the magnetic gradient, the set
of projections is obtained. Since the whole anatomic structure is exposed to the excita-
tion and gradient magnetic fields, the method is intrinsically three-dimensional.

For a physical background of the following theory we shall be referring to standard
transmission computed tomography. Minor variations related to other application
fields, particularly to NMR tomography, may be found in literature.

Having sets of projection data provided by a particular scanner, the reconstruction
of the transverse section requires the selection of an appropriate reconstruction
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method according to the geometry of the data collection, the noise in projection
data, the amount of data, the computer power available, the accuracy of the recon-
struction required by the particular application etc.

Reconstruction methods currently developed may be divided into three groups:

1. arithmetic iterative solutions in the spatial domain [10],

2. reconstructions in the frequency domain [7], [8], and

3. convolution-backprojection in the spatial domain [7], [20], [24]. For ray-
sampling schemes of some of the latest tomographic scanners a general linear
operator has to be used instead of the convolution [8].

Arithmetic iterative methods behave well with noisy projection data but are only
used in special applications owing to the computer time requirements (factor 5 to 10)
[13]. For long projection arrays, reconstruction in the frequency domain using the
fast Fourier transform may result in a considerable time saving in the convolution
step. The use of a transform over the Galois field of integers instead of the usual
field of complex numbers in order to reduce round-off errors has been reported [21].

Most of the contemporary tomographs, however, use some kind of the convolution-
backprojection algorithm for the following reasons: It is fast and suitable for both
parallel and fan-beam data collection geometries (Figures 1 and 2), making possible
the reconstruction over a limited region, and, finally, facilitating a mathematical
analysis of the noise amplification in the numerical process of reconstruction.

In this paper the theory related to the convolution reconstruction methods is re-
viewed. A principal contribution consists in the exact mathematical treatment of
Radon’s inverse transform based on the concepts of the regularization of function
and the generalized function developed in [4] This approach naturally leads to the
employment of the generalized Fourier transform in a way similar to [25].

Reconstructions using simulated projection data are presented for both the
parallel and the divergent-ray collection geometries.

PROBLEM AND DEFINITIONS

Let us denote the unknown distribution of the X- or y-ray attenuation density
in the transaxial plane (polar coordinates (r, ¢)) of the human body by f(r, ¢).
From the source of radiation of the given energy the transmitting ray of #, photons
per unit length is collimated. Since according to the Lambert-Beer law the decrease
of the photon flow along the ray is

dnfds = —fn

the detector at the position (I, 6) on the other side of the body detects the mean flux

n(1, 0) = o exp (-F S(Y(P + 52, 0 + arctan (s/l))) s

- o

of photons per unit length (Fig. 1).
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Considering first the parallel-ray geometry of Fig. 1, the input data is then formed
by the set of projections

O p(1,0) = —In [n(l, O)/no]

—wo<l<w, 020<2n.

Each projection defined by a particular value of angle 0 corresponds to a subset
of parallel evenly spaced projection rays. Clearly,
() p(l,0) =p(-1,0 — ), n<0<2m,
and thus 6 from an interval of length = is to be considered, e.g. 0 < 0 < =. Further,
(1) implies
3) p(L,LO) =0, |I|>e,
where ¢ is the radius of the disk inside of which the body is placed.
Assuming the function f(r, go) to be continuous, bounded, and zero for r > ¢

with projections p(l, 0) having the first derivative with respect to I continuous, the
problem is to reconstruct the approximation of the attenuation density distribution

1(r, 9).
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Fig. 1. Parallel-ray projection geometry.
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IMPLICATIONS OF RADON’S INVERSION FORMULA

All convolution and frequency domain algorithms are various approximate solu-
tions of Radon’s inversion formula [19] ([19] is reprinted in full extent e.g. in
Helgason [6])

(4) f(r,<p)=ij"r_ 1 %p(l,())dldo,

212 J, -

— 00

where I’ = rcos (¢ — ) corresponds to the ray passing through point (r, ¢) being
reconstructed (Fig. 1). Radon obtained (4) in the form of a Stieltjes integral under
more general assumptions. He supposed that f (r, ¢) is continuous,

‘[ J 1f(r, (/)) dodr < oo,
0 -—oor

and that, for any point (ro, ¢,) of the plane, the integral of f(r, ¢) along a circle
with center (ry, ¢,) and radius R converges to zero as R — co. The form (4) can be
obtained from the original Radon’s results if dp(!, 6)/d! is continuous.

Note that the assumptions of the previous section guarantee that all these con-
ditions are satisfied. The theory of regularization of functions based on the concept
of generalized functions (established e.g. in [4], [23]) enables us to give the formula
(4), where the integrand possesses a singularity at I = I’, a clear meaning.

In [4] the theory of the regularization of functions is developed with the test
function space D of infinitely smooth functions ¥ having a compact support. The
principal idea is the following. A function u to be regularized is treated as a functional
and formally represented by the integral

1(y) = J‘io u(x)(x)dx,

where § € D, which may not exist for some . The integral I,(y) is extended to all
Y € D with the help of a suitably chosen integral I(,%), the regularization of (),
which exists in the usual sense for all v € D and

(5) 1) = L)

if 1,(W) exists. If 1,() does not exist for some y € D then (5) is taken for the definition
of I,(}). In this way, I, as well as u (in the sense of a functional) are regularized.
In our case the results can be extended to all continuous functions ¥, too. Employing
this approach, we replace the inner integral in (4) by its regularization ([4], Ch. I,

§3)
©). Jw——%(gl-p(l-i—l',O)—%p(—-[%—l',9)>dl.

0
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Rewrite (6) as

e=0+ J, e->0+

* 1[0 0 .
lim _ e p(l+1,0) — <2 p(—1+1,0))dl = lim J(e, I', 0)..
[\al ol
Integrating by parts for fixed I’ and 0, we obtain

. L ) , “ 1 , .
J(e, ', 0) = ;(p(a-{- I',0) + p(—¢ + ', 0)) —'[ l—z(p(l+ I,0) + p(—=1+1,0)dl
since 1/1> as well as op(l + ', 0)jol — op(—1 + I, 0)[0l are continuous in (g, o)
and both the left-hand side and (p(¢ + ', 0) + p(—¢ + ', 0))[e exist for any fixed
e > 0.

As

we may write

* o0

Je 1, 0) = J

—ple +1,0)— p(—e + I',0))dl.

1
- [—z(p([ + 1,0) + p(—1 + 1I',0) —

&

The conditions necessary for passing to the limit in J(z, I', 0) (cf. e.g. Jarnik [12],
Ch. VIII, § 4) are satisfied and we finally obtain that (6) can be expressed as

(7) j— }'; (p(1+ 1,0) + p(—1 + I',0) — 2p(I', 0)) I,

0

which is the regularization of the integral (cf. [4])

o 1 o
8 . p(1,0)dl = I — 1) p(1,0)dl,
®) | " -t oa=]"a- o
where

1
©) q(l) = - 7
Using the notation (8), we always mean the regularization (7) of this integral.

Note that according to [4], Ch. I, § 3 we obtain
(10) J Cq(hdl =0

if the integral on the left-hand side is replaced by its regularization. Since (10) is the
integral mean of (the regularization of) the function ¢(/) = —1/I* we conclude that
this mean is zero.
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Turning back to the formula (4), we can rewrite it in accord with (6), (7), and (8) as
(11) f(r o) = L q(l' = 1) p(1,0)dl do .
27[2 0dJ -

Now, (11) is the continuous reconstruction formula in spatial domain. It implies
that the contribution of each projection p(/, 0) to the value of the reconstruction at
the point (r, @) is weighted by the negative squared inverse of its distance from
that point.

In practical reconstructions, various regularizations of (8) are used [20]. The well
known discrete spatial convolver of Shepp and Logan [24] has been obtained from
(8) by approximating the convolution integral by the sum of integrals over the beam
width assuming constant values of the projection integrals in these subintervals.
Obviously other approximations using more realistic beam profiles can be derived.
Generally, however, the function g is replaced by a continuous function g, having
no singularity, depending on the parameter ¢ and satisfying the condition (10).

It can be readily seen that the inner integral in (11) is a convolution of the func-
tions g and p. This is the fact which is often used to evaluate (11) efficiently with the
help of the Fourier transform.

We introduce the one-dimensional Fourier transform & (u) = v of a function u
from S, the space of infinitely smooth functions rapidly decreasing in infinity together
with all their derivatives, and its inverse & ~!(v) = u as

ot) = -[w u(x) exp (2mixt) dx ,

u(x) = f °° oft) exp (= 2nix) di

and generalize it to distributions [26]. Then we find out that under our assumptions
the Fourier transform P of p (0 is considered a parameter) exists,

(12) P(R, 0) = J " p(1, 0) exp (2nilR) I

and that the generalized Fourier transform Q of the function g ([4], Ch. II, §2;
[25]) exists as well,
Q(R) = 27*|R]| .

Employing the well-known formula for the Fourier transform of a convolution
F(uy *uy) = F(uy) F(u,),

we obtain the frequency domain version of (11) in the form
(13) f(r, @) = f J P(R, 0) |R| exp (—2nirR cos (6 — ¢)) dR d0 .
0J—-w
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In practical discrete implementations of numerical reconstruction, a regularization
of (8) (or (11)) may be obtained if g is replaced by gy, the inverse Fourier transform
of Qy, which is a properly modified function Q. We put

(14) Qw(R) = 22°|R| W(R/C),
(15) gu(l) = r Ow(R) exp (—2milR) dR ,

where W(t) is the window function, i.e. a smooth function vanishing for |¢| > 1,
which appropriately modifies the behavior of the |R|-filter Q(R), and C is the Nyquist
frequency in the discrete Fourier transform employed, i.e. the cut-off frequency. The
formula (14) implies that (10) holds for g, as Qw(0) = 0. Finally we get the spatial
filter (15) in the form

(16) aw(l) = 22 f

Examining the formula (ll), we see that it is advantageous to carry out the recon-
struction in two separate steps:

Cc

|R| W(R[C) exp (—2milR) dR .
C

I. The inner integral (convo]utionﬂ)

(17) o1, 0) = j ol — 1) p(1, 0) dl ,

called the corrected projection, is evaluated first. In practical computation, we use
e.g. gy given by (16) instead of ¢g. The approximate corrected projection is then
denoted by gy

2. The reconstructed approximation of the density f(r, ¢) is obtained by the back-
projection (superposition) of these corrected projections for all values of 6, i.e.,

(18) f(r, ) = 2%2 Jng(l', 0)do,

and, replacing here g by gy, we come to the approximation fy,.
The above conclusions concerned with the computation of f), with the help of
(11) or (13) can be summarized if we introduce the backprojection operator # as

Bu) = ziﬂz '[ "u(0) 0 .

Then (11) may be rewritten as the so-called convolution-backprojection

Sw = ,@(q w* P) .
and (13) becomes the so-called backprojection of filtered projections
(19) fw = #F " (Qw (1))

where we use the notation (14) and (15).
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An alternative algorithm applying the backprojection operator directly to the set
of measured projections was also studied [5]. In contrast to (19), the Fourier trans-
form employed is now two-dimensional and Q) is replaced by a suitable function
depending only on the distance from the origin in the image plane (i.e. a two-dimen-
sional circularly symmetric filter).

DIVERGENT RAY GEOMETRY

The use of first generation scanners with parallel-ray geometry is limited to mea-
suring stationary anatomic structures only since the data collection time is of the
order of minutes. Research concerning the three-dimensional display of moving
organs (such as lungs and heart) together with the need for the evaluation of other
dynamical processes necessitated the construction of fast scanners using divergent
ray geometry (Fig. 2).

SOURCE

Fig. 2. Divergent-ray projection geometry.
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A reconstruction algorithm for scanners where projections were obtained from
a single source and evenly spaced detectors was for the first time suggested by
Lakshminarayanan in 1975 (Technical Report 92, Department of Computer Science,
State University of New York at Buffalo). The reader is referred to the rigorous
derivation given e.g. by Herman et al. in [7]. Computer experiments discussed in the
last section, however, use the straightforward approach of Lewitt [16] as briefly
described below.

Referencing the diverging ray by the angle f defining the source position and by
the angle of divergence o, the line integral of a divergent projection can be denoted
by p*(c, B), p*(o, B) = 0 for ¢ > 6. From Fig. 2 (I and 0 have the same meaning
asin Fig. 1, | = Dsino, 0 = B + o)

rcos(0 — @) — | = Usin(¢' — 0)

where the distance between the source and the point (r, ¢) is
U = ([rcos (B — @)]* + [D + rsin (B = ¢)]")'"?
and the angle of divergence ¢’ for the ray passing through (r, ®)is
o' = arctan [rcos (B — ¢)/(D + rsin(f — ¢))] .

The transformation of coordinates (/, 0) into (o, §) in (12) and (13) yields, with regard
to (3), the reconstruction formula

fW(r’ (P) =
- gJ‘w f f np*(o', B) cos o exp [—2niRU sin (¢’ — )] W(R/C) |R| df do dR,

where p*(o, B) = p(D sin o, B + o). The relation (2) cannot be used for p*.
Changing the order of integration, the reconstruction can again be carried out in
two steps:

1. The convolution step has the form
L]
(20) awle, B) = f (6, B)cos & gy (U sin (o — o)) do .
-5
2. The reconstructed value of density at the point (r, @) is obtained by back-

projection

D 2n
fw('% <P) = ‘F j gw(ala ﬂ) dg.
0 .

L4
The efficient implementation of the above algorithm requires, however, the separa-

tion of the U-dependent component of the filter, i.e. the filter of the form
(21) gw(U sin 6) = ¢%(C, U) 4"(0)
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where the component ¢%(C, U) can be applied as a multiplicative weight in the back-
projection step and C is given in (14), (15).

Separation of the U-dependent component of the spatial filter in (20) as advocated
by Lewitt [16], however, sacrifices the uniform resolution of the final reconstruction.
When the substitution R” = RU sin ¢/(Do) is performed in (16), then

D on P (* )
qw(Usino) = 2| — —- |R’| W(R'[C) exp (—2miDoR’) dR",
Usino —

which obviously satisfies (21). The new cut-off frequency

C, U, D, o) = cu*™?
Do
would for C = const vary with U. Making y = const means to accept uneven
resolution over the region of reconstruction. This approximate approach, however,
facilitates an easy adaptation of any “parallel” filter |R| W(R/C) to the divergent-ray
geometry. Generally the regularization of the divergent reconstruction formula
reduces the inner integral to a convolution only for the special choice of the regu-
larizing kernels [7].

DISCRETE IMPLEMENTATION

In practice tomographic scanners produce only finite number of projections and
rays per projection. The integrals in the reconstruction formulae have therefore to
be approximated by finite sums. Assuming the parallel-ray geometry with an even
spacing a between the parallel rays over the whole scanned region and an even
increment A = n/M between projections, we denote the discrete values of the
projection (1) by

Dy = p(ka, 9,’) >
k=0,1,..,N—1; 0;=jA0, j=0,1,...M—1.
The discrete approximation of the reconstructed attenuation density (11) at a point
(r, (p) is then obtained with the help of the trapezoidal formula in the form

M-1N-1

Z Z i’ - kP

(22) Rl kv
where k' — k corresponds to the distance I’ — I from the kth ray to the point of
reconstruction, q,, = g(ma).

Since k’a and [; = rcos(0; — @) as well as the corresponding values of the
corrected projections g(k'a, 0;) and g(I’, 6;) in (17) coincide only when the k'th ray
passes through the point (r, @) of the reconstruction, some kind of interpolation
must be introduced in the discrete backprojection step of (22) in order to be able to
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compute the density values on the fixed reconstruction matrix. It is obvious that the
quality of the reconstructed approximation will be influenced by both the |R] W(R)
convolution filter and by the interpolation filter.

The spatial filter q(ka) can be obtained either as the result of an appropriate re-
gularization in the spatial domain or, more generally, by the inverse Fourier transform
(16) of the filter |R| W(R) in the frequency domain.

From (9) and (10) it follows that, under the assumption of the continuity of the
first partial derivative of p(l, 6) with respect to I, the accurate reconstruction may
be obtained by the [Rl-ﬁlter, provided that the frequency spectrum of the f(r, ¢) is
bounded well below the Nyquist frequency Cy = 1/(2a) given by the sampling in-
terval a, and that the accurate interpolation given by the sampling theorem is
applied.

In practice, however, these assumptions are often violated due to the statistical
fluctuations in the projection data. The spectrum of the input noise is usually shifted
towards higher frequencies and therefore the noise is amplified by the |R|-filter.
Since the harmonic components of the projections containing useful information are
in an interval closer to the zero frequency, it is desirable to modify the |R!-ﬁlter by
an appropriate window W(R). Various forms of Hamming, Hanning, Butherworth

i
PRRALLEL PROJECTION

Xig
oy

Fig. 3. Top: Projection p(ka, 0) of phantom A of Fig. 7a.
Bottom: Corrected projection g(ka, 0) (bold line) with spatial convolver gy (ka) for the window
(23) (light line).
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etc. window functions may provide useful approximations of the exact reconstruction.
In many practical applications, however, best results were obtained with the window
suggested by Shepp and Logan [24]

(23) W(R|C) = sinc (R/(2C)),

where sinc x = sin 7x/(nx). This window function corresponds to the discrete
spatial filter g,._, obtained from (8) by the approximation of the integral using the
sum of integrals over the beam width with constant values p,;. The value of the
singular coefficient g, has to satisfy (10). Using (23) together with the linear inter-
polation in the backprojection step, a discrete filtration by the filter

(24) |R| sinc (R/(2C)) sinc? (R/(2C))

is then effectively performed on the input projection data. The last squared term in
(24) may be interpreted as a triangular function which is being implicitly convolved
with the discrete projection data to obtain a continuous piecewise linear output
from the digital filter corresponding to the linearly interpolated discrete projection
data. The graphs of a projection, corrected projection and the spatial convolver
corresponding to the filter Qy(R) = |R| sinc (R/(2C)) are shown in Fig. 3.

0 |
1
r
—==— 36 PROJECTIONS
——120 PROJECTIONS
-10 #
(ea)
=} I/\‘ ~
= WU
Q ‘”' | el
-20 T T ~
-30 +

Fig. 4. Logarithm B(r) of normalized line spread function for W(R/C) = sinc (R/(2C)). Parallel-
ray geometry, 36 and 120 projections, 127 rays per projection.
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EXPERTMENTAL COMPARISON OF METHODS

In the parallel and divergent-ray geometries discussed above, uniform sampling
in coordinates (I, 0) and (o, ), respectively, was considered. The corresponding con-
volution reconstruction algorithms are therefore linear [8]. Since the projection
measurement process is assumed to be also linear, the principle of superposition
holds in the sense that the final reconstruction is the superposition of the point
spread functions S(r, ¢) (reconstruction of the §-function at the point (r, ¢)) cor-
responding to all points (r, ¢) of the original. The simplest criterion for the evaluation
of the reconstruction algorithms is therefore the reconstruction of the J-function
located at the center of the reconstruction matrix, particularly the behavior of S(r, ¢)
for r > 0 where, for the ideal case of infinite number of projections, the backprojected
corrected projections should cancel out. The discrete one-dimensional representations
S(r, 0) or, more specifically, the logarithms of their normalized form

B(r) = 101og

for 36 and 120 projections are compared in Fig. 4 for W(R/C) = sinc (R/(2C)) and
the parallel-ray geometry. The reconstruction of the é-function from divergent-ray
projections using the window function

S(r,0)/8(0,0)|, r=na, n=0,1,..,31,

(25) W(R|C) =1 —¢R[C|, 0=es1,

is shown in Fig. 5. In both the examples, corrected projections comprising 127 line

Ar) [dB]

-20 1

-30-’

Fig. 5. Logarithm B(r) of normalized line spread function for W(R/C) = 1 — ¢|R/C|. Divergent-
ray geometry, 120 projections, 127 rays per projection.
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integrals (rays) per projection, where only the integral along the 64th ray was non-
zero, were backprojected into a 64 x 64 reconstruction matrix.

An increase in the projection sampling density in noiseless projection data narrows
the point spread function and thus improves the overall quality of the reconstructed
image. In case of the noisy projection data of a real scanner, however, the spatial
averaging provided by the finite width of projection rays effectively functions as a low-
pass filter.

An increase in the number of projections lowers the residual oscillations over the
reconstruction matrix. In Fig. 4, approximately a 10 dB difference can be observed
between the reconstructions from 36 and 120 projections.

Fig. 6. a) Circularly symmetric phantom reconstructed from 56 (right) and 112 (left) parallél
projections. b) Horizontal profiles for window functions W(R/C)= 1 — ¢|R/C|, e = 1, 0-5, 0,
and window function (23).
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In the following experiment the parallel-ray projections of a circularly symmetric
phantom were computed with the projection sampling density 256 rays per projec-
tion. Reconstructions according to the relations (17), (18) were carried out for the
window functions (23) and (25), where the values of the parameter ¢ were chosen 0
(RAMP filter), 0.5 and 1. Reconstructed profiles in Fig. 6b demonstrate a decrease
of spatial frequency content with increasing ¢. This is in agreement with the character
of the corresponding window functions. Reconstructed profiles also demonstrate
a decrease of the artifacts outside the dense ring and an overall increase of the
reconstruction accuracy with an increasing number of projections. These artifacts
are due to the fact that whenever a circular or elliptical object is reconstructed by
a convolution method [20] the superimposed corrected projections have much

1RO, INe256
ottt At ARTIFACT WA2.P6

WPROI=112, HBINS2D6
MRIIFACT AL RIDI4.

Fig. 7. Reconstruction of mathematical phantoms from a projection set (112 projections, 256 rays

per projection) with Gaussian additive noise in the last projection (left) and in ray 64 of all projec-

tions (right); filter Qu(R) = |R|sinc (R/(2C)): a) parallel-ray geometry; b) divergent-ray
geometry.
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greater values outside the object than inside (see the negative peaks of the cor-
rected projection in Fig. 3).

Characteristic artifacts shown in Fig. 7 were obtained by introducing noise into
one projection from the projection set, or into “‘one detector’” when each projection
from the projection set had one bad projection ray with additive noise.

ERRORS OF RECONSTRUCTION — DISCUSSION

Degradation of the reconstructed image in tomographic systems depends on the
measured object itself, on the fundamental parameters of the scanner (ray profile,
number of rays and projections, alignment of the scanner, etc.) and on the recon-
struction algorithm.

The most often violated assumption of Radon’s inversion formula (4) is the
continuity of the partial derivative of the projection p(/, 0) with respect to I. As
a result the characteristic artifacts then appear between the dense edges of the
reconstructed image.

High concentrations of contrast material in the object produce significant beam
hardening artifacts due to polychromaticity of the photon beam. These artifacts
appear as dark, relatively unmodulated zones between these contrast structures.
They are the more pronounced, the more the energy-dependent attenuation coef-
ficients vary, the greater their absolute values are, and the more extensive these
structures are. The relatively clear origin of these artifacts has made it possible to
develop several correction methods [22].

In situations where the value of the projection integral varies significantly in the
direction perpendicular to the transverse section, partial volume streak artifacts
appear between pairs of the structures that only partially fill up the volume of the
ray [15]. In contrast to the above mentioned artifacts due to the energy dependence
of attenuation, the partial volume effect manifests itself as both light and dark highly
modulated streaks. These streaks can be greatly reduced when the projection data
from narrow slices is used for reconstruction.

The discrete sampling of projections in the data acquisition process results in
a periodic frequency spectrum and in the loss of information about frequencies
higher then the Nyquist frequency given by the sampling interval. The resulting
aliasing and loss of spatial invariance of the point spread function can be reduced
by making the sampling interval sufficiently small. For noisy projection data, however,
an appropriate compromise must be chosen [14].

Acknowledgement. The paper was written while the first author was at the Univer-
sity of Alberta Department of Applied Sciences in Medicine as the recipient of
a Visiting Scientist Award of the Alberta Heritage Foundation for Medical Research.
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Souhrn
TROJROZMERNA REKONSTRUKCE Z PROJEKCI

JIRi JELINEK, KAREL SEGETH, T. R. OVERTON

Pocitatovda tomografie je technika pro vypocet a zobrazeni rozloZeni ur¢ité vlast-
nosti objektu (napf. koeficientu absorpce u CT nebo protonové hustoty u NMR)
v pfi¢ném rovinném fezu pomoci projekci. Trojrozmérné rekonstrukce se dosdhne
pouZzitim systému rovnob&Znych rovin.

K rekonstrukci pti¢ného fezu je tfeba zvolit metodu vhodnou s ohledem na geo-
metrii, v niZ byla pofizena data, Sum v datech, mnoZstvi dat, schopnosti pocitace,
ktery je k dispozici, poZadovanou presnost rekonstrukce atd.

V ¢ldnku je pfehledné uvedena teorie, jeZ se vztahuje ke konvoluénim rekonstruké-
nim metoddm. Zdsadni pfinos ¢ldnku je exaktni matematicky pristup k Radonové
inverzni transformaci, jenZ je zaloZen na pojmu regularizace funkce a zobecnéné
funkce. Tento pfistup pak pfirozen& vede i k pouZiti zobecnéné Fourierovy transfor-
mace.

Uplatnéni tcorie je ukdzdno na fadé pocitacovych simulaci.
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