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1. INTRODUCTION

Various algorithms of unconstrained optimization problems are known as members
of the Quasi-Newton methods. The main idea of the Quasi-Newton methods is to
use conjugate directions associated with the Hessian matrix of the objective function.
This idea was first introduced into optimization by Davidon [3]. Many papers fol-
lowed this pioneering work: Broyden [1], [2], Peason [11], Powell [12]. Fletcher
[7]. and so forth.

These papers developed computational techniques as well as theoretical con-
sideration of their own algorithms. However, so far as the authors know, there are
only a few papers which treated the heuristics of various methods of the Quasi-
Newton type and/or theoretical relations among them. Yanai [14] tried to organize
a class of Quasi-Newton methods as a special case of the Gram-Schmidt orthogo-
nalization method.

This paper also attempts to clarify the heuristics and to organize a class of Quasi-
Newton methods by specifying the general solutions of matrix equations.

2. THE UNCONSTRAINED OPTIMIZATION PROBLEM AND THE
FUNDAMENTAL IDEA OF QUASI-NEWTON METHODS

Throughout this paper, we consider the minimization problem of the function
1) f(x) =3x"TAx + b'x + ¢,

where x, be R", A is an n X n symmetric positive definite matrix and ¢ is a scalar.

We assume that we can evaluate only grad f (x) corresponding to any given x € R",
Besides searching for the minimal point ¥, we attempt to specify the matrix 4 and the
vector b, which determine the function f(x) itself.
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If we know the values of grad f(x) at several points x*, x?, .., we can determine

all these factors — ¥, A and b. Indeed, for example, assume that x!, x?, ... x"*!
are in general position*) and

2 gii=gradf(x), i=1,2..,n+1.
Since the gradient vector of (1) has the form

(3) . gi=Ax" + b,

we obtain linear relations

4) yi=AZ, i=12...,n,
where

() yi=gitt — gi

and

(6) gh = xtl = &,

The relations (4) are combined into

(7) Y=AZ,
where Y and Z are matrices of the forms:

®) Y=[y':p:.0p],
) Z=[z' 7221077,

Since x!, x2, ..., x"*! are in general position, the matrix Z is nonsingular; 4 is ob-
tained by

(10) A=YZ'.
Again by (3), we can evaluate b by any x and g as
v b=g — Ax'.
Using the factors obtained above, we can now evaluate the minimal point X as
x=—A"1b.

We have now seen how the matrices A andfor A~' can be determined by the
gradients of f(x) evaluated at n + 1 points in general position. In Quasi-Newton
methods, however, recurrence relations are constructed to generate sequences of
matrices converging to A~ ! in a finite number of steps:

.okl ok 1
(11) Hy .4 =¢(Hk’Hk—-17"‘5HO’ 9 vy»--wy)»
*) n+ 1 vectorsin R", x!, x2, ..., x"* ! are in general position if x' — x"*1, x? — x"*1 .
.., x"— x"*1 are linearly independent.
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(12) H,—> A *'.
The gradient vectors are evaluated at the points given by
(13) Xt =y — pHg*, k=1,2,3,....

We believe that the recursive methods have been introduced in Quasi-Newton
methods firstly as a reflection of the traditional steepest descent methods. The second
reason seems to be the intension to apply the Quasi-Newton methods to non-quadratic
objective functions, in which the local Hessian matrix is of interest only at the minimal
point.

3. ARTIFICIAL CONDITIONS

As we have mentioned in the preceding section, the Quasi-Newton methods are
presented by the scheme (11)~(13). Design of a Quasi-Newton method is determined
by a specification of the transformation @ in (11). However, for the convenience of
the specification, several artifical conditions are introduced in most algorithms
existing. The following condition is the most common:

(C-1) H.y =12, i=12..k,
or in matrix notation,

(c-1) Hyir Y = Z,,

where

(14) Yo=['ip iy, nxk,
(15) Z,=[z" 22002, nxk.

This condition implies that the matrix H;, includes all the information about the
objective function obtained so far by evaluating the gradients at x!, x2, ..., x**1,

By solving the matrix equation (C — 1')(cf. Appendix B), we obtain as the general
form of H,., 4,

(16) Hiyr = T(I = Y(UIY) 1 UY) + ZJ(Z7Y) ™' 27,
where T; is an arbitrary n X n matrix, whereas U, is an n x k matrix with
(17) det (UgY;) 0.

Notice also that the first term on the right hand side of (16) is the general solution
of the homogeneous equation

(18) Hy Y, =0

while the second is a special solution of (C — 1').
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Since H,,, converges to a symmetric matrix 41, it is quite natural to construct
the recurrence relation (11) so that Hy,’s are also symmetric:

(c -2 H,=Hl,, k=12..n.
In (16), the second term on the right hand side is symmetric since
(20) Z(Z'Y) ' Z) = Z(Z{AZ)  Z] .

Hence it is only necessary that the first term be also symmetric in order to have a sym-
metric Hy, ;. In order to have symmetric H,,, we put, without loss of generality,

(21) T, = (I = L(UTY) "  UDTN,,
where N, is an arbitrary n X n symmétric matrix.

In addition to the symmetry of H,,,, we introduce the condition of positive de-
finiteness since 4 and hence A~! are positive definite. However, since A4 is positive
definite, so is H,,, provided N, is positive definite (sufﬁcient condition, cf. Ap-
pendix C). Thus we introduce

(C-3) N, : positive definite, k= 1,2,...,n.
In most of the existing algorithms, however, only a single matrix N is used as N,:
(C.__4) NkzN’ k=1,2,3,..-,n,

where N is an arbitrary n X n symmetric positive definite matrix.

4. CONSTRUCTION OF THE POINTS {x'}
In the preceding sections we assumed that we start with a set of n + 1 points {x'}

in general position. The next lemma gives a sufficient condition that (13) provides
such points in a sequence.

Lemma 1. If (C—1) and (C—2) are fulfilled, and if

0, i=1,2..k(Zn)
and
ZTg T =0, i=12,..,k(Zn),
then 7', 7%, ..., 271 are mutually conjugate with respect to A:
(22) zTAz* P =0 for i<i+[1<n,

and hence they are linearly independent.
Proof. 7!, 7%, ..., z**! are linearly independent if they are mutually conjugate

with respect to a positive definite matrix 4. Hence, it suffices to show (22).
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On the other hand,
(23,) ziTAziH — _#i+1z,~‘ryi+z

holds for all i < i + I < n. In fact, by (13) and (16),

(24) A2 = — 2T AH 9
But since

((4) bis) T =T

and

(25) yTH; =27

by (C—1) and (C—2), we obtain (23).
Accordingly, the relation (22) is obtained if
(26) ziTgi+l -0
is proved.
The relation (26) is proved inductively. In fact, for I = 1, (26) coincides with the
proposition of the lemma.
Assume that (26) and hence (23) hold for I = 1,2, ...,j — L. For | = j, we have
by (3)
(27)  ZTg" = T(AX + b) =
ziT{A(xi+1 + xit2 — yi+1 4.+ xiti — xi+j‘1) + b} =
— le(AxH-l + b) + ziTA(xH-Z _ xf+1) + ...

v+ ZTA(XT = XTI

It

Hence, this relation is reduced to <

-1
(28) ziTgi+j — ziTyi+1 +JZ zl'TAzi+p

=1
by (3) and (6). ’

The first and the second terms on the right hand side of (28) are zero by the pro-
position of the lemma and the inductive hypothesis, respectively. Thus we have
proved (26), which completes the proof of the lemma. Q.E.D.

One of the methods most widely used to construct the sequences of points {x'}
in such a manner that they satisfy the conditions mentioned so far ((C—1) ~ (C—3))
is to apply so called linear search at each stage: x'*! is determined as the minimal
point of the objective function on the straight line

(29) x=x"—¢tH;g".
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Thus

(30) X = i ﬂiHi.qi s
where y; gives the minimum of the function
(31) P& = s(x' — EH,g).
In fact, since
(32) Jdx' = ¢H,g') = 0
at ¢ = u;, we obtain
(33) 0= gradf(x" - IliH.'.‘li)T Higi
= gradf(xi+1)T Hig‘
— gi+1TH~gi
But since by (30)
(34) —wH g = x'*!' — xi = 7t
we have
(35) ziTgH-l =0.

Hence, so far as p; + 0, {x'} satisfies the condition of Lemma 1.

On the other hand, {x'} are not always in general position. Indeed, for example,
if it happened that we arrived at the minimal point of the objective function with x/

(j < n), all the subsequent points x/**, x/*2 .. would be located at the same point
and y; =0fori=j+1,j+2,....

If this is not the case, however, we obtain non-zero p;’s and hence non-zero z”s.

Hence z"s are linearly independent by Lemma 1, accordingly, {x'} are in general
position.

In what follows in this paper, we consider only algorithms involving successive
linear minimum searchings.

5. CONSTRUCTION OF THE RECURSIVE ALGORITHMS

We now proceed to the construction of the algorithms. In Sec. 3, we have estab-
lished the recurrence relation,

(36) Hiwy = (I = Y(UIY) P UDTN(I = YUY~ UR) + Z(ZiY) ™ Zi
If we introduce the notation

(37) Proy 1= 1 - Y(UT%) 1 U,

(38) ‘ Qurr = Z(ZIY) 1 2L,
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the equation (36) reduces to
(39) Hiyy = PLoiNiPiiy + Qss -

Moreover, as is easily shown (cf. Appendix D), the matrices P+1 and Qi+, are
also determined recursively by the relations

P.yiuiTP-
40 Py=P————, i=12,..k,
( ) +1 u:TPiyl
ZiziT
(41) Qo= Qi+, i=12..k,
)y

where P, = I, Q, = 0and u'is the i-th column vector of U . The recurrence relation
(39) is reduced to

HkykykTHk N zksz
ykTHkyk szyk

+ykTHkyk( Hy* _ Piu, )(Hkyk _ Piu* >T.
ykT Hk yk ukT Pk yk ykT Hk yk IlkT Pk yk

(42) H,., =H +

Indeed by (39), we have
(43) Hkyk = (PITNkPk -+ Qk) .Vk

However, since

P{N,Py* + Zk—-l(Zl‘:—lYk—l)*l Z_ v

(44) 2Ty* = zTAzk =0 for i=1,2,...,k—1
by (4) and Lemma 1, we obtain
(45) H,y* = PIN,P,y*.

Substitﬁting (40), (41) and (45) into (39), we obtain

Tk kT k. kT k kT
(46) Hy,, = (1 - D2y Hk(l—yu Py 22
ukTPkyk ukTPkyk szyk

which is equivalent to (42), which was the relation to be proved.

6. VARIOUS ALGORITHMS

We are now ready to present various algorithms with linear minimization described
in Sec. 4 by specifying the general matrix recurrence relation (42) given in Sec. 5.
The recurrence relation (42) was established under the conditions (C—1), (C—3)
and is specified by giving vectors *. (We also assume (C—4) for the sake of con-
venience.) Although the vectors u*’s are arbitrary, several forms are preferred for
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the convenience in establishing real algorithms. In particular, the following two
choices are among the most frequeny used:

(A) select such u* that satisties
Piu = Hy;
(B) select such u* that satisfies
Plu* = 7~
Proofs of existence of vectors satisfying conditions (A) and/or (B) are given in
Appendix E.
In what follows in this section, we present several real algorithms:
1°) Davidon-Fletcher-Poweli Method [3], [7]:
HkykykTHk N zksz

(47) Hysy = H, — -
ykTHkyk szyk

This algorithm is obtained by setting

Plu* = H,y*
in (42).
2°) Broyden-Fletcher-Goldfarb-Shanno Method [2], [6], [9], [13]:
T ( yksz) kT
( ) k+1 ( 2Ty k Ty szyk

This algorithm is obtained by setting
P{uk — zk
in (46).
3°) One Parameter Method by Broyden [2]:

_ HkykykTHk zksz
(49) Hy,y = H, — ykTHky" + Tk +

+ ocy”H,y"( Hyt _ z* )( Hy* 2 )T’
ykTHkyk sz ykTH yk szyk
where

(50) a:=( (L= 4T )2.

kTHyk+(1_l)szk

In this algorithm, the vector #* is selected so that
Piut = JHY* + (1 — 2) 2%,
namely, the conditions (A) and (B) are “mixed”.
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4°) Broyden’s Rank-One Method [1]:

(zk _ Hkyk) (zk _ Hkyk)T
(zk _ Hkyk)T yk

This is a special case of 3°), in which « is selected so that

. ( (1 _ )’) KTk >2= 2Ty
y

kTHkyk + (1 _ l) szyk szyk _ ykTHkyk'

(51) H,, = H +

APPENDIX

Throughout this Appendix, we denote:
(A1) . R(A) := {x| xe R", x = Ay for some yeR"},
(A2) N(4) := {x| xe R", Ax = 0},
where A is an n X m matrix.
([All
(A3) R(I — ST) = N(47),

where A is an n x m matrix with rank (4) = m and S is the projection matrix into
R(A) in the direction of the normal vector of R(B) in which B is an n x m matrix
with det (BTA4) = 0.

Proof. Since the projection matrix S is given by
(A4) S = A(B'4)"' BT,
we obtain

AT —ST)=AT — A™B(A™B) ' AT =AT - A" =0,

\which implies
(AS) R(I — ST) = N(47).

On the other hand, for all x e N(4") we have

x=ux— B(A'B)"' A"x

since A"x = 0. Hence

x=(-BAB)'ANx=(1-S")x,
which implies

(A6) N(AT) < R(I - S7).

441



By (A5) and (A6), we obtain
R(I — ST) = N(47),
which was the relation to be proved.

[[8]]

If A is an n x m matrix with rank (4) = m, the general n x [ matrix solution of
the matrix equation

(A7) AX =0
is given by
(A8) X =(I—BAB) ' ANN,

where B is an arbitrary n X m matrix with det (ATB) # 0 and N is an arbitrary
n x | matrix.

Proof. Since the column vectors of the n x I matrix solution X are in N(4") and
R(I — ST) = N(4")
by the preceding lemma, the general n x [ matrix solution is given by
X=(-S")N,

where N is an arbitrary n X m matrix.

However, since
S = A(BTA)‘1 BT,

we obtain (A8), which was the relation to be proved.

[[c1]
If N, is positive definite in (21) and Z, = 0in (16) then H, , is also positive definite
in (16).

Proof. The quadratic form a"H,, ,a defined for a € R" is represented as a sum of
two quardatic forms as
(A9) a'Ha=a(l- Y(UY) ' UV NI - Y(Ui) ' Ul)a +
+ d'Z(ZIY) ' Zla
by (36). These two quadratic forms can be regarded as quadratic forms defined for

(I = Y(UiY) ' Uf) a
and
Zla,
respectively. Since N, is positive definite and

ZTY, = 7] 4z,
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with a positive definite 4, it is clear that these two quadratic forms are at least positive
semi-definite. Hence it is only necessary to prove that if @ & 0 then a"H,, a + 0.
Assume on the contrary that there exists such a non-zero vector a€ R" that
T -
a'H, a=0.

By positive semi-definiteness of H, {, this is possible only if

(A10) (I - Y(UiY) 'UNHa=0
and k
(A11) Zia=0.

However, since
R(I ~ T(UTY)™ UD) = N(¥])
by [[A]], we have
(A12) aeR(Y,)
if a satisfies (A10).

On the other hand, (A12) implies that there exists such a non-zero vector b that

—Yb.
Hence ZJa is given by

Zia = Z[Yb = ZTAZ,b .
But, since A4 is positive definite and Z, # 0,
Zia+0.

This implies that it is impossible for both the relations (A10) and (All) to hold
simultaneously.

Consequently, we have shown that

a'H, ,a+0
for all a + 0.
~[[P]]
Given two n X i matrices
Y, = [y‘fyzf...fyi],
U;=[u'u?:. 0 df]

with det (UTY;) % 0 for i = 1,2, ..., k (< n), the matrix
(A13) Perii=1— Y(UTY) ' UT

is obtained by k-iterated calculations of the recurrence relation
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(A14) Py =Pi— 55—,

Proof. The proof is by induction on k.
k = 1: For k = 1, since P; = I, we have by (A14)
P,y'ut’P, _ ylat’

I —
ulTPlyl ulTyl

P, =P, —

which is exactly the relation (A13) for k = 1.

k =2,3,..., m: We assume that the statement of the lemma holds for k = 2, 3, ...

e M.

k = m + 1: Denote
A b B U; Ym U": m+ 1 -1
|: T ] (U""”Y’"“) b= l: m+1T m+y1T m+1]
c d u Y, u y .
Then A, b, ¢" and d are given by the identities

>

= (UIY,) ! + 1(U,I,Y,,,)-1 Ulym tym Ty (UTY,) !
S

h = — l(U ) UT m+1
N

CT — _1_ um+1T Ym(U;Ym)—l ]
N

g L
N

where
si= gntiTymtt _ gmet? Y, (UNY,) P Uyt = det (Uyy  Ypuq) -
Hence
I - m+1(Um+1 +1)_1 U;H =1I- (D';Ym)_l UI; -
(I _ Y(U,,, m) 1 UT m+ 1 m+17(1 (Dm Y,) IUT)
m+1T(I _ m(Um m) 1 U':)ym+1

k]

which coincides with P,,,, ,.
Hence

I— Ym+1(U;+1 +1)_ m+1 - Pm+2y

which was the relation to be proved.
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Souhrn

NEKOLIK POZNAMEK O KVAZI-NEWTONOVYCH METODACH
MaAsaNORI OzAwA, HIROSHI YANAI

Prehlednd pozndmka, jejimz cilem je vySetfit heuristiku a pfirozené vztahy ve tridé
kvazi-Newtonovych metod v optimizacnich problémech. Je dokdzdno, Ze jisty spe-
cidlni algoritmus této t¥idy je urcen, jestlize charakterizujeme jisté parametry (skaldrni
nebo maticové) v obecném Feleni maticové rovnice.
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