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A DISCRETE THEORY OF SEARCH II*)
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3. ASYMPTOTIC' PROPERTIES OF STRATEGIES

Let us consider the classical statistical decision problem with a (uniformly distrib-
uted random) parameter 6 € Q and with a sample (¢, {5, ..., {y) which is supposed to
be distributed by

(3.1) Prino = 20® Q@ ... ® Qp (N times),

where Q, is a probability distribution on a sample space Z = {1, 2, k} of the
random variables ;. Next let us consider Bayes’ estimator Oy : Z¥ — Q of 0 and
denote by

1 2 N
E(N) = ; .ZIPCI-uCNW[GN +* 91]

the average probability of error corresponding to .
Define the a-entropy of two distributions Q = (qy, 42, -+ 4i), @ = (d1, d2s -+ -» di)
by
H(Q,0) =Y q:d, "
r=1

Obviously, H,(Q, 0) is an analytic and convex function of « in the domain « € (0, 1).
Let us denote

(3.2) AQ, Q) = inf H(Q, Q).

ae(0,1)

It is easy to see that 0 < A(Q, 0) < 1, where A(Q, 0) = 0 or Liff Q L { (singularity)

*) Part I of this paper has been published in the preceding issue of this journal. The sections,
formulas and references are numbered accordingly.
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or Q = O respectively. The following property of A(Q, @) introduced here for later
references has been established in Th. 2 and (c) of [7].

Lemma 3.1. It holds
oN) = AN+

where

(3.3) A = max A(Qy,, Q5,) € [0,1].
i+k

In Th. 2.2 it has been shown that the probability of error e;. N corresponding to an
optimum strategy &’ (if it exists) converges to zero at least exponentially (see (2.31)).
According to the following theorem the convergence of e;.N to zero cannot exceed an
exponential rate.

Theorem 3.1. For any (2, &, 6) it holds

(34) e 2 [max [ A(1] i, Y+,
where
(3:3) 1|6 k) = A(P(. | 0), P(-|6.).

Proof. Let Z = A™,
m
Q0= ®Pl( |0)7
1=1
i.e. let {; be a random vector, {; = (éj[, Eizs i &fj,,,) €A™ j=1,2,... According to
Lemma 3.1, e(N) = AV+°®™, where 2 = max A(Qy,, Qp,)- By (f) in [7],
m
j'(Qet’ Qﬂk) g H j'(l l i' k)
I=1

and, consequently,
(3.6) e(N) z [max [TA(1] i, k)J¥+e®™.
i*k I=1

If now &y, 8, ... is a realization of strategy 6, then & = (&,5,, £25,, ...) satisfies (2.6)
and, consequently, &; = &;5, for any j. Since n; = (;5,, ;) results from {; (by an
application of the statistic dy(71), d,(., m), ...), it holds e(N) < e,N. This together
with (3.6) implies (3.4) Q.E.D.

Denote

(3.7) H(l]i, k) = H(P(. |6, P(.]6)).
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Theorem 3.2. If 6 = p is a random strategy, then
(3.8) eN = AN+o)
for any (Q, &), where

(3.9) = max[ inf 3 H(1] i K] e[0,1].

itk ae(0,1) I=1
It holds A < 1iff {Py. I 0) : u; > 0} = & separates Q.

Proof. If n4,7,, ... are defined by 6 = p as described in Sec. 2 and if we put
{; = n; then, by (2.10), assumptions of Lemma 3.1 are satisfied for

(3.10) (L, 1) = Pn,]()[nj = (L] =wmP(r l 0).

Thus ¢;N = e(N) and (3.8) follows from Lemma 3.1. Relation (3.9) holds too,
because @, defined by (3.10) satisfies the following relation:

(3.11) H(Qy,, Qo) = élﬂz H(1|i, k)

and it remains to apply (3.3), (3.4).

The parameter 4 in (3.8) is, in general, a function of (@, &, §), A = A(Q, &, §). The
following condition characterizes a very important case where A(Q, &, 6) can be
relatively very easily evaluated or estimated.

We shall say that a random strategy § = u is homogeneous with a parameter f
(relative to (€, &), if the p-probability of the set of all experiments Py(. | 6) non-
separating 0; # 6, does not depend on i, k, i.e.

B= Y wu for al i=k,
1eM(i k)
where M(i, k) = {le M : P(. | 0,) = P(. | 6,)}.

Obviously, 0 < f < 1 and B = 0 or 1 iff every experiment P,(. | 6) € & separates
Q or no pair 0, + 0, is separated by & respectively. In this sense 1 — B numerically
measures how frequently a random design of experiments performed at every time
j =1,2,... independently and in accordance with the ditsribution p yields experi-
ments P; j(. ] 0) separating a pair of points from Q. The homogeneity means that the
frequency do not depend on the concrete pair considered.

Example 3.1. Let (2, &) be the same as in Example 1.1 and let § = p be a random
strategy w'th g = (277,27",...,27"). Here a half of the functions f,e & satisfies
f6,) * £,(6,) independently of 6; + 0,. Therefore & is homogeneous with f = 1/2.

Example 3.2. Let (2, é”) be the same as in Example 1.2 and let 6 = p be a random
strategy with p = (n™%, n™%, ..., n™?). Then & is homogeneous with g = (n — 2)/n.
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Example 3.3. Let @ = {0y, ..., 04}, € = {f1. ..., f5}, where the matrix of values
F0) i=1,0nd I =1,..,5, is

00
10
11
11

—_ O =
(= e ")

|
1
1
0

If 6 = p with u = (1/5,1/5, ..., 1/5), then & is not homogeneous. If, however, p =
= (1/3,1/3,0, 0, 1/3), then & is homogeneous with f = 2/3.

Theorem 3.3. If § is a random homogeneous strategy with a parameter B, then A
which appears in (3.8) satisfies the inequality 2 2 B. The equality holds iff all
P(. ! 0) such that p, > 0 and all pairs 0; + 0, satisfy either the relation P(. |0) =
= P(.|6,) or P(.|0) LP(.|6).If & = {f1,f2. ..., [,}, then the last condition
is satisfied and 1 = p.

Proof. (3.7) and (3.8) yield

(3.12) =max [+ inf Y pu H(l [ i, k)],

i*k ae(0,1) leM(i k)

where M(i, k) = M — M(i, k). This immediately implies the inequality 1 > f as
well as the necessary and sufficient condition for the equality (notice that H,(1 ] i, k)=
=0or Liff P(. |0;) L P(.|6,)or P(.]0,) = P(.]0,) respectively).

4. CODING MODEL

If Q is arbitrary and & = {f}, f5, ..., f,,} contains arbitrary mutually different
functions f,: Q — A, we shall say that (Q, &) defines a coding (noiseless) model.
This terminology is motived by the fact that any strategy é considered in the frame-
work of this model defines a code

(4.1) & = (£5,(0,), £5,(01), ... £5,(61))
' ‘ &2 = (£5,(02), £5,(02), ., £5,(62))

&y = (fm(en)’ faz(on)’ . ~’fan(6n)) >

The code of size nand length N (N = 1, 2, ...) will be denoted in the sequel by &(n, N).
Since in this case it is supposed that the experimenter observes values which are equal
to one of the code-words, namely (&, &y, ..., &y) = (£5,(0). /5,(0). .., f5,(0)), we
speak about a noiseless model.
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A more general (noisy) coding model of the theory of search can be obtained if we
suppose

(4.2) & =15,0) + {(moda) j=1,2,...,

where {4, {,, ... are mutually and on 6 independent random variables assuming values
0,1,...,a — 1 from A with the corresponding probabilities 1 — p, pf(a — 1),...
cup/ (a — 1), pe[0, 1). In this case the experimenter observes the input code-word
(f5,(0), -, £5,(0)) at the output of a symmetric memoryless channel defined by the
following channel probabilities matrix

p
1 —
pa—l a—1
p )4
1—p...-
(4.3) a—1 a—1
14 p
1 —
a—1 a-1 P

Thus the coding model of the theory of search is defined by a triple (2, &, p),
where & = {f,, ..., fn}, p€[0.1). If p = 0, the model reduces to the noiseless one.
Now we will discuss in more detail the relation between strategies and coding for
symmetric memoryless channels in the framework of this simple model. At the same
time, this discussion will also indicate relations between the search theory and the
information theory.

First we notice that if d,, d,, ... are not defined uniquely by the strategy J, then
also the code &(n, N) is not defined uniquely by §. If, for example, § = p is a random
strategy, then ¢(n, N) should also be interpreted as a random code defined by p.
Denote by e(e(n, N)) an average probability of error (taken with respect to P,) corres-

" ponding to the code &(n, N). Obviously,

(4.4) e(e(n, N)) = ;N .
Thus, for example, a necessary condition for ;N = 0is p = 0 and
N .

(4.5) n<a

IIA

Equality (4.4) means that if 6 is an (asymptotically) “efficient™ strategy, then &(n, N) is
an (asymptotica]ly) “efficient” code. The converse is not verbally true. Indeed, if ¢(n, N)
is an efficient code (deﬁned forN =1,2, ) it need not necessarily mean that there
exist ,, 95, ..., Oy or a strategy & = (J;, J;, ...) such that (4.1) is satisfied.
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If
(4‘6) & = (511,312,---, SIN)

&y = (821, €225 vuesy 82N)

_f
&y = \gnls E€n2s viey 6nN)

is a code of size n and length N with a code-alphabet A, then the converse is true only
if for every j = 1, 2, ..., N there exists f;, € & such that

(4.7) (f1,(00), £1,(02), s 1(60,)) = (€15 €2js s &) -

If this is the case, we can define §; = [;, j = 1,2,..., N. But if the class & is not
ample enough, the condition (4.7) need not be satisfied for every j. Therefore, for
a general &, % strategy & can be optimum (with respect to (@, &)) even if the corre-
sponding code &(n, N) is not optimum in the class of all codes at the input of the
channel (4.3).

In view of this relation between the theory of search and the information theory,
it is clear that every coding problem or coding theorem of the information theory
can be interpreted in the framework of the theory of search (see a generalized coding
model below) but not conversely. Because of various restrictions concerning & imposed
by real experimental restrictions in the praxis, problems of the theory of search are
more specific and cannot be solved by a direct application of coding theorems. Any
concrete form of & (see Examples 1.1.—1.3.) restricts a structure of codes for which
the “isomorphism” condition (4.7) can be satisfied. Thus some optimisation problems
of the search theory seem to be not interesting from the point of view of the informa-
tion theory (cf. Sec. 6, in particular Example 6.2), although in the information theory
some codes with a specific structure are also studied (e.g. linear codes).

Let us remark that a further generalization of the coding model (2, &, p) is also
possible. Instead of the symmetric channel (4.3) with input and output alphabet A
one can consider a general noiseless channel with input alphabet A, output alphabet
B = {O, 1,...,b— ]} and a channel probabilities matrix

Poo Po1 ~+- Pob-1
Pio P11 «or Dip—1

(4.8) P =
Pa-10 Pa—11 +-+ Pa—1b-1

Here the noise is non-additive and (4.4) must be replaced by

(4.9) Peis,=10l&; = 5] = Pys| 0) = p,,, where r=f(0), seB.

Thus the generalized noisy coding model is defined either by a pair (Q, &) where
P(. | 0) € ¢ satisfy (4.9), or by a triple (2, &, #) where & = {f}, f2,.... fn} and 2 is
a stochastic matrix (4.8). Clearly, the generalized model also admits the asymmetric
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“isomorphism” between strategies of search for (€, &) and codes for the channel
(A4, 2, B) as described above. In the framework of this model the Shannon’s problem
of transmissibility of a source through a memoryless channel can be interpreted as
a special problem of a more general statistical problem of the theory of search (see
Sec. 6 below).

Example 4.1. If (@, &) is defined as in Example 1.1, then the condition (4.7) can
be satisfied for any code {&, &,, ..., &,}. If this code is random, i.e. if ¢;; in (4.6) are
independent realizations of a random variable assuming values 0 and 1 with prob-
abilities 1/2, 1/2, then the strategy & = (3, 85, ...,) defined by (4.1) is random = p,

where u;, = 27", 1=1,2,...,2" Using (4,4), all results concerning random codes can
be applied to random strategies J in the framework of a coding model (@, &, 2) with
P = (Poo Pot --- P0b—1) .
Pio P11 --- P1b-1

arbitrary. In the special case

(4.10) 9:(1*1’ P )

p 1-p

the model reduces to (Q, &, p), where the corresponding communication channel is
binary symmetric.

Theorem 4.1. If in the framework of a coding model (Q, &, p), 6 is a homogeneous
random strategy with a parameter B, then A in (3.8) is given by

(@.11) L=+ —p) [2\/(”(1 = ”)> 1 Gl 2)].

a—1 a—1

Proof. By (4.9) and (4.3), the distributions P/(. | 6) are of the form

p s eeny P , 1 —p, P e P .
a—1 a—1 a—1 a—1

The position of 1 — p in this probability vector depends on 6 and L. If 6; + 6, and
l e M(i, k), then the position corresponding to I, 6; and 1, 6, is different and conse-
quently (see (3.7))

H(1] i, k) = pia: ) (a E l)a(l = p)' 7"+ (1 = p)* <;{—I)m~

1

inf H,(1]i, k) = 2\/[17(1 - p)] L pa=2) ,

ae(0,1) a—1 a—1

This yields

where the infimum is attained for « = 1/2. This together with (3.12) yields (4.11).
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Corollary. If (Q, &) is a noiseless coding model and 6 is homogeneous with a para-
meter f3, then

(4.12) esN = pN*om
This result also follows from Th. 3.3., because in the noiseless case the condition
P(. |0, = P(. |6,) or P(.|6,) L Py.]|06) is satisfied.

In the rest of this section we shall consider the noiseless coding model. OQur aim
will be to give more precision to the expression o(N) in (4.12).

Lemma 4.1. Let us consider a noiseless coding model and let 6 be an arbitrary
strategy of search. If MY < MY is the set of all (8, 5, ..., 5x) € M" such that there
exist exactly k values of 0 such that

(4.13) (/3,(6), £5.(0); > 5 (0)) = (/5,(6:). f5:(61): - Ja(0:))

then

n

1z 1
(4.14) esN = " y oy (1 - ;{') Psy...onto (01 - ) € MY] .

=1 k=1

Proof. Let 8 = 6, and let (1, 7, ..., ny) = (81, &1), ..., (6n, Ex))- If (4, ..., Oy) €

€ MY, then the maximum in (2.26) is attained for all 0 satisfying (4.13) because for all
these O itis &; = f;(6),j = 1,2, ..., N with probability 1. If the value of By is chosen

from these 6 randomly with a uniform distribution, the probability of error is
1 — 1/k. In symbols,

n ~ 1
Pe,.enionsr.onlOn F 0] = 1 — .
for all (8, ..., 6y) € MY. Hence

" 2 1
P711-~-'IN]61'[6N + 01] = Zl (1 - E) Pﬁl---énlﬂi[(al 5N)EM);: .

k=

This together with (2.27) implies (4.17).

Corollary. I't holds

(4.15) 1 Y p(6,N,i) < e,N < 1 Y p(8,N,i) for everyd,
2ni=1 n i=1

where

(4.16) p(6, N, i) = Ps,_sn10[(6y ... ox) e MY — MY]T.
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Example 4.2. Let (Q, &, §) be the same as in Example 3.1 or 4.1. Tt follows from
the definition of & that P, 10 [(8y ... 0x) € M{] = (1 — 27M)"~1 independently
of i so that, by (4.15),

(4.]7) %[1 - (1 _ 2-—N)n—1] <eN<I1-— (] _ 2_N)"_1 .

Hence ;N = 27V*°®)_ This is in accordance with (4.12) and with the fact that § is
homogeneous with f = 1/2.

Example 4.3. Let (@, &, 6) be the same as in Example 3.2 and suppose that
04, 05, ..., Oy is a realization of a strategy 6 and that @ = 0; where 0, is fixed. Two
different cases will be considered: (a) f; € {fs,, 3,2 -- > fon}> (B) fi & {fs,s fozr s fon}-
In the case (a), (¢, &5, ..., ) = (0,0,...,0, 1,0, ..., 0) where the position of 1 de-
pends on the position (or positions) of the experlment f; in the vector (f,,,,faz,

.» f35)- In the case (b), ¢; are identically zero. If (2.26) is respected, then Oy 0
may appear (with probability 1 — n~') in the case (b) only. The probabilityof the
case (b) is (1 — n™1)V, so that

(4.18) eN = (1 - 1—>N“.

n

This is also in accordance with (4.12) and with the result of Example 3.2.

Using relation (4.15), asymptotic formulas for ¢;N can be obtained from analogous
formulas for p(6, N, i). We will show that a somewhat strengthened condition of
homogeneity of random strategies makes it possible to find out more precise asym-
ptotic formulas for p(d, N, i) than those of the form (4.12).

We shall say that a random strategy 6 = u is homogeneous with parameters f, y
if it is homogeneous with the parameter f and

(4.19) y= Y

1eM(i k,r)
holds for all mutually different i, k, r, where M(i, k, r) = {le M : f(0,) = f(6,) =
= f/(6,)}. Obviously, 1 — y numerically measures how frequently a random design

of experiments performed at every time j = 1, 2, ... independently and in accordance
with the distribution p yields experiments f;, € & separating triplets of points from Q.

Lemma 4.2. If 6 = pu is homogeneous with parameters f,y, then f = y. If A =
= {0,1}, p = (1/m, 1[m, ..., 1|m) is uniform and & is homogeneous with a para-
meter [, then it is homogeneous with paarmeters f,y as well. In this case f§ =
2 (n—2))2(n — 1) and if B < 12, then

(4.20) y< B2

Proof. The first statement is evident, the other one has been proved in Lemma 3a
and Lemma 4 of [2].
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Example 4. 3. The strategy from Example 3.1 is homogeneous with parameters
B, 7. This follows from Lemma 4.2 and from the fact that § = 1/2. It is easy to see
that y = 1/4. The strategy from Example 3.2 is homogeneous with parameters

B=(n=2)ny=(n-3)n

Lemma 4.3. If 0 is a homogeneous random strategy with parameters f, 7y, then

421) (n—1)p" - <" N 1>y" <p(, N, )< (n=1)p%, i=12..,n.
Proof. Let i, N be arbitrarily fixed and define M, = {f5(0,) = f5,6:), j =

=1,2,...,N} = M". Obviously

(4.22) UM, = MY — MY

and by the definition*) of B, 7, -

(4.23) Ps, onl (01 ... 6)eM, ] =B", k+i,

(4.24) Ps, onl (01 ... 0N)eM A M, ] =", k+i=%r.

Since every class of events M, from an algebra on which a measure P is defined
satisfies the inequalities

30

(4.21) follows from (4.22) —(4.24).

Z*P(Mk M, < P(k\;}.Mk) gk; P(M,),

k*r*i

Theorem 4.2. Let (2, &) be a noiseless coding model and 5 a random strategy of
search homogeneous with a parameter f. Then

(4.25) eN<(n-1)p" N=12,..

holds. If moreover 6 is homogeneous with parameters B, y, then

(4.26) eaNgn—z_l[)’N——%Cl;l)y" N=12 ..

Proof. See Lemma 4.3 and its proof and (4.15).

5. MODEL WITH INCREASING &

As we emphasized in the preceding sections, a large number n of elements in Q is
one of the implicit assumptions of our model. In our exposition above n fixed and
N tending to infinity have been considered. In this section we will study the asymptotic

*) For random strategies Ps, . syj0 = Ps,...s, holds.
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behaviour of e;N under the assumption that both n and N tend to infinity, but N
functionally depends on n, N = N, (we suppose N; < N, < ..., lim, N, = +oo).

From the point of view of the practice, there is a need for small rates of convergence
of N, to infinity but, on the other hand, if the rate were too small, the probability of
error e;N, might converge to zero slowly or might not converge to zero at all.

In general, we shall assume that & as well as 0 may depend on n, & = é’(n),
8 = (n). More precisely, we shall assume that &(n) = {P{"(. I 0),1=12..m}
and 6(n) = p(n) = (u”, u$’, ..., u§), where P{’(. | 6) are conditional probability
distributions on 4 = {0,1,...,a, — 1} and ™ > 0 are elements of a probability
distribution u(n) (we emphasize that in the rest of this paper only random strategies
& = 5(n) will be considered).

Any triple (2, &(n), 6(n)), n = 1,2,... (or n = ng, ny + 1, ...) defines a model of
search with increasing Q (i.e. with n — o0). In the same manner as above we can de-
fine a probability of error e;,)N,. In what follows we shall be interested in the be-
haviour of es,yN, (rate of convergence to zero) for n — co. In particular, we shall be
interested in the problem of the minimum rate of N, — oo for which

(5.1) lim,, €3Ny = 0

holds or for which the convergence in (5.1) is exponential. As it will be shown in
Sec. 6, under some assumptions concerning é”(n) this problem reduces to the well-
known Shannon’s problem of transmissibility of information sources through com-
munication channels. In the present section some general results will be stated.

Let us define (cf. (3.7), (3.9))

(5.2) HO(1 i, k) = H(PP(.0), P ]6), ae(0,1),
(5.3) Ap = max [ inf "i pi” HO(1] 1, k)],
i*k ae(0,1) I=1
(54) A = liminf, 4, .
The case
(55) A = lim, 1,

will be of special interest for us.

We shall say that es)N, converges to zero exponentially if there exists 4, € [0, 1)
such that e;i,)N, < Ao~ for all sufficiently large N,,.

Theorem 5.1. The sequence es,)N, converges to zero exponentially for all suf-
ficiently fast increasing sequences N, iff A < 1. If A = 1, g5,yN,, does not converge
to zero exponentially for any N, satisfying the following condition

(5.6) lim, % = too
logn
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If A < 1, then for every N, satisfying the conditions

(5.7) lim, M 108 Ny _ o
N,

(5.8) lim, N,u{” P(k | 6) = ¢ > 0 uniformly with respect to k, 1,0,
esmN, converges to zero exponentially. If (5.5) holds, then
(59) ey, = A4 200

Proof. For the sake of simplicity we shall suppose that (5.5) holds. The corre-
sponding modification will be obvious. Let i,, k, be the value of i, k for which 1, =
= X(Q;, Q,,) holds in (5.3), where Q;s are probability distributions defined on
{1,2,..,m,} ® A by Q(I,5) = uf” P{(s | 0) (cf. (3.10)). According to (h) in [7],

1= [3Var (0,0,)] = 4 -

Thus, if lim, 4, = 1 then for any ¢ > 0 there exists n, such that for n > n,,
Var (Q,, Q,.) < 2¢/(2 + ¢). According to the second inequality on p. 493 in [7],

1= 3 Var (@i, Qi) = [1 — 3 Var (@, Q,)]™
(by O we denote the Cartesian product @ ® ..., ® Q (N times)), so that
(5100 - ]%nlog(l — 1 Var (@Y, QM) < —log (1 - ﬁ}) < %
By (2.12) in [6] it holds
(5.11)

1 max [1 — % Var (@}, O3")] < eseN, < nmax [1 — 3 Var (0}, 07")] .
2n ik itk

The left-hand part of this inequality and (5.10) yield

1 ¢ log2n
— —log e5,yN, + —.
N, - @ 2 N,

IIA

By (5.6) there exists n, such that for n > n,, (log2n)/N, < &/2 and, consequently,
esmN, converges to zero exponentially Q.E.D. The second statement of Th. 5.1.
easily follows from the following fact proved in § 8 of [1]: If (5.6)—{5.8) hold, then
it holds for every i, k

. 1
limy | — Nlog [1 — 3 Vvar (@Y, O] + log A(Q;, Q)= 0.
Analogously as Th. 3.3, the following theorem can be proved.
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Theorem 5.2. If 3(n) is homogeneous with a parameter B,, then for A, in (5.3) or
A in (5.4) the following inequalities hold

(5.12) A= B,, Az=liminf,p,.

The inequalities take place iff for all P{(.|0)€ &(n) and i + k it holds either
P10 = PP | 0) or P(. | 05) L PP(. | 6)-
The applicability of this theorem can be illustrated by the following

Example 5.1. Let &(n) = &, 6(n) = 6 be defined as in Example 3.2 for n =
=1,2,... Then §(n) is homogeneous with B, = (n — 2)[n and, by (5.12), 1 = 1.
Hence, by Th. 5.1 &5, N, does not converge to zero exponentially (cf. (4.18)).

6. CODING MODEL WITH INCREASING

Throughout this section we shall consider a model of search g'ven by (Q, &(n), 5(n),
N,). Here & (n) is described by aclass {f™, 1 = 1,2, ..., m}, f: @ > A4 = {0, 1, ...
..., a -- 1} (i.e. A does not depend on n), and by a stochastic matrix decfined either
by (4.3) (model with additive noise) or by (4.8) (general coding model), which is also
supposed to be independent of n. In other words,

(6.1) P{s|6) = p,;  where r=f{"(6) (sce(4.9))

holds for every P{"(.|0) e &(n). The strategy (n) is supposed to be random,
d(n) = p(n) and N, is a non-decreasing with I'm, N, = +oo. Under these, assump-
tions the following variant of Th. 1 obviously holds:

Theorem 6.1. Let us consider a model with an additive noise (Q,&(n) =
={f",1=1,2,...,m,}, p). If 3(n) is homogeneous with a parameter B,, then
defined in (5.3) satisfies the relation

(6.2) =B, + (1= B) [2 \/(P_(al: ]p)) N pia_—f)]'

This theorem combined with (5.9) enables us usually to find out an asymptotic
expression for e,y N,,.

n

Example 6.1. Let Q, &(n) = &, 6(n) = § be the same as in Example 4.1, n =
= 1,2, ... Since &(n) is homogeneous with B, = 1/2, (6.2) and (5.4) imply

(6.3) A=3H1+2/(p(1 - p)].

Thus, by (5.9) for all sufficiently fast increasing N, the following asymptotic formula
holds:

(6.4) CanyNy = 27 ML —los(1 424 =) +o(D]
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Let us now consider the general model (2, {f™, 1=1,2, ..., m,}, 2, §(n)). In view
of the correspondence between the random strategies and the random codes discussed
in Sec. 4, one of the problems of Sec. 5, namely, for which N, relation (5.1) holds, can
be considered as a generalization of Shannon’s problem on random coding at the
input of a memoryless channel (4, 2, B). The generalization consists in the fact in our
case the structure of the class {f, I = 1,2, ..., m,} must be respected (see the con-
dition (4.7)). In the special case when m, = a" (i.e. when {f™, I = 1,2, ..., m,} con-
tains all mappings Q — A) both the problems are identical. In this case a theorem of
Shannon asserts that for an appropriately chosen u(n) there exists a constant
C(2) > 0 such that (5.1) holds or not depending on whether

(6.5) lim inf, 21 > ()~
logn

or

(6.6) lim sup, N Cc(#)~*
log n

respectively.

To compare this result with what was said above let us consider a simple model
with an additive noise where a = 2, p(n) = (27%,27",...,27") and (4.10) holds.
As it is shown for example in Chap. 9 of [8], in this case the above stated result holds
with C(#) = 1 — H(p), where H(p) = —plogp — (1 — p)log (1 — p). If

6.7 lim Na =R,
( ) n
logn

then at the same place formulas for oc(R), Re (0, + oo) can be found such that
(6.8) esmyNn = 2~ Nala(R)+o(1)] |

«(R) is a non-decreasing function of the parameter R called a rate of transmission in
the information theory. If R > C(), then «(R) = 0. Let us notice that it follows from
(6.4) (relation (6.4) has been proved under the assumption (5.6), i.e. for R = 0) that

(6.9) «(0) =1 —log [1 + 2. /(p( — p))]-

In the noiseless case (see Example 4.1) we obtain from (4.17) for N = N, satisfying
(6.7) that a necessary and sufficient condition for (5.1) is that R < 1. This is in ac-
cordance with what was said above, because in the noiseless case C(#) = 1.

Remark at this place that our asymptotic formula (5.9), analogous to (6.8), has
been derived under the condition of zero transmission rate. This is obviously a very
strong condition and the case R = 0is not very interesting for the information theory
itself. But in the theory of search, in view of various restrictions concerning the class
&, there exist situations where (5.1) can be satisfied only under the zero transmission
rate condition. This is illustrated by the following
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Example 6.2. Let (@, &(n), 5(n)) be the same as in Example 5.1. According to

(4.18),
Nn 1 n
l<1 - 1—> = emNn = <] - —‘>
2 n n

holds for N = N,. Hence (5.1) holds iff

(6.10) fim, ¥ = 4oo .
h

Hence if R > 0, (5.1) does not hold.
In the following theorem Lemma 4.2 and Th. 4.2 are applied to the coding model
with increasing Q.

Theorem 6.2. Let (Q,8(n) = {f™,1=1,2....,m,}) be an arbitrary coding
noiseless model and let 5(n) = p(n) be homogeneous with a parameter p,. If

(6.11) lim, (N,, logé— — log n) = 4+,

n

then (5.1) holds. If A = {0, 1}, p(n) = (m; ", m; ', ..., m; "), and

6.12 lim, { N, log ~1— —logn) =g,
B
then
6.13 exp (—o) — texp (—2¢) = lim inf, e;,)N, <
(n)

< lim sup, es;,yN, < exp (—0).

7. CONCLUDING REMARKS

a) Let N, satisfy (6.7) and let us consider the noiseless model (2, &(n)) with
A = {0, 1}. As it has been said above, for R > 1, (5.1) cannot be satisficd by any
random strategy, 6(n) = p(n) = (m,; ', m;*, ..., m;*). The question is what is the
maximum R, say R, = R,(&(n)) for which (5.1) holds or, more precisely, under
which conditions such R, € [0, 1] exists. For example, if m, = 27, i.e. if £(n) contains
all mappings Q — {0, 1}, then R, = 1. If &(n) is such that §(n) is hcmogeneous w'th
parameters f,y,< B, then R, = —log 8. The R, is an analogy of the capacity
C(2) in the noisy case.

b) As it has been shown in Sec. 6, if &(n) = {f(",1=1,2,...,m,} is ample
enough, the random search gives asymptotically the same probability of error as the
“best possible” systematic (sequential) search. In particular, it follows frcm (6.13) that
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if B, ~ 1/2,log n + @ random experiments in question make it possible to determine
6 with the probability 1 — exp (—¢) while the best systematic strategy requires at least
log n experiments. It can be seen that for relatively small values of g the probability of
error < exp (—g) is satisfactorily small.

¢) Two basic concepts of the paper, namely, the separability of Q by & and the
homogeneity of random strategies have been used for the first time, in a some-
what different form and in the framework of the coding noiseless model, by A. Rényi
[2]. Their generalization given in the present paper seems to be fruitful.

d) Theorems 3.2, 3.3, 4.1, 5.1, 5.2 and 6.1 have been first stated (without proofs) in
[1]. Lemma 4.2 and 4.3 are due to A Rényi [2] (Th. 6.2 is also a modification of
a result in [2]). The remainder is new.
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Souhrn
DISKRETNI TEORIE VYHLEDAVANI II
IGOR VAIDA

Prvni ¢ast této prace byla uvefejnéna v predchozim &isle Aplikaci matematiky. Tam
byla hlavni pozornost vénovana formulacim zakladnich modelt a studiu strategii,
jejichZ optimalnost je méfena stiednim poétem pozorovani, nutnych k bezchybnému
vyhledani hodnoty neznamého parametru 6. Zde se studuji vlastnosti strategi,
jejichz optimalnost se posuzuje podle asymptotického chovani bayesovské chyby.

Mg&jme m jednoparametrickych populaci vybérovych rozloZeni & = {P,(. i 0),...
e Pof l 0)}. Piedpoklada se, Ze pfi strategii 6 = (dy, d,, ...) je poslouponst pozo-
rovani &, d,, ... rozloZena podle P, (. 10) ® P, (. |0) ® ... Kvalita strategii se
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posuzuje podle chovani primérné chyby e;N Bayesova estimatoru 9(51, v Oy &gy et
s fN) pii N — 0.

V kap’tole 3 je dokazano, Ze pro zadnou ¢ nemiiZe e;N konvergovat k nule rychleji
nez exponencialné a Ze exponencialni rychlosti se dosahuje pfi ndhodnych strategiich.
Pro ndhodné strategie j= odvozen vzorec (3.9) pro vypolet parametru A(&, §) expo-
nencialni konvergznce. Dale je tam vy¢lenéna tfida homogennich strategii, pro které
se velmi snadno odhadne anebo vypolte l(é’, 5). V kapitole 5 jsou tyto vysledky zo-
bzcnény na ptipad, kdy N = N, roste v zavislosti na poctu hodnot n parametru 6.

V kap'tole 4 jz d:finovan kédovaci model teorie vyhledavani, kde P(. IB) es
maji jistou spzcialni strukturu. Zde se za jistych podminek statistické ulohy nalézt
optimalni nahodnou strategii, resp. nahodnou strategii, pti kterych N, roste, za pod-
minky e;N, — 0, co nejpomaleji do nekoneéna, redukuji na Shannonovy ulohy
o optimainim kddovani, resp. o pfenesitelnosti informaénich zdroji kanaly. Jsou
také nalezeny j:dnoduché vzorce pro l(ﬁ, (5) pfislu§né homogennim néhodnym
strategiim ((4.11), (6.2)). Ve (4.25), (4.26), (6.13) jsou upiesnény asymptotické vyrazy
pro e;N za ptzdpokladu, Z2 6 vyhovuje silngj$i podmince homogenity. V ramci ko-
dovaciho modelu se rovnéz ukazujs, Ze kvalita ndhodnych strategii mize byt asymp-
toticky b'izka anebo dokonce identickd kvalité nejlepsich systematickych strategii.

Author’s address: Igor Vajda, CSc., Ustav teorie informace a automatisace CSAV, Vyse-
hradska 49, Praha 2.
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