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METALLIZED PRINTED MICROSTRUCTURES FOR PRECISION 

BIOMEDICAL RECORDING AND STIMULATION 

JEREMY ROBERT GLEICK 

ABSTRACT 

Implantable electrodes are the central tool for many techniques and 

treatments in biomedical research and medicine. There is a trend in these tools 

towards arrays of tissue-penetrating microelectrodes with low geometric surface 

areas for purposes of both increasing the specificity of recording/stimulation and 

reducing tissue damage due to insertion trauma and reactive immune responses. 

However, smaller electrode sizes present new constraints – both difficulty in 

fabrication as well as significant limitations on effective charge storage/injection 

capacities as well as higher impedances, making smaller electrodes less capable 

of easily passing charge safely and efficiently. 

Fabricating structures on the scale of tens of microns and below poses 

significant challenges compared to well established machining at larger sizes.  

Established sets of techniques such as classic MEMS processes are limited to 

relatively specific shapes, with significant limitations in their ability to produce 

curved surfaces and surfaces which are not composed of highly distinct stepped 

layers.   

We developed a method for improvement of impedance and charge 

storage capacity of flat electrodes without affecting geometric surface area 

(footprint) using Resonant Direct Laser Writing (rDLW) 3D printing to fabricate 
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high surface area 3D structures, which were then rendered conductive. 

The ability to perform DLW printing at a range of laser powers on opaque 

reflective surfaces is demonstrated, previously a known limitation of direct laser 

writing.  This is demonstrated through a variety of example prints.  This capability 

opens the door to many new possibilities in micron resolution polymer printing 

which were previously inaccessible, with potentially far reaching ramifications for 

microfabrication. 
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1 Background 

1.1 Electrodes in Medicine 

Modern stimulating electrodes are used in an enormous variety of 

applications in modern medicine, in both recording and stimulating capacities (Li 

and Mogul 2007; Amon and Alesch 2017; Clark 2006; Brownlee 1992; Rijkhoff et 

al. 1994).  Many parts of the body produce a measurable electrical signal such as 

the brain and spinal cord, peripheral nerves, heart tissue, and muscles, and 

many more present electrically measurable properties such as the electrodermal 

response of the skin, or skin conductance (Lykken and Venables 1971; Mirvis 

and Goldberger 2001; Frank and Fuortes 1955).  Modulation of the body through 

electrical currents is similarly common in medicine, either directly through 

application of an electrode as in the case of nerve stimulation by a modern 

prosthesis or indirectly through use of magnetic fields such as during transcranial 

magnetic stimulation (Hallett 2000; Veraart et al. 2003; Gandiga et al. 2006). 

 An electrode is any component intended to bridge the gap between a 

fabricated, generally metal circuit and a nonmetal component such as biological 

tissue.  While the contact surfaces of an electrode may be composed of metal, 

many other conductive materials are commonly used including conductive 

polymers or sponges soaked with conductive liquid (Cogan 2008; Green et al. 

2008; Geddes and Roeder 2003).  Commonly used electrodes may be as large 

as several inches across, as in the case of defibrillator or ECG equipment 

(Dalzell et al. 1989).  When dealing with electrodes applied to the body larger is 
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often better: a high amount of charge applied over a small area can cause 

electrical burns, where the same charge distributed over a large area will not 

(Pearce et al. 1983). 

 Implantable electrodes bring this requirement to a new degree of 

importance.  As invasive devices, implantable electrodes are necessarily very 

small to minimize damage during implantation procedures (Salatino et al. 2017; 

Biran et al. 2005).  However, these small electrode sizes present new 

challenges.  For recording electrodes, smaller devices have a harder time picking 

up signal over noise due to the thermal noise introduced by the impedance of the 

electrical interface (Lempka et al. 2006).  In the case of stimulating electrodes, 

the delivery of sufficient charge to depolarize targeted tissues without damage 

becomes difficult at smaller sizes.  Studies on variation in size (Harris et al. 2018) 

and shape (Cogan et al. 2014) show that smaller electrodes require a higher 

charge density to achieve the same level of stimulation, requiring increases in 

voltage that introduce risks of tissue and electrode damage from hydrolysis 

(Cogan et al. 2005).  This is due to reduction in size reducing the total charge 

available: excitable tissue requires a sufficiently high total charge to produce a 

response, and under certain stimulation patterns this is difficult to achieve with 

small electrodes at low voltages (Merrill et al. 2005). 

 Given this limitation, there is a fairly narrow band of usability in major 

therapeutic stimulating devices wherein a device is large enough to reliably 

deliver the required stimulation while avoiding tissue damage on chronic use  
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timescales.  Commonly used medical implants in humans including Cochlear 

Implants (Clark 2006), Pacemakers (Brownlee 1992), Deep Brain Stimulation 

implants (Amon and Alesch 2017), and peripheral nerve implants for bladder 

control (Rijkhoff et al. 1994) all often have electrode contacts on the order of 0.5–

3 mm in diameter (Figure 1).  Electrodes used for stimulation in research 

however may be much smaller, with microwire electrodes as an example 

presenting contact diameters which can be 30 µm or less (Mushahwar et al. 

2000). 

Recording devices such as electrocorticography (ECoG) electrodes, 

placed beneath the skull and dura but remaining on the surface of the brain, 

often have similar millimeter-range diameters though they may feature as many 

as 250 independent contact sites (Pistohl et al. 2008; Rubehn et al. 2009).  

Recording electrodes planted into the brain itself are more commonly found in 

the context of laboratory research than in clinical use such as the use of the Utah 

 

Figure 1 Scanning Electron Microscope figures of a) Medtronic quadripolar model 
3387 (Medtronic Inc.) Deep Brain Stimulator lead, scale bar 2mm (Moss et al. 2004) 
and b) Individual electrode from Nucleus 24 cochlear electrode array, scale bar 100 
µm (Nadol et al. 2014). 
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Array for experimental neuroprosthetics, which features 100 shanks with 

electrode tips with a 36 µm diameter, narrowing towards a point (Brumberg et al. 

2010).  Other recording electrodes used in research contexts such as carbon 

fiber microwire electrodes may even have diameters as small as 9 µm (Patel et 

al. 2015).  However, the challenges of reducing size while maintaining safety and 

efficacy have long made difficult the translation of this research into use as major 

medical devices. 

1.2 Properties of Electrodes 

Recording of neuronal activity is performed through electrode contacts by 

identifying extracellular potentials generated by the activity of single or 

ensembles of neurons or other electrically active tissue.  The primary measure of 

effectiveness in recording is impedance, which indicates how much of a signal 

can be picked up and passed through the electrode (Cogan 2008).  Electrical 

stimulation of tissue occurs when cell membranes are depolarized by the 

application of voltage to produce current flow between electrodes.  In excitable 

tissue this depolarization can induce a functional response such as neuronal 

action potentials.  The amount of charge that an electrode is capable of 

delivering safely is termed its Charge Storage Capacity (CSC) (Elgrishi et al. 

2017). 

Impedance is a fundamental property of alternating current electrical 

circuits, the analogue of resistance in a DC circuit, which indicates the resistance 

to a current for a given voltage.  This is measured through application of either a 
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sinusoidal voltage or current and measurement of the other property, the two of 

which can then be compared to calculate the impedance.  Impedance of a given 

system will have different values for different frequencies, and while a range of 

frequencies is often measured, specific values are usually reported at 1 kHz for 

standard comparisons between devices (Cogan 2008).  When membrane 

potentials change during cellular activity the resulting flow of ions results in 

polarization or depolarization of nearby electrode surfaces which is detectable as 

a current or voltage change.  A primary challenge to the effectiveness of this 

recording in picking up signals over thermal noise caused by high electrode 

impedance (Lempka et al. 2006).  As such, reducing impedance is a driving 

requirement in the design of better recording electrodes.  Impedance is highly 

dependent on material choice, as different materials are more or less resistive to 

current flow (Geddes and Roeder 2003).  Because changes in potential are 

detected through current shifts across the electrode surface, impedance is also 

heavily dependent on the surface area of the electrode (Cogan et al. 2014; 

Geddes and Roeder 2003). 

Charge Storage Capacity (CSC) is a measurement of charge that can be 

delivered by an electrode for a given set of parameters including voltage range 

and sweep rate.  In implantable electrodes, the most important of these 

parameters is the “water window”, a voltage range typically taken as -0.6 V to 0.8 

V (Cogan 2008; Beebe and Rose 1988).  At voltages outside of this safe 

stimulation threshold, water hydrolysis begins to occur, breaking water down into 
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hydrogen and oxygen gas, an event which can cause damage to both the tissue 

and the electrode (Beebe and Rose 1988).  As the voltage is adjusted back and 

forth between these two voltage limits at a selected speed, current is measured.  

Using the known sweep speed to convert voltage information to time, the area 

within the CV curve reveals the amount of charge that can be safely delivered by 

the electrode to the tissue in one cycle.  Values are generally reported as 

cathodal CSC by taking only the negative component of current flow, though both 

the cathode and anode phase of a voltage sweep can be measured.  As a higher 

surface area will result in a larger surface for current to flow across, area is highly 

correlated with CSC (Cogan et al. 2014).  Charge transfer is also highly 

dependent on material, as different materials provide entirely different 

mechanisms of charge transfer or combinations thereof (Cogan 2008; Geddes 

and Roeder 2003). 

 When charge is delivered across an electrode, stimulation of tissue occurs 

via two main mechanisms: Capacitive and faradaic charge transfer (Figure 2).  In 

capacitive charge transfer, the applied current results in the formation of a 

charged double layer at the surface of the electrode.  As charged ions are moved 

from their positions in the tissue towards the electrode and vice versa 

polarization of the tissue is produced.  Faradaic charge transfer occurs when 

oxidation-reduction reactions occur at the electrode surface, producing strong 

stimulation but generating new chemical species such as soluble metal 

complexes that may result in electrode degradation and potentially damaging pH 
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changes if charge waveforms are not balanced appropriately (Robblee et al. 

1983; Merrill et al. 2005).  While capacitive charge transfer is generally possible 

in any conductive material, faradaic charge transfer in implantable electrodes is 

limited in safe use to materials capable of undergoing a reversible oxidation-

reduction reaction without producing dangerous byproducts.  Capacitive transfer 

is often desirable as it does not produce any new chemical species as a result of 

electron transfers, however when faradaic methods are present as well a higher 

stimulating capacity may be possible (Weiland et al. 2002). 

 

Figure 2 Illustration of capacitive and faradaic charge transfer mechanisms. 
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Both of these properties change as function of surface area, however 

there are two different definitions of surface area applicable to electrodes.  

Geometric surface area (GSA), also called footprint, is the area calculated 

assuming the electrode is entirely flat and smooth with no raised surfaces or 

roughness increasing its surface area.  Real surface area (RSA) is the total 

surface area of the electrode taking into account things such as roughness or 

raised conductive structures on the electrode surface, and is usually more 

representative of actual impedance and charge storage capacity.  If an electrode 

were flat and perfectly smooth, the GSA and RSA would be identical.  If an 

electrode surface is rough with many hills and valleys it will have a higher RSA 

than GSA. 

 Electrode shape also has many effects on electrode efficacy (Cogan et al. 

2014; Joye et al. 2009).  This is visible most directly from the fact that a shape 

with a larger amount of surface area generally provides more current flow for a 

given voltage, reducing impedance and increasing CSC (Cogan 2008).  However 

specific shapes may present advantages or disadvantages as well.  Pore 

resistance may occur when there are narrow spaces in an electrode’s structure 

that have extensive contact with the electrode, but minimal contact with the 

tissue.  These pores reach a charge equilibrium with the electrode more rapidly 

than the rate at which charge passes between the pore and the tissue, reducing 

electrical connection between the tissue and surfaces within the pore (Posey 

1966). 
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 Penetrating electrodes are also commonly used, offering closer 

connections to targeted cells.  This can allow for significant improvements in 

recording and stimulating ability as the distance between electrode and target 

may be greatly reduced.  Applied to central nervous stimulation, penetrating 

electrodes can reach deeper neurons and allow for direct recording of otherwise 

inaccessible of the brain (Jones et al. 1992).  Applied to peripheral nervous 

stimulation, penetrating electrodes can pass through the epineurium surrounding 

ganglia and axon fibers, allowing for recording and stimulation with significantly 

reduced noise and increased charge delivery (Micera and Navarro 2009). 

 Any electrodes which are implanted directly into tissue such as the brain 

will result in an immune tissue response which can pose a serious problem for 

long term use.  Furthermore, this glial response may itself permanently modulate 

local neural signaling to reduce activity (Salatino et al. 2017; Polikov et al. 2005).  

This cascade continues through further stages and soon results in encapsulation 

of the implanted array in a “glial scar,” leading to failure of chronic electrodes as 

they become heavily insulated from the tissue they seek to record.  Because this 

process severely reduces electrodes’ ability to both stimulate and record signals, 

the immune response places severe limitations on longitudinal studies (Biran et 

al. 2005).  Smaller electrodes produce a smaller immune response (Szarowski et 

al. 2003), and research suggests that implants smaller than 10 µm in diameter 

reduce the immune response to low enough levels to offer the possibility of 

chronic recordings (Vitale et al. 2015). 
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1.3 Current Electrode Architecture 

A large variety of different electrode designs are used in biomedical 

research and medicine.  While many of the same needs and modifications are 

shared between different applications, fabrication methods can vary significantly.  

Some properties of these different architectures are listed in Table 1.  

 The Utah Array by Blackrock Microsystems (Figure 3) is a widely used 

example of a modern implantable electrode array (Maynard et al. 1997).  The 

array is used for direct implantation into nervous tissue in the central or  

Table 1: Properties of Electrode Systems 
Electrode 
System Material Number of 

Electrodes 
Geometric Surface 
Area per electrode 

Penetrating 
Depth 

Utah Array Pt / IrOx 100-128 ~4000 µm2 (Straka 
et al. 2018) 0.5-1.5 mm 

NeuroPixel Probe Titanium 
Nitride 900 144 µm2 (Jun et al. 

2017) Up to 10 mm 

Deep Brain 
Stimulation Platinum 4 ~12 mm2 (Butson et 

al. 2005) 
Direct implant to 
Hippocampus 

ECoG (AC EEG-
System from IT-
Med, Germany) 

Stainless 
Steel 48-64 ~12 mm2 (Pistohl et 

al. 2008) Surface 

Custom ECoG 
(Rubehn et al. 
2009) 

Platinum 252 ~3.1 mm2  Surface 

Carbon Nanotube 
Probes (Yoon et 
al. 2013) 

Carbon 
Nanotube 1 ~15 µm2  0.1-1 mm 

Microwire 
Electrodes 
(Mushahwar et al. 
2000) 

Stainless 
Steel 6-12 ~5600-13000 µm2  3.5-4.5 mm 
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peripheral nervous system for long term recording in animal as well as human 

studies.  The standard Utah Array is composed of a set of 100 electrically 

separate silicon shanks in a 10x10 grid, machined through use of a dicing saw 

and chemical etching process.  The tips of the array are then coated with a 

conductive layer generally of platinum followed by Iridium Oxide, and then the 

entire array aside from the shank tips are coated in insulating Parylene-C 

(Blackrock Microsystems 2016).  At the conductive tip, the shank diameter of the 

Utah Array narrows from 36 µm down towards a point, making the shanks easily 

large enough to cause glial scarring and severely limit chronic use.  A Utah Array 

coated with a layer of Iridium Oxide to facilitate faradaic charge transfer shows 

impedance at 1 kHz in the range of 5 to 10 kOhm and charge storage capacities 

of 0.9 to 2.5 mC/cm2 (Negi et al. 2010).  The Utah Array is fabricated through 

use of a dicing saw and chemical etching process, which does not allow for batch 

 
Figure 3 Utah Electrode Array showing 100 shanks with 400 µm spacing, scale bar 2 
mm (Kim et al. 2006). 
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fabrication resulting in greater variation between units and higher costs (Jones et 

al. 1992; Bhansali and Vasudev, 2012).   

Other common silicon multi-electrode arrays such as Michigan Arrays and 

the NeuroPixels Probe (Figure 4) are designed to include multiple electrode 

contacts placed along the length of each shank to record across multiple depths 

(Wise et al. 1970; Jun et al. 2017).  Fabrication of these arrays requires a lengthy 

lithography process involving 5–10 stages each requiring a µm-precision mask, a 

process that is very expensive and time consuming though does allow for batch 

fabrication (Bhandari et al. 2010).  The NeuroPixels Probe is a recent 

development featuring 900 separate electrode contacts designed for recording, 

each 12 µm x 12 µm, along the length of a 10 mm shaft (Jun et al. 2017).  The 

shank cross-section of the NeuroPixels probe are 20 µm x 70 µm, and 

consequently the foreign body response problem remains a barrier to their 

chronic use.  The very large number of the NeuroPixels probe’s electrodes allows 

for very precise localization of signals, and for simultaneous recording of a very 

large number of neurons.  However, the very small size of these electrodes 

results in a higher impedance of 149 kOhm, presenting greater thermal noise 

problems than a larger contact might (Jun et al. 2017; Lempka et al. 2006).  The 

NeuroPixels probe was not designed for stimulation, with the small electrode size 

a likely barrier to achieving high enough charge stimulation capacity for safe 

stimulation. 

Many electrodes are fabricated as flat surfaces to be laid down directly  
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onto a tissue surface.  Larger electrodes used for purposes such as ECG or EEG 

may be fabricated through a variety of methods, as the design constraints are 

much less restricted than for implantable devices.  When a flat microelectrode is 

fabricated, it is generally produced as a thin film  laid down through some surface 

deposition method such as thermal evaporation, sputtering, or chemical vapor 

deposition (Rubehn et al. 2009).  These fabrication processes generally include 

multiple steps with masking and deposition stages to produce electrodes in a 

desired arrangement (Liu 2012).  Small sets of flat microelectrodes are implanted 

for peripheral nerve recording and stimulation, often fabricated in flexible polymer 

frameworks for biocompatibility and to avoid reactions due to interactions 

 
Figure 4 a) A Michigan Array shank, scale bar 32.2 µm (Kipke et al. 2003).  b) 
closeup image of Neuropixels Probe shank, showing tip and recording sites, scale 
bar 50 µm (Jun et al. 2017).  c) Illustration of Neuropixels Probe showing site density 
(Jun et al. 2017). 
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between stiff implants and biological tissue (Lissandrello et al. 2017).  

Electrocorticography arrays (Figure 5) are sets of flat electrodes which are laid 

down on the surface of the cortex below the dura, commonly used for recording 

when high precision is needed in serious medical circumstances such as 

identifying source regions of epilepsy.  Large numbers of electrodes connected in 

a flexible grid can be used to cover large areas of the brain, with electrode areas 

often on the order of 1–3 mm in clinical settings (Pistohl et al. 2008; Rubehn et 

al. 2009).  These tools are generally limited to surface recording of larger signals 

such as local field potentials as opposed to the single units that may be detected 

by implantable arrays. 

 
Electrodes in the form of microwires, insulated down their length except 

for the tip, are also used for neural recording and stimulation (Figure 6).  These 

wires often have extremely small surface area, resulting in very high impedances  

 
 

Figure 5 Implanted ECoG array (circular metal electrodes) used for epilepsy source 
detection (Kellis et al. 2009). 
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and low charge storage.  However, as they likewise can have an extremely small 

diameter, these wires are capable of minimizing the foreign body response of 

tissue.  The introduction of carbon fiber and carbon nanotube fiber electrodes 

allows for electrode wires smaller than the 10 µm threshold needed to reduce 

tissue damage and immune response to levels that may allow chronic use (Yoon 

et al. 2013; Vitale et al. 2015).  However, 5–10 µm diameter fibers made from 

entangled carbon nanotubes also show an impedance of over 10 MOhm, the 

high value due primarily to the probe’s very small surface area (Yoon et al. 

2013).  These carbon nanotube probes were individually fabricated by drawing a 

 
Figure 6 Carbon Nanotube (CNT) Fiber probe (Yoon et al. 2013).  a) Low 
magnification view of full probe, scale bar 500 µm.  Probe 1.5 mm in length.  b) Tip of 
probe tapering to single carbon nanotube.  scale bar 1 µm.  c) Sharpened CNT probe 
tip, scale bar 1 µm. 
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probe slowly out of a liquid solution of suspended carbon nanotubes.  This 

fabrication process and that of other carbon fiber electrodes is very difficult and 

costly, preventing their regular use (Guitchounts et al. 2013).  Larger microwire 

electrodes have been used as well, which may have a diameter closer to 30 µm 

or as high as 100 or 200 µm.  This loses much of the benefit of reduced immune 

response seen at sizes below 10 µm, however it can offer lower impedances in 

the range of 10–30 kOhm (Mushahwar et al. 2000). 

1.4 Limitations of Electrode Architecture 

Because a physically smaller electrode will cause less trauma during 

insertion (Polikov et al. 2005) and reduction of chronic foreign body response 

(Gällentoft et al. 2015; Salatino et al. 2017), there has long been a push for 

miniaturization.  Further motivating this trend, smaller electrode geometries can 

allow for more densely packed arrays with a larger number of distinct active sites 

and provide higher specificity in targeting an area for stimulation through their 

smaller points of contact (Sekirnjak et al. 2008).  However because 

miniaturization decreases the available surface area through which current and 

therefore charge can flow, impedance increases and the voltage necessary to 

achieve the same amount of stimulation increases as well.  As a result, this 

miniaturization presents barriers to overcoming thermal noise in recording and to 

achieving sufficient charge injection for stimulation without inducing tissue and 

electrode damage (Cogan 2008). 

 Another significant barrier to miniaturization is fabrication requirements.  
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The fabrication of extremely small devices presents new challenges, with 

micrometer electrical designs often requiring high quality clean rooms which 

present extremely high manufacturing and packaging costs (Liu 2012).  Other 

methods which have less extreme infrastructure requirements such as the dicing 

saw approach used in the Utah Array fabrication process present reproducibility 

challenges and make batch fabrication difficult, retaining high costs in other 

areas (Bhandari et al. 2010). 

 While most electrodes are fabricated as either flat surfaces or straight 

shanks, this is to some extent a result of challenges in fabrication rather than for 

minimization of impedance (Jones et al. 1992).  Classic thin film lithography 

processes used for Microelectromechanical Systems (MEMS) devices which are 

in common practice for batch fabrication of flat electrodes are only capable of 

producing slopes or rounded forms under certain specific conditions of direction 

and material, and require very large numbers of steps to perform, increasing cost 

and fabrication time (Liu 2012).  As this space has been constrained by these 

fabrication limits, there may be suitable electrode shapes that offer a higher RSA 

and consequently improved impedance and CSC when compared to a flat or 

pointed electrode of equivalent GSA, but which are not manufactured due to 

difficulty and cost. 

1.5 Surface Modification Techniques 

To address the limitations of electrode architecture, techniques have been 

developed which can be applied after fabrication to attempt to improve recording 
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quality, overcome disadvantages of miniaturization, or directly address other 

challenges to electrode use. 

One set of such techniques is directed towards improving impedance and 

CSC by the addition of a final modification step.  One most widely used 

technique is to add a thin layer of faradaic charge-injection material onto an 

electrode to improve charge transfer.  Materials such as Iridium Oxide and 

Platinum Iridium alloys are capable of efficient faradaic charge transfer, and will 

commonly be added as a final coating to an electrode fabricated with a primarily 

capacitive base material such as gold (Cogan 2008; Deku et al. 2018; Weiland et 

al. 2002).  IrOx and PtIr layers are often deposited as a final coating, as are 

conductive polymers such as PEDOT:PSS.  This is especially effective at 

improving CSC, though the introduction of faradaic charge transfer does 

introduce the risk of irreversible redox events if large charges are delivered too 

rapidly which can degrade electrodes as soluble compounds are produced.  

Adding a coating stage to electrode fabrication introduces its own challenges as 

well, as coating stability may be less robust than the underlying electrode, 

introducing new risks of the surface cracking and flaking over time (Cogan et al. 

2004; Negi et al. 2010).  As these layers are general tens or hundreds of 

nanometers thick, they do not contribute significantly to electrode size.  These 

methods are capable of improving CSC of electrodes as much as 1.5x to 10x 

original values, depending on the base electrode material and coating 

parameters such as thickness and deposition method (Deku et al. 2018; Cogan 
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2008; Pranti et al. 2017; Robblee 1983) 

 Surface roughening methods are sometimes used to increase the RSA of 

a conductive surface without affecting its GSA, reducing impedance and 

increasing charge storage capacity.  These high roughness surfaces may be 

produced directly due to the nature of a fabrication method, as in the case of high 

roughness Titanium Nitride sputtered electrodes (Weiland et al. 2002), or through 

a standalone process, such as electrochemical surface roughening (Arroyo-

Currás et al. 2017).  Though at times these surface area increases are difficult to 

quantify precisely, Arroyo-Currás et al. report as high as a 2-fold increase in RSA 

with their electrochemical roughening technique, and show a subsequent 

improvement in charge storage capacity.  However, these roughening techniques 

present their own limitations.  When applied to thin film electrodes, roughening 

runs the risk of exposing underlying surfaces of the substrate which will not have 

the desired conductivity, and may present other biocompatibility problems or 

electrode longevity problems.  Additionally, as increases in roughness create 

steeper and narrower surfaces, pore resistance begins to result in diminishing 

improvements as the sections of the electrode that are located within narrow 

deep openings no longer effectively contact the tissue (Arroyo-Currás et al. 2017; 

Posey et al. 1966). 

While a twofold increase is significant, the charge injection needs 

presented by extremely small electrodes require a greater than twofold 

improvement, making this not a complete solution to the miniaturization 
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challenge.  Changes in the larger electrode design present a possible area for 

further investigation: Simulation of three-dimensional electrodes and penetrating 

electrodes have shown that the reduction in distance to the targeted cell can 

result in a reduction in impedance (Joye et al. 2009; Heuschkel 2001).  The 

fabrication of electrodes as three-dimensional structures optimized for surface 

area on the micron resolution scale could provide an entirely new scale in which 

to make RSA-increasing designs, smaller than electrode dimensions but larger 

than surface roughening.  This approach would also be possible to perform in 

parallel with methods such as surface roughening and IrOx coating, to result in 

further improved impedance and CSC and therefore potential for smaller, readily 

fabricated microelectrodes.  
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2 Materials and Methods 

2.1 Objectives 

The goal of this work was to develop a method to improve the impedance 

and charge storage capacity of a given electrode without changing its footprint.  

Impedance and CSC were measured through electrochemical impedance 

spectroscopy (EIS) and cyclic voltammetry (CV) respectively.  As a prerequisite 

to any observable improvements, a process flow had to be developed and each 

of its steps tested for reliability and efficacy.  This led to additional requirements 

such as all or most prints surviving every step of the fabrication process from 

printing to final characterization, and laser etching capable of reliably removing 

gold thin films. 

Once the fabrication process could be demonstrated as successful, any 

consistent pattern of improvement observed for electrode pads from before to 

after the fabrication process could be considered a sign of success, measured as 

a statistically significant reduction of impedance and/or increase in CSC.  Further 

tests could then be pursued including tests of attachment strength, durability, 

biocompatibility and others. 

As an additional aim, the experiments performed pushed boundaries of 

established uses for Two Photon Direct Laser Writing (DLW) printing.  The DLW 

printer used presented different parameters from other DLW printers in common 

use, the full significance of which had not been fully explored.  As it became 

apparent that the rDLW system had a capability to print on reflective opaque 
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surfaces such as gold, something unfeasible with other DLW systems (Rekštytė 

et al. 2014; Žukauskas et al. 2013), investigation into this phenomenon became 

an additional priority. 

2.2 Tools and Techniques Used 

2.2.1 Process Flow 

To achieve an increase in RSA without significantly changing the GSA of 

an electrode, a process was designed to increase electrode surface area by 

vertically extending a thin-film flat electrode into a three-dimensional structure 

(Figure 7).  This was accomplished through a series of steps beginning with the 

use of a resonant scanning direct laser writing (rDLW) printer to fabricate acrylic 

polymer structures with high surface area or other desired geometries on the 

surface of a target electrode pad.  Once a high surface area structure was 

fabricated on the electrode surface, the structure was then metallized through a 

gold sputter deposition process, producing a conductive film across the full 

surface of the printed structure.  Lastly, a laser etching step using the same 

rDLW system without polymerizable medium was performed to remove unwanted 

sections of the gold thin film that were deposited in areas other than the desired 

electrodes during the unmasked sputter deposition process.  Electrodes were 

characterized through electrochemical impedance spectroscopy and cyclic 

voltammetry before and after this process was carried out, so that changes in 

individual electrodes could be evaluated.  Some electrodes were left without 
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prints but underwent the same sputtering and etching process to serve as a 

control. 

The electrodes used were fabricated on 100 mm Si (1 0 0) wafers, with 

deposited layers of polyimide (1 µm) and silicon carbide (2 µm).  The conductive 

layer of the electrodes was produced by sputtering deposition of titanium (30 

nm), gold (250 nm), followed by a second layer of titanium (30 nm), followed by 

another insulating 2 µm layer of silicon carbide.  The top layers of silicon carbide 

and titanium were then etched using SF6 plasma to expose the gold electrode 

surface (Deku et al. 2018). 

 
Figure 7 Illustration of four step process flow for electrode modification. 
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2.2.2 Resonant Direct Laser Writing 

 Fabrication of micron scale polymer structures with Direct Laser Writing 

lithography is well established field (Maruo et al. 1997; Kawata 2001; Cumpston 

et al. 1999; Selimis et al. 2015).  As these systems use computer aided design 

models, there are very few limitations on possible shapes which can be printed 

allowing for the rapid creation of complex geometries in a variety of 

polymerizable substrates (Atwater et al. 2011; Bückmann et al. 2012; Farsari and 

Chichkov 2009; Niesler and Tanguy 2015; Sun and Kawata 2004; Skylar-Scott et 

al. 2017).  The resolution of this method is sufficient to allow for the fabrication of 

optical lenses from transparent polymers, with print surface roughnesses of 30 

nm or below if using tailored equipment (Gissibl et al. 2016; Belazaras et al. 

2010). 

 DLW printing technology is based on two photon polymerization (2PP), 

where a tightly focused laser is pulsed at femtosecond speeds while being 

scanned through a polymerizable liquid.  The wavelength of the laser is selected 

to be twice the polymerization wavelength of the photopolymer, such that only at 

the laser’s focal point is the concentration of laser light high enough for 

simultaneous activation by multiple photons and therefore polymerization to 

occur.  As the laser is swept through the photopolymer through use of a 

galvanometric mirror often accompanied by the movement of a piezo-stage, 

these pulses produce voxels which can achieve features as small as 150 nm or 

lower in each dimension.  Restrictions in print geometry are minimal, with 
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overhangs or unattached objects presenting challenges of temporarily lacking 

attachment during printing, but these challenges can be easily addressed 

through classic 3D printing methods of introduction supports as needed. 

 For this project, a raster-scanning direct laser writing printer was used 

(Figure 8) (Pearre et al. 2018).  This system uses a resonant mirror scanning at 8 

kHz, bringing the printer’s speed up to 8000 mm/s, tens to thousands of times 

faster than other high-speed galvanometer based DLW printers (Obata et al. 

2013; Maruo and Ikuta 2000; Gottman et al. 2009; Farsari et al. 2006; Žukauskas 

2013). 

Visualization was achieved through light provided by a tunable Ti-

Sapphire laser.  The lens was submerged in the dip-in polymerizable photoresist 

used for printing, IP-Dip (Nanoscribe GmbH, Germany), which is highly 

 

Figure 8 Optical path schematic for rDLW printer (Pearre et al. 2018). 
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fluorescent when observed at laser power below the IP-Dip polymerization 

threshold allowing for visualization of the target surface and precise alignment of 

the prints.  Polymerization of the liquid IP-Dip photoresist for structure printing 

was performed using the same laser system (~120 fs pulse duration, 80 MHz 

repetition).  While the use of other photoresists was possible, IP-Dip was 

selected as it matched the index of refraction of the lens used as well as having a 

polymerization wavelength of 390 nm, half the wavelength of the laser used, 

allowing for two photon polymerization.  Pump laser power was held at 9 W, 

using a mode-locked output beam at 780 nm.  A Pockels cell and 3.33-MHz DAC 

were used for modulating beam intensity throughout the raster scan. 

 The extreme resolution and open-ended scope of possible print 

geometries offered by DLW gives it some advantages over existing 

microfabrication methods.  MEMS process flows make use of many-step 

sequences of layering, masking, and etching to produce structures of similar 

resolution, however this process is extremely time consuming and expensive, 

requiring a large array of high-end equipment, clean room conditions, and 

complexly designed process flows that are limited to certain combinations of 

geometries and materials.  It is usually impractical, for example, to fabricate 

curved surfaces using standard MEMS techniques as fabrication occurs in 

discrete layers, each of which may require several steps of process to shape 

through masking and etching processes (Liu 2012).  MEMS process flows do 

offer several advantages over DLW printing alone, first and foremost the 
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fabrication of a wide array of materials, including metals. However, the 

combination of DLW printing with MEMS metallization techniques such as sputter 

deposition or chemical vapor deposition may allow for the controlled fabrication 

of new structures with fewer steps and lower costs than by any existing methods. 

 One major limitation of traditional DLW printing is its inability to 

successfully perform prints on opaque reflective surfaces, including metals 

(Rekštytė et al. 2014; Žukauskas et al. 2013).  Most printing is performed on 

transparent substrates such as glass as direct printing onto opaque reflective 

surfaces leads to a destructive phenomenon which is theorized to be a result of 

dielectric breakdown caused by an increase in laser ionization due to the 

reflection off the surface (Malinauskas et al. 2010).  This breakdown will at best 

result in significant distortions of the desired shape, and at worst will cause highly 

disruptive ‘micro explosions’ due to reflection of the laser light from the substrate 

increasing power and heating across an area which can destroy large portions of 

the intended structure (Figure 9) (Rill 2008; Tanaka et al. 2006; Rekštytė et al. 

2014; Žukauskas et al. 2013).  In most cases, severe dielectric breakdown 

results in structures that are incapable of bonding to the substrate due to their 

degree of fragmentation, and cannot be imaged as they are washed off during 

development.   
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This limitation has been overcome through use of the rDLW printer, which 

is believed to be a result of its significantly increased scanning speed.  An 

increase in scanning speed results in a proportionally reduced amount of time for 

polymerization to occur.  However as two photon polymerization events depend 

on the square of excitation intensity (Benninger et al. 2013) a 100-fold increase in 

scanning speed only requires a 10-fold increase in laser power to produce the 

same polymerization.  As a result, the total amount of energy being delivered to 

the polymer liquid during each pass of the laser is significantly reduced in the 

rDLW system.   

Another proposed explanation for the reduced breakdown observed is that 

laser etching of the gold substrate is occurring during the print process, 

preventing breakdown by removing the reflective source at the point of printing.  

While this has not been directly tested at this time, this is inconsistent with later 

 
Figure 9 SEM images of structures displaying limited dielectric breakdown.  These 
structures suffered only very minor damage from the micro explosion effect, resulting 
in structures that survived development but with significant distortion.  These 
structures were printed with the rDLW system at depths intentionally placed partially 
below the substrate surface by 10 µm or more, causing focusing to occur into the 
reflective surface and ensuring excessive reflection and subsequent dielectric 
breakdown.  Both structures were printed on / below a substrate of 150 nm gold thin 
film sputtered on silicon.  a) Scale bar 100 µm.  b) Scale bar 20 µm. 
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observations of the printer’s inability to effectively etch gold thin films of higher 

thicknesses while printing on these surfaces remains possible. 

This new capability for printing on reflective substrates opens the door to 

the electrode fabrication and modification techniques described in this thesis, as 

well as a wide range of other potential applications.  

2.2.3 Print Designs 

Using DLW printing, the introduction of new print geometries is matter only 

of producing an STL file with the desired structure through use of any common 

 
Figure 10 Design files of log pile structures with and without walls used to 
demonstrate print quality.  Spacing between bars is equal to bar diameter, with this 
value customizable during the print process. 
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CAD software.  In this case, Solidworks was used for the structures designed.  A 

wide variety of structures were designed and used during this thesis, as suited to 

different goals. 

The first class of structures used in this thesis were designed for purposes 

of demonstrating the rDLW printer’s capability of printing on opaque reflective 

surfaces.  These were modeled based on previous demonstrations in literature 

which showed the challenges of achieving this same goal, and included logpile 

cross hatched structures (Figure 10), and simple cubes with known gaps. 

A second class of structures was designed to demonstrate the printer’s 

ability to replicate penetrating electrode forms.  As penetrating electrodes can 

allow for significant improvements in recording and stimulating ability over 

surface electrodes, this was considered to be a particularly beneficial structure to 

fabricate.  Simple conical spikes were modeled for printing at a range of angles 

and base widths. 

A third class of structures was designed to be printed on an existing flat 

electrode surface with the goal of increasing real surface area (Figure 11).  

These structures would be printed on the surface of existing electrodes, then 

coated using sputter deposition to produce a conductive surface area larger than 

that of the original electrode.  As sputter deposition is a moderately directional 

deposition method, structures were designed to avoid any overhangs or hollows 

that would not have a direct line of sight between the surface of the print and the 

deposition source during sputtering.  Given this limitation, increases in surface 
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area were accomplished through the design of 3D structures featuring extensive 

sloped areas.  By printing sloped surfaces over large portions of the electrode’s 

footprint at steep angles, it was possible to significantly increase the real surface 

area contained within the outline of the electrode.  The high resolution of the 

printing process allowed for sloped surfaces of more complex geometries than a 

simple cone, achieving high surface areas without large height differences 

between the highest and lowest points.  Prints included small horizontal areas to 

optimize sputter deposition as well as openings in the print to allow additional 

areas of electrical contact between the surface coating and the electrode pad.  

During this thesis these structures were fabricated with heights of 40%, 50% or 

60% of the diameter of the electrode pad, with the structures having an resulting 

 
Figure 11 Structure for electrode improvement.  79% of the footprint of this structure 
is sloped.  When fabricated with a height equal to 50% the structure’s diameter this 
produces angles of 76.5 degrees and a surface area increase to 340% that of a flat 
electrode with the same GSA. 
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surface area of 278%, 340% or 406% of the original flat surface area 

respectively.  

While RSA increases have been shown to reduce impedance and 

increase CSC (Arroyo-Currás et al. 2017; Harris et al. 2018), the effect of 

electrode shape on impedance and charge storage capacity presents a complex 

modeling problem that must account for differing voltage distribution across the 

surface of an electrode (Joye et al. 2009).  As a result, quantitative predictions for 

improvement amounts were limited to estimating an improvement proportional to 

surface area, as seen in flat electrodes of varying sizes (Harris et al. 2018). 

2.2.4 Metallization 

To render the IP-Dip polymer structures printed usable as electrodes they 

must be electrically conductive.  Common electrode metals which could be used 

for this process include gold, titanium nitride, platinum, and stainless steel.  Gold 

was selected as the preferred coating material because it is a common 

biomedical electrode material and to ensure a fair comparison between pre and 

post process characterization, as the wafer-based electrodes tested feature gold 

electrode pads. 

Sputter deposition was selected as a metallization method for its ease of 

use: it is an inexpensive, rapid, highly controllable method of thin film generation 

which can be easily used with a gold target.  Sputter deposition is a widely used 

method of film layering across large surfaces.  A species of physical vapor 

deposition (PVD), in which inert gas particles such as argon are made positive  
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through electron collisions then accelerated by electric field to extremely high 

speeds whereupon they impact a target of the desired thin film material, in this 

case gold.  Atoms are ejected from the target at similarly high speed and travel in 

a straight line to impact and remain on all exposed surfaces (Figure 12).  

Sputtering as a technique is commonly used with gold and gold-palladium alloys 

for coating objects to be imaged in a Scanning Electron Microscope, and can be 

used more broadly to deposit films of many different materials, including pure 

metals as well as nitrides or oxides (Liu 2012). 

Once gold thin films reach a thickness in the tens of nanometers, possible 

within minutes in a sputter coater, they reach a resistivity on the order of 10-3 

Ω/m, sufficiently conductive to carry the currents on the order of 100 µA and 

 
Figure 12 Diagram of the sputter deposition process, in which argon is accelerated 
to strike the sputtering target cathode at high speed, ejecting gold towards the 
sample to be coated.  Covered areas beneath overhangs or other structures will be 
shadowed, preventing coating. 
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below in use with these electrodes (Zychowicz, Krupka, and Mazierska 2006).  

However, as it is hard to mask for sputter deposition at such small sizes, efforts 

must be made to prevent or remove unintended electrical connections between 

adjacent electrodes (Kummamuru et al. 2008). 

Sputtering was performed using the Cressington 108 Sputter Coater using 

a gold target.  Estimates of film thickness were based on the working 

specifications of the device, with a 3 mm distance from the target and 20 mA 

current producing a sputtering rate of 0.5 nm / s.  Substrates for demonstrations 

of printing on gold were produced, with a 40 nm film on glass and a 150 nm film 

on silicon.  Sputtering on printed structures on electrodes was performed at 30-

40 nm. 

2.2.5 Laser Etching of Sputtered Films 

 The introduction of a thin film over a large area of the sample, including 

two dozen adjacent electrode pads at a time, necessitated the development of a 

reliable and precise method of electrically separating these sites after sputtering 

was complete.  Laser etching is a well-established method for the removal of 

gold thin films without damaging the underlying substrate (Miller et al. 2004, 

Rohde et al. 2013).  This etching process was accomplished using the same 

rDLW printer equipment that was used for polymerization of structures, using a 

5% by weight Dextran-Fluorescein saline solution as the dip-in medium instead 

of IP-Dip photoresist.  This fluorescent medium allowed for the visualization of 

the wafer surface without polymerization.  Prints were then located and etching 
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was performed by activation of the laser in the same manner used for 

polymerization of structures, following a pattern designed to etch an area around 

the perimeter of each electrode pad.  Etch prints were passed over the targeted 

areas five times to ensure a complete removal of the conductive film.  This 

electrically separated each pad from the rest of the sputtered thin film on the 

wafer without damaging the conductive coating on the prints and pads 

themselves. 

2.2.6 Characterization 

 Electrodes were characterized before and after the printing process.  All 

characterizations were performed using a Gamry Instruments Reference 600 

potentiostat using vendor supplied software.  Electrodes were submerged in pH 

7.24 Phosphate Buffered Saline (PBS) solution, with a large platinum mesh 

counterelectrode and Ag/AgCl wire reference electrode.  After being submerged, 

electrodes were left for ~15 minutes to reach equilibrium. 

 Each pad in turn had one electrochemical impedance spectroscopy test, 

then one cyclic voltammetry test.  Once all pads in a set of 12 were tested once, 

this was repeated.  Once all pads in the set of 12 had been tested twice, a third 

set of EIS tests was run.  This process was performed one time before the full 

printing, sputtering, and etching process flow and one time afterwards.  We 

report this order of measurements to ensure standardization of amount of time 

electrodes were submerged. 

Electrical impedance spectroscopy was conducted at each decade 
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between the frequencies of 102 Hz and 105 Hz at an AC voltage of 0.1 mV rms.   

 Cyclic voltammetry was performed between water window limits of -0.6 

and 0.8 V, with a scan rate of 50 mV and step size of 10 mV.  Three cycles were 

recorded each time the CV procedure was run with cathodal CSC calculated by 

averaging the negative current integral of all runs other than the first.  The first 

run was thrown out before averaging as the first pass of a CV process contains 

increased amounts of error as equilibrium is reached, being visibly distorted 

when compared to all subsequent runs.  

  



37 
 

 

3 Results and Discussion 

3.1 Printing on Opaque Reflective Surfaces 

 Figure 13 shows SEM images of prints taken on gold film substrates with 

different thicknesses and base materials.  Reliable fabrication of logpile 

structures with bars of widths ranging from 3 to 10 µm is demonstrated, as well 

as sharp edges in rectangular shapes.  While slight curved distortions occurred 

at the far corners of the largest prints due to the distortions of the printer’s optics 

at the edges of its print area, lines at the center of the prints show high quality 

without distortion, including gaps as small as 4 µm wide between solid structures 

of 40 µm height as shown in figure 13b. 

 Figure 13b also shows small residual connections between the printed 

cubes.  As areas near the focal point still receive some illumination through both 

limits of focus and scattering, it is possible that these connections are small 

unintended polymerization events that formed during printing within the gap 

between the intentionally polymerized structures. 

 Intact, high-quality prints were reliably possible when initial print depth was 

placed near but not below the surface of the substrate.  Prints placed deep below 

the reflective surface at depths of 50 µm often showed extensive dielectric 

breakdown and micro explosions in a similar manner as other DLW systems 

(Figure 14).  However, prints placed at a depth of only ~5 µm below the surface  

 showed highly reduced breakdown, with only minor distortions.  The increase in 

breakdown with depth is believed to be a result of the repeated scanning over the  
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reflective surface in the deeper cases.  With a height resolution of 1 µm, a print 

that begins 50 µm below the substrate surface will scan the laser over the 

reflective substrate 50 times before the focal point reaches the polymer. 

This demonstrates that DLW printing on reflective metal substrates is 

achievable.  This is in contrast to previous literature which demonstrated only 

limited printing under controlled conditions, with specially prepared low-reflectivity 

substrates (Žukauskas et al. 2013).  The rDLW system used for printing is similar  

 
Figure 13 SEM images of structures printed on gold surfaces using rDLW printing 
with IP-Dip polymer.  a) Log pile structure printed on 40 nm gold thin film sputtered 
on glass, scale bar 10 µm.  b) Boxes with 40 µm height and precise spacing printed 
on 40 nm gold thin film sputtered on glass, scale bar 10 µm.  c) Log pile structure 
printed on 150 nm gold thin film sputtered on silicon, imaged at 33 degree angle, 
scale bar 20 µm.  d) Square box printed on 150 nm gold thin film sputtered on 
silicon, scale bar 100 µm.  e) Fox model printed on 150 nm gold thin film sputtered 
on silicon, scale bar 20 µm. 
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 to commercially available DLW systems which are widely used elsewhere.  The 

most prominent difference is the scanning speed with the rDLW system as much 

as three orders of magnitude faster than what is in common use.  As this high 

scanning speed results in the laser spending less consecutive time focused on 

any given location during the print process we theorize that this reduced 

exposure prevents concentrations of laser energy that lead to dielectric 

breakdown events, resulting in the ability to produce prints without damage as 

shown above.  Unfortunately, the design of the rDLW system used prevents large 

adjustments in speed as the resonant mirror used is not adjustable, so it was not 

possible to validate this theory by printing at 1000x lower speeds as in other 

literature while keeping other parameters of the rDLW system the same.  This 

 
Figure 14 SEM images of square box structures printed on 150 nm thin film of gold 
sputtered on silicon.  The structure in a) A featureless box printed at a depth of 50 
µm below the substrate, showing distortions due to dielectric breakdown effect.  
Scale bar 100 µm.  b) A featureless box printed near and slightly above the surface 
of the substrate, showing no dielectric breakdown.  Scale bar 100 µm. 
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would be a valuable experiment to perform in the future, but will likely require the 

creation of a new speed-adjustable rDLW printing system. 

 These prints demonstrated a high attachment strength to the substrate.  

When printed at the appropriate height near the surface prints demonstrate a 

very high rate of retention, persisting through two rinse stages of development 

and extensive handling through examination under optical microscope and SEM, 

as well as repeated submersion in electrolyte for characterization.  During the 

process of this research using the circular surface area prints shown above, no 

print was observed to detach from an electrode pad after development at any 

point during the work.  Exact attachment strength has not been quantified on gold 

at this time due to the difficulty of acquiring a force meter that can act on the 

sizes of objects involved with control over direction of applied force.  However, 

two preliminary tests showed that an IP-Dip print on glass with a 300 µm x 200 

µm footprint was capable of supporting 1.28 g of hanging weight without 

separating from the substrate. 

 This capability opens up new possibilities in fabrication.  There are many 

devices which are not practical to fabricate without the ability to perform printing 

on reflective and opaque surfaces.  The single-step ability of the DLW print 

process fabricating complex polymer structures on conductive surfaces has the 

potential to produce enormously more efficient process flows for microsystem 

fabrication.  Many MEMS microactuators and microsensors use electrical forces 

or conductivity to perform their intended actions, and require complex 
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arrangements of polymers and conductive surfaces to achieve these ends, often 

requiring process flows requiring a dozen or more steps (Liu 2012). 

Wire bonding is a major process in integrated circuit and semiconductor 

manufacturing, and presents challenges at the micron scale.  The described 

method could be used for printing connections between electrical surfaces which 

could then be metallized, or for the printing of metal-doped conductive polymers 

directly for use as wires. 

 Metamaterial research has made extensive use of DLW fabrication for its 

methods, and also regularly involves layers of metallic or semiconductor 

coatings.  The ability to print directly on metal may make these fabrication 

processes simpler or even introduce new designs that could not be produced 

otherwise. 

 The high resolution and customizable design of DLW printing makes it well 

suited to the fabrication of microfluidics systems.  Such systems often make use 

of metal-based sensors including electrochemical sensors such as those 

described above.  The ability to directly incorporate these sensors by printing 

microfluidic structures around them in a single step could provide an efficient 

fabrication method for these systems. 

 In addition to modification of electrodes, these techniques could be 

applied to electrochemical aptamer based (E-AB) biosensors to improve their 

surface area and thereby their efficacy.  Any other application requiring an 

increase of surface area for microstructures could benefit similarly. 
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3.2 Modified Electrode Characterization 

Electrodes were characterized in sets of 12.  While many batches of 

electrodes were very consistent, some batches showed high variability between 

measurements on the same electrode or between electrodes of the same size, 

and are not reported as we believe they represent electrode sets with fabrication 

flaws or damage from handling.  Percent change in properties for each electrode 

was determined by comparing the mean value from before-print measurements 

(three impedance and two CSC for each electrode) to the mean value of after-

print measurements, sputtering, and etching.  Electrode pads that were used 

 
 
Figure 15 SEM image of the structure design used for increase of surface area.  
Openings in interior were left to create additional possible points of connection with 
substrate.  Scale bar 20 µm. 
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were 34 µm, 50 µm, or 100 µm in diameter.  Figure 15 shows an SEM image of a 

printed structure of the kind used for surface area increase on electrodes. 

Electrical impedance spectroscopy measurements were expected to form 

a consistent linear slope in log-log plotting of frequency vs. impedance 

magnitude between frequencies of 102 and 105 Hz.  This result was observed in 

almost all cases, with only 1 of 36 electrode pads used consistently showing 

distorted results before and after printing, with similarly divergent impedance 

values (Figure 16a). 

 Cyclic voltammetry measurements of charge storage capacity produce a 

curve which is generally smooth during successful measurement, with gold 

contacts known to commonly produce a plot featuring a long narrow tail (Figure 

16b) (Burke et al. 1997).  While most values fell within a range from 0.1 to 0.6 

mC/cm2 a small number of electrodes consistently produced results significantly 

 
Figure 16 Plots of impedance and charge storage capacity from a 100 µm electrode 
before modification.  a) Electrical impedance spectroscopy graph showing the 
expected linear relationship and an impedance value consistent with other 100 µm 
diameter gold electrodes. b) A cyclic voltammetry measurement showing the 
expected long tail, with a charge storage capacity within the expected range and 
consistent with other measured pads. 
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removed from this range, below 0.01 or above 2, always combined with distorted 

CV curves, and were not used. 

 The average measured values for the 100 µm pads from one wafer are 

shown, before and after printing, in Figure 17. 

35 electrode pads had their Impedance values compared before and after 

the printing process, 12 without a structure printed and 23 with a structure 

printed.  26 electrode pads had their CSC values compared before and after the 

printing process, 8 without a structure printed and 18 with a structure printed 

(Figure 18).  Pads which went through the sputtering and etching process but did 

not have a printed structure showed a mean lowering of impedance of 38.6% (p 

 
Figure 17 a) Mean impedance values from each 100 µm electrode pad on one wafer, 
before printing, sputtering, and etching process.  Three measurements were taken 
and averaged from each pad to produce each point shown.  Some pads were not 
printed on but still underwent the sputtering and etching process to serve as 
comparisons.  b) Mean charge storage capacity measurements from the same set of 
100 µm electrode pads.   Two measurements were taken and averaged from each 
pad to produce each point shown. 
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< 0.001) from before the process to after, compared to no statistically significant 

change for pads that did have a printed structure.  A two sample two tailed t-test 

additionally shows a significant difference (p-value < 0.001) between changes in 

impedance for pads with a print and changes in impedance for pads without a 

print.  We did not find that the electrode pads with a print showed a greater 

reduction in impedance.  Rather we observed that impedance decreased further 

in pads with no print.  Charge storage capacities showed a wider variation in both 

direction and magnitude of change, with no statistically significant difference 

between pads with and without printed structures. 

 
Figure 18 a) Quartiles of percentage change in impedance.  The With Print plot (n = 
23) shows the percentage change in impedance for electrode pads which had 
structures printed, sputtered, and were then etched to remove electrical shorts.  The 
Without Print plot (n = 12) shows the percentage change in impedance for electrode 
pads which were only sputtered and then etched to remove electrical shorts.  The 
central lines in each plot indicate the median value, and the x indicates the mean 
value.  b) Quartiles of percentage change in charge storage capacity, as in a.  With 
Print plot (n = 18), Without Print plot (n = 8). 
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 The impedance decrease observed for the electrode pads with no printed 

structure is consistent with expectations, as the surface area will be slightly 

increased by both the margin left inside the etching pattern as well as an 

increased roughness due to sputter coating.  The lack of similar improvement in 

the pads with prints was found to be a result of a lack of electrical connection 

between the print surface and the electrode surface.  If no electrical connection is 

formed to the structure during sputtering, then it will not increase available 

surface area but instead will decrease it as the structure covers a large portion of 

the electrode.  The likely cause of this disconnect is the combination of prints 

intentionally placed at or slightly above the surface combined with the shrinking 

behavior of DLW polymers.  During the printing process, DLW structures will 

exhibit shrinkage due to polymer cross-linking and thermal effects from cooling 

after laser polymerization (Li et al. 2008).  This lift-off pattern was confirmed 

using SEM imaging, with a lift-off height of one or more microns (Figure 19).  As 

 
Figure 19 SEM images of prints showing liftoff from the substrate surface.  a) The 
edge of a surface area print model of the type used to modify the electrode pads, 
scale bar 5 µm.  b) the corner of a large box print, showing a significant gap between 
edge and substrate, scale bar 10 µm. 
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thin films coatings were in the tens or hundreds of nanometers, these films would 

not be capable of bridging this gap. 

In order to overcome this problem, we investigated an approach where 

prints were intentionally placed slightly lower than previous efforts, ~5 µm below 

the surface of the substrate.  This produced a smooth connection to the surface 

of the electrodes. While some dielectric breakdown was still observed, it occurred 

at a small enough scale not to affect the electrical connection to the surface nor 

the overall structure of the prints, which remained attached to the substrate 

(Figure 20). 

 
Figure 20 a) Two prints on 125 nm gold sputtered on silicon.  Bottom print was 
printed slightly above the surface and shows significant liftoff.  Whiteout effect on 
bottom print caused by electron buildup during SEM imaging, a result of lack of 
electrical connection to the surface.  Upper print was printed slightly below the 
surface, and shows close attachment to surface as well as no SEM whiteout effect.  
Scale bar 100 μm.  b) Closeup of top print in a, showing attachment to surface by 7 
nm gold thin film used for SEM imaging, as well as minor dielectric breakdown 
distortions.  Scale bar 2 μm. 
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 This method was used to produce another set of measurements on 200 

μm and 400 μm pads.  Seven electrodes were used, four with subsurface prints 

and three without.  The pads featuring a print showed a percent reduction in 

impedance which was significantly greater than the reduction seen in the pads 

without a print (p < 0.05) (Figure 21a).  Improvements in charge storage capacity 

were also observed, however the difference between the pads with prints and 

those without did not reach significance (Figure 21b). 

 Though small in sample size, this positive result is an indicator of the 

viability of this method to reduce electrode impedance without changing footprint.  

The subsurface print data also shows a reduced variance, which may be an 

 
Figure 21 a) Percentage change in impedance for all pads without surface area 
increasing print (n = 15), original set of pads with above-substrate prints (n = 23), and 
pads with subsurface printing of structures for improved surface connection (n = 4).  
A more negative impedance change is indicative of a more effective electrode.  b) 
Percentage change in charge storage capacity for all pads without surface area 
increasing print (n = 11), original set of pads with above-substrate prints (n = 18), and 
pads with subsurface printing of structures for improved surface connection (n = 4).  
A more positive CSC change is indicative of a more effective electrode. 
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indication of higher reliability using the subsurface printing method, or simply a 

result of the small number of data points collected thus far. 

3.3 Process Limitations and Variations 

3.3.1 Printing and Structure Design 

 While the driving design factor for the print structures used was 

maximizing coated surface area, a number of other limitations came into play as 

well.  To properly optimize print shape, an extensive series of models and tests 

would be required examining shrinkage effects across different polymers and 

structures, voltage distribution across differently shaped electrode surfaces, and 

effectiveness of coating on angled surfaces for different metallization methods.  

Similar to pore resistance, it is possible that air bubbles may become trapped in 

recessed regions of printed structures, reducing their measured effectiveness 

significantly as electrolyte is blocked from the electrode surface.  Given the 

circular design of the prints used in this study, this is a particular possibility and 

additional source of error. 

 Additional constraints must be factored in if printed structures are to be 

used as electrode modifications in vivo.  This technology does offer the printing 

resolution to make direct fabrication of sub-10 µm electrodes possible, creating 

the opportunity to produce CNS implantable electrodes smaller than the immune 

response threshold.  However, this will greatly increase challenges faced with 

regards to attachment strength and structural integrity given such small prints.  In 
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theory, the sub-micron feature sizes which can be achieved using DLW printing 

combined with metallization coatings in the tens of nanometers should allow for 

the fabrication of complex high-surface area shapes while remaining within the 

sub-10 µm size range. 

Structures could be fabricated using other polymers aside from IP-Dip, 

such as SU-8 or OrmoComp, which may provide parameters better suited for 

particular goals or fabrication methods such as optimization for higher resolutions 

in certain systems, reduced shrinkage, or different optical properties for lenses.  

There has also been some investigation into the use of metal-doped conductive 

polymers used for DLW printing (Nakamura et al. 2016), however this doping 

process can reduce structural integrity of prints as well as offering a lower 

conductivity than surface applied metal films.  This opportunity for customization 

is both still a blind spot in the information available on this new metal printing 

fabrication method, as well as an encouraging scope of possibilities that may 

offer solutions to future problems that arise. 

3.3.2 Metallization 

Quantifying the success of the metallization process presented a 

challenge.  As the gold film deposited is tens of nanometers thick and intended to 

render the full surface conductive, it cannot be easily examined under scanning 

electron microscope for many possible flaws such as too-thin coating.  

Additionally, the height of the prints presented potential shadowing complications 

which could prevent structures from being evenly coated if the angle of 
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deposition is imperfect. 

 Thin films deposited onto a substrate suffer from thermal stresses due to 

cooling-driven contraction after deposition.  As the surface of the film is 

unconstrained but the base of the film is locked in position to the substrate, the 

difference in thermal expansion coefficients results in a stress being placed onto 

the film.  Other intrinsic sources of differential volume change result in additional 

stresses as well (Liu 2012).  For a high thickness thin film, this may result in 

cracking and delamination of the film from the surface. 

 Alternative deposition methods are possible that could produce a more 

reliably even coating.  Chemical vapor deposition (CVD) is a commonly used 

method for the laying of metal material thin films evenly across a complexly 

shaped surface, as a nondirectional coating method.  As it is less directional than 

sputtering, CVD could potentially also present a solution to the lift-off challenge 

without requiring subsurface printing.  One common concern with CVD methods 

is the high temperature necessary for its use, which could cause damage to the 

polymer structures.  IP-Dip polymer has been used to fabricate high precision 

structures even after baking at 690 C and remained structurally stable 

(Seniutinas et al. 2018), albeit with changes in chemical composition, suggesting 

that it may be suitable as a temperature resistant substrate for CVD coating. 

3.3.3 Laser Etching of Sputtered Films 

 While the etching process was confirmed in thinner films to electrically 

isolate the pads from one another, it is possible that it introduced other 
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confounding elements.  Etching-induced damage to the silicon carbide coated 

traces immediately surrounding the pads may have inadvertently increased 

surface area, though this increase would appear equally in without-print controls.  

As the fluorescein-dextran solution used for visualization was saline-based, it 

presented a different index of refraction than the lens used for etching which may 

have affected the focusing of the laser: while the etch process appeared to be 

successful, this may have introduced focusing problems with etch evenness that 

could complicate these results. 

 One set of electrodes was prepared using film of 150 nm thickness 

instead of the 30–40 nm used for other electrodes to see if this provided 

improvements in electrical connection between substrate and print.  When 

exposed to the laser etching process, this thicker film cracked and folded without 

fully breaking apart and electrical shorts remained between the different pads 

even after the etching process was repeated several times (Figure 22).  This 

suggests a limitation for thickness above which the laser etching process 

requires adjustment to be suitable for use.  It may be possible to produce more 

reliable etching results with a laser designed for the purpose of etching, as 

opposed to a directly repurposed printing laser.  For example, alternative 

approaches could present a higher pulse power.  Alternatively, if a thick film is 

required, other gold film etching methods could be substituted such as masking 

with chemical etching, a well-established method for removal of thicker gold films 

(Liu 2012). 
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3.3.4 Characterization 

The characterization arrangement used produced quite repeatable results 

suggesting reliability, though this does not preclude persistent sources of error.  

Several patterns became highly apparent during characterization with regard to 

the effects of the characterization process on the parameters measured.   

It is known that upon initial submersion in water-based liquids such as 

PBS these characterization measurements will shift initially over the first several 

minutes, as the liquid infiltrates cracks and details in the electrode surfaces.  For 

this reason, we waited 15 minutes after submersion of the electrodes in PBS 

before beginning measurements.  Two CV and three EIS measurements were 

 
Figure 22 Visualization image taken using the rDLW printer system with fluorescein-
dextran solution as fluorescent medium.  Laser etching attempts on 150 nm gold thin 
film produced cracking and peeling rather than smooth removal of the film, leaving 
shorts behind that remained intact even after repeated etch processes directed at the 
same area. 
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taken for each pad, in a consistent order across twelve pads.  The results from 

the second set of CV and second and third set of EIS measurements reliably 

showed a lower impedance and a higher CSC than the first set.  Cyclic 

Voltammetry cycles are capable of cleaning off some contaminants from an 

electrode surface (Elgrishi et al. 2017) and this process may explain the 

difference in values appearing before and after the first CV result, especially as 

impedance values appeared to stabilize after the first CV, between 

measurements 2 and 3.  Use of a consistent characterization run order helped 

limit the impact of this effect. 

3.4 Next Steps 

 The results presented here show the viability of this technique for use in 

fabrication of microdevices of a range of utility, with preliminary numerical 

validation for its application in electrode modification.  This work opens the door 

to future experiments in optimizing and advancing rDLW based microfabrication.   

The electrode improvement process might be further explored through the 

consideration of different potential print shapes to determine an optimal outcome 

across different polymers.  Alternative means of coating such as CVD have the 

potential to greatly improve coverage and reliability of the metallization process.  

Likewise, a system designed with the intention of laser etching on highly 

reflective surfaces may provide much more suited parameters for that aspect of 

the process. 

 One of the primary next milestones to work towards is investigation of in 
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vivo use of modified electrodes.  The additional constraints and challenges of the 

in vivo environment present one of the larger hurdles any newly proposed 

biomedical technology must overcome, and it is unknown whether this system 

will present previously undetected flaws when tested in this context.   

 The most important area to follow up on is the development of a better 

understanding of the printing on metal successes observed here.  It would be 

extremely valuable to acquire better data regarding how different contexts make 

the dielectric breakdown phenomenon more or less severe.  One of the first 

priorities in this pursuit would be to identify the origins of the success between 

DLW and rDLW systems, which will likely entail the creation of an adjustable 

speed rDLW printer system as the current primary theory behind the success.   
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4 Conclusion 

 This work presents a next step along a path towards efficient 

microstructure fabrication.  While the combination of polymer and metal 

structures has long been used, it comes with extreme limitations in context and 

shape.  Breakthroughs in complex shape fabrication from DLW printing have 

opened the floodgates for the rapid fabrication of physical microactuators, 

metamaterials, lenses, and other microstructure devices.  Nonetheless, 

limitations remain.  This research offers the possibility of overcoming one of 

those limitations: that of DLW fabrication directly onto reflective surfaces such as 

metals, and demonstrates one potential application of that technology through 

the fabrication and characterization of improved electrodes.  The results found so 

far are promising as to the utility of this method in applied research in the near 

future. 
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