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NONLINEAR DYNAMICS AND CONTROL IN A TUMOR-IMMUNE SYSTEM 

YU XUAN 

ABSTRACT 

Advances in modeling tumor-immune dynamics and therapies offer deeper 

understandings of the mechanism of tumor evolution in the interdisciplinary field of 

mathematics and immune-oncology. The main mathematical models are constructed in 

terms of ordinary differential equations (ODEs) or partial differential equations (PDEs) 

and analyzed through tools such as Poincaré map, simulation, or numerical bifurcation 

analysis to understand the system properties. These models succeed in characterizing 

essential features of tumor behaviors including periodic bursts and the existence of 

latency. In relationship to practice, these models are also applied to estimate the 

feasibility and efficacy of treatments ranging from traditional chemotherapy to 

immunotherapy (ACI). 

In recent literature, there have been applications of control methods such as 

optimal control, hybrid automata, and feedback linearization-based tracking control with 

almost disturbance decoupling in the studies of tumor-immune systems. This thesis 

presents an attempt to apply the bifurcation control method with washout filters in tumor 

treatments. 

This thesis research investigates the dynamics and controlling of the tumor-

immune response of immunotherapies, mainly the Adoptive Cell Immunotherapy (ACI) 

and Interleukin-2 (IL-2). The first part of the thesis presents the nonlinear dynamics of 

the classic nonlinear ODE tumor-immune model given by Denise Kirschner and John 
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Carl Panetta in 1998. This model concentrates on the nonlinear phenomena of the tumor-

immune system under immunotherapies, primarily the bifurcation phenomenon along 

with the antigenicity of effector cells. Bifurcation phenomena refer to the qualitative 

changes in system dynamics due to quasi-static changes in system parameters. 

Antigenicity refers to a capability to distinguish tumor cells from healthy cells. The 

Kirschner-Panetta model captures a saddle-node bifurcation and a Hopf bifurcation of the 

tumor-immune response, which separates the tumor evolution into three stages, the 

“dangerous equilibrium”, the periodic recurrence, and the “safe equilibrium”.  

The second part applies and analyzes several control strategies on the 

immunotherapies based on the KP model in order to eradicate tumors or inhibit tumor 

growths. The first section studies the combination immunotherapy of ACI and IL-2 as an 

open-loop control system based on Kirschner’s work, which generates a locally 

asymptotically stable equilibrium. In the second section, this thesis provides a new idea 

of treatment in the tumor-immune system, that is a closed-loop control strategy taking 

advantage of its bifurcation structure by applying dynamic feedback control with a 

washout filter of ACI or IL-2. Bifurcation control moves the Hopf bifurcation point 

without changing the equilibrium structure as the bifurcation parameter varies. In this 

tumor-immune case, the linear dynamic feedback control with a washout filter of ACI 

could either extend the “safe equilibrium” region or reduce the amplitude of the tumor 

population at the stage of tumor recurrence. In addition, other bifurcation amplitude 

controls of either ACI or IL-2 are attempted to reduce the amplitudes of periodic orbits of 

the tumor immune system but without obvious effects.   
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CHAPTER ONE  INTRODUCTION 

Cancer is one of the leading fatal diseases. Though surgical resection, 

chemotherapy, and radiotherapy have played a significant role in tumor or cancer 

treatment in clinical, there is an urgent need for more effective therapies against 

neoplasms. As a result, immunotherapy has greatly progressed in recent decades. In the 

1970s, there was considerable enthusiasm for immunotherapeutic approaches that apply 

nonspecific substances to stimulate immune systems against tumor growth, but those 

approaches were abandoned soon [25]. Since the 1980s, an alternate method, the so-

called passive or adoptive immunotherapy, has made considerable headways [2]-[12]. 

The passive immunotherapy refers to a systematic transfer of the substances or cells that 

already own anti-tumor abilities. In this thesis, immunotherapy refers in particular to 

passive immunotherapy.  

The immunotherapy usually includes cytokines and adoptive cellular 

immunotherapies (ACI). According to [15], “Cytokines are protein hormones that 

mediate both natural and specific immunity. They are produced mainly by activated T 

cells (lymphocytes) during cellular-mediated immunity. Interleukin-2 (IL-2) is the main 

cytokine responsible for lymphocyte activation, growth, and differentiation.” ACI is an 

immunological treatment that implants into tumor-bearing hosts the immune cells 

(effector cells) whose anti-tumor features have been activated in vitro. Lymphokine-

activated killer cell (LAK) therapy and tumor infiltrating lymphocyte (TIL) therapy are 

two principal approaches to achieve ACI.   

In the interdisciplinary field of mathematics and immunology, advances in 
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modeling tumor-immune dynamics and therapies offer a deeper understanding of the 

mechanism of tumor evolution. The main mathematical models are constructed in terms 

of ordinary differential equations (ODEs) or partial differential equations (PDEs) [1] and 

analyzed through tools such as Poincaré map, simulation, or numerical bifurcation 

analysis to understand the system properties. ODE models describe the temporal 

dynamics of tumor-immune interaction at the cellular or molecular level, and PDE 

models involve more factors such as spatial effects. These models succeed in 

characterizing essential features of tumor behaviors, such as periodic bursts and the 

existence of latency. In relationship to practice, these models are also applied to estimate 

the feasibility and efficacy of treatments ranging from traditional chemotherapy and 

radiotherapy to immunotherapy (ACI). This thesis focuses on a specific ODE model. 

Potentially lethal tumor cells might keep in a “safe” state that the population 

persists to be harmlessly small for a host over a long period; but the small population 

might boom all of a sudden in the lack of immunological surveillance. Kuznetsov etc. 

[14] relate these special phenomena of “dormant state” and “sneaking through” with 

nonlinear dynamics via an ODE model. This model quantitatively describes the 

interaction between two central populations, the effector cells, and tumor cells. This 

model was shown to possess stable spirals, but its dynamics is not rich enough since the 

Dulac-Bendixson criterion proves that there does not exist stable closed orbits.  

Kirschner and Panetta [15] furthered Kuznetsov’s model by incorporating other 

mathematical modellings of tumor-immune interactions [16][17][18][19]. This thesis is 

based on the Kirschner and Panetta model (KP model). They constructed a three- 
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dimensional ODE model of tumor-immune interactions under immunotherapy. 

Comparing to Kuznetsov’s model that focuses on the anti-tumor mechanism of immune 

systems, the KP model tends to guide oncotherapy, especially the immunotherapy, by 

introducing treatment terms of adoptive cellular immunotherapy (ACI) and Interleukin-2 

(IL-2). The KP model captures a periodic response of tumor-immune which corresponds 

to the neoplasm recurrence in clinical. They also indicate that a combination treatment of 

ACI and IL-2 works better than single treatments with either ACI or IL-2. Only the 

combination treatment could eliminate tumor cells.  

The classic KP model is simple enough to motivate further research work of 

modeling tumor-immune systems and applications of mathematical control [20]. Phillis 

etc. [21] develop a mixed-treatment model combining immunotherapy and 

chemotherapy, based on which Rihan etc. [22] have also studied an optimal control 

problem with delay in the effect of effector cells. Mallet etc. [23] construct a hybrid 

cellular automaton based on the temporary results from the KP model. Chien etc. [24] 

apply feedback linearization with almost disturbance decoupling control directly to the 

KP model, and the method assumes that all state variables are measurable using a 

programmable research micro-pump and computer, such as the Cellometer Auto T4 Cell 

Counter.  

In recent years, there has also been a growing body of research on control of 

nonlinear dynamical systems exhibiting bifurcation phenomena. The objective of the 

bifurcation control is to modify the system behaviors by relocating bifurcation points or 

changing the stability properties of bifurcation branches. Bifurcation control has been 
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applied to a wide range of applications such as voltage collapse in power systems, 

rotating stall and surge in compression systems, cardiac dynamics with arrhythmias, to 

name a few [26]. Based on a transformed Lorenz equation,  the work in [27] shows 

dynamic bifurcation control with washout filters can change the location and stabilize 

Hopf bifurcations without changing the equilibrium structure of the system.  

This thesis research investigates the dynamics and controlling of the tumor-

immune response of immunotherapies, mainly the ACI and the IL-2. The first part of the 

thesis presents the nonlinear dynamics of the classic nonlinear ODE tumor-immune 

model given by Denise Kirschner and John Carl Panetta in 1998. This model concentrates 

on the nonlinear phenomena of the tumor-immune system under immunotherapies, 

primarily the bifurcation phenomenon along with the antigenicity of effector cells. 

Bifurcation phenomena refer to the qualitative changes in system dynamics due to quasi-

static changes in system parameters. Antigenicity refers to a capability to distinguish 

tumor cells from healthy cells. The KP model captures a saddle-node bifurcation and a 

Hopf bifurcation of the tumor-immune response, which separates the tumor evolution 

into three stages, the “dangerous equilibrium”, the periodic recurrence, and the “safe 

equilibrium”.  

The second part applies and analyzes several control strategies on the 

immunotherapies based on the KP model in order to eradicate tumors or inhibit tumor 

growths. The first section studies the combination immunotherapy of ACI and IL-2 as an 

open-loop control system based on Kirschner’s work, which generates a locally 

asymptotically stable equilibrium. In the second section, this thesis provides a new idea 
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of treatment in the tumor-immune system, that is a closed-loop control strategy taking 

advantage of its bifurcation structure by applying dynamic feedback control with a 

washout filter of ACI or IL-2. Bifurcation control moves the Hopf bifurcation point 

without changing the equilibrium structure as the bifurcation parameter varies. In this 

tumor-immune case, the linear dynamic feedback control with a washout filter of ACI 

could either extend the “safe equilibrium” region or reduce the amplitude of the tumor 

population at the stage of tumor recurrence. Furthermore, other bifurcation amplitude 

controls of either ACI or IL-2 are attempted to reduce the amplitudes of periodic orbits of 

the tumor immune system but without obvious effects. 
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CHAPTER TWO  NONLINEAR ANALYSIS OF THE TUMOR-IMMUNE 

INTERACTIONS 

2.1  Preliminaries of Bifurcation Theory 

Phenomena of nonlinear systems can be rich and complex, and the phenomena 

might become more intricate when parameters change in corresponding systems. To 

systematically understand the nonlinear dynamics along with varying parameters, we can 

classify the complex nonlinear dynamics into distinct patterns according to the existence 

and stability properties of equilibrium points, period orbits or other invariant subsets. 

Bifurcation refers to the critical situation that those essential properties of a nonlinear 

system undergo qualitative transformations with quasi-static changes of system 

parameters. These system parameters are defined as bifurcation parameters, and the 

parameter values at which critical changes occur are called bifurcation points [13]. 

Bifurcation diagram is a graphically descriptive tool for bifurcation analysis which 

structurally depicts the relationship between the essential nonlinear properties and 

bifurcation parameters. 

Consider a one-parameter finite dimensional system 

𝒙̇ = 𝒇(𝒙, 𝑐), (2. 1) 

where 𝒙 ∈ ℝ𝑛 is the state vector, 𝑐 ∈ ℝ is the bifurcation parameter, and 𝒇: ℝ𝑛+1 → ℝ𝑛 

is the smooth vector field. Without losing any generality, consider the situation that the 

origin 𝒙 = 𝟎 is an equilibrium point and the Jacobian matrix 𝐽 ≜
𝜕𝒇

𝜕𝒙
|
𝒙=𝟎,𝑐=0

 owns 

eigenvalues with zero real parts. Suppose that the origin loses stability, i.e., any the 
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Jacobian eigenvalue crosses the complex axis, when 𝑐 changes sign, then a bifurcation 

point occurs at 𝑐 = 0. 

Figure 2.1 summaries the nondegenerate bifurcations. Saddle-node bifurcation (a) 

results from a collision between a stable node equilibrium point and a saddle equilibrium 

point. As the bifurcation parameter pass through the bifurcation point, both stable 

equilibrium branch and unstable equilibrium branch generate together. Transcritical 

bifurcation (b) refers to the crossing point of two equilibrium branches. The equilibrium 

branches change their stability properties after an intersection. Pitchfork bifurcation (c 

and d) combines generations of new branches and changes of stability. Single equilibrium 

branch changes its stability property when traversing the bifurcation point, as well as two 

equilibrium branches that remain the original stability arise above and below. These 

bifurcations are collectively called stationary bifurcation where only equilibrium points 

take place. Hopf bifurcation (e and f) looks similar to Pitchfork bifurcation. The 

difference is that two branches of limit cycle arise here instead of two equilibrium 

branches in the pitchfork bifurcation. Besides, supercritical bifurcation (c and e) and 

subcritical bifurcation (d and f) classify the bifurcation phenomena into safe and 

dangerous cases. The dynamics of supercritical case transfer smoothly, while those of 

subcritical case, transcritical and saddle-node always result in a system hysteresis or state 

jumps due to the disappearance of stable branches [13].  

In this thesis research, both saddle-node bifurcation and Hopf bifurcation are 

discovered and discussed. Therefore, it is necessary to present the mathematical 

description of both stationary bifurcation and Hopf bifurcation. 
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Figure 2.1 Nondegenerate bifurcation diagrams (solid line: stable equilibrium,  

dash line: unstable equilibrium, circle: bifurcation points). 

 

2.1.1  Stationary Bifurcation 

Transform the system, equation (2.1), into a linearized form 

𝒙̇ = A(𝑐)𝒙 + 𝒇(𝒙;  𝒄) (2. 2) 

where 𝒇 ∈ 𝐶𝑘(ℝ𝑛) with k ≥ 3, 𝒇(𝒙𝟎;  𝒄) = 𝟎， 
𝛛𝒇

𝛛𝒙
(𝒙𝟎;  𝒄) = 𝟎 for all sufficiently small 

|𝑐 − 𝑐0|, and 𝑐0 is the value of 𝑐 at the bifurcation point.  

A stationary bifurcation is guaranteed to occur when a single real eigenvalue goes 

from being negative to being positive as 𝑐 passes through the value 𝑐0. More precisely, 
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the origin of the system (2.1) undergoes a stationary bifurcation at the critical parameter 

value 𝑐 = 0 if the following hypothesis hold [35][36]: 

1. Vector field 𝒇 in the system (2.1) is sufficiently smooth in 𝒙, 𝑐, and 

𝒇(𝒙𝟎;  𝒄) = 𝟎 for all 𝑐 in a neighborhood of 0. The Jacobian A(𝑐) ≜
𝛛𝒇

𝛛𝒙
(𝟎, 𝒄) 

possesses a simple real eigenvalue λ(𝑐) such that λ(0) = 0 and λ′(0) ≠ 0; 

2. All eigenvalues of the critical Jacobian A(𝑐) besides 0 have negative real 

parts. 

2.1.2  Hopf Bifurcation 

Assume that the linear part A(𝑐) in equation (2.2) at the origin has a pair of 

eigenvalues λ1,2(𝑐) = α(𝑐) ± iω(𝑐) with α(𝑐0) = 0 and ω(𝑐0) ≠ 0. Furthermore, 

suppose that the pair of eigenvalues cross the imaginary axis with nonzero speed, i.e., 

∂𝛼

∂𝑐
(𝑐0) ≠ 0, (2. 3) 

which is known as the transversality condition for the crossing of the eigenloci at the 

imaginary axis. Then in any neighborhood 𝑈 of the point 𝑥0 and for any given ε > 0, 

there is a |𝑐̅ − 𝑐0| < 𝜀 such that the differential equation (2.2) has a nontrivial periodic 

orbit in 𝑈. In this case, the system is said to undergo a Hopf bifurcation at the bifurcation 

point (𝒙0, 𝑐0) [35][36]. 

2.2  Kirschner and Panetta’s Tumor-Immune Model  

This thesis research studies the dynamics and control of tumor-immune system 

under immunotherapy based on the KP model. Here is the state model:  
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𝑑𝑥1

𝑑𝑡
= 𝑐𝑥2 − 𝜇2𝑥1 +

𝑝1𝑥1𝑥3

𝑔1 + 𝑥3
+ 𝑢1 (2. 4) 

𝑑𝑥2

𝑑𝑡
= 𝑟2𝑥2(1 − 𝑏𝑥2) −

𝑎𝑥1𝑥2

𝑔2 + 𝑥2

(2. 5) 

𝑑𝑥3

𝑑𝑡
=

𝑝2𝑥1𝑥2

𝑔3 + 𝑥2
− 𝜇3𝑥3 + 𝑢2 (2. 6) 

with the initial condition: 

𝒙(0) = [𝑥10, 𝑥20, 𝑥30]
𝑇 (2. 7) 

and the output equation: 

𝑦 = 𝑥2. (2. 8) 

Here the state variable 𝑥1, 𝑥2, 𝑥3 represents the population of effector cells, the 

population of tumor cells, and the concentration of IL-2, respectively; 𝑢1, 𝑢2 refers to two 

kinds of immunotherapy, ACI and IL-2.  

It is significant to understand the nonlinear terms contained in the KP model as it 

explains the mechanism of tumor-immune response through nonlinear phenomena. The 

KP model mainly contains two nonlinear terms, the logistic growth rate, and the 

Michaelis-Menten kinetics.  

The logistic function is in the form of 

𝑙(𝑣) = 𝛼(1 − 𝛽𝑣), (2. 9) 

where 𝛼, 𝛽 are constants. In the dynamic equation 

𝑑𝑣

𝑑𝑡
= 𝑙(𝑣)𝑣, (2. 10) 

the logistic function serves as the growth rate. Figure 2.2 shows the solution of equation 

(2.10). For 𝑣 close to zero, 𝑙(𝑣) approximates to 𝛼, then 𝑣 grows exponentially following 
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𝑒𝛼𝑡; as 𝑣 increases, 𝑙(𝑣) approaches to 0, then asymptotically 𝑣 grows to 1/𝛽. In 

biological dynamics, 1/𝛽 refers to the carrying capacity of a substance 𝑣 [1].  

 

Figure 2.2 Logistic function (𝜶𝟏 < 𝜶𝟐) 

Michaelis-Menten kinetics, a classic enzyme kinetics, relates the enzyme reaction 

rate 𝑘 to the concentration of a substance 𝑣 as  

𝑘(𝑣) =
𝛼𝑣

𝛽+𝑣
. (2. 11)

Here constant 𝛼 is the upper limit of 𝑘(𝑣), and constant 𝛽 refers to the half-lifespan of 

𝑘(𝑣), i.e., the value of 𝑣 when 𝑘(𝑣) reaches half value. The Michaelis-Menten Kinetics 

is shown in Figure 2.3.  

This model simplifies and summaries the immune mechanism responding to 

tumors as an interaction among effector cells, tumor cells, and cytokine IL-2. The 

appearance of tumor cells activates the effector cells to proliferate and to secrete IL-2. IL-

2 would not eliminate tumor cells directly but work as a stimulator for the effector cells. 

Finally, effector cells could kill the identified tumor cells.  
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Figure 2.3 Michaelis-Menten Kinetics 𝒌(𝒗) 

It is challenging to account total amounts of biological components in practice. 

Instead, the model describes the evolution by the average difference in population or 

concentration within time 𝑑𝑡 in both proliferation part (positive) and death part 

(negative). According to [15], the first equation describes the rate of change for the 

effector-cell population. The defense mechanism of immune systems against tumors is 

directly activated by the tumor cells (Term1), as well as indirectly stimulated by the IL-2 

(Term 3). In Term 1, the growth rate c means the antigenicity of the tumor. Antigenicity 

describes the immunological surveillance capability of effector cells, the ability to 

distinguish tumor cells from other normal cells, and it ranges from 0 to 0.05 individually.  

The other growth term (Term 3) models the proliferation of effector cells stimulated by 

IL-2 that is produced by the effector cell itself in a both autocrine and paracrine manner. 

The Michaelis-Menten form indicates the saturated effects of the immune response with 

the highest growth rate of 𝑔1. Term 2 represents the natural death of immune cells with 

an average lifespan of 1/𝜇2 days. The final term 𝑢1 refers to the treatment that externally 

provides effector cells such as LAK or TIL cells. 
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The second equation marks the change rate in the tumor population with a logistic 

growth rate  

𝑟2(1 − 𝑏𝑥2). (2. 12) 

For the tumor evolution  

𝑑𝑥2

𝑑𝑡
= 𝑟(∙)𝑥2 −

𝑎𝑥1𝑥2

𝑔2 + 𝑥2
, (2. 13) 

there are three primary growth patterns differentiated by the growth rate 𝑟2(∙), the 

constant, logistic [28] and Gompertz [29][30][31] growth rate. The tumor grows 

exponentially with a constant 𝑟 or grows with limits in the latter two forms, where the 

Gompertz is smoother but much more complicated. Term 2 describes the immune 

clearance of tumor cells with a limit effect at rate 𝑎. (The Michaelis-Menten form could 

also account for the effects of a solid tumor, i.e., only a portion of the tumor mass comes 

in contact with the immune system cells.)  

Different from previous equations, Equation 3 gives the change rate of IL-2 

concentration. The source of IL-2 is the effector cells stimulated by tumors, and these 

activated effector cells secrete IL-2 with limited speed as modeled in Michaelis-Menten 

kinetics form. The next term (𝜇3) represents the natural loss rate of IL-2. Finally, 𝑢2 is a 

treatment term that represents an external input of IL-2 into the system.  

2.2.1 Parameters and Scaling 

Kirschner gives parameters in this state model based on the papers [19][14][25]. 

Noted that the units of the value given in Table 2.1 are in 𝑑𝑎𝑦𝑠−1, except for 𝑔1, 𝑔2, 𝑔3 

and 𝑏 whose units are volume.  
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𝒄 𝒂 𝒃 𝒑𝟏 𝒑𝟐 𝒓𝟐 

[𝟎, 𝟎. 𝟎𝟓] 1 1 × 10−9 0.1245 5 0.18 

𝒈𝟏 𝑔2 𝑔3 𝜇2 𝜇3  

𝟐 × 𝟏𝟎𝟕 1 × 105 1 × 103 0.03 10  

Table 2.1 parameters in the KP model 

 

This model is stiff for simulation due to the wide range of parameters. 

Appropriate scaling is necessary to carry out the numerical analysis. Normalizing the 

population of tumor cells is one option of the non-dimensional scaling. 1 𝑏⁄  refers to the 

carrying capacity of the tumor cells. As a result, all the cell number units related values 

are non-dimensionalized by 1/b. Moreover, the time units related values are non-

dimensionalized by 𝑟2 according to Kirschner’s recommendation.  

Set 

𝐸0 = 𝑇0 = 𝐼𝐿0 = 1 𝑏⁄   (2. 14) 

𝑡𝑠 = 𝑟2, (2. 15) 

the scaling of each variable and parameter is shown below. 

𝑥̅1 =
𝑥1

𝐸0
, 𝑥̅2 =

𝑥2

𝐸0
, 𝑥̅3 =

𝑥3

𝐼𝐿0
, 𝜏 = 𝑡𝑠𝑡, 𝑐̅ =

𝑐𝑇0

𝑡𝑠𝐸0
, 𝑎̅ =

𝑎𝐸0

𝑡𝑠𝑇0
, 

𝑝̅1 =
𝑝1

𝑡𝑠
, 𝑝̅2 =

𝑝2𝐸0

𝑡𝑠𝐼𝐿0
, 𝑔̅1 =

𝑔1

𝐼𝐿0
, 𝑔̅2 =

𝑔2

𝑇0
, 𝑔̅3 =

𝑔3

𝑇0
, 𝑏̅ = 𝑏𝑇0, 

𝜇̅2 =
𝜇2

𝑡𝑠
, 𝜇̅3 =

𝜇3

𝑡𝑠
, 𝑟̅2 =

𝑟2
𝑡𝑠

, 𝑢̅1 =
𝑢1

𝑡𝑠𝐸0
, 𝑢̅2 =

𝑢2

𝑡𝑠𝑇0
, 𝑢̅3 =

𝑢3

𝑡𝑠𝐼𝐿0
. 

 (2. 16) 
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The corresponding state model after Non-dimensional scaling gives the following 

equations. 

𝑑𝑥̅1

𝑑𝜏
= 𝑐̅𝑥̅2 − 𝜇̅2𝑥̅1 +

𝑝̅1𝑥̅1𝑥̅3

𝑔̅1 + 𝑥̅3
+ 𝑢̅1 (2. 17) 

𝑑𝑥̅2

𝑑𝜏
= 𝑟̅2𝑥̅2(1 − 𝑏̅𝑥̅2) −

𝑎̅𝑥̅1𝑥̅2

𝑔̅2 + 𝑥̅2

(2. 18) 

𝑑𝑥̅3

𝑑𝜏
=

𝑝̅2𝑥̅1𝑥̅2

𝑔̅3 + 𝑥̅2
− 𝜇̅3𝑥̅1 + 𝑢̅2 (2. 19) 

In this thesis, all scaled parameters and variables are marked by hats except for scaled 

time 𝜏. 

2.3  Bifurcation and Dynamic Analysis for Non-Treatment Case 

This section revises Kirschner’s work in the nonlinear dynamics analysis of the 

tumor-immune system without control (non-treatment case), equation (2.20) – (2.22). 

Understanding the mathematical dynamics and the corresponding immunological 

implication of the KP model is a vital prerequisite of the thesis research.  

𝑑𝑥1

𝑑𝑡
= 𝑐𝑥2 − 𝜇2𝑥1 +

𝑝1𝑥1𝑥3

𝑔1 + 𝑥3

(2. 20) 

𝑑𝑥2

𝑑𝑡
= 𝑟2𝑥2(1 − 𝑏𝑥2) −

𝑎𝑥1𝑥2

𝑔2 + 𝑥2

(2. 21) 

𝑑𝑥3

𝑑𝑡
=

𝑝2𝑥1𝑥2

𝑔3 + 𝑥2
− 𝜇3𝑥3 (2. 22) 

Although the nonlinear system is difficult to solve analytically, numerical 

methods can be employed to gain an understanding of the dynamics of the tumor-immune 

system. This research uses AUTO (07p) for the bifurcation analysis along with parameter 

c, the antigenicity, and MATLAB for the temporal dynamical simulation at fixed c. 



 

 

16 

AUTO [32][33][34] is a powerful continuation and bifurcation analysis software for 

differential equations. Given an initial state near equilibrium branches, AUTO can 

automatically approach an equilibrium point, and numerically analyze the stability of 

either equilibriums or limit cycles, then continue the branches point by point.  

The combined usage of bifurcation analysis and simulation helps to reveal the 

non-local dynamics of the model, and it goes as following way. The bifurcation analysis 

along the antigenicity c predicts the non-local dynamical trends of the states at each fixed 

c, which also guide the selection of the initial states in simulation. In turn, simulations in 

Matlab serve as initial conditions for the numerical calculation in AUTO. AUTO is able 

to do the continuation of solutions of ODEs based on the appropriate initial guess of 

equilibrium points. Simulations are also supplements for several situations that AUTO is 

unable to solve, such as chaos, though not found in this research.  

2.3.1 Bifurcation Diagram and Simulation Results 

Human immune systems have multiple defense mechanisms in the face of 

external invasions or internal abnormal variations. Different than external invader such as 

virus, the tumor is one of the internal abnormal variations. Making out those tumor cells 

is the precondition for a successful self-immune defense. Furthermore, different levels of 

the identifying capability of immune systems activate different defense mechanisms. In 

other words, human immune responses vary with the antigenicity of effector cells.  

Bifurcation analysis, especially bifurcation diagram, of the KP model shows the 

diversity of tumor-immune response. To be specific, the nonlinear dynamics of non-

treatment model changes qualitatively along with parameter c. As shown in Figure 2.4, 
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the nonlinear dynamics of the non-dimensional tumor population presents a “foot-like” 

bifurcation structure along with the antigenicity 𝑐 between [−0.01, 0.05].  

Note that this research studies the non-local dynamics of the system within the 

nonnegative state space as the negative state is meaningless in neither the natural immune 

response nor the clinical immunotherapy. For the antigenicity, though the area with 

negative values, 𝑐 ∈ [−0.01,0), is insignificant in practice, it shows the bifurcation 

structure of the tumor evolution.  

There are two bifurcation branches are captured. One branch is a lateral straight 

line representing an unstable equilibrium point at origin independent of 𝑐, which can be 

easily captured by solving the state model with all zero states. Figure 2.4 shows the other 

bifurcation branch. The “foot-like” bifurcation branch changes dramatically with 𝑐. 

Consider the nonnegative 𝑐 part of the bifurcation diagram, two bifurcations points 𝑐0 

and 𝑐1 separate the graph into three rectangular areas with distinct nonlinear dynamical 

patterns. AUTO shows that 𝑐0 is a fold, and 𝑐1 is a Hopf bifurcation. Figure 2.5 zooms in 

on the surrounding area of 𝑐0. It shows that the exact type of bifurcation point 𝑐0 is not 

clear. It is either a saddle-node bifurcation or a homoclinic bifurcation depends on 

whether the saddle point collides with the limit cycle branch or not. Auto shows that the 

limit cycle branch is approaching to 𝑐0 but not touch it. Further analysis is necessary for 

the judgment. However, this uncertainty would not affect the understanding of the system 

dynamics and the following researches. 
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Figure 2.4 Bifurcation diagram of the non-treatment KP model 

 

Figure 2.5 Bifurcation diagram of the non-treatment KP model in the neighborhood of 𝒄𝟎 
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Figure 2.6 Bifurcation diagram of the non-treatment KP model in semi-logarithmic 

coordinates 

Next, the dynamics of the non-treatment KP model within each c area is simulated 

by Matlab with a uniform initial condition that 𝒙̅(0) = [1 × 10−4, 1 × 10−4, 1 × 10−4]𝑇. 

Note that all simulations for the tumor-immune dynamics based on any model in this 

thesis employ this initial condition unless otherwise stated, which is corresponding to the 

number of cells and the concentration of IL-2 at a level of 105.  

Firstly, discuss the dynamics shown in the “foot-like” branch in detail. Consider 

the rectangular parts, in Part I (“heel area”) where c ranges from 0 to 𝑐0 = 8.55 × 10−5, a 

stable equilibrium point with large tumor population coexists with two unstable 

equilibrium points. As shown in Figure 2.5, the stable stationary branch collides with the 

upper unstable branch at bifurcation 𝑐0. Within Part I, the population of tumor cells 

would either boom up monotonously or shrink slightly to the stable steady state based on 

the initial condition. Figure 2.7 shows the temporal dynamics of effector cells, tumor 

cells and IL-2 at 𝑐 = 1 × 10−5. 
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Figure 2.7 Dynamics of non-treatment KP Model at 𝒄 = 𝟏 × 𝟏𝟎−𝟓 

In Part II (“instep area”) where c ranges from 𝑐0 to 𝑐1 = 0.0326, a branch of 

unstable equilibrium points and a branch of stable periodic orbits are discovered. Figure 

2.6 presents the bifurcation diagram in a semi-logarithmic coordinate system to show the 

unclear periodic part before 𝑐1 in Figure 2.4. As displayed in Figure 2.8, the tumor 

population converge to a periodic orbit regardless of the initial conditions under the 

immunological surveillance. In a single period, the tumor stays at a dormant status that 

only few cells persist for most of the time. During the dormant status, the tumor 

population is probably too small to discover. However, the population of tumor bursts 

suddenly implying the recurrence of tumor, which is extremely common in clinics. 

Within Part II, the immune response behaves more intense as the antigenicity of effector 

cells enhances. The periodic orbit shrinks as well as the recurrence period. Table 2.2 

compares the periodic tumor dynamics at 𝑐 = 0.02 and 𝑐 = 0.03 with the same initial 

condition in terms of the maximum value, the amplitude of periodic orbits and the 

recurrence period. Both the maximum tumor population in general and in period status 

decline as 𝑐 increases, and the recurrence period shortens.  



 

 

21 

c 

Non-dimensional tumor dynamics Dimensional tumor dynamics 

Maximum 
value 

Periodic 
amplitude 

Period 
Maximum 

value 
Periodic 

amplitude 
Period 

0.02 3.7 × 10−4 3.7 × 10−4 43.6 3.7 × 105 cells 3.7 × 105 cells 242days 

0.03 1.3 × 10−4 6.9 × 10−5 19.3 1.3 × 105 cells 6.9 × 104 cells 107days 

Table 2.2 Comparison of the periodic tumor dynamics at 𝒄 = 𝟎. 𝟎𝟐 and 𝒄 = 𝟎. 𝟎𝟑 

 

 

Figure 2.8 Dynamics of non-treatment KP Model at 𝒄 = 𝟎. 𝟎𝟐 and 𝒄 = 𝟎. 𝟎𝟑 

In Part III (“toe area”), Hopf bifurcation occurs at 𝑐1, where the stable branch of 

limit cycles bifurcates from the stable equilibrium branch. There is a unique stable focus 

with rather small value in Part III. This area refers to a “safe” tumor status that the tumor 

population keeps small and harmless to the host. Figure 2.9 shows that the tumor 
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population converges oscillatorily to a stable status. Table 2.3 compares the tumor 

dynamics with 𝑐 = 0.035 and 𝑐 = 0.04, in terms of the second peak value, the steady 

state and the converge time. The tumor population converges faster and reaches a lower 

stable amount with a higher value of 𝑐. 

c  

Non-dimensional value Dimensional value 

2nd peak value Steady state 
Converge 

time 
2nd peak 

value 
Steady state 

Converge 

time 

0.035 9.8 × 10−5 1.8 × 10−5 ~700 9.8 × 104 1.8 × 104 ~10.7years 

0.04 7.8 × 10−5 1.6 × 10−5 ~300 7.8 × 104 1.6 × 104 ~4.6years 

Table 2.3 Comparison of the periodic tumor dynamics at 𝒄 = 𝟎. 𝟎𝟑𝟓 and 𝒄 = 𝟎. 𝟎𝟒 

 

 

Figure 2.9 Dynamics of non-treatment KP Model at 𝒄 = 𝟎. 𝟎𝟑𝟓 and 𝒄 = 𝟎. 𝟎𝟒 
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CHAPTER THREE  CONTROL OF IMMUNOTHERAPIES 

This chapter applies and analyzes several control strategies on the 

immunotherapies based on the KP model in order to eradicate tumors or inhibit tumor 

growths. Specifically, an open-loop control constructs an ideal stable equilibrium point at 

tumor-free state. This local tumor-free equilibrium point indicates that regular 

quantitative immunotherapy could cure the tumor whose initial condition is not far from 

the stable equilibrium point. While the stability of this local tumor-free equilibrium point 

is independent of 𝑐, it is observed that the range of the stability depends on the 

antigenicity. Furthermore, this research also attempts to modify the tumor-immune 

interactions via bifurcation control with washout filters based on the bifurcation structure 

of the system itself. The bifurcation control aims to extend the “safe” equilibrium branch 

area and reduce the amplitude of the periodic orbits discovered by the KP model and 

discussed in the last chapter. 

3.1  Open-Loop Control and Dynamic Analysis 

This section studies the dynamics of the tumor-immune response with open-loop 

control. Constant control input 𝑢1 and 𝑢2 implies regular quantitative implantation of 

ACI and IL-2, respectively. This open-loop control aims to construct an asymptotically 

stable equilibrium point at the tumor-free state, i.e., an equilibrium point  

𝒙𝒔𝒔 = (𝑥1
∗, 0, 𝑥3

∗) (3.1) 

with positive constant 𝑥1
∗ and 𝑥3

∗. The equilibrium point at the origin of the KP model 

without treatment, i.e., the all-zero state independent of 𝑐, naturally generates the open-

loop control idea.  All-zero state implicates that there are no effector cells, IL-2 and 
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tumor cells in a living host. This status is neither possible nor desired. Although the 

unstable all-zero equilibrium point makes no sense in an immune system, it raises the 

question if it is possible to construct a stable equilibrium point with a zero 𝑥2 state, 

representing the tumor-free status with bounded effector cells and IL-2. The simplest 

solution for constructing such an equilibrium point is by applying constant feedforward 

control.This part first revises Kirschner and Panetta’s work [15] on the condition of 

applying ACI and IL-2 that can eliminate tumors in the open-loop control system. The 

thesis analyzed the open-loop system from the perspective of control designing, while 

they focus on comparing the treatment effects of various immunotherapies and guiding 

their dosage. Furthermore, the thesis applies a specific treatment combining ACI and IL-

2, which raises the problem of estimating the region of attraction of the tumor-free state. 

Several attempts have been conducted on the estimation.  

Based on the most general KP model, equation (2.4)-(2.5), add constants 

feedforward control inputs 𝑠1 and 𝑠2 into the first and third equations respectively in 

order to move the equilibrium point from origin to the desired tumor-free status. The state 

model of the open-loop control system 

𝒙̇ = 𝒇𝒐(𝒙) (3.2) 

turns to be 

𝑑𝑥1

𝑑𝑡
= 𝑐𝑥2 − 𝜇2𝑥1 +

𝑝1𝑥1𝑥3

𝑔1 + 𝑥3
+ 𝑠1 (3.3) 

𝑑𝑥2

𝑑𝑡
= 𝑟2𝑥2(1 − 𝑏𝑥2) −

𝑎𝑥1𝑥2

𝑔2 + 𝑥2

(3.4) 
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𝑑𝑥3

𝑑𝑡
=

𝑝2𝑥1𝑥2

𝑔3 + 𝑥2
− 𝜇3𝑥3 + 𝑠2, (3.5) 

where 𝑠1 and 𝑠2 are positive scalars. Solve the new equilibrium point via  

𝒙̇𝒔𝒔 = 𝒇𝒐(𝒙𝒔𝒔) = 𝟎. (3.6) 

The desired tumor-free equilibrium point in terms of 𝑠1 and 𝑠2 is  

𝒙𝒔𝒔 = (𝑥1
∗, 0, 𝑥3

∗) = (
𝜇3𝑔1𝑠1 + 𝑠1𝑠2

𝜇2𝜇3𝑔1 + (𝜇2 − 𝑝1)𝑠2
, 0,

𝑠2

𝜇3
) . (3.7) 

Judge the stability of 𝒙𝒔𝒔 by linearization. The Jacobian matrix  

𝐽𝑜 =
𝜕𝒇𝒐(𝒙)

𝜕𝒙
|
(𝒙=𝒙𝒔𝒔)

(3.8) 

becomes  

[
 
 
 
 
 
 −𝜇2 +

𝑝1𝑥3
∗

𝑔1 + 𝑥3
∗

𝑐
𝑝1𝑔1𝑥1

∗

(𝑔1 + 𝑥3
∗)2

0 𝑟2 −
𝑎𝑥1

∗

𝑔2
0

0
𝑝2𝑥1

∗

𝑔3
−𝜇3 ]

 
 
 
 
 
 

. (3.9) 

The eigenvalues of the system are 

−𝜇2 +
𝑝1𝑥3

∗

𝑔1 + 𝑥3
∗
, 𝑟2 −

𝑎𝑥1
∗

𝑔2
, −𝜇3. (3.10) 

The equilibrium point of the nonlinear system is locally asymptotically stable if 

all the eigenvalues of its Jacobian matrix are positive. Then, the equilibrium point 𝒙𝒔𝒔 is 

locally asymptotically stable if 𝑠1 and 𝑠2 satisfy that 

𝑠2 <
𝜇2𝜇3𝑔1

𝑝1−𝜇2
≜ 𝑠𝑢𝑝𝑝𝑒𝑟

2 , 𝑠1 >
𝑔2𝑟2
𝑎

[
𝑔2(𝜇2 − 𝑝1) + 𝜇2𝜇3𝑔1

𝜇3𝑔1 + 𝑠2
] ≜ 𝑠𝑙𝑜𝑤𝑒𝑟

1 . (3.11) 
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𝑠𝑢𝑝𝑝𝑒𝑟
2  and 𝑠𝑙𝑜𝑤𝑒𝑟

1  are defined as the upper bound of 𝑠2 and the lower bound of 𝑠1 

respectively. 𝑠𝑢𝑝𝑝𝑒𝑟
2  is a constant while 𝑠𝑙𝑜𝑤𝑒𝑟

1  is a function of  𝑠2. Now consider the 

range of 𝑠1 and 𝑠2 before scaling, in which case all parameters employed are unscaled. 

Figure 3.1 shows the function of 𝑠𝑙𝑜𝑤𝑒𝑟
1 (𝑠2) with 𝑠2 below 𝑠𝑢𝑝𝑝𝑒𝑟

2 = 6.349 × 107. The 

area I refers to the range of 𝑠1 and 𝑠2 that 𝒙𝒔𝒔  is asymptotically stable in local.  

 

 

Figure 3.1   𝒔𝟐 − 𝒔𝒍𝒐𝒘𝒆𝒓
𝟏  curve 

Since both 𝑠1 and 𝑠2 are external resources, a combination of 𝑠1 and 𝑠2 of lower 

amount might be better for both the feasibility and safety of immunotherapy. As a result, 

the following research studies the dynamics of 𝑠1 = 𝑠2 = 1 × 103. 

This specific open-loop treatment results in a locally asymptotically stable 

equilibrium point at 𝒙𝒔𝒔
𝟎 = (3.334 × 104, 0, 100) or 𝒙̅𝒔𝒔

𝟎 = (3.334 × 10−5, 0,1 × 10−7 ) 

independent of 𝑐. As shown in Figure 3.2, the population of tumor cells damps rapidly 

with the initial condition 𝒙(0) = [1 × 10−4, 1 × 10−4 ,1 × 10−4]𝑇 c. However, the 
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region of attraction (ROA) of the locally asymptotically stable equilibrium point varies 

with 𝑐. As shown in Figure 3.3, the point 𝒙̅ = [1 × 10−4, 5 × 10−4, 1 × 10−4]𝑇 is outside 

the ROA when 𝑐 = 1 × 10−5 and inside the ROA when 𝑐 = 0.02. 

 

(a) 𝒄 = 𝟏 × 𝟏𝟎−𝟓                                                         (b) 𝒄 = 𝟎. 𝟎𝟓  

Figure 3.2   dynamics of the open-loop KP model with 𝒙̅𝟐𝟎 = 𝟏 × 𝟏𝟎−𝟒 

 

(a) 𝒄 = 𝟏 × 𝟏𝟎−𝟓                                                         (b) 𝒄 = 𝟎. 𝟎𝟐  

Figure 3.3   dynamics of the open-loop KP model with 𝒙̅𝟐𝟎 = 𝟓 × 𝟏𝟎−𝟒 

In this thesis research, simulation results of various initial conditions and 

parameter 𝑐 show that the ROA set expands as 𝑐 increases although the exact boundary of 

the ROA is still not clear. The ROA of the tumor-free equilibrium point refers to a three 
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dimensional open, connected, invariant set according to the Lemma 8.1 in  [13]. The 

ROA set is bounded by trajectories of the system. As a result, simulations of the 

dynamics with multiple initial states and antigenicity values could give the exact 

boundary of ROA in theory. Lyapunov analysis is another option to approach a 

conservative ROA, but an appropriate Lyapunov function is necessary.  

In summary, the open-loop control represents the regular quantitative injection of 

both ACI and IL-2. Within the stabilizable set of 𝑠1 and 𝑠2, this treatment constructs a 

tumor-free steady state which is locally asymptotically stable. While the value of the 

steady state is independent of the antigenicity, simulation results show that its region of 

attraction depends on the antigenicity. This ROA is a three dimensional open, connected 

and invariant set. In general, it is observed that the ROA extends as the antigenicity 

enhances. The exact ROA is not clear now. The work of finding the quantitative 

relationship between the antigenicity and the ROA has been left to the future. 

3.2  Bifurcation Control with Washout Filters 

This section applies bifurcation and amplitude control strategies on the tumor-

immune system. These control approaches modify the bifurcation structures in the system 

to achieve desired results. Different than linear systems, the dynamics of nonlinear 

systems is rich and complex, often exhibiting nonlinear phenomena such as bifurcations 

and chaos. Bifurcation control with washout filter could adjust the behavior of a system 

by taking advantages of the original structure rather than destroy it. In this case, the 

bifurcation diagram gives the specific “foot-like” non-local structure of the nominal 

system along parameter 𝑐, based on the bifurcation analysis. The “toes” part, Part III with 
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𝑐 larger than 𝑐1 ( the Hopf bifurcation point), represents a benign condition of the tumor-

immune system. It is beneficial if any treatment could enlarge this field. In the middle 

part of the bifurcation diagram, the amplitude of the periodic orbits increases sharply as 𝑐 

decrease. It is also beneficial if any treatment could reduce the amplitude of the periodic 

orbits. 

3.2.1  Preliminaries of Bifurcation Control 

Bifurcation Control with Washout Filter is dynamic feedback control. Washout 

filter is a stable high pass filter with a property of equilibrium preservation. Washout 

filter rejects steady-state input signals when transient inputs pass through the system. As 

a result, control with washout filters would not impact the open-loop equilibriums of the 

original system.  

Washout filters are widely used in aircraft control systems [37] and power control 

systems [38]. The transfer function of washout filter takes the form 

𝐺(𝑠) =
𝑦(𝑠)

𝑥(𝑠)
=

𝑠

𝑠 + 𝑑
= 1 −

𝑑

𝑠 + 𝑑
. (3.12) 

Here d is a positive constant, which corresponds to utilizing stable washout filters. 

Consider a 𝑛-dimensional state model 𝒙̇ = 𝒇(𝒙) (𝑥 ∈ ℝ𝑛) with steady state 𝒙𝒔𝒔. For each 

state 𝑥𝑖, introduce a washout filter state 𝑧𝑖, and let its transfer function to be 

𝑧𝑖(𝑠) =
1

𝑠 + 𝑑
𝑥𝑖(𝑠). (3.13) 

The dynamic equation of the washout filter is in forms of 

𝑧̇𝑖 = 𝑥𝑖 − 𝑑𝑧𝑖 (3.14) 

with the output equation 
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𝑦𝑖 = 𝑥𝑖 − 𝑑𝑧𝑖. (3.15) 

The steady state of 𝒛 is 𝒛𝒔𝒔 =
𝒙𝒔𝒔

𝑑
, and the output of the washout filter y = 0 at the steady 

state. It is simple to see that the equilibrium of systems would not change when applying 

a control input in the form 

𝑢 = ℎ(𝑦) (3.16) 

such that  

ℎ(0) = 0. (3.17) 

Wang and Abed [27] incorporate washout filters into bifurcation and chaos 

control. The previous analysis explains the principle why a dynamic feedback control 

with washout filters would not change the equilibrium structure of a system from the 

perspective of exact state models. Furthermore, the property to preserve equilibriums of 

washout filters exists regardless of any model uncertainty that does not violate the finite 

dimensionality of the system. This capability under model uncertainty is beneficial 

greatly to the biological system since there exist large ranges of nonlinear model 

uncertainties due to individual differences among livings.  

This thesis aims to move the Hopf bifurcation point 𝑐1 in the KP model. 

Considers the system (2.2), there are pairs of purely imaginary eigenvalues when Hopf 

bifurcations take place. At the critical points, the linearization method (eigenvalues of the 

Jacobian matrix) does not work for judging the stability. Periodic limit cycles 𝑝𝜖 are 

bifurcated from Hopf bifurcations when c is perturbed by 𝜖, the asymptotical stability of 

𝑝𝜖 is determined by the characteristic exponent 𝛽(𝜖), which is defined by a real, smooth, 

even function that  
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𝛽(𝜖) = 𝛽2𝜖
2 + 𝛽4𝜖

4 + ⋯ . (3.18) 

𝑝𝜖 is orbitally asymptotically stable if 𝛽(𝜖) < 0 and is unstable if 𝛽(𝜖) > 0. Typically, 

the sign of the characteristic exponent 𝛽(𝜖) depends on the sign of 𝛽2, which is called the 

bifurcation stability coefficient [39][36]. It is known that only the linear, quadratic and 

cubic terms possess the potential to influence the value of 𝛽2 for a system undergoing 

Hopf bifurcations (or Andronov-Hopf bifurcations) [39][40][41][42]. Let the bifurcation 

control 𝑢 consists of linear, quadratic and cubic terms in the form of 

𝑢 = 𝑘𝑙𝑦 + 𝑦𝑇𝑄𝑢𝑦 + 𝐶𝑢(𝑦, 𝑦, 𝑦), (3.19) 

where y is the vector of washout filter outputs 𝑦𝑖 = 𝑥𝑖 − 𝑑𝑖𝑧𝑖, 𝑘𝑙 is a real scalar, 𝑄𝑢 is a 

real symmetric 𝑛 × 𝑛 matrix, and 𝐶𝑢 is a cubic form generated by a scalar-valued 

symmetric trilinear form. In the following control application, each term of the 

bifurcation with washout filter are employed and analyzed separately. 

3.2.2 The Bifurcation Control Model with Washout Filters in Tumor-Immune Interactions 

Consider the KP model, introduce dynamic feedback control with washout filters 

into the dynamics of ACI and IL-2. Give the closed-loop tumor-immune system with 

washout filters in a general form 

[𝒙̇, 𝒛̇]𝑇 = 𝒇(𝒙, 𝒛, 𝒖), (3.20) 

where 𝒛 = [𝑧1, 𝑧3] is the washout filter state. Here is the state equations of the closed-

loop tumor-immune control system 

𝑑𝑥1

𝑑𝑡
= 𝑐𝑥2 − 𝜇2𝑥1 +

𝑝1𝑥1𝑥3

𝑔1 + 𝑥3
+ 𝑢1 (3.21) 
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𝑑𝑥2

𝑑𝑡
= 𝑟2𝑥2(1 − 𝑏𝑥2) −

𝑎𝑥1𝑥2

𝑔2 + 𝑥2

(3.22) 

𝑑𝑥3

𝑑𝑡
=

𝑝2𝑥1𝑥2

𝑔3 + 𝑥2
− 𝜇3𝑥3 + 𝑢2 (3.23) 

𝑑𝑧1

𝑑𝑡
= 𝑥1 − 𝑑1𝑧1 (3.24) 

𝑑𝑧3

𝑑𝑡
= 𝑥3 − 𝑑3𝑧3 (3.25) 

along with the output equations 

𝑦1 = 𝑥1 − 𝑑1𝑧1 (3.26) 

𝑦2 = 𝑥3 − 𝑑3𝑧3 (3.27) 

𝑦3 = 𝑥2 (3.28) 

where the control inputs are governed by real smooth functions 

𝑢1 = ℎ1(𝑦1) (3.29) 

𝑢2 = ℎ2(𝑦2). (3.30) 

Note that, all the washout filter coefficients 𝑑𝑖 are uniformly set as 0.5 without losing any 

generality. 

3.2.3  Bifurcation Control with Linear Dynamic Feedback 

In this part, we consider the linear dynamic feedback control strategy  

𝑢𝑖 = −𝑘𝑙𝑖𝑦𝑖 , 

where 𝑘𝑙𝑖, so-called linear feedback gain, is a designed scalar. The objective of the linear 

dynamic feedback control is to either extend the region of single “safe” steady state 

captured by the bifurcation diagram of the non-treatment system or shrink the amplitude 
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of tumor recurrences, via moving the Hopf bifurcation that marks the lower boundary of 

the “toe area” to a smaller 𝑐. The influence of this closed-loop treatment is analyzed in 

AUTO. 

1) Adoptive cellular immunotherapy (𝒖𝟏 = −𝒌𝒍𝟏𝒚𝟏, 𝒖𝟐 = 𝟎 ) 

Consider the situation that only adoptive cellular immunotherapy is applied. 𝑘𝑙1 is 

the constant (linear) feedback gain of the washout filter. 𝑘𝑙1 < 0 refers to implanting 

activated anti-tumor effector cells into the patient, while 𝑘𝑙1 > 0 indicates an initiative 

action to reduce the amount of the effector cells. Despite that, to the best of the author’s 

knowledge, there is no immunotherapy treatment aiming to reduce the amount of the 

effector cells, this research could still provide an idea to structurally improve a system 

with complex nonlinear phenomena under modeling uncertainty.  

Routh criterion is commonly used to theoretically analyze the controllable set of 

𝑘𝑙, however, hardly could it be employed here due to the mathematically intricate model. 

Therefore, this research numerically calculates, via AUTO, the Hopf bifurcation of the 

closed-loop control systems with varying values of the feedback gain, in order to find the 

controllable range. According to the previous study, the bifurcation point of the non-

treatment tumor-immune system is at 𝑐1 = 3.26 × 10−2, and the physically valid range 

of the antigenicity 𝑐 is [0, 0.05]. Figure 3.4 (a) shows the range of 𝑘𝑙1 moving the 

bifurcation points in both directions, that either 𝑐1 increases or decreases, within the 

physically valid range of 𝑐. 𝑐1 moves to left (decrease) under the control of 𝑘𝑙1 ∈

(0, 0.034], and moves to right (increase) under the control of 𝑘𝑙1 ∈ [−0.19, 0) ∪

(0.034, 1.3). Figure 3.4 (b) shows the part that 𝑐1 moves to the left, under which the 
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“safe equilibrium” area extends. This curve shows that the minimum value of 𝑐1 takes 

place within (0.11, 0.16) at 𝑐1 = 3.09 × 10−2.   

 

(a)                                                                          (b) 

Figure 3.4   𝒌𝒍𝟏 − 𝒄𝟏 curve 

 

The above discussion shows the capability of the linear, dynamic feedback control 

along the state 𝑥1 to place the Hopf bifurcation point of the tumor-immune system to any 

point inside 𝑐1 ∈ [3.09, 0.05] × 10−2. Figure 3.5 (a) and (b) shows the bifurcation 

diagram, along parameter 𝑐, at 𝑘𝑙1 = 0.013 and 𝑘𝑙1 = −0.018 representing the limit 

movability to left and right, respectively. Compared to Figure 2.6, the bifurcation 

diagram of the non-treatment KP model, Auto shows that the left-side movability of Hopf 

bifurcation is limited, while the right-side movability is strong via linear dynamic 

feedback control with washout filters. 
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(a) 𝒌𝒍𝟏 = 𝟎.𝟎𝟏𝟑 (ultimate movability to left)(b) 𝒌𝒍𝟏 = −𝟎.𝟎𝟏𝟖 (ultimate movability to right) 

Figure 3.5   the bifurcation diagrams of the closed-loop tumor-immune system with linear 

dynamic control along 𝒙𝟏 

 

Besides the movability of Hopf bifurcation, it is shown that the linear dynamic 

feedback control also changes the amplitude and the periods of limit cycles in the “instep 

area”. Consider the KP model with two representative fixed values of the antigenicity, 

𝑐 = 0.02, and 𝑐 = 0.04, presenting Part II (periodic orbits) and Prat III (safe equilibrium) 

of the bifurcation structure of the non-treatment KP model respectively. Figure 3.6 (a) 

and (b) shows the influence of the constant control gain 𝑘l1 to the tumor dynamics. These 

figures compare the tumor involution under the linear dynamic washout control among 

the non-treatment case and two limit-movability cases for the Hopf bifurcation.  

According to the tumor involution, while the range of “safe” single equilibrium 

extends, the amplitude of periodic orbits amplifies at the same time. The increase of the 

amplitude is limited with a limited left-side movability of the linear dynamic feedback 

control. In the other direction, though the bifurcation control with 𝑘𝑙 = −0.18 shrinks the 

region of “safe equilibrium”, it reduces the amplitude of the first tumor explosion and the 

following tumor relapses at lower antigenicity levels. At 𝑐 = 0.02, the control with 𝑘𝑙 =
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−0.18 lead to an around twenty percent reduction in the peak of tumor dynamics, which 

is around 2 × 10−4 after scaling and 2 × 105 cells. In the aspect of the time period, the 

control with 𝑘𝑙 = −0.18 shortens the recurrence period by one third at 𝑐 = 0.02.   

In summary, the linear dynamic feedback control with washout filters is able to 

move the Hopf bifurcation slightly to left and arbitrarily to right. By implanting ACI in 

the designed way, the amplitude of the tumor growth significantly drops at a lower 

antigenicity level. However, this treatment is also at risk of shortening the recurrence 

periods and extending the area where periodic orbits generate.  

 

(a) 𝒄 = 𝟎. 𝟎𝟐                                                         (b) 𝒄 = 𝟎. 𝟎𝟒  

Figure 3.6  The influence of the constant control gain 𝒌𝒍𝟏 to the tumor dynamics of the closed-

loop KP model with linear dynamic control along 𝒙𝟏 

2) Interleukin-2 (𝒖𝟏 = 𝟎, 𝒖𝟐 = −𝒌𝒍𝟐𝒚𝟐) 

A simulation test of linear, dynamic feedback control strategy along 𝑥3 (IL-2) is 

also applied.  However, the numerical analysis of this closed-loop system with 𝑢3 =

−𝑘𝑙3𝑦3 shows no noticeable change in either the tumor dynamics or the bifurcation 

diagram.  
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3.2.4  Amplitude Control with Quadratic or Cubic Dynamic Feedback 

This thesis also studies the effect of amplitude control with quadratic and cubic 

dynamic feedback in ACI and IL-2. There was an expectation that the quadratic or cubic 

dynamic feedback with washout filters could modify the amplitude of the periodic orbits 

in the “instep area”. 

The quadratic dynamic feedback control employs  

𝑢𝑖 = 𝑘𝑞𝑖𝑦𝑖
2 (3.31) 

and the cubic dynamic feedback control employs 

𝑢𝑖 = 𝑘𝑐𝑖𝑦𝑖
3. (3.32) 

where constant 𝑘𝑞𝑖 and constant 𝑘𝑐𝑖 is the quadratic feedback gain and the cubic feedback 

gain, respectively.  

Controllability theories of linear systems do not apply for the linearized nonlinear 

system with dynamic feedback control. The simulation and AUTO results show that there 

is no noticeable change of tumor dynamics with either quadratic or cubic dynamic 

feedback control with washout filters along 𝑥1 and 𝑥3.   

Though the effect of quadratic and cubic dynamic control with washout filters are 

limited in the KP model, it is possible to employ them into other tumor-immune system 

or tumor therapy models that undergo Hopf bifurcations. 
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CHAPTER FOUR  CONCLUSIONS AND FUTURE WORK 

3.1  Conclusions 

This thesis reviews the KP model in bifurcation analysis and part of the open-loop 

treatments with immunotherapies of ACI and IL-2. Based on Kirschner’s works [15] on 

the open-loop control analysis, this thesis also makes an attempt to analyze the region of 

attraction of the open-loop control. Based on the understanding of the tumor-immune 

mechanism explained by the KP model, bifurcation control with washout filters is applied 

to promote the effects of immunotherapies. Different from the open-loop treatment, the 

dynamic feedback with washout filters remains the equilibrium branches of the original 

system. This feature is beneficial to systems under uncertainties, which is a common 

situation in biological models due to individual differences. In the future, the bifurcation 

control with washout filter could be extended into other models of tumor therapies 

undergoing Hopf bifurcations or chaos. 

The classic KP model explains the non-local dynamics of tumor-immune 

interactions involves the effector cells, tumor cells, and IL-2. Two bifurcation branches 

represent the evolution of the tumor population along with the antigenicity. One is a 

single unstable equilibrium point at the origin, which is independent of 𝑐. Within another 

branch, the dynamics of tumor growth changes qualitatively along parameter 𝑐, the 

antigenicity of effector cells. The system possesses a “dangerous” equilibrium close to its 

carrying capacity with a tiny 𝑐. As 𝑐 increases, periodic orbits generate representing the 

neoplasm recurrence. Finally, as 𝑐 passes through the Hopf bifurcation, a “safe” 

equilibrium point appears. 
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It is shown that regular quantitative treatment combing the ACI and IL-2 

constructs a new tumor-free equilibrium point independent of 𝑐. This tumor-free 

equilibrium is locally asymptotically stable. The simulation results show that the region 

of attraction of the tumor-free equilibrium tends to increase as 𝑐 increases. 

It is known that only linear, quadratic and cubic terms are potentially to change 

the stability of a nonlinear system undergoing Hopf bifurcations indirectly via 𝛽2. As a 

result, this thesis applies the linear, quadratic, cubic dynamic feedback control with 

washout filters separately into the KP model. It is shown that a linear dynamic feedback 

treatment with washout filter in ACI is likely to suppress the tumor growth by moving the 

Hopf bifurcation. Qualitatively implanting activated anti-tumor cells flowing the linear 

dynamic control could shrink the amplitude of the tumor recurrences but shorten the time 

periods simultaneously. Simulations and AUTO results indicate that a linear dynamic 

feedback treatment with washout filter in IL-2 presents no noticeable effect, as well as a 

quadratic and cubic dynamic feedback treatments with washout filter in both ACI and IL-

2. 

This thesis attempts to guide the immunotherapies combining ACI and IL-2. The 

behavior of a tumor-immune system highly depends on the antigenicity. A combination 

treatment of ACI and IL-2 have the potentiality to eradicate tumors, but the region of 

attraction turns to reduce as the effector cells become less sensitive to tumor cells. When 

the initial condition is out of the region of attraction, tumor booms up, and this situation 

could be lethal to patients. To avoid this tragedy, implanting the activated anti-tumor 

cells under a bifurcation control with ACI first might be an option when the antigenicity 
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of patients is at a low level. The open-loop treatment could be applied later after that the 

dynamics of the tumor-immune interactions has dropped into the range of action.  

Furthermore, biological systems have individual differences, and it is challenging 

to apply precise measurements in a living system. The bifurcation control with washout 

filters has strength in mitigating the potential negative impact from the modeling 

uncertainties.  

3.2  Future Work 

Further work is needed in the control treatment based on the KP model. Several 

works have been tried to better estimate the region of attraction of the tumor-free 

equilibrium point in the open-loop KP system in section 3.1. Though the results are 

limited, one direction is to find an appropriate Lyapunov function to estimate ROA. It is 

meaningful if the quantitative relationship between the ROA and the antigenicity 𝑐 

becomes clear. 

Bifurcation control, either with or without washout filters, can be good options for 

control applications in tumor treatments and other biological systems. The controlled 

response benefits from remaining the equilibrium structure regardless of model 

uncertainties. This thesis research has also considered and studied a tumor-immune-virus 

system [43] where an equilibrium branch bifurcates to chaos. Control of nonlinear 

phenomena such as bifurcations and chaos in biological systems can be a fruitful research 

area. 
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