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SCALABLE STRING RECONCILIATION BY

RECURSIVE CONTENT-DEPENDENT SHINGLING

BOWEN SONG

ABSTRACT

We consider the problem of reconciling similar strings in a distributed system.

Specifically, we are interested in performing this reconciliation in an efficient manner,

minimizing the communication cost. Our problem applies to several types of large-

scale distributed networks, file synchronization utilities, and any system that manages

the consistency of string encoded ordered data. We present the novel Recursive

Content-Dependent Shingling (RCDS) protocol that can handle large strings and

has the communication complexity that scales with the edit distance between the

reconciling strings. Also, we provide analysis, experimental results, and comparisons

to existing synchronization software such as the rsync utility with an implementation

of our protocol.
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Chapter 1

Introduction

1.1 Motivation

The rise of cloud-based storage systems such as Google Drive, Dropbox, and iCloud

extend the local file system into the cloud. These cloud storage services provide extra

storage space, backup and synchronization, and file sharing across different devices.

The files shared on different machines inspire corporations and allow different users

to view and edit the same files of their latest version. Behind the scenes, these cloud

storage services utilize Distributed File Systems (DFS) software such as Google File

System (GFS) [23], Andrew File System (AFS) [31], and Ceph [59] to support file

availability and consistency everywhere.

The cloud-based distributed file systems interact with client computers to syn-

chronize with the latest version whenever available. Generally speaking, most of the

information updates on the cloud start from client devices such as personal laptops,

smartphones, and tablets which rely on wireless ad hoc network communication that

often disconnect or under restricted bandwidth. The disconnected client devices hold

cached files that may diverge from their copies in the cloud upon asynchronous lo-

cal and remote edits. The system complexity naturally grows with files shared and

edited by multiple users and devices. The basic synchronizing method, downloading

and uploading the entire changed files, has a high communication cost occupying a
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large amount of bandwidth for an extended amount of time. Also, file updates in this

network can be incremental, which means most of the file could be unchanged. We

could exploit the similarities between different file versions and only communicate the

file differences to perform update and synchronization. Therefore, an efficient string

reconciliation protocol that achieves eventual consistency would serve as a natural

foundation for improving such systems.

It is also worth mentioning that the problem of defining authoritative sources

during the reconciliation process is application specific and parallel to our problem.

In large-scale distributed systems, common solutions to this parallel problem include

referencing time from vector clocks and using conflict-resolving data structures such

as the Conflict-free Replicated Data Types [51].

1.2 Problem Definition

The problem of string reconciliation considers two physically separated hosts, Alice

and Bob, that are attempting to reconcile their local versions of a string using the

minimum amount of communication. For example, Alice might have a string “snack,”

Bob has “snake,” and their objective is for Alice to obtain just enough information

upon the string similarity to assemble the string “snake” from Bob.

The most basic way of reconciling string difference is for Bob to transfer the

entire string “snake” to Alice. We refer to this reconciliation method of transferring a

whole string as the Full Sync. The Full Sync method is a baseline protocol that does

not consider similarities between two reconciling strings or allow incremental string

update.
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1.3 Current State of the Art

The current state-of-the-art protocols that handle string reconciliations include [1, 10,

35, 39, 45, 49, 58] which are effective with small size string inputs. Their computation

or communication cost grows in an exponential rate when scaling up the input string

length. The ubiquitous rsync utility [12] based on fixed-size partitioning and Content-

Dependent Chunking protocols such as [47, 62] are capable of handling large string

reconciliation, however, suffer a communication cost that scales linearly in input string

length.

As a widely accepted software, the rsync utility uses a bandwidth efficient al-

gorithm to synchronize files across the network. The rsync algorithm is scalable to

handle large file size and is efficient to synchronize files with great edit distance.

Since creation, the rsync utility has served many occasions that require to maintain

file consistencies and differential backups. The current use of rsync utility exists in

places such as DFS client software that synchronizes files on client hosts with copies

in the DFS [31, 38], GitLab to maintain git repositories [25], and inside of Google

Cloud to synchronize and migrate data between storage buckets [28]. Rsync is also a

standard Linux synchronization utility included in every popular Linux distribution

serving local and remote file synchronization. We compare the performance of our

protocol to that of the rsync utility and show the superiority of our protocol under

certain circumstances.

1.4 Approach

We approach the problem of string reconciliation by reducing it to a similar problem

known as the set reconciliation problem [41] which is explained in Section 2.1. The

key of the reduction is to represent the string as a set of elements, of which each pre-
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serves enough information to be unambiguously pieced back into the original string.

An underlying challenge is to keep the number of symmetric differences between the

string-element sets close to that of the strings dissimilarity metric. We use edit dis-

tance to quantify the differences between two strings including insertion, deletion and

replacement. In all cases, our string reconciliation efficiency goal is to minimize the

total number of bytes transmitted, the number of rounds of communication, and the

amount of computation needed for the entire process.

1.5 Applications

The problem of string reconciliation servers various applications in different large-

scale networks, especially for networks where the connections are restrictive in terms

of bandwidth, consistency, and availability.

1.5.1 Client Synchronization in Distributed File Systems

A direct application of string reconciliation is to maintain file consistency in dis-

tributed systems where incremental file updates is a common operation. According

to a survey on cloud storage services [38], the current standard data synchronization

traffic in cloud storage systems of major vendors can be significantly reduced by us-

ing more economical synchronization protocols. We specifically consider the network

traffic between clients and cloud, where the systems try to sustain file consistency

with client computers. By using string reconciliation, the file systems can maintain

consistency of incremental file edits using the minimum amount of communication.
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1.5.2 Cloud-Based Computing

Another application is to help orchestration software to maintain incremental snap-

shot updates. The orchestration software takes care of fault-tolerance for distributed

systems by keeping snapshots of deployed instances and keeping the data of working

instances periodically. In case of an instance failure, the orchestration software can

spawn the latest snapshot of the instance to continue from the state when it was still

working. The snapshot service prevents an instance from losing all progress, however,

is expensive if not done incrementally [2]. By using string reconciliation, the system

can just save the incremental changes to the snapshot as a disjoint component.

1.5.3 Content-Delivery Networks

Our approach towards the string reconciliation problem can also help with the prob-

lem of distributing large files across content-delivery networks. Transferring large files

with individual point-to-point connections incurs the problem of wasteful bandwidth

consumption [50]. An improvement is to parallelize download operations [7] by ac-

cessing the same file packets from multiple mirror sites. Specifically, an approach

from [8] divides the range of file packets into disjoint sets, each of which can be down-

loaded from a different source. Our approach of reducing a large string into a multiset

of substrings can help divide a whole file packet into disjoint sets of packets to be

unambiguously pieced back later at the destination.

1.5.4 Gossip Protocol

The problem of string reconciliation is also applicable to various types of gossip pro-

tocols that only rely on peer-to-peer communications such as distributing networked

data [57], discovering resource [30], and data synchronization [54]. These gossip
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protocols determine and reconcile the differences between data stored in physically

separated locations in non-centralized systems under minimized communication cost.

1.5.5 Other Use Cases

Other use cases outside the field of computer networking such as symbol sequencing

from a given alphabet which is usually applicable to DNA sequencing corresponds to

RNA and protein [15]. The problem is also useful for fuzzy extractors which are used

in noisy biometric data encryption [14].

1.6 Contributions

We study fixed-rounds protocols for reconciling strings and propose a new scalable

protocol that reduces a significant amount of communication cost compared to exist-

ing works. Our main contributions are thus:

1. We have designed a new string reconciliation protocol whose communication

complexity is sub-linear in string size under certain circumstances. The new

protocol is scalable to long strings.

2. We have provided analysis of our protocol including upper-bound failure prob-

ability, expected and worst-case communication and computation costs.

3. We have implemented our protocol as synchronization utility available for MAC

OS and Linux. We have also evaluated its performance over a variety of inputs,

including a comparison to the current standard rsync protocol.



7

1.7 Outline

The outline of this thesis is as the following. Section 2 includes a definition of the

underlying set reconciliation problem, descriptions of existing bandwidth-efficient set

reconciliation protocols, and a survey of related work in string reconciliation. Section

3 presents and analyzes our novel string reconciliation protocol. Section 4 presents

the performance of the new protocol against different parameters, inputs, and existing

work. Finally, Section 5 states our conclusions and directions of future work.



Chapter 2

Background

2.1 Set Reconciliation

The problem of set reconciliation serves as the foundation of our string reconciliation

approach. The performance of our approach is dependent on that of the underlying

set reconciliation algorithm. We define the problem of set reconciliation as shown

in Figure 2·1. Alice and Bob are hosts with sets of data SA and SB respectively.

The goal is to determine the union of the two sets while transferring their symmetric

differences, elements C and D in our figure, to achieve data consistency between Alice

and Bob. The challenge is to minimize the total amount of communication regarding

the total amount of bits exchanged between the two reconciling hosts.

In the following section, we will introduce some bandwidth-efficient set reconcili-

ation protocols:

• Section 2.1.1 – CPISync [41] is a deterministic though computationally chal-

lenging protocol.

• Section 2.1.2 – Interactive CPI [42] is a practical protocol that recursively uses

the CPISync.

• Section 2.1.3 – IBLT [26] is a probabilistic model based on the Bloom filter

data structure.

8
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Symmetric Difference

Alice

A B D E

Bob

A B C EReconcile

C D

Figure 2·1: The problem of set reconciliation.

• Section 2.1.4 – Strata Estimator [18] uses the Flajolet-Martin algorithm and the

IBLT to estimate the number of symmetric difference between two reconciling

set.

• Section 2.1.5 – Robust-Recon uses a quadtree data structure and the IBLT to

archive single-round set reconciliation without prior knowledge on the upper-

bound of the set symmetric difference.

2.1.1 Characteristic Polynomial Interpolation

The Characteristic Polynomial Interpolation (CPI) set reconciliation algorithm [41]

represents a set by its characteristic polynomials and reconciles based on the polyno-

mial evaluations at a collection of evaluation points. The common knowledge between

the two reconciling hosts includes a set difference upper bound m̄, a finite field that

includes all elements from both sets, and m̄ number of random evaluation points.

The protocol starts with two hosts, Alice and Bob, evaluating their own polynomials

based on all evaluation points. The results are transmitted over for Bob to perform
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finite field division and recover coefficients of the reduced rational function. Without

a prior knowledge on the upper bound of set difference, the protocol goes through

a combination of guessing and verifying to guess a large enough upper bound by

iteratively doubling the m̄ as a guessing value.

The protocol has a communication complexity of O(b(m+k)) where b is the length

of bitstrings representing each element, m is the number of set symmetric difference,

and k is a small redundancy value to reduce the probability of failure. In other word,

the cost of communication is only affected by the amount of symmetrical difference,

regardless of the reconciling set size. Unfortunately, the protocol has a computation

complexity of O((m+ k)3), which makes it only feasible to reconcile a small number

of symmetric differences.

2.1.2 Interactive Characteristic Polynomial Interpolation

The Interactive CPI [42] is a recursive solution to remedy the large computation

complexity of CPI algorithm. It uses the notion of divide-and-conquer, recursively

partitions the reconciling set in different space buckets and reconciles each partition.

The key idea is to keep a small m̄ for CPI to process fast and probabilistically try

to reduce m in every recursive partition to meet with the fixed m̄ value. The full

list of set differences is obtained by taking the union of recovered sets as the last

partition. The controlling parameter of Interactive CPI includes partitioning factor

p, redundancy factor k, and an upper bound for set differences m̄. The k and m̄ are

both parameters inherited from the CPI algorithm. The partitioning factor is the

new parameter controlling the number of partitions in each recursion.

The recursive set partitions is expected to isolate the set symmetric difference

into different buckets and reduce the workload for the CPI algorithm at each step.

However, the worst-case scenario is when all set differences are concentrated at one
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space bucket in every recursive partition causing a extended amount of partitions

without reducing the amount of symmetric differences. The Interactive CPI can

promote the chance of expected-case isolating set symmetric difference into different

partition buckets by hashing the set elements.

The Interactive CPI protocol has an expected computation complexity of

O(mpb(m̄2+k)), which is sufficient for reconciling two sets of data with small amount

of symmetric difference. The communication complexity is between the expected

O(mb) and the worst-case scenario of O(mb2).

2.1.3 Invertible Bloom Lookup Table

The IBLT [26] is a table version of Bloom filter data structure that can be used in a set

reconciliation protocol. The IBLT compresses the entire set of a host into a table of

hash values and extracts the set symmetric difference on another host by inserting all

its set elements. Specifically, Host Alice inserts all of its elements into a two-field table

based on the XOR of all of its inserted elements through r number of designation

hash functions, d1...r(·), and one fingerprint hash function fp(·). The two fields are

referred to as keySum and fpSum respectively. For r number of designation functions

chosen, there are r different locations in the IBLT an element is inserted into, given

the chosen hash functions have low collision rates. When extracting differences, due

to XORsum, the insertion of all set elements from the other host removes the same

elements from the IBLT, adds the differences, and leaves the set symmetric differences

in the IBLT after the process.

To display these symmetric difference left in the IBLT, the algorithm searches for

pairs of keySum and fpSum that satisfies fp(keySum) = fpSum, which indicates that

the keySum itself is one key. The next step is to reinsert this key into the IBLT to

remove it. This peeling process, removing one element at a time could create more
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table cells containing only one element to continue the process, or else the process fails

or ends if IBLT is empty. Based on [26], a full displaying process has a high success

rate if the number of field pairs in an IBLT is at least the size of the symmetric

differences times a small constant. In another word, the size of IBLT determines the

number of set symmetric differences it can recover.

2.1.4 Strata Estimator

The Strata Estimator [18] is a way to estimate set differences by sampling set element

into a IBLT hierarchy using a probabilistic counting algorithm [20]. The estimator

creates 32 IBLT’s of 80 cells, which of which can successfully extract about 60 set

elements. When estimating the symmetric difference between two sets, the estimator

uses a hash function to map all set elements into a space. In the IBLT hierarchy, each

IBLT accepts the elements hashed into their corresponding space. For 32 IBLT’s

accepting elements hashed into a space s, each IBLT corresponds to s
2i
, i = 1, ..., 32

of the space. For example the first IBLT would corresponds to 1/2 of the space

and, therefore, containing about 1/2 of the set elements. To estimate the symmetric

difference, two reconciling set each creates 32 IBLT’s and try to extract set differences

form each pairs of IBLT’s corresponding to the same hash space. The estimator takes

the successfully extracted IBLT that corresponds to the largest hash space and double

the extracted number of symmetric difference as the estimation.

2.1.5 Robust Set Reconciliation

The Robust-Recon [9] targets a data synchronization situation in the context of set

reconciliation problem. The goal is to synchronize data under a known communica-

tion budget at a cost of tolerating incomplete reconciliation. The set differences are

defined by the measurement of Earth’s Mover Distance (EMD) as minimum difference
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matching between two sets. The allowed set differences, if not considered as seeds

of accumulators to large differences, are either considered tolerable or intentionally

introduced. Some example contributors to set differences include data variety from

noise or compression, rounding errors, and privacy-preserving data. By allowing such

differences and avoiding exact set reconciliation, the Robust-Recon provides a condi-

tionally better communication complexity than the information-theoretic lower bound

[41], which is data representing the exact amount of symmetric differences between

two reconciled sets.

The Robust-Recon uses random shift, quadtree data structure, and IBLT. The

random shift plays a role in reducing the probability of failed recovery; The quadtree

data structure is for grouping the similar data from distance measurement, and IBLT

is for compressing set differences to reduce communication complexity.

Quadtree

A tree data structure that recursively partitions a space into four quadrants and

registers the number of elements in each subspace. The root of a tree contains the

entire space of the set and has the value as the number of elements in the set; Each

child of a node has the range of the quadrant as key and count of elements in the

range as value. A full tree would have its leaves each correspond to an element of the

set with value 1. For a visual example, Figure 2·2 shows some elements in 2-D space

and how they would be represented in a quadtree. The difference label on the right-

hand side shows the number of symmetric difference when comparing each quadtree

level for the same set of elements. Since we are comparing the range and the count

of elements in the range, as we go up to the root, the range of each node gets larger,

and level-wise amount of difference gets smaller.

The Robust-Recon protocol is non-resumable and can not benefit from saving pre-
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Figure 2·2: A quadtree visual example.

vious computations. Every reconciliation has to go through the entire process due

to the new choice of points from a random shift. Since IBLT’s setup is the same for

every quadtree level and determines the maximum amount of retrievable differences,

the size of IBLT becomes a tuning parameter controlling trade-off between reconcil-

ing accuracy and message size. By moving up quadtree levels to lower reconciling

differences, the accuracy of reconciliation decreases. Since m̄ is the only controlling

factor for communication cost, Robust-Recon is relating the communication cost as

a trade-off with reconciliation quality. Due to its overhead, the Robust-Recon only

performs better than an exact set reconciliation protocol when the number of large

element differences is much less than the number of tolerable element differences.
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Complexity Communication Computation

Robust-Recon O(αm̄ log(n∆d)log(∆)) O(dn log(∆))

α = Redundancy factor
d = Dimensions of set data
∆ = number of all d integers in a set
n = Number of elements in a set
m̄ = Upper-bound on the number of symmetric difference

Table 2.1: Robust set reconciliation performance.

Fortunately, for a modern applications such as backing-up family photos where data

accuracy is less important, this protocol would perform well under its limitations.

2.2 String Reconciliation

The problem of string reconciliation and its direct application to file synchroniza-

tion inspired a rich body of work including the most wildly used rsync utility [12].

Moreover, some existing algorithms share our approach of reducing the problem of

string reconciliation into a set reconciliation problem including [1, 35, 62, 22]. Other

work such as [16, 49, 63] use error-correcting codes to reconcile strings under limited

amount of edit distance.

In this section, we will elaborate on existing file synchronization protocols, includ-

ing:

• Section 2.2.1 – the rsync algorithm [55],

• Section 2.2.2 – String-Recon [35] based on shingling the input,

• Section 2.2.3 – Uniquely Decodable Shingles [35] that attempts to reduce com-

putation complexity for the String-Recon protocol,
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• and Section 2.2.4 – Low Latency File Synchronization [62] which is based on

content-dependent partitioning.

2.2.1 Rsync

The rsync algorithm [55], later developed into the ubiquitous file synchronization

utility [12] for Linux platform, is one of the most practical solution to the problem of

string reconciliation. The rsync algorithm uses fixed partition and rolling checksum

to recognize the matching data between two strings and reconcile their differences.

In a specific situation as shown in Figure 2·3, between two separate hosts, where

Bob holding string σB wishes to update a similar string σA on Alice. Alice would

first compute 128-bit strong and 32-bit weak rolling checksums for every w sized non-

overlapping partition of σA. She sends all these checksums to Bob where Bob tires to

find all matching data. Bob tries to find matches to his string partitions and partition

offsets by using a windowing method moving w sized window through σB calculating

the checksums for each offset. Upon each checksum calculation, Bob searches for

matching weak and strong checksums from Alice’s checksum list and construct se-

quences of edit instructions for unmatched parts of the string. To save computation

cost, on every iteration where a match is found, Bob sends edit instructions for the

preceding unmatched data to Alice.

The rsync requires host Alice and Bob to communicate data references with re-

spect to absolute position within the string which can not be reduced to a set rec-

onciliation problem. In addition, the number of hashes communicated between Alice

and Bob is linear to the reconciling string length given a fixed block size. Therefore,

the communication complexity is linear to the length of the input string.
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Figure 2·3: The rsync protocol visual illustration.

2.2.2 String-Recon

The String-Recon protocol [1], on the other hand, has a communication complexity

of O(m lg2(n)) sub-linear to the length of reconciling strings, where m is the edit dis-

tance between the pair of reconciling strings and n is the string length. It transforms

the input strings into multisets of fixed length shingles and synchronizes using set

reconciliation algorithms. Unfortunately, the protocol uses an exhaustive backtrack-

ing method while unambiguously piece back the string from a set of shingles, places

exponential computation complexity when scaling up the reconciliation string size.

The String-Recon protocol has the following detailed steps: hosts Alice and Bob

break their input strings σA and σB into two multisets of shingles. The multisets are

made into sets of unique elements, SA and SB, by concatenating shingles with their

occurrences in the multisets. For Alice’s string to be updated, Bob has to compute a

weighted de Bruijn digraph based on SB and trace through the digraph exhaustively

to find all possible path till the path recreates the string. At last, Alice and Bob edit

their modified de Bruijn digraphs from the reconciled two new sets, S ′A and S ′B, and

backtrack the graph to generate σ′A and σ′B.
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k-shingling

The k-shingling method to breaks a string into a set of substrings by a rolling a fix-

sized window through the entire string character by character. The length of the mask

is directly controlling the length of all shingles and the performance of the protocol.

If a mask is very short, each substring will have a higher chance to be duplicated and

increase the backtracking time, and if the mask is too long, the substrings will not

be sufficiently small to be efficient communicated. As a default setting, the shingle

length is set to base 2 log of input string length.

De Bruijn Digraph

The protocol converts a set of shingles back to a string through exhaustively back-

tracking a de Bruijn digraph. The de Bruijn digraph used is a weighted digraph

with each vertex containing an unique first k − 1 characters of a shingle and the last

character as an outward edge. The weight of an edge is the occurrence of the shingle.

The head and tail shingles are made unique by adding stop-word ’$’ at the front

and end of the string. Bob can follow the digraph path while arranging potential paths

at each step in lexicographic order. Every time Bob crosses a path, he decreases the

weight of the path by one. A path dies whenever there is no more exiting path that

has a weight higher than 0 or that the path hits the ends vertex. A complete path

uses up all weights in the digraph. If the resulting string of a complete path matches

with the original one, Bob records the number of complete path he traced before

reaching this path and send to Alice to recreate the string.
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2.2.3 Uniquely Decodable Shingles

As an extension to String-Recon protocol, [35] provides an online algorithm inspecting

the unique decodability (UD) of a string. Upon creating a multiset of shingles of the

input string, the protocol merges shingles that prevents the string from being uniquely

decodable from the set. The online streaming algorithm goes through each character

of the string once and storing the outcome of each increment in a de Bruijn digraph.

In the streaming process, each digraph vertex has two Boolean properties of

whether the vertex belongs to a cycle and if it is previously visited, and each edge con-

necting two vertices contains a value of occurrence. The string is considered not UD

if an incremental character belongs to an existing cycle in the string with a different

prefix or an incremental character is seen before and has a different prefix.

In a shingle-based string reconciliation protocol, hosts Alice and Bob both hold

a similar string and break their strings into shingles of q length. The algorithm uses

q = 2 and believes it could be useful to q-gram, q characters shingle, by dividing a q-

gram before its last character into two parts. Using a set reconciliation protocol [42],

Alice and Bob reconcile their set of shingles and merge the none-UD causing shingles

by combining two bigram vertices into one until the set is UD. The merging protocol

may produce uneven length shingles, but would not affect the decoding process. After

necessary merges, both Alice and Bob sort their set in canonical order and exchange

merged shingle’s indices. The last step is to backtrack a Eulerian cycle which is

guaranteed by this algorithm to obtain a unique reconciled string.

The online streaming algorithm can determine if a string is UD with absolute

confidence. However, adapting the algorithm into a shingle-based string reconciliation

protocol unpredictably increases shingle sizes and raises concerns about the increasing

communication cost. Furthermore, the message size for the merging algorithm has
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the worst case of O(n log(n)) for exchanging indices which would be dominating the

communication complexity, where n is the number of shingles before merging.

2.2.4 Low Latency File Synchronization

The Low Latency File Synchronization (LLFS) protocol [62] uses a content-dependent

chunking method from [53] to partition the reconciling strings into multisets of sub-

strings on the reconciling hosts Alice and Bob where Bob wishes to update the string

content on Alice with his local string. The partitions are hashed and reconciled using

a set reconciliation algorithm. After calculating the symmetric difference between

the two multisets of partitions, Bob sends the Alice her missing string partitions,

bit vectors that indicates partition arrangement differences and unmatched partition

position sequence.

Compare to rsync, the LLFS uses content-dependent partitioning method to max-

imize partition similarities between two reconciling strings with similar content, and

employs the set reconciliation algorithms to avoid sending hash values directly. How-

ever, the protocol lacks a way to reassemble partitions and relies on sending sequence

and bit vectors which, while reducing a large amount of overhead, persists its com-

munication cost on a linear scale to the reconciling string size.
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Chapter 3

String Reconciliation via Recursive

Content-Dependent Shingling

Our Recursive Content-Dependent Shingling protocol is designed to exploit content

similarities between two reconciling strings. The protocol distinguishes differences be-

tween the input strings by reconciling their multisets of substring hashes and transfer

the substrings unknown to the other party. We use a local minimum chunking tech-

nique, inspired by the Rabin-Karp algorithm [34] and the local maximum chunking

method [5], to extract substrings based on non-strict local minima over content hash

values. By using 64-bit hash values to represent string partitions, we create a multiset

of hash shingles concatenating hash values of two adjacent partitions and compose a

de Bruijn digraph by turning shingles into pairs of vertex and edge. We employ one

of the set reconciliation primitives mentioned in Section 2.1 on the hash shingle mul-

tiset with its counter party and then transfer substrings corresponding to hash values

unknown to the other party. Finally, we use an exhaustive Backtracking method [52]

to uniquely decode the multiset of shingles back to a string. We recursively partition

the string to create subpartitions and only transfer the partitions at the bottom level

of the partition tree to reduce required communication cost.

For the following sections, we will elaborate on the protocol details:

• Section 3.1 – Underlying Data Structures presents the construction of partition
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tree and transformation of hashes to a multiset shingles.

• Section 3.2 – Iterated Backtracking describes a modified exhaustive backtracking

method.

• Section 3.3 – The Main Protocol contains detailed procedure reconciling strings

between hosts Alice and Bob.

• Section 3.4 – Expected-Case Analysis presents the Communication, Time, and

Space complexity.

• Section 3.5 – Worst-Case Analysis describes the situation where protocol per-

forms the worst.

• Section 3.6 – Success Rate provides an upper-bound on the overall probability

of failure.

3.1 Underlying Data Structures

Our protocol maintains a content-dependent partition hierarchy based on the p-ary

tree data structure where p is the maximum number of children a node could have. We

build the tree from partitioning a string recursively using a local minimum chunking

method, and each partition corresponds to a node in the tree. Our algorithm requires

reconciling strings partitioned in a similar manner using the same parameters to

increase the chance of common partitions.

3.1.1 Local Minimum Chunking

We adapt the approach from [5] to our local minimum chunking method to partition

a given string based on its content hash values. We obtain the hash values by a rolling
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hash algorithm, as described in Figure 3·1, that could produce pseudo-random values

based on the context of the input string using a fixed window size w and hash space

s. We move the rolling hash window through the input string one character at a time

and hash the w-length substring inside the window to a number in the space s. The

resulted hash value array would be N − w + 1 in length, where N is the number of

characters in the input string.

i H e a r t V i c t o r i a

5 12 7 4 4 11 9 6 13 2 15 8 10

Window for the rolling hash

Figure 3·1: An example of getting content hash values using the
rolling hash algorithm with window size w = 3 and hash space s = 16.

We then partition the string based on the hash value array using a minimum

partition distance h to control the minimum chunking size. Potential partition places

include all locations of non-strict local minimum hashes considering h hash values

in both directions. Shown in Figure 3·2, there are 3 values in the array that satisfy

as non-strict local minimum hashes for h = 2. With the minimum partition length

h = 2, the second hash value 4 is, therefore, not a valid partition spot. Using the

example hash value array, we obtain 3 partitions for the phase “iHeart Victoria”. In

addition, the minimum partition distance also defines an upper-bound on the number

of partitions of a string. The greatest number of partitions of a string is p = N/h.

3.1.2 Hash Partition Tree

We build a hash partition tree based on string partitions from the local minimum

chunking method and hash each string partition by a 64-bit hash function, H(·), to

store in a p-ary tree. From our previous example, we created 3 partitions to fill in the
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5 12 7 4 4 11 9 6 13 2 15 8 10

i H e a r t V i c t o r i a

Block 1 Block 2 Block 3

Minimum values within h positions from both directions

Figure 3·2: An example of content-dependent chunking using mini-
mum partition distance h = 2.

first level of the partition tree, shown in the Figure 3·3. We can grow the partition

tree by creating subpartitions recursively for L times where L is the levels of recursion.

Since we are unlikely to partition a substring further with the same parameters, we

reduce the partition parameters, s and h, at every next recursion level by a fixed ratio

and apply them for the entire level of partitions. In our implementation, we calculate

the partition parameters at each recursion level based on p and L: s = wpL−l+1

and h = N/pl, where l = {1, 2, ..., L}. We consider p and L to be the main tuning

parameters. Figure 3·3 shows a 2-level hash partition tree where we refer the second

level partitions as terminal strings.

The partition tree tolerates changes to the input string without affecting most of

the partitions. For example, if we change the phrase to “Heart Victoria” with the “i”

removed from the front. According to Figure 3·1, the edits to the hash values array

would be removing the first hash value. Figure 3·2 shows that this change would not

affect the the relative partition positions, and the resulting partitions would be “He”,

“art Vi”, and “ctoria”. If we extend our recursive partition level, we also expect slight

changes to the subpartitions in the first branch. Since partition decisions for other

branches are isolated after the first level, the rest of the partition tree should stay the
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H(“iHeart Victoria”)

H(“iHe”) H(“art Vi”) H(“ctoria”)

H(“iH”) H(“e”) H(“ar”) H(“t ”) H(“Vi”) H(“or”) H(“ia”)

L (levels)

Terminal Strings

Level 0

Level 1

H(“ct”)

Figure 3·3: An example of content-dependent partition tree.

same. This property not only shows how small differences between two reconciling

strings are likely to generate similar partition trees, but also allows maintaining a

partition tree for incremental string editions. We avoid terminal strings falling shorter

than their hash representations by setting a minimum terminal string size and skip

further partitions to smaller substrings.

The minimum terminal string size caps the communication cost reduction from in-

creasing the number of partition levels. Normally, by partitioning a string into smaller

substrings, we reduce the amount of literal data to be transferred if the partition con-

tains string edits compared to its counter part. However, if we stop partitioning a

substring further than a certain size, the edits stay in the same substring moving to

the next level of partition tree and do not contribute to additional communication

cost.

Converting a Partition Tree into a Shingle Set

The last step is to transform the partition tree into a multiset of shingles before we use

a set reconciliation algorithm to solve the reduced problem of string reconciliation.
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We start by constructing a de Bruijn digraph at every level using a 2-shingling method

modified from Section 2.2.2. Figure 3·4 shows a de Bruijn digraph created from our

example partition tree at the first level. For each vertex, we create a shingle to

capture the hash values of the previous node, the hash value of itself, and its number

of occurrence within one graph.

H(“iHe”) H(“ctoria”)H(“art Vi”)

0:H(“iHe”):1 H(“iHe”):H(“art Vi”):1 H(“art Vi”):H(“ctoria”):1

Figure 3·4: An example de Bruijn digraph of the level 1 partitions
from the partition tree in Figure 3·3.

To create a hash shingle multiset, we insert all shingles into a set and label each of

them with its level number. For example, Table 3.1 shows the hash shingle multiset

for our example hash partition tree. We reconcile this multiset with the one on the

other reconciling host to obtain a new multiset of shingles. In order to reconstruct

the string from the other host, we need to exclude the shingles not known to the other

host from our multiset.

3.2 Iterated Backtracking

The backtracking starts after both reconciling hosts possess the equivalent shingle

multisets. To reconstruct a string, we need to backtrack the hash shingles from the

lower partition level using an exhaustive method [48]. Our exhaustive backtracking

method uses “brutal force” to trace through all possible Eulerian paths of a de Bruijn
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0:H(“iHeart Victoria”):1:0 0:H(“iHe”):1:1 H(“iHe”):H(“art Vi”):1:1

H(“art Vi”):H(“ctoria”):1:1 0:H(“iH”):1:2 H(“iH”):H(“e”):1:2

0:H(“ar”):1:2 H(“ar”):H(“t ”):1:2 H(“t ”):H(“Vi”):1:2

0:H(“ct”):1:2 H(“ct”):H(“or”):1:2 H(“or”):H(“ia”):1:2

Table 3.1: An example of a multiset of hash shingles from the partition
tree in Figure 3·3.

digraph in lexicographic order. As an example from Figure 3·3, if host Bob would

like to help Alice to obtain the partition string “iHe” for hash value H(“iHe”), he

has to first compute its composition information including the head partition hash

H(“iH”), number of partitions 2, and Eulerian tracing number 1. Bob uses the Depth

First Search algorithm starting from the head shingle 0:H(“iH”):1:1 and searches for

the next potential partitions and increment the Eulerian tracing number every time

he incorrectly traces to 2 shingles. After receiving the composition information, Alice

can then trace through the shingles using the composition information from Bob.

After Alice inquires all unknown terminal strings, she would be able to put back all

partition strings from the bottom up.

3.3 The Main Protocol

We now describe the Recursive Content-Dependent Shingling (RCDS) protocol for

hosts Alice and Bob who wish to reconcile their string σa and σb respectively.
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Recursive Content-Dependent Shingling

1. Hosts Alice and Bob create their hash partition trees from σA and σB respec-

tively using the same parameters and keep dictionaries for hash-to-string con-

versions in a key-val store.

2. Both Alice and Bob export their partition trees into two sets of shingles SA and

SB respectively.

3. Using one of the set reconciliation protocols mentioned in Section 2.1, Alice

extracts the symmetrical differences between the hash shingle sets.

4. Alice remaps her partition tree with all shingles known to Bob.

5. Alice extracts unknown hashes by comparing against her local dictionary, and

requests information from Bob.

6. Bob responds to the hash values of terminal strings by sending the strings as

literal data. For non-terminal hashes, Bob needs to use the exhaustive Back-

tracking algorithm to obtain the composition information and send them to

Alice.

7. Alice computes hash values of the literal data and includes them to her dictio-

nary while uses the composition information to reconstruct all other unknown

partitions from the bottom up. The last string reconstruction at the top level

should give Alice exactly σb.

8. If Bob wishes to obtain the string from Alice as well, he can go through the

same procedure from step 5 at the same time as Alice.

Protocol 3.3.1: Stepping through the Recursive Content-Dependent
Shingling protocol
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3.4 Asymptotic Analysis

The RCDS protocol uses a content-dependent partition that relies on hash functions

to extract string patterns. Therefore, the performance of our protocol is content-

dependent by nature. In the following analysis, we refer to all steps from Protocol

3.3.1 (RCDS) reconciling two similar strings with d number of edit distance. We use

L to denote the number of recursive partition levels, p to represent the maximum of

number partitions at each recursion, h as the minimum inter-partition distance, and

N to be the larger input string size of the two reconciling strings. Since we can not

control the terminal string size directly, we denote the average terminal string size

for the partition trees as T .

We describe the following analysis under the expected-case where we disregard

the possibility of cascading effects from partition mismatch. The partition mismatch

happens when some number of string edits inside a partition changes the partition

end-point compared to its counterpart causing the next partition to start at a different

position in the string, thereby causing a cascading effect. We will explain this concept

with more detail in Section 3.5.2.

3.4.1 Communication Complexity

The RCDS requires O(dLα + dT ) bytes of communication to reconcile two strings,

where α is the overhead constant for the chosen set reconciliation protocol, d is the

edit distance between the two reconciling strings, and T is the average terminal string

size from the partition tree.

The main communication cost of the protocol consists of set reconciliation cost

from Step 3 and transferring of terminal strings from Step 6 under a fixed 2-round

communication. The hash and string composition information transferring from Steps
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5 and 6 are strictly less than the set reconciliation cost and, thus, is not included in

the communication complexity.

For the O(dLα) bytes of set reconciliation communication cost, both CPI and

IBLT algorithms in 2.1 have their communication cost linearly dependent on the

number of symmetric set differences with their individual constant which we included

as α. Our protocol requires to reconcile O(dL) number of symmetric set differences

for the hash shingles. To prove this value, we assume only one edit is made in a

string, the resulting partition tree would have 2L number of symmetrical differences.

Differences are at most doubled in a symmetry. With an additional edit, if the edit

is not within the same terminal string partition, we would have at most 4L − 2

symmetric differences since the level 0 partition is already counted. In general, each

partition level would have at most d number of differences for d edit distance between

the reconciling strings and we count these differences for all levels in the partition

tree as an upper-bound. We concatenate these partitions into shingles as described

in Section 3.1.2 and at most double the number of differences.

At last, in Step 6, if we consider every edit distance is in a separate terminal

string, Bob would then transfer at most O(dL) composition information, and O(dT )

bytes of literal data to Alice. Since T is usually controlled to be a lot bigger than the

size of fixed-length hash representation, therefore, bigger than the size of composition

information, and L is usually a small value logarithmic to the input string length, the

literal data transfer would dominate the communication cost in Step 6.

3.4.2 Time Complexity

The RCDS protocol has a time complexity of O(N lg(h)L+ dLγ) plus the set recon-

ciliation time, where γ is the exhaustive backtracking time reconstructing orders for

partitions of each recursion.
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In Step 1, the protocol requires each reconciling party to expend O(N lg(h)L) time

to initialize a hash partition tree for a given string. We assume the hash computation

takes constant time. For each level of a L-level partition tree, the host requires O(N)

time to compute content hash values and O(N lg(h)) time to partition. Specifically, a

host moves a window of size 2h+ 1 through its hash value array of length N −w+ 1,

where at each movement the host takes O(lg(h)) time to compute the local minimum

value inside the window and compare the minimum with the value at the center of

the window. We achieve a O(lg(h)) time by maintaining a balanced Binary-Search

Tree data structure for storing all values within the window range while inserting the

next incoming value and deleting the exiting value as the window moves.

Backtracking Time Complexity

In Steps 6 and 7, Alice and Bob perform the similar tasks of reconstructing strings

from shingle set which takes O(dLγ) time. The protocol reduces the exhaustive back-

tracking time to a small value, γ, in the expected case. With our exhaustive back-

tracking implementation, each string reconstruction would take time O(pD), where

D is the maximum degree in the de Bruijn digraph and p is the maximum number of

partitions allowed for each recursive partitioning. Using the Depth First Search, we

require p number of traversal steps, and in every step, we can have up to D poten-

tial paths. The degree, D, corresponds to the largest number of occurrences of any

partition within a partition level. Provided no duplicated partition exists, we would

have the best case performance of γ = p. To avoid duplicated partitions, where two

partitions in the same level have the exact same content, we set a lower bound on the

terminal string size large enough to avoid reoccurring partitions. Empirically, our

experiment shows that string reconstruction is not dominating the time cost.

In syntactic content such as programming scripts, D could be a large number due
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to high recurrence of specific syntax substrings which poses a potential exponential

time complexity to our algorithm. However, we can predict the computation feasibil-

ity of our protocol after constructing the partition tree by determining D. Besides,

since our partition method is based on the Rabin-Karp algorithm [34] over string

content hash values, we can change the hash function for an alternative partition tree

that has fewer partition duplicates.

3.4.3 Space Complexity

The space complexity of the RCDS protocol is defined O(pL + dT ) bytes, where we

assume that a fixed number of bytes is representing a hash value of a string partition.

Our hash partition tree constructed in Step 1 has at most
∑L−1

i=0 p
(i) number of

partitions, where p is the maximum number of partitions in each partition recursion

and L is the number of levels within the partition tree. In our partition tree, level

0 refers to the input string and each child node in the partition tree could have up

to p number of children. We multiply the maximum number of nodes in a partition

tree with the space required for every fixed-length hash values. Since the maximum

number of partitions available in a tree is represented by a geometric sum, we simplify

the form to get pL+1−1
p−1 , which could be represented by O(pL). We then transfer the

partition tree into a multiset of shingles in Step 2, which at most doubles the amount

of space required by the partition tree because each shingle is consist of two partition

hashes.

Finally, in Step 6, after Bob sends all requested information for unknown hashes,

Alice would have to save O(dT ) bytes of literal data for unknown terminal hashes in

her dictionary.
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3.5 Worst-Case Performance

When creating a partition tree, both partition mismatch and duplication can intro-

duce a large amount of communication and computation cost. Partition mismatch

can result from string edits or the cascading effect of partition mismatch from previ-

ous partitions or the upper-level partitions of the tree. As for partition duplication,

while it saves some communication cost, the duplicated partitions increase string

reconstruction time exponentially as described in Section 3.4.2.

3.5.1 Sparse String Edits

Since the RCDS protocol requires hosts to transfer all unmatched terminal strings,

string edits are best to occur in one location resulting in the least number of un-

matched terminal strings and internal partitions of a partition tree. If the string

edits are sparse and spread across all terminal strings, we would have to send all

terminal strings as unmatched data. If there is no duplicated terminal partition, then

the number of bytes needed to transmit all unmatched terminal partitions would be

precisely the size of the entire string, and our protocol would perform worse than the

full-sync baseline protocol due to the partition tree overhead.

Moreover, the computation cost is also related to the string edit sparsity. For every

unmatched non-terminal partition, we are required to compute its string composition

information described in Section 3.2 and use it again on the other host to reconstruct

the partition string. If edits are spread across the entire string, we would have to

reconstruct all internal string partitions in the partition tree.
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3.5.2 Partition Probability and Cascading Partition Mismatch

Our local minimum chunking technique guarantees the same partition cut-points given

the same input string and cutting parameters. We define cut-points as the two end-

points of a partition. As described in Section 3.1.2, the ideal case is that a small

number of string edits do not change the partition position related to the string con-

tent, namely the partition with string edits will still have the same start and end

points compared to its counterpart. The characteristic of partitioning at each recur-

sion level depends on parameters including the minimum partition distance h and

the content hash space s described in Section 3.1.2. In this analysis, we present the

probability of local minimum chunking and describe the worst case of partition mis-

match where two partitions share a content relative start point but end differently by

the string edits in the effective area. The effect of partition mismatch can get carried

over to its subsequent partitions causing cascading mismatches.

Partition Probability

We adopt an analysis for strict maximum chunking method from [5] to our non-strict

minimum partitioning method. Our content-dependent chunking parameters include

the rolling hash window size w, the space of content hash s and minimum partition

distance h. The use of rolling hash converts w number of consecutive characters to a

hash value. The array of hash values should occupy the entire hash space and avoid

biased partition decisions from reoccurring string content. In any type of strings,

we would create more unique hashes by hashing longer substrings, since it is more

likely to see unique substrings inside a larger rolling hash window. Generally, we

want |Σ|w >> s, where |Σ| is the size of string content alphabet, so that the intended

space s of the content hash is filled.
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The choices of h and s directly affect the probability of partition. Like we discussed

in Section 3.1.1, the minimum partition distance h controls the upper bound number

of partitions allowed at each recursion. Besides, h is also the window size for the local

minimum chunking method where we look for h content hash values before and after

an arbitrary point to decide whether if it is a potential cut-point. We partition at a

potential cut-point if the location of the cut-point is h distance away from the last

partition end point. In Lemma 3.5.1, we described the probability of an arbitrary

point in a string to be a potential cut-point. If the probability of the cut-point is

too high compared to the string size, we lose the uniqueness of each cut-point. In

the worst-case scenario, where all content hashes have the same value making the

probability of potential cut-point to be one hundred percent, our partition algorithm

would be no different than a fixed-size partition method with its block size equal to

h. On the other hand, if the probability is too small compared to the string size, we

could have no partition at all, and, consequently, not reducing the communication cost

for reconciling the strings. In general, we want O(p) number of potential cut-points

which is roughly equal to string size * cut-point probability.

Lemma 3.5.1. The following is based on [5, Remark 57], given an independent and

identically distributed (i.i.d.) number array A, where A[j] ∈ {0, 1, . . . , s − 1}, j =

{0, 1, . . . , 2h}, and s, h ∈ N+. For any k ∈ {0, . . . , 2h}, the probability that A[k] ≤

A[j] for all k 6= j is given by:

p =
s∑

j=0

1

s

(
j

s

)2h

. (3.1)

Proof. We consider an arbitrary value A[k] within the number array of 2h+ 1 values

to be a non-strict minimum value if all other numbers are equal or larger than said

value. For example, if A[k] = 0 is a minimum value in an array of numbers in the
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range of [0, s− 1] inclusive, then all 2h other values would have to choose from values

that are 0 or above. The probability for all 2h other i.i.d. values being larger than or

equal to 1 is
(
s−0
s

)2h
, because all of these 2h values can be a value from 0 to s − 1.

Since there is an equal chance, 1
s
, for A[k] to be any number between 0 to s − 1

inclusive, we sum up all the probabilities for A[k] ∈ {0, . . . , s − 1} while 2h other

values being greater or equal to A[k]:

1

s

(
s− 0

s

)2h

+
1

s

(
s− 1

s

)2h

+ · · ·+ 1

s

(
s− s
s

)2h

. (3.2)

The last term in the Equation 3.2 is trivial and equals to zero since it is not possible

to choose the value s in the range of 0 to s− 1 inclusive.

According to Equation 3.1, we determine our potential cut-point probability with

parameters h and s as shown in Figure 3·5. Since h = N
p

where N is the string

size and p is the maximum number of partitions at each recursion, the only variable

parameter is s, and we use it to control the number of potential cut-points in a string.

For example, if we want to partition a string of 104 characters with p = 10, then h

should be about 103. According to Figure 3·5, we would want to choose s = 103

so that the partition probability is 10−3, and we could have about 10 potential cut-

points. Since the probability is linear to h and s, we can fix a rate to decrease s and

h as we move down to lower recursive partition levels. We use the same s and h for

all partitions in a recursion level to avoid parameter mismatch. We will generally get

the same number of partitions at each recursion as we move down the partition tree.

In our experiments, we fix the rate of reducing s and h to p and control the maximum

number partitions of each recursion at p.
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Figure 3·5: Potential cut-point probability based on Lemma 3.5.1.

Cascading Partition Mismatch

Like we discussed earlier, a mismatched partition can cause its next adjacent partition

to mismatch as well. Moreover, it is possible that the second next partition is also

affected and so on. Partition mismatch is inflicted by edits within h positions away

from a cut-point. In addition, string edit distance does not directly translate to the

differences in the content hash values.

Lemma 3.5.2. Given d amount of edit distance between the reconciling strings, we

could have O(d ∗ w) number of differences between the content hash arrays, where w

is the rolling window size from Section 3.1.2.

We consider each insertion, deletion, and replacement as one edit. Using a rolling
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window of size w, we create a string content hash array by moving the window from

the start of the string to the end as described in Section 3.1.1. Each hash value is

created by hashing w number of continuous string characters. For each edit, there

would be at the most w number of different values at the edit location. If we are

deleting or inserting a string character, we inherently are truncating or extending the

size of a content hash array by 1 respectively. For replacement edit, there would be

at most w different values at the replacement position without changing the length

of the string or its content hash array. Given d amount of edit distance between the

two reconciling strings, we would have O(d ∗ w) number of different content hashes

at the edit location. The new values that could affect the partition decisions would

either be a new strictly minimum value or the same value as the original minimum

value residing on the left side of the old cutting point.

3.6 Failure Modes

The RCDS protocol can recover a string from a correct partition tree deterministically

using an exhaustive Backtracking method. The only possible causes of failure are hash

collisions and set reconciliation failures.

Theorem 3.6.1. The upper-bound probability of failure using CPISync [41] as the

set reconciliation protocol is:

[
1− exp

(
− (n+ 1)2

2(264 + 1− n)

)]
+m

(
n− 1

264

)k

(3.3)

where n is the maximum total number of partitions created by both reconciling hosts, m

is the total number of symmetric shingle differences, and k is the CPISync redundancy

factor.
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Proof. The first term in Equation 3.3 is the hash collision rate for fixed-length hash

functions and the second term is the failure rate of the CPI set reconciliation. We

can swap these terms accordingly if we change the underlying hash function or the

set reconciliation protocol. Generally the hash collision rate is a function of unique

input collection size and the set reconciliation failure rate is a function depending

on total number of set elements and symmetric differences between the reconciling

sets. In the case of reconciling strings σA and σB on Hosts Alice and Bob, the RCDS

protocol uses set reconciliation to reconcile differences between the two hash shingle

multisets SA and SB. The hash shingle multisets are shingles consist of every two

adjacent partition hashes in each partition recursion. We label their recursion levels

as described in Section 3.1.2 to put them into one multiset and extract set differences

using a set reconciliation protocol. Therefore, the total number of set elements of

our multiset is at most the total number of partitions from both reconciling hosts

and the number of symmetric differences is the number of different hash shingles

between the two multisets. We use the maximum total number of partitions from

both reconciling parties, n, without considering the uniqueness of these partitions to

form an upper-bound.

3.6.1 Collision Probability

During the process of string reconciliation between two hosts, any two different sub-

strings that create the same hash value on either the same or different hosts would

lead to a fatal collision. For universal fixed-length hash functions, the collision rate

Q given n number of inputs can be estimated by the following inequality [46]:

Q < 1− exp
(
− (n+ 1)2

2(2b + 1− n)

)
(3.4)
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where b ≥ 3 is the length of the hash values in bits, while n < 2b−1. Our protocol

produces hash inputs from all partitions in a partition tree. We control the partition

tree size which is the number of nodes in a partition tree by fixing the maximum

number of partitioning, p, at each recursion and the number of recursion levels L.

Therefore, the maximum number of nodes in a partition tree is characterized by

pL+1−1
p−1 , where L, p ∈ N+. We plot Figure 3·6 to give the upper-bound collision

rate using b = 64 and n = 2 ∗ pL+1−1
p−1 , because we are using a 64-bit fixed-length

hash function and the same partition tree parameters to partition the two reconciling

strings.

Figure 3·6: Upper-bound probability of hash collisions vs. number of
recursion levels as a function of maximum number of partitions at each
recursion p.
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In Figure 3·6, we set the effective probability (EP) at 10−10 and consider partition

tree configurations below EP to be effective. For example, if the partition tree is

configured such that p = 4 and L = 7, the probability that we will see a hash collision

is less than about 10−11. To lower the probability of collision given the partition tree

parameters, we could increase the space of the hash values by introducing additional

hash functions or substitute for a longer fixed-length hash. We could also select from

more collision-resistant hash functions. Empirically, our experiments show that the

average number of partitions yield from every recursion in a partition tree is usually

half of the configured value p. Therefore, we have not seen a collision event in our

experiments. However, the average number of partitions from all partition recursions

is content-dependent. This analysis gives a loose upper-bound on the hash collision

probability, which means, in practice, our protocol is much less likely to suffer from

hash collision failures.

3.6.2 Reconciliation Failures

The set reconciliation failure rate varies from one algorithm to another, but generally

considers the reconciling set size |SA| and |SB| and the number of set symmetric

differences m. In Table 3.2, we list the upper-bound probability of failure for some

algorithms mentioned in Section 2.1. All algorithms mentioned here can lower their

probability of failure by increasing their versions of redundancy. For IBLT-based

set reconciliation, we can increase the table size and the number of hash functions,

whereas for CPI-based set reconciliation, we can increase the number of additional

evaluation points.
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CPI Sync [41] mρk

Interactive CPI [42] ρk

IBLT [26] O(m−a+2)

where:
m = Number of symmetric set dif-
ference
ρ = (|SA|+ |SB| − 1)/2b

|SA|+ |SB| = Combined size of the
reconciling sets
b = Size of a set element in bits
k = Additional evaluation points
a = Number of hash functions

Table 3.2: Set reconciliation fail
rate.
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Chapter 4

Evaluation

We implemented1 RCDS protocol as described in Chapter 3.3 and tested against

random strings and random collections of books from Project Gutenberg [29] and

programming scripts from Github2. The two reconciling hosts are organized as parent

and child processes through which they communicate via a socket on one piece of

commodity hardware3. To control the edit distance between the two reconciling

strings, we generate a similar string by randomly inserting or deleting substrings from

parts of the original copy with a controlled overall upper-bound on the edit distance.

We use an edit burst at each insertion or deletion by picking edit length uniformly

at random to mimic the human edits. The edit length is also counted towards the

overall upper-bound edit distance. In the following graphs, for every point, we use

95% confidence interval among 1000 observations.

Our evaluation examines the communication, space, and time complexities de-

scribed in Section 3.4. As a support for the worst case analysis, we also include

empirical results for the percentage of partition mismatches to demonstrate the ef-

fectiveness of recursive content-dependent partitioning. We count the partition dif-

ferences resulting from both string edits and their cascading effects. We present the

1The implementation is available at https://github.com/Bowenislandsong/cpisync.git.
2All testing data set is available in a public github repository at https://github.com/

Bowenislandsong/sync_database.git.
3iMac 2012 with 2.9GHz quad-core Intel Core i5 processor and 8GB of 1600MHz DDR3 memory.

https://github.com/Bowenislandsong/cpisync.git
https://github.com/Bowenislandsong/sync_database.git
https://github.com/Bowenislandsong/sync_database.git
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communication cost as a percentage over the size of the original input string to show

the effectiveness of our protocol, since the baseline protocol is to send the entire string

data over using full-sync. The communication cost includes the total number of bytes

transmitted and received on a reconciling host, including the cost of set reconciliation.

For individual time analysis, we separated the time cost for string reconstruction, set

reconciliation, and partition tree construction arranged in our figures from bottom to

top respectively. The region between set reconciliation time and total time implies

the partition tree construction time.

In this chapter, we compare our protocol against the following:

• Section 4.1 – Different tuning parameters for fixed inputs.

• Section 4.2 – Different string inputs for fixed synchronization parameters.

• Section 4.3 – Comparison with the rsync utility [12].

4.1 Varying Protocol Parameters

To provide a general performance and find the best parameters for detailed analysis in

Section 4.2, we randomly select strings from our data set to accommodate a general

experimental result for different types of strings and compare it with our analytic

analysis in Section 3.4. By fixing the reconciling string size to 1 ∗ 106 characters and

creating a similarly sized copy with an upper-bound of 1 ∗ 103 edit burst distance, we

observe the performance trend by changing the partition tree parameters.

From the graph of communication percentage cost (Figure 4·1), we see a sharp

decline for the amount of literal data transferring as the size of the partition tree

grows with respect to the growth of maximum number of partitions and the number of

recursion levels. Similarly, for mismatched partitions, Figure 4·2 shows the percentage
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of partition difference dropping dramatically as the size of the partition tree grows.

In other words, most of the partitions match with their counterparts and reduces

the amount of literal data needed to be transferred. Combining the two graphs, we

see the result of partition hierarchy successfully isolating string edits while matching

unchanged substrings to lower the communication cost.

Unfortunately, we see a tail raise in Figure 4·1 for the total communication cost as

the partition tree grows, leaving the middle ground as the optimal area. The optimal

area is where the number of unmatched partitions combining with set reconciliation

overhead contributing to the communication cost is not significant enough. Besides,

we see a steady gap increase between the total communication cost and literal data

which describes the communication cost for set reconciliation. This increase in set

reconciliation communication cost is caused by having to resolve more partition dif-

ferences. Even though Figure 4·2 shows that the percentage of unmatched partition

is dropping as the partition tree grows, the actual number of unmatched partitions,

shown in Figure 4·3, is raising, therefore, increasing the communication cost for set

reconciliation.
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Figure 4·1: Stack plot of internal operations in RCDS comparing com-
munication cost for different partition tree parameters. The operations
in the stack plot include CPI-Based set reconciliation and communi-
cation of literal data arranged from top to bottom as regions between
the surfaces. The region between total communication and communi-
cation of literal data is the communication cost of set reconciliation.
The literal data are strings of the unmatched terminal partitions.
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Figure 4·2: Comparing the percentage of unmatched tree partitions
vs. the total number of partitions for different partition tree param-
eters. The percentage of unmatched tree partitions decreases as the
partition tree grows which shows the effective usage of partition hier-
archy.



48

Figure 4·3: Comparing the total number of unmatched tree parti-
tions for different partition tree parameters. The number of unmatched
partitions increases as the partition tree grows and exceeds the fixed
1000 edit burst distance. The extra unmatched partitions are from the
partition tree hierarchy which is reflected by set reconciliation commu-
nication cost rather than the cascading effects of mismatch partitions.
This is confirmed by the communication costs plot in Figure 4·1 where
the set reconciliation cost increases as the partition tree grows while
the amount of literal data transferred decreases.
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In the time complexity graph (Figure 4·4), the string reconstruction time at the

bottom is having the least amount of increase with the same trend as the other oper-

ations thanks to the small amount of overhead. The number of different partitions is

bounded by the fixed number of edit distance. The backtracking time ,γ, as described

in Section 3.2, is small enough to not dominate the total reconciliation time. On the

other hand, the set reconciliation time shows a sensitive increase to the increasing

number of set elements and symmetric differences. At last, the partition tree con-

struction time, shown as the gap between the set reconciliation time and total time,

follows a log-linear increase over the number of recursive levels while staying con-

stantly parallel to the number of partition changes which agrees with our expectation

of O(N lg(h)L).
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Figure 4·4: Stack plot of internal operations in RCDS comparing time
cost for different partition tree parameters. The operations in the stack
plot include partition tree construction, CPI-Based set reconciliation,
and string reconstruction arranged from top to bottom as regions be-
tween the surfaces. The top surface corresponds to the total string
reconciliation time cost.

The space complexity in Figure 4·5 shows a heap size trending that follows the

increase of the partition tree size. We use percentage of space occupation comparing

to the string size to show the effectiveness of space consumption. The majority of the

space is occupied by the partition tree, hash-to-string dictionary, and hash shingle

multiset. We are not counting the space required for accepting literal data transferred

after set reconciliation since we know the worst-case scenario is when the entire string

is transferred as literal data. The hash-to-string dictionary is implemented such that
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each hash values is referring to the absolute location index and its string length

pointing at the original string. For example, in the first level of partition, as we

partition the original string into a few chunks, if the first partition is starting from

the head of the original string with a length of 1000, we register this partition in to

the dictionary as [hash value of the first partition:0,1000]. The partition tree requires

to store pL+1−1
p−1 number of hash values, and hash shingle multiset requires at most

double the size of partition tree since we are concatenating every pair of adjacent

partitions in each partition recursion.

Figure 4·5: Comparing space complexity for different partition tree
parameters. The space requirement increases as the partition tree grows
in size with respect to the number of maximum partitions and recursion
levels.
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By combining all these performances, we observe the optimal performance is when

the level of recursions L = 4, 5 and maximum number of partitions p = 8, 9 to reconcile

1 ∗ 106 character strings. We highlight the importance of tree parameter differences

in the next section by varying the size of input string around 1 ∗ 106 characters and

the edit distance between the input strings while fixing L = 4, 5 and p = 8.

4.2 Varying String Inputs

We compare the reconciliation performance of RCDS protocol under different sized

partition trees by changing the reconciling string size in the range of [105, 2 ∗ 106]

characters and edit burst distance between [10−3, 100]% of the string size. We fix

the number of maximum partitions at each recursion p = 8 and levels of partition

recursion L = 4, 5.

The communication cost percentage in Figure 4·6 shows the amount of edit dis-

tance the protocol can handle at different string length. For shorter strings, the

protocol introduces a relatively large amount of overhead from set reconciliation and

hash representations. The overhead becomes less significant as the size of reconciling

string increases. As expected, the amount of communication also increases with the

edit distance.

Given two fixed tree sizes (i.e., fixed upper-bound on the number of tree nodes),

Figure 4·7 shows the percentage of unmatched partitions varying string size and edit

burst distance. The general trend of increasing difference as the edit burst distance

grows, while staying constant along string length increase, suggests an overall sub-

linear performance with respect to the input string size. We see the 4-level partition

tree gets saturated after the 10% edit burst distance while the 5-level partition tree

still has room to grow. We combine this observation with Figure 4·6 to show that the
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extra partition level helped to break partitions further, and created more matching

terminal partitions to reduce the communication cost.

Figure 4·6: Communication performance reconciling strings of differ-
ent sizes and edit burst distances using L=4 and L=5 level partition
trees with a maximum of p=4 partitions. The performance is measured
by the percentage of the total number of bytes communicated during
reconciliation vs. input string size in bytes. Using partition trees with
a higher number of partition levels adds more overhead to communica-
tion cost when input string size is small but is more scalable to larger
input strings.
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Figure 4·7: Percentage of unmatched partitions vs. the total number
of partitions reconciling strings of different size and edit burst distance
using L=4 and L=5 level partition trees with a maximum of p=4 par-
titions. The unmatched partition percentage of L5 partition tree is
much lower than that of the L4 partition tree when reconciling the
same strings. As the input string length increases, the percentage of
unmatched partitions stays almost constant while increasing in a steady
trend as the edits burst distance grows. The number of unmatched par-
titions is proportional to edit distance, referred as d in the analysis from
Section 3.4.
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Figure 4·8: Total time cost reconciling files of different size and edit
burst distance using L=4 and L=5 level partition trees with a maximum
of p=4 partitions. The time used to reconcile different strings using L4
and L5 partition trees increase linearly to the input string size while
staying almost constant to increasing edit burst distance. Reconciling
strings using L5 partition trees costs more time than that of L4 due
to the extra level of recursive partition creating more partitions for a
given string.
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Figure 4·9: Time cost of every internal operation of RCDS in a stack
plot including partition tree construction, CPI-Based set reconciliation,
and string reconstruction for reconciling different length strings with
1000 edit burst distance. Each curve is fitted with Linear polynomial
curve model with the goodness of fit presented in Table 4.1. The time
cost corresponds to the linear time complexity analysis described in
Section 3.4.
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Goodness of Fit Total Set Reconciliation String Reconstruction

Sum of Squares Due to Error 2.739 0.8379 0.0001

R-Square 0.9995 0.9893 0.9969

Root Mean Squared Error 0.8275 0.4577 0.0045

Table 4.1: The goodness of fit of the linear polynomial curve model
for the time cost of every operation arranged from top to bottom in
Figure 4·9 listed from left to right.

In our implementation, the time cost lies heavily on partition tree construction.

We can reduce this time cost by the number of threads available, using parallel sorting

algorithms mentioned in [55]. As expected, the tree construction time in Figure 4·8

is solely dependent on the size of the input string. It also shows that the string

reconstruction time change is too small to show on the graph due to the small chance

of partition duplication. Since each hash value stands for a relatively long string, an

exact duplication of large string partition is less likely. However, such a chance could

dramatically increase in certain types of content.

We enlarge the range for input string and fix the edit burst distance at 1000 to

elaborate on the time cost for each operation. Figure 4·9 shows the time cost and its

linear fit for constructing partition tree, reconciling set differences, and reconstructing

string from hash shingles, respectively stacked from top to bottom. The gap between

total time and set reconciliation time is the time cost for constructing partition tree.

We also present the goodness of fit for each operation in Table 4.1.

The space complexity in Figure 4·10 under a fixed partition tree size is also depen-

dent the reconciling string size and saturates after a certain point. We see that the

5-level partition tree is, as expected, more capable of handling longer strings and gets

saturated much later than the 4-level tree. This is because the number of partitions
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at each recursion is less likely to approach the maximum number of allowed partitions

if the string is small. By fixing the probability of partition, a longer string is more

likely to have more partitions than a shorter string. Since the space cost is directly

related to the partition tree size, a partition tree with less number of nodes would

require less space.

Figure 4·10: Space complexity reconciling strings of different size
using L=4 and L=5 level partition trees with a maximum of p=4 par-
titions.An L5 partition tree can handle longer strings than an L4 par-
tition tree by creating more partitions in the extra level and find more
common substrings between the two reconciling strings to save commu-
nication cost. However, an L5 partition tree also requires more hash
values to represent the extra partitions, thereby, costing more space.
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4.3 Comparison to Existing Work

We compare the performance of RCDS protocol to that of the rsync utility4 by

synchronizing arbitrary local files and Git repositories using the same hardware as the

previous experiments. The goals are, first, to provide a general idea of the protocol

performance compared to rsync, synchronizing various single files, and, second, to

give a sense of our performance for synchronizing git repositories, which is one of the

applications mentioned in our motivation.

4.3.1 Synchronizing Single Files

For single files, we show a comparison of the communication cost synchronizing text

files of different length under different random edit burst distances. Shown in Figure

4·11, rsync has a communication cost linear to the reconciling string size, due to the

use of the rolling hash technique. In contrast, the RCDS protocol communicates hash

shingles of symmetrical differences with some redundancies which makes the total

communication cost proportional to the string edit distance. The communication

cost is, therefore, staying sub-linear to the increasing reconciling string size.

The Figure 4·12 , shows the plane intersection of the total communication cost

for rsync and RCDS protocol on a 2-dimension graph with respect to the equation:

y = 1.71x− 17.17, (4.1)

where y is the edit burst distance and x is the input string size. Below the line of

plane intersection on the 2-d graph, is where RCDS protocol performs better than

rsync in terms of accumulative bandwidth consumption. We use a linear polynomial

4rsync version 2.6.9 protocol version 29 Copyright (C) 1996-2006 by Andrew Tridgell, Wayne
Davison, and others. http://rsync.samba.org Capabilities: 64-bit files, socketpairs, hard links, sym-
links, batchfiles, inplace, IPv6, 64-bit system inums, 64-bit internal inums.
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surface model to fit the planes of communication cost and present the goodness of fit

in Table 4.2.

Figure 4·11: Comparing RCDS and rsync on the total number of
bytes transmitted reconciling different text files. The green surface
represents communication cost for the rsync utility which grows lin-
early to input string length whereas the blue surface representing the
communication cost of RCDS remains sub-linear to input string length
increase. Both RCDS and rsync require more communication cost to
reconcile strings with more substantial edit burst distance, and RCDS
appears to have a larger overhead.
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Figure 4·12: Line of intersection of linearly polynomial fitted planes
from Figure 4·11 projected to a 2-D plot of edit burst distance vs.
input string length. The blue area defined by the line of intersection
and x-axis describes the circumstances where RCDS performs better
than rsync in terms of communication cost.

Goodness of Fit RCDS rsync

Sum of Squares Due to Error 0.2084 0.0626

R-Square 0.9645 0.9971

Root Mean Squared Error 0.0996 0.0546

Table 4.2: The goodness of fit of the linear polynomial surface model
for planes in Figure 4·11 comparing total communication cost of RCDS
and rsync reconciling various input strings.
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4.3.2 Synchronizing Folders

Gitlab [25] is one of the widely used DevOps lifecycle tools that mostly manages git

repositories among other use cases. Gitlab uses rsync to support repository migra-

tion, synchronization, and backup services which manage between different versions

and states of repositories. We collect some popular repositories and present the per-

formance characteristics of our protocol compared to that of the rsync utility [12].

We utilize a basic heuristic to accommodate folder synchronization by checking file

name and file size to determines if a file is different. We also check the list of files

that RCDS considers different with that of rsync to ensure a fair comparison.

In Figures 4·13 and 4·14, we present the communication and time cost synchro-

nizing the second latest to the latest release version of publicly available repositories,

as of April 17th, 2019. Table 4.3 shows the name and the exact release versions of

the repositories that are used in our experiments. In most cases, RCDS transmits

less data than rsync reconciling repositories between releases.

Figure 4·13 shows the communication cost of synchronizing different releases of

repositories, arranged in alphabetical orders by their repository names. The experi-

ments reveal the communication performance of RCDS synchronizing data from real

human edits. We compare and use the performance of rsync as a baseline. The repos-

itories have varying numbers of files that are also different in size. The edits between

the latest and the second latest release are different from one repository to another.

If the new release introduces a new file, the file will be transferred in its entirety.

In general, when the total difference is small compared to the repository size, RCDS

performs much better than that of rsync, transferring much fewer bytes to reconcile

between releases. However, some repositories, such as Ansible and kubernetes, have a

considerably large number of differences between their releases, which require rsync
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to transfer a large amount of data comparable to the size of the entire repository. In

this case, RCDS performs even worse than rsync because the number of difference is

significant.

There are some repositories that require much less communication cost from rsync

than RCDS, such as Electron, go-github, and react. This could be because that the

number of changed files is small, but the amount of changes to individual files is

significant.

The time cost comparison shown in Figure 4·14 gives the total repository syn-

chronization time of RCDS compared to the rsync utility. Since most of the files in

a git repository are at most 100 megabytes (a rule imposed by GitHub), each file

synchronization time is capped at some constant for both protocols. The general

trend is that the time cost of synchronization is related to the collective edit distance

of all files, between different release versions. Interestingly, some repositories such

as ansible and electron which have fewer differences between releases, require more

amount of time to synchronize than repositories such as kubernetes under both RCDS

and rsync. This discrepancy could be because the kubernetes repository has a smaller

average size of edited files or a more substantial amount of newly created files which

are transferred directly. Nevertheless, we see the performance of rsync exhibiting the

similar trend as RCDS in that the time cost is relevant to the amount of difference

between releases.
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Figure 4·13: Comparing the communication performance of RCDS
and rsync when synchronizing the entire repositories between the latest
and the second latest releases. In most of the cases, the communication
cost of RCDS is much less than that of rsync. The performance includes
all communication cost reconciling edited files between releases. The
average percentage of file edits determines the overall performance of
RCDS and rsync.
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Figure 4·14: Comparing the time performance of RCDS and rsync
synchronizing the entire repositories between the latest and the second
latest release. The time cost is primarily determined by the number of
different files between releases.
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Repository Name Latest Release Second Latest Release

angular.js [3] v1.7.8 v1.7.7

animate.css [11] v3.7.0 3.6.2

ansible [4] v2.8.0a1 v2.7.10

autoscaler [36] vertical-pod-autoscaler-0.5.0 cluster-autoscaler-1.14.0

bootstrap [56] v4.3.1 v3.4.1

cpisync [6] 8b1e9d3 288f8b1

developer-roadmap [33] 2018 2017

electron [17] v6.0.0-nightly.20190404 v4.1.4

font-awesome [21] 5.8.1 5.8.0

git desktop [13] release-1.6.5 release-1.6.4

gitextensions [24] v3.0.2 v3.0.1

go-github [27] v24.0.1 v24.0.0

kubernetes [37] v1.14.2-beta.0 v1.15.0-alpha.1

nuclio [44] 1.1.2 1.1.1

react [19] v16.9.0-alpha.0 v16.8.6

vscode [40] 1.33.1 1.33.0

Table 4.3: Git repository versions used comparing synchronization
performance between RCDS and rsync shown in Figures 4·13 and 4·14.
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4.4 Summary of Performance

The RCDS is a bandwidth-efficient string reconciliation protocol that has its commu-

nication cost linear in the edit distance between the reconciling strings. The protocol

has a specific range of optimal parameters depending on the length of input strings

and applies to various types of string content. Therefore, we can determine a set

of optimal protocol parameters just by looking at the input string length. We see

from Section 4.2 that the protocol is scalable to larger string sizes by increasing the

levels of recursion, trading time cost with communication cost. Depending on specific

situations, the protocol can be adjusted to suit different system conditions in terms

of available computing power and network characteristics.

As a synchronization utility, RCDS performs well reconciling large strings with

small edit distance. The time cost is significantly larger than that of the rsync utility.

We believe that a more efficient implementation could improve our time cost to be

more comparable to rsync time cost. When synchronizing git repositories, RCDS

requires less communication cost than that of rsync when the amount of edits between

repository releases is small and is less efficient in reconciling mostly different repository

releases.
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Chapter 5

Conclusion

We have surveyed the existing algorithms for both set and string reconciliation and an-

alyzed their contributions and weaknesses. For our contributions, we have presented

a new string reconciliation protocol with sub-linear communication complexity that

is scalable regarding the input string size. The protocol integrates the benefit of par-

titioning and shingling techniques and uses a backtracking algorithm with reduced

computation cost to rearrange reconciled partitions. The protocol successfully takes

advantage of set reconciliation using reduced communication cost without introducing

too much redundancy under the expected case. Finally, we compared our protocol

performance to that of rsync using our open source implementation.

From our results, the RCDS is proven to be a scalable string reconciliation proto-

col to large-size string data, minimizing the communication cost using a reasonable

amount of computation. Although the RCDS is a content-dependent protocol, its

optimal parameters are still mostly dependent on the input string size, which makes

parameters readily determined by reconciling string size. The RCDS can also control

the trade-off between the time and communication cost to fit into different networks

and system conditions considering computing power and network characteristics. The

RCDS has a lower communication cost compared to the rsync utility synchronizing

folders and files when the amount of edit is small and concentrated in a few locations;

conversely, the RCDS is terrible to reconcile a large number of sparse edits.
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Overall, our algorithm is a bandwidth-efficient protocol for reconciling ordered

data. Our application includes situations like incremental file updates, consistency

maintenance, and content distribution in distributed networks; especially with wire-

less networks involving long ranged transmissions where the bandwidth of the com-

munication is highly restrictive.

5.1 Future Work

We believe that our protocol can benefit from sufficient parameter studying for dif-

ferent types of data and string size. Furthermore, if we use different but similar

underlying data structure, the overall performance of the protocol can change dra-

matically. Finally, while not explicitly stated, our partition tree supports incremental

changes to the input strings. By maintaining a partition tree, we can reduce the

overhead for each reconciliation.

5.1.1 Parameters and Data Structures

The existing synchronization protocols such as the rsync utility, has its performance

determined by parameters like block granularity [38], of which is adjusted by different

implementations for synchronizing different types of data. Likewise, we can also

improve our protocol performance by studying its parameters, since the performance

of our protocol is content-dependent by nature.

5.1.2 Underlying Algorithms

In our protocol design, we combine a local minimum chunking method with set rec-

onciliation algorithms. Although not explicitly compared, using different set recon-

ciliation protocols yields different performances. For example, the IBLT [26] is a
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probabilistic model that has a large communication overhead, whereas the CPI [41]

takes a longer time to resolve set differences. Moreover, we can explore other chunk-

ing methods mentioned in [5, 32] such as the chunking method in the Low Bandwidth

File System [43] to increase the amount of matching partitions or reduce partition

time.

In addition, an alternative design to our partition tree is to compute recursive

partitions based on the minimum terminal string size without fixing the levels of

partitions. For example, after the first iteration of chunking, we can compare the

partition hashes with its counter-party and only continue to partition the unmatched

substrings until the terminal string size. While this iterative method increases the

number of communication rounds, it might help to reduce the overall communication

cost.

5.1.3 Incremental Partition

One of the weaknesses of the RCDS protocol is the time cost for constructing a

partition tree in each reconciliation. While the cost can be reduced by using parallel

sorting algorithms [55], we believe some future work to formalize maintaining partition

trees for incremental edits can reduce the overhead of the protocol and supports

continuous [60] and resumable [61] file synchronization.

5.1.4 Hybrid Approach

At last, we can also improve our protocol by combining the RCDS with other protocols

to complement our deficiency at reconciling strings with sparse or a large number of

edits. We can first assess if our protocol is fit to reconcile the strings by constructing

the partition tree for both reconciling parties. We could use Strata Estimator (Section

2.1.4) to guess the amount of partition tree difference to predict the amount of time
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and communication needed to reconcile the string. We could quote the amount of

communication cost by estimating the number of terminal partitions that are different

and take the average terminal string size to give an estimation. Such estimation could

also be useful for general string edit distance estimation aside from our reconciliation.

In the end, we could decide if we should use RCDS for reconciling the target strings.
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