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Let us not, however, flatter ourselves overmuch on account of our human
victories over nature. For each such victory nature takes its revenge on
us. Each victory, it is true, in the first place brings about the results
we expected, but in the second and third places it has quite different,
unforeseen effects which only too often cancel the first.

— Friedrich Engels, Dialectics of Nature (1883)
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ABSTRACT

Over 50 years ago, the United States Secretary of the Interior, Stewart Udall,

directed space agencies to gather “facts about the natural resources of the earth.”

Today global climate change and human modification make earth observations from

all variety of sensors essential to understand and adapt to environmental change.

The Landsat program has been an invaluable source for understanding the history

of the land surface, with consistent observations from the Thematic Mapper (TM)

and Enhanced Thematic Mapper Plus (ETM+) sensors since 1982. This dissertation

develops and explores methods for enhancing the TM/ETM+ record by fusing other

data sources, specifically, Landsat 8 for future continuity, radar data for tropical forest

monitoring, and meteorological data for semi-arid vegetation dynamics.

Landsat 8 data may be incorporated into existing time series of Landsat 4-7 data

for applications like change detection, but vegetation trend analysis requires calibra-

tion, especially when using the near-infrared band. The improvements in radiometric

quality and cloud masking provided by Landsat 8 data reduce noise compared to

previous sensors.
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Tropical forests are notoriously difficult to monitor with Landsat alone because of

clouds. This dissertation developed and compared two approaches for fusing Synthetic

Aperture Radar (SAR) data from the Advanced Land Observation Satellite (ALOS-1)

with Landsat in Peru, and found that radar data increased accuracy of deforestation.

Simulations indicate that the benefit of using radar data increased with higher cloud

cover.

Time series analysis of vegetation indices from Landsat in semi-arid environments

is complicated by the response of vegetation to high variability in timing and amount

of precipitation. We found that quantifying dynamics in precipitation and drought

index data improved land cover change detection performance compared to more

traditional harmonic modeling for grasslands and shrublands in California.

This dissertation enhances the value of Landsat data by combining it with other

data sources, including other optical sensors, SAR data, and meteorological data.

The methods developed here show the potential for data fusion and are especially

important in light of recent and upcoming missions, like Sentinel-1, Sentinel-2, and

NASA-ISRO Synthetic Aperture Radar (NISAR).
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Chapter 1

Introduction

1.1 Background

The Landsat Program, spanning over 40 years, provides the longest and most infor-

mative satellite record of our changing planet (Loveland and Dwyer, 2012; Roy et al.,

2014). After spending most of its lifespan operating with a pay-for-access model, the

Landsat archive was finally made freely available in 2008 and methods that take ad-

vantage of this data policy quickly proliferated (Wulder et al., 2012). These methods

that work on time series of Landsat data have been used extensively to map forest

cover change (Kennedy et al., 2007; Asner et al., 2009; Kennedy et al., 2010; Huang

et al., 2010; Vogelmann et al., 2012; Zhu, Woodcock, and Olofsson, 2012; Verbesselt

et al., 2012; Zhu and Woodcock, 2014; Brooks et al., 2014; Hansen et al., 2014),

including a study that mapped global forest cover change between 2000 and 2012

at Landsat’s 30m resolution (Hansen et al., 2013). This critical information on the

magnitude and spatial patterns of forest change has also been extended to 1990 (Kim

et al., 2014) using Landsat data. While many recent Landsat time series applications

have focused on identification of forest cover change, some methods have attempted

to identify changes in all land covers (Zhu and Woodcock, 2014) or classify specific

agricultural crops (Yan and Roy, 2015). Landsat time series also provide unique

traits suitable for combination with lidar data for estimation of forest biomass as dis-

turbance information from Landsat MSS through ETM+ have improved estimates of

forest biomass (Pflugmacher et al., 2012). Consistent and continuous Landsat obser-
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vations enable the transition from static snapshots of ecosystem properties to charac-

terization of processes and dynamics of interest to ecologists (Kennedy et al., 2014),

including phenology (Melaas et al., 2013) and insect infestations (Meigs et al., 2011).

Refined information about dynamics within human systems is now also a target for

Landsat based research because Landsat’s long time record, locally relevant spatial

scale (Hansen et al., 2013), and recent advances in mapping frequency enables the

analysis of change in land cover within the context of socioeconomic or policy drivers.

Such efforts include the monitoring of forest cover change to address policy questions

in regions (Kennedy et al., 2012; Griffiths et al., 2012) or nationally using wall to wall

maps (Hansen et al., 2014) and within a sampling framework (Masek et al., 2013),

and comparing rates of urbanization across rapidly growing cities (Schneider, 2012).

1.2 Survey of Remote Sensing Time Series Change Detection
Methods

The classic two-date direct classification of change approach for monitoring of land

cover change infers land cover change based on the difference between the two images.

Time series methods are an extension of this idea in that they compare observations

through time against one another, but there are generally many more observations

and the comparisons can also incorporate non-discrete changes, such as trends in spec-

tral reflectance. Kennedy et al. (2007) was one of the first studies to perform time

series analysis of relatively large stacks of multi-date time series data from Landsat,

but more importantly they introduced the conceptual model of understanding land

surface processes as trajectories and not discrete events that take place between im-

ages. A change in a riverbank from land to water over ten years is a discrete event in

a two date change map, but ten years of spectral reflectance trajectories might relate

to geomorphological processes. Kennedy et al. (2010) generalized the idea of mapping
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against idealized trajectories to fitting “segments” that describe processes occurring

between two points in the time series with the development of the LandTrendr al-

gorithm and the associated interpretation tool TimeSync (Cohen et al., 2010). A

segment might represent a period of forest regrowth, and the trend over time of

the shortwave infrared band might be used as the basis of classification of segments

as regrowth trajectories. This conceptual model of time series analysis in remote

sensing is very useful and has seen adoption, especially for parts of the community

using Landsat time series analysis for land monitoring. Algorithms like Breaks For

Additive Season and Trend Monitor (BFAST Monitor; Verbesselt et al., 2012) or

Continuous Classification and Change Detection (CCDC; Zhu and Woodcock, 2014)

can produce results that can be described using similar terms, and the applications

of the algorithms usually rely on interpreting segments. Kennedy et al. (2014) and

Pasquarella, Holden, Kaufman, et al. (2016) more explicitly link segments estimated

using time series of Landsat spectral reflectance to landscape and ecosystem processes

and conditions.

While other studies have attempted to summarize and categorize the entire gamut

of time series approaches used by the community (Hansen and Loveland, 2012; Zhu,

2017), many components in this dissertation are either directly related to or inspired

by three main types of time series change detection algorithms: “offline” segment

fitting, “online” anomaly monitoring, and “class membership” monitoring.

“Offline” segment fitting refers to approaches that analyze the entire time series

at once and attempt to decide how many segments should be fit to best describe

the time series without overfitting. Examples include LandTrendr (Kennedy et al.,

2010), Break Detection for Additive Season and Trend (BFAST; Verbesselt, Hynd-

man, Zeileis, et al., 2010; Verbesselt, Hyndman, Newnham, et al., 2010).

“Online” residual monitoring, by contrast, iterates through the time series and
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makes judgments about fitting segments based on new and past observations. A very

simple online monitoring algorithm is the Cumulative Sum (CUSUM; Page, 1954)

test run on the recursive residuals from a time series regression model (Ploberger

and Krämer, 1992). The Vegetation Continuous Tracker (VCT; Huang et al., 2010)

algorithm, which finds change by looking for ununsually large cumulated z-scores,

is another example of an “online” change detection method. Break Detection for

Additive Season and Trend Monitor (BFAST Monitor; Verbesselt et al., 2012) is based

on the MOSUM test on recursive residuals. Exponentially Weighted Moving Average

Change Detection (EWMACD; Brooks et al., 2014) is based on the EWMA test on

recursive residuals. Continuous Change Detection and Classification (CCDC; Zhu

and Woodcock, 2014) is based on a custom approach of monitoring for consecutive,

abnormally large residuals, which has some basis in the literature for EWMA.

Although not as related, methods that rely heavily on time series of class member-

ship are useful to describe within the framework of segments. As described previously,

the VCT algorithm is an “online” change detection algorithm that monitors z-scores,

specifically z-scores based on the mean and standard deviation of examples of for-

est land cover. The use of class probabilities or similar metrics is also the basis of

the Hansen et al. (2013) approach to mapping global forest cover change. Hansen

et al. (2013) use decision trees to generate predictions of tree cover on yearly time

scales based on training data iteratively collected by interpreters. Bayesian updating

has been used to monitor for changes in time series of forest probabilities using a

threshold approach (Reiche, de Bruin, et al., 2015; Reiche et al., 2018), and Hidden

Markov Models have been employed similarly in situations when there is knowledge

of the likelihood of land cover transitions among classes (Solberg et al., 2008; Trier

and Salberg, 2011; Salberg and Trier, 2011).
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Common limitations and strengths

For classic two date change detection, the two dates of imagery do not need to be

radiometrically matched or atmospherically corrected (Song et al., 2001) because

differences in measurement due to the atmosphere can be accounted for as simple

differences in stable classes. For example, if the NDVI for two dates of a perfectly

stable forest are 0.6 and 0.5, the 0.1 difference might be attributable to atmospheric

interference. A deforested example, however, would have NDVI differences much

larger. By comparison, time series methodologies require either relative correction,

as the trajectory based monitoring precursor to LandTrendr (Kennedy et al., 2007)

and Hansen et al. (2013) used, or a physically based atmospheric correction routine

to normalize for atmospheric influences to make observations directly comparable

(Song et al., 2001). This limitation is not as large as it once was due to fairly robust

algorithms for surface reflectance correction applied as standardized products (Masek

et al., 2008).

Another common limitation for change detection methods is image availability.

Two-date change detection approaches could work with several years of gaps in image

availability, assuming that whatever change process occurred within the gap years

did not yield reflectance that look exactly like the previous land cover. Methods

such as LandTrendr, VCT, CCDC, and BFAST Monitor generally require at least

one observation each year, with LandTrendr and VCT requiring this observation to

be within an “anniversary date” window. In situations with missing observations,

these values could be estimated using smoothing or interpolation, but the accuracy of

the change detection might suffer. Because they fit complicated models and require

many observations of change, CCDC and BFAST Monitor are especially sensitive to

missing observations. Time series methods will not work in all places all the time if

observational frequency is too low.
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The basis for time series methods is the comparison of observations against them-

selves, which makes it particularly challenging when there is no basis for comparison

as in the start and the end of the time series. Algorithms like CCDC and BFAST

Monitor use many coefficients to predict reflectance, and so the initialization period,

or the “historic” period, is highly affected by noise and there may be false positives

detected if the initial models are fit poorly. Likewise, LandTrendr has difficulty with

the start and end of the time series since it compares any given observation against

the previous and future values (Kennedy et al., 2010). The VCT may not have such a

difficult time understanding the beginning and end of the time series because it uses

derived values (i.e., a forest z-score), but it still has difficulty in assessing change due

to the usage of consecutive derived values.

One of the largest strengths of time series analysis for change detection is the

ability to understand the process by which two dates of reflectances may differ. In the

case of a regrowing forest, an image acquired in 2000 right after deforestation might

look like a barren area or perhaps a shrubland. By 2010, the forest has matured and

will probably look much more like a forest. If two date change detection classification

were performed in this scenario, one might infer that there was some very quick

landscaping that occurred which sprouted trees magically by 2010. A time series

approach would be able to capture the real signal of a slowly regrowing forest and infer

that there was no sudden land cover change which grew a forest, but that there was

some measurable rate of growth. The trend through time in NDVI, for example, might

be related to the accumulation of leaf area which could yield additional information

about the dynamics of the system.
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1.3 Structure of this Dissertation

My dissertation research explores and provides new methods of analysis for difficult

problems in the land cover and land use monitoring community while attempting to

confront the ever growing volume of earth observation data available to investigators.

The change in policy that made the Landsat archive free and openly available (Wulder

et al., 2012) has fundamentally enabled all of this work, and each chapter explores

how to incorporate new information with this Landsat historical archive of TM and

ETM+ data.

1.3.1 An analysis of Landsat 7 and Landsat 8 underflight data and the
implications for time series investigations

The Landsat Program’s latest satellite, Landsat 8, was given the name the “Landsat

Data Continuity Mission” during its development because of the recognition of the

importance for data continuity. Being the first Landsat satellite launched in almost

fifteen years, Landsat 8 had significant technological improvements over previous

sensors, including narrowing some of the wavelengths of spectral bands, radiometric

or geometric improvements from switching to a pushbroom sensor, and the addition

of a new spectral band specifically designed for detecting aerosols. In this chapter, I

use data from special Landsat 7 and Landsat 8 “underflight” orbits and almost two

years of Landsat 8 time series data to quantify the benefits to time series analysis

from these sensor improvements and answer if Landsat 8 can be seamlessly integrated

into existing time series of Landsat data.

1.3.2 Forest Change Detection By Radar/Optical Fusion

The Landsat data archive is invaluable and has been applied for global applications

including forest monitoring since 2000 (Hansen et al., 2013) or since 1990 (Kim et al.,

2014), but the historical archive is far from globally consistent (Wulder et al., 2016).
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There are places and time periods where data intensive time series analysis from

Lansat alone will not be possible because there simply aren’t enough observations

historically. While observation density from optical data might not be as much of

a problem with two active Landsat and Sentinel-2 sensors, high frequency data is

important for near real time monitoring of the land surface and some places on Earth

have near persistent cloud cover for months at a time. Fusion of radar data sources

has been offered as a possible solution to these issues (Joshi et al., 2016; Reiche

et al., 2016), but few studies have evaluated the benefit of the fusion (Joshi et al.,

2016). This study attempts to fill that gap by developing two fusion algorithms and

assessing the difference in performance when fusing optical and radar data for change

monitoring.

1.3.3 Landsat Time Series Meteorological Data Fusion In Semi-Arid Ecosys-
tems

Vegetation phenology and other dynamics related to abundance and variability are

very important biogeochemical processes because leaves are the primary exchange

surfaces for fluxes of carbon and water. While various communities have studied

these questions that relate to the timing and variability of greenness, frequently by

incorporating data describing environmental drivers of plant ecophysiology, the land

cover change community has typically focused on mapping abrupt changes over more

gradual or subtle variability in recent time series investigations. Indeed, many al-

gorithms have developed routines to reduce the impact of year to year variability

associated with changes to precipitation or heat. This final study of my dissertation

attempts to bridge this divide by trying to determine if incorporating meteorology

into time series change detection methods improves change detection performance

in the semi-arid grasslands, oak savannas, shrublands, and coniferous forests of the

Central Valley in California. I test to see if change detection performance, either
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commission or omission, can be improved by using precipitation and drought index

data, and analyze the estimated relationships between precipitation and vegetation

greenness.

1.3.4 Summary

This dissertation provides new methods of integrating data from multiple sensors in

order to better monitor Earth’s natural resources, including how climate variability

and direct human action enhances or degrades these resources. Monitoring of the land

surface continues to grow in importance, and this dissertation offers new methodolo-

gies and advice for meeting those issues that take advantage of the simultaneously

increasing data availability and computational power.



10

Chapter 2

An analysis of Landsat 7 and Landsat 8
underflight data and the implications for
time series investigations

2.1 Introduction

Technological advances since the development of Landsat 7 and the move from a

whiskbroom to a pushbroom style sensor have greatly increased the measurement

accuracy of Landsat 8 data. The signal to noise ratio (SNR) on Landsat 8’s OLI is

much higher than the mission specifications and an order of magnitude higher than

the SNR on Landsat 7 (Knight and Kvaran, 2014; Morfitt et al., 2015) while the in-

crease to 12-bit radiometric resolution extends the range of measurable radiances and

reduces pixel saturation (Morfitt et al., 2015). The geometric accuracy on Landsat

8 is astounding and meets or exceeds all mission requirements (Storey et al., 2014).

The absolute geolocation accuracy of Landsat 8, in particular, improves so much on

the mission specifications that it will be used to improve the geometric accuracy of

the entire Landsat archive by improving ground control points in the Global Land

Survey (GLS) network. Improvements to onboard storage and ground transmission

capacity enable Landsat 8 to acquire 60% more image scenes per day than Landsat

7 as of 2014 (Roy et al., 2014) and currently approximately 725 scenes are acquired

per day. This increased image acquisition frequency will help further reduce differ-

ences in image availability due to geographic variation in observation conditions and
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ground receiving station access (Kovalskyy and Roy, 2013). Landsat 8 continues the

legacy of the Landsat program by providing much higher quality and quantity Earth

observations vital to time series investigations.

Designed to continue this legacy, the spectral band specifications for Landsat

8’s Operational Land Imager (OLI) sensor are, for the most part, very similar to

previous sensors (see Table 2.1). Several spectral bands have been narrowed slightly

to provide more precise measurements that are less correlated with other bands. The

near infrared band on Landsat 8 (OLI Band 5) changed the most compared to other

bands as it was narrowed substantially from 0.77 µm to 0.90 µm on ETM+ to 0.85 µm

to 0.88 µm specifically to avoid an atmospheric water absorption feature at 0.85 µm.

As such, we might expect near infrared measurements from Landsat 8 to be brighter

than from previous Landsat sensors. The first shortwave infrared band (ETM+ band 5

and OLI band 6) also narrowed significantly and the second shortwave infrared band

(ETM+ band 7 and OLI band 7), while it did not change as much, now excludes

wavelengths (>2.3 µm) with the strongest spectral response function in ETM+ band

7 (Flood, 2014).

The changes in spectral bandpasses are an improvement over previous sensors,

but one that may affect the comparability with previous sensors. Li et al. (2013)

analyzed Landsat 7 and Landsat 8 surface reflectance and vegetation indices in four

land cover types. They found differences in spectral bands between the two sensors

that contributed to further differences in vegetation indices, especially when using

indices calculated using the visible bands. Zhu, Fu, Woodcock, Olofsson, Vogelmann,

Holden, et al. (2016) analyzed land cover change and dynamics within the rapidly

urbanizing city of Ghuangzhou, China and found the NDVI to be positively biased

when adding Landsat 8 into time series of Landsat 4, 5, and 7. Flood (2014) used 793

cloud free 8-day pairs of images over 123 Landsat scenes in Australia to assess the
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difference between Landsat 8 and Landsat 7 top of atmosphere (TOA) and surface

reflectance, including how the differences propagate in biophysical models. Differ-

ences in TOA reflectance were close to 1% for all bands except the near infrared and

second shortwave infrared which were brighter by 6% and 3%, respectively. Surface

reflectance correction using the methods of Flood et al. (2013) reduced these differ-

ences to within 1 to 2% for all bands except the blue band (ETM+ band 1 and OLI

band 2). Unadjusted surface reflectance inputs to a fractional cover model created

biased estimates relative to Landsat 7 with bare cover underestimated by 5% and

vegetated cover overestimated by 7%. The differences in surface reflectance estimates

were systematic and adjustable using a simple linear regression. Landsat 8 adjusted

surface reflectance values produced fractional cover estimates equal to estimates from

Landsat 7. Flood (2014), however, also noted that there was some variance across the

123 scenes in the relationship between Landsat 7 and Landsat 8 surface reflectances

and that the corrections performed are not likely to be extendable beyond the study

area. Mishra et al. (2014) used Landsat 7 and Landsat 8 data in combination with

simultaneous or near simultaneous EO-1 Hyperion acquisitions to assess differences

in cross-sensor calibration. EO-1 Hyperion was used to develop Spectral Band Ad-

justment Factors (SBAF) that corrected for the measurement differences due to dif-

ferent spectral bandpasses. Once the SBAF were applied to Landsat 8 data, TOA

reflectance differences in a near simultaneously acquired Landsat 7 and Landsat 8

image pair were less than 2% for all analogous bands except for a 4% difference in

the near infrared.

Landsat 8 includes a new band in the mid-infrared centered on 1.375 µm that is de-

signed specifically to find cirrus clouds in Landsat OLI imagery (Loveland and Dwyer,

2012; Irons et al., 2012; Roy et al., 2014). Successfully used on the Moderate Reso-

lution Imaging Spectrometer (MODIS) instrument, this band significantly improves
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upon alternative methods of detecting cirrus clouds by at least an order of magnitude

(Gao and Kaufman, 1995). Without such a tool, cirrus cloud detection in histori-

cal Landsat imagery was significantly more difficult. For example, an analysis of all

Landsat images acquired during the first year over the conterminous United States

found that 7% of the data were identified as low confidence cloud but high confidence

cirrus clouds, suggesting that 7% of historic Landsat data may be contaminated with

cirrus clouds (Kovalskyy and Roy, 2015). While the percent of undetected cirrus

clouds may vary across the globe, this result highlights another difference between

Landsat 8 and previous sensors that may be important when combining datasets.

2.1.1 Objectives

As previous studies have indicated (Li et al., 2013; Flood, 2014; Mishra et al., 2014),

the change in Landsat 8’s spectral bandpasses create differences in radiance and

reflectance measurements relative to Landsat 7. While these studies have provided

excellent evidence on the differences between sensor, they have not assessed sensor-

specific differences in the Landsat Climate Data Record (CDR) community product.

The Landsat CDR product is designed to improve on the Level 1 Product usability

by providing atmospherically corrected Landsat data and uses different algorithms

for Landsat TM/ETM+ and Landsat OLI data. Because any potential differences

in the correction algorithms might enhance target specific differences due to spectral

bandpasses, it is important to assess the relative consistency of the CDR products

across sensors. Finally, it is still unclear how differences between Landsat 8 and

previous sensors are manifested in time series analyses.

To assess the potential differences between Landsat 7 and Landsat 8 characteristics

in the Landsat CDR product, we posed the following questions:

1. Do Landsat 7 and Landsat 8 spectral reflectances from CDR differ significantly?
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If so, what is the nature of the differences?

2. Are time series of Landsat 7 and Landsat 8 data different? What is the effect

of combining data from the two sensors?

3. What are the spectral characteristics of cloud and cirrus clouds masked by

Landsat 8 but omitted in Landsat 7 data?

4. Are the cloud masking improvements in Landsat 8 apparent in time series?

2.2 Datasets

Atmospheric correction of Landsat 7 and Landsat 8 data within the Landsat CDR

is performed using two different algorithms driven by different input ancillary data.

Landsat 7 data are corrected using the Landsat Ecosystem Disturbance Adaptive

Processing System (LEDAPS) algorithm (Masek et al., 2006) while Landsat 8 data are

corrected using “L8SR”, a newly developed algorithm that takes advantage of some of

Landsat 8’s new sensor characteristics (U.S. Geological Survey, 2015). The LEDAPS

algorithm retrieves surface pressure, water vapor, and air temperature inputs from

the NOAA National Centers for Environmental Protection (NCEP) reanalysis dataset

while L8SR calculates surface pressure based on the target’s elevation and uses the

Moderate Resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid -

Aerosol (CMA) product for water vapor and air temperature estimates. Ozone data

are retrieved from the Ozone Monitoring Instrument (OMI) or Total Ozone Mapping

Spectrometer (TOMS) for LEDAPS and from the MODIS Climate Modeling Grid

(CMG) coarse resolution ozone product in L8SR. Aerosol Optical Thickness (AOT)

is estimated in LEDAPS using the dark, dense vegetation (DDV) method (Kaufman et

al., 1997) while L8SR uses the MODIS CMA product. LEDAPS uses view zenith angle

geometry from the image metadata while L8SR hard codes this angle to 0 degrees.
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These differences in ancillary data may be another cause for potential disagreement

in the surface reflectance estimates, but diagnosing the effect of different ancillary

information on the output reflectance estimates is outside of the scope of this effort.

The L8SR data products are currently considered “provisional” because the algo-

rithm, the implementation of the algorithm in software, and the subsequent output

products have not been completely validated (U.S. Geological Survey, 2015). The

algorithm implementation has been corrected to fix artifacts near coastal land and

water boundaries, but visual artifacts remain among cloud edges and areas of high

topographic variation in some images. The correction of these artifacts should not

significantly alter the findings of this work that is based on the analysis of millions

of pixels across many scenes. We refer the reader to the product changelog in the

Landsat 8 CDR product guide (U.S. Geological Survey, 2015) to monitor changes

to the product. In addition, the L8SR algorithm has a few caveats: the algorithm

is not run on scenes with a solar zenith angle greater than 76 degrees and surface

reflectance retrievals may be uncertain in hyper-arid, snow-covered, coastal regions

with small amounts of land relative to water, or high cloud cover environments (U.S.

Geological Survey, 2015).

We used two datasets to address the questions posed about the continuity of

surface reflectance observations from Landsat 7 to Landsat 8: Landsat “underflight”

data that provides near simultaneous observations from both sensors, and time series

of Landsat data covering seven years of Landsat 7 and two years of Landsat 8.
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Band Landsat TM (µm) Landsat ETM+ (µm) Landsat OLI (µm)
Blue Band 1: 0.45-0.52 Band 1: 0.45-0.52 Band 2: 0.45-0.51
Green Band 2: 0.52-0.60 Band 2: 0.52-0.60 Band 3: 0.53-0.59
Red Band 3: 0.63-0.69 Band 3: 0.63-0.69 Band 4: 0.64-0.67
NIR Band 4: 0.76-0.90 Band 4: 0.77-0.90 Band 5: 0.85-0.88
SWIR1 Band 5: 1.55-1.75 Band 5: 1.55-1.75 Band 6: 1.57-1.65
SWIR 2 Band 7: 2.08-2.35 Band 7: 2.09-2.35 Band 7: 2.11-2.29
Thermal Band 6: 10.4-12.5 Band 6: 10.4-12.5 Band 10: 10.6 - 11.19

Table 2.1: Spectral band specifications for Landsat sensors TM,
ETM+, and OLI

2.2.1 Landsat 8 Underflight

On March 29-30, 2013, prior to the establishment of its final orbit, Landsat 8 flew in

“underflight” mode in position with Landsat 7 allowing for almost simultaneous image

acquisitions. The scene centers for Landsat 8 did not exactly match with Landsat

7 because it had not reached its operational Worldwide Reference System (WRS-2)

orbit, but the images acquired provided substantial overlap for comparison. The time

delay between the scene center acquisition for Landsat 7 and Landsat 8 was usually

between two to five minutes (see Table 2.2).

The underflight Landsat 8 data were preprocessed to a Level 1 Terrain corrected

(L1T) product and processed to surface reflectance using the L8SR algorithm by the

USGS EROS Data Center. The data were processed and made available to the Land-

sat Science Team by the USGS, but can now be downloaded and analyzed as part

of the “Pre-WRS-2” Landsat archive (the Landsat Scene Identifier for each image is

available in Table 2.2). Cloud, cloud shadow, and snow masks were also provided

for Landsat 8 data using CFmask, a C implementation of the Fmask algorithm (Zhu

and Woodcock, 2012; Zhu, Wang, et al., 2015). Two CFmask images were gener-

ated for each Landsat 8 image: a mask that incorporated information from the new

cirrus band on Landsat 8, and a mask that ignored the cirrus band and used the

same algorithm as Fmask uses for Landsat TM/ETM+ data. The CFmask output

used in this evaluation differed from the standard product because the cloud masks
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that used the cirrus band identified cirrus clouds separate from other types of clouds.

Landsat 7 data corresponding to each Landsat 8 underflight acquisition were acquired

for comparison. The Landsat 7 data were preprocessed to L1T products and atmo-

spherically corrected using the Landsat Ecosystem Disturbance Adaptive Processing

System (LEDAPS) algorithm (Masek et al., 2006). Cloud, cloud shadow, and snow

masks were also generated for each Landsat 7 image using CFmask. We created

layer stacked images containing corresponding image bands for each matching pair

of Landsat 7 and Landsat 8 images. The new shorter wavelength blue band and the

cirrus band on Landsat 8 were excluded as they had no direct comparison with the

Landsat 7 data. To avoid confusion relating to the band numbering change between

Landsat 7 and Landsat 8, we refer to spectral bands on ETM+ and OLI using by the

common name of the spectral range they measure. Refer to Table 2.1 for the pairing

between the spectral wavelength names, the sensor band numbering, and the spectral

wavelengths measured.
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WRS-2 Common Name Landsat 8 Landsat 7
P013
R010

Qaasuitsup,
Greenland

LC80130102013089LGN01
15:23:37Z

LE70130102013089EDC00
15:20:58Z

P013
R029

New Hampshire,
United States

LC80130292013089LGN01
15:31:09Z

LE70130292013089EDC00
15:28:32Z

P029
R031

Nebraska, United
States

LC80290312013089LGN01
17:10:31Z

LE70290312013089EDC00
17:08:13Z

P102
R076

Northern
Territory,
Australia

LC81020762013089LGN01
01:02:39Z

LE71020762013089ASA00
00:57:18Z

P134
R042

Arunachal
Pradesh, India

LC81340422013089LGN01
04:06:18Z

LE71340422013089EDC00
04:01:31Z

P134
R052

Andaman and
Nicobar Islands,

India
LC81340522013089LGN01

04:10:16Z
LE71340522013089EDC00

04:05:30Z
P150
R042 Rajasthan, India LE71500422013089PFS00

05:44:52Z
LC81500422013089LGN01

05:40:24Z
P198
R047

Tombouctou,
Mali

LE71980472013089ASN00
10:42:34Z

LC81980472013089LGN01
10:39:03Z

P230
R084

Mendoza,
Argentina

LE72300842013089CUB00
14:14:24Z

LC82300842013089LGN01
14:11:34Z

P230
R094

Santa Cruz,
Argentina

LE72300942013089EDC00
14:18:23Z

LC82300942013089LGN01
14:15:34Z

Table 2.2: Scene center acquisition time for underflight data

2.2.2 Landsat time series

We acquired all available Level 1 Terrain corrected (L1T) Landsat ETM+ and OLI

images with less than 20% cloud cover between 2008 and 2015 for Worldwide Refer-

ence System (WRS-2) path/rows 16/41, 23/37, 34/32, and 43/34 as Landsat CDR

products. According to the 2011 National Land Cover Database (NLCD) (Homer

et al., 2015), the land cover in scene in Florida, United States (P016R041) is pri-

marily comprised of natural or cultivated herbaceous (36%), wetlands (30%), and

developed (12%) categories. The scene in Mississippi, United States (P023R037) is

marked by cultivated herbaceous (53%), wetlands (17%), and forest cover (16%). Our

site in Colorado, United States (P034R032) intersects the Rocky Mountains and the

Denver urban area and primarily contains forest (40%), natural and cultivated herba-

ceous (26%), and shrub (21%) covers. Finally, the site in California, United States
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(P043R034) is centered on the Central Valley and is covered by natural or cultivated

herbaceous vegetation (57%), forest (18%), and shrub (13%) cover.

Landsat images were atmospherically corrected using LEDAPS (Masek et al.,

2006) for ETM+ data and L8SR for OLI data (U.S. Geological Survey, 2015). At-

mospheric correction within the Landsat CDR product was performed by the USGS

EROS Science Processing Architecture (ESPA) (LEDAPS version “LEDAPS_2.2.1”

and L8SR version “l8_surface_reflectance_0.2.0”) (Loveland and Dwyer, 2012). We

transformed the surface reflectance values into the NDVI, EVI, NBR, and NDMI spec-

tral indices. Thermal band data were converted into top of atmosphere brightness

temperature.

Clouds, cloud shadows, and snow were identified using the Fmask algorithm (Zhu

and Woodcock, 2012; Zhu, Wang, et al., 2015) with a cloud probability threshold

of 12.5 and cloud, cloud shadow, and snow mask dilation of 5 pixels. The cloud

probability threshold and mask dilation parameters were chosen to provide a conser-

vative cloud mask result intended to limit omission of clouds. Errors of commission in

cloud masks are less harmful than errors of omission in time series with hundreds of

available images, so we used a custom run of Fmask instead of the available CFmask

product. We also generated an additional Fmask image for Landsat 8 imagery using

the same parameters that did not use information from the new cirrus band (as in

Zhu, Wang, et al. (2015)) to assess the difference in noise reduction associated with

having a band specifically designed to aid cloud detection.

Images within each path/row were layer stacked and aligned to a uniform image

extent for further analysis. We excluded the new blue and cirrus spectral bands

measured by Landsat 8 and only used one thermal band (Band 10) in Landsat 8 to

facilitate comparison with Landsat 7. The number of total images available in each

scene location varied between 164 and 183 with Landsat 8 contributing between 36
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and 39 images (see Table 2.3).

WRS-2 Common Name Landsat 7 Landsat 8 Total
P016R041 Florida, United States 144 39 183
P023R037 Mississippi, United States 128 38 166
P034R032 Colorado, United States 153 36 189
P043R034 California, United States 139 38 177

Table 2.3: Number of images by sensor in time series datasets

2.3 Methods

2.3.1 Landsat 8 Underflight

Spectral comparison

Clouds, cloud shadows, and snow in the Landsat 7 and Landsat 8 image pairs were

masked from analysis using the CFmask band. The clouds and cloud shadows shifted

position and shape considerably during the short time interval between the acquisi-

tions by Landsat 7 and Landsat 8 (see Supplementary Figure 1). Because no solution

exists to mask every cloud in a remote sensing image, artifacts remained in the un-

derflight data after masking. This cloud contamination problem was amplified when

comparing two images because missed clouds or cloud shadows in one image were

unlikely to be masked in the other due to the shifts in the cloud and cloud shadow

positions. Buffering clouds and cloud shadows in each individual Fmask image by

50 pixels cleaned up most of the noise present in both images and ensured that the

remaining area contained only clear observations in both satellite acquisitions. The

choice of 50 pixels was a relatively arbitrary decision, but it was the smallest buffer

size tested that removed the majority of obvious data contamination.

The cloud screened reflectance observations were used to generate several veg-

etation indices for analysis, including the Normalized Difference Vegetation Index

(NDVI) (Tucker, 1979), Enhanced Vegetation Index (EVI) (Huete et al., 2002), Nor-

malized Burn Ratio (NBR) (Key and Benson, 2005), and Normalized Difference Mois-
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ture Index (NDMI) indices. The Greenness and Wetness components of the Tasseled

Cap transforms (Kauth and Thomas, 1976) were also calculated using Landsat TM

surface reflectance transform coefficients from Crist (1985). We tested using the tas-

seled cap coefficients for ETM+ at-satellite reflectance from Huang et al. (2002), but

the outcomes were not meaningfully different. Linear regressions were constructed

to estimate the relationship between Landsat 7 and Landsat 8 reflectance values as

a gain and bias. We were concerned with what a corrective equation might look

like, so we did not restrict the functional form of the regression to only a gain or a

bias. Regression 95% confidence intervals for the slope and intercept estimates were

generated using 1,000 bootstrap samples of each dataset. The lower and upper con-

fidence bounds were taken as the 2.5% and 97.5% percentiles of the sorted bootstrap

parameter estimates.

Cirrus cloud characterization

We also used the underflight data to observe the spectral characteristics of cirrus cloud

observations in Landsat data that would not be picked up without the new cirrus band

on Landsat 8. We extracted pixels classified as clear land in Landsat 7 and Landsat 8

CFmask results as reference examples for clean observations. Pixels classified as clear

land or clear water within the Landsat 7 CFmask image that were classified as cirrus

clouds within the Landsat 8 CFmask image were also extracted. To account for errors

in the CFmask images and movement of the clouds and cloud shadows between image

acquisitions, we eroded the boundaries of CFmask labels by 20 pixels. This erosion

helped ensure that the disagreement between the two CFmask images was the result

of detection capacity and not random error or spatial mismatches. Not all scenes

acquired during the underflight period contained cirrus clouds or contained enough

disagreement about cirrus cloud coverage to perform our analysis, so we were limited

to two scenes in Mendoza Province, Argentina (P230R084) and Santa Cruz Province,
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Argentina (P230R094). Visual inspection of these images showed that cloud masks in

both scenes shared similar patterns. Areas of dense cirrus cloud cover were identified

as cloud cover in Landsat 7 masks and cirrus cloud cover in Landsat 8, but areas of

thin cloud cover were misidentified as clear land in Landsat 7 and correctly classified

as cirrus cloud in Landsat 8. While the cirrus cloud classification may suffer from

false positives over bright targets in dry environments or over high elevation targets

(Zhu, Wang, et al., 2015), the mean elevation of the two scenes was relatively low

(440m and 675m for P230R084 and P230R094, respectively) and we are confident

from visual inspection that the vast majority of pixels identified as clear land and

cirrus cloud in Landsat 7 and Landsat 8 masks were omitted in the Landsat 7 cloud

masks.

Observations labeled clear in one CFmask image but cirrus cloud in another rep-

resent difficult to detect noise within historical Landsat data that may now be rou-

tinely filtered using OLI’s cirrus band. These data were analyzed using bivariate

plots comparing the spectral reflectance and brightness temperature from Landsat

8 in combinations of spectral bands. Plotted points were colorized according to the

classification in Landsat 8’s CFmask image. We added contour lines to describe the

overlap of the clear land and cirrus cloud observations by delineating the two dimen-

sional space occupied by 95% of the observations in each population. We used a

Gaussian kernel density estimate to approximate the distribution of each population

in bivariate space (Silverman, 1986). The 95% percent contour lines were estimated

as the 95th percentile of the estimated distribution from the two dimensional kernel

density estimate.

2.3.2 Landsat time series

Landsat time series were analyzed using a Python implementation of the Continuous

Change Detection and Classification (CCDC) algorithm (Zhu and Woodcock, 2014;
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Zhu, Woodcock, Holden, et al., 2015). The CCDC algorithm attempts to detect

abrupt changes in a time series using an “online” monitoring approach by sequentially

comparing reflectance observations against a prediction. Reflectances are predicted

using a simple Fourier style model with independent variables representing the overall

reflectance (intercept), the change in reflectance over time (slope), and the intra-

annual variation in reflectance due to phenology or sun-sensor geometry (harmonics):

ρ̂i = β0 + β1xt +
∑
j∈N

[β2j cos(
2πj

T
xt) + β2j+1 sin(

2πj

T
xt)] + εt (2.1)

where ρ̂i is the predicted reflectance or temperature in each spectral band i, xt is

the ordinal date of each observation, N is a set of integers specifying the frequency,

j, of the Fourier series harmonics, T is the number of days in a year (365.25), and εt

is the residual error term for each observation.

This study used a pair of year and half year (N = {1, 2}) harmonics to be able

to capture most seasonal vegetation patterns while remaining simpler than the full 8

coefficient model used in Zhu, Woodcock, Holden, et al. (2015). The CCDC algorithm

employs the Least Absolute Shrinkage and Selection Operator (LASSO) regulariza-

tion method to reduce overfitting by estimating coefficients that minimize the residual

sum of squares while also penalizing the absolute magnitude of the coefficients (Tib-

shirani, 1996). LASSO can provide coefficient estimates of exactly zero, and this type

of model selection allows CCDC to use a possibly overly specified but generic model

for all time series.

To help provide a stable and robust initial estimate of land surface reflectance, the

CCDC algorithm screens the training period using a multitemporal filtering algorithm

designed to remove any cloud and cloud shadows that might have been missed by

Fmask (Zhu and Woodcock, 2014). After the initial time series model has been fit

during this training period, successive observations are compared against the forecast
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prediction. A difference between the observation and prediction is significant if the

l2-norm, or Euclidean norm, of forecasted residuals scaled by model RMSE across the

set of tested bands is above a specified threshold:

Tcrit >

√∑
i∈B

(
ρ̂i − ρi
RMSEi

)2 (2.2)

where Tcrit is the significance critical threshold, B is a set of spectral bands used in

the change detection, ρ̂i and ρi are the predicted and observed reflectances or values

in band i, and RMSEi is the time series model RMSE for band i.

If observed reflectances significantly differ from the forecasted reflectances for

some number of consecutive observations, CCDC places a break in the time series

and begins trying to fit another time series model after the disturbance. The breaks

or disturbances in the time series create distinct segments through time that should

correspond to a period of stable land cover or land surface condition. These segments

in the time series can then be classified into land cover categories using attributes

derived from the time series models, including the coefficients and Root Mean Squared

Error (RMSE) of the time series models estimated for each Landsat band. The

estimated time series model coefficients and RMSE estimates, and not the change

detection, are the focus of this study. For further information and detail about the

Continuous Change and Classification Detection algorithm, including how it detects

change, the reader is referred to Zhu and Woodcock (2014) and to Zhu, Woodcock,

Holden, et al. (2015) for algorithm changes and improvements.

To address the questions of the effect of spectral differences between Landsat 7

and Landsat 8 in time series, we fit time series using CCDC to five different post-

launch scenarios. All five time series were initialized between 2008 and 2013 using

only Landsat 7 data, but were continued after the launch of Landsat 8 with different

sets of Landsat observations:
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1. Only Landsat 7 data post-launch

2. Only Landsat 8 data post-launch

3. Combined Landsat 7 and Landsat 8 data post-launch

4. Only Landsat 8 data post-launch, excluding information from the cirrus band

in the Fmask images for Landsat 8 data

5. Combined Landsat 7 and Landsat 8 data post-launch, excluding information

from the cirrus band in the Fmask images for Landsat 8 data

The first scenario containing only Landsat 7 data was used as a normalizing factor

to isolate the influence of including Landsat 8 data within the time series of scenarios

two and three. Intercept and RMSE values for scenarios two and three were normal-

ized by dividing these estimates by the corresponding intercepts and RMSE values

from the Landsat 7 models (scenario one). A value of one for the normalized inter-

cept and RMSE indicate that the inclusion of Landsat 8 data (scenario two and three)

did not change the quantity of interest. Values above one indicate the quantity was

increased relative to just using Landsat 7 and values below one signify a decrease in

the quantity. The slope estimates in the CCDC models are usually either zero or

very close to zero. To avoid computational issues of dividing by zero, we normalized

the slope values by subtracting the slopes estimated using Landsat 8 data (scenarios

two and three) by the slope estimated only using Landsat 7 (scenario one). Similarly,

scenarios four and five were compared after being normalized by scenarios two and

three to understand the effect of improved cloud detection possible with the cirrus

band on Landsat 8.

We masked and ignored from the analysis any pixels that changed between 2010

and 2015 as found by the CCDC algorithm because time series following a disturbance

can be erratic or noisy. Large variability in the observed target might have created



26

false differences among the continuation scenarios simply due to random chance rather

than due to a systematic difference. We took a large random sample of all remaining,

stable pixels, and extracted the intercept and slope coefficients and the Root Mean

Squared Error (RMSE) of each time series model for comparison.

2.4 Results and Discussion

2.4.1 Spectral Comparison

Spectral comparison results for scenes over Nebraska, United States (WRS-2 path

and row P029R031) and Mendoza Province, Argentina (P230R084) are shown in

Figure 2·1 and 2·2, respectively. While only the results for these two Landsat scenes

are shown in the main text of this article, the patterns observed in these scenes

are characteristic of the responses seen in other scenes containing sufficient clear

observations of land. Figures and tables showing the spectral responses for all other

Landsat scenes acquired are available in the supplementary material (Supplementary

Figures 2 - 8).

The reflectances in the visible wavelengths (blue, green, and red) of the Landsat 8

atmospherically corrected product are consistently darker than reflectances observed

in the Landsat 7 data. The largest bias occurs in the blue band and decreases with

increasing wavelength from green to red. While the wavelengths measured by the visi-

ble bands only changed slightly from Landsat 7 to Landsat 8 (Table 2.1), atmospheric

interference is greatest in the blue band and decreases as wavelength increases. If dif-

ferences in atmospheric correction are responsible for some of the difference between

sensor measurements, it makes sense that the greatest difference is visible in the band

that requires the greatest adjustment for scattering and absorption and the LEDAPS

and L8SR algorithms use different inputs to parametrize atmospheric constituents.

Some proportion of this bias is also likely caused by differences calibration or target
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Figure 2·1: Landsat 7 and Landsat 8 underflight data comparison for
Nebraska, United States (P029R031). Regression parameters and R2

estimates describing the fitted line are provided in the top left of each
plot. The 95% confidence interval range around the regression estimate
is displayed as a dashed line around the regression line, but it may not
be visible for small confidence intervals.
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Figure 2·2: Landsat 7 and Landsat 8 underflight spectral comparison
for Mendoza Province, Argentina (P230R084).
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specific spectral responses, but estimating the relative contribution of these three

causes is outside the scope of this analysis.

The near infrared band, with the largest physical difference in measured wave-

lengths, did not show considerable bias in Nebraska, United States (P029R031) (Fig-

ure 2·1). However, there was a large and consistent positive bias in the near infrared

reflectance in Medoza, Argentina (P230R084) (Figure 2·2). Summer in Argentina

during the month of March most likely has much higher atmospheric water vapor

content than the United States during winter. The narrower wavelengths measured

by Landsat 8 avoided an atmospheric water absorption feature, so it is understand-

able that the bias in near infrared reflectance is higher in an environment with more

water vapor. The shortwave IR bands may be slightly brighter in Landsat 8 than

in Landsat 7 due to the smaller spectral band widths, but the measurements have

not changed as significantly as the other bands. The difference in bias across scenes

observed in this study is similar to the findings of Flood (2014) that there are regional

differences in the sensor bias.

Differences in individual bands between Landsat 7 and Landsat 8 are especially

important when considering spectral or vegetation indices because these indices often

rely on the contrast between two or more bands. The Normalized Differenced Vege-

tation Index (NDVI) relies on the contrasting relationship between the near infrared

band and the red band. It appears that the near infrared band and red bands in

Landsat 8 are brighter and darker than in Landsat 7, respectively, which enhances

the contrast highlighted in NDVI. As such, we see a strong and consistent positive

bias in NDVI with Landsat 8 having much higher NDVI. The Enhanced Vegetation

Index (EVI) differs from NDVI by utilizing the blue band as an additional normalizing

factor that corrects the red band for atmospheric influences. Either by coincidence

or as the intention of Huete et al. (2002), it appears that the bias in the blue band
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between Landsat 8 and Landsat 7 nullifies the bias in the red and near infrared band,

resulting in a surprisingly similar EVI across sensors. The Normalized Difference

Moisture Index (NDMI) and the Normalized Burn Ratio (NBR) both compare the

shortwave infrared with the near infrared using either the first or second SWIR bands,

respectively. These vegetation indices show little difference between Landsat 7 and

Landsat 8. If there is a difference in the shortwave infrared bands between sensors,

it appears to be in the same positive direction as the bias in the near infrared, re-

sulting in a cancellation effect. The Tasseled Cap Greenness transform displays the

same strong positive bias as the NDVI while the Wetness Tasseled Cap transform is

darker in Landsat 8 than in Landsat 7. The Wetness transform for Landsat 7 places

little weight on the red and near infrared bands in favor of contrasting the blue and

green with the two shortwave infrared bands. Because the blue and green bands

are darker in Landsat 8 than in Landsat 7 and the shortwave infrared bands might

be brighter in Landsat 8, this contrast is enhanced and creates a small bias in the

Wetness transform.

The effect of increased radiometric resolution is readily apparent when comparing

reflectance estimates or spectral indices between sensors. Figures 2·1 and 2·2 both

display a visual striping pattern distributed across the X axis that is not simply a

visual artifact in the plot, but a result of the increased quantization possible with

Landsat 8’s 12-bit radiometric resolution. When the OLI instrument converts the

continuous measurement of radiance by its detectors into digital numbers, the 12-bit

radiometric resolution offers sixteen times the digitization detail compared to Land-

sat 7. The increased detail is carried through when converting from digital numbers

back into radiance and the precision remains when converting to surface reflectance.

The underflight spectral comparison figures for a Landsat scene over the coast of

Greenland (P013R031), included in the supplementary material (Supplementary Fig-
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ure 3), contains the best example of the effects of increased radiometric resolution.

Reflectance estimates from Landsat 8 do not display any striping throughout the very

low range of reflectance measured (2 - 8%) in the shortwave infrared while Landsat

7’s measurements contain distinct discrete gaps representative of the lower quanti-

zation. Improvements to the radiometric resolution on OLI thus enhance detection

capabilities by allowing the delineation of very similar, previously indistinguishable,

targets.

2.4.2 Cirrus cloud characterization

We explored the spectral properties of clear land observations and those affected by

cirrus clouds by plotting observations of both targets in bivariate combinations of

spectral bands available in the Landsat 8 underflight data (Figure 2·3). Observations

affected by cirrus clouds differ most from clear land observations in the visible wave-

lengths as seen in the high degree of separation within bivariate plots containing only

the visible bands. The blue band, specifically, shows the largest difference between

the two populations (subfigures A through E). Cirrus clouds, as expected (Gao et al.,

1993; Gao et al., 1998; Gao and Li, 2000), increase the reflectance in visible wave-

lengths, but this increase is not very substantial. The centers of the cirrus cloud and

clear land populations differ by approximately 4% reflectance in the blue band, about

3% in the green band, and by even less in the red band. It is interesting to note that

even in the visible bands the values of observations affected by cirrus clouds are still

within the range of unaffected observations, which helps explain why it is so hard

to detect cirrus clouds in any automated fashion in the absence of a cirrus band like

the one on Landsat 8. The near infrared and shortwave infrared bands provide no

separation alone as the populations completely overlap when only using the infrared

bands. The thermal band shows the largest separation between the two populations

of approximately half a degree Celsius (subfigures F, K, and O). If our objective were
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to find cirrus clouds in our dataset without the use of the cirrus band on Landsat

8, the shorter and thermal wavelength bands would be most valuable. The opposite

perspective to this conclusion is that if we wish to avoid cirrus cloud contamination

influencing our datasets from all Landsats prior to Landsat 8 we would exclude the

visible bands and thermal bands from our analysis whenever possible and rely heavily

on the NIR and SWIR bands as these appear to be least affected by cirrus clouds

missed without the use of a cirrus band.

2.4.3 Landsat time series

Impact of Landsat 8 on time series of Landsat observations

Figure 2·4 shows an example time series for one pixel in an undisturbed evergreen

forest stand in Colorado (P034R032) in red reflectance and NDVI. The regression

models used are described by equation 2.1, but some model coefficients, such as

the sinusoidal terms used to model seasonality, may be estimated as 0 due to the

regularization performed by the LASSO method. As seen in the underflight data,

the observations from Landsat 8 are darker in the red band, creating higher NDVI

values. The time series models show a small difference in the intercept estimates

and a much larger difference in the slope estimate that adjusts for the differences

between sensors. The unexplained variation due simply to the sensor differences

increases the Root Mean Squared Error (RMSE) in the models. Only observations

in the visible bands and the NDVI were affected by sensor differences for this specific

target. Time series models for the NIR, SWIR1, SWIR2, and thermal bands and

for the EVI, NBR, and NDMI indices were not different between the Landsat 7 only

(scenario one) and combined sensor (scenario two) datasets. This example is included

to demonstrate the influence of observation differences on time series model parameter

estimates. Results for millions of pixels across more study sites in all spectral bands

and vegetation indices are given in this section.
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Figure 2·3: Clear land and cloud cirrus spectral properties for Men-
doza Province, Argentina (P230R084). Contour lines contain 95% of
the data in the bivariate distribution space for data labeled as clear
land (green) and cirrus cloud (magenta) in Landsat 8 CFmask images.
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Figure 2·4: Example time series of an evergreen forest stand in Col-
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Landsat 8 are shown in black and red, respectively. CCDC model re-
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intercept, and RMSE estimates are included in the figure legend.
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Three time series datasets covering four WRS-2 scenes initialized using Landsat

7 data and continued after the launch of Landsat 8 with either Landsat 7 (scenario

one), Landsat 8 (scenario two), or both Landsat 7 and Landsat 8 data (scenario three)

were analyzed with the Continuous Change Detection and Classification (CCDC) al-

gorithm. Intercept, slope, and RMSE estimates for scenarios two and three containing

data from Landsat 8 were normalized relative to Landsat 7 results as described in

section 2.3.2. In essence, we are treating the use of only Landsat 7 as the baseline

for comparisons with Landsat 8 or the combination of Landsats 7 and 8. A value of

one for the normalized intercepts and RMSE values indicates no difference between

scenarios, while values above or below one values indicate the attribute is brighter or

darker when including Landsat 8 data. A value of zero in normalized slope estimates

indicates no change between scenarios while positive or negative values indicate an

increase or decrease in the time series slope relative to only using Landsat 7 data.

If the introduction of Landsat 8 data into time series of Landsat 7 data caused no

difference, histograms of these normalized parameter estimates from pixels within

each scene should approximate a normal distribution centered on one for intercepts

and RMSE or zero for slopes. Model parameters greatly affected by the inclusion

of Landsat 8 observations should produce histograms that are offset from the “no

change” normalized values of one or zero.

Time series model intercept, slope, and RMSE attributes for a scene in Colorado,

United States (P034R032) are shown in Figures 2·5, 2·6, and 2·7, respectively and

confirm the results previously found in the underflight data comparison. The blue,

green, and red bands on Landsat 8 were consistently darker than the same measure-

ments in Landsat 7 data in the underflight data, and this consistent offset impacts

the modeling results in time series scenarios. Time series model intercepts for the

blue, green, and red bands shown in figure 2·5 are unusually much darker due to the
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inclusion of Landsat 8 data as shown by the shift in the median of the histograms

from 1.0 to values between approximately 0.90 and 0.96. The median normalized

intercept estimated for the blue band when continuing Landsat 7 time series with

only Landsat 8 data (scenario two), for example, is 10% darker than the intercept

that would have been estimated when using exclusively Landsat 7 data. Time series

continued after the launch of Landsat 8 with both Landsat 7 and Landsat 8 (scenario

3) are less affected than with Landsat 8 data alone as seen in the reduction in the shift

of the blue colored histogram (scenario three) relative to the red colored histogram

(scenario two). However, the combined scenario still contains a bias in the visible

band intercepts. The histograms of the normalized intercepts in the near infrared and

shortwave infrared bands are centered approximately at one and are approximately

normally distributed. Thus, the NIR and SWIR bands show little signs of bias rel-

ative to Landsat 7 and do not behave difference under the Landsat 8 or combined

sensor scenarios. Among the vegetation indices, only NDVI is substantially affected

and is characteristically brighter in Landsat 8 than in Landsat 7 as the histogram of

normalized NDVI values is centered at approximately 1.03 to 1.04. While the thermal

band is slightly darker for the time series in Colorado, United States, the pattern was

not consistent in other Landsat scenes (Supplementary Figures 9, 12, and 15).

While the use of Landsat 8 in regressions might affect the overall mean reflectance,

measured as the intercept of the regression, any differences between Landsat 7 and

Landsat 8 are best explained using a slope estimate because the Landsat 8 data are

placed at the end of the time series. Figure 2·6 shows that the Landsat 8 observations

placed at the end of the Landsat 7 time series create a spurious time trends for many

of the bands and indices analyzed. The darker observations in the visible bands in

Landsat 8 create false positive decreasing time trends in both continuation scenarios,

although the influence in the combined scenario is less pronounced. The median slope
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response for the near infrared band is approximately zero indicating no bias in the

slope coefficient. While the shortwave infrared bands appear to have a negative bias

in the results for Colorado, United States (P034R032), this pattern was not present in

the three other scenes analyzed (Supplementary Figures 10, 13, and 16). Repeating

the patterns previously observed, NDVI is highly affected by differences in Landsat

8’s reflectance in the visible bands but the effect does not carry over to EVI. The NBR

and NDMI indices, despite not showing an effect in the time series intercept coefficient,

show a slight positive time trend when using Landsat 8 data. The positive time trend

in NBR and NDMI was also observed for two scenes over Florida (P016R041) and

Mississippi (P023R037), but not in California (P043R034) (Supplementary Figures

10, 13, and 16). The distribution of thermal band slope coefficients for Colorado has

a long negative tail, but this phenomenon is not observed in Florida or Mississippi

and the slope distribution for California shows an opposite long positive tail. These

results that show spurious time trends, especially in vegetation indices, can be caused

by differences in reflectance across Landsat 7 and Landsat 8 reinforce the false positive

slopes found in time series analysis over Canadian boreal forest using Landsat 5 and

Landsat 7 (Sulla-Menashe et al., 2016).

The change in RMSE of time series models using Landsat 8 (scenarios two and

three) relative to pure Landsat 7 time series models (scenario one) varies depending

on how different a particular band or vegetation index looks in Landsat 8 and Landsat

7. For Colorado (P034R032), just as we see the largest difference in time series model

intercepts and slopes in the visible bands and NDVI, we also see increases in the

RMSE of time series models using these data (Figure 2·7). The other scenes in

Florida (P016R041) and Mississippi (P023R037) share this pattern of increase in the

unexplained variance in the visible and NDVI data (Supplementary Figures 11 and

14). The scene in California (P043R034) shows weaker evidence for increased noise
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when using the combined data scenario (scenario three) and no sign of increasing

noise when just using Landsat 8 data post-launch (scenario two) (Supplementary

Figure 17). The estimated intercept and slopes for the near infrared and shortwave

infrared bands did not differ among scenarios so we would expect little change in

the RMSE of these models. The EVI, which has consistently shown the smallest

smallest differences between Landsat 7 and Landsat 8, does not show increases in

model RMSE relative to Landsat 7. While NBR and NDMI showed a positive time

trend in Colorado, Florida, and Mississippi, this bias relative to Landsat 7 has only

increased the RMSE of models in Mississippi. The influence of changes in the thermal

band may affect the RMSE of models, but the magnitude and direction of this effect

is not consistent among scenes analyzed.

A systematic difference between Landsat 8 and Landsat 7 observations affects

time series analysis in three ways. First, a consistently darker or brighter sequence

of Landsat 8 observations will eventually affect the mean reflectance of a time series.

Variation in reflectance due to the dataset of origin rather than variation in physi-

cal attributes hampers inference. For example, if a forest were slightly degraded in

2013, the mean NDVI of a time series after the disturbance might be the same as the

time series before the disturbance because the NDVI in Landsat 8 is brighter than

the NDVI in Landsat 7. The effect of biases in Landsat 8 relative to Landsat 7 is

especially concerning with regard to the time trend or slopes of time series models.

Second, consistently darker or brighter observations from Landsat 8 placed at the end

of an existing, stable time series of Landsat 7 data are shown to induce a false positive

trend in reflectance through time. Time trends in reflectance or vegetation indices

have been used as a proxy or indicators of changes in ecosystem function and struc-

ture, including vegetation greening, browning, recovery, or degradation. Inference of

temporal trends will require relative calibration to ensure trends are not simply due
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Figure 2·5: Normalized intercept estimates for time series models in
Colorado, United States (P034R032) used to assess spectral differences
caused by including Landsat 8 data. The Landsat 8 only and combined
Landsat 8 and Landsat 7 intercept estimates were normalized by divid-
ing by the intercepts of time series models using only Landsat 7 data.
The Y-axis was truncated at 30% to give better resolution to smaller
frequency bins.
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Figure 2·6: Normalized slope estimates for time series models in Col-
orado, United States (P034R032) used to assess spectral differences
caused by including Landsat 8 data. The Landsat 8 only and com-
bined Landsat 8 and Landsat 7 slope estimates were normalized by
subtracting the slopes from time series models using only Landsat 7
data. The Y-axis was truncated at 30% to give better resolution to
smaller frequency bins.
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Figure 2·7: Normalized RMSE estimates for time series models in
Colorado, United States (P034R032) used to assess spectral differences
caused by including Landsat 8 data. The Landsat 8 only and combined
Landsat 8 and Landsat 7 RMSE estimates were normalized by divid-
ing by the RMSE from time series models using only Landsat 7 data.
The Y-axis was truncated at 30% to give better resolution to smaller
frequency bins.
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to sensor differences. Lastly, bias in observed reflectance between the two sensors

also hinders detection of land cover change in time series analysis. Change detec-

tion methods that use a regression framework to predict reflectance based on time

series models (as in Verbesselt et al. (2012) and Zhu and Woodcock (2014)) identify

a time series break occurs if predictions differ significantly from observations. Bias

in reflectance values between sensors adds an unexplained source of variability to the

time series that broadens the range of nonsignificant differences between observed

and predicted values. A more familiar comparison is the decreased ability to infer

separation between reflectances before and after a land cover change in a paired t-test

if each population has larger within-group variance.

Time series algorithms that do not rely on surface reflectance observations or

perform image normalization prior to analysis may not be as significantly affected by

cross-sensor differences. For example, while the Vegetation Change Tracker (VCT)

(Huang et al., 2010) uses surface reflectance, imagery also undergoes a normalization

using examples of dense and dark forests prior to analysis. The LandTrendr algorithm

(Kennedy et al., 2010) normalized all Landsat imagery to a reference image using

the Multivariate Alteration Detection and Calibration (MADCAL) algorithm (Canty

et al., 2004). Techniques which rely on modeled attributes, such as forest cover

fraction, derived from Landsat imagery may also avoid image normalization if separate

models are used for each sensor. Normalization might not be required, however, if the

bias associated with a particular sensor can be modeled as a time series component.

One extremely simple method that could account for the difference in reflectance

associated with a categorical variable is the use of a “dummy” variable within each

time series model. A “dummy”, or treatment, variable acts as an additional intercept

estimate specific to one category, or for Landsat 8 in this case. When the “dummy”

variable is incorporated into the CCDC regression model, the regression model is



43

modified from equation 2.1 as:

ρ̂i = β0 + β1xt +
∑
j∈N

[β2j cos(
2πj

T
xt) + β2j+1 sin(

2πj

T
xt)] + βdummyDsensor,t + εt (2.3)

where:

Dsensor,t =


1, if Landsat 8

0, otherwise
(2.4)

This “dummy” variable estimate would compensate for sensor specific differences

allowing for a more efficient estimate of the time series model slope and intercept,

provided that the difference in sensor behavior can be modeled as a fixed offset.

Figure 2·8 shows the same time series over an undisturbed evergreen needleleaf stand

as 2·4, but with an additional regression line estimated using a Landsat 8 “dummy”

variable. “Dummy” variable coefficient estimates for Landsat 8 are negative in the

red band to account for a darker measurement and positive for NDVI to account for

a brighter measurement. The estimated slope in the red band does not match the

slope estimated in the exclusively Landsat 7 data scenario, but the “dummy” variable

accounts for the spurious time trend in the NDVI time series while greatly reducing

the RMSE of both models. Much more work is required to understand the potential

for these sensor specific intercepts to abate problems in time series due to sensor

disagreements, but such a solution would be an easy and quick way of synthesizing

the datasets without the need for more advanced cross-calibration.

Impact of cirrus cloud detection

The characterization of cirrus cloud spectral impacts from the Landsat 8 underflight

data (section 2.4.2) shows that cirrus clouds increase the reflectance of the visible
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Figure 2·8: Example time series of an evergreen forest stand in Col-
orado, United States (P034R032). Observations from Landsat 7 and
Landsat 8 are shown in black and red, respectively. CCDC model re-
gressions for time series including only Landsat 7 data (scenario 1) and
both sensors (scenario 2) are plotted in blue and green. The magenta
regression line includes a dummy variable that captures the reflectance
differences between Landsat 7 and Landsat 8 as an additional intercept.
The dummy variable estimates were -94.3409 and 1169.12 for red and
NDVI, respectively, which offset the bias in Landsat 8 measurements
relative to Landsat 7.
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bands but have negligible effects in the infrared bands. As a result, we expect time

series containing cirrus clouds to positively bias the estimates of the intercept and

slopes in the visible bands while increasing the RMSE of these models.

Figures 2·9, 2·10, and 2·11 show the time series model intercepts, slopes, and

RMSE estimates for scenarios four and five which did not use cirrus band information

in the Fmask cloud masks for a Landsat scene in Colorado, United States (P034R032).

The intercepts and RMSE estimates were normalized by dividing these estimates

by the same estimates from time series models using the cirrus band information

(scenarios two and three). The slope coefficients were scaled by taking the difference

between scenarios four and five and scenarios two and three, respectively.

The distribution of the relative intercepts for the visible bands have longer tails

above the value of one, especially for the combined Landsat 7 and Landsat 8 data

post-launch scenario (scenario 3). The near infrared and shortwave infrared bands

appear to have less skew toward either side in the distribution. The intercepts in

time series of brightness temperature appear colder without cloud screening using the

cirrus band, demonstrated by the skew toward values less than one. Pixels affected

by cirrus clouds appear to have reduced the intercept estimate of the NDVI, likely

driven by the bias toward brighter values in the red band. The EVI, NDMI, and NBR

vegetation indices do not appear to be have biased estimates for the time series model

intercepts. The slopes of time series excluding the cirrus band relative to time series

including the cirrus band show the same patterns as the intercept estimates (Figure

2·10) with large differences the visible bands and NDVI slope estimates. Eliminating

cirrus clouds from time series images also contributes toward lowering the RMSE of

time series models as shown in Figure 2·11. The skew in the distribution of relative

RMSE estimates shows that many of the time series contain more noise without the

cirrus band in all bands and indices, but especially in the visible bands and NDVI.
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Figure 2·9: Normalized intercept estimates for time series models in
Colorado, United States (P034R032) used to assess the influence of
Landsat 8’s cirrus band. Intercept estimates from time series not using
Landsat 8’s cirrus band in cloud masks were scaled by dividing by
intercepts from time series using the cirrus band in Fmask. The Y-axis
was truncated at 30% to give better resolution to smaller frequency
bins.
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Figure 2·10: Normalized slope estimates for time series models in Col-
orado, United States (P034R032) used to assess the influence of Landsat
8’s cirrus band. Slope estimates from time series not using Landsat 8’s
cirrus band in cloud masks were scaled by subtracting slopes from time
series using the cirrus band in Fmask. The Y-axis was truncated at
30% to give better resolution to smaller frequency bins.
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Figure 2·11: Normalized RMSE estimates for time series models in
Colorado, United States (P034R032) used to assess the influence of
Landsat 8’s cirrus band. RMSE estimates from time series not using
Landsat 8’s cirrus band in cloud masks were scaled by dividing by
RMSE from time series using the cirrus band in Fmask. The Y-axis
was truncated at 30% to give better resolution to smaller frequency
bins.
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We did not specifically limit our analysis of time series attributes to pixels con-

taining observations identified as cirrus clouds within the time series. Instead, we

drew a random sample of pixels within each scene. As such, we do not expect there

to be a systematic shift in slopes, intercepts, and RMSE estimates within the time

series models not using cirrus information in the Fmask images relative to time series

models that did mask cirrus clouds. The shifts in the tails of the relative distributions

of these time series variables, positive in the visible bands and the negative in NDVI,

are strong evidence to the benefits of the cirrus band. Landsat 8 observations will

be much less noisy than observations from previous sensors and this difference might

affect future analysis. Measurements in the visible bands from Landsat 8, integrated

over enough time, are especially likely to be darker than the response in TM and

ETM+, all else equal, simply due to this enhanced screening. The development of

methods to screen historical Landsat TM and ETM+ observations of cirrus clouds,

already an important task, should be an increased priority to bring these time series

closer to parity with Landsat 8.

These results are reminders of previously established findings demonstrating how

poor cloud and atmospheric contamination screening in time series can lead to spu-

rious temporal trends or anomalies (Samanta et al., 2010; Samanta et al., 2012).

Improved noise screening will also improve the consistency of surface characteriza-

tion by removing artificial differences in spectral properties caused by the random

chance of cirrus cloud contamination. Reductions in the amount of unexplained vari-

ance in reflectance caused by previously undetectable cirrus contamination also aids

change detection of surface conditions or land cover because actual changes in surface

reflectance will be more distinguishable if the overall variation decreases.
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2.5 Conclusions

This study of near coincident “underflight” observations and time series analysis finds

consistent differences in surface reflectance between Landsat 7 ETM+ and Landsat

8 OLI Climate Data Record (CDR) surface reflectance product in the visible wave-

lengths. While the near infrared and shortwave infrared bands appeared brighter in

Landsat 8 within the “underflight” data, differences between sensors for these bands

were small and inconsistent in the time series results. Vegetation indices using the

visible bands, such as the NDVI and the Tasseled Cap Greenness, tend to be brighter

in Landsat 8 and have larger differences than the individual reflectance bands be-

cause the biases in the visible and near infrared bands are in the same direction these

indices attempt to contrast. Despite similarly contrasting the near infrared with the

red wavelengths, the Enhanced Vegetation Index (EVI) is not very different between

Landsat 7 and Landsat 8. The NBR and NDMI spectral indices, which contrast the

shortwave infrared bands with the near infrared band, also do not vary across sensors.

While these results were generally consistent across the Landsat footprints analyzed,

the relationship between Landsat 7 and Landsat 8 varied too substantially to suggest

that a global relative correction method could be applied successfully. As was also

suggested by Flood (2014), a local, perhaps even per-scene, relative correction should

be performed to incorporate the spatial variability of the sensor differences.

Systematic differences in surface reflectance between Landsat 7 and Landsat 8

are shown to have perilous consequences for inference of gradual and abrupt change

in land surface conditions. The extension of Landsat 7 time series with Landsat

8 data produces spurious time trends in bands or indices affected by sensor specific

differences. Until Landsat 8 surface reflectance can be operationally adjusted to match

surface reflectance from Landsat 7, it is recommended to either estimate gradual

changes over time using data from only one sensor, to perform relative correction
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manually, or to avoid affected bands and indices. The sensor specific bias in Landsat

8 data also hampers detection of abrupt changes because time series models are

artificially noisier if variation between sensors is left unexplained.

This study did not address the improvements in time series analysis that are due

to the resumed 8-day repeat cycle possible with two Landsat spacecraft in operation.

Given that much of Landsat 7’s acquisition footprint is unobserved due to the failure

of the Scan Line Corrector, the launch of Landsat 8 has more than doubled the obser-

vation frequency since the failure of Landsat 5. Increasing the sampling frequency of

observations helps time series models capture rapid intra-annual transitions, such as

the phenological transitions in deciduous forests at the start and end of the growing

season or the number of cropping cycles in one year. Near real time monitoring of land

cover change is significantly improved with two sensors in orbit because information

on change can be retrieved in a more timely manner. Land cover change techniques

that use annual image composites can now be more selective when selecting the best

available pixel. Even the actual detection of land cover change might be more accu-

rate as higher frequency observations make it more likely to capture the land surface

during or immediately after the change event. Increased observation rates are espe-

cially useful in locations with pervasive cloud or snow cover or short growing seasons,

including the incredibly important and changing tropical and boreal ecosystems.

Cirrus clouds detected by Fmask using Landsat 8’s new cirrus band but not de-

tected in Landsat 7 data are most distinct in the visible and thermal bands. Ob-

servations of cirrus clouds differ from clear land in visible wavelengths by less than

3% to 4% and show very little difference in the infrared wavelengths. An experiment

comparing Landsat time series that do not use Landsat 8’s cirrus band to screen cir-

rus clouds against time series that do remove cirrus clouds show that residual cirrus

clouds create noticeable biases in the intercept, slope, and RMSE estimates of the
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visible bands and in NDVI. These contamination induced biases mimic vegetation

dynamics of interest, including browning or stress events, which highlights the value

of Landsat 8’s cirrus band. Efforts to enhance existing cloud mask products by im-

proving detection of cirrus clouds within TM and ETM+ data may be aided by the

characterization of cirrus clouds possible using Landsat 8 observations and would be

a valuable addition.

Inconsistencies in surface reflectance between Landsat 7 and Landsat 8 observed

in the Landsat 8 underflight dataset and in four Landsat scenes are due to a combina-

tion of three or more factors including physical changes to the spectral characteristics

of Landsat 8, differences in relative calibration of sensor detectors, and differences in

atmospheric correction ancillary datasets and methodology. This study did not seek

to quantify the relative contribution of each factor to the differences observed, but

instead focused on quantifying the observed effects and tried to offer practical ad-

vice for incorporating Landsat 8 information into existing time series methodologies.

Image normalization procedures are recommended to equate the surface reflectance

from Landsat 8 to Landsat 7, especially in the visible bands. The difference between

sensors might also be modeled as a simple offset in reflectance which could be ac-

complished as an addition to a time series model specification. It is important to

note that the Landsat CDR surface reflectance results described within are subject

to change with alterations to sensor calibration or algorithm performance, but the

techniques used and the lessons learned should be applicable when trying to extend

the Landsat time series with observations from the upcoming Sentinel-2 satellite.
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Chapter 3

Forest Change Detection By
Radar/Optical Fusion

3.1 Introduction

Integration of optical data from medium resolution sensors like Landsat with medium

resolution SAR data has been identified as a key research priority (Reiche et al., 2016)

in the effort to better monitor our planet’s forest resources. Radar satellites have his-

torically been shorter lived than optical sensors, making data continuity difficult.

Fortunately, several SAR missions have been launched or are planned that will pro-

duce consistent datasets suitable for time series analysis. Sentinel-1A and Sentinel-1B

were launched in 2014 and 2016 respectively, and combined provide repeated obser-

vations in the C-band every 6 days at 10m spatial resolution (Torres et al., 2012).

ALOS-2 was launched in 2014 in part to support global forest monitoring (Kankaku

et al., 2014; Motohka et al., 2017), and has a potential 14 day gapless repeat time in

ScanSAR mode with an acquisition strategy that aims for at least two acquisitions

per year on all land except Antarctica, with potentially six per year for the tropics

and some parts of the boreal zone (Rosenqvist et al., 2014). The National Aeronautics

and Space Administration (NASA) and Indian Space Research Organization (ISRO)

developed SAR, or NISAR, is expected to launch in late 2021 and will provide full

polarimetric observations in L- and S-bands with a potential 12 day repeat depending

on observation mode (Rosen, Hensley, et al., 2017; Rosen, Kim, et al., 2017; Sharma
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et al., 2018). In historic analyses, data from past SAR sensors like the Japanese Earth

Resources Satellite 1 (JERS-1) or the Phased Array type L-band Synthetic Aperture

Radar (PALSAR) on the Advanced Land Observation Satellite (ALOS) platform,

may also be useful in complementing optical time series, especially where there are

gaps in the Landsat record.

A recent review of radar and optical fusion studies found that integration of SAR

data with optical data increased result accuracy in 28 out of 32 cases (Joshi et al.,

2016). Unfortunately, only 11 studies out of the 112 studies surveyed utilized optical

and SAR data for land cover or land use change detection with the majority of studies

focusing on single date classification. Joshi et al. (2016) also concluded that the vast

majority of the experiments summarized were conducted over very small areas (300

- 3,000 km2), did not have systematic or standardized means for comparing data

fusion against single sensor results, and no study compared performance of any one

data fusion method to another fusion method.

3.1.1 Background

One category of algorithm for fusing different sources of data are algorithms that pre-

dict one data source from another. A common example of this category is efforts to

calibrate data from new versions of a satellite family with data from previous sensors.

This type of fusion is frequently accomplished by fitting a linear regression model

that corrects one source to another, as was the case in the Landsat 8 and Landsat

7 calibrating equations from Roy, Kovalskyy, et al. (2016) and Flood (2014). In-

creasing in complexity, the Harmonized Landsat Sentinel (HLS) product (Claverie et

al., 2017) creates a fused time series by co-registration, bandpass adjustment, BRDF

correction, and spatial resampling. Perhaps the best known example of this style of

algorithm, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM;

Gao et al. (2006)) algorithm models the temporal and spatial relationship between
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observations from MODIS and Landsat in order to create synthetic imagery with the

temporal frequency of MODIS and with the spatial information from Landsat. This

concept was also employed to improve near real time monitoring of deforestation by

Xin et al. (2013) and Tang (2018). Predicting Landsat data from MODIS data is

complicated by the vastly different observation footprints and real changes that may

happen between Landsat observations, but the two sensors measure roughly the same

portion of the electromagnetic spectrum and are cross-calibrated when possible. De-

spite the difficulties inherent in even fusing optical data from different sensors, Reiche,

Verbesselt, et al. (2015) found that a weighted regression model could be used to fuse

Landsat NDVI and ALOS-1 HH/HV ratio for deforestation mapping.

Rather than try to predict one from another, a second category of fusion algo-

rithms combines data from multiple sensors by conversion to a new quantity. The

most common example of this type of fusion are algorithms that fuse inputs by con-

version to a probability quantifying membership in some group or class, typically

derived from a supervised classification of land cover types. Although not developed

for fusion purposes, the Vegetation Continuous Tracker (VCT) developed by Huang

et al. (2010) can be described in these terms if one, for example, considers the sim-

ilarities between the “Forest Z-Score” statistic and a forest class used in a Gaussian

Naive Bayes classifier — both are parameterized by sample mean and standard devia-

tion. Most importantly, conversion of individual observations to a Z-Score, or similar

metric, creates a unitless variable that could come from any number of sources. This

type of approach can take advantage of decades of research into classification prob-

lems in remote sensing, with approaches being distinguished among familiar contrasts

of univariate to multivariate, parametric versus nonparametric, linear and non-linear,

and more.

Based on this principle of “probability fusion”, Solberg et al. (2008) combined
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time series of optical and SAR data to monitor the progression of snow melt through

a variety of stages. They modeled the distribution of optical data observations of

snow cover using multiple Gaussian distributions and used a single Gaussian distri-

bution to model the SAR data. They derived class probabilities for each observation

from these distributions, and used a Hidden Markov Model (HMM) and transition

probabilities that represented the directionality of the melting process to map snow

conditions over time. In another set of analyses, Trier and Salberg (2011) used a

HMM with time series of Landsat data for deforestation monitoring, and Salberg and

Trier (2011) showed that their approach may also be used for mixing SAR and opti-

cal data. They estimated probabilities for forest, sparse forest, grass, and soil classes

using multivariate Gaussian distributions, and used assumed values for the class tran-

sition probability matrix, though they noted that this could be estimated from the

data. Reiche, Verbesselt, et al. (2015) used a “Bayesian updating” approach to fuse

Landsat and ALOS-1 data for deforestation monitoring in a forest plantation in Fiji.

They distinguished between forest and non-forest classes and used one variable from

the optical (NDVI) and radar (HH/HV ratio) data sources each. Specifically, they

parametrized the distribution of the NDVI and the HH/HV ratio using a single Gaus-

sian distribution for non-forest and a single Weibull distribution for forest training

data. The conditional probability of deforestation was estimated at each time step,

and deforestation was recorded if this probability exceeded a user defined threshold.

Reiche et al. (2018) also used this method in a seasonally dry topical forest to fuse

Landsat NDVI, ALOS-2 PALSAR-2 L-HV, and Sentinel-1 C-VV data. They used

spatial normalization (Hamunyela, Verbesselt, De Bruin, et al., 2016; Hamunyela,

Verbesselt, and Herold, 2016; Hamunyela et al., 2017) to reduce the effects of sea-

sonality, and used Gaussian distributions to model forest and nonforest classes for all

data sources.
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Algorithms like the Continuous Change Detection and Classification (CCDC; Zhu

and Woodcock (2014)) or BFAST Monitor (Verbesselt et al., 2012) that rely on mon-

itoring forecast residuals for change are widely used in the optical remote sensing

community, but have not yet been used for fusion. In CCDC and BFAST Monitor,

regressors are picked to represent the overall reflectance (intercept), the trend in re-

flectance over time (time trend), and seasonality (cosine and sine harmonics) with the

goal of transforming the time series data into normally distributed forecast residuals

with unit variance. Radar time series may require different independent variables to

model, but this estimation of forecast residuals inherent to these methods presents an

opportunity for fusion. The CCDC algorithm, for example, performs a very similar

calculation to the “Forest Z-Score” from VCT when future observations are compared

with model predictions and scaled by a measure of model uncertainty. While the for-

est class mean and standard deviations used in VCT create a unitless metric that

describes how similar an observation is to a forest, the time series model prediction

and RMSE from CCDC describe how similar an observation is to an adaptive running

expectation. Assuming that changes to land cover create changes in both optical and

radar signals, forecast residuals from either data source might be combined.

3.1.2 Objectives

In this chapter, we develop and test two fusion algorithms: a “Probability Fusion”

algorithm based on time series of classification probabilities and a “Residual Fusion”

algorithm that applies the concept of converting time series into forecast residuals.

We attempted to answer the following three questions:

• Does adding observations from SAR into a Landsat time series improve the

spatial and temporal accuracy of deforestation maps?

• How does the benefit of adding SAR observations change under different Land-
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sat data availability condition?

• Which approach to optical and radar fusion is better: “Residual Fusion” or

“Probability Fusion”?

3.2 Data

3.2.1 Study Site

We selected an area of evergreen tropical forest in the lowlands of the Peruvian

Amazon near Yurimaguas, Loreto, Peru. Yurimaguas is 106m above sea level, and the

study area is approximately centered on S6◦2.633′ W76◦6.5′ for this analysis. Burga

Rı́os (2016) attributed most deforestation in this region of Peru to conversion of forests

to grow coca or as part of migratory agricultural practices that are used because of

the relatively poor soil fertility in the Amazon. This study also identified mining,

illegal logging, the construction of highways, and large scale industrial cultivation

(usually of palm oil) as recent drivers of deforestation in Loreto, Peru. Recently, and

especially around the border of Loreto and San Martín, deforestation has mostly been

caused by large scale conversion of forests to oil palm plantations with increases of

approximately 1,480 ha between 2009-2010 and 2,500 ha between 2010-2011 (Urquiza

Muñoz and Burga Rı́os, 2016; Cañote Amaya, 2018).

While large deforestation patterns can be observed from industrial scale produc-

tion of palm oil, the Yurimaguas area also has a fairly complicated set of land uses

related to agroforestry. Sotelo Montes and Weber (1997) interviewed farmers from

Loreto, including from Yurimaguas, and found that they were familiar with and used

a relatively large number of agroforestry species, and prioritized commodity crops like

Bactris gasipaes (oil palm), fruit trees like Inga edulis, and rapidly growing hardwood

tree species for lumber like Cedrelinga cateniformis, Guazuma crinita, and Calyco-

phyllum spruceanum.
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The vegetation, soil, and detritus around Yurimaguas contain a relatively large

amount of carbon, even in successional, disturbed, or agroforestry cover types. Ma-

ture tropical forests surrounding Yurimaguas may reach 290 MgC ha-1 of live woody

biomass after 40 years with only light extraction, while secondary forests may reach

184 MgC ha-1 after 15 years or 42 MgC ha-1 after 5 years (Guzmán and Arévalo, 2003;

Viena Vela, 2011). Agroforestry systems in this area also store a significant amount

of carbon, with palm oil storing approximately 148 MgC ha-1 after 16 years when

planted in monoculture plantations and approximately 114 MgC ha-1 when planted

with other species as part of a multi-level canopy (e.g., “shade grown”) (Guzmán and

Arévalo, 2003; Viena Vela, 2011).

Yurimaguas presents an excellent opportunity to study the effects of fusing op-

tical and radar data for deforestation monitoring because deforestation in this area

comes from complicated, small scale agroforestry and from the installation of large,

commercial palm oil plantations. Most importantly for this study, a large amount of

these changes occurred during the ALOS-1 PALSAR lifespan.

3.2.2 Passive Optical Data

We acquired all observations from the Landsat TM and ETM+ between 2003 and

2013 for WRS-2 Path 8 and Row 64, for a total of 183 images (75 Landsat 5 and

108 Landsat 7). We used the Landsat Ecosystem Disturbance Adaptive Processing

System (LEDAPS) algorithm (Masek et al., 2006) to perform atmospheric correction

to surface reflectance values. Cloud and cloud shadow objects were identified and

removed from analysis using the FMask algorithm (Zhu and Woodcock, 2012). The

atmospheric correction and cloud masking steps were performed by the United States

Geological Survey (USGS) as part of the Climate Data Record (CDR) product pro-

duced by the USGS Earth Resources Observation and Science (EROS) Center Science

Processing Architecture (ESPA) (U.S. Geological Survey, 2015).
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3.2.3 Radar Data

We acquired all available acquisitions from the ALOS-1 PALSAR instrument from

Frame 7060 to maximize overlap with the data from Landsat. We used the high

resolution (12.5m pixel size) Radiometrically Terrain Corrected (RTC) product from

the Alaska Satellite Facility Distributed Active Archive Center (ASF DAAC) (ASF

DAAC, 2015). The ALOS-1 PALSAR RTC product from ASF undergoes a relatively

high level of preprocessing, and are delivered in units of gamma nought power after

undergoing co-registration with a DEM, radiometric terrain correction (Frey et al.,

2013), and geocoding to 12.5m pixel spacing (Gens, 2015). Of the 17 acquisitions

that were available, we had to discard 4 images because of ionospheric interference.

Deforestation is easier to see in the crosspolarized L-HV channel than in the L-HH

channel (Shimada et al., 2014; Reiche, de Bruin, et al., 2015), so we discarded an

additional two single polarization (HH) images and were left with a total of 11 dual

polarization (HH and HV) images.

To reduce speckle noise inherent to the radar signal, we applied the Quegan multi-

temporal speckle filter on each channel (HH and HV) of the radar time series (Quegan

and Yu, 2001). The Quegan multitemporal filter uses information from the temporal

domain of coregistered multidate SAR imagery to reduce the spatial filter window

size needed for the noise reduction. Speckle filtering was performed on the original

12.5m spatial resolution imagery using a 7 pixel window. Finally, the ALOS data

were resampled to 30m to match the Landsat data’s grid using bilinear resampling.

Bilinear resampling was chosen over nearest neighbor in order to further reduce noise.

Once all preprocessing steps were complete, the ratio of HH to HV polarization was

calculated in log space by subtracting the HV channel from HH.
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3.3 Methods

We developed two new methods of fusing optical and radar data into a time series that

may be monitored for changes. Sections 3.3.1 and 3.3.2 describe the two approaches

for fusing the time series. Once the data are fused, both algorithms use the same

method of change detection (see Section 3.3.3) based on the approach used by the

CCDC (Zhu and Woodcock, 2014) algorithm.

3.3.1 Residual Fusion Algorithm

The “Residual Fusion” algorithm uses the forecast regression approach taken by al-

gorithms like CCDC (Zhu and Woodcock, 2014) or BFAST (Verbesselt et al., 2012)

to convert both the optical and radar time series into scaled forecast residuals. As

shown at the top left of Figure 3·1, radar data from ALOS PALSAR is combined with

a time series model specific to this data stream to produce “scaled forecast residuals”.

Through experimentation and analysis of sample time series, we found it appropriate

to model the L-HV data using only an intercept and time trend (Equation 3.1) be-

cause this data is not affected by seasonality in our study location, though one could

use more sophisticated models (e.g., in the case of shorter wavelength radar data that

is affected by vegetation phenology).

L-HVi ∼ 1 + βT imei + ϵi (3.1)

This time series model transforms radar backscatter into a series of scaled residuals

with known statistical quantities (zero mean and unit variance). The optical data

from Landsat undergoes the same process of combining a time series model with data

to generate scaled forecast residuals, but we adapted the model to the character of the

opitcal data. In the case of the Landsat data, we noticed some within-year variability,

likely due to sun angle effects, and decided to pick a harmonic regression model that
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would account for seasonal variability. Accordingly, the “Time Series Model” (see top

right of Figure 3·1) chosen for the Landsat data is provided in Equation 3.2:

yi ∼ 1 + βT imei + δ1 cos
2π

365.25
Timei + δ2 sin

2π

365.25
Timei + ϵi (3.2)

The modeling of each time series produces coefficient estimates that have proven

useful for visualization, and land cover classification (Zhu and Woodcock, 2014; Zhu,

Woodcock, Holden, et al., 2015; Zhu, Fu, Woodcock, Olofsson, Vogelmann, Holden,

et al., 2016; Pasquarella, Holden, and Woodcock, 2018), but we are interested in the

error term for each observation, ϵi. These residuals should have zero mean if we’re

using an unbiased regression estimator, and we can use the estimate of the variance

of the residual time series to scale the residuals to also have unit variance.

Once each data source has been converted into scaled forecast residual time series,

the data may be combined by simply merging the time series together in chronological

order because all data sources will have the same statistical properties (zero mean

and unit variance). Despite the radar backscatter data and the optical reflectance or

spectral index data originally coming in different units of measurement, both have

been converted to a unit of measurement (scaled forecast residuals) that measures

the departure at each time step from some data specific expectation.

Depending on the band or spectral index used for the Landsat data (y), the spec-

tral signal of deforestation might have a different directionality than the typically

decreasing backscatter observed during deforestation events. In order to align the

signal from optical data that increase when deforestation occurs, a “directional align-

ment” step (see Figure 3·3) is performed by multiplying the scaled forecast residual

time series by negative one to invert the sign. While the change in spectral charac-

teristics of forest loss is reasonably well characterized (increase in visible and SWIR,

but decreases in vegetation indices; decrease in L-HV), the more complicated spectral
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signatures of other land cover type conversions may complicate the use of this algo-

rithm for finding change. During algorithm development, we found that the SWIR1

channel on Landsat was the best single band to use for finding deforestation, though

the algorithm could work with other bands or spectral indices.

After all input data streams (optical and radar) are converted to scaled forecast

residuals, they may be merged together into one fused time series by simply combining

and sorting the data by date. At this point, the time series have been fused through

this “Residual Fusion” process and may be analyzed for change using a variety of

algorithms (see 3.3.3).
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FUSED 
Scaled Forecast Residuals 

CHANGE DETECTION 
Algorithm based on
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TIME SEGMENTS
• Start, end, and break dates
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• Change "magnitude"

Time Series Segmentation 
Change
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Time Series Model 

LANDSAT 
Time Series Model 

LANDSAT 
Scaled Forecast 

Residuals 

Forecast residuals ~ N(0, 1) 
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Alignment FALSE

Change Sign (-1)
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Figure 3·1: Residual fusion algorithm process diagram.

Figure 3·2 shows an example of the “Residual Fusion” algorithm steps for a pixel

that experienced deforestation. The top panel shows a slight increase in the SWIR1
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Figure 3·2: “Residual Fusion” results for sample 776 from our ac-
curacy assessment. The top panel shows the original time series in
SWIR1 and L-HV bands. The middle panel shows the fused time series
of scaled forecast residuals estimated when fusing both data sources.
Breaks detected by the “Residual Fusion” algorithm for both fused and
non-fused results are shown as vertical lines on the bottom 66% of the
graph, while the date of change given by the assessment interpreter is
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band and a slight decrease in the L-HV channel around 2009. The middle panel shows

the time series of scaled forecast residuals for each data source. The forecast residual

time series both have been transformed to have zero mean and unit variance, and

so can be combined. We apply a change detection approach similar to CCDC (see

Section 3.3.3) to the forecast residual time series to detect change. In this example,

both the fused and non-fused runs detected change later than the interpretation. We

are showing the radar time series in units of decibels, but the forecast model and

change detection analysis is performed using linearly scaled units of power.

3.3.2 Probability Fusion Algorithm

The “Probability Fusion” algorithm is very similar to the approaches used by Solberg

et al. (2008) and Reiche, de Bruin, et al. (2015) and Reiche et al. (2018). It depends on

two main inputs: observations from optical and radar sensors and training data (see

Figure 3·3). The training data are required to generate conditional class probabilities

from a supervised classifier, and so collection of training data is a necessary and

important step in this methodology. First, we decide the land cover categories we

wanted to include for mapping deforestation, which included categories for stable

forests, “herbaceous” (pastures and agriculture), impervious surfaces and barren land

(development, river banks, mining), and water. To better distinguish deforestation

as quickly as possible, we also included training data polygons that captured the

spectral reflectance right after deforestation. Significant clouds and cloud shadows

remained in the optical imagery, even after screening using FMask (see 3.2.2), so we

also included training data targeting clouds and their shadows. Observations that

had conditional probabilities for these “noise classes” larger than 0.5 were removed

from the time series analysis before running the algorithm.

We collected the training data by drawing polygon “regions of interest” on Land-

sat and ALOS imagery and giving each polygon a reference class label. We checked
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Figure 3·3: Probability fusion algorithm process diagram.

the time series of pixels within each polygon to ensure stability, and recorded what

time periods the interpretation was valid for. Recording this timing information

meant that training data “features”, or independent variables, could be drawn from

multiple dates of Landsat and ALOS imagery at once. Training data were collected in

an iterative manner, by repeatedly assessing time series plots and single date images

of the predicted class posterior probabilities and collecting additional training data

where the classification posterior probabilities were poorly characterized. For exam-

ple, we analyzed time series of forest class posterior probabilities alongside spectral

reflectance time series to ensure that the forest probability was close to zero imme-
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diately after a disturbance. In instances when this did not occur, we added training

data from clear acquisitions before the disturbance for forest and data from after the

disturbance to the “deforestation” class. We repeated this process several times to

resolve misclassifiations from our trained classifiers.

The “features”, or independent variables, used for the ALOS-1 data were only

the original HH and HV bands and the ratio of these bands. The Landsat data

have more difficulty in discriminating between forest and non-forested vegetation

than L-HV, which was used globally to discriminate between these classes based on

a regionally specific threshold in Shimada et al. (2014). To help increase separability

using Landsat data, we used all of the reflectance data bands from Landsat and the

EVI, NBR, and NBR2 vegetation indices.

We used the Random Forest algorithm (Breiman, 2001) implementation from the

“scikit-learn“ Python package (Pedregosa et al., 2011) in supervised classification

mode to derive the conditional class probabilities for all time steps (n) and cover

classes (k). We selected Random Forest because it has been widely applied, is non-

parametric and can fit to non-linear distributions, usually has very good performance

even without calibrating hyperparameters, and can perform well even with many,

possibly redundant, features (Fernández-Delgado et al., 2014; Caruana and Niculescu-

Mizil, 2006; Zhu, Woodcock, Rogan, et al., 2012). The conditional class probability

was calculated for each class by dividing the total number of trees in the ensemble

that voted for the class by the total number of trees.

Once both time series are converted into class probabilities, we apply two final

steps before attempting to test for change. First, following Reiche, de Bruin, et

al. (2015) and Reiche et al. (2018) we apply a clipping operation to limit the class

probabilities to between 0.1 and 0.9 so as to avoid implying that we have very high or

very low confidence as to the class membership using any single observation. Second,
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we apply a first-order Hidden Markov Model (HMM) and use the “forward-backward”

algorithm to smooth the time series of class probabilities. Hidden Markov Models are

advantageous in this circumstance because they allow for information from the entire

time series to influence the probability of class membership at any point in time. This

is important because we know that land cover classes do not change rapidly from one

observation to the next, but the time series of class probabilities may have sudden

drops or spikes in class probability due to confusion from sources of noise in the data,

like missed clouds or shadows.

HMMs accomplish this smoothing by conditioning the likelihood of class mem-

bership for any given observation on the likelihood of past observations and on the

likelihood of transitioning from one class to another. Adopting the notation of Aber-

crombie and Friedl (2016), we can describe the process of estimating the joint proba-

bility of a pixel belonging to a given land cover label through the time series sequence

as:

P (x1,x2,x3, . . . ,xn|Ω)P (Ω) =
N∏
t=1

P (ωt|ωt−1)P (xt|ωt) (3.3)

where:

• xt is the spectral measurement at time t

• Ω is the set of all possible classes, ωi to ωn

• ωt is class at time t

• P (ωt|ωt−1) is the transition probability from the class at the last time step to

the current time step

• P (xt|ωt) is the likelihood of the spectral data at time t given the land cover label

ωt. These probabilities come from a supervised classification in our algorithm,
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and are often referred to as “emission probabilities” in the context of HMMs.

As described by the arrow labels in Figure 3·3, we observe nmeasurements through

time of p variables, where p = 3 for ALOS-1 and p = 9 for Landsat. Figure 3·4

describes these data as X = x1, x2, . . . , xn, which may come from either optical or

radar data sources. The Random Forest classifiers convert the n observations of p

features in X to P (xt|ωt), which describes the likelihood of observing the data given

membership in label ωt for all n observations and all k labels (k = 6).

y1

X1
Optical

yt

Xt
Optical

yt1

Xt1
Radar

yt+1

Xt+1
Radar

yn1

Xn1
Radar

yn

Xn
Optical

...Land cover
labels

Observations
From Multiple

Sensors 

Figure 3·4: Diagram of the HMM used in this study. We directly
observe spectral measurements xt in p bands or channels for n obser-
vations, and use this information to infer the land cover label at each
time yt.

The calculation of the marginal probability for all observations according to Equa-

tion 3.3.2 is different depending on if you start with the beginning of the time series

and move forward in time, or start with the end of the time series and move back-

ward in time. As such, the “Forward-Backward” has been developed to address this

inconsistency by running the Markov chain forward, backward, and then combines

and normalizes both sets of information to calculate the marginal probability for each

land cover label for each observation (Rabiner, 1989). We parameterized the HMM

initial and transition probabilities using “naive” assumptions — all classes had equal

initial probabilities and all transitions were assumed to occur with equal probability

(0.05). In practice, these parameters may be either tuned for algorithm performance
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or there may be good reasons for knowing the probabilities a priori, for example if

one already had a map of the area from which to derive starting probabilities.

The marginal probability of n observations coming from each of the k classes

that is calculated using the “Forward-Backward” algorithm is a smoother time series

than the original probabilities output from a classifier because class transitions are

parameterized to be unlikely events, which reduce the impact of noisy data that

suggests frequent transitions. Consistency through time in the absence of real change

is important because these data will be used to search for changes in the time series

using a process similar to CCDC described in Section 3.3.3).

Figure 3·5 shows an example of the “Probability Fusion” algorithm steps for a

pixel that experienced deforestation (also shown in Figure 3·2). The top panel shows

the original data, and the middle panel shows the time series of forest land cover

emission probabilities from Random Forest for each data source. These probabilities

are “fused” together, and a HMM is applied to the fused emission probability time

series to generate the “smoothed” time series shown in the bottom panel. The results

of the change detection on this fused, “smoothed” time series detected change on the

same date as the interpreter and the likelihood of forest for the remainder of the time

series is very low, indicating a permanent transition.

3.3.3 Fused Time Series Segmentation

Both the “Probability Fusion” and “Residual Fusion” algorithms have been devel-

oped to identify change based on the approach used by the CCDC algorithm. The

CCDC algorithm decides if a time series has changed if some number of consecutive

observations in the time series are significantly different than the expected forecast

from a time series model based on a user defined threshold. Multiple, consecutive ob-

servations are required in this approach in order to confirm that a change in one date

is not caused by ephemeral conditions or noise. If the first of the next consecutive
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Figure 3·5: “Probability Fusion” results for sample 776 from our
accuracy assessment. The top panel shows the original time series in
SWIR1 and L-HV bands. The middle panel shows the fused forest
emission probabilities from radar and optical data sources. The bottom
panel shows time series of smoothed forest probabilities when using
fusing both data sources (black) or when using Landsat data alone
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66% of the graph, while the date of change given by the assessment
interpreter is shown as the magenta line in the top 33% of the graph.
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observations looks like a change occurred, but not all of the subsequent observations

confirm this change, the CCDC change detection process will mask this first obser-

vation from further analysis. This process inside of CCDC addresses similar issues

as robust modeling approaches that penalize outliers using observation weights. We

found during algorithm development that these characteristics of the CCDC algo-

rithm’s change detection component were desirable for our purposes, but in theory

any time series change detection method could be applied.

For the “Residual Fusion” algorithm, the data passed to the CCDC change de-

tection process is already a normally distributed random variable with unit variance,

centered on zero. We don’t need to utilize a forecast model, and can simply scan

through the time series looking for some number of consecutive observations that are

larger than our desired threshold.

For the “Probability Fusion” algorithm, we have a matrix of n probabilities be-

tween 0 and 1 for k classes. We need to select which of the k classes we want to

analyze for change and recenter and scale these data. We specify a very simple time

series model, Pω,i ∼ 1 + βT imei, to fit an intercept and time trend. Just like the

“Residual Fusion” algorithm and similar algorithms, we select some initial number

of observations as the “training” or “historic” period to train our model. The prob-

ability modeling process produces time series for k classes, and we select which time

series of probabilities to analyze by selecting the class ω with the maximum likelihood

over all observations in the training period. We added a time trend to the model to

account for situations like forest regrowth where the class probabilities may display a

positive time trend. The goal of this modeling process is to recenter and scale future

observations. Fitting only an intercept in the time series model would achieve the

same results as if one just estimated the mean and standard deviation of the “train-

ing” period. While other approaches have determined a change has occurred based
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on a threshold of a probability (Reiche, de Bruin, et al., 2015), this approach is more

adaptive to the conditions of each time series because important detection parameters

(mean and variance) are determined based on the “training” period.

3.3.4 Accuracy Assessment

We drew 800 random samples within the study area using a simple random sample

to assess the accuracy of the deforestation detection of both algorithms when using

data from just Landsat and from both radar and optical platforms. Each sample

was interpreted primarily by analyzing plots and imagery from time series of Landsat

and ALOS-1 data, with available high resolution true color image acquisitions from

Google Earth used where possible to provide additional context. Interpreters recorded

the land cover at the start of the analysis period (2004), whether the sample pixel

experienced a land cover transition during the time series, and information on the land

cover transition including the date of change and the land cover after the disturbance.

Interpreters recorded the confidence in their overall interpretation using a three tiered

qualitative scale, and the confidence in the date of change they provided in numbers of

days. Interpretations were checked for accuracy by another interpreter, with special

attention to samples marked with low confidence.

We assessed the accuracy of deforestation by comparing the answers from all four

combinations of algorithms and observing conditions (optical data alone versus opti-

cal and radar data) to the reference interpretations. When deciding if a deforestation

event observed in the reference data had been captured by a change detection al-

gorithm, we required that the algorithms find the change within 1 year of the date

recorded. To assess the commission errors of deforestation using reference interpre-

tations of stable forest, we required that the algorithms not identify any change in

the time series. This requirement is conservative, because it is possible that many

of the false positive change detections could be removed through postprocessing. In
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the case of the “Residual Fusion” approach, we could compare the magnitude of the

change identified or compare the coefficient estimates for time series models before

and after the disturbance. The “Probability Fusion” approach provides a classifica-

tion probability for each time series segment, or stable time period identified, that

could also be used to eliminate false positives. It is possible, for example, for the

“Probability Fusion” algorithm to find an abrupt change in a time series due to noise

despite there being high forest probabilities in the time periods before and after the

break on average.

The most important hyperparameters for this change detection approach are the

threshold to detect change and the number of consecutive observations that are

outside the threshold needed to declare a change. While it was important to use

the same algorithm for detecting change to isolate the comparison of algorithms to

just the fusion process (Sections 3.3.1 and 3.3.2), we had to calibrate the threshold

and number of consecutive observations to each fusion method. To help decide on

the values of these parameters, we generated arrays of hyperparameter values (e.g.,

threshold = [1.5, 2.0, 2.5, 3.0] and consecutive = [3, 4, 5]) and mapped deforestation

over interesting subsets of our study site for all possible combinations of parameters.

We visually analyzed these maps and chose parameters to balance finding deforesta-

tion events without having too many false positives. Based on this experience, we

selected a threshold of 2.0 for both algorithms and required 3 and 5 consecutive ob-

servations of change for the “Residual Fusion” and “Probability Fusion” algorithms

respectively.

3.3.5 Simulation Experiment

To test the performance of our algorithms in places with different acquisition histo-

ries, cloud cover regimes, or data availability, we analyzed how accurate and timely

deforestation could be detected by randomly removing Landsat acquisitions from our
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dataset before running the algorithms. We simulated 20 different Landsat data avail-

ability conditions ranging from from 100% of the data to 5% of the data. At each

increment, we created 100 randomized subsets of the data by sampling without re-

placement the acquisition dates from the Landsat record. Because of its long history,

free and open data policy, its commitment to data continuity, and its higher variabil-

ity in the number of images acquired across the world, we consider the Landsat data

to be the baseline dataset for this study. As such, we did not simulate reductions in

the number of observations in the ALOS-1 PALSAR data. Using these 20 simulated

observing conditions, we ran the “Residual Fusion” and “Probability Fusion” algo-

rithms with both Landsat and ALOS-1 observations fused together and with Landsat

observations alone. We calculated the omission and commission scores based on the

170 examples of deforestation from our reference data for all 100 trials across the 20

simulated conditions. Finally, we calculated the mean and standard deviation of the

scores across all 100 trials, for both algorithms under optical and fused scenarios.

3.4 Results

3.4.1 Training Data

Figure 3·6 shows the training data in the EVI, NBR, and NBR2 vegetation indices

from Landsat and the L-HH and L-HV channels from ALOS-1 PALAR as bivariate

Gaussian kernel density estimates, with bandwidth calculated according to Silverman

(1986). The probability distributions for some of the land cover classes could reason-

ably be characterized a single Gaussian distribution, but the data contain multiple

concentrations or groupings that would warrant characterizing separately. The sep-

aration among the class labels is not trivial if using only one spectral index or band.

For example, the PDFs of forests and herbaceous cover have the highest degree of sep-

aration in the EVI index but forests and cloud shadows (sampled usually over forest
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Figure 3·6: “Probability Fusion” algorithm training data visualized
in the EVI, NBR, and NBR2 spectral indices from Landsat and L-HH
and L-HV backscatter from ALOS-1 PALSAR. The distributions of
the training data for all classes are estimated using a Gaussian kernel
density estimate.

cover) look similar. Fortunately, cloud shadows and forests are very distinguishable

in the NBR2 index. L-HH was the most important in separating water from soil,

and there’s some overlap in L-HH and L-HV for less dense forest samples and some
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herbaceous examples.

3.4.2 Overall Accuracy
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Figure 3·7: Accuracy of deforestation

The random sample of 800 units contained 170 samples that experienced defor-

estation during the study time period and 346 samples of stable forest. The interpre-

tations from these samples were used to generate omission and commission accuracies,

which were plotted for each algorithm and data scenario in Figure 3·7. The “Prob-

ability Fusion” algorithm had the highest Producer’s Accuracy (1 - Omission Error)

when radar data was incorporated, but did not detect more deforestation events than

when using Landsat data alone. The User’s Accuracy for the “Probability Fusion”

algorithm was slightly higher when using just Landsat data. Overall the errors of
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commission and omission were approximately balanced for this algorithm, which is

important because the mapped areas are likely to fall within the confidence intervals

of the accuracy adjusted, unbiased area estimates when doing area estimation (Olof-

sson et al., 2013). The “Residual Fusion” algorithm was significantly less accurate

than the “Probability Fusion” algorithm, missing more than 40% of the deforestation

events. This algorithm was slightly less accurate when incorporating radar data, and

the algorithm was not balanced in omission and commission error, suggesting that

alternative hyperparameters might detect more deforestation events at the cost of

commission error.

3.4.3 Timing of deforestation
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Figure 3·8: Time to detect deforestation by algorithm type.

For all samples of deforestation that were captured by our change maps, we calcu-

lated the temporal accuracy of the change detection by comparing the date of change

in the reference interpretations against the algorithm results. Figure 3·8 shows the

cumulative percent of deforestation events found by each algorithm and data sce-
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nario, which was helpful in similar analyses by Tang (2018). As expected, the timing

results for the “Probability Fusion” algorithm show that this algorithm finds more of

the deforestation than the “Residual Fusion” algorithm, but this algorithm does not

perform considerably differently when incorporating radar data into optical data time

series. The “Residual Fusion” algorithm finds approximately 20% of the deforesta-

tion too early, and did not detect very many deforestation events after a few months

have passed since the change occurred. The “Probability Fusion” algorithm detects

approximately 10% of the sample too early, but is capable of finding approximately

about 79 and 75% of the changes within 1 year when fusing data sources and when

only using optical data. We did not consider a 2 year window to be sufficient for

our accuracy analysis, but the “Probability Fusion” algorithm detected 90.2% of the

deforestation samples within 2 years.

3.4.4 Observational Frequency Simulation
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Figure 3·9: Accuracy of deforestation under simulated observational
frequencies

The results of the Landsat data observation condition simulation experiment are
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shown in Figure 3·9. The “Probability Fusion” algorithm only saw extra benefits

larger benefits from utilizing radar data once the Landsat archive had been reduced

to about 40% of its original size, or to about 7 observations per year. The “Residual

Fusion” algorithm consistently performed better when only using Landsat data, and

always worse than the “Probability Fusion” algorithm.

3.5 Discussion

3.5.1 Fusion Algorithms

The algorithms developed here may also be described in terms of their use of either

univariate or multivariate data. The “Residual Fusion” algorithm currently operates

using only one variable per time series data source. Many of the bands from optical

sensors are highly correlated, but having to select one single index or band neglects

useful information. Despite this, the of a single variable is common to BFASTMonitor

Verbesselt et al. (2012), EMWACD Brooks et al. (2014), and LandTrendr Kennedy

et al. (2010). A possible improvement for this algorithm is to incorporate additional

spectral bands from optical and radar data sources by using the approach from CCDC,

which combines scaled residuals across multiple bands by calculating the vector norm

across all bands for each observation. By doing this, multiple bands per data source

would be combined first, and the combined information from each data source would

then be fused together. For example, we might want to monitor for change using the

first three Tasseled Cap indices (Kauth and Thomas, 1976; Crist, 1985) with Landsat

data and dual polarized data and texture metrics for SAR datasets.

While the “Probability Fusion” approach may only monitor for change in a uni-

variate time series, the class probabilities that are the basis for the time series change

detection can come from a classifier trained on multivariate data. The “Bayesian

updating” approach in Reiche, de Bruin, et al. (2015) and Reiche et al. (2018) works
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very similarly, but those studies only used univariate distributions of either NDVI,

L-HV, or S-VV, though others have used multivariate Gaussian distributions (Sal-

berg and Trier, 2011). As work toward identifying the cause of land cover change

disturbances have demonstrated, methods of land cover change, even within a single

type of transition, can show up differently, especially if analyzed in multiple spectral

bands. While the “Probability Fusion” approach leverages multiple polarizations of

radar data and multiple spectral bands and indices of optical data, there are many

more transformations of these data that could be included when deriving the clas-

sification probabilities. Texture, for example, has been shown to be very useful in

discriminating among land cover types (Lu and Weng, 2007; Zhu, Woodcock, Ro-

gan, et al., 2012) and mapping forest cover, biomass, and stand age (Luckman et al.,

1997; Simard et al., 2000; Kuplich et al., 2005; Lu, 2005; Walker et al., 2010; Cutler

et al., 2012; Thapa et al., 2015). This study was interested in these algorithms in

context of near real time monitoring, and so using as many observations as possible

was a priority, but one could also produce temporal features to use in the classifier

by resampling to a coarser temporal resolution. If change mapping at a yearly basis,

as LandTrendr does for example, one could generate temporal metrics like the range

of the observations or the mean value for each season that are useful features when

classifying land cover, as in Abercrombie and Friedl (2016).

With the exception of Trier and Salberg (2011) and Salberg and Trier (2011)

who mapped forest, sparse forest, grass, and soil classes, previous studies that used

methods similar to the “Probability Fusion” algorithm have only attempted to identify

forests separate from non-forest. Mapping forests apart from non-forests is a useful

approach if users are interested in finding deforestation, but frequently users desire

more information about what causes deforestation and identifying the land cover

after disturbances is required for understanding what land cover or use transitions
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occur. This information is very important for understanding historic carbon emissions

(Houghton et al., 1999) because transitions from forest may cause different emissions

directly and from changes in fluxes from the new land cover. Information on land

cover change is also useful for estimating spatial relationships to drivers of land cover

change or projecting land cover change through time (Thompson, Plisinski, Olofsson,

Holden, et al., 2017).

We chose Random Forest primarily because it generally performs very well without

needing to fine-tune hyperparameters (Fernández-Delgado et al., 2014) and based on

past experiences using the algorithm, but there are a few other benefits and some

tradeoffs when using a non-parametric classification algorithms over parametric ones.

First, Random Forest is able to separate among classes that may be non-linearly

separable and handle classes with multiple modes in some variable. The kernel density

estimations of the probability distribution functions for each thematic class in Figure

3·6 shows that the herbaceous training data samples had several different groupings

internal to the class. This phenomenon when collecting training data is commonly

referred to as “many to one mapping”, which references that there may be many sub-

groupings that are representative of one larger class. In this example, we likely could

have used a Gaussian distribution to model the herbaceous training data samples,

but only after first isolating the individual groupings of data. By choosing a classifier

that does not much such assumptions about the data, we avoid this complication.

Random Forests, however, require a relatively larger amount of data to characterize

the distribution of training data than when using parametric classifiers, which only

need a representative sample so that estimates of model parameters (i.e., mean and

variance) can be accurately characterized. Random Forest is also sensitive to the

representation of each class in the training data, especially for imbalanced training

data sets with few samples of rarer classes. We attempted to address this issue by
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providing class weights for each training data sample that were inversely proportional

to the number of samples for the class (Chen et al., 2004).

Random Forests along with other types of decision trees, Support Vector Machines

(SVM), and naive Bayes classifiers have been shown to have difficulties generating

unbiased class probabilities (Platt et al., 1999; Niculescu-Mizil and Caruana, 2005;

Zadrozny and Elkan, 2001), although building larger decision trees may be less prone

to this issue (Provost and Domingos, 2003). Algorithms like Random Forest or SVMs

that emphasize the boundaries among classes tend have a sigmoidal shape to their

classification predictions, avoiding predicting values close to 0 or 1, while approaches

like naive Bayes that assume features are independent tend to push probabilities

toward 0 and 1. We did not try to quantify or address this potential issue, but there

are approaches to calibrate probability estimates that could be employed, including

Platt or sigmoid calibration (Platt et al., 1999) and isotonic regression calibration

(Niculescu-Mizil and Caruana, 2005).

The time series of SWIR1 from Landsat and of L-HV from ALOS-1 were not

highly affected by seasonality for most examples of tropical forest. However, the

Landsat data used had not been corrected for sun and sensor geometry, and so there

was some amount of seasonality for all pixels in the Landsat data, especially along

edges where projected shadow area can change greatly with sun angle. We attempted

to characterize this apparent seasonality in the “Residual Fusion” algorithm by fitting

a yearly harmonic, but there was no such characterization of seasonality in the classi-

fications by the “Probability Fusion” algorithm. Reducing the temporal resolution of

the analysis to a yearly scale would allow for characterization of seasonality by using

annual profiles, but this would not be suitable for monitoring applications. Based

on the approach used for Landsat data in Hamunyela, Verbesselt, and Herold (2016),

Reiche et al. (2018) addressed seasonality in the time series signal by normalizing each
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observation relative to neighboring pixels in a large moving window. This approach

has proven very useful for forest monitoring applications, and Hamunyela, Verbesselt,

and Herold (2016) found that the median value of the top 10% largest values in a veg-

etation index was robust to normalizing by disturbed pixels. Reiche et al. (2018) also

demonstrated the utility of spatial normalization for reducing seasonality in C-band

data from Sentinel-1.

3.5.2 Change Detection

During algorithm development, we informally tested and analyzed the performance

of the Exponentially Weighted Moving Average (EWMA; Shewhart (1931) and Lucas

and Saccucci (1990)), Cumulative Sum (CUSUM; Ploberger and Krämer (1992)),

and Moving Sum (MOSUM; Chu et al. (1995)) statistical tests for change in a time

series. In our experience, these statistical tests were overly prone to false positives,

usually because of clouds and cloud shadows that were not detected in the FMask.

Based on our experience running the CCDC algorithm (Zhu and Woodcock, 2014), we

implemented the change detection test from CCDC which detects change if the scaled

residuals for some number of consecutive observations are larger in magnitude than

a given threshold. This method is similar to a “robust EMWA” approach described

by Lucas and Saccucci (1990) that requires multiple, consecutive observations to be

outside the EWMA threshold to detect a change. One modification, however, is that

the change detection method based on CCDC will try to eliminate bad observations

as it monitors the time series by removing an observation from the remainder of the

analysis if its scaled residual exceeds the threshold but the subsequent observations

are within the threshold. This process is performed during the monitoring phase of

the algorithm, but attempts to address similar concerns as the Shewart X-Bar chart

test performed prior to the historic time series model fitting step in the EWMACD

(Brooks et al., 2014) change detection algorithm. We found that this noise screening
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step that occurs while monitoring for change was very useful, but it may not be

necessary in areas where clouds and cloud shadows are less of an issue. The exact

algorithms that control how the change detection is performed on the fused time

series may be interchangeable to some degree, and we consider the actual “time series

fusion” part of the algorithms we developed here to come before this step.

One possible enhancement to the change detection algorithm to help take advan-

tage of radar observations is to modify the number of consecutive observations needed

if radar observations are being considered during the monitoring phase. Radar obser-

vations, for example, could count as two of the required consecutive observations to

identify a break in the algorithm. Some other tests for change integrate information

of change magnitude and persistence differently. The MOSUM (moving sums) test

(Chu et al., 1995), for example, is calculated for time t by using past and future ob-

servations (lags and leads), and under this approach few large disturbances could add

up to the same MOSUM score as many smaller disturbances. Under this framework,

radar observations could be weighted more highly by scaling the radar radar forecast

residual time series, potentially making residuals from radar time series count double

or triple, thereby reducing the time needed for detection.

3.5.3 Accuracy

One of the common causes for errors in the “Probability Fusion” algorithm is due to in-

accurate estimates of the classification emission probabilities, especially for examples

that fall near the boundaries of another class. The forest emission probabilities from

Random Forest were typically above 90% for examples of dense forest cover, typically

one or more pixels away from an edge and with reflectance in the first Landsat SWIR

band (1.55-1.75 µm) between 10-15% and backscatter in L-HV of approximately -10

to -12 dB (e.g., Sample 43). Many of these poorly characterized areas were also sec-

ondary or recently harvested, regrowing forests, and transitional states are difficult
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to characterize with a discrete land cover label. Approaches that transform data into

continuous variable, like estimation of percent tree cover or vegetation continuous

fields (Sexton et al., 2013; Hansen et al., 2013) or spectral endmember percentage

from a mixture model (Souza Jr et al., 2005), may do a better job of characteriz-

ing transitional classes than a discrete labeling algorithm. Conversions to oil palm

plantation was identified very well with the “Probability Fusion” algorithm (38 of 40

examples for fused and non-fused), and much better than overall but lower than the

“Probability Fusion” algorithm (31 and 27 of 40 examples for fused and non-fused).

Many of the poorly estimated forest emission probabilities from the radar dataset

were near edges, but frequently had fairly stable L-HV time series that would oth-

erwise suggest permanent forest cover. There was clear correlation of the L-HH and

HH/HV ratio time series with forest probability estimates in these examples, suggest-

ing that either the full variation in L-HH and the HH/HV ratio were insufficiently

characterized in the training data or inherent variability that isn’t as much con-

nected to a notion of “stable forest”. Backscatter received in the same plane that

it was transmitted in (e.g., horizontal-horizontal or HH) does not need to interact

repeatedly with target elements to alter the polarization, and the necessity of volume

scattering for backscatter in cross-polarized channels makes L-HH inherently less sta-

ble than L-HV. Soil moisture, for example, increased the backscatter of L-HH more

than L-HV (4.0 dB versus 2.5 dB) in Lucas et al. (2010), and this influence from soil

moisture conditions was more sensitive for lower biomass forests. The large increase

in backscatter at high soil moisture conditions (e.g., after a rainfall) for L-HH were

attributed to the increased surface scattering, particularly increased double bounce

or direct ground returns. Shimada et al. (2014) found that a regional thresholds on

L-HV was sufficient for distinguishing forest cover globally, and a simple solution

would be to drop the L-HH and ratio time series and only analyze L-HV. It should
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also be possible, however, to retain the information from L-HH if the contributions

to this signal from soil moisture were either better characterized in training data or

input feature variables.

Another source of error in both algorithms comes from instability in estimates

in the training period of the change detection step. If clouds or cloud shadows are

present in the training period of the either change detection algorithm, the coefficients

estimated for a time series forecast model can be very inaccurate, often predicting a

large negative or positive time trend. This phenomenon seemed especially important

for the “Probability Fusion” algorithm because one low class probability due to noise

in the first few observations could weigh down adjacent observations due to the HMM

smoothing process, which can induce a spuriously large coefficient estimate for the

time trend and cause a spurious change shortly into the monitoring phase. Both fusion

algorithms estimated time series models during the training period using iterately

reweighted robust linear models to reduce the influence of such outliers on regression

results, but did not implement more advanced methods of addressing noise in the

training period that algorithms like CCDC implement. Instability in model parameter

estimates is to be expected with noisy data and few observations, and it is possible

to calibrate how long the training period has to be within both algorithms. As with

CCDC, we required time series forecast models to have some minimum number of

observations before the change detection algorithm will run. The “Residual Fusion”

algorithm is at a relative disadvantage here compared to the “Probability Fusion”

algorithm because the fusion of the time series happens after forecast models are

run. As such, optical data and radar data each have separate minimum number of

observations (16 and 3 here, respectively), limiting the number of observations that

may be used for monitoring. By comparison, the “Probability Fusion” is able to

train forecast models using data from radar and optical sources because fusion is
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done before this step. While increasing the minimum number of observations may

help with model stability, it can also cause errors if change occurs within the training

period because a regression estimated with multiple land cover regimes is likely to

also be spurious or unstable.

While the “Probability Fusion” algorithm outperformed the “Residual Fusion”

algorithm, the “Probability Fusion” algorithm has a few relative tradeoffs when con-

sidering operational implementation. First, the “Probability Fusion” algorithm re-

quired significant time investment in gathering training data before the process can

be run. Although there are hyperparameters that could be tuned for better per-

formance locally, the “Residual Fusion” algorithm could be ran over large areas and

could generate change maps without needing human input. The effort required to run

the “Probability Fusion” algorithm could be reduced by using a parametric classifier

that doesn’t require as many training data samples, or by automating the generation

of training data by collecting samples using other datasets or land cover maps as ref-

erence. While the need for training data requires time investment, it also provides the

opportunity to refine the maps produced from the algorithm in a way not possible with

the “Residual Fusion” time series. The fusion transformation in the “Residual Fusion”

method is based on comparison with the expectation for each time series, which is

not something one can calibrate or fix with human input. Classification probabilities,

however, could be corrected by iteratively analyzing classification probability maps

and adding more training data to correct the classification. Finally, the “Probability

Fusion” algorithm took significantly longer to compute primarily because of the time

needed to compute emission probabilities from Random Forest. Fortunately, these

predictions are easily parallelized, and other classifiers (especially parametric ones)

take much less time to compute class probabilities. There may be utility for both of

these algorithms, since the “Residual Fusion” algorithm could quickly produce maps
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of changes and anomalies that can be used to guide training data collection.

3.5.4 Radar Cost Benefit

This study only saw minor improvements in the spatial and temporal accuracy of

deforestation from incorporating radar data into time series based on all available

Landsat data when using the “Probability Fusion” algorithm. Radar contributed

most strongly when using the “Probability Fusion” algorithm performed once the

Landsat data archive had been simulated to have about 7 acquisitions per year on

average. The study site we selected was located within the Peruvian Amazon and was

within range of the Brazilian receiving station The observation reduction experiment

highlights the potential of radar time series to benefit deforestation and land cover

change analysis, especially when Landsat data is noisy or historically unavailable.

The experiment design involved only changing the number of usable observations

from Landsat and held all other variables constant, which potentially overestimates

the omission error in practice because we would have adapted several hyperparameters

to the reduced data density. For example, the number of consecutive observations

required to detect a change for the “Probability Fusion” algorithm could likely be

reduced from 5 to 3 and reduce omission error at the cost of an acceptable increase in

commission error. For historic analyses, the number of available observations, even

after consolidation of the archive, can vary greatly with lower densities in important

forests in Africa and Southeast Asia (Wulder et al., 2016). Data from the Japanese

Earth Resources Satellite (JERS-1) could help extend time series analysis back into

the 1990s for places that were poorly covered by Landsat-5 relative to Landsat-7, or

decrease uncertainties in conjunction with Landsat data, within the same workflows

as ALOS PALSAR data. For example, Thomas et al. (2015) were able to utilize

data L-band data from JERS-1 and ALOS-1 PALSAR during the 1990s and 2000s to

map mangroves using the procedures. For more recent time periods and for ongoing



90

monitoring applications, the methods tested here could combine data from Landsat

8, ALOS-2, and Sentinel-1, as was done in Reiche et al. (2018).

3.6 Conclusion

Two algorithms were developed in this study that can fuse data from optical and

radar sensors for mapping deforestation. The “Probability Fusion” algorithm caught

almost 80% of deforestation within one year of the reference interpretation date, and

over 90% within two years, and combining radar and optical data was slightly more

accurate in finding deforestation than using optical data alone. The “Residual Fu-

sion” algorithm was much less accurate, and despite individual examples where radar

data improved detection this algorithm was overall more accurate using optical data

alone (58.86% for optical data versus 53.14% when fused). The improvement in defor-

estation mapping from adding radar data for the “Probability Fusion” algorithm was

much more pronounced as the Landsat data availability was decreased in our simu-

lations. We saw small benefits to using radar data given the relatively good coverage

from Landsat data, but there were only 11 usable dual polarimetric observations from

ALOS-1 over our study site. The combination of L- and S-band observations from

ALOS-2 and NISAR, along with the potential for integration of C-band time series

from both Sentinel-1 satellites, would yield significantly denser radar time series than

what was historically available.

Conversion of observations into class probabilities — particularly forest class prob-

abilities — has consistently proved to be a useful method for time series fusion (Sol-

berg et al., 2008; Salberg and Trier, 2011; Trier and Salberg, 2011; Reiche, de Bruin,

et al., 2015; Reiche et al., 2018). Probabilities are an obvious method for combining

data, and have been used in remote sensing context as prior probabilities to assist

land cover mapping (Schneider et al., 2003; McIver and Friedl, 2002; Friedl et al.,
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2002). Spatial information may also be introduced by modeling the spatial correla-

tion among neighboring pixels, which has been done, for example, by using Markov

Random Fields (Solberg et al., 1996). In addition to modeling the spatial relationship

among neighboring pixels of the same sensor, it may be possible to use class probabil-

ities to help fuse data from multiple resolutions. The STARFM model, for example,

explicitly models the relationship between different observations of different spatial

resolutions using weight functions. Information from multiple scales is frequently used

to identify images in recent deep learning methods (Zhang et al., 2016; LeCun et al.,

2015), and Zhao and Du (2016) provided a recent application of deep learning in re-

mote sensing by developing a multiscale convolutional neural network (MCNN) that

integrated information from three spatial scale representations of very-fine resolution

imagery.

Research and development of frameworks that can leverage multiple streams of

information to answer questions using remote sensing data should be of high priority

given the increasing availability of free and consistent observations. Many applica-

tions in remote sensing have benefited from having access to the entire archive of

Landsat data, and probability presents a useful framework for connecting to data

that describes human (e.g., spatial development patterns, zoning, taxes) and natural

systems (e.g., decadal climate variability, logging or fire frequencies) dynamics.
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Chapter 4

Landsat Time Series Meteorological Data
Fusion In Semi-Arid Ecosystems

4.1 Introduction

4.1.1 Background

Vegetation phenology, or the seasonal patterns of dormancy, growth, and senescence,

is a first order control on many physiological processes of interest, including the annual

budgets of carbon dioxide and water vapor exchanges. The phenological timings of

plants are optimized for favorable growing conditions, to optimize seed dispersal, to

avoid competition or predators, or to avoid hazardous environmental stresses (Cleland

et al., 2007). Phenology in grassland ecosystems, especially in arid or semi-arid areas,

is greatly affected by variation in precipitation and has been found to vary on the order

of a month due to precipitation and temperature conditions (Lesica and Kittelson,

2010; Shen et al., 2011).

Satellite remote sensing has been very useful in estimating phenological patterns

at large spatial scales, at coarse spatial resolutions using Advanced Very High Res-

olution Radiometer (AVHRR) (Moulin et al., 1997), Moderate Resolution Imaging

Spectroradiometer (MODIS) (Zhang et al., 2003), Landsat (Melaas et al., 2013), and

ground base sensors or combinations of all (Liu et al., 2017). Many of the remote

sensing studies of vegetation phenology are more focused on mapping the timing of

the transition than modeling or understanding the drivers, frequently deriving transi-
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tion dates from logistic or smoothing functions fitted to a vegetation index. Mapping

transition dates is very useful for further analysis, like investigation of trends in earlier

spring or later autumn transitions. Others have used phenological date information

for model inference, established that precipitation can help predict phenology in arid

and semi-arid regions of Africa for monitoring applications (Zhang et al., 2005), or

helping calibrate phenology models by providing estimates over large spatial areas

(Xin et al., 2015).

The total vegetation abundance, whether mapped as a vegetation index or more

physical quantities like percent cover or biomass, is also a domain in which remote

sensing studies use climate data. Hausner et al. (2018) used the Google Earth En-

gine (Gorelick et al., 2017) to assess the benefit of riparian ecosystem restoration

by comparing the relationship between yearly NDVI and precipitation totals. They

found that the two variables were very highly correlated, and that restoration projects

change the relationship between the variables, suggesting a potential for monitoring

abrupt surface process changes (e.g., restoration or degradation).

Formica et al. (2017) analyzed the relationship between anomalies in annual pre-

cipitation and NDVI in the deserts of Central Asia using a separate model per pixel,

and a pooled model of all observations that included the pixel location as a random

effect. They found significant positive correlations between anomalies of NDVI and

precipitation that showed spatial variation across gradients of arid and semi-arid en-

vironments. Birtwistle et al. (2016) used this relationship between precipitation and

greenness to determine which ephemeral stream channels had seen flow from monsoon

rains, and were able to explain 73% of the variance in monsoon rain totals with the

difference in NDVI before and after the rains.

In addition to timing, remote sensing is also used to analyze the variability of

vegetation associated with climate and environmental drivers. Seddon et al. (2016)
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analyzed the sensitivity of vegetation to climate variables (air temperature, water

availability, and cloud cover) by using these climate variables to explain standard

anomalies of 14 years of MODIS EVI time series. Their models also included an au-

toregressive term to account for time series memory effects, and their study produced

global maps of temperature, water, and cloud sensitivity that they combined into an

overall vegetation sensitivity index. Also looking for vegetation response to variabil-

ity in rainfall and flooding, Broich et al. (2018) used 26 years of Landsat time series

over floodplains in Australia to determine the influence of rainfall amount, flood-

ing condition, and structural breaks on EVI standard anomalies. They found that

rainfall and flooding were strong predictors of EVI anomalies, and that estimating

breakpoints frequently, though not always increased explanatory power, albeit less

than when adding flooding alone. The authors used the same approach for estimating

breakpoints as the Breaks For Additive Season and Trend (BFAST; Verbesselt, Hyn-

dman, Newnham, et al., 2010; Verbesselt, Hyndman, Zeileis, et al., 2010) algorithm,

which is known as the “Bai-Perron” test after Bai and Perron (1998). The break-

points fit using this method were frequently associated with the onset of the South

East Australian Millennium Drought, suggesting that their method could detect not

just climate variability, but structural changes to the relationships between EVI and

moisture variables that drive the variability. Chen et al. (2018) used time series of

precipitation and a greenness index to infer irrigation from variability, relying on

the idea that increases in greenness that were not coincident with precipitation were

assumed to be caused by irrigation. Yang et al. (2017) used remote sensing derived

time series of evapotranspiration to look at the response of vegetation across land

cover type and across regrowth trajectories to drought. They finding that evapotran-

spiration decreased before NDVI during the drought and that the mature pine forest

plantation stands were not as affected as younger stands, presumably because deeper
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roots provide better access to water.

Many studies have investigated the links between variability in greenness and

drought for the Amazon, with some studies focusing on the response, if any, to the

2005 drought (Huete et al., 2006; Samanta et al., 2010; Samanta et al., 2012), the

2011 drought (Xu et al., 2011), or to droughts and El Niño events since 2000 (Hilker

et al., 2014). Others have focused on the boreal ecosystems of the world, looking

for greening or browning trends as the vegetation cover in these regions experience

some of the most rapid responses to temperature and moisture conditions due to

global climate change (Myneni et al., 1997; Goetz et al., 2005; Ju and Masek, 2016;

Sulla-Menashe et al., 2018). Many of the studies focusing on this topic used coarse

resolution data from either AVHRR or MODIS data, but more recent studies that

use medium resolution data from Landsat have found that disturbance and the legacy

of past disturbance drives many of the observed trends (Ju and Masek, 2016; Sulla-

Menashe et al., 2018).

Most existing methods of finding land cover change using time series analysis have

not incorporated ancillary information (Kennedy et al., 2010; Huang et al., 2010;

Verbesselt et al., 2012; Zhu and Woodcock, 2014), but some approaches have built-in

methods for handling variability due to meteorological conditions. The Vegetation

Continuous Tracker (VCT; Huang et al., 2010) uses a Z-score to measure distance

away from examples of forests in an image to detect change, and the algorithm can

take two steps to deal with effects of drought, particularly in semi-arid open wood-

lands in the Southeast United States. First, they increase the number of years they

require of consecutive, abnormally high integrated Z-scores from two to three. Sec-

ond, they perform the calculation of Z-scores twice, specifically targeting open forests

as a separate population for the calculation of the mean and variance. The mapping

scheme used by Huang et al. (2010) did not want drought impacts to be classified as
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a disturbance, so these steps were crucial for map accuracy. LandTrendr (Kennedy

et al., 2010) allows for single year disturbances within it’s conceptual framework,

but by ignoring meteorological data it misses the opportunity to distinguish if envi-

ronmental conditions caused these temporary disturbances. Many of the effects of

climatic variability, including onset and offset phenology or changes to the trajectory

of greening, are able to be excluded immediately when using only one observation per

year, typically at the height of the growing season, as many algorithms do (Kennedy

et al., 2010; Huang et al., 2010). Using BFAST Monitor, Hamunyela, Verbesselt,

De Bruin, et al. (2016) have tried to address the issue of seasonality in a similar way

by normalizing forest pixels based on the mean calculated from forest pixels within a

large window.

The BFAST Monitor (Verbesselt et al., 2012) and Continuous Change Detection

and Classification (CCDC; Zhu and Woodcock, 2014) methods assume that greenness

can be explained by decomposing the signal into linear combinations of a intercept,

time trend, and seasonal terms (i.e., as a Seasonal-Trend Decomposition Cleveland

et al. (1990)). One study attempted to enhance the performance of BFAST Moni-

tor over tropical forests by incorporating the Standardized Precipitation Index (SPI)

as an explanatory variable, but found that change detection performance decreased

when adding this extra variable (Dutrieux et al., 2015). They found that using spatial

normalization (Hamunyela, Verbesselt, De Bruin, et al., 2016) was a more effective

method of removing the influence of climatic variability than SPI. They hypothe-

sized that the forests in their study area might not be sufficiently water limited to

be influenced by dry conditions or have non-linear responses to drought, or that SPI

might not be ideal at representing the moisture conditions. The CCDC approach

does not explicitly account for variability in vegetation due to environmental drivers,

but the requirement for consecutive observations of change and the temporally depen-
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dent forecast uncertainty calculation can help. Specifically, the calculation of Root

Mean Squared Error for the forecast uncertainty in CCDC for any given observation

is only based on predictions for similar days of the year, resulting in wider confidence

intervals for periods of high variance (e.g., phenological transition periods or spring

snow melt) than stable periods (e.g., peak growing season). Despite these factors,

CCDC assumes greenness follows a deterministic pattern, irregardless of environmen-

tal drivers, which causes spurious changes to be identified that reduce the accuracy

of land cover classification and complicates the inference of land cover change from

the “structural breaks” found using CCDC.

Just as climate driven variability makes it harder to detect change, land cover

change makes it harder to establish the impacts of natural variability because land

cover change usually fundamentally alters the vegetation. Studies that calculate pa-

rameters over long time scales, like greening or browning trends or shifts in growing

season, using low resolution data are particularly susceptible to this issue. Zhu, Fu,

Woodcock, Olofsson, Vogelmann, Holden, et al. (2016) explored this by separating

greenness changes caused by land cover change in Guangzhou, China from gradual

greenness change from vegetation growth or regrowth (e.g., from a forest planta-

tion). Both Ju and Masek (2016) and Sulla-Menashe et al. (2018) utilize disturbance

information, either in the form of fire permiter databases or disturbance maps, to

separate greening or browning trends in the boreal forests of North America due

to climate drivers from trends that are simply caused by disturbance or land cover

change. Melaas et al. (2016) explicitly accounted for land cover change when analyz-

ing phenological patterns over eastern North America using maps from CCDC, but

had to remove pixels with multiple changes or changes in the first half of the time

series. Pasquarella, Holden, and Woodcock (2018) used phenological transition dates

for each CCDC time series segment estimated according to Melaas et al. (2013), and
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found that including phenological transition dates improved classification of forest

species.

4.1.2 Objectives

This research effort seeks to incorporate environmental conditions into time series

analysis of vegetation greenness. Such integration will allow for variability in phenol-

ogy to be separated into variability due to natural variations in environmental drivers

and variability in phenology due to anthropologically or naturally driven structural

changes to grass, shrubland, and forest ecosystems. In order to guide this assessment,

this effort seeks to answer the following:

1. What is the relationship between vegetation greenness and meteorological vari-

ables in time series analysis?

2. Does meteorological data meaningfully improve land cover change detection

efforts?

We answer these questions by following, or at least being inspired by, the method-

ologies for integrating meteorological information into Landsat time series taken by

Dutrieux et al. (2015), who included a drought index as an external regressor in an

online change detection algorithm based on harmonic regression (BFAST-M), and

Broich et al. (2018), who used rainfall, flood condition, and breaks to explain EVI

anomalies. We chose to focus this study on a Landsat data footprint over the San

Joaquin Valley and Sierra Nevada Mountains for its diverse land cover and distur-

bance regimes, and recent droughts that have affected the vegetation. By assessing an

area that has experienced recent precipitation anomalies as a contrast with “baseline”

or “historic” conditions, we hope to gain insight into responses to climate variability

similar to previous studies (Friedl et al., 2014).



99

4.2 Data

4.2.1 Landsat Time Series

We used the newly available Landsat Analysis Ready Data (ARD) product from

the USGS (Dwyer et al., 2018) from tile h03v09 in this analysis. Landsat ARD

data are available to download for all of the Contiguous United States (CONUS),

Alaska, and Hawaii in a highly preprocessed and easy to use form suitable for large

scale analysis. Landsat ARD are preprocessed using the same Landsat Collection 1

algorithms and are atmospherically corrected using approaches familiar to Landsat

data users: LEDAP for Landsat TM and ETM+ (Masek et al., 2006) and LaSRC for

Landsat 8 (Vermote et al., 2016). Cloud and cloud shadow masks generated by the

“CFMask” implementation of Fmask (Zhu and Woodcock, 2012) are also available

from ARD.

While similar to Landsat time series datasets the community uses and was used in

the previous studies of this dissertation, ARD offer a number of specific improvements

to data quality and ease of use. For large area mapping, for example, ARD have

better geometric accuracy than if one were to preprocess by reprojecting and tiling

the scene-based, Collection 1 data. ARD are directly projected into Albers Equal

Area (for CONUS) when going from swath to grid, avoiding resampling artifacts that

occur when Landsat scenes are reprojected from UTM. The tiling system used by

ARD facilitates analysis by combining data from multiple WRS-2 paths and rows

within a single tile, increasing the data density in areas of overlap between adjacent

WRS-2 footprints. This increase in density, however, is not uniform through space

(only in the “overlap” regions) and ARD are not corrected for differences in view or

solar geometry.
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4.2.2 Meteorological Time Series

We used the Parameter elevation Regression on Independent Slopes Model (PRISM)

gridded meteorological data product (Daly et al., 1997), which is available at 4 km

spatial resolution for monthly time steps. While we had the temperature variables

from this dataset available for analysis when interpreting time series data, we only

used the precipitation variables from this dataset in quantitative analysis.

In order to capture a much wider range of moisture dynamics, we also used

the Standardized Precipitation and Evapotranspiration Index (SPEI) developed by

Vicente-Serrano et al. (2010) which takes into account moisture availability by model-

ing the difference between precipitation and potential evapotranspiration. The SPEI

is standardized, which helps account for differences in moisture availability due to dif-

ferent hydrologic sources (e.g., rainwater versus snowmelt) over space. The SPEI is

available integrated over timescales ranging from one month to four years, which also

helps to quantify moisture conditions over time as droughts evolve. Vicente-Serrano

et al. (2010) use the example that shorter SPEI integration periods are more likely to

be related to short term fluxes like rainfall, while longer integration periods are likely

related to fluxes from river, lake, or groundwater storage. Many aspects of ecosystem

response to drought operate on different time scales, potentially making SPEI a good

predictor variable for vegetation in semi-arid environments. We acquired the SPEI

data for California from the West Wide Drought Tracker (Abatzoglou et al., 2017),

which provides SPEI at monthly time steps and uses the PRISM dataset as inputs

and provides SPEI integrated over one month to six years.
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4.3 Methods

4.3.1 Preprocessing

We masked observations from the Landsat time series that were either saturated or

were found to be contaminated with cloud, cloud shadow, or snow cover by Fmask.

The total number of observations we used from ARD between 1986 and 2018 was

3120, although there is significant spatial variability.

In order to harmonize the meteorological time series data to the Landsat data, we

first reprojected the PRISM and SPEI time series data from geographic to the ARD

Albers Equal Area projection and upsampled from 4 km resolution to 30m using

nearest neighbor resampling. The spatial mismatch is obviously enormous, but using

a gridded product, coarse as it was, captured gradients in our data, especially on either

side of the Sierra Nevada Mountains. The PRISM data are also available at 800m

resolution, but only as a product for purchase which would hurt the reproducibility

of this study, but may better capture gradients in this study area.

4.3.2 Time Series Model Selection

There are many ways of using pseudo-physical or empirical modeling techniques to

predict phenology, but these approaches typically try to estimate observed transitions

or assess drivers of phenology, not try to predict what it should be in a near real time

forecast scenario. A complicated model that tries to model physiologically relevant

processes using a variety of data sources, like that from Hufkens et al. (2016), would be

difficult to estimate in an “online” change detection approach where initial forecasts

are typically made with 10 to 20 observations. Methods like model selection using

forward or backward step-wise regression or cross validation procedures could be

useful, but these methods require some sort of objective function like a F-statistic

or a likelihood value. These objective functions are typically derived from the data,
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but in our study the objective is to fit the data while finding abrupt changes on the

land surface, but might not lead to the most “optimal” model according to model

performance metrics.

Inspired by Dutrieux et al. (2015) and Broich et al. (2018), we tested estimating

models predicting EVI using rainfall and using a drought index (SPEI). We com-

pared both of these approaches to a fairly standard harmonic regression model with

six coefficients: an intercept, a time trend, and cosine and sine pairs for once and

twice a year harmonics. The final models we used to test rainfall and SPEI both

included a base model with four terms — intercept, time trend, and yearly harmonic

cosine and sine terms — as a basis for explaining overall reflectance, trends through

time in reflectance, and a basic representation of yearly cycles of solar geometry and

vegetation phenology.

When constructing the model using rainfall, we began by testing the influence of

rainfall within the same month and rainfall from previous months to attempt to rep-

resent memory effects. We fitted CCDC regression models using binned precipitation

into groups of three months from up to a year prior to each observation as predictors

in addition to the four term base model. We did not perform a robust, quantitative

analysis of these models, but instead visually interpreted maps of coefficient estimates

and plots of example time series fits to determine which features to select. We found

little benefit to including terms other than the monthly rainfall and last 3 months of

rainfall terms (Equation 4.1), which were typically significant and important to the

estimation of EVI, especially in herbaceous grasslands. Monthly rainfall was almost

always estimated to be more important than the rainfall over the last 3 months, but

this latter term was likely important in capturing moisture from medium to longer

term reservoirs than water from surface runoff likely represented by the monthly term.
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The model equation used for testing precipitation is:

ˆEV I i = β0+β1xt+β2 cos(
2π

T
xt)+β3 sin(

2π

T
xt)+γ1PPTi+γ2PPT−3:0 mo+ εt (4.1)

where,
T The number of days in a year (365.25)
xt The ordinal date of each observation

We performed a similar process of qualitative interpretation of maps and figures to

determine the features to include from the SPEI dataset, but chose only two features

to match the two significant features from the precipitation model. We decided to

include the 3 month and 24 month integration periods for SPEI to represent shorter

term and longer, persistent droughts (Equation 4.3). We also chose to pick a six

coefficient harmonic model (Equation 4.2) to use for comparison to keep the number

of regressors equal, despite CCDC typically using 8 coefficient models.

The equations for the exclusively harmonic term model used for comparison is:

ˆEV I i = β0 + β1xt +
∑
j∈1,2

[β2j cos(
2πj

T
xt) + β2j+1 sin(

2πj

T
xt)] + εt (4.2)

and the model combining harmonics and SPEI is:

ˆEV I i = β0+β1xt+β2 cos(
2π

T
xt)+β3 sin(

2π

T
xt)+γ1SPEI3mo+γ2SPEI24mo+εt (4.3)

These three models will be referred to as “Harmonic” for the harmonic only model,

“Harmonic + PPT” for the harmonic and precipitation model, and “Harmonic +

SPEI” for the harmonic and SPEI model.
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4.3.3 Change Detection Algorithms

We used the CCDC algorithm (Zhu and Woodcock, 2014) as the primary means of

comparison among the harmonic (Equation 4.2), harmonic with precipitation (Equa-

tion 4.1), and harmonic with SPEI models (Equation 4.3) statistical models. In order

to isolate the effect on greenness monitoring applications, we modified the CCDC

algorithm to use only the EVI band to detect change instead of the default combina-

tion of the red, near infrared, and shortwave infrared bands. We also increased the

number of consecutive observations required to find change to 7 to help account for

the high data density of ARD.

We also evaluated model performance using the Bai-Perron (Bai and Perron, 1998)

test for structural breaks in time series, which is the same method used by the BFAST

(Verbesselt, Hyndman, Zeileis, et al., 2010; Verbesselt, Hyndman, Newnham, et al.,

2010). In order to use this method, we resampled the EVI time series data to monthly

time steps matching the precipitation and SPEI data by using a maximum value

composite. The Bai-Perron evaluates the best number and location of structural

breaks to introduce into a time series by testing all possible combinations of the

number and locations of segments. This structural break detection method is a logical

extension of the Chow Test (Chow, 1960), which uses an F-test to check if fitting

a break at a known point in time, and thus estimating two models, significantly

improves the performance over a single model with no break. Building on this idea,

Andrews (1993) developed critical distributions for the sup-F test distribution that

allow for testing the significance of fitting a breakpoint at an unknown location in

time. The Bai-Perron takes this approach further by allowing for the estimation of

multiple breaks at unknown points in time.

Using the example of a 30 year time series, if the minimum segment size was 2

years then a total of 15 models could be fit over this period. It is likely, however,
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that absent real structural change that only a single model would be adequate for

explaining the time series. Fitting 15 segment models to 30 years of data will obviously

give better predictions than fitting just one model but uses 15 times the number of

regressors (i.e., same number of coefficients per model, but 15 more models). The

Bai-Perron test accounts for this effect by measuring performance according to the

Bayesian Information Criterion (BIC), which weighs increases in model explanatory

power with more regressors against the decrease in degrees of freedom. In addition

to providing insight into how other change detection methods (BFAST) behave when

using meteorological data as driving variables and comparing “online” (CCDC) and

“offline” (BFAST) methods, we used the Bai-Perron test to quantify the potential

increase in predictive power according to the overall model BIC. When running the

Bai-Perron test, the two most influential hyperparameters are the maximum number

of breaks allowed and the minimum segment size, which we set to 6 and 2 years

respectively.

4.3.4 Sample Design

In order to assess the performance of our changes to the CCDC algorithm, namely

changes to the data used in the forecast models, we drew a sample of the study area

designed to highlight the differences. The number of changes found by each approach

is central to the question of reduction in spurious noise while also being technically

and conceptually simple to understand. Confusion matrices that show the difference

in the number of changes detected by the “CCDC” and “CCDC PPT” models are

shown in Figure 4·1, for the pixel counts, and Figure 4·2, for the percentage of changes

found by the “Harmonic + PPT” based model for each number of changes found by

the “Harmonic” based model.

The confusion matrices confirmed our suspicion that comparing the two mapping

approaches on the basis of the number of changes detected would yield a diverse
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Figure 4·1: Confusion matrix comparing the number of changes de-
tected when running CCDC on EVI data using models based on just
harmonic variables (“Harmonic”) on the Y axis versus harmonics and
rainfall (“Harmonic + PPT”) on the X axis. Numbers shown are pixel
counts in the millions.

sample that could provide clarity about which approach was better.

4.3.5 Interpretation

We used a team of three interpreters to analyze each sample using a combination

of Landsat time series data, PRISM meteorological data, historical high resolution

imagery from Google Earth and the National Agricultural Imagery Program (NAIP),

and the CAL-FIRE fire perimeters (California Department of Forestry and Fire Pro-

tection, 2018) and Great Basin fire (Welty et al., 2017) databases. We used the

TSTools time series visualization QGIS plugin to help the interpretations because,

similar to TimeSync (Cohen et al., 2010), it allows for simultaneous exploration of

the temporal, spatial, and spectral dimensions.

Interpreters were randomly assigned points and tasked with recording information

about the change processes between 1987 and 2017, including if there a permanent

land cover conversion (e.g., forest to development), how many abrupt change (e.g.,
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Figure 4·2: Confusion matrix comparing the number of changes de-
tected when running CCDC on EVI data using models based on just
harmonic variables (“Harmonic”) on the Y axis versus harmonics and
rainfall (“Harmonic + PPT”) on the X axis. Numbers shown are per-
centages when summing across the Y axis, and indicate the percent of
changes found by the “Harmonic + PPT” model for each number found
by the “Harmonic” model.

cyclical forest harvest or fire in a shrubland that doesn’t change land cover), when and

what process caused each change, and how confident they were overall and about each

change date. Because we limited the sample to pixels identified as forest, shrub, or

herbaceous cover in 2011 by the NLCD, we could be reasonably assured that there was

no permanent land cover change in our sample because most conversions in this area

are unidirectional. A forest in the mountains might burn or be logged, thus changing

land cover types of “shrub” or “herbaceous” under the NLCD definitions, but it is

usually the case that the land cover will return to forest eventually. Central to this

study is the idea that drought adapted vegetation may show variability purely driven

by environmental conditions, which is distinct from abrupt changes from things like

fire, mortality, or logging. As such, we instructed the interpreters to be predominantly

looking for abrupt changes that were traceable to events relevant to the land cover,
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including fire, flooding or landslides, logging or thinning, permanent conversion, and

forest mortality, especially mortality related to the recent drought in the area.

4.3.6 Analysis Design

We assessed the accuracy of the change detections by comparing the “true” number

and timing of abrupt changes, as measured by the sample interpretations, against the

“predicted” abrupt changes found by the “Harmonic”, “Harmonic + PPT”, and “Har-

monic + SPEI” models when fitted using both CCDC and BFAST. When comparing

the “true” versus “predicted” abrupt changes, we required that the date of change be

within 365 days of the “true” value to match. Using this method for agreement, we

recorded the number of correctly identified abrupt change detections (“Detection”),

the number of missed abrupt changes (“Omission”), and the number of “predicted”

abrupt changes that did not correspond to a “true” abrupt change (“Commission”).

In order to compare these scores across pixels, we normalized the tallied “Detection”,

“Omission”, and “Commission” to be within the range of zero to one based on the

number of changes in the data. We plotted the distribution of these accuracy metrics

for all scenarios, and calculated the average “Detection”, “Omission”, “Commission”

for each land cover class (herbaceous, shrub, and forest) and time series model (“Har-

monic”, “Harmonic + PPT”, and “Harmonic + SPEI”). We also calculated paired,

two-sided t-tests comparing the detection, omission, and commission rates across all

approaches (e.g., “Harmonic” vs “Harmoinc + PPT”, “Harmonic” vs “Harmonic +

SPEI”, and “Harmonic + PPT” vs “Harmonic + SPEI”) for each change detection

method.
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Figure 4·3: Time series model coefficient estimates for the precip-
itation based model (“Harmonic + PPT”). The top left panel shows
the intercept coefficient estimate, normalized for segment slopes, for
the SWIR, NIR, and Red bands as RGB. The top right shows the Na-
tional Land Cover Database map for 2011. The bottom two panels
show the coefficient estimates for monthly precipitation (left) and for
total precipitation over the last 3 months (right) when estimating EVI.
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Figure 4·4: Time series model coefficient estimates for the precipita-
tion based model (“Harmonic + PPT”). For interpretation, see Figure
4·3.
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4.4 Results

4.4.1 Coefficient Analysis

We mapped the coefficients estimated from “Harmonic + PPT” models for segments

intersecting July 1st, 2005 to show the spatial variability in rainfall sensitivity (Figure

4·3). A zoomed in version of these data is shown in Figure 4·4 for a transect of the

agricultural fields of the San Joaquin Valley, the grasslands, shrublands, and oak

savannas, and the coniferous forests of the Sierra Nevada Mountains.

There is a strong correlation between the location of grasslands (light yellow in the

top left NLCD map) and high coefficient estimates for the monthly rainfall feature.

Most of the areas mapped as shrub or forest by NLCD show no strong influence

from either meteorological variable. Most land covers show positive correlation with

monthly precipitation, except for areas in the Sierra Nevada that are typically covered

by snow for most of the year or are in the shadow of mountains for all but the

summer months. One of the exceptions, which is highlighted in the bottom left of

the zoomed coefficient images in Figure 4·4 are the herbaceous crops and orchards

(mapped as cropland in the NLCD, and brown on the map), which appear to be

negligibly impacted by precipitation.

The maps of the coefficient on the total precipitation over the last 3 months shows

much greater spatial variability. The bottom right of the zoomed map in Figure 4·4

shows some of the most extreme coefficient values in the entire map over row crops,

including corn, and walnut or almond orchards. This effect in the cropland areas is

likely due to a combination of differences in irrigation, or the timing of the planting

and harvesting seasons for herbaceous crops. Many of the edges of rivers and lakes

in the study site, as well as the mostly barren or permanent snow covered mountain

peaks, show negative correlations with the three month precipitation total. The small,

seasonal flood channels that extend east to west from the foothills to the valley are
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visible in the three month precipitation coefficient image.

We summarized the data shown in Figure 4·3 by grouping the data according to

the NLCD land cover class and plotting summary statistics using a boxplot. Figure

4·5 shows the distribution of the coefficient for monthly precipitation when predicting

the Landsat optical bands and EVI; the latter of these is also shown in the bottom left

corner of Figures 4·3 and 4·4. The monthly precipitation coefficient estimated when

mapping herbaceous cover types has the most range and largest magnitude of median

and minimum or maximum values. The trend groups as you would expect, with visible

and shortwave infrared bands decreasing with precipitation for most of the area, and

EVI showing positive correlation with precipitation. The deciduous forest class, which

is predominantly comprised of sparse oak savannas with grass understories, is the next

most affected by the monthly precipitation term, with approximately 75% of the pixels

mapped as this cover in the 2011 NLCD showing positive correlations.

We also summarized the three month precipitation term as boxplots grouped by

land cover in Figure 4·6. As expected from looking at the map of this coefficient, the

majority of vegetation cover in this study site shows positive correlation between EVI

and moisture. The herbaceous and deciduous forest cover types are again the most

sensitive to moisture, and these classes show the same pattern of coefficient values

for the Landsat spectral bands. Despite general agreement that the three month

precipitation term increases EVI and the near infrared reflectance, the shrub, mixed

forest, and evergreen forest cover show opposite patterns than the herbaceous and

deciduous forest in the visible and shortwave infrared bands.

4.4.2 Change detection examples

CCDC Examples

Example time series and CCDC model results for examples of grassland, shrubland,

and regrowing forest pixels are show in Figures 4·7, 4·8, and 4·9. These figures show
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Figure 4·5: Coefficient estimates for the monthly precipitation feature
in the “Harmonic + PPT” model, grouped by land cover and ordered
by the band or index fitted.

the monthly precipitation values from PRISM on the top, and the EVI time series

and CCDC model results for the “Harmonic”, “Harmonic + PPT”, and “Harmonic

+ SPEI” experiments on the bottom three subplots. We repeat these same three

examples for the Bai-Perron change detection component of this study, and readers

may find it helpful to refer to the 24 month integrated SPEI time series at the top
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Figure 4·6: Coefficient estimates for the last 3 month precipitation
total feature in the “Harmonic + PPT” model, grouped by land cover
and ordered by the band or index fitted.

of those figures as another metric for wetness in addition to the precipitation values

plotted here.

The example grassland pixel in Figure 4·7 did not have any abrupt changes found

by the interpreter, so the breaks CCDC fitted to these time series in this example are

considered errors of commission. As we expected, the “Harmonic” model does not
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Figure 4·7: Example of model performance for CCDC on time series
of Landsat EVI for a stable grassland pixel. The top panel shows the
PRISM precipitation time series. The bottom three panels shows the
monthly maximum value of EVI, with model diagnostics from the SPEI-
based regression model and harmonic-only regression models. Time se-
ries model predicted values for each segment are shown as lines, breaks
in the model as vertical red lines, and the overall BIC value for each
time series is shown in the top left.

represent the dynamics of peak greenness observed during each year in the time series

and finds spurious changes in the time series. Despite this, the “Harmonic” model has
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a lower overall BIC score than the other models. The “Harmonic + PPT” model finds

one fewer change than the “Harmonic” model, and the “Harmonic + SPEI” model

finds the fewest number of breaks (n=1). Despite inclusion of the meteorological

information in these last two models, the predicted values do not match the variability

in peak greenness.
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Figure 4·8: Example of model performance for CCDC on time series
of Landsat EVI for a stable shrub pixel. For interpretation of this plot,
refer to Figure 4·7.
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The example included here for shrub cover types shows great range in EVI val-

ues over time (Figure 4·8), usually following the patterns of drought, although this

variability can be difficult to see underneath the predicted segment lines. The in-

terpreter of this sample noted that there were no abrupt changes in this time series,

but that the shrub cover exhibited variability likely due to climate factors. Both the

“Harmonic” and “Harmonic + PPT” models estimate abrupt changes early in the

1990s, which approximately coincide with the end of a drought that began in the late

1980s. The precipitation and SPEI based forecast models show some variability in the

predicted values, with the SPEI based model seeming to fit the time series the best

of all approaches (as indicated by model BIC and visual comparison with observed

data).

Figure 4·9 shows a time series for a coniferous forest stand that burned in the

Clavey and Paper fires of 1987 and the Rim fire in 2013. Between these dates the

forest regrew, but exhibited year to year variability that looks correlated with climate

variability. Using CCDC, all three models missed the first change in 1987, likely

because the change occurred near the beginning of the time series and the minimum

number of observations needed to begin each model was set at 24.

Bai-Perron Examples

Example time series and Bai-Perron model results for the examples of grassland,

shrub, and regrowing coniferous forest pixels used previously are show in Figures

4·10, 4·11, and 4·12. Except for the model predictions and breakpoints, which differ

because of the estimation method (CCDC vs Bai-Perron), the bottom three panels are

the same as the previous figures (Figures 4·7, 4·8, and 4·9). The top panel, however,

now shows one of the driving variable behind the “Harmonic + SPEI” models — the

24 month integrated SPEI anomaly. Dryer than normal anomalies are colored in red

and wetter than usual anomalies are colored in green. The BIC values estimated for
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Figure 4·9: Example of model performance for CCDC on time series
of Landsat EVI for a forest pixel that was burned in 1987, regrew, and
was burned again in 2013. Note that this pixel was a regrowing forest
in 2011, but NLCD considers regrowing forest to be within the shrub
class. For interpretation of this plot, refer to Figure 4·7.

these models may be used to compare against other models fitted using the Bai-Perron

method, but are not applicable to the CCDC model estimates because the underlying

data source is different (all available observations versus monthly maximum value

composites).
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Figure 4·10: Bai-Perron change detection method for a stable grass-
land pixel. The top panel shows the 24-month integrated SPEI index
over the time series record, with green periods indicating wetter than
average conditions and red indicating dryer than average conditions.
For interpretation of the bottom three panels of this figure, refer to
Figure 4·7.

Figure 4·10 shows the performance for the Bai-Perron breakpoint detection method

for a stable herbaceous grassland. Compared to the result using CCDC for this same

example (Figure 4·7), the Bai-Perron method finds no spurious breaks. The size of
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the coefficients estimated using the Bai-Perron method are also much larger than the

coefficients estimated using CCDC, allowing all three models to better capture the

peaks and troughs of greenness over the time series.
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Figure 4·11: Example of model performance for Bai-Perron structural
break detection on time series of Landsat EVI for a stable shrub pixel.
For interpretation of this figure, refer to Figure 4·10.

The Bai-Perron results for the “Harmonic + PPT” and “Harmonic + SPEI” mod-

els do not estimate a break in the time series for the stable shrubland (Figure 4·11).
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Lacking information on moisture dynamics, the “Harmonic” model fits a total of four

segments. In place of capturing moisture dynamics, these models fit large time trends

that seem to match moisture variability, but these models need to break whenever the

moisture conditions change. By comparison, the precipitation and SPEI based models

show almost no trend through time, instead varying stochastically with the meteoro-

logical data. Despite what visually looks like an increase in model performance, the

harmonic regression model does achieve a lower BIC with multiple segments, even

despite BIC penalizing the degrees of freedom removed with each newly estimated

segment.

The Bai-Perron test parameterized using a minimum segment length of two years

was able to capture the fire that burned the forest stand in the example pixel shown in

Figure 4·12, while our parameterization of CCDC was not able to capture this break

(see Figure 4·9). All three time series model approaches find this change late, likely

immediately after the 24 minimum observations (or two years) were met. As with

other examples, the model only using harmonic features estimates more breakpoints

during the regrowth trajectory than the models using precipitation or SPEI. All three

modeling approaches find the second fire event in 2013.

4.4.3 Change detection accuracy

Accuracy Assessment

We summarized the results of the accuracy assessment in Table 4.1 for the CCDC

results and Table 4.2 for the Bai-Perron results. The “Detection” column shows the

average across all sample pixels of the percentage of the changes that were identi-

fied in the reference data that were also found by the land cover change detection

algorithms. The “Omission” column is calculated as the proportion of changes iden-

tified by interpreters that were not captured, and is the inverse of the detection rate.

The “Commission” column is the average across all pixels of the proportion of false
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Figure 4·12: Example of model performance for Bai-Perron struc-
tural break detection on time series of Landsat EVI for a forest pixel
that was burned in 1987, regrew, and was burned again in 2013. For
interpretation of this figure, refer to Figure 4·10.

positives identified by the change detection methods. Violin plots showing the full

distribution of these accuracy metrics for each time series model and land cover type

are included in the Appendix (Figures B.1.1 and B.1.2).

Using the regrowing forest pixel example and the Bai-Perron results from Figure
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4·12 as an example, there were two fire events found in the reference data. All three

models found both of these fire events, so the “Detection” proportion would be 100%

and the “Omission” proportion would be 0%. The precipitation and SPEI based

models did not find any other changes in the time series that were not recorded in

the reference data, so their “Commission” proportion would be 0%. The harmonic

only model, however, fitted two breakpoints out of four total that are not confirmed

in the reference data, so the “Commission” proportion would be 50%. We took the

average of these calculations over all pixels in the sample and present them in Tables

4.1 and 4.2.

Model Land Cover Detection Omission Commission

Harmonic Overall 85.58 14.89 62.91

Forest 77.34 23.38 47.12

Herbaceous 92.20 7.80 91.49

Shrub 87.09 13.62 50.00

Harmonic + PPT Overall 84.91 15.56 59.24*

Forest 75.30 25.42 49.28

Herbaceous 92.91 7.09 84.75**

Shrub 86.38 14.32 43.66

Harmonic + SPEI Overall 85.35 15.13 57.56**

Forest 74.22* 26.50* 48.20

Herbaceous 93.62 6.38 87.06

Shrub 88.03 12.68 37.44***

Table 4.1: Average correct number of abrupt change detections, and
omission and commission rates for sample using the CCDC algorithm.
Asterisks indicate a significant difference between the harmonic only
and other models (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001)

Overall, the CCDC method was more accurate at finding abrupt disturbances
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Model Land Cover Detection Omission Commission

Harmonic Overall 86.70 13.30 61.21

Forest 77.82 22.18 64.95

Herbaceous 93.98 6.02 53.57

Shrub 88.44 11.56 64.91

Harmonic + PPT Overall 86.21 13.79 46.03***

Forest 76.10 23.90 58.76***

Herbaceous 93.23 6.77 30.45***

Shrub 89.42 10.58 48.53**

Harmonic + SPEI Overall 84.85* 15.15* 45.55***

Forest 72.79** 27.21** 61.27

Herbaceous 92.48 7.52 28.42***

Shrub 89.42 10.58 46.58***

Table 4.2: Average correct number of abrupt change detections, and
omission and commission rates for sample using the Bai-Perron algo-
rithm. Asterisks indicate a significant difference between the harmonic
only and other models (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001)

within the forest and shrub classes than the Bai-Perron method, but less accurate

when finding change in the grasslands. Omission rates were the highest for the forest

class regardless of model or break detection approach, and the “Harmonic + SPEI”

had significantly higher omission rates than the “Harmonic” model using either CCDC

and Bai-Perron. Other omission rates were not significantly different when comparing

against the harmonic only model. There was no significant difference between the

performance of the “Harmonic + PPT” and the “Harmonic + SPEI” models.

The largest differences for the both the CCDC and Bai-Perron approaches occur

when comparing the rates of commission for the shrub and grassland pixels under

the harmonic versus the harmonic and meteorological data models. Incorporating
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meteorological data, whether it is precipitation or SPEI, significantly reduced the

commission rate overall, but especially for the herbaceous and shrub classes. Using

CCDC, the precipitation based model significantly reduces commission error for the

herbaceous compared to the “Harmonic” model, while the SPEI based approach sig-

nificantly reduces the omission error for the shrub class. We saw a a greater impact

on the commission error when using the Bai-Perron test, with the precipitation model

significantly lowering commission error rates overall and for each land cover class in-

dividually. Meanwhile, the SPEI based model significantly reduced the commission

error overall and for shrubs and herbaceous cover, but this model did not significantly

affect the commission error for forest.

Model goodness of fit comparisons

While comparison against reference data gives information on whether or not includ-

ing meteorological data affects the change detection performance, we also wanted to

compare the difference in model fit performance between the typical harmonic re-

gression model and those using meteorological data. The Bai-Perron structural break

test uses the BIC to decide which possible breakpoint models is best, and this metric,

or the related Akaike Information Criterion, is frequently employed when performing

model selection in time series regression contexts. We calculated the differences in the

BIC scores when using the “Harmonic” model compared to the “Harmonic + PPT”

and “Harmonic + SPEI” models, and plotted the distribution of these differences in

BIC as a function of the difference in abrupt changes detected in Figures 4·13 and

4·14.

The BIC weighs model complexity against model likelihood, and so models that

are more likely (i.e., have better performance) will have a lower BIC score. As such,

a positive difference between the harmonic only and harmonic with precipitation or

SPEI models indicates superior performance when using meteorological data. Nega-
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Figure 4·13: Model performance comparison for Bai-Perron break-
point detection on time series, sorted according to the difference in the
number of breaks between the harmonic only and harmonic and pre-
cipitation models. The top panel shows the difference in BIC between
the two models, with positive values indicating superior performance
for the harmonic and SPEI model over the harmonic-only model. The
X axis has been truncated to show differences in abrupt changes fitted
of less than 3 for readability.
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Figure 4·14: Model performance comparison for Bai-Perron break-
point detection on time series, sorted according to the difference in the
number of breaks between the harmonic only and harmonic and SPEI
models. See Figure 4·13 for full interpretation details.

tive difference in BIC values indicate that the harmonic model was superior.

For the majority of samples, the precipitation and SPEI based models outper-

formed the harmonic only model for all three land cover types considered. The

improvement when using meteorological data was especially pronounced for pixels



128

that estimated different numbers of breaks than the harmonic models. As seen in the

bottom panel barchart that show sample count frequencies binned by the difference

in the number of changes detected, the SPEI based model tends to estimate slightly

fewer breakpoints than the harmonic only model.

4.5 Discussion

4.5.1 Regression coefficient analysis

Figure 4·3 shows patterns of precipitation driving greenness that varies across land

use (e.g. irrigation and crop type) and land cover type (herbaceous, shrubs, oak sa-

vanna, and coniferous forests). The coefficient estimates for monthly precipitation

are negatively related to greenness for the predominantly shrub and evergreen forest

cover of the Sierra Nevada mountains and the shrublands of the Great Basin to the

east. The relationship estimated here is likely because precipitation is acting as a

proxy for other, omitted variables, like temperature and other physiological controls,

or solar radiation geometric effects. A typical EVI profile for the shrublands or conif-

erous forest is fairly flat (Pasquarella, Holden, Kaufman, et al., 2016), and while there

is down-regulation of photosynthesis, the influence of sun angle in this data, which

hasn’t been corrected for any direction effects, is likely the main driver. Precipitation

in California typically arrives in the winter, just as the measured EVI decreases with

decreasing solar angle, and this mechanism is likely driving these estimates. Artifact

or alias for omitted variables, the spatial variability and grouping by land cover of

these estimated coefficients suggest they would be useful for classification.

The monthly precipitation coefficient tends to be very negative around rivers and

the edges of lakes, because the added rainfall is linked to expansions of these bodies

of water, which reduces greenness. We also see large coefficient estimates for flood

channel features in the grasslands along the San Joaquin Valley, suggesting that these
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results may be useful for identifying “boom and bust” ephemeral grasslands fed by

seasonal streams (Broich et al., 2018). The spatial patterns observed in the croplands

and orchards of the San Joaquin Valley require further investigation, but they may

be related to whether or not and for how long the field is irrigated.

Of interest to time series change detection methods, many of which rely on the

shortwave infrared bands, Figure 4·5 shows that for many pixels there is a considerable

negative influence of precipitation on the first and second SWIR channels for the

herbaceous and deciduous forest classes. This effect is likely due to the reduction in

brightness of the soil due to either wetter soil or herbaceous vegetation cover.

4.5.2 Change detection performance

The addition of meteorological information to the forecast models used by time series

models generally reduced the commission error when compared to the “Harmonic”

model. The only trade-off for using this information was seen for the SPEI model

when mapping forest cover change, with significant increases in omission error for the

forest class when using both CCDC and the Bai-Perron methods. The accuracy of

the forest class was also the lowest of all land cover types, likely due to the use of

the EVI over a shortwave infrared based index or band. We also observed examples

where forest change was not detected in the “Harmonic + PPT” and “Harmonic +

SPEI” models which appear to be caused by the forest cover change coinciding with

a drought shortly after model initialization. Instead of finding a break in the time

series, many of these models fit large, negative estimates to the meteorological data

coefficient, allowing for the reduction in EVI that came with forest change to be

explained using the moisture conditions instead of a land cover change.

Using the CCDC, the precipitation based model significantly reduced the commis-

sion error for the herbaceous cover while the SPEI significantly reduced the commis-

sion for the shrub class, which makes sense intuitively and ecologically. Grasslands
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are much more tightly coupled with precipitation and previous results have noticed

that precipitation can cause “boom and bust” cycles of greenness (Seddon et al.,

2016; Broich et al., 2018). Shrubs, by contrast, persist year to year and likely have

deeper roots than grasses that provide access to longer term water resources than

runoff driven moisture in the first inches of soil. The shrubs in this area are drought

adapted, and when we visited this site in the spring of 2017 we noticed that many

shrubs had allowed portions of their branches to die off, likely in response to recent

droughts. An index like SPEI that can be integrated over long time periods is a better

predictor of this slower response to moisture conditions.

The BIC comparisons showed that inclusion of these environmental drivers al-

most always improved model performance, which has implications for the number

and type of changes that are detectable. In the accuracy assessment sample data, we

saw instances where the increased predictive performance when using SPEI or pre-

cipitation resulted in accurate predictions that avoided finding a false positive where

the simple harmonic model fit a spurious change. In other cases, the increased pre-

dictive ability allowed the CCDC or Bai-Perron models to detect more breaks than

the simple harmonic model. In these cases, the simple harmonic model tended to

have very high RMSE values so only very large abrupt changes would fall outside

the forecast confidence intervals. Analyzing the BIC of these models (Figures 4·13

and 4·14) and assessing model predictive power is important because the observed

decrease in commission error could have been driven by increases in model error. If

moisture dynamics were not important for time series predictions, model error would

be higher than when using harmonics, making it more difficult to fit a break, real or

spurious, using CCDC. The BIC analysis helps prove that the decrease in commission

error was due to meaningful improvements in model predictive performance and not

from increases in model error.
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Similar to what was observed in (Broich et al., 2018), we also found that many

of the changes detected coincided with periods of extreme drought, especially during

the dry periods of the early 1990s and in the early 2010s. The example included in

this analysis of a stable shrubland that is affected by drought (Figure 4·8) is a good

example of changes that are found by the “Harmonic” model which may provide

information, albeit confusing information, about vegetation response to drought. For

example, it may be possible to predict a “change agent” that caused the falsely

identified abrupt disturbance, and with training data perhaps classify this abrupt

change as being caused by drought. It is also likely that the land cover classifications

of the first and second segments would be the same (i.e., shrubland), which could help

identify the abrupt change as an ephemeral change or some other kind of disturbance

and not a land cover conversion.

While breaks caused by ephemeral processes or climate variability might not be

of utility for land cover change applications, one might actually want to include these

breaks in the time series. In fact, instead of monitoring for structural changes in the

residuals, future studies could monitor for change in the coefficient estimate for rainfall

or SPEI, as done in previous studies (Verbesselt, Hyndman, Newnham, et al., 2010;

Broich et al., 2018). Monitoring for structural change in residuals was able to capture

most of the abrupt changes, but it is possible for the relationship between predictor

variables and EVI to change over time as the time series models incorporate more

data. Monitoring the estimated coefficient values can help identify these changes in

variable relationships (Zeileis et al., 2003), although it is likely that maps produced by

monitoring of coefficients will differ than maps produced from residual monitoring.

Just as there has been development of spectral indices for specific tasks in remote

sensing, time series algorithms might develop specific routines or parameterizations

for a particular question. There is already evidence that outputs from existing time
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series methods contain unique information when compared against each other, even

when using the same input data across that focus on forest change monitoring (Healey

et al., 2018), and combining outputs from two time series algorithms has shown to

be useful when classifying forest community composition (Pasquarella, Holden, and

Woodcock, 2018).

Comparing the models estimated by CCDC and by the Bai-Perron test for the

same pixels (Figures 4·8 and 4·11 for shrubs and Figures 4·7 and 4·10 for grassland),

one immediately sees that the coefficients estimated by CCDC are reduced compared

to those estimated by the Bai-Perron approach. This is because CCDC uses the Lasso

(Tibshirani, 1996) regression method which applies a regularization penalty on the

size of the size of the regressors as a balance to the model prediction performance

(i.e., sum of squared residuals), while the Bai-Perron models are simple ordinary least

squares. The use of the Lasso versus ordinary least squares is also likely partially re-

sponsible for the differences in the reduction of commission error when comparing the

CCDC and Bai-Perron results (Tables 4.1 and 4.2). Regularization shrinks the im-

pact of the meteorological data in the models, which reduces its potential for affecting

results.

The Lasso regression method is useful for change detection, especially “online”

change detection, because this shrinkage reduces variance at the cost of bias. Being

a biased estimator, the BIC scores are always much larger for CCDC estimated coef-

ficients. The use of regularization also limits the ability for the climate data features

to influence the regression. Estimating the relationship between spectra and meteo-

rological variables might be a good step to perform using OLS after finding changes

using CCDC, so the change detection could have the relative stability of a regularized

regression while unbiased estimation procedures could be used to estimate parame-

ters for each segment. One might also estimate a robust regression using iteratively
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reweighted least squares to provide unbiased estimates of the coefficient parameters

while avoiding contamination from noise like missed clouds or shadows.

4.5.3 Time series interpretations

We found the CAL-FIRE dataset to be very useful in helping to quickly confirm sig-

nals in the Landsat time series plots, especially in assisting in finding the Landsat

observations closest to the disturbance. Not all fires were captured, and the product

is more prone to errors of commission than omission, as is typical with hand drawn

polygons. When double checking the interpretation results, it was very common that

the interpreters would identify the date of change for a fire in the early spring that ac-

tually happened in the late summer, even when there were available clear observations

of the burn. In California, the winter months (October - February) are typically the

rainy season and cloud cover reduces the availability of imagery, which contributes

to the temporal inaccuracy of the interpretations. The CAL-FIRE database was at

least a worthwhile dataset to screen interpretations for possible omissions or clerical

errors, and might be useful in time series analysis to train or calibrate models or

perhaps serve as a prior probability for finding change.

4.5.4 Landsat Analysis Ready Data

We are among the first studies to use Analysis Ready Data (ARD; Dwyer et al.,

2018), and generally have a very positive impression of the product. During initial

exploratory phases of this research, we assembled and preprocessed all Landsat WRS-

2 path and row footprints ourselves for this part of the San Joaquin Valley to take

advantage of overlap. The process of downloading the data, performing reprojection

from Universal Transverse Mercator (UTM) it into a wide area projection suitable for

large area mapping (which also allowed us to combine data from adjacent paths with

different projections), and tiling the data to our destination grid required a lot of
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computation that ARD completely eliminates. Worse, the result of these preprocess-

ing steps would never have been as accurate as ARD because ARD is only resampled

once while our approach resamples the data a second time.

The increased temporal density presents new opportunities, but also challenges

due to the spatial heterogeneity in the density of observations and because of differ-

ences in observations from adjacent paths. While ARD allows for greatly increased

data densities in the overlap regions, algorithms that do not use fixed intervals (e.g.,

16-day, monthly, or yearly composites) may encounter issues, especially with algo-

rithms that rely on a moving window, such as the the bandwidth of the Moving Sum

(MOSUM; Chu et al., 1995; Zeileis et al., 2003; Zeileis, 2005) test for BFAST Monitor

(Verbesselt et al., 2012), or the consecutive number of observations from CCDC. In

our experience running CCDC, we needed to increase the number of consecutive ob-

servations required to find a change globally to avoid spurious change resulting from

noise in high density ARD data, but corrections should be attempted on a per-pixel

level to account for the spatial heterogeneity of the ARD.

Despite the advantages of increased observation density, combining observations

from adjacent WRS-2 path and rows introduced visible noise into our time series,

with apparent systematic differences likely due to bidirectional reflectance effects.

Future efforts might attempt to characterize this uncertainty within time series mod-

els (Holden and Woodcock, 2016) or correct for it prior to analysis (Melaas et al.,

2016; Sulla-Menashe et al., 2018). Progress toward a bidirectional reflectance cor-

rected Landsat data (Roy, Zhang, et al., 2016) might allow for future versions of

ARD to come corrected for angular effects, and ARD already include the solar and

sensor geometry information for each pixel that would enable this research (Dwyer

et al., 2018). During exploratory phases of this study, we were impressed with the

performance of ARD in creating monthly maximum EVI composites because the in-



135

creased data densities meant a good value would be found more often. Composites of

ARD ought to reduce the noise from directional effects while likely also eliminating

the heterogeneity of observation density over space, and composite methods have long

been a topic of investigation so some best practices have emerged (e.g., Griffiths et al.

(2013) and White et al. (2014)).

4.5.5 Limitations and Future Work

Applicability to the CCDC Algorithm

One of the goals of this effort was to provide information that would be useful to

the development of the CCDC algorithm, especially for implementation in the USGS

Land Change Monitoring, Analysis, and Projection (LCMAP) project that is using

CCDC to map land condition continuously over the last 30 years for the United States.

Meanwhile, in order to narrow our experiment to consider the impact of climate data

on greenness we altered the typical configuration of the CCDC algorithm to only

detect changes using the EVI band. While using EVI alone showed relatively high

agreement about the number of breaks estimated for our sample data, the CCDC

tends to be much more performant when considering departures from forecasts across

multiple spectral or index series, especially if those data use the shortwave infrared.

Our results indicate that using either precipitation data or drought indices like

SPEI decrease commission error rates while improving detection rates for herbaceous

or shrub cover (Table 4.1). Unfortunately, but perhaps unsurprisingly, inclusion of

these moisture related data did not reduce commission errors and slightly hurt change

detection accuracy for the forest class, which is primarily comprised of evergreen

coniferous species. We also observed that precipitation does have a negative influence

on the optical and shortwave infrared bands, especially for oak savanna and grassland

cover types, suggesting that using meteorological data may even benefit more typical

CCDC analyses that rely on the shortwave infrared band. Future efforts should be



136

devoted to applying the test framework developed here to the current, official version

of CCDC as implemented by the USGS (“pyCCD”) in order to better target the

question of algorithm improvements.

We also saw that meteorological data improve the performance of change de-

tection when using the Bai-Perron test used by BFAST (Table 4.2), particularly in

reducing the false positive or commission error rates for the herbaceous and shrub

cover types. We could not isolate the reasons why the commission error decreased

substantially more for the Bai-Perron test method than for CCDC, but it is likely

primarily influenced by the difference in change detection approaches. The CCDC is

an “online” change detection method, which means that it iterates through the time

series, typically in a forward direction, looking for anomalous values within a short

forward window. While these “online” approaches have memory information about

the time series (e.g., RMSE and past residual values), most of the information CCDC

has when it decides on a change is limited to some number of consecutive observations

ahead of the current iteration. By comparison, the BFAST algorithm is an “offline”

algorithm which, similar to LandTrendr (Kennedy et al., 2010), makes decisions on

where to place breakpoints based on knowledge of the entire time series. Indeed,

the Bai-Perron test checks all possible combinations of breakpoint numbers and loca-

tions to determine the optimal location and number of breaks. The Bai-Perron test

also differs because it was run on the monthly maximum EVI values instead of all

available observations. This was necessary because the Bai-Perron test should be run

on regularly spaced data, but the maximum EVI resampling process also removed a

significant amount of noise from the time series, including random noise from cloud

or cloud shadows or atmospheric interference and systematic noise from directional

effects in the Landsat ARD data.
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Predictive modeling framework

One of the major limitations to the predictive accuracy of the time series modeling

was using the EVI data directly, instead of trying to work with a derived value like a

standard anomaly (see Seddon et al. (2016) and Broich et al. (2018)). Conceptually,

the EVI data are an integrated time series, such that the value of EVI at time t is

dependent on the value at time t − 1. In other words, vegetation greenness grows,

persists, or deteriorates over time while a quantity like monthly precipitation is an

unintegrated random variable, even if it shows its own temporal patterns. If we were

to normalize the EVI time series to be unintegrated, either by taking the first differ-

ence or including autoregressive terms in our model, or by calculating standardized

anomalies, we would be able to relate incoming precipitation to changes in EVI. Pre-

liminary investigation into modeling EVI as standard anomalies show much higher

relative performance for precipitation (Equation 4.1) and SPEI (Equation 4.3) based

models than the harmonic model (Equation 4.2).

We used the original EVI time series data as CCDC for historic reasons, since

this is the predominant way these data are used for time series analysis in the land

cover change community and we were already experimenting with the independent

variables in the regression equations. Future work in this domain should explore

how standard anomalies might be used for change detection instead of the original

observations, including how these anomalies may be calculated given the potential

existence of land cover change in the historic record.

Ancillary Datasets

There were several issues we noticed when using the NLCD as a source of categorical

information used in stratification, visualizations, and groupings. First, there exist

several categories that represent the land use than vegetative traits, like the inclusion
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of walnut and almond orchards in with herbaceous croplands. We also observed that

there was a large amount of variability within what was mapped as herbaceous cover,

but would be more useful to this study if mapped as sparse oak savanna. Future

investigations might investigate the relationship between meteorological data and

greenness using data that better captures the plant functional type, like a continuous

fields product, instead of broad land cover label that flatten such distinctions.

4.6 Conclusion

In this study, we investigated the relationship between vegetation greenness and me-

teorological variables, whether using rainfall information could help predict when veg-

etation greens up, and whether meteorological data would improve the performance of

change detection. Our analysis of time series model coefficients for precipitation (Fig-

ures 4·3 and 4·4 for maps and Figures 4·5 and 4·6 for summary boxplots) show that

precipitation for the current month is most important in estimating the greenness of

herbaceous vegetation, while precipitation over the last 3 months is influential across

a broader range of vegetation. These relationships exhibit large spatial variability

that make sense in context of ecological and geophysical dynamics. Our analysis of

the time series model goodness of fit using BIC (Figures 4·13 and 4·14) show that

both precipitation and the SPEI drought indices are better predictors of greenness

than the harmonic models alone. Many of the examples from our accuracy assessment

show how the addition of meteorological data allow time series models to capture the

stochastic variability in greenness associated with variability in climate (e.g., Figure

4·8), which should also help improve “synthetic” image generation from CCDC which

has been useful instead of the original Landsat data in other change detection algo-

rithms (Healey et al., 2018). Finally, our analysis of the mapped changes compared

to reference interpretations (Tables 4.1 and 4.2) show that meteorological data can



139

significantly reduce the commission error of the CCDC and BFAST change detection

methodologies for grasslands and shrublands.

Advancement in the understanding of how to integrate environmental conditions

into time series analysis of spectral observation stands to benefit land cover monitoring

projects, including the USGS Land Change Monitoring, Analysis, and Projection

(LCMAP) project. While a relationship identified between greenness patterns and

environmental drivers is of less importance to this study, such a relationship could

be of interest to ecologists. In addition, the model parameters that describe such a

relation might be useful for the identification of shrub and grassland species in the

same way that parametrization of phenology transition dates is important for the

discrimination of forest species communities.

Beyond showing that meteorological data can be useful for land cover monitoring,

this study also helps enable further analysis that could further clarify relationships

between greenness and climate variability. First, this study produced a substantial

(n=540) number of interpretations of forest, shrub, and herbaceous time series over

the last 30 years. Because the stratification of the sample that generated these in-

terpretations, there are many examples of complicated change trajectories, including

fire, logging, regrowth, succession, natural variability with multi-year to decadal cli-

mate variability, and forest mortality in both sparse oak woodlands and conifer forest.

Starting without these sorts of data and wanting parsimony for the purposes of change

detection, model selection in this study was performed by interpretation of coefficient

maps and intuition. The accuracy assessment time series interpretations could be

used in future analyses that seek to identify the best set of predictor variables to ex-

plain EVI, typically through some sort of cross validation exercise. Second, progress

toward separating abrupt disturbances that fundamentally alter the state of the land

surface (e.g., fire, logging, mortality) will help future studies separate vegetation re-
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sponse from land cover change from more natural variability related to environmental

conditions. Doing this work at the Landsat scale is important because of the spa-

tial scale of its observations frequently matches that of change processes, and Landsat

analyses may be useful in diagnosing uncertainty or improving estimates from sensors

like MODIS that have better temporal resolution but worse spatial resolution.

Constructing a framework to integrate meteorological information into time se-

ries analysis of remote sensing data will also improve our understanding of radar time

series that are sensitive to moisture. With the launch of both Sentinel-1 satellites,

we now have very frequent access to C-band Synthetic Aperture Radar (SAR) mea-

surements which are very sensitive to moisture. Accommodating for the influence

of rainfall in these measurements will produce a more coherent understanding of the

C-band time series dynamics.
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Chapter 5

Conclusion

Global climate change and human modification make earth observations from all

variety of sensors essential to understand and adapt to environmental change. Fortu-

nately, earth observation was envisioned as a priority in the 1960s and early 1970s by

people wanting to apply new technology to natural resources problems. The Land-

sat program was launched to meet these goals and has been an invaluable source

for understanding the history of the land surface, with consistent observations from

the Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors

since 1982. While these sources of data have been tremendously valuable, new or

upcoming satellites, sensor technologies, and ancillary datasets are promising sources

of information to combine with the Landsat record. This dissertation develops and

explores methods for enhancing the TM/ETM+ record by fusing other data sources,

specifically, Landsat 8 for future continuity, radar data for tropical forest monitoring,

and meteorological data for semi-arid vegetation dynamics.

5.1 Key Findings

• Landsat 8 data may be incorporated into existing time series of Landsat 4-7 data

for applications like change detection, but vegetation trend analysis requires

calibration, especially when using the near-infrared band. The improvements

in radiometric quality and cloud masking provided by Landsat 8 data reduce

noise compared to previous sensors.
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• Tropical forests are notoriously difficult to monitor with Landsat alone because

of clouds. This dissertation developed and compared two approaches for fusing

Synthetic Aperture Radar (SAR) data from the Advanced Land Observation

Satellite (ALOS-1) with Landsat in tropical forests of Peru, and found that

radar data increased accuracy of deforestation. Simulations indicate that the

benefit of using radar data increased with higher cloud cover.

• Time series analysis of vegetation indices from Landsat in semi-arid environ-

ments is complicated by the response of vegetation to high variability in timing

and amount of precipitation. We found that quantifying dynamics in precipita-

tion and drought index data improved land cover change detection performance

compared to more traditional harmonic modeling for grasslands and shrublands

in California. Specifically, models that incorporate moisture dynamics have sig-

nificantly lower commission error without significantly affecting the omission

error.

This dissertation enhances the value of Landsat data by combining it with other

data sources, including other optical sensors, SAR data, and meteorological data.

The methods developed here show the potential for data fusion and are especially

important in light of recent and upcoming missions, like Sentinel-1, Sentinel-2, and

NASA-ISRO Synthetic Aperture Radar (NISAR). Trends in both computing and

community algorithm development are continuing to enable sophisticated analysis

of increasingly large datasets, making fusion of multiple large time series datasets

increasingly possible.
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5.2 Recommendations for future work

5.2.1 Continuity among Landsat or Landsat-like sensors

While the investigations into using radar and meteorological data treated data fusion

as an opportunity to add complimentary information, Chapter 2 of this dissertation

attempted to determine if Landsat 8 provided the same or comparable information to

the Enhanced Thematic Mapper Plus (ETM+) despite advances to technology and

differences in design decisions. Creating long records of Landsat data that are com-

parable across time is incredibly important for efforts that characterize the history of

the land surface, and recent efforts to extend this analysis as far back as the Landsat

Multispectral Scanner (MSS) have enabled studies that span 40 years (Vogeler et al.,

2018). However, the creation of a unified record will increasingly neglect possibly use-

ful information as sensors grow more sophisticated, like the higher resolution visible

and near-infrared bands on Sentinel-2 or the coastal blue band on Landsat 8. It is also

much easier to degrade Landsat 8 data to look like Landsat Thematic Mapper (TM)

and ETM+ data than it is for MSS data to be comparable to TM/ETM+ data. Even

the harmonization of newer sensors is a difficult task. Efforts to create a Harmonized

Landsat 8 Sentinel-2 (HLS) data product have needed to unify atmospheric correction

routines, perform image registration, correct for BRDF effects, and apply bandpass

adjustments (Claverie et al., 2017; Claverie et al., 2018). As the sensors used in

medium to high resolution passive optical remote sensing become more sophisticated

and grow in number, it may be beneficial to adopt the perspective taken when fus-

ing radar or meteorological data sources by treating the data from each sensor more

independently. There still may be benefits to using a unified product, but especially

as fusion methods for combining other data sources advance it may be worthwhile to

consider the Landsat archive as discontinuous. A historical analysis beginning with

Landsat 1 and ending with data from the upcoming Landsat 9 will have different
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uncertainties over time, and thinking of the addition of Landsat 8 and Landsat 9 as

“fusion” rather than extending the time series might reduce overall uncertainties by

taking better advantage of the features of these new sensors.

5.2.2 Optical and radar data time series fusion for land cover monitoring

Just as during the opening of the Landsat archive enabled researchers to go from using

one or several Landsat images to eventually thousands (Wulder et al., 2012), changes

to data policy for many sensors might transform the practice of using one satellite data

source to many. The open data policies and vision for collaboration with other satellite

products from the Sentinel program (Malenovskỳ et al., 2012; Torres et al., 2012), for

example, help make the cost benefit of data fusion much more favorable. Community

standards for data promoted by data distributors in the Landsat community, like the

Climate Data Record (U.S. Geological Survey, 2015) or Analysis Ready Data (Dwyer

et al., 2018), and from the European Space Agency’s Sentinel missions (Torres et

al., 2012), have made research more efficient and reproducible, and these efforts are

a model for future data product releases. Software and tools to make geospatial

analysis by making data available as collections to work with, such as the Open Geo

Data Cube (Lewis et al., 2017) or the Google Earth Engine (Gorelick et al., 2017)

are extremely valuable to the adoption of fusion algorithms because they eliminate

specific data format, preprocessing, or file location details, making simply accessing

the data much more streamlined.

The historical archive of Landsat data is far from globally consistent (Wulder et

al., 2016) is far from consistent, with many places lacking data in the 1980s and some

with few usable observations in the 1990s. Data from sensors like the Japanese Earth

Resources Satellite (JERS-1) or the Advanced Land Observation Satellite (ALOS-1)

could help fill in these gaps in the historic record to produce a more accurate ac-

counting of the late 20th and early 21st centuries. Studies that follow the example of
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(Reiche et al., 2018) and others by incorporating more than two time series (Landsat

NDVI, Sentinel-1 C-band, and ALOS-2 L-band) should be encouraged, as the chal-

lenge of fusing three data sources should help create robust solutions that can scale

to arbitrary number of input data sources.

Methods for fusing across data sources could also be helpful for making better

used of radar data acquired from different incident angles, ascending or descending

orbits, polarizations, and perhaps scanning modes. Using the example of fusion by

class probability (i.e., Reiche et al. (2018) and Chapter 3), one might collect regions of

interest to parameterize classification models for forest cover for all data sources, but

train and apply classification models by polarizations or orbit characteristic. The in-

vestigation into probability fusion in Chapter 3 used data from the dual poliarmetric

mode, and trained classification models on L-HH, L-HV, and HH/HV ratio features,

but the L-HH and ratio features were sometimes a source of confusion when estimat-

ing forest probability. It might be more advantageous to use the L-HH time series

separately from the L-HV data in future work because it could strengthen the L-HV

results while adding additional observations in time when only single polarization is

available. Most of the change detection algorithms employ some conception of noise in

the time series (Zhu and Woodcock, 2014; Brooks et al., 2014; Verbesselt et al., 2012)

that would show differences between L-HH and L-HV, and it might also be useful

to weight observations from different polarizations in calculation of change detection

statistics. For example, an unusual observation from L-HV might count for two con-

secutive observations of change in CCDC while an observation from L-HH would be

treated with the same suspicion as Landsat observations. Currently, practitioners

using Sentinel-1 time series separate the data based on ascending or descending orbit

because the data are fundamentally different. Fusion algorithms could resolve this

difference and further increase the density of observations from Sentinel-1.
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Fusing across the spatial resolution using MODIS and Landsat data have been

successful in increasing change detection performance (Tang, 2018; Xin et al., 2013),

and algorithms that make fusing data easy, like the STARFM by Gao et al. (2006),

have been used in a variety of applications. These approaches have required some-

what complicated modeling of the spatial overlap of the data based on the swath

footprints (Xin et al., 2013; Tang, 2018) or by using weighting functions on gridded

data (Gao et al., 2006). These approaches might be useful when applied to high and

lower resolution radar scanning modes, like the Fine Beam and ScanSAR modes on

the ALOS-1 PALSAR, to increase the temporal density of radar observations while

retaining high spatial resolution.

One promising approach to data fusion is the monitoring of class probabilities,

as used in Chapter 3 and in (Solberg et al., 2008; Salberg and Trier, 2011; Reiche,

de Bruin, et al., 2015; Reiche et al., 2018). By first using classification procedures

to convert disparate time series into class membership estimates, this approach was

able to fuse information from multiple sensors and improve our understanding of the

land surface. Most of the examples of this approach have focused on likelihood of a

single class, or between two classes, but this approach may be able to generate robust

and descriptive land cover class transitions that are essential to understanding what

drives land cover conversion. Using spectral unmixing to transform a time series of

Landsat data into a time series of fractional cover, Bullock et al. (2018) was able to

capture landscape conversion process dynamics on a continuous scale among axes of

spectral endmembers. It might be possible to incorporate data from other sources,

including radar, into the endmember analysis, although the selection of endmembers

would have to be tailored to the data source. For example, optical and radar data

sources might share dense tree cover as an endmember, but it’s unclear how a shadow

endmember would apply to radar or how endmembers driven by moisture content



147

would align across the data types.

5.2.3 Landsat Time Series Meteorological Data Fusion In Semi-Arid Ecosys-
tems

This study is among the first to incorporate environmental drivers into analysis of

vegetation greenness dynamics and abrupt change at the Landsat scale. While many

of the time series change detection methods using Landsat data developed since the

opening of the Landsat archive attempt to work around or ignore the influence of

climatic drivers on time series signals, this work found that change detection is more

accurate when contextualizing observations within moisture dynamics. While change

detection performance decreased by about 4% for forests when using a drought index

in CCDC, the integration of moisture dynamics in time series forecast models greatly

decreased the commission error of CCDC and the BFAST algorithms for grasslands,

forests, and shrublands.

Advancement in the understanding of how to incorporate environmental condi-

tions into time series analysis of spectral observation stands to benefit land cover

monitoring projects, including the USGS Land Change Monitoring, Analysis, and

Projection (LCMAP) project. While a relationship identified between greenness pat-

terns and environmental drivers is of less importance to this study, such a relationship

could be of interest to ecologists. Maps of estimated meteorological data coefficients

also reveal spatial patterns that appear linked to surface hydrological processes and

water availability for semi-arid, seasonal grasses that could help monitor water re-

sources. In addition, the model parameters that describe these relations might be

useful for the identification of shrub and grassland species in the same way that

parametrization of phenology transition dates is important for the discrimination of

forest species communities (Pasquarella, Holden, and Woodcock, 2018).

Most studies, including the work presented here, has tried to use vegetation in-
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dices to quantify vegetation response to environmental conditions, but recent work

(Yang et al., 2017; Yang et al., 2018) have used thermal remote sensing and a land-

atmosphere exchange model to analyze time series of evapotranspiration (ET). ET

changes in reaction to changes in environmental conditions more quickly than changes

to photochemical properties. By comparing estimated ET against a reference ET, they

were able to see downregulation of ET during drought and returns to higher rates of

ET after rainfall. Yang et al. (2018) formalized this comparison against the expected

ET of a well watered plant into an Evaporative Stress Index. Estimation of carbon

exchange through solar-induced fluorescence (Meroni et al., 2009; Frankenberg et al.,

2014) has many advantages to previous methods that use vegetation indices as proxies

for productivity, as the measurement of fluorescence is much more directly connected

to short term physiological processes than reflectance due to photochemicals. Utiliz-

ing approaches that relate more closely to the physical processes of vegetation is more

difficult and requires modeling or ancillary data, but these data might prove more

effective for assessing vegetation response to climate variability than using a broad

greenness index.
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Appendix A

Chapter 2: An analysis of Landsat 7 and
Landsat 8 underflight data and the
implications for time series investigations

A.1 Underflight results

This section contains supplementary tables and figures for the “underflight” dataset

spectral comparison.

Table A.1.1: Underflight comparison regression results for all avail-
able WRS-2 path and rows. The 95% confidence intervals around slope
and intercept estimates are estimated using a percentile bootstrap.

WRS-2 Band Slope (95% CI) Intercept (95% CI) R2

P013R010 Blue 0.9811 (0.979 - 0.9832) -0.0143 (-0.0159 - -0.0126) 0.9879
P013R010 Green 0.8303 (0.8285 - 0.8322) -0.0203 (-0.0217 - -0.0188) 0.9875
P013R010 Red 0.8847 (0.883 - 0.8866) -0.0038 (-0.0053 - -0.0025) 0.9877
P013R010 NIR 1.0038 (1.0023 - 1.0054) -0.0147 (-0.0158 - -0.0136) 0.9919
P013R010 SWIR1 0.757 (0.7501 - 0.7634) 0.0012 (0.0008 - 0.0015) 0.9006
P013R010 SWIR2 0.8419 (0.8372 - 0.8465) 0.0125 (0.0124 - 0.0127) 0.8548
P013R010 NDVI 1.0166 (1.012 - 1.0215) 0.056 (0.0559 - 0.0562) 0.8876
P013R010 EVI 0.6533 (0.5828 - 0.7345) 0.2758 (0.2694 - 0.2833) 0.15
P013R010 NBR 0.8996 (0.8899 - 0.9088) 0.0724 (0.0641 - 0.081) 0.8881
P013R010 NDMI 0.9714 (0.9633 - 0.98) 0.0308 (0.0233 - 0.038) 0.9407
P013R010 Greenness 0.876 (0.8715 - 0.8803) 0.0594 (0.0589 - 0.0598) 0.83
P013R010 Wetness 0.913 (0.9104 - 0.9152) -0.0149 (-0.016 - -0.0136) 0.9842
P013R029 Blue 1.1519 (1.1312 - 1.1736) -0.0149 (-0.0159 - -0.014) 0.9286
P013R029 Green 1.0851 (1.0723 - 1.0987) -0.0096 (-0.0104 - -0.0089) 0.9681
P013R029 Red 1.0574 (1.0469 - 1.069) -0.0073 (-0.0081 - -0.0067) 0.9771
P013R029 NIR 1.096 (1.0788 - 1.1132) -0.0118 (-0.0151 - -0.0085) 0.9517
P013R029 SWIR1 1.0201 (1.0109 - 1.0297) 0.0019 (0.0001 - 0.0036) 0.9814
P013R029 SWIR2 1.0241 (1.015 - 1.0334) 0.0045 (0.0034 - 0.0056) 0.981
P013R029 NDVI 1.0877 (1.076 - 1.0988) -0.0075 (-0.0135 - -0.0015) 0.9686
P013R029 EVI 0.9677 (0.9437 - 0.9892) 0.007 (0.005 - 0.0094) 0.92
P013R029 NBR 0.9442 (0.9317 - 0.9564) 0.0016 (-0.002 - 0.0053) 0.9631

Continued on next page
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Table A.1.1 – continued from previous page
WRS-2 Band Slope (95% CI) Intercept (95% CI) R2

P013R029 NDMI 0.9492 (0.9359 - 0.9611) 0.0037 (0.0018 - 0.0056) 0.9608
P013R029 Greenness 1.0832 (1.0594 - 1.1065) 0.0014 (-0.0005 - 0.0034) 0.9313
P013R029 Wetness 0.9934 (0.983 - 1.0034) -0.01 (-0.0113 - -0.0088) 0.9782
P029R031 Blue 0.9654 (0.9622 - 0.9687) -0.0171 (-0.0174 - -0.0168) 0.8956
P029R031 Green 1.0397 (1.038 - 1.0414) -0.0173 (-0.0175 - -0.0171) 0.959
P029R031 Red 1.0313 (1.03 - 1.0326) -0.0125 (-0.0127 - -0.0123) 0.9731
P029R031 NIR 1.0472 (1.0456 - 1.0487) -0.0048 (-0.0051 - -0.0044) 0.97
P029R031 SWIR1 0.9715 (0.9693 - 0.9735) 0.0107 (0.0101 - 0.0114) 0.9642
P029R031 SWIR2 0.9758 (0.9737 - 0.9779) 0.0135 (0.0131 - 0.0141) 0.963
P029R031 NDVI 1.1236 (1.1192 - 1.1278) 0.016 (0.0152 - 0.0169) 0.9472
P029R031 EVI 0.9675 (0.9651 - 0.9699) 0.0068 (0.0067 - 0.0069) 0.9445
P029R031 NBR 0.9563 (0.9535 - 0.959) -0.0076 (-0.0077 - -0.0074) 0.9627
P029R031 NDMI 0.9465 (0.9429 - 0.9499) 0.0013 (0.0006 - 0.0021) 0.9502
P029R031 Greenness 1.032 (1.03 - 1.034) 0.0122 (0.0122 - 0.0123) 0.9545
P029R031 Wetness 0.9639 (0.9616 - 0.966) -0.0194 (-0.0199 - -0.0189) 0.9621
P102R076 Blue 0.7682 (0.7646 - 0.7723) 0.0045 (0.0043 - 0.0048) 0.7451
P102R076 Green 0.9195 (0.9169 - 0.9218) -0.0007 (-0.001 - -0.0005) 0.8768
P102R076 Red 0.9845 (0.9829 - 0.9861) -0.0029 (-0.0031 - -0.0027) 0.9344
P102R076 NIR 0.9943 (0.9927 - 0.9961) 0.0045 (0.0042 - 0.0048) 0.9233
P102R076 SWIR1 0.9578 (0.9561 - 0.9595) 0.0155 (0.015 - 0.0159) 0.9269
P102R076 SWIR2 0.9434 (0.9419 - 0.9449) 0.015 (0.0147 - 0.0154) 0.9355
P102R076 NDVI 1.0565 (1.0541 - 1.0589) 0.0181 (0.0177 - 0.0185) 0.8996
P102R076 EVI 0.9009 (0.8972 - 0.9048) 0.0078 (0.0077 - 0.008) 0.8424
P102R076 NBR 0.893 (0.891 - 0.8952) -0.0058 (-0.006 - -0.0056) 0.9159
P102R076 NDMI 0.8753 (0.8727 - 0.878) -0.025 (-0.0256 - -0.0245) 0.8674
P102R076 Greenness 0.9831 (0.9804 - 0.9857) 0.0088 (0.0087 - 0.0088) 0.9005
P102R076 Wetness 0.9347 (0.9332 - 0.9363) -0.0217 (-0.022 - -0.0213) 0.9277
P134R042 Blue 0.912 (0.9065 - 0.9175) -0.0071 (-0.0072 - -0.0069) 0.8094
P134R042 Green 0.986 (0.9837 - 0.9882) -0.0037 (-0.0038 - -0.0036) 0.9363
P134R042 Red 0.9973 (0.9948 - 0.9996) -0.0023 (-0.0023 - -0.0022) 0.9648
P134R042 NIR 1.0641 (1.0628 - 1.0655) -0.0131 (-0.0135 - -0.0128) 0.9625
P134R042 SWIR1 1.0033 (1.0021 - 1.0044) 0.0011 (0.001 - 0.0013) 0.9791
P134R042 SWIR2 1.0032 (1.0015 - 1.0048) 0.0025 (0.0024 - 0.0026) 0.9819
P134R042 NDVI 1.0332 (1.0304 - 1.0359) -0.0088 (-0.0109 - -0.0067) 0.9656
P134R042 EVI 0.9758 (0.9744 - 0.9772) -0.001 (-0.0012 - -0.0007) 0.96
P134R042 NBR 0.9633 (0.9619 - 0.9647) 0.0113 (0.0104 - 0.0122) 0.973
P134R042 NDMI 0.9609 (0.9596 - 0.9621) 0.0111 (0.0106 - 0.0116) 0.9695
P134R042 Greenness 1.0561 (1.0548 - 1.0574) -0.0034 (-0.0036 - -0.0032) 0.9645
P134R042 Wetness 0.9885 (0.9871 - 0.9899) -0.0048 (-0.0049 - -0.0047) 0.9784
P134R052 Blue 0.1868 (0.1762 - 0.1972) 0.0467 (0.0462 - 0.0472) 0.1965
P134R052 Green 0.5533 (0.544 - 0.562) 0.0223 (0.022 - 0.0226) 0.6462
P134R052 Red 0.3972 (0.3906 - 0.4043) 0.0233 (0.0232 - 0.0235) 0.4346
P134R052 NIR 0.4272 (0.3851 - 0.466) 0.0168 (0.0159 - 0.0177) 0.4697
P134R052 SWIR1 0.2963 (0.2854 - 0.3079) 0.0121 (0.0119 - 0.0123) 0.3408
P134R052 SWIR2 0.2385 (0.234 - 0.2428) 0.0092 (0.0091 - 0.0092) 0.3262
P134R052 NDVI 0.1088 (0.1019 - 0.1166) -0.1084 (-0.1087 - -0.108) 0.2385
P134R052 EVI 0.33 (0.282 - 0.3775) -0.0074 (-0.0076 - -0.0073) 0.5135
P134R052 NBR 0.0865 (0.0848 - 0.0883) 0.3497 (0.3491 - 0.3502) 0.1939
P134R052 NDMI 0.1262 (0.1241 - 0.1281) 0.2353 (0.2348 - 0.2358) 0.2498
P134R052 Greenness 0.5405 (0.4789 - 0.6087) -0.0088 (-0.0095 - -0.008) 0.652
P134R052 Wetness 0.3054 (0.2981 - 0.3131) 0.006 (0.0059 - 0.006) 0.3842

Continued on next page
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Table A.1.1 – continued from previous page
WRS-2 Band Slope (95% CI) Intercept (95% CI) R2

P150R042 Blue 0.9378 (0.9353 - 0.9401) -0.0022 (-0.0025 - -0.0018) 0.9093
P150R042 Green 0.9915 (0.9891 - 0.9937) -0.0029 (-0.0033 - -0.0024) 0.9545
P150R042 Red 0.991 (0.9889 - 0.9929) 0.0017 (0.0012 - 0.0022) 0.9636
P150R042 NIR 0.9385 (0.9354 - 0.9415) 0.023 (0.022 - 0.024) 0.951
P150R042 SWIR1 0.9237 (0.9201 - 0.9269) 0.0379 (0.0366 - 0.0392) 0.9497
P150R042 SWIR2 0.9045 (0.902 - 0.9072) 0.0402 (0.0392 - 0.041) 0.9519
P150R042 NDVI 1.0961 (1.0935 - 1.0988) -0.0052 (-0.0055 - -0.0048) 0.9312
P150R042 EVI 1.0169 (1.0144 - 1.0197) -0.0001 (-0.0002 - -0.0) 0.9159
P150R042 NBR 0.9291 (0.9265 - 0.9315) -0.0082 (-0.0083 - -0.0081) 0.9327
P150R042 NDMI 0.9137 (0.9097 - 0.9174) -0.0146 (-0.015 - -0.0143) 0.9134
P150R042 Greenness 1.0628 (1.0606 - 1.0648) 0.0034 (0.0034 - 0.0035) 0.9368
P150R042 Wetness 0.8743 (0.8712 - 0.8774) -0.0469 (-0.0478 - -0.046) 0.9336
P198R047 Blue 0.9141 (0.9116 - 0.9163) 0.0137 (0.0133 - 0.0142) 0.8474
P198R047 Green 0.7662 (0.7631 - 0.7693) 0.0795 (0.0784 - 0.0806) 0.7214
P198R047 Red 0.6346 (0.6307 - 0.6382) 0.1854 (0.1835 - 0.1874) 0.5888
P198R047 NIR 0.6452 (0.6413 - 0.6493) 0.2078 (0.2053 - 0.2102) 0.5804
P198R047 SWIR1 0.6305 (0.6267 - 0.6346) 0.2736 (0.2708 - 0.2763) 0.603
P198R047 SWIR2 0.6337 (0.63 - 0.6373) 0.241 (0.2387 - 0.2435) 0.6485
P198R047 NDVI 0.2607 (0.2566 - 0.2647) 0.0578 (0.0575 - 0.0581) 0.3937
P198R047 EVI 0.3398 (0.3356 - 0.3438) 0.0181 (0.018 - 0.0183) 0.4588
P198R047 NBR 0.7336 (0.7306 - 0.7364) -0.0174 (-0.0175 - -0.0173) 0.7296
P198R047 NDMI 0.8243 (0.8217 - 0.827) -0.0305 (-0.0307 - -0.0303) 0.7921
P198R047 Greenness 0.4013 (0.3977 - 0.4049) 0.0093 (0.0092 - 0.0093) 0.4799
P198R047 Wetness 0.7395 (0.7365 - 0.7421) -0.149 (-0.1506 - -0.1476) 0.7632
P230R084 Blue 0.755 (0.7468 - 0.761) 0.0037 (0.0033 - 0.0041) 0.7877
P230R084 Green 0.9574 (0.9526 - 0.961) -0.0027 (-0.003 - -0.0023) 0.9169
P230R084 Red 0.998 (0.9936 - 1.0011) -0.0032 (-0.0035 - -0.0028) 0.9627
P230R084 NIR 1.0259 (1.024 - 1.0274) 0.003 (0.0027 - 0.0034) 0.979
P230R084 SWIR1 0.9789 (0.9779 - 0.98) 0.0107 (0.0104 - 0.0109) 0.9736
P230R084 SWIR2 0.9706 (0.9696 - 0.9715) 0.0109 (0.0108 - 0.0111) 0.9774
P230R084 NDVI 0.9583 (0.957 - 0.9595) 0.048 (0.0476 - 0.0484) 0.9699
P230R084 EVI 0.874 (0.7474 - 0.9556) 0.0135 (0.0077 - 0.0225) 0.9336
P230R084 NBR 0.9647 (0.964 - 0.9655) 0.0034 (0.0033 - 0.0035) 0.9858
P230R084 NDMI 0.9596 (0.9586 - 0.9606) 0.0051 (0.005 - 0.0052) 0.9849
P230R084 Greenness 0.9831 (0.9814 - 0.9845) 0.011 (0.011 - 0.0111) 0.9831
P230R084 Wetness 0.9687 (0.9678 - 0.9696) -0.0141 (-0.0143 - -0.014) 0.9773
P230R094 Blue 0.8924 (0.8906 - 0.8944) -0.0013 (-0.0014 - -0.0011) 0.8802
P230R094 Green 0.9068 (0.9049 - 0.9087) 0.0026 (0.0024 - 0.0028) 0.9084
P230R094 Red 0.887 (0.8849 - 0.8891) 0.009 (0.0087 - 0.0093) 0.9053
P230R094 NIR 0.8614 (0.8591 - 0.8637) 0.0202 (0.0198 - 0.0206) 0.8773
P230R094 SWIR1 0.8032 (0.8008 - 0.8057) 0.0379 (0.0374 - 0.0384) 0.8577
P230R094 SWIR2 0.7746 (0.7721 - 0.7773) 0.0352 (0.0347 - 0.0356) 0.847
P230R094 NDVI 1.0569 (1.0508 - 1.0626) -0.0002 (-0.0012 - 0.0009) 0.8747
P230R094 EVI 0.8522 (0.8483 - 0.8558) 0.0053 (0.0052 - 0.0054) 0.8639
P230R094 NBR 0.6417 (0.6357 - 0.6476) -0.0006 (-0.0007 - -0.0006) 0.7563
P230R094 NDMI 0.6824 (0.6777 - 0.6871) -0.0388 (-0.0393 - -0.0383) 0.7888
P230R094 Greenness 0.9408 (0.9372 - 0.9448) 0.0041 (0.004 - 0.0041) 0.8982
P230R094 Wetness 0.7392 (0.7364 - 0.7418) -0.039 (-0.0394 - -0.0386) 0.821
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Figure A.1.1: Movement of clouds in underflight data over the An-
daman and Nicobar Islands, India (P134R052) in the roughly 5 minute
interval between acquisitions.

A.2 Underflight cirrus comparison

This section contains a figure from the “underflight” cirrus cloud characterization.
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Figure A.2.1: Clear land and cloud cirrus spectral properties for
Santa Cruz Province, Argentina (P230R094). Contour lines contain
95% of the data in the bivariate distribution space for data labeled as
clear land (green) and cirrus cloud (magenta) in Landsat 8 CFmask
images.
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A.3 Time Series spectral results

This section contains supplementary figures for the Landsat time series spectral com-

parison.
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Figure A.3.1: Normalized intercept estimates for time series models
in Florida, United States (P016R041) used to assess spectral differences
caused by including Landsat 8 data. The Landsat 8 only and combined
Landsat 8 and Landsat 7 intercept estimates were normalized by divid-
ing by the intercepts of time series models using only Landsat 7 data.
The Y-axis was truncated at 30% to give better resolution to smaller
frequency bins.
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Figure A.3.2: Normalized slope estimates for time series models in
Florida, United States (P016R041) used to assess spectral differences
caused by including Landsat 8 data. The Landsat 8 only and com-
bined Landsat 8 and Landsat 7 slope estimates were normalized by
subtracting the slopes from time series models using only Landsat 7
data. The Y-axis was truncated at 30% to give better resolution to
smaller frequency bins.
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Figure A.3.3: Normalized RMSE estimates for time series models in
Florida, United States (P016R041) used to assess spectral differences
caused by including Landsat 8 data. The Landsat 8 only and combined
Landsat 8 and Landsat 7 RMSE estimates were normalized by divid-
ing by the RMSE from time series models using only Landsat 7 data.
The Y-axis was truncated at 30% to give better resolution to smaller
frequency bins.
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Figure A.3.4: Normalized intercept estimates for time series models
in Mississippi, United States (P023R037) used to assess spectral dif-
ferences caused by including Landsat 8 data. The Landsat 8 only and
combined Landsat 8 and Landsat 7 intercept estimates were normalized
by dividing by the intercepts of time series models using only Landsat
7 data. The Y-axis was truncated at 30% to give better resolution to
smaller frequency bins.
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Figure A.3.5: Normalized slope estimates for time series models in
Mississippi, United States (P023R037) used to assess spectral differ-
ences caused by including Landsat 8 data. The Landsat 8 only and
combined Landsat 8 and Landsat 7 slope estimates were normalized
by subtracting the slopes from time series models using only Landsat
7 data. The Y-axis was truncated at 30% to give better resolution to
smaller frequency bins.
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Figure A.3.6: Normalized RMSE estimates for time series models in
Mississippi, United States (P023R037) used to assess spectral differ-
ences caused by including Landsat 8 data. The Landsat 8 only and
combined Landsat 8 and Landsat 7 RMSE estimates were normalized
by dividing by the RMSE from time series models using only Landsat
7 data. The Y-axis was truncated at 30% to give better resolution to
smaller frequency bins.
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Figure A.3.7: Normalized intercept estimates for time series models
in California, United States (P043R034) used to assess spectral dif-
ferences caused by including Landsat 8 data. The Landsat 8 only and
combined Landsat 8 and Landsat 7 intercept estimates were normalized
by dividing by the intercepts of time series models using only Landsat
7 data. The Y-axis was truncated at 30% to give better resolution to
smaller frequency bins.
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Figure A.3.8: Normalized slope estimates for time series models in
California, United States (P043R034) used to assess spectral differ-
ences caused by including Landsat 8 data. The Landsat 8 only and
combined Landsat 8 and Landsat 7 slope estimates were normalized
by subtracting the slopes from time series models using only Landsat
7 data. The Y-axis was truncated at 30% to give better resolution to
smaller frequency bins.
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Figure A.3.9: Normalized RMSE estimates for time series models
in California, United States (P043R034) used to assess spectral differ-
ences caused by including Landsat 8 data. The Landsat 8 only and
combined Landsat 8 and Landsat 7 RMSE estimates were normalized
by dividing by the RMSE from time series models using only Landsat
7 data. The Y-axis was truncated at 30% to give better resolution to
smaller frequency bins.
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A.4 Time Series Cirrus Cloud Results

This section contains supplementary figures for the Landsat time series cirrus band

comparison.
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Figure A.4.1: Normalized intercept estimates for time series models
in Florida, United States (P016R041) used to assess the influence of
Landsat 8’s cirrus band. Intercept estimates from time series not using
Landsat 8’s cirrus band in cloud masks were scaled by dividing by
intercepts from time series using the cirrus band in Fmask. The Y-axis
was truncated at 30% to give better resolution to smaller frequency
bins.
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Figure A.4.2: Normalized slope estimates for time series models in
Florida, United States (P016R041) used to assess the influence of Land-
sat 8’s cirrus band. Slope estimates from time series not using Landsat
8’s cirrus band in cloud masks were scaled by subtracting slopes from
time series using the cirrus band in Fmask. The Y-axis was truncated
at 30% to give better resolution to smaller frequency bins.
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Figure A.4.3: Normalized RMSE estimates for time series models
in Florida, United States (P016R041) used to assess the influence of
Landsat 8’s cirrus band. RMSE estimates from time series not using
Landsat 8’s cirrus band in cloud masks were scaled by dividing by
RMSE from time series using the cirrus band in Fmask. The Y-axis
was truncated at 30% to give better resolution to smaller frequency
bins.
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Figure A.4.4: Normalized intercept estimates for time series models
in Mississippi, United States (P023R037) used to assess the influence
of Landsat 8’s cirrus band. Intercept estimates from time series not
using Landsat 8’s cirrus band in cloud masks were scaled by dividing
by intercepts from time series using the cirrus band in Fmask. The Y-
axis was truncated at 30% to give better resolution to smaller frequency
bins.
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Figure A.4.5: Normalized slope estimates for time series models in
Mississippi, United States (P023R037) used to assess the influence of
Landsat 8’s cirrus band. Slope estimates from time series not using
Landsat 8’s cirrus band in cloud masks were scaled by subtracting
slopes from time series using the cirrus band in Fmask. The Y-axis
was truncated at 30% to give better resolution to smaller frequency
bins.
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Figure A.4.6: Normalized RMSE estimates for time series models in
Mississippi, United States (P023R037) used to assess the influence of
Landsat 8’s cirrus band. RMSE estimates from time series not using
Landsat 8’s cirrus band in cloud masks were scaled by dividing by
RMSE from time series using the cirrus band in Fmask. The Y-axis
was truncated at 30% to give better resolution to smaller frequency
bins.
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Figure A.4.7: Normalized intercept estimates for time series models
in California, United States (P043R034) used to assess the influence
of Landsat 8’s cirrus band. Intercept estimates from time series not
using Landsat 8’s cirrus band in cloud masks were scaled by dividing
by intercepts from time series using the cirrus band in Fmask. The Y-
axis was truncated at 30% to give better resolution to smaller frequency
bins.
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Figure A.4.8: Normalized slope estimates for time series models in
California, United States (P043R034) used to assess the influence of
Landsat 8’s cirrus band. Slope estimates from time series not using
Landsat 8’s cirrus band in cloud masks were scaled by subtracting
slopes from time series using the cirrus band in Fmask. The Y-axis
was truncated at 30% to give better resolution to smaller frequency
bins.
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Figure A.4.9: Normalized RMSE estimates for time series models in
California, United States (P043R034) used to assess the influence of
Landsat 8’s cirrus band. RMSE estimates from time series not using
Landsat 8’s cirrus band in cloud masks were scaled by dividing by
RMSE from time series using the cirrus band in Fmask. The Y-axis
was truncated at 30% to give better resolution to smaller frequency
bins.
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Appendix B

Chapter 4: Landsat Time Series
Meteorological Data Fusion In Semi-Arid
Ecosystems

B.1 Results

B.1.1 Change detection accuracy

Accuracy Assessment

We plotted the distribution of accuracy metrics for all time series models (“Harmonic”,

“Harmonic + PPT”, and “Harmonic + SPEI”) for the three land cover classes an-

alyzed in this study using both change detection methods (CCDC and Bai-Perron).

These mean values of the groups of data plotted here are summarized in Table 4.2

for CCDC and Table 4.2 for the Bai-Perron algorithm.
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Figure B.1.1: Distribution of accuracy metrics for the CCDC change
detection algorithm. These data are summarized as mean values in
Table 4.1.
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Figure B.1.2: Distribution of accuracy metrics for the Bai-Perron
change detection algorithm. These data are summarized as mean values
in Table 4.2.
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