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ABSTRACT

One major challenge in synthetic biology is how to design genetic circuits with

predictable behaviors in various biological contexts. There are two limitations to

addressing this challenge in mammalian cells. First, models that can predict circuit

behaviors accurately in bacteria cells cannot be directly translated to mammalian

cells. Second, upon interconnection, the behavior of a module, the building block of

a circuit, may be different from its behavior in a standalone setting. In this thesis, I

present a bottom-up modeling framework that can be used to predict circuit behaviors

in transiently transfected mammalian cells (TTMC). The first part of the framework

is based on a novel bin-dependent ODE model that can describe the behavior of

modules in TTMC accurately. The second part of the framework rests upon a method

of modular composition that allows model-based design of circuits. The efficacies of

the bin-dependent model and the method of modular composition are validated via

experimental data. The effects of retroactivity, a loading effect that arises from

modular composition, on circuit behaviors are also investigated.
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1

Chapter 1

Introduction

1.1 Engineering Biology

No matter how technology advances, at the back of our minds the uneasiness about

the concept of engineering biology is never completely erased. To some the term

“biological engineering” is automatically associated with cutting edge technology,

which carries so much hope yet seems so distant. However, in reality bio-engineered

products can be found everywhere: from biofuels and bio-materials to agricultural

and pharmaceutical products. In total, bio-engineered products already constitute

an industry that yields a revenue worth $350 billion per year, accounting for two

percent of the U.S. economy [Si and Zhao, 2016].

Engineering biology would not be possible without the ability to manipulate DNA.

In 1944, Oswald Avery showed that DNA contains genetic information in bacteria [Av-

ery et al., 1944]. However, the role of DNA as the universal carrier of hereditary infor-

mation was not generally accepted until James Watson and Francis Crick discovered

the three-dimensional double helical structure of DNA in 1953 [Watson and Crick,

1953]. Watson and Crick’s discovery paved the way for modern molecular biology, a

field that studies the relationship between gene sequences and biological functions.

In 1970s, the science community achieved several major breakthroughs in genetic en-

gineering, including the first recombinant DNA molecule [Jackson et al., 1972], the

first transgenic organism [Cohen et al., 1973], and the first transgenic mice [Jaenisch

and Mintz, 1974]. These events marked the beginning of an era where DNA can be
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directly manipulated outside of natural breeding.

It is known that many biological activities are mediated not by single genes but

by the coordination of multiple interacting genes [Ma and Gao, 2012]. Activities such

as multi-stability and oscillations can be observed in networks of specialized gene reg-

ulatory elements, including the bacteriophage lambda switch and the Cyanobacteria

circadian oscillator [Gardner et al., 2000]. At the turn of the millennium, Gardner

et al. and Elowitz et al. created a bistable genetic toggle switch and a biological

oscillator by engineering non-specialized genes and repressible promoters in E. coli

cells [Gardner et al., 2000, Elowitz and Leibler, 2000], leading to the establishment

of synthetic biology. The emphasis of synthetic biology is laid upon the the system

level of interactions between genes and proteins. Their works showed that similar

to components of electronic circuits, transcriptional regulatory elements could be de-

signed and arranged in particular orders to mimic biological functions that previously

existed only in nature.

1.2 Genetic Circuits

Genetic circuits are at the core of synthetic biology. The term “circuit”, which is

borrowed from the field of engineering, is emblematic of the interdisciplinary nature

of synthetic biology. In essence, a genetic circuit is a collection of interacting genes

that are synthesized and encoded on a plasmid DNA(s). Mimicking silicon-based

electronic circuits, genetic circuits enable cells to receive chemical or thermal signals

as the input, process the signals by carrying out logical functions with biochemical

reactions, and generate a biological response(s), such as a change(s) in gene expression

levels, as the output [Jusiak et al., 2016]. The relationship between cells and circuits is

comparable to the relationship between computers and computer programs. Cells can

be regarded as computers that sense and process all sorts of information based on the
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programs embedded in the circuits. Unlike in a silicon-based circuit, input, output,

and intermediate signals in a genetic circuit are entirely biological: information that

is transmitted downstream in a genetic circuit is the flow of RNA polymerase on DNA

[Brophy and Voigt, 2014]. DNA-binding transcriptional factors (TF) act as switches

that recruit or block RNA polymerase to increase or decrease the flow [Brophy and

Voigt, 2014].

If carefully designed and successfully delivered, a genetic circuit can enables cells

to sense the stimulants in their environment and respond to the stimuli by carrying out

desired functions. Unlike a simple knockout or over-expression of a gene, the purpose

of constructing a genetic circuit is not merely to turn on or turn off a gene but to let

the cells decide when a gene gets turned on or turned off. Building genetic circuits is

a common approach to acquiring a minimal network model for mediating a biological

function, facilating a deeper understanding of the sophisticated regulatory networks

that govern biological activities [Gardner et al., 2000,Elowitz and Leibler, 2000,Basu

et al., 2005]. As practical devices, genetic circuits have been showing great promises

in biochemical production [Gimpel et al., 2013,Georgianna and Mayfield, 2012], gene

therapy [Xie et al., 2011], and environmental protection [Voigt, 2012,Didovyk et al.,

2017].

1.3 Model-Based Circuit Design

Modern synthetic biology is inseparable from the computational models that guide

the construction of synthetic networks. Experimental approaches combined with mod-

eling are an increasingly popular strategy taken by the research community to study

systems and synthetic biology. Underlying the popularity is the ever-larger amount

of information that otherwise would not be attainable via taking either approach by

itself [Endy and Brent, 2001, Ay and Arnosti, 2011, Stark et al., 2003b, Goodwin,
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1965, Arkin, 2001]. In systems biology, constructing models from high-throughput

experimental data helps identify the components and reveal the relationships among

the components in gene networks [Barenco et al., 2006,Stark et al., 2003a,Schlitt and

Brazma, 2005, Sontag, 2011]. In synthetic biology, models can be used to simulate

temporal behavior of circuits, analyze key features of circuits such as bi-stability [Basu

et al., 2005, Gardner et al., 2000] as well as guide circuit construction [Ellis et al.,

2009,Del Vecchio, 2007].

Compared to the time when the field of synthetic biology was just established,

genetic circuits are expanding rapidly in size and structural complexity. An impor-

tant enabling technology is the high-throughput DNA synthesis [Kosuri and Church,

2014]. Advancing technologies bring about new opportunities as well as new chal-

lenges. Accompanying the rapid characterization of circuit parts is the challenging

problem of circuit design. There are many choices to consider when it comes to de-

signing a circuit, whether the choice is about circuit topologies or the DNA sequences

for specific circuit parts. The numbers of successfully constructed promoters, coding

sequences, terminators, etc. are rising rapidly [Canton et al., 2008]. The total number

of circuits that can be built is a combinatorial explosion, so building and testing all

possible circuit designs directly via experimental approaches becomes infeasible. The

traditional intuition-driven approach is no longer sufficient for selecting a functioning

circuit(s) out of all the possibilities. On the other hand, building and simulating pre-

dictive models for circuits can often be completed within a reasonable time thanks to

today’s computational power. In the biology community, there is a growing tendency

to use mathematical models to guide circuit design.

Many model-based computational tools that were initially developed for sys-

tems biology show great promises in applications for synthetic biology [Marchisio

and Stelling, 2009]. Biojade [Goler, 2004] and TABASCO [Kosuri et al., 2007] are
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among the first tools for circuit design, employing a “drag and drop” user inter-

face, where components of circuits are displayed on a canvas, and users can build

in silico circuit models by connecting components with wires that represent signal

transmission. By connecting the “drag and drop” interface to a simulation environ-

ment, Biojade enables the visualization of circuit diagrams and analysis of circuit

behaviors [Goler, 2004]. However, the underlying mathematical model of Biojade is

sometimes considered too simplistic due to a lack of biological details [Marchisio and

Stelling, 2009]. Tinkercell, developed by Chandran et al., comes with an Application

Programming Interface (API), allowing users more freedom to choose the appropriate

types of mathematical models [Chandran et al., 2009]. To my knowledge, Cello, de-

veloped by Nielsen et al., is one of the most comprehensive, well-rounded tools to date

for circuit design automation [Nielsen et al., 2016]. Based on the notion of bottom-up

circuit assembly, Cello transforms a functional specification of a circuit all the way to

DNA sequences via a set of algorithms including parsing the specification, assembling

circuit components, and simulating the models. The algorithm underlying Cello for

model simulation draws on a library of Boolean logic gates and generates Boolean

circuits as directed acyclic graphs from Hardware Description Language (HDL) speci-

fications (Verilog) [Nielsen et al., 2016]. Currently, Cello is oriented towards bacterial

cells, operates on Boolean logic, and focuses on simulating the steady state behaviors

of circuits. The performance of Cello in eukaryotic cells, especially the ones that do

not have steady-state behaviors, is yet to be evaluated [Nielsen et al., 2016].

1.4 Circuit Design in Transiently Transfected Mammalian

Cells

In synthetic biology, the initial emphasis was put on microbial for synthesis of

high-value compounds in biofuel production and environmental applications [Gimpel
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et al., 2013,Georgianna and Mayfield, 2012]. Many biomedical related proteins, how-

ever, can only be correctly folded and hence synthesized in mammalian cells due to

their unique glycosylation patterns [Dalton and Barton, 2014, Khan, 2013]. Unlike

bacteria cells, mammalian cells developed complex mechanisms to resist the invasion

of foreign genetic materials along the course of evolution [Kis et al., 2015]. Mam-

malian cells are also more compartmentalized, meaning that the interior of the cells

is divided into sections, each of which is dedicated to a unique cellular function [Kis

et al., 2015]. While compartmentalization allows cells to conduct multiple biological

activities simultaneously, it constitutes an additional challenge to the proper expres-

sion of synthetic circuits [Kwok, 2010, May et al., 2008]. Over the years, a growing

interest in healthcare applications significantly increased the breadth and depth of

research on synthetic biology in mammalian cells [Kis et al., 2015].

Transfection is a common procedure for delivering genetic circuits into cells. Many

transfection methods have been developed, including biological methods, which use

viral vectors to achieve sustained expression of circuits [Roesler et al., 2002, Hacein-

Bey-Abina et al., 2002,Pfeifer and Verma, 2001], and chemical methods, which enable

nucleic acids to cross cell membranes via the formation of positively charged nucleic

acid/chemical complexes [Washbourne and McAllister, 2002,Schenborn and Goiffon,

2000, Holmen et al., 1995]. Depending on the method of transfection, the delivered

genetic materials can either exist transiently in cells (transient transfection) or get

passed down to later generations (stable transfection) [Kim and Eberwine, 2010].

Compared to stable transfection, transient transfection offers faster expressions of

transfected genes, with higher expression levels. It has lower cytotoxicity and induces

no mutagenesis [Vink et al., 2014, Kis et al., 2015, Kim and Eberwine, 2010]. It has

also been shown to be an effective technique for speeding up the screening of novel

synthetic designs [Schaumberg et al., 2016]. Those properties have motivated the
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investigation of transient transfection in mammalian synthetic biology.

Despite the wide use of transient transfection, a model that attends to the context

specificity of transiently transfected mammalian cells (TTMC) was still missing. In

the field, there are many more models developed for bacteria cells than for mammalian

cells [Mathur et al., 2017]. This can pose a problem to synthetic biologists working

with TTMC because existing circuit models for bacteria cells or even stably trans-

fected cells are not sufficient for describing the gene expression mechanism in TTMC.

In addition, modeling frameworks based on Boolean models [Wang et al., 2012] are

more developed than frameworks based on other model types. Transcriptional reg-

ulation often displays on and off switch-like behaviors [Ay and Arnosti, 2011]. By

dividing cell states into two states, i.e., zeros and ones, Boolean models are commonly

used to capture the steady state behaviors of the circuits, as is shown in [Nielsen et al.,

2016]. Boolean models are easy to analyze analytically and implement computation-

ally, but they may overlook the important details in temporal behaviors of circuits

and compromise the accuracy of the results. For example, plasmids that are intro-

duced into cells via transient transfection are only expressed temporarily and do not

become integrated into the host’s genome. Plasmids get partitioned into daughter

cells upon cell division, so plasmid counts as well as protein production rates de-

crease over time, resulting in a system without steady states. On the other hand,

ordinary differential equation (ODE) models are often used to represent multicompo-

nent, temporally evolving dynamics systems [Ay and Arnosti, 2011]. Genetic circuits

can be represented by a set of differential equations in which kinetic rates are defined

as net results of molecular synthesis, degradation, and interactions between molecule

species [Ay and Arnosti, 2011]. For circuit design automation, there is a need to

develop more descriptive models for a larger variety of cell types. In this dissertation,

the focus is on developing an ODE model for circuit behaviors in TTMC.
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Once a model is constructed, a method of composition needs to be developed to

facilitate predictions of circuit behavior based on modules. Under the assumption of

modularity, circuits are decoupled into smaller components also known as modules,

each of which can be tested and characterized individually. Based on the charac-

terization of modules, in silico models for circuits are constructed, simulated, and

validated against wet lab results. Model simulations and experimental data can then

be repeatedly compared for iteratively improving the circuit performance [Marchisio

and Stelling, 2009]. Though seemingly a trivial problem, integration of individual

modules for making circuit predictions is challenging because experimental data of

individual modules are generally subject to batch effects [Johnson et al., 2007].

1.5 Robustness and Retroactivity

In theory, an accurate modeling framework for circuit behaviors, if applied to

high-quality experimental data, should suffice the conditions necessary for an effi-

cient circuit design process. However, factors including variation in experimental

conditions and noise of gene expression could cause circuits to deviate substantially

from their expected behaviors. Unlike electronic circuits, it is impossible to achieve

precise control of chemical kinetic rates in synthetic genetic circuits due to complex

cellular environments. Design strategies that improve the chance of success for cir-

cuit assembly are an active research area in synthetic biology. It is well known that

variation in circuit structures contributes to diverse biological functions inside the

cells [Alon, 2007]. Physicists have long speculated that there might be a limited

number of network topologies that can execute any particular biological function ro-

bustly. In other words, even though chemical kinetic rates vary significantly across a

cell population, particular networks are more likely to execute a biological function

successfully than most other networks. Investigating the robustness of networks is es-
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pecially important for synthetic biologists, as understanding the relationship between

network topologies and biological functions provides invaluable instructions for how

to engineer genetic circuits with a target function robustly. There is an extensive

literature about particular topologies like incoherent feedforward loops (IFFL) and

functions they enable, but there is a demand to develop a systematic approach to

investigating the relationship between network topologies and any biological func-

tion(s).

A critical assumption underlying circuit assembly is modularity, that is, behavior

of a circuit can be predicted based on its components. For improving circuit perfor-

mance, in the past much attention was given to the effects of the parameters that

are inherent in the modules, including protein production rates and decay rates [Shi

et al., 2017, Ma et al., 2009]. However, it should be pointed out that behaviors of

circuits are determined not only by behaviors of modules but also by the loading ef-

fects that arise from modular interconnections, known as retroactivity [Ventura et al.,

2010,Del Vecchio et al., 2008]. Retroactivity refers to the phenomenon where trans-

mitting a biological signal from the upstream system to the downstream system alters

the behavior of the upstream system [Gyorgy and Del Vecchio, 2014,Jayanthi et al.,

2013,Mou and Del Vecchio, 2015]. Based on the theoretical foundations, Jayanthi et

al. proved via experiments the existence of retroactivity in genetic circuits and the

feasibility of controlling retroactivity via plasmid copy numbers. According to [Gy-

orgy and Del Vecchio, 2014] and [Jayanthi et al., 2013], raising plasmid copy numbers

and lowering protein production rates per plasmid by the same fold can increase the

retroactivity of a system without affecting its steady states. Up till now retroactivity

has been shown to impact ultra-sensitivity [Ventura et al., 2010], input-output char-

acteristics [Brewster et al., 2014], response times, etc. [Jayanthi et al., 2013, Jiang

et al., 2011]. No previous work has yet been done on the effects of retroactivity on
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robustness of a network to achieve a particular biological function. Understanding

such effects will shed light on methods to control retroactivity and design more robust

synthetic circuits.

1.6 Aims of the Dissertation

The demand for a more efficient and accurate circuit design process obligates

the development of computational tools and the exploration of design strategies for

genetic circuits. In this dissertation, I present a series of studies that aim to improve

the accuracy of model predictions for circuit behaviors and the robustness of circuits

for achieving desired behaviors.

In Chapter 2, I present a novel bin-dependent model that accounts for specific cel-

lular mechanisms of TTMC. Transient transfection of cells can be highly stochastic,

resulting in large variations in plasmid counts across a population. Binning cells by

plasmid copy number is a common practice for analyzing transient transfection data.

In many kinetic models of transfected cells, protein production rates are assumed

proportional to plasmid copy number. The validity of this assumption in TTMC is

unclear, and models based on this assumption appear unable to reproduce experi-

mental flow cytometry data robustly. We hypothesize that protein saturation at high

plasmid copy number is a reason previous models break down and validate our hy-

pothesis by comparing experimental data and a stochastic chemical kinetics model.

The model demonstrates that there are multiple distinct physical mechanisms that

can cause saturation. Based on these observations, we develop a novel minimal bin-

dependent ODE model that assumes different parameters for protein production in

cells with low versus high numbers of plasmids.

In Chapter 3, I expand the bin-dependent ODE model for a transcriptional regu-

latory switch into an ODE modeling framework that can be applied to a wide variety
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of circuits. I provide a precise definition of genetic modules, from which we then

develop a method of modular composition that addresses the cross-batch variation

among different flow cytometry datasets, allowing model-based design of circuits in

TTMC.

In Chapter 4, I present an investigation of how retroactivity impacts circuit behav-

iors. Specifically, I focus on adaptation, which refers to a system’s ability to respond

transiently to an input signal and subsequently recover to the initial states. Adaptive

robustness, the ability of a circuit to achieve adaptation, is subject to retroactivity,

the loading effects that stem from modular interconnections. Studying the effects

of retroactivity on adaptive robustness facilitates the employment of retroactivity to

improve circuit performance. To achieve this goal, I provide a definition of adap-

tive robustness, present a framework for quantifying adaptive robustness via statis-

tical model checking (SMC), and apply this framework to investigate the effects of

retroactivity on adaptive robustness.

Collectively, this dissertation seeks to highlight new computational models and

offer novel insights into the discipline of circuit design. The intention of the work

detailed in this dissertation is to complement existing automation platforms for circuit

design, diversifying the application of mathematical models in synthetic biology in

terms of model categories (e.g., ODE), cellular contexts (e.g., mammalian cells), and

application domains (e.g., robustness and circuit topologies). Driven by a deeper

understanding of cellular biology, development of mathemtical models will greatly

reduce the cost of circuit construction in vitro, making synthetic biology a more

promising technology.
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Chapter 2

Bin-Dependent Models

Transient transfection is a widely adopted technique for delivering foreign genetic

materials into eukaryotic cells. The transfected genetic materials utilize the cells’

innate transcriptional and translational machinery to get expressed, conferring on cells

novel biological functions. In this chapter, I detail a novel bin-dependent model that is

capable of describing experimental data in TTMC accurately without incorporating

sophisticated mechanistic details. In essence, the bin-dependent model is an ODE

model that describes the time evolution of gene expression levels but differs from a

regular ODE model in bacteria or stably integrated cells by capturing specific cellular

mechanisms in TTMC. The bin-dependent model includes copy number as a predictor

and is compatible with the method of binning that is widely used for analyzing TTMC.

2.1 Experimental Data

Via transient transfection, we deliver genetic circuits into mammalian cells, cre-

ating synthetic transcriptional regulatory systems that enable cells to respond to

the external stimuli. The first step in constructing models for such systems is to

examine experimental data. In this thesis we focus on the bottom-up approach to

building circuits via the assembly of individual modules, where a module is defined

as a transcriptional regulatory switch. As an example of the types of modules we

will use, consider a module comprising a fluorescent-reporter system involving three

fluorescent genes: the induced (input) gene, the regulated (output) gene, and the
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transfection marker (Figure 2·1(a)). The expression levels of the fluorescent genes are

measured via flow cytometries, with the fluorescence intensities used as approxima-

tions for the concentrations of the fluorescent proteins. The induced gene is regulated

by a constitutive activator protein, and an external inducer whose concentration is

under control. The product of the induced gene serves as a TF for the regulated gene,

controlling the latter’s expression of a fluorescent reporter. The induced gene’s prod-

uct is not fluorescent, but is measured by co-expressing a fluorescent reporter gene of

a different color from the same promoter [Kærn et al., 2003]. The expression of the

induced gene can be modulated by changing the amount of the inducer. Expression

of the induced gene and the regulated gene at various inducer levels constitutes a

dose-response curve (Figure 2·1(c)). In TTMC, expression levels largely depend on

the numbers of plasmids transfected in individual cells [Glover et al., 2010,Davidsohn

et al., 2015], which cannot be controlled and are highly variable across a popula-

tion. Therefore, it is necessary to estimate the plasmid copy numbers so that the

effect of variation in copy numbers on gene expression can be captured. This is of-

ten achieved by co-transfecting another constitutively expressed fluorescent protein,

which serves as the transfection marker (Figure 2·1(a)). The induced gene, the reg-

ulated gene, and the transfection marker can be encoded on either one plasmid or

separate plasmids. The former ensures that there is a one-to-one correspondence

among the genes. In comparison, the latter is often preferred as separate plasmids

can be absorbed by cells more readily due to smaller sizes, interference among the

transcriptional units is minimized, and the concentrations of individual proteins can

be adjusted more easily [Chen and Xia, 2011, Assur et al., 2012]. In what follows,

we assume the transfection marker has been encoded on a separate plasmid for all

models and experiments. We also assume the induced gene acts as an inhibitor of the

regulated gene.
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Fluorescence readings from flow cytometers can be converted to standard units of

Molecules of Equivalent Fluorescein (MEFL) via TASBE Control [Davidsohn et al.,

2015, Beal, 2015, mef, 2001]. Standardized data are segmented into bins by plasmid

counts so that subpopulations of cells with similar plasmid counts can be studied in

groups (Figure 2·1(b)) [Davidsohn et al., 2015,Davidsohn, 2013,Siciliano et al., 2018].

Since flow cytometry measurements are typically log-normal distributed or a mixture

of two log-normal distributions [Beal, 2017, Hattis and Burmaster, 2006], binning is

performed on a log scale to ensure that each bin contains relatively equal numbers of

cells. The width of bins is selected depending on the resolution at which analysis is

to be conducted.

We use data from [Davidsohn et al., 2015] as an example to demonstrate the

construction of a module and the implementation of binning. Davidsohn et al. con-

structed the circuits using the rtTA and GAL4/UAS system: the input (TAL14,

TAL21, or LmrA repressor) is activated by a constitutive rtTA protein and doxy-

cycline, and expression of the output (EYFP), which is inhibited by the input, is

driven by a constitutive Gal4 protein [Davidsohn et al., 2015]. A detailed represen-

tation of the circuit structure can be found in Figure 2·1(d). rtTA and Gal4, which

are indispensable for protein activation, are both constitutively expressed and are

not considered as limiting factors for the production of the input and the output.

Omitting rtTA and Gal4 leads to an abstraction of the circuit that is depicted in

Figure 2·1(a). The strength of repression is modulated by inducing the switch at

twelve dosages of doxycycline (Dox), and is indicated by the reporter gene EBFP2.

Another fluorescent gene, mKate, is a constitutively expressed gene that serves as a

transfection marker. Concentrations of all fluorescent proteins are measured for every

single cell by a flow cytometer 72 hours post transfection [Davidsohn et al., 2015].

These data are then standardized into MEFL units and segmented by concentrations



15

of the mKate protein into bins of width 0.1 on a log scale (Figure 2·1(b)). Because

bi-modality observed in the concentrations of the mKate protein is believed to be

caused by whether individual cells get transfected, only cells with concentrations of

mKate centering around the larger mode, ranging from 105.8 to 107.9 (unit: MEFL),

are used for modeling as in [Davidsohn et al., 2015] (Figure 2·1(b)). For data that

lie in this range, geometric means of concentrations of the EBFP2 protein and the

EYFP protein are calculated within each bin. In this thesis, we focus on the average

temporal behavior within each bin, with the goal of developing ODE models that can

be directly parametrized from binned flow cytometry data.

2.2 Protein Concentration vs Plasmid Copy Number

Hill functions are commonly used to model transcriptional regulation in ODE

models (Figure 2·1(a)). Mathematically, a Hill function is defined as:

H(I) =


(1− γ) · 1

1 +
(
I
d

)h + γ, if I is an inhibitor

(1− γ) ·
(
I
d

)h
1 +

(
I
d

)h + γ, if I is an activator,

(2.1)

where I is the concentration of the inhibitor/activator. H(I) accounts for the fraction

of the promoter that is active. γ is the minimum fraction of the promoter that is

active: if I is an inhibitor, γ is the fraction active given infinite abundance of I; if I is

an activator, γ is the fraction active in absence of I. h is the Hill coefficient, and d is

the dissociation constant.

Davidsohn et al. developed a traditional Hill-function-based model to describe the

time evolution of the induced and the regulated proteins in TTMC (Figure 2·1(a))



16

(a) (b)

(c) (d)

Figure 2·1: (a) Abstraction of a module encoding a transcriptional
regulatory switch and a transfection marker. The induced (input) gene
I, activated by an inducer, regulates the expression of O, the regulated
(output) gene. Z, the transfection marker, is used to estimate plas-
mid copy number. (b) Distribution of the transfection marker. The
black bins are ignored because they represent untransfected cells (data
from [Davidsohn et al., 2015]). (c) Dose-response curves obtained from
an experiment (data from [Davidsohn et al., 2015]). Averaged measure-
ments binned by the expression level of Z are shown by color. Cells are
separated into bins of width 0.1 on a log scale. Each curve corresponds
to a different bin. The 1st bin, represented by the curve at the bottom,
contains cells with the lowest plasmid counts. Each dot represents the
average concentrations of the induced protein and the regulated protein
within a bin at a certain inducer level. Concentrations of the induced
and the regulated proteins have units of MEFL. (d) Detailed represen-
tation of an inducible switch controlled by doxycycline based on Figure
2(A) of [Davidsohn et al., 2015]. The transcriptional repressor can be
TAL14, TAL21, or LmrA. Expressions of the repressors and EYFP are
driven by constitutive rtTA and Gal4 proteins, respectively. rtTA and
Gal4, which are required for protein activation, are both constitutively
expressed and are not considered as limiting factors for the production
of the repressors and EYFP.
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[Davidsohn et al., 2015,Alon, 2007]:

dIi
dt

= αi · φ(t)− λI · Ii

dOi

dt
= β · φ(t) ·

(
Pi
P1

)f
·H(Ii)− λO ·Oi

φ(t) =

(
1

2

)b t
T
c

H(Ii) = (1− γ) · 1

1 +
(
Ii
d

)h + γ.

(2.2)

In Equation (2.2), i represents the i-th plasmid count bin. Ii and Oi are the average

concentrations of the induced and the regulated proteins in the i-th bin. αi is the

production rate of the induced protein in the i-th bin. αi is assumed time-invariant

because I is induced by a constant concentration of inducer. φ(t) captures that the

population-average plasmid counts decrease due to cell division over time. T is length

of the cell cycle; λI and λO are dilution/degradation rates of I and O. β is the maximal

average production rate of the regulated protein for cells in the 1st bin, i.e, cells that

have minimal plasmid counts P1. Pi is the mid-point of the i-th plasmid count bin. f

maps the ratios of the concentrations of transfection markers to the ratios of plasmid

counts [Davidsohn et al., 2015]. For the sake of convenience, Equation (2.2) is referred

to as the Hill-function-based model.

A key assumption of their model is that the log of the maximal production rate of

the regulated protein is a linear function of the log of the transfection marker. This

assumption is supported by findings of several other studies in different biological

contexts [Glover et al., 2010, Cohen et al., 2009]. However, this assumption is only

partially supported by the experimental data in [Davidsohn et al., 2015], shown here

in Figure 2·2. When the induced gene is minimally induced (0 nM of inducer), i.e.,

the regulated protein expressed without repressor, the log of the regulated protein’s

concentration grows proportionally to the log of the transfection marker between
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105.8 and 107 MEFL for TAL14 and TAL21 or between 105.8 and 107.3 MEFL for

LmrA. When the induced gene is fully induced (2000 nM of inducer), the log of

the induced protein’s concentration also grows linearly in the log of the transfection

marker between 105.8 and 107 MEFL for TAL14 and TAL21 or between 105.8 and

107.3 MEFL for LmrA. Figure 2·2 also suggests that when either the induced gene or

the regulated gene is maximally expressed, the concentrations of both the induced

and the regulated proteins saturate starting from 107.1 MEFL for TAL14 and TAL21

or 107.4 MEFL for LmrA.

Furthermore, Figure 2·2 and the data in [Davidsohn et al., 2015] suggest that when

the induced gene is induced at 0nM, the log of the induced protein’s concentration

is near-constant for low plasmid copy numbers [Davidsohn et al., 2015]. When the

induced gene is fully induced, i.e., the regulated protein fully repressed, the log of the

regulated protein’s concentration grows linearly across all bins.

2.3 Two-stage Stochastic Gene Expression Models

We now develop a detailed stochastic model of the plasmid system, similar to the

one Davidsohn et al. constructed experimentally [Davidsohn et al., 2015]. This model

will enable us to explore possible mechanisms contributing to the observed saturation

of protein concentrations at high plasmid copy number, as well as the near constant

protein concentrations at low plasmid copy number. We do not attempt to fit this

model to the single-time flow cytometry data directly as it is too complex to fit accu-

rately without the incorporation of additional experimental measurements. Instead,

our purpose here is to use the stochastic model to gain a qualitative understanding of

which biological hypotheses, and what ranges of physical gene expression parameters,

may contribute to the observed saturation effect. Our ultimate goal is to develop a

simple model that qualitatively describes our limited set of data, avoiding further
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Figure 2·2: Maximal and minimal expressions of the induced gene
I and the regulated gene O for TAL14, TAL21, and LmrA. In the
figures, the x-axis corresponds to the concentration of the transfection
marker, and the y-axis to the concentration of the input and the output
proteins (here concentrations are in units of MEFL). Shown in red is
the induced gene I, and in blue the regulated gene O. Each dot is the
average protein concentration of cells from one bin. On the top row the
circuit is induced at 0nM; on the bottom row, 2000nM. On the top row,
least squares regression lines are fit to red dots from 107 to 107.9 MEFL
(TAL14 and TAL21) or from 107.3 to 107.9 MEFL (LmrA), and to blue
dots from 105.8 to 107 MEFL (TAL14 and TAL21) or from 105.8 to 107.3

MEFL (LmrA). On the bottom row, least squares regression lines are fit
to red dots from 105.8 to 107 MEFL (TAL14 and TAL21) or from 105.8

to 107.3 MEFL (LmrA), and to blue dots from 105.8 to 107.9 MEFL. The
dots are calculated from the flow cytometry data of [Davidsohn et al.,
2015].
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time-intensive experimental assays. Therefore, in the next subchapter, we develop a

more simplified ODE model that can be parametrized from just the limited flow cy-

tometry data, building from the qualitative understanding of the two-plasmid system

our stochastic model provides.

In our stochastic model, cells are co-transfected by a mixture of induced gene

plasmids and transfection marker plasmids. We focus on the dynamics of the trans-

fection marker and the induced gene, which are integrated on separate plasmids. The

total initial number of plasmids transfected in a given cell is assumed to follow a log-

normal distribution [Davidsohn et al., 2015,Beal, 2017]. This assumption is because

the shape of the protein distribution is known to reflect the shape of the underlying

plasmid distribution [Tal and Paulsson, 2012], and the protein distribution is often

observed to be approximately log-normal [Beal, 2017, Hattis and Burmaster, 2006].

The conditional distribution of the number of each of the two types of plasmids, given

the total number of plasmids, is assumed to be binomial [Davidsohn et al., 2015]. This

is because the plasmids we consider are assumed to be well-mixed, of relatively small

and similar sizes, and hence indistinguishable for purposes of co-transfection [David-

sohn et al., 2015]. In the remainder, we choose values for kinetic parameters such

that they span the parameter distributions calculated from transcriptomics and pro-

teomics data given in [Schwanhausser et al., 2011]. We select parametric values for

the initial plasmid distributions based on the polymerase chain reaction (PCR) find-

ings of [Tachibana et al., 2002,Cohen et al., 2009,B. James and Giorgio, 2000]. The

biochemical reactions in our model are shown below:

Dtm
K1→ Dtm + Mtm Dinduced

K2→ Dinduced + Minduced

Mtm
K3→ Mtm + Ptm Minduced

K4→ Minduced + Pinduced

Mtm
Λ1→ ∅ Minduced

Λ2→ ∅
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Ptm
Λ3→ ∅ Pinduced

Λ4→ ∅,

where D, M, and P stand for plasmid, mRNA, and protein. Subscript “tm” stands for

the transfection marker, and “induced” for the induced gene that is co-transfected.

Λi (i = 1−4) are first order degradation rate constants. Depending on the hypothesis

underlying each model, Ki (i = 1−4) are defined either as normal first-order rate con-

stants, where K1 = k1 ·Dtm, and K2, K3, and K4 are defined similarly, or as Michaelis-

Menten (MM) equations, where a saturated K1 is defined as K1,max · Dtm

Dtm+KDtm
, and

saturated K2, K3, and K4 are defined similarly. K1,max represents the maximal value

of K1, and KDtm the half saturation constant. Formulas of K1, K2, K3, and K4 in

each model can be found in Chapter 2.3.1.

Using StochKit and GillesPy, for each fixed set of parameters we simulate this

model using the Gillespie method 400,000 times [Thattai and van Oudenaarden,

2004, Gillespie, 1977, Abel et al., 2016, Sanft et al., 2011]. This is comparable to

the number of experimental samples generated in [Davidsohn et al., 2015]. Length

of the simulation is 50 hours. Cell division takes place every 20 hours, and plasmids

are binomially partitioned in daughter cells upon cell division. The initial cell cy-

cle position for a cell is sampled randomly from the uniform distribution unif(0,20).

Additional details of the simulation, including the parameter values, can be found in

Chapter 2.3.1. After simulation, we divide the simulated data based on the transfec-

tion marker into bins of width 0.2, which is comparable to values that are typically

chosen in flow cytometry experiments [Davidsohn et al., 2015, Davidsohn, 2013, Si-

ciliano et al., 2018]. We then calculate the geometric mean of the induced protein’s

concentrations for each bin.

To examine the mechanisms that contribute to the near-constant induced reporter

concentrations at low plasmid copy number, and the saturating induced reporter con-

centrations at high plasmid copy number, we systematically vary individual or pairs
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(a) (b)

Figure 2·3: Simulations of our stochastic model suggest that either
increasing translation rates (a) or decreasing transcriptional rates (b)
can extend the near-constant induced gene levels at low copy plasmid
numbers. X-axis and y-axis stand for number of molecules of the trans-
fection marker and the induced protein in each bin. Best fit horizontal
lines are drawn for reference. (a) Comparison of models in which the
translational rates decrease in order from 1000 to 1 molecule per mRNA
per hour. (b) Comparison of models in which the transcriptional rate
of Dinduced increases from 0.002 to 1 molecule per plasmid per hour.

of parameters while holding the remaining parameters constant. We begin by exam-

ining possible mechanisms that lead to near-constant induced reporter concentrations

at low plasmid numbers, creating two cohorts of models. In each cohort we assume

the Ki are normal first-order rate expressions, i.e., K1 = k1Dtm with K2, K3, and K4

defined similarly. The first cohort varies only the translational rate constants k3 and

k4, while the second cohort varies only the induced gene’s transcriptional rate, k2.

Simulations of the stochastic model demonstrate that either increasing translation

rates, or decreasing transcription rates, can lead to the observed constant induced

reporter levels at low plasmid copy numbers (Figure 2·3).

We next investigate mechanisms that may cause protein concentrations to saturate

at high plasmid copy numbers. Though the physical mechanism has not been proven,

several experimental studies conclude that some steps of the transcription process

may saturate in cells expressing large amounts of mRNA [Takahashi et al., 2011,Hama
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et al., 2006]. It has also been suggested that the cationic liposomes used in transfection

inhibit the process of transcription [Tachibana et al., 2001]. Hence, it is possible that

a high concentration of liposomes (associated with high plasmid copy numbers) is

also a mechanism that induces saturation in transcription rates. Motivated by these

possible mechanisms, we modify our stochastic model to incorporate saturation of

transcriptional kinetics. We now take the transcription rates, K1 and K2, to be

given by saturating MM approximations with MM constants, KDtm and KDinduced

(see Chapter 2.3.1). Here smaller KD values correspond to saturation beginning at

lower plasmid copy numbers. By systematically varying both KD values (see Chapter

2.3.1) we observe that transcriptional saturation may induce protein saturation when

KDinduced
� KDtm (see Figure 2·4(a)). That is, protein levels as a function of the

amount of plasmid may saturate if the transcriptional rate of the induced reporter

saturates at a lower level of plasmid than that at which the transcriptional rate of

the transfection marker saturates.

Finally, we now investigate whether translational saturation can also induce sat-

uration in protein levels at high plasmid copy numbers. Tachibana et al. presented

experimental evidence which suggests that protein synthesis saturates when a large

amount of mRNA is present [Tachibana et al., 2002]. Motivated by this study, we now

consider a version of our stochastic model where the transcriptional rates K1 = k1Dtm

and K2 = k2Dinduced are non-saturating first order reactions as in our first model, but

the translation rates K3 and K4 are saturating MM approximations. Since the in-

duced gene and the transfection marker are homologous fluorescent genes, we use the

same maximal translation rates and same MM constants in K3 and K4 (see Chapter

2.3.1). This final version of our model suggests that under the hypothesis of trans-

lational saturation, protein reporter saturation can be observed if k2 � k1, i.e. if

the induced gene transcribes faster than the transfection marker’s gene (see Figure
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(a) (b)

Figure 2·4: Simulations of our stochastic model suggest that either
either saturation of transcriptional kinetics (a) or saturation of trans-
lation kinetics (b) can lead to regimes where the induced gene reporter
level saturates at high plasmid copy numbers. X-axis and y-axis stand
for number of molecules of the transfection marker and the induced pro-
tein in each bin. Least squares regression lines are drawn for reference.
(a) Comparison of models built under the hypothesis of transcriptional
saturation. The half saturation constant KDinduced

increases in order
from 102 to 106 molecules, and KDtm is held fixed at 104 molecules. (b)
Comparison of models built under the hypothesis of translational satu-
ration. The transcriptional rate of the induced gene decreases in order
from 10 to 10−3 molecule per plasmid per hour, and the transfection
marker transcribes at a constant rate of 10−1 molecule per plasmid per
hour.

2·4(b)).

In summary, we have demonstrated two different physical mechanisms that may

induce a near-constant level of the induced gene reporter at low plasmid copy numbers

(high translation rates or low transcription rates). We have also demonstrated two

different physical mechanisms that may induce a saturating level of induced gene re-

porter for high plasmid copy numbers (having the induced gene transcription kinetics

saturate at lower plasmid levels than needed for saturation of the transfection marker

gene transcription kinetics, or having translational saturation with the induced gene

transcribing faster than the transfection marker’s gene). Note that the results we have

derived do not depend on the precise choice of bin width (see Figure 2·5). In Chapter

2.3.2 we show that these results persist when considering an alternative model for
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Figure 2·5: Simulations of a transcriptional saturation model. X-axis
stands for the mid point of each bin, and y-axis number of molecules of
the induced protein in each bin. Bin width is chosen to be 0.1, 0.2, and
0.5. Notice, the saturating effect and the general curve are independent
of bin size.

the initial plasmid distributions within cells. In Chapter 2.3.3 we explain why the

observed saturation region within the flow cytometry data is unlikely to be due to

experimental noise.

Our analysis poses a challenge to the characterization of circuit behavior in TTMC.

The stochastic models demonstrate there are multiple (physical) mechanisms that can

explain the observed saturation (constant levels) of the induced gene reporter at high

(low) plasmid copy numbers. Due to the complexity of these models it seems unlikely

one could fit them, or even select which is most appropriate, from just single-time-

point flow cytometry data.
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2.3.1 Model Details

Details regarding the two-stage stochastic gene expression models can be found

in this subchapter.

The induced gene and the transfection marker are encoded on separate plasmids.

Gene expression is modeled as a two-stage process consisting of transcription and

translation. Length of the simulation is 50 hours. Cell division takes place every

20 hours, and plasmids are binomially partitioned in daughter cells upon cell divi-

sion. The initial cell cycle position for a cell is sampled randomly from the uniform

distribution unif(0,20). The reaction rates can be expressed as follows:

K1 = k1 ·Dtm, K2 = k2 ·Dinduced,

K3 = k3 ·Dtm, K4 = k4 ·Dinduced,

Λ1 = λ1 ·Mtm, Λ2 = λ2 ·Minduced,

Λ3 = λ3 · Ptm, Λ4 = λ4 · Pinduced,

where λj (j = 1− 4) and kj (j = 1− 4) are intrinsic rates. Under the hypothesis of

transcriptional saturation,

K1 = 1000 · Dtm

Dtm +KDtm

,

K2 = 1000 · Dinduced

Dinduced +KDinduced

,

where KDtm = 104, and KDinduced
= 102, 104, or 106. Under the hypothesis of transla-

tional saturation,

K3 = 1000000 · Mtm

Mtm + 10000
,

K4 = 1000000 · Minduced

Minduced + 10000
.
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Parameter Values
Figure # k1 k2 k3 k4 λ1 λ2 λ3 λ4

Figure 2·3(a) and
Figure 2·6

0.1 0.1 1000 1000 0.01 0.01 0.01 0.01
0.1 0.1 100 100 0.01 0.01 0.01 0.01
0.1 0.1 10 10 0.01 0.01 0.01 0.01
0.1 0.1 1 1 0.01 0.01 0.01 0.01

Figure 2·3(b) and
Figure 2·7

0.1 0.002 100 100 0.01 0.01 0.01 0.01
0.1 0.01 100 100 0.01 0.01 0.01 0.01
0.1 0.1 100 100 0.01 0.01 0.01 0.01
0.1 1 100 100 0.01 0.01 0.01 0.01

Figure 2·4(a) and
Figure 2·8

NA NA 100 100 0.01 0.01 0.01 0.01

NA NA 100 100 0.01 0.01 0.01 0.01
NA NA 100 100 0.01 0.01 0.01 0.01

Figure 2·4(b) and
Figure 2·9

0.1 10 NA NA 0.01 0.01 0.01 0.01
0.1 0.1 NA NA 0.01 0.01 0.01 0.01
0.1 0.001 NA NA 0.01 0.01 0.01 0.01

Table 2.1: Parameter values for the two-stage models. k1 and k2

have the units of # of molecules per plasmid per hour. k3 and k4 have
the units of # of molecules per mRNA per hour. λ1, λ2, λ3, and λ4

have the units of reciprocal hours. In models corresponding to Figure
2·4(a) of the main text and Figure 2·8, k1 and k2 are not constant since
transcriptional rates are subject to saturation. In models corresponding
to Figure 2·4(b) of the main text and Figure 2·9, k3 and k4 are not
constant since translational rates are subject to saturation. NA stands
for not applicable.

Values of the parameters in each model are shown in Table 2.1.

For the models detailedly described in the main text, the initial total num-

ber of plasmids in a given cell is assumed to follow a log-normal distribution:

N [log(100), log(10)] [Davidsohn et al., 2015]. The initial copy numbers of each

species of plasmid, Dtm and Dinduced given the total number of plasmids P are

assumed to follow binomial distributions: B(P, 0.5) [Davidsohn et al., 2015].

2.3.2 Exploring Other Plasmid Distributions
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In [Davidsohn et al., 2015], co-transfected plasmids were pre-mixed before form-

ing complexes with lipofectamine, and according to [Schwake et al., 2010], num-

bers of co-transfected plasmids in individual cells should be highly correlated. In

co-transfection experiments, the correlation between co-transfected plasmids can be

adjusted by changing the co-transfection protocol [Schwake et al., 2010]. Besides the

models described in the main text, we construct, simulate, and analyze additional co-

horts of detailed two-stage models, assuming that numbers of co-transfected plasmids

follow a bivariate log-normal distribution, and correlations between co-transfected

plasmids can be varied. The initial plasmid copy numbers in a cell, Dtm and Dinduced,

are integer roundups of two continuous variables sampled from a bivariate lognormal

distribution,

N

[(
log(100)
log(100)

)
,

(
[log(10)]2 ρ · [log(10)]2

ρ · [log(10)]2 [log(10)]2

)]
.

ρ represents the correlation between Dinduced and Dtm, and is set to values of 0.25, 0.5,

and 0.75 to represent low, medium, and high correlation in different models. Length

of the simulation, assumptions about cell division and asynchronicity, and definitions

of the reaction rates are kept the same. Values of the rest of the parameters in each

model can be found in Table 2.1. Results of the simulation can be found in Figures

2·6, 2·7, 2·8, and 2·9. Irrespective of the underlying plasmid distributions, we reach

the same conclusions on biological hypotheses and parameter regions that can explain

our experimental observations qualitatively. Another interesting point worth noticing

is that as is shown by Figures 2·8 and 2·9, the saturation behavior is only observed

when ρ is set to 0.75, indicating the possible role of co-transfection efficiency as a

contributing factor.
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Figure 2·6: Comparison of models in which the translational rates
decrease in order from 1000 to 1 molecule per mRNA per hour.

Figure 2·7: Comparison of models in which the transcriptional rate
of the induced gene increases from 0.002 to 1 molecule per plasmid per
hour.
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Figure 2·8: Comparison of models built under the hypothesis of tran-
scriptional saturation. The half saturation constant KDinduced

increases
in order from 102 to 106 molecules, and KDtm is held fixed at 104

molecules.

Figure 2·9: Comparison of models built under the hypothesis of trans-
lational saturation. The transcriptional rate of the induced gene de-
creases in order from 10 to 10−3 molecule per plasmid per hour, and
the transfection marker transcribes at a constant rate of 10−1 molecule
per plasmid per hour.
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2.3.3 Possibility of Experimental Noise as the Cause of Saturation

We note that the special regions at low and high plasmid numbers (Figure 2)

could be speculated to arise from the limited detection range of the flow cytometer.

Data in [Davidsohn et al., 2015] suggest that the upper detection limit is at least 109.2

MEFL (Supplementary Figure 24(a) of [Davidsohn et al., 2015]). The possibility of a

detection limit can then be ruled out at high plasmid numbers for two reasons. First,

the induced and the regulated proteins saturate near 108 and 107 MEFL, respectively

(Figure 2·2). Near 108 and 107 MEFL, the geometric standard deviations of (MEFL)

concentrations of the induced protein and the regulated protein are between 2 and 2.5.

Protein concentrations within each bin are approximately lognormal distributed [Beal,

2017], which means 95% of the cells are within two geometric standard deviations from

the geometric means, which is less than 109.2 MEFL. In other words, there are fewer

than 2.5% of the cells whose fluorescence intensity exceeds 109.2 MEFL. Hence, the

upper limit of the detection range at 109.2 does not have substantial effects on the

reported values of our data. Second, saturations due to instrument range often cause

protein histograms to have an abrupt cut-off shape, i.e., measurements exceeding the

upper detection limit would all gather near a single value (see Supplementary Figure

16(b), Supplementary Figure17(b), and Supplementary Figure18(b) of [Davidsohn

et al., 2015]). At low plasmid numbers, autofluorescence is a major obstacle limit-

ing the detection sensitivity [Brahme, 2014]. Despite autofluorescence corrections,

data towards the lower end may be susceptible to experimental noise. Our stochastic

models provide an alternative approach to studying these systems with low numbers

of molecules. The simulations suggest the possibility of near-constant average pro-

tein levels in minimally transfected cells when flow cytometry measurement noise is

removed.



32

2.4 Bin-Dependent ODE Model

Though mechanistic details cannot be disentangled from single-time flow cytom-

etry measurements, characterization of building blocks such as regulatory switches

remains a critical problem to be addressed. This is needed to enable the develop-

ment of models that can predict the dynamics of circuits/pathways with more com-

ponents, and, which exhibit more complicated behaviors. To further this goal, we

now develop a simple, phenomenological ODE model that can accurately describe

single-time transient transfection flow cytometry data. While development of a more

physically detailed model would be ideal, as shown in the last subchapter it would

require additional experimental data to be uniquely determined.

To account for the observed saturation in protein concentration, we propose replac-

ing the traditional Hill-function-based model (Equation (2.2)) with a bin-dependent

model. The bin-dependent model divides flow cytometry data into two subsets based

on plasmid copy number, i.e., one with and one without saturation.

dIi
dt

= αi · φ(t)− λ · Ii

dOi

dt
=



β · φ(t) ·
(
Pi
P1

)f
·

(
1− γ

1 +
(
Ii
d

)h + γ

)
− λ ·Oi, if Pi < Pi′

β · φ(t) ·
(
Pi′

P1

)f
·
(
Pi
Pi′

)g
· 1− γ

1 +
(
Ii
d

)h
+ β · φ(t) ·

(
Pi
P1

)f
· γ − λ ·Oi,

if Pi ≥ Pi′

(2.3)

φ(t) =

(
1

2

)b t
T
c

,

In Equation (2.3), i′ is the bin that separates high plasmid copy number from the

rest. The separating bin is chosen to be the bin at which average concentrations of

the co-transfected protein switch from linear growth to plateauing. For high plasmid



33

copy number, we assume the log of the plasmid copy number can be approximated as

a linear function of the log of the transfection marker, but with a flatter slope (Figure

2·2). f and g capture the relationship between the concentrations of the transfection

marker and the maximal production rates of the output protein for low and high

copy numbers, respectively. The rest of the notations follow the Hill-funtion-based

model (Equation (2.2)). We do not explicitly characterize the functional form of how

αi depends on the plasmid level as we simply fit a different value of αi for each bin.

Note that the bin-dependent model only requires one additional parameter than a

standard Hill-function-based model.

2.5 Evaluating Model Performances

We fit the traditional Hill-function-based model (see Equation (2.2)) and the bin-

dependent model (see Equation (2.3)) to the TAL14, TAL21, and LmrA datasets

from [Davidsohn et al., 2015] for validation (TAL14, TAL21, and LmrA are names

of the repressors in the regulatory switches). Model fitting is implemented via min-

imizing the mean-squared errors (MSE) between the log of observed and predicted

concentrations of the regulated proteins. We log-transform the concentrations to re-

duce the absolute errors that are often associated with measurements of large protein

concentrations on a linear scale [Braun et al., 2005].

Assume the regulatory switch is induced at m dosages, and cells are segmented

into n bins by their plasmid copy numbers. Let Oiu denote the averaged measurements

of concentrations of the regulated protein in the i-th bin at dose level u at the final

time point t∗, and Ôiu the counterpart numerically simulated by the model. We fit

log
(
Ôiu

)
to log (Oiu) by iteratively searching for the set of parameters that minimize
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Optimized fits
Model β (Unit: MEFL/hr) f d (Unit: MEFL) h Error
TAL14 5.52× 104 1.47 1.04× 105 0.73 0.013
TAL21 6.96× 104 1.28 2.13× 105 0.68 0.015
LmrA 1.51× 104 1.72 2.34× 106 0.92 0.020

γ
TAL14 1.50× 10−3

TAL21 1.91× 10−5

LmrA 5.85× 10−4

Table 2.2: Optimal parameters and MSE for the traditional Hill-
function-based model fit to the complete dataset. All parameter values
are rounded to two digits after the decimal point.

the MSE [Carpenter, 1960]:

∑m
u=1

∑n
i=1

[
log (Oiu)− log

(
Ôiu

)]2

mn−# of params

via the GlobalSearch solver in Matlab. GlobalSearch uses a scatter-search

mechanism to generate start points, initiates a local solver from these start points,

and reevaluates the start points during the minimization process. We implement

GlobalSearch using the local solver fmincon, and for fmincon, we use the ‘sqp’

algorithm. To fit the traditional Hill-function-based models, we set boundaries of

log10(d), log10(β), log10(f), log10(h), and log10(γ) to be [2, 8], [−2, 6], [−1, 1], [−4, 4],

and [−5, 0], respectively. To fit the bin-dependent models, we keep the above settings

and set the boundary of log10(g) to be [−3, 1]. The rest of the search algorithm

parameters are set to their default values.

For the bin-dependent model, the bin that separates flow cytometry data into

subsets of fast and slow protein production is chosen to be 107.1 MEFL for TAL14

and TAL21, and 107.4 MEFL for LmrA since in the dataset, saturation in protein

production is observed to the right of 107 MEFL and 107.3 MEFL, respectively (Figure

2·2). For comparison, a traditional Hill-function-based model is fit to the complete
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Optimized fits
Model β (Unit: MEFL/hr) f d (Unit: MEFL) h Error
TAL14 4.92× 104 1.67 6.87× 104 0.71 0.004
TAL21 5.20× 104 1.56 2.02× 105 0.68 0.004
LmrA 1.86× 104 1.84 4.01× 105 0.55 0.008

γ
TAL14 1.60× 10−3

TAL21 1.08× 10−3

LmrA 5.81× 10−3

Table 2.3: Optimal parameters and MSE over the reduced dataset
for the traditional Hill-function-based model fit to the reduced dataset.
All parameter values are rounded to two digits after the decimal point.
Note that when evaluated over all 21 bins between 105.8 MEFL and
107.9 MEFL, this model produces MSE of 0.039, 0.062, and 0.038, re-
spectively.

Optimized fits
Model β (Unit: MEFL/hr) f d (Unit: MEFL) h Error
TAL14 4.87× 104 1.74 5.39× 104 0.68 0.004
TAL21 4.68× 104 1.58 2.90× 105 0.72 0.005
LmrA 1.66× 104 1.91 3.73× 105 0.59 0.009

γ g
TAL14 2.83× 10−4 1.10
TAL21 1.10× 10−3 0.83
LmrA 2.36× 10−5 1.09

Table 2.4: Optimal parameters and MSE for the bin-dependent model
fit to the complete dataset. All parameter values are rounded to two
digits after the decimal point.

dataset (all 21 bins between 105.8 MEFL and 107.9 MEFL), and to a reduced dataset

(12 bins between 105.8 MEFL and 107.0 MEFL for TAL14 and TAL21; 15 bins between

105.8 MEFL and 107.3 MEFL for LmrA). The parameters in fit models are shown

in Tables 2.2 - 2.4, and the fit model values versus the experimental values of the

fluorescent reporters are shown in Figures 2·10 and 2·11. When fit to just the reduced

dataset, the traditional kinetic model produces much smaller errors than when fit

to all bins (Table 2.5). However, the model fit to the reduced dataset only works
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well on the reduced dataset; evaluated at high plasmid copy numbers, this model

deviates substantially from observations (Figures 2·12 and 2·13). Evaluated over all

21 bins, the model fit to the reduced dataset produces MSE of 0.039, 0.062, and 0.038,

respectively. In comparison, the bin-dependent model has only one more parameter

but fits the data well for all plasmid copy numbers (Table 2.5).

We further compare the Hill-function-based model and the bin-dependent model

via cross-validation. We conduct a 12-fold cross-validation by randomly dividing the

flow cytometry data into 12 subsets of the same size, fitting the models separately on

each combination of 11 subsets, and then testing the models on the single subsets that

were left out [Geisser, 1993]. The fitting errors and the testing errors are then averaged

over the 12 combinations of subsets. The fitting errors are defined as [Carpenter,

1960]:

∑m
u=1

∑n
i=1

[
log (Oiu)− log

(
Ôiu

)]2

mn−# of params
. (2.4)

The testing errors are defined as [Carpenter, 1960]:

∑m
u=1

∑n
i=1

[
log (Oiu)− log

(
Ôiu

)]2

mn
. (2.5)

Our results suggest that both the fitting errors and the testing errors of the bin-

dependent models are 1.5 - 2 times better than those of the Hill-function-based models

(Tables 2.6 and 2.7). The bin-dependent model shows a less significant improvement

for LmrA than for TAL14 and TAL21. A possible explanation is that for LmrA, the

saturation effect is observed in six bins to the right of 107.3 MEFL rather than in nine

bins to the right of 107 MEFL. For each repressor, we choose the model that produces

the least testing error among 12 cross-validated models to be the best model. We

evaluate the best models for each plasmid copy number. The results indicate that the
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Figure 2·10: Comparison between complete data and the traditional
Hill-function-based TAL14, TAL21, and LmrA models fit to the com-
plete dataset. Plasmid copy number is shown by color. Solid lines are
experimental data (data from [Davidsohn et al., 2015]), and dashed
lines are model fits.

Figure 2·11: Comparison between complete data and the bin-
dependent TAL14, TAL21, and LmrA models fit to the complete
dataset. Plasmid copy number is shown by color. Solid lines are ex-
perimental data (data from [Davidsohn et al., 2015]), and dashed lines
are model fits.
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Figure 2·12: Comparison between reduced data and the traditional
Hill-function-based TAL14, TAL21, and LmrA models fit to the re-
duced dataset. Plasmid copy number is shown by color. Solid lines
are experimental data (data from [Davidsohn et al., 2015]), and dashed
lines are model fits.

Figure 2·13: Comparison between complete data and the traditional
Hill-function-based TAL14, TAL21, and LmrA models fit to the re-
duced dataset. The models are fit to reduced datasets but are evalu-
ated at all plasmid copy numbers. Plasmid copy number is shown by
color. Solid lines are experimental data (data from [Davidsohn et al.,
2015]), and dashed lines are model fits.
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Table 2.5: MSE of the models. “Complete” means the traditional
Hill-function-based model is fit to the entire dataset, and “reduced”
means the Hill-function-based model is fit to data between 105.8 MEFL
and 107 MEFL (TAL14 and TAL21) or data between 105.8 MEFL and
107.3 MEFL (LmrA). Note, for the reduced model, goodness of fit is
only evaluated by comparison to data between 105.8 MEFL and 107

MEFL(TAL14 and TAL21) or data between 105.8 MEFL and 107.3

MEFL (LmrA). When error of the reduced model is evaluated over
all bins, it is much worse (numbers in parentheses in third column).

Goodness of fit

Repressor
Hill-function-based Hill-function-based bin-dependent

(complete) (reduced)
TAL14 0.013 0.004 (0.039) 0.004
TAL21 0.015 0.004 (0.062) 0.005
LmrA 0.020 0.008 (0.038) 0.009

bin-dependent models produce not only lower but also more consistent errors across

all bins (Figure 2·14). The errors of the Hill-function-based models get large near

107 MEFL and 107.8 MEFL for all repressors. This signals that there are patterns

in the data that are not explained by the Hill-function-based models [Martin et al.,

2017]. The bin-dependent model produces larger errors for LmrA than for TALER

repressors because there are slight indications of a near-constant region at low plasmid

numbers for LmrA (Figure 2·2). In summary, we find that the bin-dependent model

consistently provides significantly better fits to the experimental data than the Hill-

function based model.

Note, for high-plasmid-count subsets, our bin-dependent model assumes the log of

the maximal protein production rate is approximated as a linear function of the log

of the transfection marker. Although the relationship is arguably better fit by other

functions, our assumption leads to a model with a good fit across the entire dataset,

while only requiring one additional parameter.

The bin-dependent model presented here provides a new solution to characteriz-

ing fundamental synthetic constructs quantitatively in TTMC. A stochastic two-stage
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Table 2.6: Averaged fitting errors of the models within the 12-fold
cross-validation.

Fitting Errors
Repressor Hill-function-based bin-dependent

TAL14 0.013 0.006
TAL21 0.017 0.009
LmrA 0.018 0.013

Table 2.7: Averaged testing errors of the models within the 12-fold
cross-validation.

Testing Errors
Repressor Hill-function-based bin-dependent

TAL14 0.014 0.007
TAL21 0.017 0.008
LmrA 0.019 0.013

Figure 2·14: Testing errors of the best cross-validated models within
each bin.
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model, if fit to the data, should explicitly account for both the transcriptional rate and

the translational rate of the transfection marker, the TF, and the regulated gene. For

reproducing the saturation behavior quantitatively, the saturation kinetics may need

to be replaced by Hill equations, basal production rates incorporated, and the mean

and the variance of the plasmid distribution either fit or experimentally measured. In

addition, as we showed above, two stochastic models built under different hypotheses,

differing in parameter values and transcription/translation production rate functions,

can recapitulate almost identical observations. Moreover, the Gillespie algorithm is a

discrete simulation algorithm, which assumes species populations are given by num-

bers of molecules. In order to use the Gillespie algorithm properly for model fitting,

one must also know a functional relationship to convert and quantitatively compare

average numbers of molecules within cells to flow-cytometry measurements (in units

of MEFL). In comparison, the value of the bin-dependent model lies in its ability to

describe the saturation effects in flow cytometry data accurately without addressing

the specific mechanistic details. The bin-dependent ODE model only contains six

parameters, but a detailed two-stage stochastic model for fitting would contain ten

to eighteen parameters, needs model selection studies to determine functional forms

of production terms, and requires assumptions on how to convert MEFL units to

numbers of molecules. There is also the issue that stochastic models are substantially

more computationally expensive; it is not clear how computationally feasible it would

be to simultaneously fit all the parameters in such models.

We can apply the bin-dependent model presented here to similar flow cytometry

datasets to construct a characterized library of regulatory switches. The quantitative

parameters of regulatory switches can then be used for constructing in silico models

for the behaviors of more complicated circuits, such as feedback circuits. Accurate

characterization of regulatory switches is a major first step towards improving the



42

predictions of circuit behaviors in TTMC.
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Chapter 3

Modular Composition

This chapter centers around a novel method of composition that enables forward

design of complex circuits in TTMC (Figure 3·1). Under the assumption of modular-

ity, we assume that the behavior of circuits can be predicted based on the behaviors

of circuit components, also known as modules [syn, 2014, Gyorgy and Del Vecchio,

2014, Del Vecchio and Sontag, 2007, Del Vecchio et al., 2016, Sivakumar and Hes-

panha, 2013]. The accuracy of predictions is constrained by the cross-batch variation

among different modules. Compatible with the binning in TTMC, our method of

composition improves the accuracy of predictions by reducing the cross-batch varia-

tion. For validation, we apply our method to cascades consisting of two regulatory

switches. Predictions of the mathematical models compare well with the experimen-

tal data. Our findings suggest reducing batch effects and selecting a proper model

both contribute to improving model predictions.

3.1 Components of Circuits

3.1.1 Module

As is mentioned in Chapter 2.1, in this thesis a transcriptional regulatory module

is defined as a switch gene and the promoter it regulates (Figure 3·2a). The input of

the module is the switch gene, and the output, the regulated promoter. The strength

of the regulated promoter is often indicated by the expression level of the downstream

gene. The promoter can be regulated either positively or negatively, depending on
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Figure 3·1: Our approach to synthesizing satisfactory circuits. The
input and the output of each module are measured by flow cytometries.
A model is constructed for each module from data. Models for modules
are then assembled into models for circuits.

whether the regulator is an activator or an inhibitor. Mathematically, a module M

is expressed as: M = {I, pO}, where I and pO stand for the TF and the promoter,

respectively. We assume I is an inhibitor, but similar results can be derived if I is an

activator.

The definition we choose is widely used in the community [Ellis et al., 2009,

Davidsohn et al., 2015] and has a distinct advantage. Another definition of a module

in the community is a transcriptional unit, i.e., the coding sequence for a gene along

with the sequences necessary for its transcription [Pierce, 2005]. In comparison, the

definition we choose captures the interaction between a TF and a promoter. It maps

a module to a transcriptional regulatory model, whose parameters can be directly

inferred from experimental data. Based on this definition, models for modules contain

all the information needed to quantify signal propagation in a circuit.
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(a) (b)

Figure 3·2: (a) Graphical representation of a genetic module. The
input of a module is the TF, I, while its output is the regulated pro-
moter pO. O is the protein that is expressed by pO. (b) Graphical
representation of a regulatory switch. The green dotted box stands for
the reporter. The black dotted box stands for the promoter regulated
by an external inducer.

3.1.2 Reporter

In a circuit, some proteins do not carry regulatory functions. One such example

are proteins used as markers for the states of the cells, e.g., fluorescent proteins,

antibodies, etc. We refer to these proteins as reporters (Figure 3·2b).

3.1.3 External Inducer

Besides modules and reporters, a circuit often contains promoters regulated by

external inducers (Figure 3·2b). The connection of TF to these promoters makes it

possible to control circuit behaviors via external inducers.

3.2 Circuits and Models

3.2.1 Modular Connection

Within a set of modules, two are connected if the promoter of one module expresses

the TF of the other. Mathematically, the connection between modules M and M∗ can

be represented by a tuple (M,M∗), where M = {I, pO}, M∗ = {I∗, pO∗}, and pO

expresses I∗.

Similarly, the connection between a module M and a reporter R can be represented

by a tuple (M,R), where M = {I, pO}, and pO expresses R. The connection between
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an external-inducer-regulated promoter E and a module M can be represented by a

tuple (E,M), where M = {I, pO}, and E expresses I. The connection between E and

R can be represented by (E,R), where E expresses R.

3.2.2 Graph Representation of a Set of Modules

A set of modules and reporters can be represented by a graph G, where modules

and reporters are nodes, and connections are edges. Mathematically, G is given by:

G = (M,E)

M = {mi| i = 1, 2, ..., n} ∪ {rk|k = 1, 2, ..., n′}

mi = {Ii, pOi}

∀i, j, k, mi ∩mj = ∅, mi ∩ rk = ∅

E = {(mi,mj)| pOi expresses Ij}

∪ {(mi, rk)| pOi expresses rk}

3.2.3 Composition of Models

Based on the models for modules, we can develop models for general circuit topolo-

gies in which each promoter is either constitutively expressed or regulated by one and

only one unique TF. We name the circuit to be built the target circuit. Assume the

target circuit consists of m modules and n external-inducer-regulated promoters. Let

{pOk}mk=1 denote the set of regulated promoters in the target circuit. Because each

promoter is regulated by one unique TF, we know for all k = 1, 2, ...,m, there exists

a unique gene, also known as the input of the module Ik such that Ik regulates pOk.

Similarly, because the strength of the promoter is indicated by the expression level

of the downstream gene, we know for all k = 1, 2, ...,m, there exists a unique down-

stream gene Ok such that expression of Ok initiates at pOk. It is worth mentioning



47

Figure 3·3: Graphical representation of a two-transcriptional-
repressor cascade. pI1 is a promoter that constitutively expresses I1.
I1 downregulates pO1, while O1/I2 downregulates pO2. pO1 and pO2,
the promoters that control expression of O1 and O2, have identical se-
quences of polymerase binding sites, but different sequences of operator
binding sites so that I1 and I2 can recognize their targets. The circuit
consists of two modules: the I1-pO1 module and the I2/O1-pO2 module.
I1 and I2 can be different combinations of TAL14, TAL21, and LmrA.

that through the composition of modules, some TF may be regulated by others, i.e.,

{Ik}mk=1 ∩ {Ok}mk=1 6= ∅.

As an example, we derive the following model for a two-transcriptional-repressor

cascade. The structure of a two-transcriptional-repressor cascade is illustrated in

Figure 3·3.

dI1i

dt
= αi · φ(t)− λ · I1i

dO1i

dt
=



β1 · φ(t) ·
(
Pi
P1

)f1
·

 1− γ1

1 +
(
I1i
d1

)h1 + γ1


− λ1 ·O1i,

if Pi < P1i′

β1 · φ(t) ·
(
Pi′

P1

)f1
·
(
Pi
Pi′

)g1
· 1− γ1

1 +
(
I1i
d1

)h1
+ γ1 · φ(t) ·

(
Pi
P1

)f1
− λ1 ·O1i,

if Pi ≥ P1i′

(3.1)
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Figure 3·4: Graphical representation of a repressilator. I1/O3 down-
regulates pO1, I2/O1 downregulates pO2, and I3/O2 downregulates pO3.
The circuit consists of three modules: the I1/O3-pO1 module, the I2/O1-
pO2 module and the I3/O2-pO3 module.

dO2i

dt
=



β2 · φ(t) ·
(
Pi
P1

)f2
·

 1− γ2

1 +
(
O1i

d2

)h2 + γ2


− λ2 ·O2i,

if Pi < P2i′

β2 · φ(t) ·
(
Pi′

P1

)f2
·
(
Pi
Pi′

)g2
· 1− γ2

1 +
(
O1i

d2

)h2
+ γ2 · φ(t) ·

(
Pi
P1

)f2
− λ2 ·O2i,

if Pi ≥ P2i′

.

where I1i, O1i and O2i are average concentrations of the respective parts in the i-th

bin. β2, f2, d2, h2, γ2, λ2, g2, and P2i′ are counterparts of β1, f1, d1, h1, γ1, λ1, g1,

and P1i′ for the I2/O1-pO2 module.

Via the same approach, a model can be derived for a repressilator, in which a

negative feedback loop results in temporal oscillations in the expression levels of the

genes. The structure of a repressilator is illustrated in Figure 3·4.
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dO1i

dt
=



β1 · φ(t) ·
(
Pi
P1

)f1
·

 1− γ1

1 +
(
O3i

d1

)h1 + γ1


− λ1 ·O1i,

if Pi < P1i′

β1 · φ(t) ·
(
Pi′1
P1

)f1
·
(
Pi
Pi′1

)g1
· 1− γ1

1 +
(
O3i

d1

)h1
+ β1 · φ(t) ·

(
Pi
P1

)f1
· γ1 − λ1 ·O1i,

if Pi ≥ P1i′

dO2i

dt
=



β2 · φ(t) ·
(
Pi
P1

)f2
·

 1− γ2

1 +
(
O1i

d2

)h2 + γ2


− λ2 ·O2i,

if Pi < P2i′

β2 · φ(t) ·
(
Pi′2
P1

)f2
·
(
Pi
Pi′2

)g2
· 1− γ2

1 +
(
O1i

d2

)h2
+ β2 · φ(t) ·

(
Pi
P1

)f2
· γ2 − λ2 ·O2i,

if Pi ≥ P2i′

(3.2)

dO3i

dt
=



β3 · φ(t) ·
(
Pi
P1

)f3
·

 1− γ3

1 +
(
O2i

d3

)h3 + γ3


− λ3 ·O3i,

if Pi < P3i′

β3 · φ(t) ·
(
Pi′3
P1

)f3
·
(
Pi
Pi′3

)g3
· 1− γ3

1 +
(
O2i

d3

)h3
+ β3 · φ(t) ·

(
Pi
P1

)f3
· γ3 − λ3 ·O3i,

if Pi ≥ P3i′

where O1i, O2i, and O3i are average concentrations of the respective parts in the i-th

bin. β2, f2, d2, h2, γ2, λ2, g2, and P2i′ are counterparts of β1, f1, d1, h1, γ1, λ1, g1, and

P1i′ for the I2/O1-pO2 module, and β3, f3, c3, d3, h3, γ3, λ3, g3, and P3i′ , counterparts

for the I3/O2-pO3 module.
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The model for a target circuit is a collection of the models for all modules and

external-inducer-regulated promoters. Like most biological data, flow cytometry mea-

surements are subject to noise. This noise may originate from imperfect experimental

conditions as well as data calibration [Davidsohn et al., 2015]. In order to make accu-

rate quantitative predictions of circuit behaviors, we need to reduce batch effects by

bringing different batches to the same scale, based on the approach taken in [David-

sohn et al., 2015]. The scaling factors among batches can be calculated by compar-

ing the means and the tightness of the data of different batches (details can found

in [Davidsohn et al., 2015]). Once the scaling factors are calculated, we use these

scaling factors to rescale the parameters of the bin-dependent models since rescaling

in our context is first-order linear compensation [Davidsohn et al., 2015], i.e. there is

no difference between rescaling the parameters and fitting the parameters to rescaled

data. Details of rescaling can be found in Chapter 3.3.

Using the above method, we develop models for the six two-repressor cascades

shown in [Davidsohn et al., 2015]: LmrA-TAL14, LmrA-TAL21, TAL14-LmrA,

TAL14-TAL21, TAL21-LmrA, and TAL21-TAL14. The bin-dependent cascade

models are constructed, and their agreement with experimental measurements are

compared with that of the Hill-function-based and the EQuiP models developed

in [Davidsohn et al., 2015]. The equations and parameters for the bin-dependent

models can be found in Chapter 3.3. The bin-dependent circuit models are developed

by composing together the individual module models that were individually fit in

the previous section. We do not re-fit the equations for each model to data for the

complete two-module cascades. In this way we can assess how well models fit to

individual modules can predict circuit behavior when composed together. To offer a

comparable study to [Davidsohn et al., 2015], we use the parameters Davidsohn et

al. fit for the Hill-function-based models.
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In each of the cascades the downstream reporter EYFP is down-regulated by a

repressor, which itself is inhibited by another repressor. The exact representation

of the cascade structure can be found in Figure 5(A) of [Davidsohn et al., 2015] or

Figure 3·5(a), with Figure 3·6 providing abstractions that highlight the key parts

of the circuits. In this figure, O2 corresponds to the EYFP reporter. We compare

simulations of the cascade models to experimental data by measuring the differences

between simulated and observed concentrations of EYFP 72 hours post transfection

(experimental data from [Davidsohn et al., 2015]). Full details of the experimental

protocol can be found in [Davidsohn et al., 2015].

The agreement between experimental measurements and model predictions for the

six cascades is illustrated in Figure 3·7. For all six cascades, the bin-dependent model

is able to capture the positive association between the input and the output (Figure

3·7). It also captures the buffer-like behavior of the cascades, i.e., the dynamic range

of the output is narrower compared to that of the input due to low cooperativity of

the regulatory modules (Figure 3·7). [Ferrell and Ha, 2014]

To further investigate how well our composed circuit models fit the experimental

data, we examined the average mean fold error, defined as the average over all six

cascades of the mean-fold errors over all induction levels of each individual cascade.

The mean-fold error is defined as e

∑M
u=1

∑N
i=1

∣∣∣∣∣log
(

O′
ui

Ô′
ui

)∣∣∣∣∣
MN , where Ô′ui and O′ui denote the

predicted and the observed concentrations of EYFP at hour 72, M the number of

inducer levels, and N the number of bins. The rescaled bin-dependent model is found

to outperform the Hill-function-based model presented in [Davidsohn et al., 2015],

with an average mean-fold error of 1.6 fold for the former vs 3.0 fold for the latter.

Moreover, for five out of six cascades the bin-dependent model also produces smaller

mean-fold errors than the Hill-Function model [Davidsohn et al., 2015] (Figure 3·5(b)).

The accuracy of the bin-dependent model varies relative to EQuiP, achieving a smaller
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(a)

(b)

Figure 3·5: (a) Detailed representations of a cascade controlled by
doxycycline based on Figures 2(A) and 3(A) of [Davidsohn et al., 2015].
The transcriptional repressors can be TAL14, TAL21, or LmrA. Expres-
sions of the repressors (TAL14, TAL21, or LmrA) and EYFP are driven
by constitutive rtTA and Gal4 proteins, respectively. rtTA and Gal4,
which are required for protein activation, are both constitutively ex-
pressed and are not considered as limiting factors for the production of
the repressors and EYFP. (b) Comparison of the mean-fold errors of the
Hill-function-based models [Davidsohn et al., 2015], the bin-dependent
models, and EQuiP [Davidsohn et al., 2015] for each cascade. The ex-
perimental data the models are validated against are from [Davidsohn
et al., 2015]. Numbers on top of the dotted lines represent the average
mean-fold errors of six cascades.
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Figure 3·6: Abstract representations of LmrA-TAL14, LmrA-TAL21,
TAL14-LmrA, TAL14-TAL21, TAL21-LmrA, and TAL21-TAL14 cas-
cades.
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mean-fold error for some cascades and larger error others (see Figure 3·5(b)). The

average over all six cascades is the same as EQuiP (1.6).

3.3 Models for Cascades

Upon modular connection, parameters that are fit to input-output curves of in-

dividual modules need to be corrected for batch effects. As is shown in Supporting

Information Section 12 of [Davidsohn et al., 2015], the rescaling factors for the input

protein I, the output protein O, and the transfection marker are TAL14: 0.29, 0.93,

0.89; TAL21: 0.20, 1, 1.12; LmrA: 1, 0.41, 1 [Davidsohn et al., 2015]. For example, for

output protein O, TAL14 has a scaling factor of 0.93, and TAL21, a factor of 1. This

means to compare the output protein between TAL14 and TAL21, data for TAL14

need to be multiplied by 0.93 so that the two are brought to the same scale. The

scaling factors are used to rescale the parameters in the bin-dependent models before

the models are connected into a chain. d is rescaled with the input, β rescaled with

the output, and Pi rescaled with the transfection marker. Mathematically speaking,

if cI , cO, and cP are the scaling factors of the input, the output, and the transfection

marker, then the rescaled bin-dependent model is formulated as follows:

dI ′i
dt

= α′i · φ(t)− λ · I ′i,

dO′i
dt

=



β′ · φ(t) ·
(
P ′i
P ′1

)f
·

 1− γ

1 +
(
I′i
d′

)h + γ

− λ ·O′i, if P ′i < P ′i′

β′ · φ(t) ·
(
P ′i′

P ′1

)f
·
(
P ′i
P ′i′

)g
· 1− γ

1 +
(
I′i
d′

)h
+ β′ · φ(t) ·

(
P ′i
P ′1

)f
· γ − λ ·O′i,

if P ′i ≥ P ′i′

(3.3)

φ(t) =

(
1

2

)b t
T
c

,
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Figure 3·7: Comparison between the experimental data and the
predictions of the output made by the bin-dependent model. Plas-
mid copy number is shown by color. Solid curves are experimental
data, and dashed curves are model predictions (the experimental data
are from [Davidsohn et al., 2015]). From top left to bottom right
in the order of left to right and top to bottom are cascades LmrA-
TAL14, LmrA-TAL21, TAL14-LmrA, TAL14-TAL21, TAL21-LmrA,
and TAL21-TAL14.
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where the prime variables represent the variables without batch effects:

I ′i = Ii · cI β′ = β · cO · cP P ′i = Pi · cP α′i = αi · cI

O′i = Oi · cO · cP d′ = d · cI P ′i′ = Pi′ · cP .

As is shown in Supporting Information Section 12 of [Davidsohn et al., 2015],

scaling factors of the transfection marker for the cascades, c̃P are {1.51, 1.07, 0.68,

0.78, 0.71, 0.79} for TAL14-TAL21, TAL14-LmrA, TAL21-TAL14, TAL21-LmrA,

LmrA-TAL14, and LmrA-TAL21, respectively. For all these cascades, c̃I = 1, and

c̃O = 1. Since the prime variables involve no batch effects, to convert to a cascade,

we must divide all the prime variables by the corresponding cascade scaling factors

(c̃I , c̃O, c̃P ). In addition, to offer a comparable study to [Davidsohn et al., 2015],

we follow similar implementation details as are shown in [Davidsohn et al., 2015]

by multiplying the dissociation constant of the the second repressor by three (see the

fourth to last paragraph of the Supporting Information Section 5 of [Davidsohn et al.,

2015]). This is because the plasmids for the second repressor are transfected at one-

third the concentration of the first repressor [Davidsohn et al., 2015]. This suggests

that production of the second repressor should scale like one-third the activation

level of the first repressor during the initial transient, when much of the repressor is

produced for the system [Davidsohn et al., 2015]. The final bin-dependent model for
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cascades is expressed as:

dI ′′i
dt

= α′′i · φ(t)− λ · I ′′i

dO′′1i
dt

=



β′′1 · φ(t) ·
(
P ′′1i
P ′′11

)f1
·

 1− γ1

1 +
(
I′′i
d′′1

)h1 + γ1

− λ ·O′′1i, if P ′′1i < P ′′1i′

β′′1 · φ(t) ·
(
P ′′1i′

P ′′11

)f1
·
(
P ′′1i
P ′′1i′

)g1
· 1− γ1

1 +
(
I′′i
d′′1

)h1
+ β′′1 · φ(t) ·

(
P ′′1i
P ′′11

)f1
· γ1 − λ ·O′′1i,

if P ′′1i ≥ P ′′1i′

dO′′2i
dt

=



β′′2 · φ(t) ·
(
P ′′2i
P ′′21

)f2
·

 1− γ2

1 +
(
O′′

1i

3·d′′2

)h2 + γ2

− λ ·O′′2i, if P ′′2i < P ′′2i′

β′′2 · φ(t) ·
(
P ′′2i′

P ′′21

)f2
·
(
P ′′2i
P ′′2i′

)g2
· 1− γ2

1 +
(
O′′

1i

3·d′′2

)h2
+ β′′2 · φ(t) ·

(
P ′′2i
P ′′21

)f2
· γ2 − λ ·O′′2i,

if P ′′2i ≥ P ′′2i′

φ(t) =

(
1

2

)b t
T
c

,

(3.4)

where

I ′′i =
I ′i
c̃I

α′′i =
α′i
c̃I
,

and for the k-th module (k = 1, 2) and the j-th cascade (j = 1− 6),

β′′k =
β′k

c̃Pj · c̃O
P ′′ki =

P ′ki
c̃Pj

d′′k =
d′k
c̃I

O′′ki =
O′ki

c̃Pj · c̃O
P ′′ki′ =

P ′ki′

c̃Pj
.

The double prime variables represent variables that account for the batch effects

of the cascades. Values of the parameters used in the final bin-dependent models for

six cascades are shown in Table 3.1.
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Parameters
Cascade β′′1 (MEFL/hr) f1 d′′1 (MEFL) h1

LmrA-TAL14 9.78× 103 1.91 3.73× 105 0.59
LmrA-TAL21 8.67× 103 1.91 3.73× 105 0.59
TAL14-LmrA 4.70× 104 1.74 1.58× 104 0.68
TAL14-TAL21 3.34× 104 1.74 1.58× 104 0.68
TAL21-LmrA 5.34× 104 1.58 5.77× 104 0.72
TAL21-TAL14 6.20× 104 1.58 5.77× 104 0.72

γ1 g1 β′′2 (MEFL/hr) f2

LmrA-TAL14 2.36× 10−5 1.09 7.24× 104 1.74
LmrA-TAL21 2.36× 10−5 1.09 5.28× 104 1.58
TAL14-LmrA 2.83× 10−4 1.10 6.35× 103 1.91
TAL14-TAL2 2.83× 10−4 1.10 2.75× 104 1.58
TAL21-LmrA 1.10× 10−3 0.83 8.76× 103 1.91
TAL21-TAL14 1.10× 10−3 0.83 7.54× 104 1.74

d′′2 (MEFL) h2 γ2 g2 (MEFL/hr)
LmrA-TAL14 1.58× 104 0.68 2.83× 10−4 1.10
LmrA-TAL21 5.77× 104 0.72 1.10× 10−3 0.83
TAL14-LmrA 3.73× 105 0.59 2.36× 10−5 1.09
TAL14-TAL21 5.77× 104 0.72 1.10× 10−3 0.83
TAL21-LmrA 3.73× 105 0.59 2.36× 10−5 1.09
TAL21-TAL14 1.58× 104 0.68 2.83× 10−4 1.10

λ (hr−1) P ′′1i′ (MEFL) P ′′2i′ (MEFL)
LmrA-TAL14 3.41× 10−2 107.55 107.31

LmrA-TAL21 3.41× 10−2 107.51 107.15

TAL14-LmrA 3.41× 10−2 107.12 107.37

TAL14-TAL21 3.41× 10−2 106.97 106.87

TAL21-LmrA 3.41× 10−2 107.16 107.51

TAL21-TAL14 3.41× 10−2 107.22 107.32

Table 3.1: Values of the rescaled parameters used in the final bin-
dependent models for the six cascades.

3.4 Model Summary

We have developed a bin-dependent ODE model that describes regulatory mecha-

nisms via the use of standard Hill function type terms, while offering comparable ac-

curacy to the EQuiP model of [Davidsohn et al., 2015]. Parametrized, bin-dependent

models of individual modules should be relatively straightforward to integrate as sub-
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components within larger existing ODE models of circuits. Moreover, it should also

be relatively straightforward to modify a parametrized bin-dependent model to incor-

porate additional, previously-characterized regulatory components (i.e. for studying

promoters co-regulated by multiple transcription factors). In this way we expect that

bin-dependent models for individual modules should be able to be composed with

a variety of existing, well-characterized ODE models that describe components of

synthetic and systems biology networks.

Another benefit to the bin-dependent-model-based approach is that it is fairly

robust to sampling noise in experimental data. The input-output datasets, which the

ODE models are fit to, comprise the geometric means of measured protein concen-

trations within each bin. These data points may not be well separated, and hence

appear noisy, when using sparse flow cytometry datasets. The model fitting step

helps overcome this sampling noise by using deterministic ODEs based on widely-

used biochemical relationships (such as Hill-functions).

The bin-dependent model presented here establishes a framework for characteriz-

ing fundamental synthetic constructs and predicting circuit behaviors quantitatively

in TTMC. As we demonstrated with the stochastic model, there are different mech-

anisms that may contribute to saturation in protein production, a common phe-

nomenon in TTMC. The value of the bin-dependent model lies in both its easy inte-

grability with other ODE models, and in its ability to describe the saturation effect

in flow cytometry data accurately without specifying precise mechanistic details for

how saturation occurs. The method presented here should be applicable to similar

flow cytometry datasets, allowing the possibility to construct a well-characterized li-

brary of in silico models for regulatory switches. The quantitative parameters of such

regulatory switches could then be used in constructing new predictive models for the

behaviors of more complicated circuits and cascades. Our work represents one more
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step towards building a systematic workflow that can guide circuit design in TTMC.
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Chapter 4

Modular Composition, Circuit Behaviors,

and Network Topologies

The work in the previous two chapters results in an ODE modeling framework for

predicting circuit behaviors. Modularity, a critical assumption of the framework, is

violated when the behavior of one component depends on other components of the

circuit. The resulting phenomenon, known as retroactivity, may impact the behav-

ior of genetic circuits, constituting another potential source of inaccuracy of model

predictions. In this chapter, I present an investigation of how retroactivity affects

robustness of circuit behaviors. Specifically, I focus on adaptation, a biological func-

tion concerning the temporal dynamics of gene expression. We develop a systematic

approach for quantifying adaptive robustness via statistical SMC and use this frame-

work to examine the relationship between circuit topologies and adaptations, followed

by the effects of retroactivity on adaptive robustness. Note that findings from this

study are not confined to circuits in synthetic biology but can be applied to general

transcriptional regulatory networks (TRN).

4.1 Adaptation

Adaptation consists of a response phase, where the expression level of a gene

responds transiently to an external stimulus, and a recovery phase, where the expres-

sion level adapts gradually to the initial value (Figure 4·1) [Alon, 2007, Shi et al.,

2017]. Examples of adaptation include signal transduction [Behar et al., 2007,Cohen
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Figure 4·1: Response sensitivity, adaptation errors, and adaptation
ratios.

et al., 2009,Takeda et al., 2012,Muzzey et al., 2009], bacteria chemotaxis [Alon et al.,

1999, Barkai and Leibler, 1997, Macnab and Koshland, 1972], and homeostasis [El-

Samad et al., 2002]. It is well known that TRN with certain topologies such as IFFL

and negative feedback loops (NFBL) can mediate adaptations robustly.

4.2 Mathematical Models and Modular Composition

4.2.1 Transcriptional Regulatory Networks

A TRN consisting of N genes can be represented by an N-node graph-like object,

where each node is a gene (please refer to Figure 4·2 for examples). There is a directed

edge from node i to j if gene i regulates the expression of gene j. In this case, node i

is also known as the parent of node j. The time evolution of a TRN is defined as a

sequence of concentrations of proteins in the TRN, also known as a trajectory.

In this chapter, we limit ourselves to TRN that contain three nodes. As is shown in

several studies, a three-node TRN is a minimum network that facilitates adaptations,

and a larger TRN can typically be reduced to a three-node TRN [Ma et al., 2009,Shi

et al., 2017]. We denote the three nodes by A, B, and C (Figure 4·2). A is the input

node activated by an external inducer. B is the node that transmits the signal from A

to C. C is the output node, which is also the node of interest. Examples of three-node

TRN are given in Figure 4·2. Focusing on three-node TRN allows us to conduct an
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Figure 4·2: Examples of three-node TRN. Arrows indicate activation,
and bars at the ends of edges indicate inhibition. The leftmost network
is a negative feedback loop (NFBL), in which the edges traversing B,
A, and C accumulate in a negative regulation. The two networks in the
center are incoherent feedforward loops (IFFL), in which A directly
activates C and indirectly represses C via B. The second from the left
is a type-IV IFFL, in which A represses B. The second from the right
is a type-I IFFL, in which A activates B. The rightmost network is a
“mixture” network composed of a type-IV IFFL and an NFBL between
B and C.

exhaustive search of all possible network topologies.

4.2.2 Mathematical Models with and without Retroactivity

In a TRN, the time evolution of any node i that is regulated by other node(s)

and/or an external inducer can be described by the following ODE:

ẋi = fi(xi, ~yi), (4.1)

where xi and ~yi represent the concentrations of node i and the parent(s) of node i,

respectively. ~yi includes the concentration of the external inducer if node i is regulated

by an external inducer. fi is expressed as:

fi(xi, ~yi) = Hi(~yi)− δixi, (4.2)

where δi denotes the protein degradation rate. Hi(~yi) is the Hill function that de-

scribes the regulated production rate of xi. In this paper, we consider an AND logic

for coregulation by multiple TF, i.e., the regulated gene is turned on only when all
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the activators are abundant and all the repressors are scarce. Under the assumption

of the AND logic, Hi(~yi) can be expressed as [Gyorgy and Del Vecchio, 2014]:

Hi(~yi) = ηi

∑
X⊂{1,2,...,mi} πX

∏
j∈X

(
yij
Kij

)hij
∑

X⊂{1,2,...,mi}
∏

j∈X

(
yij
Kij

)hij , (4.3)

where ηi stands for the total concentration of the promoter that expresses node i, and

mi is the number of parents of node i. Similar to [Gyorgy and Del Vecchio, 2014],

we assume that no parents of the same node are identical. X corresponds to each

complex formed by a different combination of TF; πX denotes the production rate of

the corresponding complex per plasmid; yij, hij, and Kij represent the concentration,

the Hill coefficient, and the dissociation constant of the j-th parent of node i. An

example of a Hill-function with the AND logic is given in subchapter 4.2.4.

As a TRN is a collection of regulatory interactions among genes, the dynamics of

a TRN can be described by:

~̇x = f(~x), (4.4)

where ~x = [x1 x2 ... xN u]T , u is the concentration of the external inducer, and f is

the collection of functions fi (i = 1, 2, ..., N). We assume the inducer does not get

produced or degraded, so the concentration of the inducer stays constant, i.e., u̇ = 0.

With retroactivity considered, the equations for the dynamics of a TRN change

from (4.4) to [Gyorgy and Del Vecchio, 2014]:

~̇x = [I +R(~x)]−1f(~x), (4.5)

where R(~x) is known as the retroactivity matrix [Gyorgy and Del Vecchio, 2014].
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R(~x) can be calculated via the following equation [Gyorgy and Del Vecchio, 2014]:

R(~x) =
∑
i

V T
i Ri(~yi)Vi, (4.6)

where Vi is binary, containing as many rows as the length of ~yi and as many columns

as the number of nodes in the network. The element in the j-th row and k-th column

of Vi is 1 if the j-th parent of node i is node k, 0 otherwise. Under the assumption of

the AND logic, Ri(~yi) is a diagonal matrix, where the k-th entry on the diagonal rik

is [Gyorgy and Del Vecchio, 2014]:

rik = ηi
h2
iky

hik−1
ik

Khik
ik

(
1 +

(
yik
Kik

)hik)−2

. (4.7)

In Equation (4.7), ηi stands for the total DNA concentration of node i. yik,

hik, and Kik are the protein concentration, the Hill coefficient, and the dissociation

coefficient of the k-th parent of node i. It is easy to show that V T
i Ri(~yi)Vi is always

a diagonal matrix. Hence, R(~x) is also diagonal. More details about retroactivity,

including its derivation can be found in [Gyorgy and Del Vecchio, 2014].

4.2.3 Network Enumeration and Simulation

Similar to [Shi et al., 2017], we first enumerate all possible topologies of three-

node TRN. Each node in the network may interact with up to three nodes (two other

nodes and itself). One node may activate, inhibit, or simply not regulate another

node. There are altogether 39 = 19, 683 possible topologies, 3,645 of which have

no direct or indirect links between the input A and the output C. With these 3,645

topologies excluded, we consider the remaining 16, 038 topologies in our study [Shi

et al., 2017].

To investigate the effects of retroactivity on adaptive robustness, we construct

and compare ODE models with and without retroactivity for each topology. To re-
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duce the dimensions of parameter space, we normalize our models via methods shown

in [Cao et al., 2016]. An example of normalization is given in subchapter 4.2.4. The

normalized protein concentrations of A, B, and C, denoted by x̃A, x̃B, and x̃C , are

dimensionless and between values of 0 and 1. For simplicity of analysis, we assume all

normalized DNA concentrations have equal values denoted by η̃. For each enumerated

topology, one ODE model without retroactivity is constructed, together with three

models with retroactivity assuming η̃ = 0.1, η̃ = 1, and η̃ = 10, corresponding to

systems with low, medium, and high retroactivity. This is because as η̃ increases, the

diagonal entries of the retroactivity matrices increase, giving rise to higher retroac-

tivity (Equation (4.7)).

Trajectories are generated via the integration of ODE models. The initial states

of the trajectories are set to the steady states of the networks prior to the induction.

The kinetic parameters are sampled uniformly from the same ranges of values used

in [Cao et al., 2016]: K ∼ 0.001−1 (sampled on the log scale), h ∼ 1−4 (sampled on

the linear scale), and δ ∼ 0.01 − 1 (sampled on the log scale). At t0, the network is

induced by such a large concentration of the external inducer I that the expression of

A is fully driven. The concentration of the inducer I is much larger than the binding

affinity KIA. For convenience, we set the concentration of I, xI , equal to 10.
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4.2.4 Models for a type-IV IFFL

The topology of a type-IV IFFL is given in Figure 4·2. We can describe the

dynamics of a type-IV IFFL without retroactivity via the following model:

dxA
dt

= fA = ηA
πA

(
xI
KIA

)hIA
1 +

(
xI
KIA

)hIA − δAxA
dxB
dt

= fB = ηB
πB

1 +
(

xA
KAB

)hAB
− δBxB

dxC
dt

= fC = ηC
πC

(
xA
KAC

)hAC
(

xB
KBC

)hBC(
1 +

(
xA
KAC

)hAC

)(
1 +

(
xB
KBC

)hBC

)
− δCxC .

(4.8)

With retroactivity, the dynamics can be described by:
dxA
dt

dxB
dt

dxC
dt

 =


1

1+b+a
0 0

0 1
1+c

0

0 0 1


fAfB
fC

 , (4.9)

where

a = ηB
h2
ABxA

hAB−1

KhAB
AB

(
1 +

(
xA
KAB

)hAB

)−2

b = ηC
h2
ACxA

hAC−1

KhAC
AC

(
1 +

(
xA
KAC

)hAC

)−2

c = ηC
h2
BCxB

hBC−1

KhBC
BC

(
1 +

(
xB
KBC

)hBC

)−2

.

(4.10)

Following methods in [Cao et al., 2016], we let x̃A = xAδA
ηAπA

, x̃B = xBδB
ηBπB

, x̃C = xCδC
ηCπC

,

K̃AB = KABδA
ηAπA

, K̃AC = KACδA
ηAπA

, and K̃BC = KBCδB
ηBπB

. The model without retroactivity
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shown in Equation (4.8) is normalized to:

dx̃A
dt

= fÃ = δA


(

xI
KIA

)hIA
1 +

(
xI
KIA

)hIA − x̃A


dx̃B
dt

= fB̃ = δB

 1

1 +
(

x̃A
K̃AB

)hAB
− x̃B


dx̃C
dt

= fC̃ = δC


(

x̃A
K̃AC

)hAC
(

x̃B
K̃BC

)hBC(
1 +

(
x̃A
K̃AC

)hAC

)(
1 +

(
x̃B
K̃BC

)hBC

)
−x̃C) .

(4.11)

By letting η̃AB = ηB
KAB

, η̃AC = ηC
KAC

, and η̃BC = ηC
KBC

, we normalize the model with

retroactivity shown in Equation (4.9) to:
dx̃A
dt

dx̃B
dt

dx̃C
dt

 =


1

1+b̃+ã
0 0

0 1
1+c̃

0

0 0 1


fÃfB̃
fC̃

 , (4.12)

where

ã = η̃ABh
2
AB

(
x̃A

K̃AB

)hAB−1
(

1 +

(
x̃A

K̃AB

)hAB

)−2

b̃ = η̃ACh
2
AC

(
x̃A

K̃AC

)hAC−1
(

1 +

(
x̃A

K̃AC

)hAC

)−2

c̃ = η̃BCh
2
BC

(
x̃B

K̃BC

)hBC−1
(

1 +

(
x̃B

K̃BC

)hBC

)−2

.

(4.13)

Based on our assumption of equal normalized DNA concentrations, η̃AB = η̃AC =

η̃BC = η̃.



69

4.3 Adaptive Robustness

4.3.1 Adaptation

Adaptation is a property concerning the time evolution of a network. The quality

of adaptation is quantified via the adaptation ratio, defined as the ratio of the adap-

tation error to the response sensitivity (Figure 4·1). Response sensitivity is defined

as the difference between the output response and the initial value. An adaptation

error is defined as the difference between the initial value and the steady-state value

post the induction. A lower adaptation ratio indicates a higher quality of adaptation.

4.3.2 Specification and Adaptive Robustness

We use Bounded Linear Temporal Logic (BLTL) formulas over linear inequalities

over concentrations of proteins to specify the functions of a network. A BLTL formula

is built on a finite set of predicates over protein concentrations using Boolean opera-

tors: ¬ (negation), ∨ (disjunction), ∧ (conjunction),⇒ (implication) and a temporal

operator ∪k (until) with bound k [Zuliani et al., 2013]. More details about the syntax

and the semantics of BLTL can be found in [Zuliani et al., 2013]. An example of a

BLTL specification looks like:

ΦE =
(
x < 20 ∪5 x = 20

)
, (4.14)

where x is the concentration of a protein. ΦE means that the concentration of protein

x should reach 20 within five time units and remain less than 20 at all preceding time

units. Satisfaction of ΦE by a trajectory σ is written as σ |= ΦE.

Assume the trajectory spans a time period of T . Let ~x denote the vector of protein
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concentrations of A, B, and C. The property of adaptation can be formally stated as:

Φ =
((
ẋC ≥ 0 ∪T

(
ẋC < 0 ∪T

(
~̇x = ~0

)))
∨(

ẋC ≤ 0 ∪T
(
ẋC > 0 ∪T

(
~̇x = ~0

))))
∧ (r < r∗),

(4.15)

where ẋC represents the rate of change of concentration of C, and ~̇x, the vector that

contains the rates of changes of all species’ concentrations. r is the adaptation ratio,

and r∗ is the threshold on the adaptation ratio.

Equation (4.15) can be separated into two parts: everything before r < r∗ and r <

r∗. The former requires that the concentration of C first respond to the initial stimuli

either by rising or falling and then switch to recovery before the system eventually

reaches the steady state. The latter imposes a restriction on the adaptation ratio,

excluding trajectories that have weak pulses or do not return to values that are close

to the initial states.

We use Probabilistic BLTL (PBLTL) to specify the adaptive robustness of a TRN.

The biochemical kinetic rates of the TRN are allowed to vary. A PBLTL formula

that describes the ability of a network to achieve adaptations is expressed in the

form P≥θ(Φ), where Φ is the BLTL formula described in Equation (4.15), and θ is

a probability. A network satisfies the PBLTL formula if and only if a trajectory of

the TRN satisfies the BLTL formula Φ in Equation (4.15) with a probability greater

than or equal to θ. We call θ the adaptive robustness of this network. A network is

more robust than another if the former satisfies Φ with a higher probability than the

latter. The problem we consider is as follows: given a TRN and a BLTL formula Φ,

compute the adaptive robustness of the TRN by calculating the probability θ with

which the TRN satisfies the BLTL formula Φ.

Solving the above problem establishes a standard criterion for comparing differ-

ent networks and models. It provides us a framework for examining the effects of
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retroactivity on adaptive robustness of TRN.

4.4 Statistical Analysis

4.4.1 Investigation of Behavior-Topology Relationships

Zuliani et al. presented an algorithm for estimating the Bayesian interval that con-

tains the true probability of adaptation with an arbitrarily high probability [Zuliani

et al., 2013]. The algorithm samples trajectories from a stochastic system iteratively

and checks each trajectory against the specification. At each stage, the posterior

mean, which is the Bayes estimator for the probability, is updated. The algorithm

terminates and returns the probability estimate upon achieving the coverage goal.

The estimate is in the form of a Bayesian confidence interval. Otherwise, the algo-

rithm continues by sampling another trajectory.

We use the above algorithm to estimate the probability that a random execution

trace of the TRN satisfies the property of adaptation specified by a BLTL formula.

Due to practical concerns of simulation times, the BLTL formula we implement differs

slightly from Equation (4.15) and is specified as follows:

Φ =
((

˙̃xC ≥ 0 ∪2000
(

˙̃xC < 0 ∪2000
(
||~̇̃x||∞ ≤ 10−3

)))
∨(

˙̃xC ≤ 0 ∪2000
(

˙̃xC > 0 ∪2000
(
||~̇̃x||∞ ≤ 10−3

))))
∧

(r < 0.1) .

(4.16)

In Equation (4.16), ˙̃xC represents the rate of change of the normalized concentra-

tion of C, and ||~̇̃x||∞ the infinity norm of the vector containing the rates of changes

of all normalized species’ concentrations. The maximum simulation duration is set to

2000, and the threshold on the adaptation ratio is set to 0.1 (we experiment with other

cut-off values and arrive at the same conclusions). Equation (4.16) excludes networks

that spend too much time approaching steady states or have oscillatory behaviors.
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For the algorithm, a beta prior with α = β = 1 is used. For the algorithm parame-

ters, half interval size δ is set to 0.01, and coverage goal c is set to 0.99. Explanations

of the algorithm parameters can be found in [Zuliani et al., 2013]. The probability

estimate the algorithm returns, θ̂, is the adaptive robustness of the network.

4.4.2 Networks and Adaptation

Our simulations above suggest that the “mixture” network shown in Figure 4·2 has

the highest adaptive robustness among all the models without retroactivity, 0.6329.

This value means that the unknown probability θ that the ”mixture” network satisfies

the property of adaptation lies in [0.6329− 0.01, 0.6329 + 0.01] with probability 1−
(1−0.99)×0.02

0.99×0.98
if retroactivity is not considered.

Here we consider a network model to be adaptive if its adaptive robustness ex-

ceeds 0.1. There are 148 adaptive models without retroactivity, 149 with retroactivity

assuming η̃ = 0.1, 150 with retroactivity assuming η̃ = 1, and 131 with retroactiv-

ity assuming η̃ = 10 (Table 4·3). 106 out of these adaptive models share the same

topologies, which suggests that most adaptive networks remain adaptive even when

retroactivity is considered. Nevertheless, there is little doubt retroactivity affects the

adaptive robustness of the network. The adaptive robustness of these 106 networks

with and without retroactivity is compared in Figure 4·3. As is suggested by Figure

4·3, higher retroactivity in general brings about stronger effects on adaptive robust-

ness, as red pluses (η̃ = 0.1) are on average more distant from the reference line than

blue diamonds (η̃ = 1), and black circles (η̃ = 10) more distant than red pluses.

4.4.3 Effects of Retroactivity on Adaptive Robustness

The data points in Figure 4·3 are scattered on both sides of the reference line, indi-

cating that increasing retroactivity can either enhance or reduce adaptive robustness

depending on the circuit topologies. To investigate the mixed effects of retroactivity
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Table 4.1: Numbers of NFBL, IFFL, and adaptive networks. Models
I, II, III, and IV represent the model without retroactivity, the models
with retroactivity assuming η̃ = 0.1, η̃ = 1, and η̃ = 10.

Model η̃ NFBL IFFL Adaptive Networks
I N/A 92 148 148
II 0.1 92 147 149
III 1 94 148 150
IV 10 84 118 131

Figure 4·3: Adaptive robustness of adaptive networks. X-axis repre-
sents models without retroactivity, and Y-axis, the counterparts with
retroactivity. Blue diamonds represent models assuming η̃ = 0.1, red
pluses, models assuming η̃ = 1, and black circles, models assuming
η̃ = 10. The black line corresponds to equal adaptive robustness.
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on adaptive robustness, we perform a single parameter perturbation analysis. Specifi-

cally, we randomly select 100 parameters that facilitate adaptations in models without

retroactivity. Keeping these parameters fixed, we set η̃ to 0.1, 1, and 10 and simulate

the counterpart models with retroactivity. The perturbation analysis is performed on

the type-IV IFFL, the type-I IFFL, and the “mixture” network shown in Figure 4·2.

These networks are chosen because they have the overall highest adaptive robustness

among all networks, with and without retroactivity. The average response sensitivity

and adaptation errors are calculated for each model (Table 4.2). Formulas of the

type-IV IFFL models are given in Equations (4.11) and (4.12), and formulas of the

type-I IFFL models can be similarly derived. The model for the “mixture” network

without retroactivity is:

dx̃A
dt

= fÃ = δA


(

xI
KIA

)hIA
1 +

(
xI
KIA

)hIA − x̃A


dx̃B
dt

= fB̃ = δB

 1(
1 +

(
x̃A
K̃AB

)hAB

)(
1 +

(
x̃C
K̃CB

)hCB

)
−x̃B)

dx̃C
dt

= fC̃ = δC


(

x̃A
K̃AC

)hAC
(

x̃B
K̃BC

)hBC(
1 +

(
x̃A
K̃AC

)hAC

)(
1 +

(
x̃B
K̃BC

)hBC

)
−x̃C) .

(4.17)

Its counterpart with retroactivity is:
dx̃A
dt

dx̃B
dt

dx̃C
dt

 =


1

1+b̃+ã
0 0

0 1
1+c̃

0

0 0 1
1+d̃


fÃfB̃
fC̃

 , (4.18)
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where fÃ, fB̃, and fC̃ are defined as in Equation (4.17), and ã, b̃, and c̃ are defined

as in Equation (4.13). d̃ can be expressed as:

d̃ = η̃CBh
2
CB

(
x̃C

K̃CB

)hCB−1
(

1 +

(
x̃C

K̃CB

)hCB

)−2

, (4.19)

where η̃CB = ηB
KCB

, and K̃CB = KCBδC
ηCπC

. Table 4.2 suggests that increasing η̃ en-

hances response sensitivity in IFFL networks. The underlying causes are rooted in

the retroactivity matrices. Since IFFL networks differ merely in the types of regula-

tion, the retroactivity matrix given in Equations (4.12) and (4.13) is the same for all

IFFL. From Equation (4.12), it is easy to see that increasing η̃ decreases ˙̃xA and ˙̃xB,

i.e., changes of protein concentrations of both A and B become slower (Figure 4·4).

Inhibition of B by A takes a longer time till B reaches a sufficiently low concentration

such that B can no longer activate C. Simultaneously, η̃ does not affect ˙̃xC . Conse-

quently, C accumulates a larger response since ˙̃xC is unaffected by η̃, and the growth

time of x̃C becomes longer. Higher response sensitivity can lead to higher adaptive

robustness as a trajectory becomes more likely to satisfy Equation (4.16) due to a

lower adaptation ratio.

Simulation of the “mixture” network suggests a different story. Table 4.2 indi-

cates that η̃ is negatively associated with mean response sensitivity in the “mixture”

network. Due to the NFBL between B and C, increasing η̃ decreases the rates of

changes of protein concentrations for all nodes. While C has more time to grow, the

growth rate of x̃C decreases.

Table 4.2 also suggests that increasing retroactivity may increase the overall adap-

tation errors by raising the risks of destabilization of the initial steady states. In a few

simulations assuming η̃ = 10, x̃C skips recovery phases and converges to new steady

states. Perfect adaptation requires that the initial steady states be stable [Shi et al.,

2017]. Mou et al. find that increasing retroactivity decreases stability radii around
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Figure 4·4: An example of trajectories simulated by non-normalized
Type-I IFFL models. Values of the parameters are: KIA = 0.4nM,
KAB = 24.62nM, KAC = 10nM, KBC = 10nM, hIA = 1, hAB = 2.60,
hAC = 3.28, hBC = 2.77, δA = 0.81hr−1, δB = 0.20hr−1, δC = 0.47hr−1.
DNA concentrations increase and protein production rates per plasmid
decrease from the top figure to the bottom figure. For fair comparison,
the products of DNA concentrations and protein production rates per
plasmid are kept fixed. Top: πAηA = 144.18nM·hr−1, πBηB = 31.29nM·
hr−1, πCηC = 80nM · hr−1; 2nd from the top: πA = 58.61hr−1, πB =
12.72hr−1, πC = 80hr−1, ηA = 2.46nM, ηB = 2.46nM, ηC = 1nM;
2nd from the bottom: πA = 5.86hr−1, πB = 1.27hr−1, πC = 8hr−1,
ηA = 24.6nM, ηB = 24.6nM, ηC = 10nM; bottom: πA = 0.59hr−1,
πB = 0.13hr−1, πC = 0.8hr−1, ηA = 246nM, ηB = 246nM, ηC = 100nM.
When normalized, the four models from the top to the bottom represent
no retroactivity, η̃ = 0.1, η̃ = 1, and η̃ = 10. All parameters are within
reasonable ranges of biological parameters given in [Gyorgy and Del
Vecchio, 2014].
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initial steady states [Mou and Del Vecchio, 2015]. Their findings imply that there

are certain parameter perturbations under which the Jacobian of a model without

retroactivity is stable at a given steady state while the Jacobian of a model with

retroactivity is not [Mou and Del Vecchio, 2015]. The results of our simulation are

in agreement with [Mou and Del Vecchio, 2015]. Moreover, our results indicate that

the effects of retroactivity on adaptation errors also depend on the network topolo-

gies. The adaptation errors of the type-I IFFL are hardly affected by η̃ while the

adaptation errors of the type-IV IFFL and the “mixture” networks are affected by η̃

to varying degrees (Table 4.2). Higher adaptation errors can lead to lower adaptive

robustness as a trajectory now becomes less likely to satisfy Equation (4.16) due to

a higher adaptation ratio.

Our analysis above can be generalized to other networks. It is easy to prove that

if C is not a regulator in a network, the bottom right entry of R(~x) in Equation

(4.6) is always 0. In these networks, the rate of change of C is not slowed down by

retroactivity. Increasing DNA concentrations enhances response sensitivity in these

networks, leading to higher adaptive robustness. As is shown in Figure 4·3, there

are 16 networks that show consistently decreasing adaptive robustness as η̃ increases.

Among these 16 networks, the three most frequent motifs are IFFL, NFBL between

A and B, and negative self-feedback loops on B. A common feature of these motifs is

that C is not a regulator, which confirms our hypothesis.

One direct biological implication of our findings is that changing plasmid copy

numbers can enhance adaptive robustness. One approach to increasing retroactivity

while keeping the steady-state behavior of the network unchanged is to raise the

plasmid copy number and lower the protein production rate per plasmid by the same

fold. An example of such an approach is given in Figure 4·4, where the plasmid copy

number and the protein production rate per plasmid are allowed to vary, but the
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Table 4.2: Results from the perturbation analysis. Models I, II, III,
and IV are defined the same as in the caption of Table I. Mean re-
sponse sensitivity, adaptation errors, and adaptation ratios, which are
calculated from 100 randomly selected parameter sets, are shown in the
3rd, 4th, and 5th columns. The adaptive robustness of these networks,
which is inferred earlier via the algorithm shown in [Zuliani et al., 2013],
is listed in the last columns.

Type-IV IFFL
Model η̃ Response Error Ratio Robustness

I N/A 0.5967 0.0076 0.0165 0.6235
II 0.1 0.6013 0.0077 0.0143 0.6241
III 1 0.6250 0.0081 0.0130 0.6310
IV 10 0.6579 0.0249 0.0351 0.5721

Type-I IFFL
Model η̃ Response Error Ratio Robustness

I N/A 0.2507 0.0052 0.0161 0.4843
II 0.1 0.2612 0.0052 0.0154 0.4891
III 1 0.3222 0.0052 0.0123 0.5159
IV 10 0.4614 0.0053 0.0085 0.5604

Mixture
Model η̃ Response Error Ratio Robustness

I N/A 0.6215 0.0055 0.0114 0.6329
II 0.1 0.6187 0.0056 0.0114 0.6427
III 1 0.6005 0.0066 0.0140 0.6544
IV 10 0.5568 0.0878 0.1795 0.5495
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total protein production rate is kept fixed. It is clear from Figure 4·4 that A and B

maintain the same steady states, whereas C accumulates different levels of response

due to different degrees of retroactivity. Experiment-wise, plasmid copy number can

be raised via an increase in plasmid dose, and protein production rate per plasmid

can be lowered by methods such as adding nucleotides between the promoter and the

transcription start site.
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Chapter 5

Conclusions

5.1 Summary of the Thesis

In this thesis, I first presented an ODE modeling framework that predicts circuit

behaviors in TTMC. At the core of this framework is a novel bin-dependent model.

Compared to a Boolean model, the bin-dependent model not only captures the ana-

log behaviors and wide dynamic ranges of the circuits but also describes the time

evolution of the circuit components. Detailed two-stage gene expression models facil-

itate a relatively thorough qualitative investigation of the mechanism underlying the

experimental observations but should not be fit to the data quantitatively, as mod-

els based on different hypotheses can explain the same phenomena. In comparison,

the bin-dependent model maintains a better balance of accuracy and simplicity for

modular characterization. To predict behaviors of circuits, we developed a method

of composition that enables model-based design of circuits. The combination of a

proper model and batch-effect reduction leads to the improved accuracy of circuit be-

havior predictions in TTMC. Besides the ODE modeling framework, this thesis also

presented a systematic approach based on modular composition, model simulation,

and SMC to investigating the relationship between circuit topologies and circuit be-

haviors. The approach was applied to study how retroactivity, a phenomenon arising

from modular composition, impacts the ability of circuits to achieve adaptations.
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5.2 Impact and Future Directions

Although technology of high-throughput DNA synthesis is advancing rapidly, a

design process solely based on manual labor will ultimately be outperformed by a

computation-based design workflow. Development of automated workflows for de-

signing genetic circuits is an active research area in the synthetic biology community.

Cello represents one of the first closed-loop computational tools that automate the cir-

cuit design process by transforming a user-defined functional specification of circuits

all the way to the DNA sequences of plasmids that should be synthesized [Nielsen

et al., 2016]. Simple as they are, the underlying Boolean models [Nielsen et al.,

2016] limit the application of Cello to biological circuits and contexts that exhibit

relatively sophisticated temporal dynamics. The ODE modeling framework we de-

veloped provides a solution to predictions of circuit behaviors in TTMC. Supported

by the validation of experimental data, our framework is likely to improve the speed

and the outcome of high-throughput circuit assembly in TTMC, if integrated as a

part of the automation workflow. In addition, the bin-dependent model may also

be applied to study circuit behaviors in bacteria cells. Relatively recent results in

literature suggest that plasmid copy number variation in bacteria cells has long been

overlooked [Brynildsrud et al., 2016]. It will be interesting to build circuits similar to

the one shown in Figure 2·1(a), which contains an input, an output, and a transfection

maker, in bacteria cells and examine the effect of copy number on protein production.

Chapter 2 shows that flow cytometry data are sufficient for fitting the bin-

dependent ODE model. For determining the exact mechanism of protein saturation,

additional experimental data are required. It is shown in Chapter 2 that two

stochastic models built under different hypotheses (transcriptional and translational

saturation), differing in parameter values and kinetic rate functions, can recapitulate

almost identical observations. To choose between these different cases, one would
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(minimally) also want to have data on mRNA expression levels or even on DNA levels

within individual cells. This would better enable the resolution of the functional

forms to use for the various transcription and translation relationships, and (possibly)

allow estimation of the many additional parameters of the stochastic models.

The approach presented in Chapter 4 can be further applied to study the ef-

fect of retroactivity on other biological functions, such as Turing-pattern formation.

It has long been speculated that circuits with activator-inhibitor loops are capable

of generating Turing patterns if kinetic parameters including the diffusion rates of

morphogens fulfill particular conditions [Turing, 1952]. It will be of great novelty to

examine whether retroactivity enlarges or shrinks the parameter space that facilitates

pattern formation, as results from such an examination may shed light on recruiting

retroactivity as a strategy for designing pattern-forming circuits.
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