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ABSTRACT

During the early stages of embryonic development, mammalian cells communi-

cate, undergo morphological changes, and self-assemble into highly organized tis-

sues, and eventually organ systems. Recently, there have been several efforts to en-

gineer the multicellular patterning in mammalian cells to better understand early

development and create organoid systems to better understand human disease and

drug interactions. However, existing approaches to engineer large scale multicel-

lular patterning in mammalian cells are limited to reproducing well known be-

haviors or trail-and-error based design. In this thesis, I developed mathematical

models to predictively design and quantitatively validate de novo multicellular

patterning in mammalian cells. First, I have developed a computational to au-

tomate self-organized multicellular organization in human pluripotent stem cells

quantitatively matches the in vitro velocity distribution, temporal dynamics of

CRISPR induced perturbations to protein expression, and the resulting changes

in spatial organization in human pluripotent stem cell colonies. I have also de-

veloped a mathematical model to predict the programmable self-assembly from a

single cell into 3D shapes. Overall, this work offers insights into howmathematical
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modeling can be integrated with pattern recognition and optimization algorithms

to efficiently discover and direct self-organized multicellular patterning in cell ag-

gregates and tissues.
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1

CHAPTER 1

Background and Motivation

1.1 MULTICELLULAR NETWORKS OF MAMMALIAN CELLS

The adult human body is a complex multicellular network (MN) containing ap-

proximately 37.2 trillion cells (excluding bacteria) (Bianconi et al., 2013). Sim-

ilar to the infrastructure networks of a city in the 21st century (social, traffic,

telecommunications, power, etc.), mammalian cells form complex communication

networks that allow cells to sense and respond to their environment. Each cell is

a node in the network, and diverse cell-cell communication mechanisms are the

links that connect (Fig 1A) cells to their environment. MNs are not to be confused

with the phrase "biological network" where biomolecules (such as genes, proteins,

and metabolites) and their molecular interactions are represented as a network

(Fig 1C). The key differentiator of multicellular networks is that whole cells are

nodes in the network rather than biomolecules.

Engineering MNs to form pre-defined cell patterning and cell structures pro-

vides a powerful tool to better understand and regenerate organ-like tissues, com-

monly called organoids, and create more accurate experimental models of human

disease and the response of human tissues to drug therapies. The development

of more robust organoids will facilitate research studies that have previously been

hindered by the technical and ethical difficulties of conducting research studies in

living people. While several labs have developed high functioning organoids de-

rived from pluripotent and adult stem cells (Huch & Koo, 2015), many organoids

have low rates of successful assembly and do not fully replicate their in vitro coun-

terparts. This is partially due to a lack of control of the spatiotemporal organiza-
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Cell-environment interac�ons

Figure 1.1: Multicellular Networks vs Biological Networks.
A) A Generic Network containing nodes and links. B) A multicellular network replaces
nodes with cells and links with cell-contact and cell-environment interactions. C) A bi-
ological network where biomolecules replace nodes and physical interactions=represent
links. Network in section A by Three Six Five from the Noun Project. Figure adapted from
Davies (2008) and www.ebi.ac.uk course on Network analysis of protein data
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tion while producing organoids and living structures.

Currentmethods to designmulticellular structures have producedmulti-cellular

patterning such as concentric rings (Toda et al., 2018) in fibroblast cells using syn-

thetic engineering, concentric rings of stem cells that differentiated into the germ

layers observed during early embryonic development using microcontact pattern-

ing (Warmflash et al., 2014), or 3D tubes that allow fluid flow using 3D bioprint-

ing (Homan et al., 2016). These approaches have introduced novel tools that will

be used in future tissue engineering endeavors. However, these approaches using

synthetic engineering rely on trail-and-error to design patterning. These unguided

approaches will be difficult to produce precise patterns as the variety and timing

of cell actuations are combined to form more complex patterning. 3D bioprint-

ing and microcontact scaffolding suffer from a complimentary challenge. These

scaffold-based approach are guided, but produce static patterns. Many develop-

mental organization events proceed in temporal sequences (eg germ layer differ-

entiation) that are difficult to engineer with static, scaffold-based approaches.

In this thesis, I collaboratively developed mathematical models to both predict

and direct self-organized multi-cellular patterns and self-assembly of 3D shapes

using mammalian cells. Designing complex spatial behaviors in mammalian sys-

tems requires the ability to intelligently direct single-cell and population-scale

behaviors which is a common theme in developmental biology and tissue engi-

neering. Traditionally, designing multicellular behaviors has been a manual task

that required human expertise which also introduces human bias. In the follow-

ing sections of this chapter, I briefly review how computational modeling, pattern

recognition, and mathematical optimization can automate the design of multicel-

lular systems.
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1.2 AGENT-BASEDMODELS FORMULTICELLULAR PATTERN DESIGN

Agent-based models (ABM) are a popular collection of computational modeling

frameworks that can describe multicellular pattern formation from the perspec-

tive of individual cells and their interactions. This is in contrast to continuum

models that represent large scale tissue dynamics and omit the behavior of indi-

vidual cells. The factors that are typically relevant when modeling multicellular

and tissue organization include: 1) representing cell behaviors at difference spa-

tial scales (eg from single-cell protein expression to collective cell migration), 2)

representing cell behaviors at different time scales, 3) representing cell mechanics,

4) representing biochemical/electrical signaling, and 5) being computationally ef-

ficient.

While no single agent-based framework accurately recapitulates all aspects

driving patterning in mammalian cells, it has been proposed that a relatively small

set of morphological actuators can be combined in different permutations to gener-

ate a wide range of synthetically engineered structures (Davies, 2008; Cachat et al.,

2014). These morphological actuations are (Fig 1.2): cell proliferation, apoptosis,

cell fusion, cell adhesion, membrane stiffness, cell migration (eg collective cell mi-

gration, chemotaxis, haptotaxis), cell sorting (Cachat et al., 2014), and folding/

contraction (Ricotti et al., 2017). In addition to these morphological actuations,

contact-mediated signaling (Toda et al., 2018), biochemical signaling (White et al.,

2013, 2015), and bioelectric signaling (McNamara et al., 2018; Molitoris et al.,

2016) play an important role in tissue organization and communication. Given

these diverse cell actuators and communication mechanisms, spatial organization

can be controlled in a similar manner to simple electronic circuits using endoge-

nous (Libby et al., 2018a) and synthetic control (Toda et al., 2018) of these actua-
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tors and communication channels.

Agent-based models are well suited for predictively modeling multi-cellular

patterning since many population-scale behaviors, such as cell sorting, emerge

from changes in single-cell behaviors; in the case of cell sorting this can be dif-

ferences in cell-cell adhesion (Cachat et al., 2014; Libby et al., 2018a). These

morphological operators can be combined with complex cell logic by introduc-

ing gene knockdowns, gene activations, or synthetic gene circuits so that cells can

self-assemble into multicellular structures and tissue-like mimics.

Agent-based models can have very different mathematical formalisms and thus

must be evaluated carefully to accurately represent the relevant cell actuations

driving themulticellular patterning being investigated. Whenmodeling the role of

tissue mechanics (eg cell-cell adhesion, cell migration, cell shape, haptotaxis), the

most common ABMs frameworks are Cellular Automaton (Vaca-González et al.,

2017), Cellular Potts framework (Voss-Bohme, 2012), Vertex models, Cell Center-

based modelsi (this includes particle models and rigid body models), and hybrid

models that combine aspects of multiple ABM frameworks (Taylor et al., 2017).

Van Liedekerke et al. (2015) gives a comprehensive review of the strengths and

weaknesses of each agent-based modeling framework.

In combination with agent-based models, differential calculus is a common ap-

proach tomodel dynamics within cells, using Ordinary Differential Equations(ODEs),

andmodel the dynamics of communication between cells using Partial Differential

Equations (PDEs). The Reaction-Diffusion framework (Kondo & Miura, 2010) is a

popular approaches that unifies ODE and PDE frameworks to model single-cell

gene/protein dynamics (or reaction) with short and long range cell communica-

tion (via diffusion). By combining differential calculus with agent-based models,
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Figure 1.2: Actuators for Controlled Cell Patterning. Figure adapted fromDavies (2008).
It has been proposed that a relatively small set of morphological actuators can be combined
in different permutations to generate a wide range of synthetically engineered structures.
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researchers are able to explain patterning at multiple temporal and spatial scales

that can emerge from mechanical, biochemical, or bioelectric phenomena. In the

next section I describe computational approaches to identify and quantify images

of multicellular patterning simulations and experiments.

1.3 MULTICELLULAR PATTERN RECOGNITION

As computational modeling plays a more direct role in guiding in vitro multicel-

lular patterning, the amount of data, typically images, becomes a bottleneck in

gaining insights. Several types of pattern recognition metrics and algorithms exist

to differentiate 2D and 3D patterns and object. To design multicellular pattern-

ing, pattern recognitions metrics rapidly quantify if simulated or experimental

images/video matches a previously observed or desirable behavior.

With respect to recognizing patterns in multicellular systems there are three

common approaches: statistical image descriptors, unsupervised machine learn-

ing, and supervised machine learning machine learning. In Computer Vision,

image descriptors can describe elementary shapes, colors, textures (Nanni et al.,

2010), or motion in images or videos. Image descriptors typically produce a his-

togram or distribution of values that can be considered a ’fingerprint’ of the pat-

tern. Given this fingerprint several distance measures such as the Euclidean dis-

tance, Earth Movers Distance, Kullback Leibler Divergence, Jensen Shannon Di-

vergence, or other distance measures can be used to measure the distance between

an observed pattern and the desired pattern.

Machine learning algorithms allows computers to learn from data without ex-

plicitly being given the rules. Unsupervised machine learning approaches are uti-

lized when there are no labels describing how images should be grouped or clas-
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sified. Unsupervised learning can be used to discover groups of similar images

(clustering), project the image from a high to low dimensional space (dimension-

ality reduction) for visualization or simpler interpretation. Unsupervised learning

can also be used to estimate the distribution of pixel values in an image (kernel

density estimation). Supervised Machine Learning algorithms are utilized when

label are assigned to input data describing how samples should be grouped or la-

beled (Bishop, 2006). For example, labels can indicate if a image contains healthy

or cancerous cells. While Support Vector Machine(SVM) based classifiers have

been widely use to predict the phenotype of biological images (Bauer et al., 2011;

Campanini et al., 2004; Maglogiannis & Zafiropoulos, 2004), deep learning ap-

proaches are becoming increasing common for predicting phenotypes and recog-

nizing patterns in biomedical images (Long et al., 2014; Ciçek et al., 2016; Esteva

et al., 2017)

1.4 FORMALMETHODS FOR BIOLOGICAL PATTERN OPTIMIZATION

While traditional machine learning approaches are well suited for segmenting

biomedical images and recognizing patterns, in silico driven design of biological

patterning can also be addressed using formal methods approaches. Formal meth-

ods are mathematically based approaches to specify and verifying the behavior

of software and hardware systems. Formal methods have been used in diverse

applications such as specifying and verifying spatiotemporal behaviors of power

grids (Haghighi et al., 2015), or planning the motion of ground vehicles (Vasile,

2016). Formal methods utilize specification languages such as Linear Temporal

Logic (LTL) or Signal Temporal Logic (STL) to describe how behaviors of systems

change over time or space (Gol et al., 2014; Haghighi et al., 2015). These speci-
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fication languages can be combined with measures that describe the distance an

observation is from the specification.

This combination of specification and verification of the desired behaviors has

recently been applied to biological patterning (Gol et al., 2014; Briers et al., 2016).

In order to control biological pattern formation, the machine learning or statistical

measure of the pattern must produce a quantitative metric representing a notion

of distance between the observed pattern and the desired pattern. Pattern metrics

that produce a binary classification (’is a pattern’ or ’not a pattern’) do not allow

iterative refinement of design. With quantitative evaluations of complex specifica-

tions we can use previously developed tools from the formal methods community

to optimize biological patterns and shapes in silico.

1.5 OVERVIEWOF CHAPTERS

In the following chapter I develop computational models of multicellular mam-

malian systems and formulate pattern design as an optimization problem. My

research involves the application of formal methods rather than the development

of these approaches. In the chapters 2 and 3, I describe how agent-based mod-

els of multicellular patterning can be combined with formal methods to direct

self-organized multicellular pattern formation in human and murine stem cells.

I chapter 2, I model how CRISPR interference induced perturbations of cell-cell

adhesion, cell membrane stiffness, and cell locomotion produce emergent pat-

terning in large stem cell populations. I also demonstrate how a formal methods

based framework (Pattern Synthesis) of model driven design allows us to control

the location and early lineage commitment of pluripotent cells. This framework

can provides precise control of sub-populations during the development of stem
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cell-derived tissues and organoids. In chapter 3, I demonstrate how the Pattern

Synthesis framework can discover controls that push transient patterns observed

in murine stem cells into a steady state patterns. In Chapter 4, I developed a

computational model enabling the programmatic assembly of cells into 3D user-

defined structures. While chapters 2 and 3 focus on modeling dynamic patterning

of sub-populations, chapter 4 focuses on modeling the creating of geometric build-

ing blocks from cells, which in-turn self-assemble into a larger 3D structure.
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CHAPTER 2

Pattern Design Automation in Human Pluripotent Stem Cells

During the early stages of embryonic development, patterned self-assembly of

cells is essential for the organization of primitive germ layers, multicellular tissues,

and eventually complex organ systems (Montero & Heisenberg, 2004). Similarly,

human pluripotent stem cells (hPSCs) maintain the ability to self-organize, differ-

entiate to all three germ layers, and generate 3D organoids that replicate primitive

tissue structure and function (Bredenoord et al., 2017; Warmflash et al., 2014; Sa-

sai, 2013) hence, hPSCs provide a robust system to simultaneously observe, quan-

tify, predict, and ultimately control collective cellular behaviors (Pir & Le Novère,

2016). The ability to direct how heterotypic cell populations self-organize and co-

ordinately specify cell fate impacts many aspects of tissue engineering, including

the possibility of directing organogenesis via novel cell-intrinsic routes.

Several in vitro and in silico frameworks for multicellular patterning have been

developed, however the ability to predict and direct de novo multicellular orga-

nization has yet to be demonstrated. Previously, several groups (Molitoris et al.,

2016; Tewary et al., 2017; Warmflash et al., 2014) have observed radial organi-

zation of differentiated germ layers induced by restricting hPSC colonies to mi-

cropatterned islands, or have used molecular engineering of cell surface and/or

substrate properties to extrinsically control cell location and subsequent multicel-

lular patterning in vitro (Chandra Ravi A. et al., 2005; Hsiao et al., 2009; Moli-

toris et al., 2016; Toda et al., 2018). However, the resulting patterns either arise

spontaneously with limited control over organization, or are extrinsically driven

and override the mechanisms that regulate cell-intrinsic morphogenic assembly.

Theoretical in silico frameworks exist to computationally model multicellular or-
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ganization (Bartocci et al., 2016a; Briers et al., 2016; Sharpe, 2017) and automate

the design of non-spatial cellular logic (Nielsen et al., 2016). However, although

computational techniques can test general principles of biology in silico, it is typ-

ically difficult to directly map these models to specific in vitro mechanisms and

perturbations, making it challenging to systematically synthesize experimentally

tractable perturbations in silico that can be accurately reproduced in vitro.

In this study, we paired quantitative experimental perturbations of human

induced pluripotent stem cells (hiPSCs) with computational modeling, machine

learning, and optimization to facilitate a closed loop cycle of in silico hypothesis

generation that could be experimentally validated in vitro. To predict multicel-

lular pattern formation, we combined a multi-scale Cellular Potts model (Graner

& Glazier, 1992; Krieg et al., 2008; Magno et al., 2015; Marée et al., 2007; Ouchi

et al., 2003; Pir & Le Novère, 2016) of mechanically driven cell sorting with an

automated machine learning and optimization procedure, referred to as Multicel-

lular Pattern Synthesis (Bartocci et al., 2016a; Briers et al., 2016), that consisted

of four steps (Fig. 1). First we created a computational model of observed hiPSC

self-organization that quantified collective stem cell dynamics and captured how

targeted changes in sub-populations of cells affected stem cell colony patterning.

Second, a supervised machine learning classifier was then trained to quantify pat-

tern similarity using images from our computational model. Third, we employed

mathematical optimization, using Particle Swam Optimization (PSO), to simulate

thousands of potential designs and discover experimental conditions that produce

specified patterns in in silico simulations. Finally, we found that treating hiPSCs

with the in silico predicted conditions resulted in the formation of the desired

pattern formations in vitro, validating the system. Furthermore, directed multi-
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cellular patterning led to predictable spatial differentiation of hiPSCs to different

germ lineages.

2.1 PATTERNSYNTHESIS: IN SILICOPREDICTIONANDAUTOMATEDDIS-

COVERY OF SPATIAL BEHAVIORS

To observemulticellular pattern formation, we used a previously established hiPSC

line with a DOX inducible CRISPRi system, allowing for temporal gene knock-

down (KD)whereinmixed populations establish KD in only a portion of the colony,

creating a symmetry breaking event and subsequent pattern formation (Libby

et al., 2018a; Mandegar et al., 2016). However, the generation of new patterns

in a predictable manner requires the ability to test large numbers of experimental

conditions that would require a massive amount of time and manual effort to com-

prehensively test the vast number of experimental parameters possible. For exam-

ple, considering only a single gene KD where KD timing, length of experiment,

degree of KD, and proportion of the population that displays the KD are varied,

over 5000 experimental conditions are necessary to combinatorially test the effect

of that KD. Alternatively, a machine learning and optimization algorithm, such

as Pattern Synthesis (Bartocci et al., 2016a; Briers et al., 2016), can automatically

and efficiently discover experimental conditions and robustly predict the de novo

self-organization of hiPSCs into desired target patterns.

Pattern Synthesis required two inputs: a model of hiPSC behavior, and images

of the desired pattern (i.e. goal) outcomes. First, we developed a computational

model of hiPSC colony organization as a result of a single gene KD (Fig. 2.1A).

Next, we generated images of desired and undesired spatial patterns to train a

machine learning algorithm that establishes a pattern classifier with a quantita-
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tive metric of pattern similarity (Fig. 2.1B) (Bartocci et al., 2016a; Haghighi et al.,

2015). Given these inputs, we formalized pattern discovery as an optimization

problem where the objective was to maximize the similarity score of images from

our computational model to our desired spatial pattern (Fig. 2.1C). The variation

between different simulations was based upon five categories of in vitro perturba-

tions that could be readily created in hiPSC colonies (Fig. 2.1D).
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Figure 2.1: Pattern Design Automation.
Pattern Design Automation is an computational framework to predict and control multi-
cellular spatial patterning. A) The first input to pattern synthesis is a computational model
of mechanically driven spatial patterning in iPSC colonies. Five parameters of the compu-
tational model map directly to perturbations that can be made by experimentalists, and
the output of the model was a series of images. B) The second input to pattern synthesis
in a trained image classifier that produces a numerical score indicating the similarity of
an image to the desired pattern class. In this scenario our desired pattern was a Bullseye
pattern. C) Given the parameterized model and pattern classifier, Particle Swarm Op-
timization was used to explore parameter combinations, which map directly to in vitro
perturbations, in order to identify the optimal conditions to produce the desired pattern
in silico. D) Given the recipe of perturbations suggested by parameter optimization, we
validate the control strategy is able to produce the desired pattern in vitro.
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2.2 COMPUTATIONALMODEL OF HUMAN PSC SELF-ORGANIZATION

Several different experimental and computational studies support the vital role

of local cell-cell mechanical interactions in spatial patterning. Most notably, dif-

ferences in cell-cell adhesion (Foty & Steinberg, 2005; Jia et al., 2007; Steinberg,

1975), cell-cell repulsion (Taylor et al., 2017), and cortical tension (Brodland, 2002;

Krieg et al., 2008) have been shown to orchestrate spatial organization in diverse

organisms such as Dictyostelium discoideum (slimemold) (Kay & Thompson, 2009;

Palsson, 2008), Danio rerio (zebrafish) (Merks et al., 2008), and in human cells

(Bentley et al., 2014; Toda et al., 2018). However, it is challenging to both predict

and control spatial patterning in human iPSCs since the design of multicellular

systems rapidly increases in complexity when considering the dynamics of sin-

gle cell mechanics and cell-cell interactions. These dynamics include, but are not

limited to, temporal changes in cell-cell adhesion and cortical tension associated

proteins, cell type abundance, cell division, and cell migration velocities.

To capture the complex dynamic interactions involved inmulticellular pattern-

ing, we developed a data-driven Cellular Potts Model (CPM) to predict spatial pat-

terning in hiPSCs due to the time-dependent modulation of cell-cell adhesion and

cortical tension (Supplementary Text). The Cellular Potts Model (CPM) represents

the spatial environment of stem cells grown in a monolayer using a 2D square lat-

tice grid (Fig. 2.1A). Each square region in the grid (i.e. a lattice site) is equal to

1 square micrometer, hence each lattice site represents a partial region of a cells

membrane or the medium surrounding a cell. A cell ID is assigned to each lat-

tice site to identify the region of a cell that occupies a lattice site. For example,

100 lattice sites each having a cell ID equal to 1 represent a single stem cell with

an area of 100 square micrometers. Complex behaviors such as preferential cell-
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cell adhesions, cortical tension, and cell migration, are achieved by copying lattice

sites to adjacent regions, which in the CPM is known as a copy attempt. Each

copy attempt is accepted with a probability related to a Hamiltonian function (SI

Equations 3-5). The Hamiltonian function is the sum of four competing forces

influencing intracellular behaviors and cell interactions with the environment: 1)

conservation of cell area, 2) locally polarized cell migration, 3) cell-cell adhesion,

4) and cortical tension (SI Equations 5-10). Every competing force is represented

by a score and a weight, where the score represents a reward or penalty depending

on the divergence of a cell from its target behavior, while the weight represents the

relative importance of the respective cell behavior.

Briefly, using the CPM, we modeled an in vitro system consisting of two popu-

lations of iPSCs co-cultured for up to 120 hours. The model incorporates numer-

ous biological parameters, such as cell area conservation, cell proliferation, cell-

cell adhesion, intracellular cortical tension, cell migration, and time-dependent

modulation of properties implicated in cellular organization as a result of mosaic

KD. To connect the in silico model to potential genetic targets for in vitro exper-

imental manipulation, we focused on modeling changes in cell-cell adhesion via

E-cadherin (CDH1) and changes in cortical tension via Rho associated coiled-coil

containing protein kinase (ROCK1) levels. CDH1 is a classical cadherin cell-cell

adhesion molecule, whose modulation allows for changes in the adhesive inter-

actions between neighboring cells, and ROCK1 is a protein kinase that regulates

non-muscle myosin activity and indirectly modulates the actinomyosin cytoskele-

tal tension within and between cells.

To fit the in silico model to an in vitro experimental training set, pairwise in

vitro characterization experiments were performed to determine the relationship
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between space, time, and protein expression (Fig. 2.2A) in wildtype (WT), CDH1

KD and ROCK1 KD hiPSCs. These relations were established by in vitro mea-

surements of single cell morphological changes (Fig. 2.S1), migration velocities

(Fig. 2.2B-D), protein expression changes (Fig. 2.2E-G), and colony organization

(Fig. 2.2H-I) before and after mosaic KD of CDH1 and ROCK1 in hiPSC colonies.

The purpose of these characterization experiments was two-fold: 1) to reduce the

complex interactions into quantifiable relationships, 2) and to create a closed-loop

mapping between in vitro perturbations and in silico simulation parameters.

To characterize cell morphology, brightfield images of wild-type (WT), CDH1(-

), and ROCK1(-) cells were collected 144 hours after gene knockdown. Single cell

in vitro cell area and membrane length measurements (Fig. 2.S1) were acquired to

set the target cell area and target cortical tension in the simulations, respectively.

In the CPM, the weight associated with the cortical tension constraint regulates

how readily a cell can change its cell membrane length and relates to cell mem-

brane stiffness. Due to differences in cell crowding in the center versus the edge of

colonies, cell morphology measurements were fixed given a cells mechanical mod-

ulation and its radial position in the colony (Table 2.S1, Fig. 2.S1). Cell division

was assumed to be asynchronous amongst the population, and cell division times

specific to each type of knockdown were incorporated into the model to provide

an accurate depiction of population growth kinetics.

The relationship between cells in space with respect to time was characterized

by measuring the in vitro distribution of individual cell velocities, resulting in an

empirical median velocity of 0.29 +/- 0.17 m/minute (Figs. 2.2B, 2.2D). The dis-

tribution of velocity values was then used to model collective cell migration as

locally polarized motility where the direction of cell migration is influenced by
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the relative cell adhesion strength of neighboring cells (Czirók et al., 2013; Szabó

& Merks, 2013). Cell-cell adhesion and cortical tension parameters for WT cells

were selected to mimic the in vitro velocity measurements, producing a compara-

ble distribution with a median in silico velocity of 0.31 +/- 0.12 m/minute (Figs.

2.2C, 2.2D). Importantly, the in silico generated velocity distributions were not sig-

nificantly different from the in vitro measured velocities (Mann-Whitney U test, p

= 0.05). An additional requirement that individual cells remained part of dense

epithelial colonies without migrating from the exterior borders was also imposed

to match the hiPSC phenotype observed in vitro. After fitting the model to em-

pirical data of cell morphology and velocity, single cell morphology and collective

cell migration of human iPSC colonies were accurately recapitulated.

To examine the relationship between protein expression time, CDH1 and ROCK1

were knocked down using CRISPRi, and the relative mRNA and protein expres-

sion was assessed for 6 consecutive days via qPCR, fluorescence microscopy, (Fig.

2.2E, Fig 2.S2) and western blot analyses (Libby et al., 2018a). Due to our pre-

vious observation of the phenotypic robustness of CDH1 knockdown in promot-

ing cell self-organization (Libby et al., 2018a), we designed several CRISPRi guide

RNAs to target CDH1 producing different levels of transcriptional knockdown at

10%, 25%, 30%, and 98% compared to WT expression. A single guide RNA for

ROCK1 knockdown was used to achieve 80% knockdown of WT expression lev-

els (Fig. 2.7). The data was normalized (min-max [0,1]), and using least squares

optimization, Hill Functions were fit to the normalized median expression (per

day) to create a time-dependent response function for CDH1 knocked down to

90%, 75%,70%, and 2% of the original mRNA expression (Fig. 2.2F). This range

of knockdown efficiency allowed us to computationally model how differing levels
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of CDH1 expression could impact spatial patterning. Using the same approach as

the CDH1 knockdown, we created a Hill response function for ROCK1 knocked

down to 20% mRNA expression. Because of a delay in protein knockdown com-

pared to mRNA levels, the Hill functions were shifted by 24 hours to account for

the delay in protein loss (Fig. 2.2G), allowing us to model the average change in

ROCK1 protein expression for individual cells over time.

Given the previous characterization experiments, we were able to model collec-

tive cell migration and temporal changes in cell mechanics. To model the spatial

patterning due to the temporal modulation of cell-cell adhesion via CDH1 or cor-

tical tension via ROCK1, either inducible ROCK1 knockdown or inducible CDH1

knockdown iPSCs were co-cultured withWT iPSCs, where knockdown of gene ex-

pression was induced upon mixing the two cell types. Then, images of the mixed

populations were collected 96 hours after gene knockdown and co-culture. As

previously reported (Libby et al., 2018a), mixed colonies with a subpopulation of

cells that had reduced CDH1 or ROCK1 expression produced distinct mosaic pat-

terns due to reduced cell-cell adhesion and increased membrane stiffness proper-

ties respectively (Figs. 2.2H-I (left)). In silico, parameter sweeps were run over

a range of adhesion strength and membrane length values to explore the pheno-

typic space resulting from decreases in cell-cell adhesion and increases in mem-

brane stiffness. Computationally varying the adhesion strength produced a vari-

ety of spatiotemporal patterns due to progressively weaker cell-cell adhesion or

progressively stiffer cell membrane parameter values. Double-blind analysis of in

silico and in vitro generated data sets was then conducted to identify parameters

that yielded closely matching multicellular patterns (Figs. 2.2H-I (right)). Given

the characterization experiments of cell morphology, cell migration velocity, time-
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dependent modulation of cell mechanics, and the resulting spatial organization,

the computational model was able to recapitulate the spatial patterning due to the

CDH1 and ROCK1 knockdowns.

Overall, after incorporating in vitromeasurements into our computationalmodel,

we accurately recapitulated hiPSC spatial patterns with the initial experimen-

tally derived parameters in mixed colonies of WT and CDH1 KD cells or WT and

ROCK1 KD cells (Libby et al., 2018a). The full detailed description of the charac-

terization experiments is outlined in the methods subsection.
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Figure 2.2: Pairwise experiments to characterize dynamic changes in spatiotemporal
behaviors.
A) We characterize cell behaviors in a pairwise manner to reduce the complexity of pos-
sible interactions. B) We performed paired in vitro and C) in silico experiments to match
the velocity distributions of iPSCs. D) The grey violin plot represents the distribution of
in vitro velocities, while the cyan violin plot represents the distribution of in silico veloc-
ities. Using the Mann-Whitney U test, there was no statically significant difference in cell
velocity ( p value < 0.05). E) Representative images of DOX inducible modulation of pro-
tein expression. F) We used Hill Functions to mathematically model CDH1 knockdown
over time from quantification of mRNA by qPCR and then adding a 24h delay to account
for protein production. Grey circles represent the normalized median expression 0-6 days
after CDH1 knockdown. Error bars represent 1 standard deviation from the median. G)
A Hill Function to model ROCK1 knocked down. H) Paired in vitro and silico images of
spatial patterning 96 hours after CDH1 knockdown in a subpopulation of cells (blue). I)
96 hours after ROCK1 knockdown in a subpopulation of cells (red).
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Design Parameter Parameter Domain

Cell Line 1 (CL1) CDH1-0, CDH1-70, CDH1-75, CDH1-90, ROCK1-20, WT
Cell Line 2 (CL2) CDH1-0, CDH1-70, CDH1-75, CDH1-90, ROCK1-20, WT
Knockdown Time of CL1 [-120 hours, 120 hours]
Knockdown Time of CL2 [-120 hours, 120 hours]
Abundance of CL2 [.05, 0.95]

Table 2.1: List of design parameters that map to experimental perturba-
tions. CL1 and CL2 are chosen from our library of mechanically tunable
cell lines: CDH1-0, CDH1-70, CDH1-75, CDH1-90, ROCK1-20,Wildtype.
The number following the cell line indicates the relative expression of the
gene in comparison to WT. The knockdown times of CL1 and CL2 range
from 120 hours before co-culture to 120 hours after co-culture in 24 hour
increments. Finally, the abundance of CL2 cells in relation to CL1 can be
vary from 5 percent to 95 percent of the colony in increments of 5 percent.

2.2.1 Formulating Parameters for Design Automation

Given the success of the computational model to accurately recapitulate hiPSC

spatial patterns with the initial experimentally derived parameters, five new de-

sign parameters were introduced to simulate in vitro experimental perturbations.

While the previous sections describe the typical model parameters tomatch the be-

havior of a computational model to experimental data, design parameters allowed

us to mimic changes in experimental design by human experimenters. The five

design parameters are: the gene knockdown target of the first cell type, the knock-

down time for cell type 1, the gene knockdown target of cell type 2, the knockdown

time for cell type 2, and the ratio of the distinct cell types (Table 2.1). These addi-

tional design parameters allowed us to advance past simply recapitulating known

patterns to quantitatively predict novel spatiotemporal self-organization behav-

iors of hiPSCs.
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2.3 QUANTITATIVE PATTERN CLASSIFICATION

The second input to the Pattern Synthesis procedure was a supervised image clas-

sifier known as Tree Spatial Superposition Logic (TSSL) (Bartocci et al., 2016a).

TSSL uses a quadtree data structure to represent spatial relationships in an im-

age at multiple levels of detail, where the highest level captures global aspects

of an image, while the lower levels capture local spatial relationships (Fig. 3A-

B) (Bartocci et al., 2016a; Finkel & Bentley, 1974; Jackins & Tanimoto, 1983). A

rule-based machine learning algorithm (RIPPER) (Cohen, 1995) was employed to

automatically learn a set of rules over the values of quadtree vertices specific to an

in silico training set of 3,000 positive and 13,000 negative manually rendered im-

ages of cells precisely organized into target patterns, such that a quantitative score

of pattern similarity could be assigned to any image from the associated quadtrees

(See Appendix A). The magnitude of the similarity score, which can range from -1

to +1, indicates how strongly a simulation image matches (positive scores) or vio-

lates (negative scores) the target spatial behavior. Use of a TSSL robustness score

replaces qualitative manual observation of simulation images with a quantitative

score of pattern similarity (Fig. 2.3C). By quantifying how well images from an

in silico multicellular arrangement matched images of our target organization, we

enabled the optimization algorithm (described in the next section) to incremen-

tally improve and learn a unique combination of design parameters that could

give rise to a desired goal pattern.
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Figure 2.3: Quantitative Pattern Classification with TSSL.
A quadtree is used to represent an image at multiple levels of detail. A-B) Shows a rep-
resentative quad tree for an example image. An image A) is subdivided into sequential
quadrants until the color value of the quadrant is one singular color. Both the values and
branches of the tree are specific to each image. C) Given a quadtree representation of a tar-
get image, TSSL produces a numerical score corresponding to the similarity of an image
to the desired target image.

2.4 AUTOMATED DISCOVERY OF PATTERN PRODUCING CONDITIONS

The mathematical model presented in Section 1 allows us to simulate more than

40,000 distinct parametric conditions and study the emerging behaviors of hiP-

SCs much faster than in vitro experiments. Distributing the computation over 12

processors at 2.1 GHz on a server cluster, it only took approximately 5 minutes

to simulate the evolution of one cell population over 120 hours, thereby making

it possible to perform over 1300 in silico experiments in the same time required

for a single in vitro experiment. The speed of simulation allowed us to examine a

wide range of different experimental conditions in a rapid and inexpensive man-

ner. However, due to the tens of thousands of experimental conditions to consider
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and the resulting months of computation for such a large number of simulations,

it is quickly becomes impractical to simulate every possible set of conditions to

identify parameter combinations that yield the highest robustness score(s). Thus,

to more efficiently explore distinct combinations of design parameters, we em-

ployed Particle Swarm Optimization (PSO) . Given the TSSL pattern classifier and

the parameterized model of cell sorting, Particle Swarm Optimization (PSO) was

used to identify the optimal set of conditions to produce the desired spatial pat-

terning.

Early development is dependent on a range of different cell patterning events

for proper germ layer specification, neural tube formation, limb bud generation

etc. that would be beneficial to mimic in an in vitro setting. We decided to first

attempt a concentric ring (i.e. Bullseye) pattern, defined as one population of

50 or more connected cells completely surrounded by a second population (Fig.

2.4A). The annular Bullseye pattern was chosen because similar asymmetric cell

organization occurs multiple times in human development, such as during early

embryo compaction leading to the formation of the inner cell mass in the human

blastocyst. We also set a secondary target of Multi-Island goal patterns, consist-

ing of at least three distinct clusters of 25 or more cells completely surrounded

by a separate larger population (Fig. 2.4B), which is reminiscent of embryonic

hematopoiesis during blood islet generation in the developing liver. We explored

five independent experimental conditions that directly influenced the appearance

of spatial patterns in 100 cell heterotypic colonies of human iPSCs after 120 hours

of co-culture. These 5 experimentally tunable conditions, previously described as

design parameters, are listed in Table 2.1.
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Figure 2.4: Computational synthesis of de novo spatial patterns and in vitro validation
A-C) Schematics of example target patterns given as classifiers in the machine learning
pattern synthesis process. D-F) Parameters produced by Pattern Synthesis that predict the
creation of the desired patterns: Bullseye, Island, Janus. G-H) Comparisons of patterns
predicted in silico and the resulting patterns seen in vitro. Pluripotent colonies labeled for
DAPI (blue) and CDH1 (red/orange) to distinguish populations. TSSL robustness scores
show how well a simulation matches or in vitro experiments match the specification. I-J)
Successful pattern creation rates, comparing in silico to in vitro results (Bullseye n = 286
colonies, Multi-Island n = 168 colonies).
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To find the optimal conditions that yielded target spatial patterns, we auto-

mated the design of our experimental conditions. TSSL classifiers were trained

from an initial in silico training set consisting of 3,000 positive and 13,000 negative

examples for either target pattern (Bullseye or Multi-Islands) individually. The

classifiers were tested on an independent in silico set of 1,000 positive and 5,000

negative examples with a 98.2 percent classification accuracy for the Bullseye and

96.9 percent classification accuracy for the Multi-Islands pattern, demonstrating

that the automated classifiers could reliably detect and distinguish between de-

sired and undesired spatial patterns. Given the classifier for each pattern and the

parameterized model of cell sorting, PSO was used to determine the parameteriza-

tion of the model for the highest robustness score with respect to each pattern. In

order to accommodate the stochastic nature of the simulations, the average robust-

ness score for three distinct simulations was computed for any fixed set of param-

eter valuations. The PSO algorithm was able to determine optimal parameters for

each type of pattern within 20 iterations (equivalent to 2,160 simulations), requir-

ing approximately 8 consecutive days of parallel computation on 12 processors at

2.1 GHz for each pattern. For any in silico simulation that generated a successful

pattern (Fig 2.S6), a time course of the simulation was evaluated to demonstrate

the TSSL score improved by at least one order of magnitude and reached a steady

state (Fig 2.S7). Analyzing the temporal dynamics of robustness scores (pattern

similarity scores), provided insight into the exact time a pattern emerged in silico,

and optimized design parameters for target patterns that did not perfectly match

our specification, but still resembled the desired spatial behavior.

In addition to automating the design of de novo spatial patterns, we could also

determine the feasibility of any spatial pattern given the tunable conditions in
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our system. It is noteworthy that the resulting robustness score can be negative

(violating the pattern specification), indicating that the cell population is unable

to perfectly recapitulate the desired spatial behavior. For example, the PSO al-

gorithm was able to determine that a perfectly symmetrical Janus pattern (left-

right) was not achievable with the primary experimental variables (i.e. timing of

CDH1/ROCK1 knockdowns and the ratio of cell types co-cultured in an approxi-

mately 2D monolayer). (Fig. 2.4C).

2.5 IN SILICO MODEL ACCURATELY PREDICTS IN VITRO EXPERIMEN-

TAL VALIDATION

The Patterning Synthesis algorithm yielded different sets of instructions to pro-

duce either a Bullseye pattern or a Multi-Island pattern of hiPSCs (Fig. 2.4D-F).

The Pattern Synthesis predicted that a mixture of 1:4 ROCK1 KD iPSCs to CDH1

KD iPSCs that were independently pretreated with DOX for 6 days prior to mixing

and cultured together for 4 days was needed in order to achieve a Bullseye pattern

(Fig. 2.4D). In contrast, to generate Multi-Island patterns, the Pattern Synthesis

predicted that a mixture of WT cells with CDH1 KD at a ratio of 1:4 with DOX

pretreatment of iPSCs for 48h prior to mixing (Fig. 2.4E).

Based on these predictions, in vitro experiments were performed using the ex-

act specified conditions and the incidence of pattern formation was independently

analyzed for in silico and in vitro results. We characterized the morphology of in

silico and in vitro generated patterns by interrogating subpopulation cluster cir-

cularity, number of clusters, and cells per cluster within the colony (Fig. 2.S8). The

in silico model predicted that under these conditions a Bullseye Pattern would be

obtained about 12 percent of the time and a Multi-Island Pattern achieved 100
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percent of the time (Figs. 2.4I, 2.4J). We attained comparable results from our in

vitro experiments where we obtained a bullseye in about 16 percent of the in vitro

experiments run (Figs. 2.4G, 2.4I). Whereas Multi-Island Patterns appeared about

87 percent of the time in the in vitro experiments (Figs. 2.4H, 2.4J).

In addition, TSSL robustness scores were generated for both the in silico and in

vitro experiments. The TSSL robustness scores demonstrate that the optimal bulls-

eye and islands patterns have large robustness scores in comparison to their re-

spective control images (at least an order of magnitude difference). It is important

to note that the TSSL classifier scores are highly comparable only when they are

calculated in the same setting; thus, a simulation vs a simulation control is quite

comparable whereas an in silico simulation vs an in vitro experimental image will

inherently differ to some extent. Image classification in different environments is

a well-known limitation of machine learning algorithms , yet we could still use the

previously discussed spatial metrics (i.e. cell cluster number, size, circularity) to

directly compare simulation and experimental images and quantitatively establish

improvements in pattern formation from the control experiments in an unbiased

manner.

Notably, the in vitro experimental results were more variable and yielded a

wider range of experimental results. The difference between in silico and in vitro

could be due to the biological variability involved in wet lab experimentation.

Additionally, the model only accounted for genetic manipulation of CDH1 and

ROCK1 and did not take into account possible stochastic differences in cellular

gene regulation, which may cause subtle variations in cellular behavior that the

model would be unable to predict in silico. However, overall, these results demon-

strate that in silico modeling could accurately classify and predict novel pattern
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formation achieved by hiPSC self-organization in vitro.

2.6 COLONYORGANIZATION IMPACTS PATTERNSOF IPSCDIFFERENTI-

ATION

During human development, cell autonomous pattern formation is intimately cou-

pled with cell fate decisions that altogether lead to complex tissue structures.

However, current methods offer limited control over multi-lineage differentia-

tion of PSCs and multicellular organization of the differentiating sub-populations.

Therefore, we interrogated how the experimentally generated multicellular pat-

terns predicted by the computational modeling affected subsequent human iPSC

differentiation. We examined the initial cell fate commitment after treatment with

BMP4 (Fig. 2.5A), where cells remain either OCT4(+) or SOX2(+) before differenti-

ating to mesendoderm or ectoderm, respectively. In this case, an OCT4(+)SOX2(-)

cell indicating a cell that has begun to differentiate toward the mesendodermal lin-

eage and a OCT4(-)SOX2(+) cell indicating a cell that have begun to differentiate

toward the ectodermal lineage (39). WT control cell colonies displayed a radial dif-

ferentiation pattern with OCT4(-)SOX2(+) cells occupying the center region while

cells at the edges of the colony were OCT4(+)SOX2(-), similar to previously pub-

lished reports (3,7). A similar radial pattern was maintained in pure ROCK1 KD

cell colonies, although the area of OCT4(-)SOX2(+) cells was expanded compared

to theWT and the observed colonies were dome shapedwith greater vertical height

than the WT colonies. Interestingly, pure CDH1 KD iPSCs lost the radial differ-

entiation pattern in fate specification exhibited by the WT control and ROCK1

KD cells. In contrast to the ROCK1 KD cells, pure CDH1 KD cells had a reduced

amount of OCT4(-)SOX2(+) and maintained similar z-dimension heights to the
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WT colonies. The loss of the radial differentiation phenotype indicated that CDH1

potentially regulates position sensing of individual hiPSCs within the larger con-

text of cohesive colonies. In the differentiating Bullseye colonies, the mixed popu-

lations behaved similar to their respective pure KD populations. The ROCK1 KD

population at the center of the Bullseye had a larger OCT4(-)SOX2(+) population

and displayed equivalent heights in the z-plane as seen in the pure ROCK1 KD

populations. Similarly, the surrounding CDH1 KD population in the bullseye pat-

terns lost radial symmetry and displayed uneven differentiation patterns similar

to the pure CDH1 KD colonies (Fig. 2.5B). Thus, the genetic manipulations used

to control multicellular organization were also indicative of the resultant differen-

tiation phenotype of the patterned colony.
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Figure 2.5: Differentiation of Patterned colonies
A) Schematic of two day differentiation induced by addition of BMP4 to cell culture media.
B) Tiled confocal images of pure population control differentiations followed by Bulls-
eye pattern differentiation stained for OCT4 (purple) and SOX2 (green) expression. In-
serts show z-dimension where the height of the colony varies between the Wildtype and
CDH1 knockdown (KD) colonies and the ROCK1 knockdown (KD) and Bullseye patterned
colonies (45um vs 75um respectively).

2.7 DISCUSSION

Cell-intrinsic patterning of multicellular stem and progenitor populations is a

critical feature of morphogenic events that occur throughout early development

(Deglincerti et al., 2016; Ducibella & Anderson, 1975; Montero & Heisenberg,

2004; Sasai, 2013). Thus, systems in which multicellular organization can be ro-

bustly controlled and perturbed will help to elucidate key mechanisms in develop-

ment and symmetry breaking events. Currently, the study of symmetry breaking

events often involves the manipulation of cell extrinsic factors, for example, vary-

ing morphogen gradients (Demers et al., 2016; GeunChung et al., 2005), changes
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in substrate patterning (Hsiao et al., 2009; Théry et al., 2006) and/or the creation of

restrictive boundary conditions (Tewary et al., 2017; Théry, 2010; Warmflash et al.,

2014). In contrast, attempts to influence patterning events using synthetic biology

approaches often rely on implementation of an artificial circuit that uses reac-

tion diffusion gradients to establish multicellular patterns (Greber & Fussenegger,

2010; Sohka et al., 2009).

In this study, we demonstrate the induction of active multicellular organization

through controlled perturbation of intrinsic cell mechanisms without imposing

exogenous boundary conditions. We developed a computational model capable of

predicting empirically testable molecular perturbations to generate desired mul-

ticellular spatial patterns in hiPSC colonies. Using agent-based model predictions

of spatiotemporal pattern formation, we were able to predict and achieve new pat-

terns in silico and in vitro without using extrinsic patterning methods (i.e. hydro-

gels, micropatterning). Optimized design parameters achieved desired organiza-

tion of cells within a colony, and promoted the expected initial mesendoderm or

ectoderm lineage fates. Ultimately, these results demonstrate that machine learn-

ing and mathematical optimization enable predictive and controlled spatial self-

organization in heterogeneous populations of pluripotent cells, which is a critical

initial step for hiPSC self-assembly prior to lineage commitment and subsequent

organoid and tissue formation.

Previous attempts to pair computationalmodels with experimental morphogenic

systems have been largely observational and rarely demonstrate the ability to de-

sign phenotypes in silico that can be recapitulated in vitro. In this study, both the

in silico and in vitro aspects can be adapted to additional parameters, truly taking

advantage of machine learning and optimization to generate desired multicellular
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patterns. With respect to extending in vitro perturbations, CRISPR technology can

be adapted to repress or activate any accessible genes related to cell patterning and

organogenesis. As additional biological parameters are considered, we can quan-

titatively characterize the effect on cell patterning, and the in silico model can be

refined to take those factors into account (Briers et al., 2016;White et al., 2015), en-

abling interrogation beyond cell mechanics and into other realms of cell-cell com-

munication such as paracrine signaling gradients and gap junction connectivity

(Glen et al., 2018; White et al., 2013). Ultimately, the combination of agent-based

modeling, machine learning, and directed symmetry breaking provides a novel

route to engineer complex multicellular tissue structures that go far beyond sim-

ple observation of pattern formation, and facilitate targeted mechanistic studies

that address fundamental principles of development and morphogenesis.

2.8 MATERIALS ANDMETHODS

2.9 AGENT-BASEDMODEL OF CELL SORTING

We modeled the mechanical properties of interacting human induced pluripotent

stem cells (hiPSCs) with an extended Cellular Potts Model (CPM). In the model

of mechanically driven self-organization in hiPSCs, cell-cell interaction mechanics

were explained by four physical properties of cells. 1) cell-cell adhesion, 2) cortical

tension, 3) conservation of volume, 4) and directionally persistent cell migration

(Magno et al., 2015). Below, we describe how the extended CPM was used to reca-

pitulate spatiotemporal patterns and predictively design de novo spatiotemporal

behaviors.
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2.9.1 Cellular Potts Model Environment

We defined the environment of a CPM simulation S on a 2D square lattice domain

S ∈ Z+
2. Each lattice site, x = (m,n) ∈ S, represented a coordinate location where

m ∈Z+ and n ∈Z+ were the horizontal and vertical coordinates of each lattice site

respectively. The spatial resolution of each lattice site was 1µm2.

To represent the location of hiPSCs, each lattice site x was assigned a value σx,

conventionally called the spin or cell index of a site, from the set of cell indices

k ∈ K given K = {1, ...,N (t)}where N (t) was the number of cells in the simulation at

time t. Lattice sites that represent empty space where there is no hiPSC covering

the lattice site were assigned a cell index of 0. In the CPM, a stem cell Ck was

composed of multiple lattice sites. A stem cell Ck was defined as the set of lattice

sites with the same cell index Ck = {x ∈ S : σx = k}. Since a single cell was composed

of multiple lattice sites, the CPM was able to capture fluctuations in a cell’s shape

with a granularity that is not possible with Type A cellular automaton or center-

based models (Van Liedekerke et al., 2015) Each cell was also assigned a cell type

τ that determined its intracellular and extracellular behaviors.

Next, we summarize two common metrics to describe cell morphology in a

CPM simulation; cell area and cell membrane length. These metrics are important

since their values in the model were directly measured from microscopy images.

For a discussion of these metrics see (Magno et al., 2015; Voss-Bohme, 2012).

Given that each lattice site had an area of 1um, the area of a cell at time t in the

simulation was defined as the number of lattice sites encompassed by a cell:

ak,t = |x ∈ S : σx = k|, (2.1)
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where | · | denoted the cardinality of a set. The time varying membrane length

of a cell pk,t, synonymously called the perimeter or surface length in other stud-

ies (Magno et al., 2015; Voss-Bohme, 2012), was defined as the number of lattice

interfaces bordering other cells or empty space:

lk,t = 0.5×
∑

interf aces{x,x′}
δ(k,σx), (2.2)

where x′ represented any of the lattice sites adjacent to x, (m±1,n)∨(m,n±1) in 2D.

The Kronecker symbol δ was defined by δ(u,v) = 1 if u = v and δ(u,v) = 0 if u , v.

An interface (x,x′) was a shared border between lattice sites. To avoid counting

adjacent lattice sites inside a cell, the CPM only summed interfaces between lattice

sites with different cell ID’s; when δ(σx,σx′ ) = 0. Put simply, we were measuring

the perimeter of each stem cell.

2.9.2 Cellular Potts Model Dynamics

The CPM used a function called theHamiltonian H to describe the energy for any

configuration of cells. Cell motility evolved by choosing a random lattice site x, a

region of a cell-cell interface or a cell-media interface, and attempted to copy it to

a random neighboring lattice site x
′
. The Hamiltonian was defined as the sum of

four constraints that represent four physical properties of simulated stem cells: 1)

conservation of cell area, 2) locally polarized cell migration, 3) cell-cell adhesion,

4) and cell membrane length which commonly represents cortical tension. In the

CPM, the goal was to minimize the Hamiltonian or minimize violations of the de-

sired cellular behaviors. Therefore, each constraint calculated a decrease (reward)

or increase (penalty) in the configuration energy due the collective properties of

cells in the simulation. When a change in a lattice site was proposed, this affects
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H . If the proposed change was accepted, the change in H was defined as △H . A

proposed change for a cell’s lattice site was accepted with the following probabil-

ity:

if△H < −Y ,P (σ → σ ′) = 1 (2.3)

otherwise,P (σ → σ ′) = e−(△H+Y )/T ), (2.4)

where the yield Y = 0.1 and the temperature T = 10. Simply, if the proposed

change in local cell position resulted in less energy, then the change was accepted.

If the proposed update would have resulted in greater energy (∆H), then the

change was only accepted with a very low probability.

CPM Configuration Energy: The free energy for a configuration of cells was

defined as the sum of four constraints: local cell-cell/cell-ECM adhesion, cell area

conservation, cell membrane length, and locally polarized cell migration:

H =Hadhesion +Harea +HmembraneLength +Hmigration (2.5)

For a configuration of cells, the free energy due to cell adhesion was

Hadhesion =
∑
k∈K

Jτ(σx),τ(σx′ )(1− δ(σx,σx′ )), (2.6)

where Jτ(σx),τ(σx′ ) represented the cell adhesion strength between lattice sites σx and

σx′ that was defined by their cell type τ(σx′ ). (1−δσx,σx′ ) restricted these calculations

to interfaces between cells instead of all lattice sites, and improved the efficiency

of the simulation (Starruß et al., 2014). Although not explicit in our notation,

the cell adhesion strength was a time-dependent function controlled by protein
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expression. The energy due to cells resisting changes from their resting area was

defined as

Harea =
∑
k∈K

λa(ak,t −Ak,t)
2, (2.7)

where Ak,t represented the target area of a cell, ak,t represented the current area of

a cell, and λa was the relative strength of area conservation term.

The cortical tension constraint was defined as:

HmembraneLength =
∑
k∈K

λl(lk,t −Lk,t)2, (2.8)

where lk,t represented the current membrane length of a cell at time t, Lk,t was the

target membrane length, and λl was the strength of the cortical tension constraint.

As a proxy for increasing or decreasing the cell membrane length, the Equivalent

Circular Perimeter (ECP) was used to set the membrane length for a cell given its

current area. The ECP of a non-circular 2D object was defined as the perimeter of

a circle with equivalent surface area as the non-circular object:

ECP (k) = 2
√
ak,tπ.

The target membrane length was calculated using a membrane length proportion-

ality constant:

Lk,t = rkECP (k), (2.9)

where rk was the membrane proportionality constant. To find rk the membrane

length and area of cells were measured and divided by the ECP of the cell. This

ratio of membrane length to ECP was equal to the membrane proportionality con-

stant rk. The ECP allowed us to calculate the membrane length of a cell of any area
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that would have a comparable shape to empirical measurements.

To capture directionally persistent cell migration, we modeled "polarized cell

migration" as the tendency of cells to bias their movement in the same direction

as their previous direction of movement as described in (Czirók et al., 2013; Szabó

et al., 2010). Cells had a target direction t⃗ based on previous movement where

CPM updates in this direction were preferred (they decreased the energy in H).

For each copy attempt x → x′, the cell center was displaced in direction s⃗′. The

change in energy due to migration in this direction was defined as:

Hmigration = −µak (⃗t · s⃗′), (2.10)

where µ was the strength of cell migration, ak,t was the cell area at time t, t⃗ was a

unit vector giving the target direction, and s⃗ was a unit vector giving the current

direction of a stem cell if the CPMupdate (x→ x′) was to be accepted. The function

was multiplied by -1 since updates in the direction of t⃗ have a dot product that

approached +1 as the angle between t⃗ and s⃗ approached zero. Multiplying by -1

resulted in decreased configuration energy for cells moving in the same direction

as the target direction vector.

For every MCS, the target direction at any time (t⃗t) was updated continuously

given the displacement of a cell’s centroid ∆O = Ot −Ot−1. This target direction

included how ’decay-time’ D of the previous direction and the current cell dis-

placements contributed to the current polarity of the cell (Starruß et al., 2014;

Szabó et al., 2010):

t⃗t = (1−D) ⃗tt−1 +D(∆O/ |∆O|). (2.11)
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2.9.3 Physical Units and Other Cellular Phenomena

Cell division was symmetrical (the parent cell divided into 2 equally sized daugh-

ter cells), and the timing of cell division was asynchronous. This was achieved by

assigning a uniformly distributed "division counter" dc for each cell at t = 0 be-

tween 0 and the division time dt. This counter was incremented at each time step

of the simulation, and a cell would divide when dc = dt. dc was then reset to 0

for both daughter cells. Cell division times were calculated from in vitro doubling

rates and modeled to be 18 hours for CDH1(-) cells, and 20 hours for all other

cells.

2.10 MODEL FITTING TO EMPIRICAL DATA

In themain text we provide a brief explanation of the characterization experiments

to fit our computational model. Here we describe the mathematical transforma-

tions, mapping functions, and model parameters associated with these character-

ization experiments. The parameters fit during this process are summarized in

Table S1.

2.10.1 Morphology Characterization

To characterize cell morphology, microscopy images of Wildtytpe (WT), CDH1

knockdown, and ROCK1 knockdown cells were collected 5 days (120 hours) af-

ter co-culture and gene knockdown. The three types of colonies were character-

ized; purely wildtype, wildtype and CDH1 knockdown in a 1:1 ratio, and wild-

type:ROCK1 knockdown in a 1:1 ratio. We measured the cell area, perimeter, and

ECP at the center and periphery of colonies (Fig. 2.6). The median cell area was

used to set the target cell area (Ak,t) in our simulations (Fig. 2.6, Table 1). The
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median membrane proportionality constant (rk = perimeter / ECP) was used to set

the target membrane length Lk,t in our simulations (Fig. 2.6, Fig. 2.16).

2.10.2 Velocity Characterization (Space vs. Time)

We then performed pairwise characterizations of space, time, and protein expres-

sion (Fig. 3). We characterized space vs. time by measuring the velocity (change in

distance over time) of wildtype cells in dense colonies. Mixed aggregates of 90%

WT and 10% CRISPRi cells without a targeting guide were generated. With the

addition of doxycycline (DOX) to the cell culture media, the CRISPRi no guide

population expressed a cytoplasmic mCherry marker which allowed individual

cells to be distinguished from the untagged WT background (Fig. 2B). 24 colonies

were imaged for 6 hours at 5 minutes/image creating a time series of 73 frames.

Each frame was individually normalized and thresholded using non-local means

(Otsu, 1979). Cell migration tracks were generated by following matching con-

tours between frames where a matching contours share at least ten pixels overlap.

We used watershed segmentation to separate adjacent cells. Instantaneous frame

to frame velocity was calculated as

vinst = [(xcm,2 − xcm,1)/∆t, (ycm,2 − ycm,1)/∆t], (2.12)

where xcm,2 was the center of mass of each segmented cell body at the currently

observed frame and xcm,1 was the center of mass of each segmented cell body at

the previous frame, and ∆t was 5 minutes. Taking the average magnitude of the

per-cell instantaneous velocity over 24 colonies gave an median velocity of 0.29

um/minute.

We then ran parameter sweeps to fitmodel parameters that affect cell migration
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(Table 1):

• MCS - copy attempts per simulation hour.

• JWT ,WT - adhesion energy or reward per micrometer of cell border between

wildtype cells.

• µ - strength of self-propulsion

• λl - strength of cortical tension.

We chose the parameter combination where the simulation velocity distribu-

tion matched the empirical velocity distribution, and remained a dense colony

(0.34 um/minute). It is important to note that we chose optimal model parame-

ters using the distribution of cell velocities and not the median cell velocity. We

ran 24 simulations to mimic the the experimental setup of the in vitro characteri-

zation. Using the Mann Whitney U test, there was no significant difference in the

distribution of cell velocities; p-value threshold of 0.05 and p-value for 24 in silico

colonies was 0.051. After fitting the model to empirical data of cell morphology

and velocity, we could recapitulate the cell morphology and collective cell migra-

tion of wildtype stem cell colonies without genetic modulation (Movies S1-S2).

2.10.3 Temporal Knockdown Characterization (Protein Expression vs Time)

We then characterized the time dependent knockdown of CDH1 and ROCK1 ex-

pressionwhichwere responsible for changes in cell-cell adhesion(J) and the strength

of cortical tension (λl). CDH1 was knocked down using CRISPRi, and the relative

expression was measured for 6 consecutive days. The relative mRNA expression of

CDH1 was quantified by quantitative PCR and protein expression of CDH1 was

measured by immuno-fluorescence microscopy, which displayed a 24hour delay
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from the mRNA knockdown. The data was min-max normalized to a domain of

[0,1] using the median expression for each day:

y(tk)
′ = (y(tk)− ymin)/(ymax − ymin), (2.13)

where t was the time since the knockdown, yt was the expression at t days after

knockdown, ymax was the max expression from all days, and ymin was the min-

imum expression over all days. The Km (repression coefficient) and n (Hill co-

efficient) of the Hill Function for repression were fit to the normalized median

expression to create a response function using least squares optimization:

F(t) = 1/(1 + (Km/tk)
n), (2.14)

where Km was the time half expression occurs, and n was the hill coefficient. Given

value for the parameters km and n (Table S1) we now had a continuous response

function for the expression of CDH1 given a knockdown time that we could mod-

ulate.

To characterize ROCK1 expression, we characterized a 6 day CRISPRi knock-

down of the gene expression using quantitative PCR. We assumed mRNA expres-

sion changed 24 hours ahead of protein expression, so we shifted the time axis

forward by one day to account for the delay. The median expression for each day

was min-max normalized to a domain of [0,1] (Equation S13). The Km(repression

coefficient) and n (Hill coefficient) of the hill function for repression were fit to the

normalized median expression to create a response function using least squares

optimization (Equation S14, Fig. 2,Table S1).
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2.10.4 Spatial Pattern Characterization (Protein Expression vs Space)

Given the previous characterization experiments, we were able to model wildtype

cell division, cell area, cell migration, and cortical tension. However, the time-

dependent modulation of protein express had to be mapped to changes in cell

behavior. To model the the time-dependent modulation of cell-cell adhesion via

CDH1 and cortical tension via ROCK1, fluorescent microscopy images were col-

lected 96 hours after mixing either ROCK1 KD or CDH1 KD cells with wildtype

hiPSCs. To observe a robust spatial phenotype (Libby et al., 2018b), the ROCK1

KD cells were pretreated with DOX to induce KD for 4 days prior to mixing with

wildtype, and the CDH1 KD cells were induced with DOX upon mixing. Then in

silicoparameter sweeps were run overlaying a range of adhesion energy/membrane

length values that rescaled the normalized Hill Function, and produced a range of

spatial patterns due to progressively weaker cell-cell adhesion or progressively

stiffer cell membrane parameter values. We then conducted blind experiments

to fix adhesion strength and membrane stiffness parameters which most closely

matched in vitro spatial patterning for CDH1 and ROCK1 knockdowns respec-

tively (Fig. 2H-I).

F′(t) = yknockdown + (ywildtype − yknockdown)/(1 + (Km/t)
n), (2.15)

where yknockdown was the adhesion strength (J) or target membrane length (Lk , t) of

knockdown cell lines in the model, and ywildtype was the adhesion strength (J) or

target membrane length of wildtype cells in the model. In Equation 15, we scaled

the normalized response function from [0,1] to the range of model parameters

[yknockdown, ywildtype].
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2.11 IN VITROMATERIALS ANDMETHODS

2.11.1 Human iPSC culture:

All human induced pluripotent stem cells (hiPSCs) were seeded at a density of

12,000 cells per cm2 in feeder-free media conditions on growth factor-reduced

matrigel (BD Biosciences) and daily fed MTeSRTM medium (STEMCELL Technolo-

gies)(Ludwig et al., 2006). When hiPSC confluency reached 75 percent, cells were

dissociated and singularized using Accutase (STEMCELL Technologies). Single

cells were counted using a Invitrogen Countess Automated Cell Counter (Ther-

mofisher Scientific), re-plated at previously described density, and in the first

24hrs after passaging, fed with MTeSR medium supplemented with the small

molecule Rho-associated coiled-coil kinase (ROCK) inhibitor Y-276932 (10M; Sel-

leckchem) to promote survival (Park et al., 2015; Watanabe et al., 2007).

CRISPRi knockdown lines were previously generated as described in (Mande-

gar et al., 2016), where 20 base pair guides were designed using the Broad Institute

sgRNA design website (Doench et al., 2016). 20 base pair sequences were cloned

into the gRNA-CNKB vector using restriction enzyme BsmBI digestions, followed

by ligation with T4 DNA ligase as described in (Mandegar et al., 2016). 200,000

cells of the CRISPRi-Gen1C or CRISPRi-Gen2 hiPSC lines from the Conklin Lab

were nucleofected with individual gRNA vectors using the Human Stem Cell Nu-

cleofector Kit 1 solution with the Amaxa nucleofector 2b device (Lonza). Cells

were then plated at increasing dilutions into 3 wells of a 6-well plate coated with

growth factor-reduced matrigel (BD Biosciences) in MTeSRTM supplemented with

Y-276932 (10M) for 2 days. Then the nucleofected hiPSCs were treated with blas-

ticidin (10g/ml) for a selection period of 7 days. Surviving colonies for each gRNA
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were pooled and passaged in MTeSRTM with blasticidin (10g/ml) and Y-27632

(10M) for a single day then transitioned to MTeSRTM media only. After stable

polyclonal populations of hiPSCs were established for each gRNA, cells were kary-

otyped by Cell Line Genetics (Libby et al., 2018b)(Fig. 2.14). Finally, knockdown

efficiency was tested by the addition of doxycycline (2M) to the culture media for 6

days and subsequent qPCR of mRNA levels of respective genes compared to time

matched controls of the same line without CRISPRi induction.

2.11.2 Mixed Colony Generation:

Mixed population hiPSC colonies were generated using forced aggregation via

PDMS microwells in a 24-well tissue culture plate ( 975 400X400m wells per well)

(Hookway et al., 2016; Libby et al., 2018b). hiPSCs were dissociated and singu-

larized using Accutase (STEMCELL Technologies) and subsequently counted us-

ing a Invitrogen Countess Automated Cell Counter (Thermofisher Scientific). The

proper ratios of cells to create 100 cell aggregates were then seeded into PDMS

wells in MTeSRTM with Y-27632 (10M), centrifuged at 200g for 5 minutes, and al-

lowed to compact overnight ( 18h). Aggregates were then washed out of the PDMS

wells with freshMTeSRTM and re-plated into a growth factor reducedmatrigel (BD

Biosciences) coated PerkinElmer CellCarrierTM-96 plates at 10/aggregates/cm2

and fed daily with MTeSRTM.

2.11.3 Immunofluorescence Staining and Imaging:

Human iPSCs were fixed for 25 minutes with 4% paraformaldehyde (VWR) and

subsequently washed 3 times with PBS. Fixed colonies were simultaneously blocked

and permeablized with a 1X PBS solution with 0.3% Triton X-100 (Sigma Aldrich)
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and 5%Normal Donkey Serum (Jackson Immunoresearch) for 1 hour at room tem-

perature. Samples were then incubated with primary antibodies overnight at 4◦C

in a 1X PBS solution with 1% Bovine serum albumin (Sigma Aldrich) and 0.3%

Triton-X. Samples were washed 3 times and then incubated for 1 hour at room

temperature with secondary antibodies. Primary antibodies used were: anti-OCT4

(SantaCruz 1:400), anti-SOX2 (AbCAM1:400), and anti-Ecadherin (AbCAM1:200).

All secondary antibodies were used at 1:1000 and purchased from Life Technolo-

gies.

Mixed colonies were imaged using a Ziess Observer.Z1 (Ziess) and an InCell

Analyzer2000 (GE Healthcare), and confocal images were obtained using a Zeiss

LSM880 Confocal w/ Airyscan (Ziess) microscope. Images were analyzed in Im-

ageJ and in python using the skimage package (Walt et al., 2014).

2.11.4 Protein Quantification:

Protein quantification for CDH1 KD was first quantified by immunofluorescence

imaging of mixed colonies of WT-GFP hiPSCs and CDH1 KD colonies (Libby et al.,

2018b). Total fluorescence of CDH1 was measured by a python script that com-

pared fluorescence of the CDH1 channel normalized to the amount of WT cells vs

KD cells (determined by GFP fluorescence)(Fig. 2.7). This data was supplemented

by Western blot data from the previously published KD of CDH1 and ROCK1 in

(Libby et al., 2018b).

2.11.5 mRNA quantification:

The relative gene expression following CRISPRi knockdown was previously re-

ported in (Libby et al., 2018b) and used as a reference to establish knockdown
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timing curves used in our in silico simulations. As previously reported (Libby

et al., 2018b), total mRNA isolation from dissociated hiPSCs was performed using

an RNeasyMini Kit (QIAGEN) according to manufacturer’s instructions and quan-

tified with a Nanodrop 2000c Spectrometer (ThermoFisher). Obtained mRNA was

then used to synthesize cDNA using an iScript cDNA Synthesis kit (BIORAD).

A StepOnePlus Real-Time PCR system (Applied Biosciences) was used to quan-

tify and detect gene expression by Fast SYBR Green Master Mix (ThermoFisher

Scientific). Relative gene expression was determined by normalizing compara-

tive threshold(Ct) values to the house keeping gene 18S rRNA. Gene expression

was then displayed as a fold change comparison to the day 0 control before the

start of gene knockdown. The NCBI Primer-BLAST website was used to design

the primers. Statistical analysis was conducted using a two-tailed unpaired t-test

between any two groups (p<0.05, n=3).

2.11.6 Time Lapse Imaging:

Mixed hiPSC colonies were imaged on optically clear PerkinElmer CellCarrierTM-

96 plates on an inverted AxioObserver Z1 (Ziess) with an ORCA-Flash4.0 digi-

tal CMOS camera (Hamamatsu). Using ZenPro software, colony locations were

mapped and a single colony was imaged every 30 minutes over the course of 12

hours. Time lapse imaging occurred from hours 24-36 and from hours 96-208

after mixed colony plate down. The 12 hour series of images were then used to

compare in silico to in vitro pattern formation and organization of cells. Addition-

ally, mixed colonies of wildtype and CRISPRi-Gen1C without knockdown guides

were imaged for 6 hours every 5minutes from hours 60-66 after plate down. These

6 hour image series were used to generate velocity values as previously described
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in section 2.2 (Velocity Characterization).

2.11.7 BMP4 differentiations

Successfully patterned hiPSC colonies were differentiated for 48h in RPMI 1640

(Life Technologies) cell culture media supplemented with BMP4 (R&D Systems)

at a 50 uM/ml concentration. The colonies were then fixed with 4% PFA for 25

min and subsequently analyzed.

2.12 COMPARISON OF IN VITRO AND IN SILICO SPATIAL PATTERNS

We used in vitro and in silico images to calculate the total number of cells in an

image, the number of clusters, and the circularity of each cluster (Fig. 2.13). Our

work-flow for comparing patterns (Fig. 2.15) involves splitting the images into

single color RGB channels using the python module scikit-image (Walt et al., 2014;

Jones et al., 2001–).

For in silico images each channel represents a different cell type. After splitting

the image into color channels we detect the number of islands in a colony. For in

silico images cell are separated by a black border so we dilate the image, remove

small objects, then remove small holes in the image with scikit-image. Contiguous

regions are considered clusters. We the overlay a mask of individual cells onto

each cluster using a logical AND comparison of the image masks to determine if

the cell cluster meets our criteria to be considered an island. Using only the cell

clusters we consider islands, we then calculate the number of cells per island and

the circularity of the islands using the formula circularity = 4πArea/Perimeter2

In contrast to the work-flow for simulation images, for in vitro images one chan-

nel represents all cell nuclei and the other channel represents cells stained for
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the protein CDH1, which delineates the CDH1 knockdown cells from the WT or

ROCK1 knockdown cells. For the in vitro images, the CDH1 channel was thresh-

olded and then dilated to create a CDH1+ cell mask followed by removal of small

objects and holes to create a smooth segmentation. To generate the island masks,

isolated CDH1 negative clusters were identified using the label function on the

inverse of the CDH1+ mask. Individual cells were localized by detecting local

maximum intensity in the DAPI channel images then the number of DAPI peaks

per island were calculated using the logical AND of the island and CDH1 negative

masks. Finally, we used the function "regionprops" to calculate the cluster area

and perimeter for each island, which were then employed to calculate the island

circularity with the above formula.

2.12.1 Software

Themathematical model was implemented inMorpheus, v1.9.1, RRID:SCR_014975

(Starruß et al., 2014). Model fitting of single-cell morphology, cell velocities, tem-

poral knockdown characterizations, and spatial pattern characterizations were per-

formed with custom Python code (modules: scipy, numpy, matplotlib, pandas,

seaborn, scikit-image)(Jones et al., 2001–). Image preprocessing, segmentation,

and quantification of cell and colony morphology was performed with custom

Python code (modules: numpy, scipy, scikit-image). Pattern classifications and

specificationmining was performed using the data mining softwareWEKA. Quan-

tification of pattern similarity and pattern optimizationwere performedwith TSSL

(MATLAB + Java) which can be accessed from:

http://sites.bu.edu/hyness/software/
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2.12.2 Supplementary Figures

Figure 2.6: Violin Plots of single cell morphology (cell area, cell perimeter, cell circularity)
for wildtype hPSC, hPSC with CDH1 knocked down, and hPSC with ROCK1 knocked
down in relation to the cells position in the colony. Cells have distinct distributions for
both morphological measurements. The area and perimeter measurements with respect to
each cell line were used to fit our computational model.



53

Figure 2.7: Knockdown of CDH1 quantified by immunofluorescence imaging (A) Mixed
populations of wildtype (GFP+) and CDH1 KD cells (GFP-) were imaged daily and fluo-
rescence of CDH1 levels was normalized to GFP fluorescence.
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Figure 2.8: CRISPRi cell line mRNA knockdowns. (A) Percent knockdown of either CDH1
or ROCK1 when compared to wildtype control populations on day six of DOX treatment
(n=3)
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Figure 2.9: Quad-tree representation (b) of a matrix (a).
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Figure 2.10: Quad-tree representation (b) of a 4 by 4 checkerboard pattern (a).

Figure 2.11: Sample simulations derived from the parameters presented in Fig. 2.4 to
produce Bullseye and Multi-island patterns.
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Figure 2.12: Evolution of the TSSL robustness score over time for the sample simulations
illustrated in Fig. 2.11; producing the Bullseye pattern (left) and Multi-islands pattern
(right).
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Figure 2.13: In silico vs. in vitro metrics (A) Distribution of islands, where for the Multi-
island patterns, an island is defined as a homotypic cluster of 25 or more cells, and for
the Bullseye patterns, an island is defined as 50 or more cells. Successful Bullseye pat-
terns will display one island, successful Multi-island patterns will display 3 or more is-
lands. (Bullseyes n=148 colonies; Islands n=79) (B) Distribution of in silico and in vitro
patterned colonies with regard to total cells per colony, number of cells per cluster, and
cluster circularity. In Bullseye patterns clusters consist of ROCK1 knockdown cells. In
Multi-island patterns clusters consist of CDH1 knockdown cells.
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Figure 2.14: Karyotype of CRISPRi Gen2 CDH1 hiPS Cell line (A) the Gen2 CDH1 hiPSC
line was karyotypically normal.
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Figure 2.15: In silico vs. in vitro image segmentation work flow to quantify and compare
spatial patterns
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Figure 2.16: Modeling Fitting Parameters for stem cell multicellular pat-
terning



61

CHAPTER 3

Pattern Synthesis in 3D Stem Cell Aggregates

3.1 INTRODUCTION

There has been an increasing effort in recent years to reproduce the microen-

vironment of self-renewing biological processes such as embryogenesis (White

et al., 2015; Kinney et al., 2014), tissue development (Darabi et al., 2008), and

organoid formation (Shkumatov et al., 2014) by forcing stem cells to aggregate

into three dimensional spheroids known as embryoid bodies (EBs). Similar to the

self-renewing stem cells residing in its in vivo niche, EBs undergo patterned differ-

entiation controlled by local cues (Morrison & Spradling, 2008; Scadden, 2006).

Instead of modeling this patterned differentiation at a global level, the authors

of (White et al., 2013, 2015) developed an agent-based model that captures pro-

liferation and spatio-temporal patterning of EB differentiation using local interac-

tion rules. They also developed quantitative network metrics to verify their agent-

based model captures a distribution of patterns observed experimentally. These

pattern classes describe differentiation occurring from the outside-in, the inside-

out, in globular (spheroid) subclusters, or in snake-like subclusters.

Even though White et al. (2015) was able to accurately recapitulate the distri-

bution of pattern trajectories in EBs, their exhaustive search of parameter com-

binations becomes computationally expensive as the number of parameters in-

creases. Therefore, we employ an alternate approach that quantifies how strongly

the spatial behavior of a dynamical system resembles a global pattern. Then, we

use this quantifier as the basis for an optimization procedure to synthesize model

parameters.
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There has been an increasing effort in recent years to use formal logics as de-

scriptors of spatial properties. Linear spatial superposition logic (LSSL) was suc-

cessfully used in Grosu et al. (2009) to identify self-similar texture. Richer spatial

and spatio-temporal logics were introduced in Bartocci et al. (2016b); Haghighi

et al. (2015) with the capability of describing complex patterns in networked or

distributed dynamical systems.

This paper is closely related to Bartocci et al. (2016b); Haghighi et al. (2015). In

Bartocci et al. (2016b), tree spatial superposition logic (TSSL) is defined and used

to enforce the emergence of steady state Turing patterns in a biochemical reaction-

diffusion system. In Haghighi et al. (2015), spatial temporal logic (SpaTeL) was

introduced to formally express time-varying spatial patterns. Both these logics are

equipped with quantitative semantics, which can be used as a robustness score

for how a dynamical system satisfies desired specifications. Using these formal

quantification tools, in this paper, we develop a heuristic optimization procedure

in which we run simulations with interactions at the local level, make quantita-

tive spatio-temporal observations at the global level, and select parameter values

with the highest robustness score. We show that simulations produced by parame-

ter values resulting from this framework closely resemble the predefined patterns

observed experimentally.

In Sec. 3.2, we describe an agent-based model characterizing state changes in

embryoid bodies. This model is a modified version of the model introduced in

White et al. (2013). Although our model uses the same rules to enforce stem cell

differentiation, we utilize more efficient algorithms for growing cell populations,

identifying neighbors, and visualizing global behaviors. These modifications de-

crease the simulation run time and increase the pattern classification accuracy. In
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Sec. 3.3, the formal methods approach used to synthesize model parameters is

presented. Sec. 3.4 presents our final conclusions and a few directions for future

work.

3.2 STOCHASTIC AGENT-BASEDMODEL

The purpose of performing parameter optimization using an agent-based model of

3D stem cell differentiation is to explore the range of patterns that emerge from lo-

cal interaction rules. This includes synthesizing experimentally observed patterns

or even de novo patterns that were not observed experimentally. This enables bi-

ologists to better understand the local mechanisms governing morphogenesis (e.g.

paracrine signaling) and efficiently test assumptions about these mechanisms.

In this paper we assume local signaling regulates stem cell differentiation in

EBs. We also assume differentiation can be described as the binary classification

that captures if a cell has lost the ability to specialize into any cell type (loss of

pluripotency)Livigni & Brickman (2013). Differentiation can describe any transi-

tion down the hierarchy of stem cell specialization Morrison & Spradling (2008),

but this binary classification, Fig. ?? and Fig. ??, allows us to investigate early cell

fate decisions that likely influence tissue and organ development. Using the loss of

pluripotency indicator, the protein Oct4, White et al. (2013) has shown that there is

a time-dependent distribution of intermediate patterns (Fig. ??) before complete

differentiation (Fig. ??) in EBs.

The proposed stochastic agent-based model is a modified version of the ap-

proach described in White et al. (2013, 2015), where it is assumed that stem cell

differentiation is dictated by basal stochasticity, local negative feed forward signal-

ing, and positive feedback signaling. Our modeling approach uses the same set of
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local differentiation rules. However, two main modifications were made. First, we

use a more efficient approach (KD-trees) to identify a cell’s neighborhood. Second,

EBs are analyzed as transparent cross-sectional images. This approach is more in

line with images that are produced experimentally, such as Fig. 3.1, where cells

within a certain distance from cross-sections of EBs are observable. This visu-

alization approach allows for more accurate pattern classification in images, as

demonstrated in Sec. 3.3.

The agent-based model of stem cell differentiation used in this paper is de-

scribed in detail in the rest of this section.

3.2.1 Description of Stem Cell Agents

Consider a network of N (t) locally interacting stem cells in which each cell is la-

beled by an integer i ∈ {1, · · · ,N (t)}, where N (t) is the number of stem cells at time

t ∈ {0, · · · ,T } and T is the earliest time at which all cells have differentiated. We

represent this network of stem cells as a graph G(t) = (V (t), E(t)), where the vertex

i ∈ V (t) represents the ith cell at time t and (i, j) ∈ E(t) if the corresponding cells i

and j are interacting neighbors at time t.

Asynchronous Cell Division: A primary cell k

∈ {1, · · · ,N (0)}, which is present at the start of a simulation, initially divides at a

random time tk1 ∈ [0,δ], where δ is the length of the cell cycle for a single cell. The

set of time points that a primary cell k ∈ {1, · · · ,N (0)} or its daughters divide is

denoted by Dk = {tk1, t
k
2, · · · , t

k
M}, where

0 ≤ tkm ≤ T ∀m ∈ {1, · · · ,M}

tkm+1 − tkm = δ ∀m ∈ {1, · · · ,M − 1},
(3.1)
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A

B

C

Figure 3.1: Confocal microscopy multichannel images of EBs stained with
DAPI (nuclear stain, blue), phalloidin (red), and Oct4 (cyan) shown at a
depth of 25 um for EBs. (a) Early stem cell populations are primarily
pluripotent and uniformly express Oct4 (cyan). (b) Over multiple days,
a distribution of differentiation patterns are observed before every cell is
differentiated into an Oct4-negative status. These patterns are labeled as
inside-out (left),globular (center),and outside-in(right). (c) After 7 days
most stem cells have differentiated into specialized cell lineages (no Oct4,
loss of cyan).
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where m is the mth division, and Mis the final division of a cell during a simu-

lation. Dk is interpreted as the set of asynchronous division times for the initial

population of stem cells. Since experiments have shown that undifferentiated stem

cells divide in approximately 19 hours White et al. (2013), we assume that δ = 19

in embryonic stem cells.

The set of new cells introduced to the system at time t as a result of cell division

is denoted by

NEW (t) = {N (t − 1) + 1, · · · ,N (t)}. (3.2)

After each division, one daughter cell replaces the parent cell with the same label

and the other daughter cell is placed adjacently in a random direction. We define

a mapping P : NEW (t) → V (t − 1) where P (i) is the parent cell from which i ∈

NEW (t) divided.

Cell Neighborhood: Each cell is assumed to be a sphere, with the center lo-

cated at li(t) ∈ R3 for i ∈ {1, · · · ,N (t)} and constant radius r. Cell radius is assumed

to be constant since changes in the size of a cell over time are negligible White

et al. (2013). We also define the set of all cell locations at t as

L(t) = {l1(t), l2(t), · · · , lN (t)(t)}. (3.3)

The Euclidean distance between two cells is denoted by d(li(t), lj(t)). Two cells i,j

are considered neighbors if they are in contact with one another. Therefore, we

construct the set of graph edges E(t) such that

(i, j) ∈ E(t) ⊆ V (t)×V (t) ⇐⇒ d(li(t), lj(t)) ≤ 2r.
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The neighborhood of cell i is denoted by ei(t).

ei(t) = {j ∈ {1, · · · ,N (t)} | (i, j) ∈ E(t)}. (3.4)

Looping through every pair of vertices in V (t) to construct E(t) is exponential in

|V (t)|. Instead we use a space partitioning tree, KD-tree, to find neighboring cells.

A KD-Tree is a special case of the binary space partitioning tree, which is used

to partition points in a k-dimensional space, find nearest neighbors, and perform

range queries Bentley (1975).

3.2.2 Structural Constraints in 3D

EB’s are an in vitro system used to study stem cell differentiation in 3D Cha et al.

(2015); Kinney et al. (2014). To accurately capture the mechanical forces of an

EB, a mass-spring model is employed. Like the model in White et al. (2013), 1000

cells is the size of the initial population. The radius, circularity, average connection

length, average connection number, and density of the simulated EB’s show these

simulations resemble in vitro EBs White et al. (2013). This resulting structure

represents the set of primary cells at the initial time (t = 0).

Collisions and Interactions: Cells are represented as rigid spheres connected

by springs. The rigid spheres model the incompressibility of the cell nucleus, and

the springs represent the malleability of the cytoplasm. We enforce rigid sphere

behavior for every pair of interacting cells.

d(li(t), lj(t)) ≥ 2r, ∀(i, j) ∈ E(t). (3.5)

Equation (3.5) can be violated as a result of population growth. When cell i di-
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vides, a new cell j is randomly placed in the network such that d(li(t), lj(t)) = 2r.

This can cause cell j to overlap with some of the cells surrounding i. If the con-

straint in Equation (3.5) is violated, then distance corrections Fij for the pair of

cells (i, j) are determined using the equation:

Fij = −Xkc, (3.6)

where kc is a constant that represents the strength of the interaction, and X repre-

sents the amount of displacement between the cytoplasm of two cells (X = d(li(t), lj(t))−

2r). This interaction system is solved iteratively until all pairs of cells satisfy Equa-

tion 3.5.

3.2.3 Stochastic Rules for State Changes

We chose to model stem cell differentiation as a 3-state process with differentiation

controlled by cell division Johnston et al. (2007). The state of cell i at time t ∈

{0, · · · ,T } is denoted by xi(t) ∈ {U ,T ,D}, where xi(t) = U if cell i is undifferentiated,

xi(t) = T if cell i is transitioning, and xi(t) =D if a cell i is differentiated at time t.

At t = 0, every cell is initialized in state U . At each time step of the simulation,

three stochastic rules regulate the probability that a cell will differentiate. Biologi-

cally, these stochastic rules represent basal stochasticity (random rule), the influ-

ence of undifferentiated neighbors to cause a cell to change state (negative feed

forward), and the influence of differentiated neighbors to cause a cell to change

state (positive feedback). These rules are derived in White et al. (2013, 2015) and

were motivated by Sun & Komarova (2012).

Rule 1 (Basal Differentiation) The probability that a cell i changes its state from U to
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T , regardless of the state of its neighbors, is given by:

pi1 = α, (3.7)

where α ∈ (0,1) is a constant.

Rule 2 (Local Negative Feedforward) The probability that undifferentiated neighboring

cells cause a cell i to change its state from U to T is given by:

pi2 =
1

1+ (Unorm,i/k1)
n1
, (3.8)

where k1 and n1 are tuning parameters andUnorm,i is defined as the percentage of neigh-

boring cells of cell i that are undifferentiated or transitioning.

Rule 3 (Local Positive Feedback) The probability that differentiated neighboring cells

cause a cell i to change its state from U to T is given by:

pi3 =
Dn2
norm,i

kn22 +Dn2
norm,i

, (3.9)

where k2 and n2 are tuning parameters andDnorm,i is defined as the percentage of neigh-

boring cells of cell i that are differentiated.

Three independent random variables {r i1, r
i
2, r

i
3} uniformly distributed between 0

and 1 are assigned to each cell i, i ∈ {1, · · · ,N (t)}. For a cell i in state xi(t) = U , the

state of the cell is set to T until the next cell division if

r i1 < pi1 ∨ r
i
2 < pi2 ∨ r

i
3 < pi3 (3.10)

evaluates to true. A cell at state xi(t) = T will change its state to D when the next
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cell division occurs. This mimics the notion that cell division cycles control stem

cell differentiation Johnston et al. (2007). It important to realize that Equations 3.8

and 3.9 resemble Hill equations, and their respective tuning parameters influence

how many neighboring cells in a specific state will cause a cell to differentiate. For

all cells that are differentiated (xi = D), the division time δ is approximately 51

hours White et al. (2013).

3.2.4 Visualization

The model described above was implemented in Python as a simulation tool that

receives a list of parameters

Π = (α,k1,n1, k2,n2) ∈Ω, (3.11)

where

Ω =ωα ×ωk1 ×ωn1 ×ωk2 ×ωn2 , (3.12)

and ωj ⊆ R is an allowed interval for parameter j. For a given set of parameter

valuesΠ, the simulator produces a sequence of images Yt(Π), where t ∈ {0,1, · · · ,T }

denotes the time point in hours. Fig. 3.2 illustrates the output produced by a

simulation. The simulator produces red spheres for cells in undifferentiated or

transitioning state (xi(t) ,D) and black spheres for differentiated cells (xi(t) =D).

Although cells were located in a 3 dimensional space, we visualized differenti-

ation at each time point t as a transparent cross-sectional image. Transparent 2D

images allowed us to accurately classify patterns in images without the computa-

tional complexity required to represent 3D images. In cross-sectional experimen-

tal images (Fig. 3.1), undifferentiated cells appear cyan and differentiated cells
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Figure 3.2: Sample images from a simulation for the parameter set Π =
(0.01,0.1,25,0.3,25) at time (a) t = 0 (b) t = 5 (c) t = 10 (d) t = 15 (e) t = 20
(f) t = 30 (g) t = 60. Cells are colored red when in the undifferentiated state,
and black upon differentiation.

appear blue. The choice of red and black instead of cyan and blue was made in

order to create a more significant contrast between the RGB concentrations of dif-

ferentiated and undifferentiated cells, making it easier to learn pattern classifiers.

3.3 OPTIMIZING 3D SPATIO-TEMPORAL PATTERNS

In this section, we explore the parameter set Π ∈Ω, Eq. (3.11), in the agent-based

model of Sec. 3.2 with the purpose of determining valuations such that the sim-

ulations of the model produce images that best resemble specific predetermined

patterns. Specifically, we are interested in inside-out, outside-in, and globular pat-

terns similar to Fig. ??.

Since in silico simulations of the model are very time-consuming, (approxi-

mately one hour on average on a machine with a 2.4GHz core i7 CPU and 8 GB

RAM), it is impractical to explore the parameter space with a brute-force approach.

Instead, we implement the formal methods approach presented in Bartocci et al.

(2016b) and Haghighi et al. (2015) to solve this problem. In this approach, desir-

able patterns are formally specified by logical formulas. These formulas are then

used to analyze the behavior of a dynamical system and synthesize desired spatio-
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Figure 3.3: Quad-tree representation (b) of a matrix (a)

temporal behaviors.

3.3.1 Quad-tree Representation of Spatial Behaviors

Consider an RGB representation of an m× n image as the matrix A where the ele-

ment aij = ⟨a
(r)
ij , a

(g)
ij , a

(b)
ij ⟩ is the normalized RGB values for the pixel located on the

ith row and jth column of the image. Thus,

0 ≤ a
(c)
ij ≤ 1 for c ∈ {r,g,b}.

Given a matrix A, A[is, ie; js, je] is used to denote the submatrix created by selecting

rows with indices from is to ie and columns from js to je. Following Bartocci et al.

(2016b), we represent the matrix A as a quad-tree defined as follows, A quad-tree

Q = (V ,R) is a quaternary tree Finkel & Bentley (1974) representation of matrix A

where each vertex v ∈ V represents a submatrix of A and the relation R ⊂ V × V

defines four children for each vertex that is not a leaf.

Fig. 3.3 demonstrates how a quad-tree is built from a matrix. In this figure,

we label each edge in the quad-tree with the direction of the sub-matrix repre-

sented by the child: north west (NW ), north east (NE), south west (SW ), and



73

south east (SE). In Fig. 3.3(b), v0 represents the complete matrix A. v1 represents

A[1,⌊m/2⌋;1,⌊n/2⌋], where m is the total number of rows and n is the total num-

ber of columns in A. v5 represents A[1,⌊m/4⌋;1,⌊n/4⌋], etc. The construction of

a quad-tree in this paper slightly differs from Bartocci et al. (2016b). In Bartocci

et al. (2016b), the assumption is made that A has a size of 2k ×2k so that each sub-

matrix can be divided into four equal-sized partitions. Here, we have relaxed this

requirement by allowing non-equal submatrices to be children of a node. Further-

more, Bartocci et al. (2016b) defines a leaf as a vertex of the quad-tree for which

all the elements of a submatrix have the same values. While this approach works

perfectly for the 32×32 network that is studied in that paper, it can be problematic

for larger images since the number of vertices in a quad-tree grows exponentially

as more levels are added to it. In this paper, we construct quad-trees with a fixed

depth d, regardless of the size and other characteristics of A. A representation func-

tion µ(c)(v) : V → [0,b] × [0,b] for sub-matrix A[is, ie; js, je] represented by vertex

v ∈ V of the quad-tree Q = (V ,R) is a function that provides the mean value and

variance for the concentration of RGB colors in a particular region of the space

represented by the vertex v. where c ∈ {r,g,b} is an RGB color. The function µ(c)

provides the mean value and variance for the concentration of RGB colors in a

particular region of the space represented by the vertex v.

We use quad-trees to analyze spatial patterning in images. In the rest of this

section, we assume that any given image derived from the simulator of Sec. 3.2

(Yt(Π)) is translated into a corresponding quad-tree (Qt(Π)).
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3.3.2 Formal Specification of Global Patterns

In Bartocci et al. (2016b), the logic, called tree spatial superposition logic (TSSL),

introduced that is capable of formally specifying patterns in a network of locally

interacting agents. They show that this logic is sophisticated enough to describe

complicated patterns such as Turing patterns in biochemical reaction-diffusion

systems. We use this logic to express inside-out, outside-in, and globular patterns

in the model of Sec. 3.2. First, we present a brief introduction to TSSL. Refer to

Bartocci et al. (2016b) for a thorough explanation of this logic, definitions of syn-

tax and semantics, and its properties. A TSSL formula is recursively constructed

using the following:

• Linear predicates over valuations for the representation function. e.g., µ(r)1 >

λ1, µ
(b)
1 < λ2.

• Boolean operators: e.g., ¬ϕ, ϕ1 ∧ϕ2, and ϕ1 ∨ϕ2.

• Spatial operators. e.g., ∃B⃝ϕ, ∀B⃝ϕ, where B is a nonempty subset of the

set of directions {NW,NE, SW ,SE}.

The spatial operators ∃B⃝ and ∀B⃝ are read as there exists in directions B next and

for all directions B next, respectively. ∃B⃝ϕ is interpreted as follows: For at least

one of the nodes located in the next level of the quad-tree labeled with one of the

directions in B, ϕmust be satisfied. ∀B⃝ϕ specifies that for all such nodes ϕmust

be satisfied.

TSSL formulas can be viewed as pattern classifiers. Although TSSL is capa-

ble of describing complicated spatial behaviors, it is difficult in general to write a

formula that describes a complex pattern. In Bartocci et al. (2016b), the authors
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Pattern Positive
learn-
ing
im-
ages

Negative
learn-
ing
im-
ages

Positive
test-
ing
im-
ages

Negative
test-
ing
im-
ages

Outside-
in

6000 22000 2000 6000

Inside-
out

6000 22000 2000 6000

Globular 8000 20000 2000 6000

Table 3.1: Number of samples generated to learn and test TSSL classifiers

propose to use machine learning techniques in order to find such a formula from

a given set of positive and negative examples.

Assume a set of positive images (Y+), illustrating a desirable pattern, and a set

of negative images (Y−) are available. We can create set L from these images as

L = {(Qy ,+) | y ∈ Y+} ∪ {(Qy ,−) | y ∈ Y−},

where Qy is the quad-tree generated from image y. The set L is separated into

a learning set LL (used to train a classifier) and a testing set LT (used to test the

classifier obtained from LL) such that L = LL ∪LT . A rules-based learner called

RIPPER Cohen (1995) is used learn a set of classification rules from LL and these

rules are transformed into a TSSL formula Bartocci et al. (2016b).

We applied this framework to obtain classifiers for three classes of patterns:

inside-out, outside-in, and globular. First, a tool was developed that creates learn-

ing and testing sets for these patterns by generating random images corresponding

to different patterns as well as images without any particular behavior. The sizes

of the learning and testing sets for each of the patterns are presented in Table 3.1.
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Three learning sets Linside-outL , Loutside-inL , and LglobularL were created by con-

structing quad-trees with a depth d = 5 from these images. Next, RIPPER was

employed to learn a TSSL classifier for each pattern: Φinside-out, Φoutside-in, and

Φglobular. The algorithm terminated in 42 minutes for Φoutside-in, 74 minutes for

Φinside-out, and 161 minutes for Φglobular, using an iMac with 2.8 GHz Intel core i5

CPU and 32 GB RAM.

The classification rate for the testing sets in Table 3.1 are 99% for outside-in.

98% for inside-out, and 96% for the globular pattern. Φinside-out, Φoutside-in, and

Φglobular will be used later to automatically check whether an image generated by

the simulator of Sec. 3.2 demonstrates one of the three specified patterns.

3.3.3 Quantification

A formal recursive definition for the qualitative semantics of TSSL is presented in

Bartocci et al. (2016b). These semantics can be used to assign a true (satisfied) or

false (violated) label to a TSSL specification with respect to an unlabeled quad-

tree. To provide information about how strongly an image satisfies or violates

the given property, TSSL is also equipped with a recursive quantitative semantics

definition which assigns a real value to a TSSL formula ϕ with respect to vertex

v ∈ V of quad-tree Q = (V ,R); denoted by ρ(ϕ,v). It is proven in Bartocci et al.

(2016b) that TSSL quantitative semantics are sound. In other words, a quad-tree

Q satisfies a formula ϕ (Q |= ϕ) if ρ(ϕ,v0) > 0 where v0 is the root of Q, and Q

violates ϕ (Q ̸|= ϕ) if ρ(ϕ,v0) < 0. Therefore, the problem of checking whether an

image contains a pattern expressed as a TSSL formula reduces to computing its

quantitative valuation. Moreover, the absolute value of ρ(ϕ,v0) can be viewed as a

measure of how strongly ϕ is satisfied (or violated) by Q. Hence, the quantitative
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valuation of a formula with respect to a quad-tree is called its robustness.

TSSL quantitative valuation is an effective tool to quantify emergence of a pat-

tern in an individual image. However, notice that the simulator of Sec. 3.2 pro-

duces a time sequence of images, and patterns can emerge at any time point in

general. Consequently, we need to quantify the emergence of global behaviors in

time-varying quad-trees. We use a temporal extension of TSSL, called spatial tem-

poral logic (SpaTeL) for this purpose. SpaTeL was first introduced in Haghighi

et al. (2015) to study time-varying spatial patterns in networked systems. Refer

to Haghighi et al. (2015) for a complete explanation and formal definitions for

SpaTeL. In this paper, we focus on SpaTeL formulas that are used to synthesize

patterns at an unknown time. A SpaTeL formula is formed by nesting TSSL formu-

las inside temporal operators. Consider a time sequence of quad-trees Qt, where

t ∈ {0,1, · · · ,T }, with the following specification: the TSSL formula Φpattern must

eventually be satisfied within the interval t ∈ {t1, · · · , t2}. This specification can be

formalized by the following SpaTeL formula:

Ψpattern = F[t1,t2)ϕpattern. (3.13)

SpaTeL is also equipped with quantitative semantics. The quantitative valuation

forΨpattern with respect to the sequence of quad-treesQt is denoted by ρt(Ψpattern,v0(t)).

ρt(Ψpattern,v0(t)) = max
t∈{t1,··· ,t2}

ρ(ϕpattern,v0(t)), (3.14)

where v0(t) is the root of Qt.

It is proven that SpaTeL quantitative semantics are sound (has a positive valu-

ation for satisfying sequences of quad-trees and a negative valuation for violating
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ones) Haghighi et al. (2015). Similar to TSSL, SpaTeL’s quantitative valuation (ro-

bustness) is shown to be a good measure of how strongly a time varying quad-

tree (a sequence of images) satisfies or violates a spatio-temporal specification

Haghighi et al. (2015). Note that in Equation 3.13 ρt(Ψpattern,v0(t)) > 0 if the TSSL

formula ϕpattern is satisfied by at least one of the quad-trees in {Qt | t1 ≤ t < t2}.

Therefore, we can use SpaTeL’s quantitative valuation for Ψpattern to quantify the

emergence of a pattern (e.g., outside-in, inside-out, or globular) in a sequence of

images simulated from the model of Sec. 3.2.

3.3.4 Parameter Synthesis

At this point, we are able to quantify how strongly a sample trace Qt(Π) from

the simulator of Sec. 3.2 satisfies or violates emergence of a pattern specified by

the SpaTeL formula (3.13). This metric can serve as the fitness function in an

optimization process over the parameter space from Equation (3.12). The goal is

to determine the parameterization Πpattern that maximizes this metric:

Πpattern = argmax
Π∈Ω

ρt(Ψpattern,v0(t)) (3.15)

Many optimization methods can be used to solve (3.15). Inspired by Bartocci

et al. (2016b) andHaghighi et al. (2015), we employed particle swarm optimization

(PSO) Kennedy (2010). PSO is a heuristic solution to unconstrained optimization

problems that is capable of solving problems with irregular search spaces and does

not require the fitness function to be differentiable.

This procedure was performed for the three patterns inside-out, outside-in,

and globular. Inspired by earlier analysis of similar models in White et al. (2013)

and White et al. (2015), we chose to fix the values for α, n1, and n2 at 0.005, 25,
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Figure 3.4: Sample images of simulations derived from the optimized pa-
rameter values: (k1, k2) = (0.08,0.92) for outside-in, (k1, k2) = (0.33,0.09) for
inside-out, and (k1, k2) = (0.50,0.11) for globular.

and 25, respectively. The PSO search algorithm was performed on parameters

(k1, k2) ∈ [0,1] × [0,1]. The optimized parameter values are presented in Fig. 3.4.

The computation was distributed on a cluster with 8 processors at 2.1GHz and

the running time was about 30 hours for the outside-in pattern, 11 hours for the

inside-out pattern, and 16 hours for globular. Sample simulations derived from

these parameters are demonstrated in Fig. 3.4. As illustrated in this figure, the

simulated traces resulting from these parameters qualitatively resemble the pat-

terns of Fig. ?? at the transitioning stage.

3.4 FUTUREWORK

Directions for future work include exploring how context-independent parame-

ters, such as cell division rates, affect the emergence of patterns. We also plan

to study stem cell aggregate shapes other than spheres (e.g., cones, rods). More
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complex and biologically interesting patterns will be studied by incorporating dif-

fusion among locally interacting cells in the model. Also, a more effective fitness

function for the optimization procedure may be developed by combining TSSL/S-

paTeL robustness with other metrics such as White et al. (2013, 2015). Finally, we

will define oct-trees as 3D extensions of quad-trees and use them to learn formal

classifiers for patterns that are only observable in a 3D space.
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CHAPTER 4

Agent-based Model for Self-Assembled 3DMulticellular Shapes

4.1 INTRODUCTION

Multicellular pattern formation is an emergent behavior that drives complex be-

haviors in mammalian cell systems (such as embryonic development). Currently,

there are several exploratory approaches to induce multicellular patterning in

mammalian cells using differential adhesion (Toda et al., 2018; Fot, 2013), micro-

patterned surfaces (Warmflash et al., 2014; Molitoris et al., 2016), biochemical

sender-receiver systems, or 3D bioprinting. However, inducing these behaviors

requires significant manual intervention from the experimenter or requires the

assistance of artificial scaffolds. Approaches that require manual design or man-

ual intervention are difficult to scale up and produce more complex patterning.

Scaffold-based and micro-patterned systems fix the pattern into a substrate an

do not allow pattern to change over time as is often seen during embryonic de-

velopment. Further, most of these approaches are driven by trial-and-errors. To

overcome limitations of trail-and-error driven design I developed a computational

model to predict and quantify the self-assembly into a desired 3D structures with

out manual intervention.

4.2 COMPUTATIONALMODEL OF AUTONOMOUS 3D SELF-ASSEMBLY

Note: all mathematical formulas and symbols in this chapter have no relation to math-

ematical symbols in previous chapters unless explicitly stated.

With the objective of enabling the programmatic self-assembly of cells into

user-defined 3D structures, an agent-based model of the self-assembly of geomet-
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ric building blocks from cells, which in-turn self-assemble into larger 3D structures.

While this work is theoretical and has yet to be experimentally validated, I pro-

vide references to mechanisms of programmatic self-assembly in this model. This

model was implemented using a Python 3 wrapper to the Open Dynamics Engine

(physics) implemented by the Panda3D game engine. The code and documenta-

tion for running the simulator can be accessed at:

https://github.com/dmarcbriers/

4.2.1 Cell Environment

The environment E of the simulation is three dimensional euclidean space E ∈

R3 where R is the set of real numbers. As described in Chapter 1, this model

belongs to the center-based class of agent-based models. Each cell Ci , where i is

the cell index, is represented as a rigid spherical body having a position, radius,

orientation, and rotation. All cells are in a 3D aqueous solution with external

propulsion generated by an Orbital Shaker. Therefore, we assume the collision of

cells with water molecules can be approximated by Brownian Motion. There are

no scaffolds in the environment to aid in cell migration and organization besides

other cells.

4.2.2 Cell Logic

Each cell has genetic circuit logic controlling several cell actuations as listed in

Fig 4.1. Given the gene circuits and logic actuators I demonstrate the potential

to design and model cells that autonomously controls aspects of proliferating and

developing into an organized systemwithout manual intervention or external scaf-

folding during the development of the structure.
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In this system, cells have six actuations that are controlled by two synthetic

gene circuits. One circuit allows cells to count the number of cell division cycles

it has progressed through and is referred to as a counter. The counter behaves as

an indicator of time and allows cells to optionally change their behavior after each

cell cycle. During mammalian development, hematopoietic stem cells remember

the number of self-renewal divisions and demonstrate phenotypic changes due to

this division history (Bernitz et al., 2016).

The second genetic circuit directly controls the type of actuation is that activate

and is known as the register. The register is able to read the counter, and the regis-

ter is also able express proteins given the state of the cell and the genes encoded on

the circuit in the current cell. It is important to note that when a cell divides, it can

copy and re-distribute its gene circuit asymmetrically to its daughter cells which

allows rapid symmetry breaking in this system (Chiu & Jiang, 2017).The register

circuit can activate five classes of morphological actuations (Fig 4.1). These actu-

ations are allowing proliferation, inducing cell cycle arrest (preventing prolifera-

tion), inducing apoptosis (causing the cell to be degraded), expressing generic/ho-

motypic cell-cell adhesion proteins (such as cadherins (Toda et al., 2018; Maître &

Heisenberg, 2013)), and expressing paired/heterotypic cell-cell adhesion proteins.

4.2.3 The Developmental Tree

The process to programatically control the cell proliferation and the expression the

correct proteins to produce a desired 3D object is refereed to as the developmental

tree. The developmental tree can be represented as a nondeterministic Finite State

Machine (FSM). The states of the FSM describe the currently expressed proteins

under the control of the synthetic gene circuit. The states of the FSM Sj , where
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Counter Circuit

Paired Surface 
Adhesion

Asymmetric Circuit 
Distribution

Brownian Motion

Generic Surface 
Adhesion

Cell Cycle Arrest

Apoptosis

Proliferation

Figure 4.1: Actuators for 3D Self-Assembly. Out of the eight actuations, 6 actuations are
morphological actuations, 1 actuator is logical (counter circuit), and 1 actuation (Brownian
Motion) is induced by an orbital shaker mixing fluid environment around cells.
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j ∈ N (N is the set of nonnegative integers) map to a set of proteins expressed

by the synthetic circuit register of the cell. Sj also represent what cell state its

daughter cells can transition to. Therefore, a cell state can be considered a unique

node in the developmental tree and not simply a unique set of expressed proteins.

This will be clarified in the case studies.

The transitions of the FSM represent how a parent cell produces two daugh-

ter cells with respective states Sj induced by recombinases during cell division.

Each transition is represented by a mapping from a single state to a 3-tuple rep-

resented by the states of the daughter cells and the probability that this transition

will occur. For example, if a cell with state 0 produced two daughters cells in

states 1 and 2 with a 100 percent probability, this transition will be represented as

S0 : (S1,S2,1.0).

4.2.3.1 Cell-Cell Interactions

Mammalian cells have traditionally been engineered using homotypic cell surface

binding mechanisms to induce spatial patterning. In addition to homotypic cell-

cell adhesion, we model the ability of cells to express paired surface binding pro-

teins which mimic a lock-and-key mechanism. This allows a more selective cell

adhesion behaviors. While paired proteins A1-A2 binds, a cell expressing protein

A1 does not adhere to a cell expressing that same protein A1. The format for spec-

ifying a homotypic adhesion protein is a letter sequence followed by the number

zero (eg A0, B0, Z0). For paired surface binders there is a letter sequence followed

by a the number 1 or 2 indicating which type of protein pair is being expressed

(A1-A2, B1-B2, Z1-Z2).

In our simulations, we represent cell-cell adhesion by a ball-socket joint. Cell
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are free to change their rotation and orientation as long as they maintain a fixed

distance from cells it shares a join with. If cells do not adhere they will repel each

other following the equation for elastic collisions.

4.3 CASE STUDIES: PROGRAMMATIC SELF-ASSEMBLY

We create two demonstrations of self-assembled structures. The smallest building

blocks in these case studies is considered to be a tetrahedron made of 4 cells. In

the first case study 2 tetrahedrons that do not adhere to to other tetrahedron was

self-assembled starting fro a single cell. In Fig 4.2 we show the FSM and the de-

velopment plan that created 2 independent tetrahedrons. This demonstrate the

ability to achieve both genetic and spatial symmetry breaking. The results of this

simulation are shown in Fig 4.3.

The second case case study was to design a synthetic circuit that would induce

a single cell to self-assemble into a lowercase letter "d". An alphabetical letter was

chose because if of asymmetry in the geometric shape which is not observed in

tetrahedron. Also, the lowercase letter couldmisalign in the 3D plane, introducing

a degree of failure that was not frequently seen in the tetrahedron examples. In

five simulations, the letter d was qualitatively verified in 2 out of hose simulations.

4.4 CONCLUSIONS AND FUTUREWORK

In this chapter, a mathematical model was developed to simulate the major cell

logic and cell mechanical interactions necessary to predict the self-assembly of 3D

shapes. Our computational model integrates the Brownian motion of cells in a

rotating fluid, elastic collisions, selective cell adhesion using single or paired sur-

face binding proteins, and gene circuit-driven logic to direct the self-assembly of
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Cell States Syntetic Proteins Expressed
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1,3,4 A

2,5,6 B

7,8,9,10 A, CellCycleArrest

11,12,13,14 B, CellCycleArrest
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0 (1,2,1.0)

1 (3,4,1.0)

2 (5,6,1.0)

3 (7,8,1.0)

4 (9,10,1.0)

5 (11,12,1.0)

6 (13,14,1.0)
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0

21
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109 1211 1413

Figure 4.2: Assembly of two independent tetrahedrons.The FSM and the development
plan that created 2 independent tetrahedrons. This demonstrate the ability to achieve both
genetic and spatial symmetry breaking.
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Target letter

Tetrahedron 2 Tetrahedrons

Lowercase d

A B

C D

T= 50 hours Time: 70 hours

Time: 160 hours

Figure 4.3: In Silico Verification. A) Verification of the self-assembly into a tetrahedron.
B) Verification of the self-assembly into 2 independent tetrahedron. C) Proposed design
of cell-cell adhesion to construct a lowercase d. D) Verification of the self-assembly into a
lowercase letter d.
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individual cells into multicellular geometric shapes. It was demonstrated that a

single cell can be programmed to proliferate, assemble into building blocks (tetra-

hedrons), arrest cell division, and ultimately assemble into larger 3D structures.

In a coordinated effort we simulated the self-assembly of a tetrahedron, two inde-

pendent tetrahedron and a lowercase letter d.

Although these shapes are relatively simple, this work necessity of computa-

tional modeling to rapidly design and and verify the design of novel living sys-

tem. In Fig 4.3 these shapes took 50 hours to 160 hours to build. However, the

simulations all ran in under 10 minutes. Future work would include quantitative

approaches to verify successful shapes and adding the ability of cell to actively

migrate given they can adhere to neighboring cells. This would allow the model

to predict the rich set of cell sorting patterns that arise from differential adhesion

and collective cell migration.
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CONCLUSION ANDDIRECTIONS

There are several challenges that remain formathematical and computationalmod-

eling to reach its potential in designing pattern formation in networks of mam-

malian cells. The current limitations include the availability of computationally

efficient modeling platforms, simple user-interfaces to specify 2D and 3D pattern-

ing, and integrative modeling framework that consider both cellular control and

external controls (eg optogenetics, robotic micromanipulation).

While many computational models are available after publication, many of

them are not extensible or understandable to researchers and developers outside

of the group that published the work. In communities such as metabolic model-

ings community, there have been several iterations shared between independent

researchers due to the development of standardized tools and representations of

models. While many journal require the publication of models, this should require

the publication and documentation of the code much like the documentation of

experimental protocols.

when developing models of patterning in mammalian systems, there are nu-

merous agent-based frameworks that are not easily integrated. While somemodels

focus on cell mechanics, other frameworks are better suited to predict cell migra-

tion, diffusion, or the formation of bioelectrical networks. It would be a great aid

to the community to see integrative modeling frameworks capturing cell mechan-

ics, migration, gap-junction communication, bioelectrical signaling, and diffusion

in a unified yet computationally efficient modeling framework.

Finally, there is a need to consider external control of multicellular pattern-
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ing in modeling frameworks. In this thesis, I demonstrated computational mod-

elings that are designed around the notion of controlling tunable parameters to

predict and design desired spatiotemporal behaviors. However, I did not consider

dynamic perturbations to mammalian systems such as micro-manipulation from

robotic platforms or optogenetics that can make changes in spatial signaling in the

order of second to minutes.

Mathematical and computational modeling is a powerful tool that can be com-

bined with machine learning to greatly improve the development or more complex

tissues, and quantify the reliability of engineered mammalian systems.
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APPENDIX A

Apendix of Computational Methods

A.1 PATTERN OPTIMIZATION

In order to automatically compare patterns produced by the models described in

Chapters 2 and 3 from different parameterizations and determine optimal param-

eter values, we needed a measure capable of quantifying how close any given pat-

tern was to the desired one. A very effective algorithm was proposed in (Bartocci

et al., 2016a) for this purpose.

A.1.1 Quad-Tree Representation of an Image

Consider an RGB representation of an m× n image as the matrix A where the ele-

ment aij = ⟨a
(r)
ij , a

(g)
ij , a

(b)
ij ⟩ is the normalized RGB values for the pixel located on the

ith row and jth column of the image. Thus,

0 ≤ a
(c)
ij ≤ 1 for c ∈ {r,g,b}.

Given a matrix A, A[is, ie; js, je] was used to denote the submatrix created by

selecting rows with indices from is to ie and columns from js to je. Following (Bar-

tocci et al., 2016a; Briers et al., 2016), we represented the matrix A as a quad-tree.

A quad-treeQ = (V ,R) is a quaternary tree (Finkel & Bentley, 1974) representation

of matrix A where each vertex v ∈ V represents a submatrix of A and the relation

R ⊂ V ×V defines four children for each vertex that is not a leaf.

Fig. 2.9 demonstrates how a quad-tree is built from a matrix. In this figure, we

label each edge in the quad-tree with the direction of the sub-matrix represented

by the child: north west (NW ), north east (NE), south west (SW ), and south east



93

(SE). In Fig. 2.9(b):

• v0 represents the complete matrix A.

• v1 represents A[1,⌊m/2⌋;1,⌊n/2⌋], where m is the total number of rows and n

is the total number of columns in A.

• v2 represents A[⌊m/2⌋+1,m;1,⌊n/2⌋].

• v3 represents A[⌊m/2⌋+1,m;⌊n/2⌋+1,n].

• v4 represents A[1,⌊m/2⌋;⌊n/2⌋+1,n].

• v5 represents A[1,⌊m/4⌋;1,⌊n/4⌋],

• etc.

We used the procedure described in (Briers et al., 2016) to construct quad-trees,

which is slightly different from (Bartocci et al., 2016a). In (Bartocci et al., 2016a),

the assumption was made that A has a size of 2k × 2k so that each submatrix could

be divided into four equal-sized partitions. Here, we relaxed this requirement by

allowing non-equal submatrices to be children of a node. Furthermore, (Bartocci

et al., 2016a) defined a leaf as a vertex of the quad-tree for which all the elements

of a submatrix had the same values. While this approach works perfectly for the

32×32 network that is studied in that paper, it can be problematic for larger images

since the number of vertices in a quad-tree grows exponentially as more levels are

added to it. In this paper, we constructed quad-trees with a fixed depth of 5,

regardless of the size and other characteristics of A.

The representation function µ(c)(v) : V → [0,b] × [0,b] was defined for sub-

matrix A[is, ie; js, je] represented by vertex v ∈ V of the quad-tree Q = (V ,R) as fol-
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lows (Briers et al., 2016):

µ(c)(v) = (µ(c)1 ,µ
(c)
2 )

µ
(c)
1 = 1

(ie−is+1)(je−js+1)
∑

i,j∈{is,··· ,ie}×{js,··· ,je}
a
(c)
ij ,

µ
(c)
2 = 1

(ie−is+1)(je−js+1)
∑

i,j∈{is,··· ,ie}×{js,··· ,je}
(a(c)ij −µ

(c)
1 )2,

(A.1)

where c ∈ {r,g,b}was an RGB color. The function µ(c) provided the mean value and

variance for the concentration of RGB colors in a particular region of the space

represented by the vertex v.

Quad-trees can be interpreted as multi resolution representation of images, as

the nodes that appear in deeper levels provide statistical information for higher

resolutions and nodes that appear on higher levels correspond to more global char-

acteristics of an image.

A.1.2 Tree Spatial Superposition Logic

In (Bartocci et al., 2016a), a formal logic, called tree spatial superposition logic

(TSSL), was introduced. TSSL is capable of formally specifying global patterns

in a network of locally interacting agents. The authors showed that this logic is

sophisticated enough to describe complicated patterns such as Turing patterns in

biochemical reaction-diffusion systems. In this paper, we used this logic to ex-

press various patterns that are studied here (Fig. 3.4). First, we present a brief

introduction to TSSL. The reader can refer to (Bartocci et al., 2016a) for a thorough

explanation of this logic, definitions of syntax and semantics, and its properties.
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A TSSL formula is recursively constructed using the following:

• Linear predicates over valuations for the representation function. For exam-

ple: µ(r)1 > 0.8 or µ(b)1 < 0.5.

• Boolean operators, such as ¬ϕ, ϕ1 ∧ϕ2, and ϕ1 ∨ϕ2.

• Spatial operators: ∃B⃝ϕ, ∀B⃝ϕ, where B is a nonempty subset of the set of

directions {NW,NE, SW ,SE}.

The spatial operators ∃B⃝ and ∀B⃝ are read as there exists in directions B next and

for all directions B next, respectively. ∃B⃝ϕ is interpreted as follows: For at least

one of the nodes located in the next level of the quad-tree labeled with one of the

directions in B, ϕmust be satisfied. ∀B⃝ϕ specifies that for all such nodes ϕmust

be satisfied. We demonstrate how TSSL can be used to express spatial patterns

through an example.

Consider a 4×4 checkerboard as illustrated in Fig. 2.10(a). This pattern can be

expressed as the following TSSL formula φ. The quad-tree of Fig. 2,10(b) satisfies

φ.

φ = ∀{NW,NE,SW ,SE}⃝ [

∀{NE,SW }⃝ (µ(r)1 ≥ 1∧µ(g)1 ≥ 1∧µ(b)1 ≥ 1)∧

∀{NW,SE}⃝ (µ(r)1 ≤ 0∧µ(g)1 ≤ 0∧µ(b)1 ≤ 0)]

(A.2)

TSSL formulas can be viewed as formal pattern descriptors or pattern classi-

fiers. Although TSSL is capable of describing complicated spatial behaviors in an

image, it is difficult in general to write a formula that describes a complex pattern.

In (Bartocci et al., 2016a), the authors proposed to use machine learning tech-

niques in order to find such a formula from a given set of positive and negative

examples.
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Assume a set of positive images (Y+), illustrating a desirable pattern, and a

set of negative images (Y−), in which the desirable pattern was not present, were

available. We created a set L from these images as:

L = {(Qy ,+) | y ∈ Y+} ∪ {(Qy ,−) | y ∈ Y−},

where Qy was the quad-tree generated from image y. The set L was separated into

a learning set LL (used to train a classifier) and a testing set LT (used to test the

classifier obtained from LL) such that L = LL ∪LT . A rules-based learner called

RIPPER (Cohen, 1995) was used to learn a set of classification rules from LL. Each

of these rules was in the form:

Ri : Ci ⇒ Labeli ,

where Ci was a Boolean formula over linear predicates over the representation val-

ues of the nodes of a quad-tree and Labeli ∈ {+,−}. We used the Weka workbench

(Frank et al., 2016) for implementing RIPPER. Each Ci was then translated into

an equivalent TSSL formula Φi . Since the classification rules were interpreted as

nested if-else statements, the TSSL formula equivalent to the entire set of classifi-

cation rules corresponding to the positive class was written as:

Φ+ =
∨
j∈R+

Φj ∧
∧

i=1,··· ,j−1
¬Φi

 , (A.3)

where R+ was the set of indices of rules labeled positive.
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A.1.3 Quantitative Robustness

A TSSL formula can be created for any desired spatial pattern by following the

procedure described in the previous section. If this formula is evaluated as true

for a given image, it means that the image contains the required pattern. On the

other hand, a false evaluation of the formula means that the pattern does not ex-

ist. However, this qualitative evaluation of TSSL descriptors does not provide any

information about how strongly an image demonstrates the required pattern.

In order to provide information information about how strongly an image satis-

fies or violates the given property, TSSL was also equipped with a recursive quan-

titative semantics definition which assigned a real value to a TSSL formula ϕ with

respect to vertex v ∈ V of quad-tree Q = (V ,R); denoted by ρ(ϕ,v). The TSSL quan-

titative valuation was derived recursively as follows:

• ρ(µ(c)i ≥ d,v) = µ
(c)
i (v)− d.

• ρ(µ(c)i ≤ d,v) = d −µ(c)i (v).

• ρ(¬ϕ,v) = −ρ(ϕ,v).

• ρ(ϕ1 ∧ϕ2,v) = min(ρ(ϕ1,v),ρ(ϕ2,v)).

• ρ(ϕ1 ∨ϕ2,v) = max(ρ(ϕ1,v),ρ(ϕ2,v)).

• ρ(∃B⃝ϕ,v) = 0.25max
b∈B

(ρ(ϕ,vb)) where vb was the child vertex of v with label

b.

• ρ(∀B⃝ϕ,v) = 0.25min
b∈B

(ρ(ϕ,vb)) where vb was the child vertex of v with label

b.
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It was proven in (Bartocci et al., 2016a) that TSSL quantitative semantics are sound.

In other words, a quad-tree Q satisfied a formula ϕ (Q |= ϕ) if ρ(ϕ,v0) > 0 where

v0 was the root of Q, and Q violated ϕ (Q ̸|= ϕ) if ρ(ϕ,v0) < 0. Therefore, the prob-

lem of checking whether an image contains a pattern expressed as a TSSL formula

was reduced to computing its quantitative valuation ρ(ϕ,v0). Moreover, the abso-

lute value of ρ(ϕ,v0) was viewed as a measure of how strongly ϕ was satisfied (or

violated) by Q. Hence, the quantitative valuation of a formula with respect to a

quad-tree was called its robustness. This property is demonstrated in Fig. 3.3.

A.1.4 Particle Swarm Optimization

Consider an agent-basedmodel with a set of parameters p ∈Ω ⊂RNp , whereΩwas

the possible set of parameter ranges and Np was the total number of parameters.

For instance, in the model described in Chapter 3, we had Np = 5 parameters.

The output of the model was a sequence of T images where A[t] was the image

corresponding to time step t ∈ {0,1, . . . ,T } and T was the total duration of simu-

lation. Our goal was to determine parameter values that result in emergence of a

required pattern in the sequence of images derived from the model. Recall that we

could specify the pattern using a TSSL formula ΦPattern. Moreover, each image A[t]

could be translated into a corresponding quad-tree Q[t] with root v0[t]. Therefore,

for a fixed parameterization p, we could quantify the resulting sequence of images

with S(p) using the following equation:

S(p) = max
0≤t≤T

ρ(ΦPattern,v0[t]), (A.4)

where ρ was the TSSL robustness as described in the previous section. Note that

since the model (Chapter 3) was stochastic in nature, S(p) was a random variable
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and would have a different value every time a sample simulation was produced

using the model with the parameters p. If S(p) > 0, there exists at least one image

in that particular sequence for which the TSSL robustness was positive and the

pattern was present. On the other hand, the pattern had not emerged in the sample

simulation if S(p) < 0. We called S(P ) the robustness degree for parametrization

p. Now, the problem became finding the parameterization p∗ that maximized the

score S(p). Since S(p) was a random variable, we choose to maximize its expected

value:

p∗ = argmax
p∈Ω

E(S(p)), (A.5)

which means that we were looking for the parameterization p∗ that on average pro-

duceed patterns with highest possible robustness score. If we simulated the model

n times from parameters p, the expected value could be approximated with the

sample mean:

E(S(p)) ≈ S̃(p) =
1
n

n∑
i=1

Si(p), (A.6)

where Si(p) was the robustness score for parameters p in the ith simulation. In

general, a large sample is needed to achieve an accurate approximation. however,

it was shown in (Haghighi et al., 2015) that in practice, a relatively small n suffices

for the purpose of optimization. In this paper, we computed the average robust-

ness for three sample simulations in every case (n = 3).

Many optimization methods can be used to solve this optimization problem.

Inspired by (Bartocci et al., 2016a), we employed particle swarm optimization

(PSO) (Kennedy, 2011) to solve this problem. PSO is a heuristic solution to uncon-
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strained optimization problems that is capable of solving problems with irregular

search spaces,is easily distributable, and does not require the objective function to

be differentiable.

The PSO algorithm worked as follows: The procedure began by randomly ini-

tializing a set of M particles with positions zi ∈ Ω and velocities z′i . The position

of a particle was a candidate solution, and the velocity was a search direction from

the current solution. Next, n simulations were produced and n sequences of quad-

treesQ[t](zi) were created for each particle and the average robustness degree S̃(zi)

was evaluated for each set of simulations represented by particle zi . The position

of the ith particle that had performed best so far was stored in the variable z∗i , and

the optimal value of z∗i was denoted by z∗. After all particles had been evaluated,

the positions and velocities were updated according to the following relations:

z′i ←Wzi + η(rp)(z∗i − zi) + η(rg)(z∗ − zi)

zi ← zi + z′i ,
(A.7)

where η(ri) was a random number uniformly distributed over [0, ri] and the pa-

rameters W ∈ R, rp, rg are tuned by the user (Shi & Eberhart, 1998). This iterative

process continued until a termination criterion was met.

If S̃(p∗) was positive or negative but sufficiently close to zero, we had found

the optimal parameterization of the model for the required pattern. This occurred

for the Bullseye and Multi-Islands patterns in Fig. 3.4D,E. The optimal parame-

terization is shown in Fig. 3.4. On the other hand, S(p∗)≪ 0 indicated that even

for the best possible parameterization of the model, the required pattern did not

emerge, meaning that the model was not capable of producing that pattern at all.

This occurred for the Janus (Left-Right) pattern (Fig. 4F).
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Fig. 2.11 demonstrates two sample simulations, one for the Bullseye pattern

and one for the Multi-Islands pattern. Fig. 2.12 shows how the corresponding

TSSL scores evolve over time for each simulation. It is seen in this figure that the

scores gradually improve until at some points the desired patterns are formed
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