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In our study, we present a purely statistical observations-based model-free analysis that provides evidence about
Granger causality (GC) from long-lived radiative forcings (LLRFs) to the climate trend (CT). This relies on hav-
ing locally ordered breaks in the slopes of the trend functions of LLRF and the CT, with the break for LLRF
occurring before that of the CT and with the slope changes being of the same sign. The empirical evidence
indicates that these conditions are satisfied empirically using standard global surface temperature series and
an aggregate measure of LLRF (carbon dioxide, nitrous oxide, and chlorofluorocarbons). We also discuss why
the presence of broken trends can lead one to conclude in favor of GC when using standard methods even if the noise
function in LLRF is negligible.
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Introduction

The attribution of climate change to human activi-
ties has been discussed at length in the literature and,
regardless of the differences in assumptions and
methods, there is a consensus about the existence of
a common secular trend between temperatures and
radiative forcing variables. The contributions of
Working Groups I and II of the Intergovernmental
Panel on Climate Change provide direct and
indirect scientific evidence about the warming of
the climate system and of the role of anthropogenic
activities.1,2 Comparing observations to model pre-
dictions about what the state of a variety of systems
would be with or without anthropogenic forcings
has greatly increased the confidence about a strong
influence of human activities on the observed
climate. Of importance, to conduct attribution
studies is the optimal fingerprinting method3,4

based on a generalized multivariate regression
for the detection and attribution of changes to
externally forced climate change signals.1 These
optimal detection analyses that combine observed

and modeled climate data provided important
evidence to support IPCC’s verdict that “most of the
observed increase in global average temperatures
since the mid-20th century is very likely due to the
observed increase in anthropogenic greenhouse gas
concentrations.”1,5,6 Nonetheless, it has been argued
that attribution studies based on climate models’
simulations can be criticized of circular reasoning.7

One important contribution of statistical attribu-
tion methods is that they can provide evidence
that does not depend on the physical climate
models’ performance for reproducing the observed
climate.

However, taking the stand of a climate skeptic or a
climate denier, some of this evidence may be viewed
as falling short of being convincing. First, as is so
often said in various blogs and other outlets, correla-
tion does not imply causation. This is indeed correct
and points to the fact that establishing a similar trend
for radiative forcings and temperatures is no indi-
cation of causation. In fact, if radiative forcings had
any linear trend behavior, the correlation coefficient
with temperatures would be nearly one; a standard
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Figure 1. Filtered global temperatures. Panels (A) and (B) show global temperatures for the HadCRUT4 and the NASA data sets,
respectively.

pitfall in dealing with trending series. Second, the
various calibrated models used could be criticized as
being imprecise and providing widely different fore-
casts or simulations.8–11 They could also be tweaked
to generate the desired results. Hence, the causality
claim obtained from such model-based studies may
be questioned. We do not ascribe to this view but for
the sake of arguments, highlight that this is a view
often put forward by climate skeptics.

The issue is then as follows. Is it possible to
provide a purely statistical observations-based
model-free analysis that provides evidence about
causality from long-lived radiative forcings (LLRFs)
to the climate trend (CT)? Our answer is yes pro-
vided there are locally ordered breaks in the slopes
of the trend functions of LLRF and the CT, with the
break for LLRF occurring before that for the CT and
with the slope changes being of the same sign. What
we label as the CT should be viewed as an estimate
of the underlying trend in temperatures, that is,
long-run secular movements not due to natural
variability.

The LLRF are defined as components having a
long atmospheric residence time, namely carbon
dioxide (CO2), nitrous oxide (N2O), and chloroflu-
orocarbons (CFCs), which have a so-called lifetime
in excess of 45 years, defined as the period it takes
for a perturbation to be reduced to 37% of its ini-
tial amount. Given the time span of the historical
records under study, we can for all practical pur-
poses view the effect of such deviations as having
a permanent effect. We focus on LLRF for the fol-
lowing reasons. First, these are the most contentious
components in the debate about the attribution of

climate change, especially CO2. It is well agreed that
nonanthropogenic factors, such as solar irradiance
variations and volcanic eruptions have a short-term
impact on surface temperatures and barely none
on the CT. Some anthropogenic factors may have
a short-term effect on temperatures and the CT
but, given the short-term nature of their effect,
they could be considered of second order. This does
not mean they are not important or to be ignored
but simply that their long-term effect on climate is
dwarfed by those of the LLRF.

We shall use the concept of Granger causality
(GC).12 Briefly, if one considers a bivariate system
consisting of LLRF and the CT, then LLRF causes
CT if one can better predict CT using the past of
LLRF and CT than what can be done using only
the past of CT. This is a purely statistical concept
of causality and most often assessed using linear
predictors. It has been applied in various studies to
show causality from various sets of anthropogenic
factors to CT using standard procedures suggested
in the econometrics literature; see below for details
and references. Our argument is that such a causal-
ity argument can be made in a simpler way and that
our suggested approach is encompassing in that it
also explains some of the prior results. As discussed,
GC from LLRF to CT holds when the trend function
of both series have locally ordered breaks with the
break in the slope occurring first in LLRF and with
the slope changes being of the same sign. This is
because at some part of the sample, say postbreak, it
is possible to better forecast CT using the past (say
between the breaks in LLRF and CT) of LLRF and CT
over and above what can be achieved using the same
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past values of CT. The intuition is quite straightfor-
ward. Suppose two individuals walk along a street
one ahead of the other (i.e., common linear trend).
Then, even though their paths are common, it is
very difficult to argue that the first (think of LLRF)
causes the travel path of the second (CT). They may
simply walk along the same street by chance. How-
ever, suppose you suddenly witness the first one
(LLRF), taking a quick right turn with increasing
speed (faster rate of growth), with the second one
(CT) subsequently also taking the same right turn
at increasing speed and thereby going in the same
different direction. In this case, one would be quite
convinced that the second individual is purpose-
fully following the first and that the actions of the
first cause those of the second. This is why breaks in
the trend function can be used to identify causal-
ity properties. It is deceptively simple, yet quite
compelling.

The paper is structured as follows. First, it
presents the data used, the transformation consid-
ered and the sources. Second, it provides a brief
review of some time series concepts used in our
analysis. A statistical analysis of the trend in LLRF is
presented next. Then, it provides empirical evidence
supporting the fact that LLRF Granger causes tem-
peratures. There, we discuss of the implications of
the results for conducting standard GC tests. Finally,
it provides brief concluding remarks.

Data

The global surface temperature data used in this
paper come from the Climatic Research Unit’s
HadCRUT413 and the NASA database.14,15 These
databases differ basically in two aspects: (1) how
regions without observing stations are accounted
for (e.g., extrapolation methods). The HadCRUT4
excludes most of the Arctic, where the warming
has been very large during the past decade; and
(2) how sea surface temperatures are adjusted due
to changes in measurement methods. To represent
the most important natural sources of interannual
global and hemispheric climate variability, we
use the following indices,16–18 the Atlantic Multi-
decadal Oscillation (AMO) and the North Atlantic
Oscillation (NAO). These series are used to filter
out the effects of natural variability oscillations on
global temperatures series. The radiative forcing
series cover the period of 1880–2011 and are
available from the NASA Goddard Institute for

Space Studies.19 They represent the effective
radiative forcing that includes a number of rapid
adjustments to the radiative imbalance.20 We use
the LLRF (CO2, N2O, and CFCs), the WMGHG
(LLRF plus methane (CH4)), and the total radiative
forcing (TRF), which includes WMGHG plus ozone
(O3), stratospheric water vapor (H2O), solar irradi-
ance, land use change, snow albedo, black carbon,
reflective tropospheric aerosols and the indirect
effect of aerosols. The data are available from:
http://www.metoffice.gov.uk/hadobs/hadcrut4/;
http://data.giss.nasa.gov/gistemp;
ftp://ftp.ncdc.noaa.gov/pub/data/scpub201506/;
http://www.esrl.noaa.gov/psd/data/timeseries/
AMO/; http://www.esrl.noaa.gov/psd/gcos_wgsp/
Timeseries/Data/nao.long.data;
http://data.giss.nasa.gov/modelforce/Fe_H11_
1880-2011.txt.

As in other recent studies,8,21 we use a filtered
version of the temperature series. Since trends and
breaks are low-frequency features, it is important
to purge the temperature series from natural low-
frequency components. This allows more precise
estimates of the break dates. Other high-frequency
fluctuations in temperature series do not affect the
precision of the estimates of the break dates and the
magnitudes of the changes in slope. Here, we shall
follow Ref. 21 and use the series filtered from the
effect of the AMO and NAO; that is, we use the resid-
uals from a regression of CT on AMO and NAO. The
choice of AMO and NAO is dictated by their low-
frequency effect on global temperatures.22–24 Other
natural variability modes may have an important
effect on temperatures, although previous results
suggest that they do not bias the issue of iden-
tifying trends and breaks. The two filtered tem-
perature series are presented in Figure 1. The
LLRF, WMGHG, and TRF series are presented in
Figure 2. All series show a marked increase in the
rate of growth around 1960. This will be central
to our analysis. The temperature series also show a
marked decrease in the mid-1990s, the so-called hia-
tus. This decrease is present though mild in the LLRF
series; there was an important decrease in CFCs but
somewhat compensated by an increase in the rate
of growth of CO2. One can see a more pronounced
decrease in the rate of growth around this time in
WMGHG because of the decrease in the emission of
CH4 and an even more pronounced decrease in the
rate of growth in TRF, mostly because of the decrease
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Figure 2. Radiative forcing series. Panel (A) shows the long-
lived radiative forcing (LLRF). Panel (B) shows the radiative
forcing of the well-mixed greenhouse gases (WMGHG). Panel
(C) shows the total radiative forcing (TRF).

in the indirect effect of aerosols (see Ref. 8 and
the references therein). This suggests that, while the
hiatus was indeed caused by anthropogenic radia-
tive factors, much of the effect is likely to be transient
given that it is mostly due to non-LLRF factors. Since
our focus is about the effect of LLRF on the CT, we
do not consider the break related to the hiatus but

focus on the break in the 1960s. This is done without
the loss of generality for the arguments proposed.

Brief review of time series concepts

We briefly review concepts related to time series
processes, in particular the difference between trend
stationary (TS) and unit root (UR) processes. See
Ref. 11 for a more detailed review with a focus on
climate change issues. Consider a time series yt with
the following decomposition: yt = τt + zt , where
τt is the deterministic trend function and zt is the
noise component. A process is said to be integrated
of order d or I (d) if the dth difference of the noise
zt , �

d zt = (1 − L )d zt , is stationary. If a time series
is stationary around an appropriately defined trend
τt , its order of integration is 0 or I (0). The process
is said to be I (1) if the deviations from the trend
have to be differenced once to achieve stationarity.
Consider the first-order autoregressive model

zt = αzt−1 + et , et ∼ i.i.d.
(
0, σ2

)
. (1)

An example of a UR process is whenα = 1.Then,
�zt = zt − zt−1 = et . The first difference of the
process is i.i.d. This model has the following impli-
cations. First, each shock et has a long-term effect
on the level of zt . To see this, write (1) with α = 1
as (by recursive substitution) zt = z0 + ∑t

j = 1 e j .
Since each shock has a permanent effect on future
levels of zt , a 1% unexpected increase in zt today
increases our predicted value of future zt ’s by 1%
for all future periods. In this simple example, with
et ∼ i.i.d., zt is called a random walk, the best pre-
dictor of zt tomorrow being zt today. Assuming this
type of process as a representation of global and
hemispheric temperatures implies that the secular
movement of the series is determined by the sum of
random shocks: all shocks have permanent effects
on temperature series and even shocks in the dis-
tant past are as important as present variations to
determine the current value. The long-term fore-
cast is always influenced by historical events, and
temperature predictability is limited, even if forcing
factors are held constant.8,25,26 The second implica-
tion is that the variance of zt increases with t since
Var(zt ) = Var(

∑t
j = 1 e j ) = tσ2 if z0 is fixed. This

is a nonstationary process since its second moment
depends on t. Hence, a UR process is nonstationary
in variance. The process can cross any line within
a long enough period. The random walk model
is quite restrictive. Most of the time, allowing for
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additional short-run correlation is needed; that is,
having �zt = vt , where vt is a stationary process
exhibiting some correlation (without a UR itself).
In this more general model, the same qualitative
features hold with minor modifications.

A wide variety of time series have a tendency
to show secular movements over time. Hence, it
is common to specify the trend function as τt =
μ + βt. Here, β is the slope of the trend, some-
times called the drift. Then, �yt = β + vt and
yt = μ + βt + ∑t

j=1 v j . The trend function of yt

is then composed of two parts: (i) a deterministic
part given by the drift term and (ii) a stochastic part
given by the permanent effect of each shock vt on
the level of yt . Since shocks have a permanent effect,
they change our long-term forecast of the level of the
series. Such models are often labeled as difference
stationary (DS) models.

When a set of series are integrated, this raises the
possibility that they be cointegrated.27 Suppose xt

and yt are integrated of order one, then they are
cointegrated if there exists some θ such that xt −
θyt is stationary. In this case, even though none of
the variables is individually attracted to some trend
function, the cointegrating relationship acts as an
attractor between the two series. Also, cointegration
implies that an error-correction model exists. The
application of integrated and cointegrated concepts
to address the issue of the attribution of climate
change include Refs. 28–31 among many others.
The use of this approach has also been criticized in
the literature.10,25,32

An alternative to model variables that increase
over time is with a purely deterministic trend, that
is, yt = c + βt + wt , where wt is a stationary pro-
cess. This is called a TS model because the devia-
tions from the trend function are transitory, that is,
the shocks wt have no permanent long-run effects.
Distinguishing between a TS and DS process is the
so-called UR testing problem.

A particular case of the TS process that has been
discussed in the climate change literature is when
breaks in the trend function are present. In general,
the trend parameters and their structural changes
need not to be assumed deterministic.33–35 In order
to illustrate the class of models that applies in such
cases, suppose that:

yt = μt + βt t + zt ,

where μt = μt−1 + vt and βt = βt−1 + ut . The
intercept and slope of the trend function can be time
varying stochastic processes as in Ref. 34. However,
when only one (or very few) break occurs, it becomes
difficult to model the change with a stochastic struc-
ture. Hence, the common approach in the literature
has been to consider the change as being exoge-
nous in the sense of intervention analysis36 and they
are not explicitly modeled via a parametric stochas-
tic structure. Under this parameterization, there are
only some shocks that can change the long-term
behavior of the time series, as opposed to a UR pro-
cess for which all shocks have long-term effects. In
the climate context, long-term changes are not fre-
quent in the scale of the sample under analysis and
are produced by important changes in key exter-
nal forcing factors.8,25 The application of TS models
with changes in slopes to address the issue of attribu-
tion of climate change was used in Refs. 8–11,25,37,
and 38, among others.

Testing for GC
If both LLRF and CT are TS, to test for GC one
can simply use the following regression estimated
by ordinary least squares (OLS), where a subscript
“*” indicates a detrended variable:

CT∗
t =

k∑

i = 1

αi CT∗
t−i +

k∑

i = 1

βi LLRF∗
t−i + ut

(2)

and test the joint null hypothesis H0 : β1 = · · · =
βk = 0 using a standard F-test. In general, one can
use the following regression whether the series are
stationary or integrated:

CTt = c +
k∑

i = 1

δi CTt−i +
k∑

i = 1

φi LLRFt−i + ut ,

(3)

where k = p + d , p is the order of the autoregres-
sive process, and d is the maximal order of integra-
tion in CT and LLRF, see Ref. 39. This approach has
been used by Refs. 40 and 41; see Ref. 42 for a review.

The question being asked using specifica-
tion (2) is then: do the past deviations from
trend in LLRFt help explain the deviation from
trend in CTt over and above what the past
deviations from trend in CTt can do? For
specification (3), the interpretation is similar with

199Ann. N.Y. Acad. Sci. 1436 (2019) 195–205 C© 2018 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.



Causality from long-lived radiative forcing Estrada & Perron

the changes in levels instead of the deviations. Note
that in both cases, additional regressors can be added
in (2) and (3) to allow for exogenous factors; for
example, solar irradiance or volcanos, or to account
for other factors that may be responsible for the
changes in CT. We shall not consider such extended
systems as our interest is solely with respect to the
effect of LLRF on CT with respect to issues related
to trends and breaks. While it can be argued that
solar irradiance has been trending, the trend has
flattened when temperatures started to increase at a
fast pace (around 1960) so that no evidence of GC
can be found (see Refs. 43 and 44). From the avail-
able literature and basic climate change science, it is
highly unlikely that omitted variables would cause
a bias or a finding of spurious causality. Note also
that one could follow an out-of-sample (predictive)
GC analysis as in some of the references mentioned
above. Considering such extensions would not add
substance to our arguments, hence they will not be
further discussed.

A statistical analysis of the trend in LLRF

The nature of the trend in the aggregated measure
of radiative forcing can be thought of using the fol-
lowing decomposition of the time series properties
of the ith forcing yit ,

yit = fi t + uit ,

where fi t is the trend and uit are deviations from
the trend. The trend is of general form (including
the nonlinear case) and intends to capture the
sustained increase in the forcing; uit represents
the noise component. Shocks to short-lived radia-
tive forcings (e.g., aerosols or solar irradiance) will
dissipate shortly; while in the case of long-lived
forcing the effect of shocks will be long lasting. The
overall trend of the aggregate forcing is the sum of
the individual trends of each forcing in the set. The
same applies to the noise components. Since CO2 is
by far the most important forcing, the overall trend
will be substantially influenced by the trend in CO2.

The matter of interest related to whether the
overall series are TS or integrated (i.e., having an
autoregressive UR) refers to the nature of the devia-
tions from trend for the components having a long
atmospheric residence time, namely CO2, N2O, and
CFCs. Given the time span of the historical records
under study, for all practical purposes we can view
the effects of such deviations as permanent. This

Table 1. Tests for the existence of a break in the slope of
temperature and radiative forcing series, sample 1880–
1986

Series Series

HadCRUTF 1.83** LLRF 3.30***

(1963) (second break) (1992)

[1948–1978] [1989–1995]

NASAF 3.38*** WMGHG 31.61***

(1965) (1961)

[1953–1977] [1960–1962]

LLRF 215.85*** TRF 74.43***

(first break) (1963) (1964)

[1962–1964] [1958–1970]

Note: The main entries are the values of the Perron and Yabu
test.48 *** and ** denote statistical significance at the 1% and 5%
levels, respectively. The superscript F denotes filtered tempera-
ture series. The estimated break dates are given in parenthesis
and their corresponding 95% confidence intervals are shown in
brackets. The long-run variance is calculated using the Bartlett
kernel and Andrews54 automatic bandwidth selection method.
For the second break in LLRF, the sample used is 1968–2010.

would lead to each of the long-lived forcings as hav-
ing a UR representation and hence the aggregated
forcing would be integrated of order one.

The central issue then is the nature of the devia-
tions for the long-lived components. We estimated
by OLS the break date for a joint-segmented trend
model given by

LLRFt = α + βt + δ1(t > TB ) (t − TB ) + ut,

where 1(A) is the indicator function of the event A,
TB is the break date and ut is a residual term. This
was done for the periods of 1880–1986, and 1968–
2010. The choice of the subsamples was dictated
by a preliminary analysis of the dates of the breaks
points; minor variations lead to similar results. The
reason for applying the tests to different subsamples
is because the estimate of a single break need not be
consistent when two breaks are present45 contrary to
the case with stationary variables in which case each
break dates can be estimated sequentially.46,47 For
each subsample, the Perron and Yabu test48 rejected
the null hypothesis of no break in favor of one break.
Table 1 presents the estimates of the break dates and
their confidence intervals for the period of 1880–
1986 for LLRF, WMGHG, TRF, and CT (filtered
HadCRUT and NASA). For LLRF, we consider two
subsamples: 1880–1986 and 1968–2010. The point
estimates are 1963 (95% CI: 1962–1964) and 1992

200 Ann. N.Y. Acad. Sci. 1436 (2019) 195–205 C© 2018 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.



Estrada & Perron Causality from long-lived radiative forcing

0.0

0.4

0.8

1.2

1.6

2.0

2.4

80 90 00 10 20 30 40 50 60 70 80 90 00 10

LLRF Trend

W
/m

2

Figure 3. Long-lived radiative forcing (LLRF) and its deter-
ministic trend with two breaks in slope in 1963 and 1992.

(95% CI: 1989–1995), where here and throughout,
95% CI indicates the 95% confidence interval con-
structed using the method of Perron and Zhu.49

Figure 3 plots the fitted broken trend along with
the original series. The distinctive feature is that the
series is very smooth and follows the trend func-
tion very closely. Besides other minor nonlinearities,
this is true except for one episode, namely the slow-
down in LLRF during the period of 1940, driven by
unprecedented reductions in CO2 emissions most
likely linked to the Great Crash and World War II.
This slowdown can be viewed as a shock (a devi-
ation from trend), though it occurred over several
years and, hence, imparted an inflection point in
the trend of LLRF instead of a sudden level shift. It
nevertheless had a permanent effect in lowering the
level of the aggregate radiative forcing (see Ref. 8,
Section S6). Nevertheless, overall the deviations are
essentially negligible. While this variable increased
by 2.22 W/m2 during the period 1880–2010, the
estimates of the variance of the deviations from the
fitted broken trend for LLRF is indeed close to 0
(0.0009). The coefficient of variation of LLRF is
only 1%. In contrast, the variance of the deviations
from the fitted trend for TRF is 0.0063, about an
order of magnitude larger than that of LLRF. Global
temperatures show much larger variability around
their fitted trends with coefficients of variation of
13 and 18% for NASA and HadCRUT4, respectively
(Table 2).

The crucial matter of interest is that the shocks or
deviations from trend in the 1940s were the only
nonnegligible ones that occurred in the sample;
no important deviations from trend occurred in
LLRF at any other time. In terms of the statistical
model, the shocks to concentrations for those long-

Table 2. Increases in observed values, variances of devi-
ations from trend, and coefficients of variation for LLRF,
TRF, NASAF, and HadCRUTF

Series Increase Variance

Coefficient of

variation

LLRF 2.22 (W/m2) 0.0006 0.01

TRF 1.75 (W/m2) 0.0063 0.05

HadCRUTF 0.53 (°C) 0.0090 0.18

NASAF 1.00 (°C) 0.0168 0.13

lived components have been around 0 throughout
the sample, except for the slowdown in the 1940s.
Hence, from a statistical point of view, it is more
adequate to view the process describing LLRF as
being a pure trend with an inflection point in the
mid-20th century, a marked increase in slope in
1963 and a mild decrease in slope in 1992. When
adding all other forcing factors with a short lifetime,
for which deviations from trends with a transitory
effect have occurred, this leads to a segmented trend
model with stationary deviations (no UR) for more
inclusive measures of TRFs that includes short-
lived anthropogenic and natural factors (see TRF in
Fig. 2).

Some authors have argued that because of
the presence of LLRF, aggregate radiative forc-
ings and, hence, temperatures must be integrated
processes.50,51 Their argument misses the distinc-
tion between the trend and the stochastic nature of
the deviations from it. Suppose indeed that we have
a UR process of the form

LLRFt = LLRFt−1 + Ct ,

where Ct is the yearly value of the addition to LLRFt

and can be specified has having some distribution
with mean μt , say, and variance σ2

C . This indeed
does trivially define a UR process provided σ2

C > 0.
Here, the issue is that σ2

C ≈ 0 so that LLRFt is the
accumulation of the possibly time varying means
μt . If μt is constant at some value μ, then LLRFt =
LLRF0 + μt, a deterministic trend. The data show
that μt is not constant throughout the whole sample
period, but changes only rarely: (1) it increases in
value in 1963, (2) decreases near 1992, and (3) shows
some mild nonlinearities in the 1940s. Apart from
that, it is otherwise constant.

Going back to the main features of UR processes
described above, salient features are (1) all shocks
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have a permanent impact on the level of the series
and (2) deviations from trend exhibit increasing
variance through time. None of these features are
present in LLRF. Only a brief spell around 1940
had a permanent impact and the deviations from
trend are basically 0. Hence, essentially, it is better
to view LLRF as a nonlinear trend with basically
no randomness around it. When adding short-lived
anthropogenic and natural factors, the total aggre-
gate radiative forcing (TRF) is better described as a
(nonlinear) TS process.

Causality with breaks in trend

In a bivariate system consisting of LLRF and CT,
LLRF Granger-causes CT if one can better predict
CT using the past of LLRF and CT than what one
can do using only the past of CT. Suppose that

LLRFt = c1 + β1t + δ11(t > TB1) (t − TB1)

+ u1t ,

CTt = c2 + β2t + δ21(t > TB2) (t − TB2) + u2t,

where u1t and u2t are, purely for simplicity, i.i.d.
random processes. Note that for LLRFt , u1t is essen-
tially 0 as discussed above. Since we shall consider
forecasting CTt using LLRFt , the assumptions on u1t

and u2t are innocuous. For the sake of exposition,
suppose that TB2 = TB1 + 1 and we wish to forecast
CTt at time TB2 + 1. If one uses only the past values
of CTt , the forecast is then c2 + β2(TB2 + 1) and
the forecast error is δ2 + u2t . On the other hand, if
one uses both CTt and LLRFt , provided the slope
changes are of the same sign, there is a linear com-
bination of CTt−1 and LLRFt−1 such that the fore-
cast is c2 + β2(TB2 + 1) + δ2 and the forecast error
is u2t . Hence, the forecast error is clearly reduced
(either in mean or mean-squared error terms) when
using the past of LLRF compared to what can be
achieved using the past of CT only. This defines
Ganger causality from LLRF to CT.

Empirical evidence
To establish GC from LLRF to CT, we must therefore
verify the following features in the data: (1) the exis-
tence of a break in both LLRF and the temperatures
series (filtered to adjust for the effect of AMO and
NAO, as stated above), (2) the break date in LLRF
occurs prior to that in temperatures, and (3) the
pre- and postbreak slopes are of the same sign. To
obtain point estimates, one does not need to take a

stand on the nature of the noise components, that
is, I (0) or I (1). In both cases, the estimate of the
break fraction is consistent, though the break dates
themselves are consistent only under I (0) noise. To
carry inference and produce confidence intervals,
one must take a stand on whether the noise is I (0) or
I (1); see Ref. 49. Given the overwhelming evidence
presented above, all series are treated as having an
I (0) noise component. Nevertheless, we confirmed
that this agrees with the empirical evidence. To ver-
ify item (1), we applied the Perron and Yabu test,48

which indicates a rejection of the null hypothesis
of no break in favor of one break (Table 1). As
stated above, the estimate for LLRF is 1963 using
the sample period 1880–1986 (to avoid a bias due
to the hiatus, i.e., a second break in 1992). The pre-
break slope is 0.0059 (SE: 8.22E-05) and the slope
change is 0.0305 (SE: 0.0004). Using the same sam-
ple, the estimate for the break in global temperatures
using the HadCRUT4 series is 1963 (95% CI: 1948–
1978) with the prebreak slope being 0.0038 (SE:
0.0004) and the slope change 0.0076 (SE: 0.0022).
For the NASA series the estimated break date is 1965
(95% CI: 1952–1978) with the prebreak slope being
0.0046 (SE: 0.0006) and the slope change 0.0166
(SE: 0.0033). This verifies items (2) and (3). Also,
the Kim and Perron test52 for a UR allowing for a
break rejects the null hypothesis of an integrated
noise component in favor of a stationary one. This
applies to all series considered.

Note that for the HadCRUT4 series, the break
date on a yearly scale is the same as that for LLRF.
This is still consistent with having the break date in
LLRF occur prior to the break date in CT since the
causal effect can occur within a year. In fact, with the
large standard errors in the estimates of the break
dates in the temperatures series (given the high noise
compared to that for LLRF), one would expect that
the break dates in LLRF and CT should not be statis-
tically different from each other. This is indeed the
case. First, Ref. 8 showed, using the co-trending test
of Bierens,53 that various measures of temperatures
and radiative forcings have a common (nonlinear)
trend, which implies that the breaks have to be nearly
common (in a statistical sense that accounts for
the noise in the data). Also, Ref. 21 devised direct
tests for common breaks in joint-segmented trend
models and concluded that the breaks in various
measures of temperatures and forcings are com-
mon. Standard physics for climate change processes
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Table 3. Parameter values used for the simulation experiment to estimate the rejection rates of the Granger causality
test applied to LLFR and CT, sample 1880–1986

TB α c b δ σ2
e

LLRF 1963 0 0.001318 0.005938 0.030521 0.0005

CT 1965 0.375235 –0.417209 0.004622 0.016627 0.0156

Note: The parameter values correspond to a broken linear term of the form c + bt + δ1(t > TB )(t − TB ) + ut , where ut =
aut−1 + et and et ∼ i.i.d. N(0, σ2

e ). TB is the date of the break in the slope of the trend function.

suggest that common breaks should be interpreted
as having the break in LLRF occur slightly prior to
that in CT, consistent with the evidence presented
here.

Implications for standard GC tests
The main issue from above is that for LLRFt devi-
ations from trend are essentially null. This implies
that causality results obtained using standard meth-
ods, as described above, should be interpreted in a
different way. This holds true whether the series is
characterized as being TS or integrated for the fol-
lowing reasons. If the series are TS, the test based on
specification (2) relies on assessing whether devia-
tions from trends in LLRFt can help predict devi-
ations from trend in CTt . However, the deviations
from trend in LLRFt are, essentially, 0. Hence, it
should not be possible to reject the null hypothesis
of no GC from LLRF to CT. Using the fitted trends
for LLRF and CT (filtered HadCRUT and NASA)
and the estimates of the break dates reported above,
this is indeed the case irrespective of the number of
lags used.

When adopting specification (3), the test relies
on assessing whether past changes in LLRFt can
help predict the changes in CTt . In this case, the
changes in LLRFt are, for all intents and purposes,
constant, except for the different means before and
after the abrupt increase in the growth rate in the
1960s, a mild decrease in the growth rate in the
1990s and minor variations in the 1940s. Accord-
ingly, any finding of GC from LLRF to CT cannot be
ascribed to the effect of variations in the series but
should come solely (or mostly) from the presence
of the breaks in the 1960s. To illustrate this issue
related to specification (3), we conducted a small
simulation experiment. We consider LLRF and CT
as being generated by a broken linear trend model of
the form c + bt + δ1(t > TB )(t − TB ) + ut , where
ut = aut−1 + et and et ∼ i.i.d. N(0, σ2

e ). The val-

ues of the parameters were obtained from the fitted
trend from the data (using NASA for CT) and are
given in Table 3. To obtain the rejection frequen-
cies, we used 5000 simulations. The results from the
simulation experiment show that the null of no GC
from LLRFt to CTt is always rejected at the 5% sig-
nificance level, while the null of no GC from CTt to
LLRFt is rejected only about 8% of the times, which
is close to the size of the test. This result is interest-
ing because it shows that if the data are described as
we claim they are, one is bound to find evidence of
GC using standard methods. Hence, our results are
encompassing in that they can explain prior find-
ings reported in the literature. The interpretation
is, however, quite different and stems solely from
the presence of locally ordered breaks. The noise
components can be completely independent.

Conclusions

We presented a purely statistical observations-based
model-free analysis that provides evidence about
GC from LLRF to the CT. This relies on having
locally ordered breaks in the slope of the trend func-
tions of LLRF and the CT, with the break for LLRF
occurring before that for the CT and with the slope
changes being of the same sign. The empirical evi-
dence indicates that these conditions are satisfied
empirically using standard global surface tempera-
ture series and an aggregate measure of LLRF (CO2,
N2O, and CFCs). We also discussed why the pres-
ence of broken trends could lead one to conclude in
favor of GC when using standard methods even if
the noise function in LLRF is negligible. We showed
why breaks in the trend function could be used
to identify causality properties. The arguments are
deceptively simple, yet quite compelling.
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