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ABSTRACT

Graphs are established as one of the most prominent means of data representation.

They are composed of simple entities – nodes and edges – and reflect the relationship

between them. Their impact extends to a broad variety of domains, e.g., biology,

sociology and the Web. In these settings, much of the data value can be captured by

a simple question; how can we evaluate the importance of these entities? The aim

of this dissertation is to explore novel importance measures that are meaningful and

can be computed efficiently on large datasets.

First, we focus on the spanning edge centrality, an edge importance measure re-

cently introduced to evaluate phylogenetic trees. We propose very efficient methods

that approximate this measure in near-linear time and apply them to large graphs

with millions of nodes. We demonstrate that this centrality measure is a useful tool

for the analysis of networks outside its original application domain.

Next, we turn to importance measures for nodes and propose the absorbing random

walk centrality. This measure evaluates a group of nodes in a graph according to how

central they are with respect to a set of query nodes. Specifically, given a query

set and a candidate group of nodes, we start random walks from the queries and

vii



measure their length until they reach one of the candidates. The most central group

of nodes will collectively minimize the expected length of these random walks. We

prove several computational properties of this measure and provide an algorithm,

whose solutions offer an approximation guarantee. Additionally, we develop efficient

heuristics that allow us to use this importance measure in large datasets.

Finally, we consider graphs in which each node is assigned a set of attributes. We

define an important connected subgraph to be one for which the total weight of its

edges is small, while the number of attributes covered by its nodes is large. To select

such an important subgraph, we develop an efficient approximation algorithm based

on the primal-dual schema.
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Chapter 1

Introduction

In the modern world, it has become clear that data is a very significant and precious

asset. Not only is it produced at a continuously increasing rate, but at the same time,

technology advancements have enabled us to store more data than ever before. This

trend, which has been popularized as “big data”, is changing the industry. Companies

are offering personalized services to their clients, who, in turn, can take more informed

decisions and can build better insights. At the same time, certain scientific tools, such

as deep learning, are becoming increasingly popular, since they seem to be surprisingly

successful when they operate on large datasets, and are promising to have a huge

impact in our everyday lives.

1.1 Graphs as a means for data representation

As a result of this recent trend, a lot of effort is being focused on data storage

techniques, data management solutions, and scalable algorithms. In this context,

graphs have proven themselves as one of the most prominent methods for representing

data.

A graph is a mathematical structure, that is composed of two main entities ; the

nodes and the edges. The former usually represent objects, such as people, products,

devices, or even abstract concepts, while the latter capture the relationships between

these objects. The applications of graphs are very broad, ranging from computer

science and physics to linguistics and art. Specifically in computer science, one may
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find all kinds of data stored as a graph;

- traffic patterns on city roads,

- interactions between proteins,

- social interactions and communication,

- terrorist collaboration,

- progression of news stories,

- ontologies

The above is just a brief, non-exhaustive collection of scenarios, where graphs were

employed as the chosen method for representation.

1.2 Evaluating the importance of graph entities

A common goal of most data owners is to find a way to turn their data into value.

Frequently, this is achieved by asking seemingly simple questions, such as, “Which

entities are more important in my graph?”. Being a question with multiple answers,

this has led to the development of a large and diverse body of works, mostly in the

fields of network science, graph mining, and data mining in general. The methods

proposed in this context are popularly known as importance measures, or centrality

scores. Depending on the target of the data analysis, these measures are either defined

for the nodes or for the edges of the graph.

Although the importance measures are numerous and designed for different pur-

poses, they can be broadly grouped in two families:

- ranking-based measures,

- selection-based measures
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Following, we provide a description of these two categories and give representative

examples from the literature.

1.2.1 Ranking-based importance measures

The first category of measures consists of methods that assign a score to each entity

in the graph, node or edge depending on its definition, separately. Then, an ordering

of these entities is reported according to their computed score. The vast majority

of the centrality measures belong in this category. Notable examples are degree cen-

trality, Pagerank (Brin and Page, 1998), and betweenness centrality (Freeman, 1977;

Anthonisse, 1971) for nodes, and edge betweenness centrality (Anthonisse, 1971), and

current-flow betweenness centrality (Brandes and Fleischer, 2005) for edges.

1.2.2 Selection-based importance measures

The ranking-based measures cannot be used directly when the goal is to evaluate a set

of entities, since they are defined on individual nodes and edges, and not on groups.

The selection-based importance measures are designed to fill this gap. Their goal is,

given an integer k > 0, to evaluate groups of size k in the graph and, mainly, to find the

best scoring such group. Examples in this category are group degree centrality, group

betweenness centrality (Everett and Borgatti, 1999), and co-betweenness (Kolaczyk

et al., 2009). A sub-category of the selection-based measures are the ones we call

parameter-free. Instead of requiring k to be part of the input, these measures use a

prize or penalty function to control the size of the group. Representative examples

in this sub-category are the prize-collecting Steiner tree problem (Bienstock et al.,

1993), and the prize-collecting traveling salesman problem (Balas, 1989).
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1.3 Contributions of this thesis

The work in this thesis spans both the ranking-based and the selection-based cate-

gories of importance measures.

First, in Chapter 2, we focus on the spanning edge centrality, an edge importance

measure recently introduced to evaluate phylogenetic trees (Teixeira et al., 2013) that

belongs to the ranking-based category. The method for computing this centrality

score however is very expensive computationally, which makes it impractical to use

in real-world data. Here, we propose very efficient methods that approximate this

measure in near-linear time and we apply them to large graphs with millions of nodes

(Mavroforakis et al., 2015a). Adding to the measure’s already established practical

impact, we demonstrate that the spanning edge centrality is a useful tool for the

analysis of networks outside its original application domain.

Next, in Chapter 3, we turn to the category of selection-based importance mea-

sures and propose the absorbing random walk centrality (Mavroforakis et al., 2015b),

a centrality score for groups of nodes. This measure evaluates a group of k nodes

in a graph according to how central they are with respect to a set of query nodes.

Specifically, given a query set and a candidate group of nodes, we start random walks

from the queries and measure their length until they reach one of the candidates.

The most central group of nodes will collectively minimize the expected length of

these random walks. We prove several computational properties of this measure and

provide an algorithm that finds a group of k nodes with a constant-factor approxi-

mation guarantee. Additionally, we develop efficient heuristics that allow us to use

this importance measure in large datasets.

Finally, in Chapter 4, we shift our focus to a parameter-free selection-based masure

for graphs. Here, we assume that each node is assigned a set of attributes. We define

an important connected subgraph (group) to be one for which the total weight of
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its edges is small, while the number of attributes covered by its nodes is large. To

select such an important subgraph, we develop an efficient approximation algorithm

based on the primal-dual schema. Furthermore, we apply this measure on a real

co-authorship network, in order to showcase its practical capacities and impact.
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Chapter 2

Spanning edge centrality

2.1 Introduction

Measures of edge centrality are usually defined on the basis of some assumption

about how information propagates or how traffic flows in a network. For example,

the betweenness centrality of an edge is defined as the fraction of shortest paths

that contain it; the underlying assumption being that information or traffic travels in

shortest paths (Brandes, 2001). Although more complicated measures of centrality

are conceivable, betweenness centrality is simple by design: its goal is to yield a

computable measure of importance, which can quickly provide valuable information

about the network.

Operating under the requirement for simplicity, all edge-importance measures are

subject to weaknesses. Betweenness centrality is no exception, having partially moti-

vated a number of other measures (Section 2.2). It’s clear for example that informa-

tion doesn’t always prefer shortest paths; we have all experienced situations when it

makes sense to explore slightly longer road paths in the presence of traffic. However,

it is not clear how to modify betweenness to accommodate such randomness. At the

same time, betweenness centrality can be unstable; the addition of even one ‘shortcut’

link can dramatically change the scores of edges in the network (Newman, 2005). Yet,

betweenness centrality is at its core very sensible: information may not always take

shortest paths, but it rarely takes much longer paths.

These considerations lead us to focus on a simple and natural alternative model,
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where information propagates along paths on randomly selected spanning trees. The

idea can actually be viewed as a relaxation of the shortest-paths propagation model:

information is ‘allowed’ to randomly explore longer paths, which however contribute

less in the importance measure, because the associated spanning trees are less fre-

quent, as (in some sense) is reflected by the NP-hardness of finding long paths. A

number of findings lend support to this intuition: In social networks, information

propagates following tree-shaped cascades (Gomez-Rodriguez et al., 2012; Lappas

et al., 2010). Similarly, in computer networks, packages are distributed in the net-

work through tree-shaped structures (Huitema, 2000; Perlman, 1985).

We thus define the spanning centrality of an edge e as the fraction of the spanning

trees of the graph that contain e. Spanning centrality as a measure for evaluating the

significance of edges was introduced in the network analysis literature by Texeira et

al. (Teixeira et al., 2013) in the context of evaluating phylogenetic trees. Computing

spanning centrality, by definition involves counting spanning trees, a task that can

be carried out in polynomial time using Kirchhoff’s classical matrix-tree theorem

(Royle and Godsil, 1997). Using this observation, Texeira et al. described an exact

algorithm for computing the spanning centrality of all m edges in an n-node graph

in O(mn3/2) time. Despite its appealing definition, spanning centrality hasn’t so far

received wider attention as a measure of edge importance. This may be partially

because, even with the clever observation in (Teixeira et al., 2013), the required

computation time appears to be prohibitive for most networks of interest.

In this chapter we remove the aforementioned computational obstacle. We de-

scribe a fast implementation of an algorithm for spanning centrality that requires

O(m log2 n) time, or even less in practice (Section 2.5). The algorithm is randomized

and it computes approximations to spanning centralities, but with strict theoreti-

cal guarantees. In practice, for a network consisting of 1.5 million nodes, we can
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compute spanning centrality values that are within 5% of the exact ones in 30 min-

utes. The algorithm is based on the fact that the spanning centrality of an edge

is equal to its effective resistance when the graph is construed as a an electrical re-

sistive network. The core component of our implementation is a fast linear system

solver for Laplacian matrices (Koutis et al., 2011b). The computation of spanning

centrality is also crucially based on the remarkable work of Spielman and Srivastava

(Spielman and Srivastava, 2011). Leveraging these two existing algorithmic tools is

however not sufficient: our ability to experiment with large-scale networks also relies

on a set of computational speedups, which include parallelization, exploitation

of the input graph structure, and space-efficient implementations. Incidentally, our

implementations allow the faster computation of a larger class of electrical centralities

(Section 2.6).

With this computational tool in our disposition we embark in the first experi-

mental analysis of spanning centrality as a measure of edge importance, including

comparisons with a number of previously proposed centrality measures (Section 2.7).

Our experimental evaluation demonstrates the practical utility of spanning cen-

trality for analyzing very large graphs stemming from different application domains.

More specifically, we demonstrate its resilience to noise, i.e. additions and deletions

of edges. Our experiments illustrate that spanning centrality is significantly more

resilient than other edge-importance measures, in terms of both the edges scores and

the the resulting edge ranking. Thus, the edges with high spanning centrality scores

are robust to noisy graphs or graphs that change over time. Further, we investi-

gate the ability of spanning centrality to capture edge-importance with respect to

more realistic information-propagation processes that don’t readily yield computable

measures. Our experiments show that removing edges with high spanning central-

ity incurs significant disruptions in the underlying information-propagation process,
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more so than other edge-importance measures. This suggests that an effective and

computationally efficient way for disrupting the propagation of an item in a network

is cutting the links with high spanning centrality.

2.2 Related work

In the graph-mining literature, there exists a plethora of measures for quantifying the

importance of network nodes or edges (Anthonisse, 1971; Bavelas, 1948; Borgatti,

2005; Brandes, 2001; Brandes and Fleischer, 2005; De Meo et al., 2012; Freeman,

1977; Freeman et al., 1991; Ishakian et al., 2012; Kang et al., 2011; Newman, 2005;

Shimbel, 1953; Teixeira et al., 2013). Here, we limit our review to edge-importance

measures.

Betweeness centrality remains very popular, and its simplicity can lead to rela-

tively fast implementations despite its quadratic running time. As a consequence,

a lot of work has been devoted in its fast computation. The simplest approach

leads to an O(nm) time algorithm for unweighted graphs (O(nm + n2 log n) if the

graph is weighted), where n (resp. m) is the number of nodes (resp. edges) in the

graph (Brandes, 2001). The main bottleneck of that computation lies in finding the

all-pairs shortest paths. Existing algorithms for speeding up this computation rely on

reducing the number of such shortest-path computations. For example, Brandes and

Pich (Brandes and Pich, 2007) propose sampling pairs of source-destination pairs.

Then, they experimentally evaluate the accuracy of different source-destination sam-

pling schemes, including random sampling. Geisberger et al. (Geisberger et al., 2008)

also propose sampling source–destination pairs. The only difference is that, in their

case, the contribution of every sampled pair to the centrality of a node depends on the

distance of that node from the nodes in the selected pair. Instead of sampling random

source-destination pairs, Bader et al. (Bader et al., 2007) sample only sources from
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which they form a DFS traversal of the input graph. Therefore, the shortest-paths

from the selected source to all other nodes are retrieved. The key of their method

is that the sampling of such sources is adaptive, based on the exploration (through

DFS trees) that has already been made. The trade-off between the speedups and

the accuracy in the resulting methods is clear as these methods do not provide any

approximation guarantees.

Current-flow centrality is another edge-centrality measure proposed by Brandes

and Fleischer (Brandes and Fleischer, 2005). Current-flow assigns high scores to edges

that participate in many short paths connecting pairs of nodes. We show that both

spanning and current-flow centralities belong in the same class of electrical centrality

measures and we describe a speedup of the original algorithm (proposed by Brandes

and Fleischer). In a more recent work, De Meo et al. (De Meo et al., 2012) propose

k-path centrality as a faster-to-compute alternative to current-flow centrality. This

centrality counts the number of times an edge is visited by simple random walks of

length at most k starting from every node in the network. We note that on their

largest reported dataset consisting of 1.1 million nodes and 4.9 million edges their

algorithm requires about 6 hours (for very small values of k). We can deal with very

similar datasets in less than 1 hour.

2.3 Preliminaries

We will assume that the input consists of a connected and undirected graph G =

(V,E) with n nodes (i.e., |V | = n) and m edges (i.e., |E| = m). When we deal with

matrices, we will be using MATLAB notation. That is, for matrix X, we will use

X(i, :) (resp. X(:, j)) to refer to the i-th row (resp. j-th column) of X.

Graphs as electrical networks: Throughout the chapter, we will view the input

graph as a resistive network, i.e., an electrical circuit where every edge is a resistor
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with fixed (e.g., unit) resistance. By attaching the poles of a battery to different

nodes in the network, we will seek computational methods for evaluating the current

that passes through the different edges.

The Graph Laplacian matrix: Given a graph G = (V,E), the Laplacian of G is

an n × n matrix L such that, if deg(v) is the degree of node v in the graph G, then

L(i, i) = deg(i) for every i and L(i, j) = −1 if (i, j) ∈ E; otherwise L(i, j) = 0.

The incidence matrix: Given graph G = (V,E), we define the edge-incidence

matrix B of G to be an m×n matrix such that each row of B corresponds to an edge

in E and each column of B corresponds to a node in V . The entries B(e, v) for e ∈ E

and v ∈ V take values in {−1, 0, 1} as follows: B(e, v) = 1 if v is the destination of

edge e, B(e, v) = −1 if v is the origin of e and B(e, v) = 0 otherwise. For undirected

graphs, the direction of each edge is specified arbitrarily.

Fast linear solvers: Our methods rely on the Combinatorial Multigrid (CMG)

solver (Koutis et al., 2011b). CMG is based on a set of combinatorial preconditioning

methods that have yielded provably very fast linear system solvers for Laplacian

matrices and the more general class of symmetric diagonally dominant (SDD) matrices

(Koutis et al., 2011a; Koutis et al., 2012). SDD systems are of the form Ax = b where

A is an n × n matrix that is symmetric and diagonally dominant: i.e., for every i,

A(i, i) ≥ ∑j 6=i |A(i, j)|. For such systems, the solver finds a solution x such that

‖x − x‖A = ǫ‖x‖A, where ‖ · ‖A is the A-norm of a vector, i.e., ‖x‖ =
√
xTAx.

If m is the number of non-zero entries of the system matrix A, the theoretically

guaranteed solvers run in O(m log n log(1/ǫ)) time, but the CMG solver has an even

better empirical running time of O(m log(1/ǫ)).
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2.4 Spanning centrality

The spanning centrality of an edge assigns to the edge an importance score based

on the number of spanning trees the edge participates in. That is, important edges

participate in many spanning trees. Formally, the measure has been defined recently

by Teixeira et al. (Teixeira et al., 2013) as follows:

Definition 1 (Spanning). Given a graph G = (V,E) which is connected, undirected

and unweighted, the Spanning centrality of an edge e, denoted by SC(e), is defined

as the fraction of spanning trees of G that contain this edge.

By definition, SC(e) ∈ (0, 1]. In cases where we want to specify the graph G used

for the computation of the SC of an edge e, we extend the set of arguments of SC

with an extra argument: SC(e,G).

Intuition: In order to develop some intuition, it is interesting to discuss which edges

are assigned high SC scores: the only edges that achieve the highest possible SC score

of 1 are bridges, i.e., edges that, if removed, make G disconnected. This is means that

they participate in all possible spanning trees. The extreme case of bridges helps

demonstrate the notion of importance captured by the SC scores for the rest of

the edges. Assuming that spanning trees encode candidate pathways through which

information propagates , then edges with high SC are those that, once removed,

would incur a significant burden on the remaining edges.

Spanning centrality as an electrical measure: Our algorithms for computing

the Spanning centrality efficiently rely on the connection between the SC scores

and the effective resistances of edges. The notion of effective resistance comes from

viewing the input graph as an electrical circuit (Doyle and Snell, 1984), in which each

edge is a resistor with unit resistance. The effective resistance R(u, v) between two

nodes u, v of the graph — that may or may not be directly connected — is equal to
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the potential difference between nodes u and v when a unit of current is injected in

one vertex (e.g., u) and extracted at the other (e.g., v).

In fact, it can be shown (Bollobas, 1998; Doyle and Snell, 1984) that for any graph

G = (V,E) and edge e ∈ E, the effective resistance of e, denoted by R(e), is equal to

the probability that edge e appears in a random spanning tree of G. This means that

SC(e) = R(e). This fact makes the theory of resistive electrical networks (Doyle and

Snell, 1984) available to us. The details of these computations are given in the next

section.

Spanning centrality for weighted graphs: We note here that all the definitions

and the results we explain in the next sections also hold for weighted graphs under the

following definition of Spanning centrality: Given a weighted graph G = (V,E,w),

where w(e) is the weight of edge e, the weighted Spanning centrality of e is again

defined as the fraction of all trees of G in which e participates in, but, in this case,

the importance of each tree is weighted by its weight. Specifically, the Spanning

centrality in weighted graphs is computed as:
∑

T∈Te
w(T )/

∑

T∈T w(T ). Here, T

refers to the set of all spanning trees of G, while Te is the set of spanning trees

containing edge e. Also, w(T ) denotes the weight of a single tree T and is defined as

the product of the weights of its edges, i.e., w(T ) =
∏

e∈T w(e). In other words, when

the edge weight corresponds to the probability of the existence of that edge, w(T )

corresponds to the likelihood of T . The weighted Spanning centrality maintains the

probabilistic interpretation of its unweighted version; it corresponds to the probability

that edge e appears in a spanning tree of G, when the spanning trees are sampled

with probability proportional to their likelihood w(T ).

All the algorithms that we introduce in the next section can be used for weighted

graphs with the above definition of Spanning centrality. The only modification one

has to make is to form them×m diagonal weight matrixW , such thatW (e, e) = w(e),
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and then define the weighted graph Laplacian as L = BTWB. This matrix can then

be used as an input to all of the algorithms that we describe below.

2.5 Computing spanning centrality

In this section, we present our algorithm for evaluating the spanning centrality of

all the edges in a graph. For that, we first discuss existing tools and how they are

currently used. Then, we show how the SDD solvers proposed by Koutis et al. (Koutis

et al., 2012; Koutis et al., 2011a) can speed up existing algorithms. Finally, we present

a set of speedups that we can apply to these tools towards an efficient and practical

implementation.

2.5.1 Tools

Existing algorithms for computing the Spanning centrality are based on the cele-

brated Kirchoff’s matrix-tree theorem (Harris et al., 2008; Tutte, 2001). The best

known such algorithm has running time O(mn3/2) (Teixeira et al., 2013), which makes

it impossible to use even on networks with a few thousands of nodes and edges.

Random projections for spanning centrality: The equivalence between SC(e)

and the effective resistance of edge e, denoted by R(e), allows us to take advantage

of existing algorithms for computing the latter. The effective resistances of all edges

{u, v} are the diagonal elements of the m × m matrix R computed as (Doyle and

Snell, 1984):

R = BL†BT , (2.1)

where B is the incidence matrix and L† is the pseudoinverse of the Laplacian matrix

L of G. Unfortunately, this computation requires O(n3) time.

Equation (2.1) provides us with a useful intuition: the effective resistance of an

edge e = {u, v} can be re-written as the distance between two vectors that only
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depend on nodes u and v. To see this consider the following notation: for node v ∈ V

assume an n×1 unit vector ev with value one in its v-th position and zeros everywhere

else (i.e., ev(v) = 1 and ev(v
′) = 0 for v 6= v′). Using Equation (2.1), we can write

the effective resistance R (e) between nodes u, v ∈ V as follows:

R (e) = (eu − ev)
TL†(eu − ev) =

∥
∥BL†(eu − ev)

∥
∥
2

2
.

Thus, the effective resistances of edges e = {u, v} can be viewed as pairwise distances

between vectors in {BL†ev}v∈V .

This viewpoint of effective resistance as the L2
2 distance of these vectors, allows

us to use the Johnson-Lindenstraus Lemma (Johnson and Lindenstrauss, 1982). The

pairwise distances are still preserved if we project the vectors into a lower-dimensional

space, spanned by O(log n) random vectors. This observation led to Algorithm 1,

which was first proposed by Spielman and Srivastava (Spielman and Srivastava, 2011).

We refer to this algorithm with the name TreeC.

Algorithm 1 The TreeC algorithm.

Input: G = (V,E).
Output: R(e) for every e = {u, v} ∈ E

1: Z = [ ], L = Laplacian of G
2: Construct random projection matrix Q of size k ×m
3: Compute Y = QB
4: for i = 1 . . . k do
5: Approximate zi by solving: Lzi = Y (:, i)
6: Z = [Z; zTi ]

7: return R (e) = ‖Z(:, u)− Z(:, v)‖22

In Line 2, a random {0,±1/
√
k} matrix Q of size k ×m is created. This is the

projection matrix for k = O(log n), according to the Johnson-Lindenstrauss Lemma.

Using this, we could simply project matrix BL† on the k random vectors defined

by the rows of Q, i.e., computing QBL†. However, this would not help in terms of

running time, as it would require computing L† which takes O(n3) steps. Lines 3 and
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5 approximate QBL†, without computing the pseudoinverse of L: first, Y = QB is

computed in time O(2m log n) — this is because B is sparse and has only 2m non-

zero entries. Then, Line 5 finds an approximation of the rows zi of matrix QBL† by

(approximately) solving the system Lzi = yi, where yi is the i-th row of Y . Therefore,

the result of the TreeC algorithm is the set of rows of matrix Z = [zT1 , . . . , z
T
k ], which

is an approximation of QBL†. By the Johnson-Lindenstrauss lemma we know that,

if k = O(log n), the TreeC algorithm will guarantee that the estimates R̃(e) of R(e)

satisfy

(1− ǫ)R(e) ≤ R̃(e) ≤ (1 + ǫ)R(e),

with probability at least 1 − 1/n. We call ǫ the error parameter of the algorithm.

Now, if the running time required to solve the linear system in Line 5 is I(n,m), then

the total running time of the TreeC algorithm is O(I(n,m) log n).

Incorporating SDD solvers: Now, if we settle for approximate solutions to the

linear systems solved by TreeC and we deploy the SDD solver proposed by Koutis et

al. (Koutis et al., 2012; Koutis et al., 2011a), then we have that I(n,m) = Õ(m log n),

therefore achieving a running time of Õ
(
m log2 n log

(
1
ǫ

))
. Additionally, with proba-

bility (1− 1/n), the estimates R̃(e) of R(e) satisfy

(1− ǫ)2R(e) ≤ R̃(e) ≤ (1 + ǫ)2R(e). (2.2)

We refer to the version of the TreeC algorithm that uses such solvers as the

Fast-TreeC algorithm. The running time of Fast-TreeC increases linearly with the

number of edges and logarithmically with the number of nodes. This dependency

manifests itself clearly in our experiments in Section 2.7.
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2.5.2 Speedups

We now describe three observations that lead to significant improvements in the space

and runtime requirements of Fast-TreeC.

Space-efficient implementation: First, we observe that intermediate variables Y

and Z of Algorithm 1 need not be stored in k×nmatrices but, instead, vectors y and z

of size 1×n are sufficient. The pseudocode that implements this observation is shown

in Algorithm 2. In this case, the algorithm proceeds in k = O(log n) iterations. In

each iteration, a single random vector q (i.e., a row of the matrix Q from Algorithm 1)

is created and used for projecting the nodes. The effective resistance of edge e = {u, v}

is computed additively — in each iteration the portion of the effective resistance score

that is due to the particular dimension is added to the total effective resistance score

(Line 6 of Algorithm 2).

Algorithm 2 The space-efficient version of Fast-TreeC.

Input: G = (V,E).
Output: R(e) for every e = {u, v} ∈ E

1: L = Laplacian of G
2: for i = 1 . . . k do
3: Construct a vector q of size 1×m
4: Compute y = qB
5: Approximate z by solving: Lz = y
6: return R (e) = R (e) + ‖z(u)− z(v)‖22

Parallel implementation: Algorithm 2 reveals also that Fast-TreeC is amenable

to parallelization. The execution of every iteration of the for loop (Line 2 of Al-

gorithm 2) can be done independently and in parallel, in different cores, and the

results can be combined. This leads to another running-time improvement: in a

parallel system with O(log n) cores, the running time of the parallel version of the

Fast-TreeC algorithm is Õ
(
m log n log

(
1
ǫ

))
. In all our experiments we make use of

this parallelization.
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Reducing the size of the input to the 2-core: As it has been observed in Sec-

tion 2.4, the bridges of a graph participate in all the spanning trees of the graph

and thus have SC score equal to 1. Although we know how to extract bridges ef-

ficiently (Tarjan, 1974), assigning to those edges SC score of 1 and applying the

Fast-TreeC algorithm on each disconnected component would not give us the cor-

rect result. It is not clear how to combine the SC scores from the different connected

components. However, we observe that this can still be done for a subset of the

bridges.

Let us first provide some intuition before making a more general statement. Con-

sider an input graph G = (V,E) and an edge e = {u, v} connecting node v of degree

one to the rest of the network via node u. Clearly e participates in all spanning trees

of G and, therefore, SC(e,G) = 1. Now assume that edge e and node v are removed

from G, resulting into graph G′ = (V \{v}, E \{e}). Since e was connecting a node of

degree 1 to the rest of G, the number of spanning trees in G′ is equal to the number

of spanning trees in G. Thus, SC(e′, G′) = SC(e′, G) for every edge e′ ∈ E \ {e}.

Now the key observation is that the above argument can be applied recursively.

Formally, consider the input graph G = (V,E) and let C2(G) = (V ′, E ′) be the 2-core

of G, i.e., the subgraph of G that has the following property: the degree of every node

v ∈ V ′ in C2(G) is at least 2. Then, we have the following observation:

Lemma 1. If G = (V,E) is a connected graph with 2-core C2(G) = (V ′, E ′), then for

every edge e ∈ E ′

SC(e, C2(G)) = SC(e,G).

The above suggests the following speedup for Fast-TreeC: given a graph G =

(V,E), first extract the 2-core C2(G) = (V ′, E ′). Then, for every edge e ∈ E ′ compute

SC(e) using the Fast-TreeC algorithm with input C2(G). For every e ∈ E \ E ′, set

SC(e) = 1.

The computational savings of such a scheme depend on the time required to
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extract C2(G) from G. At a high level, this can be done by recursively removing

from G nodes with degree 1 and their incident edges. This algorithm, which we

call Extract2Core, runs in time O(m) (Batagelj and Zaversnik, 2003). Our experi-

ments (Section 2.7) indicate that extracting C2(G) and applying Fast-TreeC on this

subgraph is more efficient than running Fast-TreeC on the original graph, i.e., the

time required for running Extract2Core is much less than the speedup achieved by

reducing the input size. By default, we use this speedup in all our experiments.

2.6 A general framework

In this section, we show that Spanning centrality is an instance of a general class

of edge-centrality measures, which we call electrical measures of edge centrality. We

introduce a framework that offers a unified view to all the existing measures and leads

to novel ones. Finally, we demonstrate how SDD solvers can be utilized within this

framework.

2.6.1 Electrical measures of centrality

The common characteristic of the electrical measures of centrality is that they view

the input graph G as a resistive circuit, i.e., an electrical network where every edge is

a resistor of constant (e.g., unit) resistance. To get a better understanding of these

measures, consider Figure 2·1. Suppose that we hook the poles of a battery to nodes

s and t and apply a voltage difference sufficient to drive one unit of current (1A)

from s to t. Doing that, each node in the network will get a voltage value and elec-

trical current will flow essentially everywhere. At a high level, the electrical measures

quantify the importance of an edge by aggregating the values of the flows that pass

through it over different choices for pairs of nodes s and t. In fact, specific combina-

tions of aggregation schemes and battery placements lead to different definitions of

edge-importance measures.
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Figure 2·1: A network, viewed as an electrical resistive circuit. The
thickness of an edge represents the amount of current it carries, if a
battery is attached to nodes s and t.

More formally, consider two fixed nodes s and t on which we apply a voltage

difference sufficient to drive one unit of current (1A) from s to t. Let the (s, t)-flow

of edge e = {u, v}, denoted by fst(u, v), be the flow that passes through edge e in

this configuration. We can now derive the following instances of electrical measures

of edge centrality:

Spanning centrality: For spanning centrality, we only consider a single battery

placement and get the following alternative definition of the centrality of edge e =

{u, v}:

SC(e = {u, v}) = fuv(u, v).

CurrentFlow centrality: If we consider the average flow that passes through an

edge, where the average is taken over all distinct pairs of nodes (s, t), then we get

another centrality measure known as current-flow:

CfC(e = {u, v}) , 1
(
n
2

)

∑

(s,t)

fst(u, v).
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This measure was first proposed by Brandes and Fleisher (Brandes and Fleischer,

2005).

From the combinatorial perspective, CurrentFlow considers an edge as im-

portant if it is used by many paths in the graph, while Spanning focuses on the

participation of edges in trees. The idea of counting paths is also central in the def-

inition of betweenness centrality (Brandes, 2001). However, betweenness centrality

takes into consideration only the shortest paths between the source-destination pairs.

Therefore, if an edge does not participate in many shortest paths, it will have low

betweenness score. This is the case even if that edge is still part of many relatively

short paths. More importantly, the betweenness score of an edge may change by

the addition of a small number of edges to the graph (e.g., edges that create trian-

gles) (Newman, 2005). Clearly, the CurrentFlow centrality does not suffer from

such unstable behavior since it takes into account the importance of the edge in all

the paths that connect all source-destination pairs.

β -CurrentFlow centrality: Instead of plugging a single battery in two endpoints

(s, t), we can consider plugging β batteries into β pairs of distinct endpoints 〈si, ti〉.

For any such placement of β batteries, we can again measure the current that flows

through an edge e = {u, v} and denote it by f〈si,ti〉(u, v). Then, we define the β -

CurrentFlow centrality of an edge as:

β -CfC(e = {u, v}) = 1

|Cb|
∑

〈si,ti〉∈Cb

f〈si,ti〉(u, v),

where Cb denotes the set of all feasible placements of β batteries in the electrical

network defined by G. We can view β -CurrentFlow as a generalization of Cur-

rentFlow; the two measures are identical when β = 1.
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2.6.2 Computing electrical measures

In order to compute the centralities we described above, we need to be able to compute

the flows fst(u, v). Using basic theory of electrical resistive networks, the computation

of these flows for a fixed pair (s, t) can be done by solving the Laplacian linear system

Lx = b. The right hand side of the system is a vector with the total residual flows on

the nodes. Specifically, we let b(s) = 1, b(t) = −1 and b(u) = 0 for all u 6= s, t. This is

because one unit of current enters s, one unit of current leaves s and a net current of

0 enters and leaves every other node by Kirchoff’s law. As we have already discussed,

setting a voltage difference between s and t assigns voltages to all the other nodes.

The values of these voltages are given in the solution vector x. Then,

fst(u, v) = |x(u)− x(v)| (2.3)

The algorithm of Brandes and Fleisher (Brandes and Fleischer, 2005):

From the above, the computation of one set of flows for a fixed pair (s, t) requires

the solution of one linear system. Of course. we need
(
n
2

)
linear systems in order

to account for all pairs s and t. As shown by Brandes and Fleisher (Brandes and

Fleischer, 2005), it is enough to find the pseudo-inverse L† of the Laplacian L once;

then the scores can be computed in O(mn log n) time. In fact, this computation

expresses the solution of each of the
(
n
2

)
linear systems as a simple ‘lightweight’ linear

combination of the solution of n systems that can be found in the columns of L†.

Brandes and Fleisher point out that the pseudo-inverse can be computed via solving

n linear systems in O(mn3/2 log n).

Proposed speedups: Using our state-of-the-art solver for SDD, the running time

of finding L† drops to O(mn log n), matching the post-processing part that actually

computes the scores. Of course, this running time remains quadratic.

This worst-case running time can be improved in practice through sampling and
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parallelism. With sampling one can construct an estimator of a measure, say CfC,

denoted by CfC as follows: instead of considering all pairs (s, t) we can only consider

a set Sk of k pairs (s, t) that are selected uniformly at random. Similarly to Brandes

and Fleisher (Brandes and Fleischer, 2005) we define

β -CfC(e = {u, v}) , 1

k

∑

(s,t)∈Sk

fst(u, v), (2.4)

which is an unbiased estimator of β -CfC(e).

Note that for each (s, t) pair one has to solve a linear system Lx = b in order

to obtain the values fst(u, v) of Equation (2.3). It is for those systems that we use

the state-of-the art SDD solver. At the same time we observe that these systems can

be solved independently for different vectors b, therefore parallelism can be exploited

here too.

We call the algorithm that takes advantage of the state-of-the art SDD solver

and the parallelism of Fast-FlowC. We evaluate the efficiency of this algorithm in

Section 2.7.4.

2.7 Experiments

In this section, we experimentally evaluate our methods for computing the spanning

centrality and we study its properties with respect to edge additions/deletions and

information propagation. For the evaluation, we use a large collection of datasets of

different sizes, which come from a diverse set of domains.

Experimental setup: We implemented both Fast-TreeC and Fast-FlowC using a

combination of Python, Matlab and C code. The CMG solver (Koutis et al., 2011b)

is written mostly in C and can be invoked from Matlab. At the same time, in order to

make our methods easily accessible, we compiled them as a Python library on top of
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Dataset name #Nodes in LCC #Edges in LCC #Nodes in the 2-Core #Edges in the 2-Core

GrQc 4 158 13 422 3 413 12 677

Gnutella08 6 299 20 776 4 535 19 012

Oregon 11 174 23 409 7 228 19 463

HepTh 8 638 24 806 7 059 23 227

wiki-Vote 7 066 100 736 4 786 98 456

Gnutella31 62 561 147 878 33 816 119 133

Epinions 75 877 405 739 37 300 367 162

Slashdot 82 168 504 230 52 181 474 243

Amazon 334 863 925 872 305 892 896 901

DBLP 317 080 1 049 866 271 646 1 004 432

roadNet-TX 1 351 137 1 878 201 1 068 728 1 596 792

Youtube 1 134 890 2 987 624 470 164 2 322 898

skitter 1 694 616 11 094 209 1 463 934 10 863 527

Patents 3 764 117 16 511 740 3 093 271 15 840 895

Table 2.1: Statistics of the collection of datasets used in our experiments.
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the popular networkx 1 package (Hagberg et al., 2008). The code is available online2.

We ran all our experiments on a machine with 4 Intel Xeon E5-4617 @ 2.9GHz,

with 512GB of memory. We need to note here that none of our algorithms pushed

the memory of the machine near its limit. For Fast-TreeC and Fast-FlowC we used

12 hardware threads.

Datasets: In order to demonstrate the applicability of our algorithms on different

types of data, we used a large collection of real-world datasets of varying sizes, coming

from different application domains. Table 2.1 provides a comprehensive description

of these datasets shown in increasing size (in terms of the number of edges). The

smallest dataset consists of approximately 4 × 103 nodes, while the largest one has

almost 3.8× 106 nodes.

For each dataset, the first two columns of Table 2.1 report the number of nodes

and the number of edges in the Largest Connected Component (LCC) of the graph

that correspond to this dataset. The third and fourth columns report the number

of nodes and edges in the 2-core of each dataset. The 2-core of a graph is extracted

using the algorithm of Batagelj et al. (Batagelj and Zaversnik, 2003). The statistics of

these last two columns will be revisited when we explore the significance of applying

Extract2Core in the running time of Fast-TreeC.

In addition to their varying sizes, the datasets also come from a wide set of appli-

cation domains, including collaboration networks (HepTh, GrQc, DBLP and Patents),

social networks (wiki-Vote, Slashdot, Epinions, Orkut and Youtube), communica-

tion networks, (Gnutella08, Gnutella31, skitter and Oregon) and road networks

(roadNet-TX). All the above datasets are publicly available through the Stanford

Large Network Dataset Collection (SNAP). 3 For consistency, we maintain the names

1http://networkx.github.io/
2http://cs-people.bu.edu/cmav/centralities
3http://snap.stanford.edu/data
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of the datasets from the original SNAP website. Since our methods only apply to

undirected graphs, if the original graphs were directed or had self-loops, we ignored

the directions of the edges as well as the self loops.

2.7.1 Experiments for Spanning

Accuracy-efficiency tradeoff: Our first experiment aims to convey the practical

semantics of the accuracy-efficiency tradeoff offered by the Fast-TreeC algorithm.

For this, we recorded the running time of the Fast-TreeC algorithm for different

values of the error parameter ǫ (see Equation (2.2)) and for different datasets. Note

that the running times reported for this experiment are obtained after applying all

the three speedups that we discuss in Section 2.5.2.

1 min
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15 mins

30 mins

1 hour

2 hours

4 hours

8 hours

 0.05  0.1  0.15  0.2  0.25

Gnutella31
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u
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Figure 2·2: Accuracy-efficiency tradeoff; y-axis (logarithmic scale):
running time of the Fast-TreeC algorithm; x-axis: error parameter ǫ.
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The results are shown in Figure 2·2; for better readability the figure shows the

results we obtained only for a subset of our datasets (from different applications and

with different sizes); the trends in other datasets are very similar. As expected,

the running time of Fast-TreeC decreases as the value of ǫ, the error parameter,

increases. Given that the y-axis in Figure 2·2 is logarithmic, this decrease in the

running time is, as expected, exponential. Even for our largest datasets (e.g., skitter

and roadNet-TX), the running time of Fast-TreeC even for very small values of ǫ (e.g.,

ǫ = 0.05) was never more than 8 hours. Also, for ǫ = 0.15, which is a very reasonable

accuracy requirement , Fast-TreeC calculates the spanning centrality of all the edges

in the graphs in less than 1 hour.

Also, despite the fact that the roadNet-TX and skitter datasets have almost

the same number of nodes, skitter runs significantly faster than roadNet-TX for

the same value of ǫ. This is due to the fact that skitter has approximately 5 times

more edges than the corresponding graph of roadNet-TX and that the running time of

Fast-TreeC is linear to the number of edges yet logarithmic to the number of nodes

of the input graph.

Effect of the 2-core speedup: Here, we explore the impact of reducing the size

of the input to the 2-core of the original graph on the running time of Fast-TreeC.

For this, we fix the value of the error parameter ǫ = 0.1, and run the Fast-TreeC

algorithm twice; once using as input the original graph G and then using as input

the 2-core of the same graph, denoted by C2(G). Then, we report the running times

of both these executions. We separately also compute the time required to extract

C2(G) from G using the Extract2Core routine described in Section 2.5.2.

Figure 2·3 shows the runtime for all these operations. In the figure, we

use Fast-TreeC(G) (resp. Fast-TreeC(C2(G))) to denote the running time of

Fast-TreeC on input G (resp. C2(G)). We also use Extract2Core to denote the run-
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Figure 2·3: Limiting the computation on the 2-core shows a measur-
able improvement in the running time of Fast-TreeC.

ning time of Extract2Core for the corresponding input. For each of these datasets,

we computed the SC scores of the edges, before (left) and after (right), and we report

the running time in the y-axis using logarithmic scale.

Note that on top of the box that represents the runtime of Fast-TreeC(C2(G)),

we have also stacked a box with size relative to the time it took us to find that 2-core

subgraph. It is hard to discern this box, because the time spent for Extract2Core is

minimal compared to the time it took to compute the Spanning centralities. Only

in the case of smaller graphs is this box visible, but again, in these cases, the total

runtime does not exceed a minute. For instance, for Patents (our largest graph)

spending less than 5 minutes to find the 2-core of the graph lowered the runtime

of Fast-TreeC down to less than 8 hours, which is less than half of the original.
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Moreover, the difference between the height of the left and the right bar for the

different datasets behaves similarly. Hence, as the size of the dataset and the runtime

of Fast-TreeC grow exponentially, so does the speedup.

2.7.2 Resilience under noise

In this experiment, we evaluate the resilience of Spanning centrality to noise that

comes in the form of adding and deleting edges in the original graph. We also compare

the resilience of Spanning to the resilience of CurrentFlow centrality (Brandes

and Fleischer, 2005) and betweenness centrality (Brandes, 2001; Freeman, 1977),

which are the most commonly used measures of edge centrality.

Noise: Given the original graph G = (V,E) we form its noisy version of G′ = (V,E ′)

by either adding or deleting edges. We consider three methods for edge addition: (a)

random that picks two disconnected nodes at random and creates an edge, (b) heavy

that selects two nodes with probability proportional to the sum of their degrees and

(c) light that selects two nodes with probability inversely proportional to the sum

of their degrees. Note that adding edges with heavy imitates graph evolution under

the scale-free models, while the addition of edges with light imitates the evolution of

newly-added nodes in an evolving network. The edge deletion is performed similarly;

we delete an already existing edge (a) randomly, (b) with probability proportional to

the sum of the degrees of its endpoints or (c) with probability inversely proportional

to the sum of the degrees of its endpoints.

The number of edges ℓ added to or deleted fromG is a parameter to our experiment

– expressed as a percentage of the number of original edges in G.

Evaluation: We evaluate the resilience of a centrality measure both in terms of the

values it assigns to edges that are both in G and G′, as well as the ranking that these

values induce.
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Formally, given a graph G = (V,E) and its noisy version G′ = (V,E ′), let e be an

edge in E ∩ E ′. If ce is the centrality score of the edge in G and c′e the value of the

same score in G′, then we define the relative change in the value of e as:

RelChange(e,G,G′) =
|ce − c′e|

ce
.

In order to aggregate over all edges in E, we define the average relative change of c

with respect to G and G′ as

AvgRC(G,G′) =
1

|E ∩ E ′|
∑

e∈E∩E′

RelChange(e).

This evaluation metric captures the average relative change in the value of the cen-

trality scores in G and G′. Observe that for edge additions, E ∩ E ′ = E, while,

for edge deletions E ∩ E ′ = E ′. In general, AvgRC(G,G′) takes values in [0,∞) and

smaller values imply a more resilient centrality measure.

In order to evaluate how the ranking of the edges according to a centrality measure

changes in G and G′ — ignoring the actual values of the measure — we proceed as

follows: first we generate the sets of edges that contain the top-k% edges in G and

G′, denoted by I(G, k) and I(G′, k) resp. Then, we compare these sets using their

Jaccard similarity. That is, we define:

JaccSim(G,G′, k) =
|I(G, k) ∩ I(G′, k)|
|I(G, k) ∪ I(G′, k)| .

JaccSim takes values in [0, 1]. Large values of Jaccard similarity mean that the

sets I(G, k) and I(G′, k) are similar. Consequently, larger values of JaccSim indicate

higher resilience of the measure under study.

Results: Figures 2·4 and 2·5 show the noise resilience of Spanning, CurrentFlow

and betweenness centrality under edge addition. This is measured using both
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AvgRC (Fig. 2·4) as well as JaccSim (Fig. 2·5). The results that are shown are for the

HepTh network, but the trend was the same in all the datasets that we tried. Note

that while we use the fastest known algorithms for both CurrentFlow (Brandes

and Fleischer, 2005) and betweenness (Brandes, 2001) (implemented in NetworkX),

these algorithms remain a bottleneck, so we cannot present comparative experiments

for larger networks. The edge additions are performed using all the three sampling

methods we mentioned above, i.e. random, heavy and light. The shown results are

averages over 10 different independent runs.

In both figures the x-axis corresponds to the number of edges being added to form

E ′ as a fraction of the number of edges in G = (V,E). For Figure 2·5, we picked

k = 10 for the percentage of the highest-ranking edges whose behavior we want to

explore; results for other values of k have very similar trends.

Overall, we observe that as we add more edges, the AvgRC increases for all the

centralities, while JaccSim(G,G′, k) decreases. This is expected, since we increas-

ingly alter the structure of the graph. What is surprising though is how significantly

smaller the values of AvgRC for Spanning are, especially when compared to the cor-

responding values for betweenness, for the same number of edge additions. As

shown in Figure 2·4, Spanning has, in the worst case, AvgRC of value less than 0.1.

In contrast, AvgRC of betweenness reaches up to 71.5 for the light sampling. This

indicates that the values of Spanning centrality are much more stable under the

edge addition schemes we consider than the values of betweenness centrality. We

also observe that CurrentFlow exhibits behavior between 2× and 4× worse than

Spanning, which is still much better than betweenness.

The results shown in Figure 2·5 show that the ranking of edges implied by the

Spanning measure is also much more stable than the ranking implied by either

betweenness or CurrentFlow. More specifically, for k = 10, we observe that
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JaccSim has, in the worst case, score equal to 0.91 – which is very close to 1. The

corresponding values for both betweenness and CurrentFlow are significantly

lower, at 0.47 and 0.57 respectively. In addition to the above, we observed that,

even when adding a 10% noise to the graph edges, more than 95% of the edges in

I(G, 10) are still deemed important by Spanning. Note that the trends observed for

JaccSim(G,G′, k) are similar for values of k that are smaller than 10%. Due to the

similarity of these results to the ones we present here, we omitted them.

Overall, the resilience of Spanning under edge additions demonstrates that even

when Spanning is computed over evolving graphs, it need not be recomputed fre-

quently. In fact, our experiments indicate that even when 10% more edges are added

in the original graph, both the centrality values as well the ranking of edges implied by

the Spanning centrality remain almost the same. Note that, although we only show

here the results for edge additions, our findings for edge deletions are very similar

and thus we omit them.

Resilience of β -CurrentFlow: In addition to the experiments we presented be-

low, we also investigated the resilience of β -CurrentFlow. Our results are summa-

rized as follows: for larger values of β, the AvgRC decreases to values that are smaller

than the values we observe for betweenness. However even the smallest values are

in the range [3, 5], thus never as small as the values we observe for Spanning. The

values of JaccSim on the other hand are consistently around 0.5. Although these

results are not extensive, we conclude that the Spanning centrality is significantly

more resilient than β -CurrentFlow under edge additions and deletions.

2.7.3 Edge-importance measures and information propagation

A natural question to consider is the following: what do all the different edge-

importance measures capture and how do they relate to each other? Here, we describe

an experiment that allows us to quantitatively answer this question. On a high level,
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Figure 2·6: The values ∆k as a function of k for the different impor-
tance measures.

we do so by investigating how edges ranked as important (or less important) affect

the result of an information-propagation process in the network.

Methodology: Given a network G = (V,E), we compute the spread of an informa-

tion propagation process, by picking 5% of the nodes of the graph, running the popular

independent cascade model (Kempe et al., 2003) using these nodes as seeds and com-

puting the expected number of infected nodes in the end of this process. By repeating

the experiment 20 times and taking the average we compute the Spread(G).

For any edge-importance measure, we compute the scores of all edges according

to this measure, rank the edges in decreasing order of this score and then pick a set

of ℓ edges, where ℓ = 0.02|E|, such that they are at positions ((k− 1)ℓ+1) . . . kℓ, for

k = 1, . . . , |E|/ℓ. We refer to the set of edges picked for any k as Ek. For every k,

we then remove the edges in Ek, forming graph Gk, and then compute Spread(Gk).

In order to quantify the influence that the set Ek has on the information-propagation

process we compute:

∆k = Spread(G)− Spread(Gk).

Clearly, larger the values of ∆k imply a larger effect of the removed edges Ek on the

propagation process.

We experiment with the following four measures of importance: Spanning, Cur-

rentFlow, betweenness and random. Recall that the betweenness score of an
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edge is the fraction of all pairs shortest paths that go through this edge (Freeman,

1977). random simply assigns a random order on the edges in E.

Results: Figure 2·6 shows the values of ∆k in the case of the HepTh network, for

k = 1, . . . , 49 when sets Ek are determined by the different importance measures.

Overall we observe that the trend of ∆k varies across measures. More specifically,

in the case of Spanning centrality (Figure 2·6a), ∆k takes larger values for small k

and appears to drop consistently until k = 30. This behavior can be explained by

the definition of the Spanning centrality – an edge is important if it is part of many

spanning trees in the network – and the fact that the propagation of information in

a graph can be represented as a spanning tree. CurrentFlow and betweenness

(Figures 2·6b and 2·6c) behave differently. They appear to give medium importance

scores to edges that have high impact on the spread. For CfC, these are the edges

in Ek for k ∈ [38, 43] and, for betweenness, the edges for k ∈ [13, 18]. These

edges correspond to the peaks we see in Figures 2·6b and 2·6c. Observe that, for

betweenness, this peak appears for smaller values of k, indicating that in this

particular graph, there are edges that participate in relatively many shortest paths

and, once removed, they disconnect the network, hindering the propagation process.

Finally, the results for random show no specific pattern, indicating that what we

observed in Figures 2·6a–2·6c is statistically significant.

2.7.4 Experiments with CurrentFlow

In this last experiment, we give some indicative examples of the efficiency of

Fast-FlowC, which we described in the end of Section 2.6.

One of the major problems that Fast-FlowC has to solve is finding the right

number of samples k that will be used for the evaluation of Equation (2.4). In practice

we deal with this as follows: we run Fast-FlowC in epochs, each epoch consisting of

1000 independent samples of (s, t) pairs. For the rest of the discussion we will use
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Fast-FlowC(i) to refer to Fast-FlowC that stops after i epochs. If we use F ∗ to denote

the ground-truth centrality values, computed via an exhaustive algorithm that goes

through all (s, t) pairs, and F i to denote the output of Fast-FlowC(i), then we could

decide to stop when CorrD(F ∗, F i) is reasonably small. Here, CorrD(F, F ′) is the

correlation distance between the two vectors F and F ′, and is computed as 1 minus

their correlation coefficient. Thus, CorrD(F, F ′) ∈ [0, 2].

In the absence of ground-truth, we use the self-correlation index τ =

CorrD(F i, F i−1) to decide whether the number of samples is sufficient. We termi-

nate when τ is close to 0.

In order not to bias our experiments with the large number of edges that have

very small centrality scores, we only consider the top-10% scored edges in F i and

F i−1 and we compute CorrD(F i−1, F i) projected on the union of these sets of edges.

After all, importance measures aim at finding the highly scoring edges.

Also, in our experiments we found that drawing 1000 samples of (s, t) pairs be-

tween any two consecutive iterations of Fast-FlowC(i) is adequate to guarantee that

the correlation between F i and F i−1 is due to the convergence of the sampling pro-

cedure and not the closeness of the readings.

Ideally, we would like CorrD(F i, F ∗) to be small for values of i for which τ is also

small. Our experiments with small datasets indicate that this is the case. As a result,

τ can be used as a proxy for convergence of Fast-FlowC for larger datasets.

In Table 2.2, we report the running time of β -Fast-FlowC for τ < 0.02 as well as

the running time for the exact computation of CurrentFlow (from NetworkX) for

three different datasets: GrQc, Oregon and Epinions. Note that for Epinions, the

largest of the three datasets, the exact algorithm does not terminate within a reason-

able time. On the other hand for the medium-size dataset, i.e., Oregon, Fast-FlowC

takes only 2-3 minutes (depending on the choice of β), while the exact algorithm
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requires time close to 5 hours.

Dataset Fast-FlowC algorithm Exact

(β = 1) (β = 5) (β = 20) algorithm

GrQc 2.1 mins 1.3 mins 1.3 mins 20 mins

Oregon 3.3 mins 1.9 mins 1.4 mins 4h 40mins

Epinions 12h 23mins 5h 26mins 3h n/a

Table 2.2: Time until termination of Fast-FlowC and the exact algo-
rithm. We terminate for τ < 0.02 .
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Chapter 3

Absorbing random walk centrality

3.1 Introduction

A fundamental problem in graph mining is to identify the most central nodes in a

graph. Numerous centrality measures have been proposed, including degree central-

ity, closeness centrality (Sabidussi, 1966), betweenness centrality (Freeman, 1977),

random-walk centrality (Noh and Rieger, 2004), Katz centrality (Katz, 1953), and

PageRank (Brin and Page, 1998).

In the interest of robustness many centrality measures use random walks: while

the shortest-path distance between two nodes can change dramatically by inserting

or deleting a single edge, distances based on random walks account for multiple paths

and offer a more global view of the connectivity between two nodes. In this spirit, the

random-walk centrality of one node with respect to all nodes of the graph is defined

as the expected time needed to come across this node in a random walk that starts

in any other node of the graph (Noh and Rieger, 2004).

In this chapter, we consider a measure that generalizes random-walk centrality

for a set of nodes C with respect to a set of query nodes Q. Our centrality measure

is defined as the expected length of a random walk that starts from any node in Q

until it reaches any node in C — at which point the random walk is “absorbed” by

C. Moreover, to allow for adjustable importance of query nodes in the centrality

measure, we consider random walks with restarts, that occur with a fixed probability

α at each step of the random walk. The resulting computational problem is to find
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a set of k nodes C that optimizes this measure with respect to nodes Q, which are

provided as input. We call this measure k absorbing random-walk centrality and the

corresponding optimization problem k-arw-Centrality.

To motivate the k-arw-Centrality problem, let us consider the scenario of

searching the Web graph and summarizing the search results. In this scenario, nodes

of the graph correspond to webpages, edges between nodes correspond to links be-

tween pages, and the set of query nodes Q consists of all nodes that match a user

query, i.e., all webpages that satisfy a keyword search. Assuming that the size of Q

is large, the goal is to find the k most central nodes with respect to Q, and present

those to the user.

It is clear that ordering the nodes of the graph by their individual random-walk

centrality scores and taking the top-k set does not solve the k-arw-Centrality

problem, as these nodes may all be located in the same “neighborhood” of the graph,

and thus, may not provide a good absorbing set for the query. On the other hand,

as the goal is to minimize the expected absorption time for walks starting at Q,

the optimal solution to the k-arw-Centrality problem will be a set of k, both

centrally-placed and diverse, nodes.

This observation has motivated researchers in the information-retrieval field to

consider random walks with absorbing states in order to diversify web-search re-

sults (Zhu et al., 2007). However, despite the fact that similar problem definitions

and algorithms have been considered earlier, the k-arw-Centrality problem has

not been formally studied and there has not been a theoretical analysis of its proper-

ties.

Our key results in this chapter are the following: we show that the k-arw-

Centrality problem is NP-hard, and we show that the k absorbing random-walk

centrality measure is monotone and supermodular. The latter property allows us
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to quantify the approximation guarantee obtained by a natural greedy algorithm,

which has also been considered by previous work (Zhu et al., 2007). Furthermore,

a näıve implementation of the greedy algorithm requires many expensive matrix in-

versions, which make the algorithm particularly slow. Part of our contribution is to

show how to make use of the Sherman-Morrison inversion formula to implement the

greedy algorithm with only one matrix inversion and more efficient matrix× vector

multiplications.

Moreover, we explore the performance of faster, heuristic algorithms, aiming to

identify methods that are faster than the greedy approach without significant loss in

the quality of results. The heuristic algorithms we consider include the personalized

PageRank algorithm (Brin and Page, 1998; Langville and Meyer, 2005) as well as al-

gorithms based on spectral clustering (Von Luxburg, 2007). We find that, in practice,

the personalized PageRank algorithm offers a very good trade-off between speed and

quality.

The rest of the chapter is organized as follows. In Section 3.2, we overview previous

work and discuss how it compares to ours. We define our problem in Section 3.3 and

provide basic background results on absorbing random walks in Section 3.4. Our

main technical contributions are given in Sections 3.4 and 3.5, where we characterize

the complexity of the problem, and provide the details of the greedy algorithm and

the heuristics we explore. We evaluate the performance of algorithms in Section 3.7,

over a range of real-world graphs.

3.2 Related work

Many works in the literature explore ways to quantify the notion of node centrality on

graphs (Boldi and Vigna, 2014). Some of the most commonly-used measures include

the following: (i) degree centrality, where the centrality of a node is simply quantified
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by its degree; (ii) closeness centrality (Leavitt, 1951; Sabidussi, 1966), defined as

the average distance of a node from all other nodes on the graph; (iii) betweenness

centrality (Freeman, 1977), defined as the number of shortest paths between pairs of

nodes in the graph that pass through a given node; (iv) eigenvector centrality, defined

as the stationary probability that a Markov chain on the graph visits a given node,

with Katz centrality (Katz, 1953) and PageRank (Brin and Page, 1998) being two

well-studied variants; and (v) random-walk centrality (Noh and Rieger, 2004), defined

as the expected first passage time of a random walk from a given node, when it starts

from a random node of the graph. The measure we study in this chapter generalizes

the notion of random-walk centrality to a set of absorbing nodes.

Absorbing random walks have been used in previous work to select a diverse set

of nodes from a graph. For example, an algorithm proposed by Zhu et al. (Zhu

et al., 2007) selects nodes in the following manner: (i) the first node is selected based

on its PageRank value and is set as absorbing; (ii) the next node to be selected is

the node that maximizes the expected first-passage time from the already selected

absorbing nodes. Our problem definition differs considerably from the one considered

in that work, as in our work the expected first-passage times are always computed

from the set of query nodes that are provided in the input, and not from the nodes

that participate in the solution so far. In this respect, the greedy method proposed

by Zhu et al. is not associated with a crisp problem definition.

Another conceptually related line of work aims to select a diverse subset of query

results, mainly within the context of document retrieval (Agrawal et al., 2009; Angel

and Koudas, 2011; Vieira et al., 2011). The goal, there, is to select k query results to

optimize a function that quantifies the trade-off between relevance and diversity.

Our work is also remotely related to the problem studied by Leskovec et al. on

cost-effective outbreak detection (Leskovec et al., 2007). One of the problems discussed
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there is to select nodes in the network so that the detection time for a set of cascades

is minimized. However, their work differs from ours on the fact that they consider

as input a set of cascades, each one of finite size, while in our case the input consists

of a set of query nodes and we consider a probabilistic model that generates random

walk paths, of possibly infinite size.

3.3 Problem definition

We are given a graph G = (V,E) over a set of nodes V and set of undirected edges

E. The number of nodes |V | is denoted by n and the number of edges |E| by m. The

input also includes a subset of nodes Q ⊆ V , to which we refer as the query nodes.

As a special case, the set of query nodes Q may be equal to the whole set of nodes,

i.e., Q = V .

Our goal is to find a set C of k nodes that are central with respect to the query

nodes Q. For some applications it makes sense to restrict the central nodes to be only

among the query nodes, while in other cases, the central nodes may include any node

in V . To model those different scenarios, we consider a set of candidate nodes D,

and require that the k central nodes should belong in this candidate set, i.e., C ⊆ D.

Some of the cases include D = Q, D = V , or D = V \Q, but it could also be that D

is defined in some other way that does not involve Q. In general, we assume that D

is given as input.

The centrality of a set of nodes C with respect to query nodes Q is based on the

notion of absorbing random-walks and their expected length. More specifically, let

us consider a random walk on the nodes V of the graph, that proceeds at discrete

steps: the walk starts from a node q ∈ Q and, at each step moves to a different node,

following edges in G, until it arrives at some node in C. The starting node q of the

walk is chosen according to a probability distribution s. When the walk arrives at



44

a node c ∈ C for the first time, it terminates, and we say that the random walk is

absorbed by that node c. In the interest of generality, and to allow for adjustable

importance of query nodes in the centrality measure, we also allow the random walk

to restart. Restarts occur with a probability α at each step of the random walk, where

α is a parameter that is specified as input to the problem. When restarting, the walk

proceeds to a query node selected randomly according to s. Intuitively, larger values

of α favor nodes that are closer to nodes Q.

We are interested in the expected length (i.e., number of steps) of the walk that

starts from a query node q ∈ Q until it gets absorbed by some node in C, and we

denote this expected length by acq
Q
(C). We then define the absorbing random-walk

centrality of a set of nodes C with respect to query nodes Q, by

acQ(C) =
∑

q∈Q

s(q) acq
Q
(C).

The problem we consider in this chapter is the following.

Problem 1. (k-arw-Centrality) We are given a graph G = (V,E), a set of query

nodes Q ⊆ V , a set of candidate nodes D ⊆ V , a starting probability distribution s

over V such that s(v) = 0 if v ∈ V \Q, a restart probability α, and an integer k. We

ask to find a set of k nodes C ⊆ D that minimizes acQ(C), i.e., the expected length

of a random walk that starts from Q and proceeds until it gets absorbed in some node

in C.

In cases where we have no reason to distinguish among the query nodes, we con-

sider the uniform starting probability distribution s(q) = 1/|Q|. In fact, for simplicity

of exposition, hereinafter we focus on the case of uniform distribution. However, we

note that all our definitions and techniques generalize naturally, not only to general

starting probability distributions s(q), but also to directed and weighted graphs.
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3.4 Absorbing random walks

In this section we review some relevant background on absorbing random walks.

Specifically, we discuss how to calculate the objective function acQ(C) for Problem 1.

Let P be the transition matrix for a random walk, with P(i, j) expressing the

probability that the random walk will move to node j given that it is currently at

node i. Since random walks can only move to absorbing nodes C, but not away from

them, we set P(c, c) = 1 and P(c, j) = 0, if j 6= c, for all absorbing nodes c ∈ C. The

set T = V \ C of non-absorbing nodes is called transient. If N(i) are the neighbors

of a node i ∈ T and di = |N(i)| its degree, the transition probabilities from node i to

other nodes are

P(i, j) =







α s(j) if j ∈ Q \N(i),

(1− α)/di + α s(j) if j ∈ N(i).

(3.1)

Here, s represents the starting probability vector. For example, for the uniform

distribution over query nodes we have s(i) = 1/|Q| if i ∈ Q and 0 otherwise. The

transition matrix of the random walk can be written as follows

P =







PTT PTC

0 I







. (3.2)

In the equation above, I is an (n − |T |) × (n − |T |) identity matrix and 0 a matrix

with all its entries equal to 0; PTT is the |T | × |T | sub-matrix of P that contains the

transition probabilities between transient nodes; and PTC is the |T | × |C| sub-matrix

of P that contains the transition probabilities from transient to absorbing nodes.

The probability of the walk being on node j at exactly ℓ steps having started at

node i, is given by the (i, j)-entry of the matrix Pℓ
TT . Therefore, the expected total
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number of times that the random walk visits node j having started from node i is

given by the (i, j)-entry of the |T | × |T | matrix

F =
∞∑

ℓ=0

Pℓ
TT = (I−PTT )

−1 , (3.3)

which is known as the fundamental matrix of the absorbing random walk. Allowing

the possibility to start the random walk at an absorbing node (and being absorbed

immediately), we see that the expected length of a random walk that starts from

node i and gets absorbed by the set C is given by the i-th element of the following

n× 1 vector

L = LC =







F

0







1, (3.4)

where 1 is an T × 1 vector of all 1s. We write L = LC to emphasize the dependence

on the set of absorbing nodes C.

The expected number of steps when starting from a node in Q and until being

absorbed by some node in C is then obtained by summing over all query nodes, i.e.,

acQ(C) = sT LC . (3.5)

3.4.1 Efficient computation of absorbing centrality

Equation (3.5) pinpoints the difficulty of the problem we consider: even computing

the objective function acQ(C) for a candidate solution C requires an expensive matrix

inversion; F = (I−PTT )
−1. Furthermore, searching for the optimal set C involves

an exponential number of candidate sets, while evaluating each one of them requires

a matrix inversion.

In practice, we find that we can compute acQ(C) much faster approximately, as

shown in Algorithm 3. The algorithm follows from the infinite-sum expansion of
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Algorithm 3 ApproximateAC

Input: Transition matrix PTT , threshold ǫ, starting probabilities s
Output: Absorbing centrality acQ

1: x0 ← s
T

2: δ ← x0 · 1
3: ac← δ
4: ℓ← 0
5: while δ < ǫ do

6: xℓ+1 ← xℓ

(

PTT

0

)

7: δ ← xℓ+1 · 1
8: ac← ac + δ
9: ℓ← ℓ+ 1

10: return ac

Equation (3.5).

acQ(C) = sT LC = sT







F

0







1 = sT







∑∞
ℓ=0 P

ℓ
TT

0







1

= sT
∞∑

ℓ=0







Pℓ
TT

0







1 =







∞∑

ℓ=0

sT







Pℓ
TT

0













1

=

(
∞∑

ℓ=0

xℓ

)

1 =
∞∑

ℓ=0

xℓ1,

with

x0 = s
T

and xℓ+1 = xℓ







PTT

0







. (3.6)

Note that computing each vector xℓ requires time O(n2). Algorithm 3 terminates

when the increase of the sum due to the latest term falls below a pre-defined threshold

ǫ.
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3.5 Problem characterization

We now study the k-arw-Centrality problem in more detail. In particular, we

show that the function acQ is monotone and supermodular, a property that is used

later to provide an approximation guarantee for the greedy algorithm. We also show

that k-arw-Centrality is NP-hard.

Recall that a function f : 2V → R over subsets of a ground set V is submodular if

it has the diminishing returns property

f(Y ∪ {u})− f(Y ) ≤ f(X ∪ {u})− f(X), (3.7)

for all X ⊆ Y ⊆ V and u 6∈ Y . The function f is supermodular if −f is submod-

ular. Submodularity (and supermodularity) is a very useful property for designing

algorithms. For instance, minimizing a submodular function is a polynomial-time

solvable problem, while the maximization problem is typically amenable to approxi-

mation algorithms, the exact guarantee of which depends on other properties of the

function and requirements of the problem, e.g., monotonicity, matroid constraints,

etc.

Even though the objective function acQ(C) is given in closed-form by Equa-

tion (3.5), to prove its properties we find it more convenient to work with its de-

scriptive definition, namely, acQ(C) being the expected length for a random walk

starting at nodes of Q before being absorbed at nodes of C.

For the rest of this section we consider that the set of query nodes Q is fixed, and

for simplicity we write ac = acQ.

Proposition 1 (Monotonicity). For all X ⊆ Y ⊆ V it is ac(Y ) ≤ ac(X).

Proof. Write GX for the input graph G where the set X are absorbing nodes. Define

GY similarly. Let Z = Y \X. Consider a path p in GX drawn from the distribution

induced by the random walks on GX . Let Pr [p] be the probability of the path and
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ℓ(p) its length. Let P(X) and P(Y ) be the set of paths on GX and GY . Finally, let

P(Z,X) be the set of paths on GX that pass from Z, and P(Z,X) the set of paths

on GX that do not pass from Z. We have

ac(X) =
∑

p∈P(X)

Pr [p] ℓ(p)

=
∑

p∈P(Z,X)

Pr [p] ℓ(p) +
∑

p∈P(Z,X)

Pr [p] ℓ(p)

≥
∑

p∈P(Y )

Pr [p] ℓ(p)

= ac(Y ),

where the inequality comes from the fact that a path in GX passing from Z and being

absorbed by X corresponds to a shorter path in GY being absorbed by Y .

This proposition states that absorption time decreases with more absorbing nodes.

Next we show that the absorbing random-walk centrality measure ac(·) is supermod-

ular.

Proposition 2 (Supermodularity). For all sets X ⊆ Y ⊆ V and u 6∈ Y it is

ac(X)− ac(X ∪ {u}) ≥ ac(Y )− ac(Y ∪ {u}). (3.8)

Proof. Given an instantiation of a random walk, we define the following propositions

for any pair of nodes i, j ∈ V , non-negative integer ℓ, and set of nodes Z:

Aℓ
i,j(Z): The random walk started at node i and visited node j after exactly ℓ steps,

without visiting any node in set Z.

Bℓ
i,j(Z, u): The random walk started at node i and visited node j after exactly ℓ steps,

having previously visited node u but without visiting any node in the set Z.

It is easy to see that the set of random walks for which Aℓ
i,j(Z) is true can be

partitioned into those that visited u within the first ℓ steps and those that did not.

Therefore, the probability that proposition Aℓ
i,j(Z) is true for any instantiation of a

random walk generated by our model is equal to

Pr
[
Aℓ

i,j(Z)
]
= Pr

[
Aℓ

i,j(Z ∪ {u})
]
+ Pr

[
Bℓ

i,j(Z, u)
]
. (3.9)
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Now, let Λ(Z) be the number of steps for a random walk to reach the nodes in Z.

Λ(Z) is a random variable and its expected value over all random walks generated

by our model is equal to ac(Z). Note that the proposition Λ(Z) ≥ ℓ + 1 is true for

a given instantiation of a random walk only if there is a pair of nodes q ∈ Q and

j ∈ V \ Z, for which the proposition Aℓ
q,j(Z) is true. Therefore,

Pr [Λ(Z) ≥ ℓ+ 1] =
∑

q∈Q

∑

j∈V \Z

Pr
[
Aℓ

q,j(Z)
]
. (3.10)

From the above, it is easy to calculate ac(Z) as

ac(Z) = E[Λ(Z)]

=
∞∑

ℓ=0

ℓ Pr [Λ(Z) = ℓ]

=
∞∑

ℓ=1

Pr [Λ(Z) ≥ ℓ]

=
∞∑

ℓ=0

Pr [Λ(Z) ≥ ℓ+ 1]

=
∞∑

ℓ=0

∑

q∈Q

∑

j∈V \Z

Pr
[
Aℓ

q,j(Z)
]
. (3.11)

The final property we will need is the observation that, for X ⊆ Y , Bℓ
i,j(Y, u) implies

Bℓ
i,j(X, u) and thus

Pr
[
Bℓ

i,j(X, u)
]
≥ Pr

[
Bℓ

i,j(Y, u)
]
. (3.12)



51

By using Equation (3.11), the Inequality (3.8) can be rewritten as

∞∑

ℓ=0

∑

q∈Q

∑

j∈V \X

Pr
[
Aℓ

q,j(X)
]
−

∞∑

ℓ=0

∑

q∈Q

∑

j∈V \{X∪{u}}

Pr
[
Aℓ

q,j(X ∪ {u})
]

≥
∞∑

ℓ=0

∑

q∈Q

∑

j∈V \Y

Pr
[
Aℓ

q,j(Y )
]
−

∞∑

ℓ=0

∑

q∈Q

∑

j∈V \{Y ∪{u}}

Pr
[
Aℓ

q,j(Y ∪ {u})
]
. (3.13)

We only need to show that the inequality holds for an arbitrary value of ℓ and q ∈ Q,

that is

∑

j∈V \X

Pr
[
Aℓ

q,j(X)
]
−

∑

j∈V \{X∪{u}}

Pr
[
Aℓ

q,j(X ∪ {u})
]
≥

∑

j∈V \Y

Pr
[
Aℓ

q,j(Y )
]
−

∑

j∈V \{Y ∪{u}}

Pr
[
Aℓ

q,j(Y ∪ {u})
]
. (3.14)

Notice that Pr
[
Aℓ

i,u(Y ∪ {u})
]
= 0, so we can rewrite the above inequality as

∑

j∈V \X

Pr
[
Aℓ

q,j(X)
]
−
∑

j∈V \X

Pr
[
Aℓ

q,j(X ∪ {u})
]
≥

∑

j∈V \Y

Pr
[
Aℓ

q,j(Y )
]
−
∑

j∈V \Y

Pr
[
Aℓ

q,j(Y ∪ {u})
]
. (3.15)

To show the latter inequality we start from the left hand side and use Inequality
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(3.12). We have

∑

j∈V \X

Pr
[
Aℓ

i,j(X)
]
−
∑

j∈V \X

Pr
[
Aℓ

i,j(X ∪ {u})
]

=
∑

j∈V \X

Pr
[
Bℓ

i,j(X, u)
]

≥
∑

j∈V \Y

Pr
[
Bℓ

i,j(Y, u)
]

=
∑

j∈V \Y

Pr
[
Aℓ

i,j(Y )
]
−
∑

j∈V \Y

Pr
[
Aℓ

i,j(Y ∪ {u})
]
,

which completes the proof.

Finally, we establish the hardness of k absorbing centrality, defined in Problem 1.

Theorem 1. The k-arw-Centrality problem is NP-hard.

Proof. We obtain a reduction from the VertexCover problem (Garey and Johnson,

1990). An instance of the VertexCover problem is specified by a graph G = (V,E)

and an integer k, and asks whether there exists a set of nodes C ⊆ V such that |C| ≤ k

and C is a vertex cover, (i.e., for every (i, j) ∈ E it is {i, j} ∩ C 6= ∅). Let |V | = n.

Given an instance of the VertexCover problem, we construct an instance of

the decision version of k-arw-Centrality by taking the same graph G = (V,E)

with query nodes Q = V and asking whether there is a set of absorbing nodes C such

that |C| ≤ k and ac
Q
(C) ≤ 1− k

n
.

We will show that C is a solution for VertexCover if and only if ac
Q
(C) ≤ 1− k

n
.

Assuming first that C is a vertex cover. Consider a random walk starting uniformly

at random from a node v ∈ Q = V . If v ∈ C then the length of the walk will be 0, as

the walk will be absorbed immediately. This happens with probability |C|/|V | = k/n.

Otherwise, if v 6∈ C the length of the walk will be 1, as the walk will be absorbed in

the next step (since C is a vertex cover all the neighbors of v need to belong in C).

This happens with the rest of the probability 1− k/n. Thus, the expected length of

the random walk is

ac
Q
(C) = 0 · k

n
+ 1 ·

(

1− k

n

)

= 1− k

n
(3.16)

Conversely, assume that C is not a vertex cover for G. Then, there should be an

uncovered edge (u, v). A random walk that starts in u and then goes to v (or starts
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in v and then goes to u) will have length at least 2, and this happens with probability

at least 2
n

1
dmax

≥ 2
n2 . Then, following a similar reasoning as in the previous case, we

have

ac
Q
(C) =

∞∑

k=0

k Pr (absorbed in exactly k steps)

=
∞∑

k=1

Pr (absorbed after at least k steps)

≥
(

1− k

n

)

+
2

n2
> 1− k

n
. (3.17)

3.6 Algorithms

This section presents algorithms to solve the k-arw-Centrality problem. In all

cases, the set of query nodes Q ⊆ V is given as input, along with a set of candidate

nodes D ⊆ V and the restart probability α.

3.6.1 Greedy approach

The first algorithm is a standard greedy algorithm, denoted Greedy, which exploits

the supermodularity of the absorbing random-walk centrality measure. It starts with

the result set C equal to the empty set, and iteratively adds a node from the set of

candidate nodes D, until k nodes are added. In each iteration the node added in the

set C is the one that brings the largest improvement to acQ.

As shown before, the objective function to be minimized, i.e., acQ, is supermod-

ular and monotonically decreasing. The Greedy algorithm is not an approximation

algorithm for this minimization problem. However, it can be shown to provide an ap-

proximation guarantee for maximizing the absorbing centrality gain measure, defined

below.

Definition 2 (Absorbing centrality gain). Given a graph G, a set of query nodes Q,
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and a set of candidate nodes D, the absorbing centrality gain of a set of nodes C ⊆ D

is defined as

acgQ(C) = mQ − acQ(C),

where mQ = minv∈D{acQ({v})}.

Justification of the gain function. The reason to define the absorbing centrality

gain is to turn our problem into a submodular-maximization problem so that we can

apply standard approximation-theory results and show that the greedy algorithm

provides a constant-factor approximation guarantee. The shift mQ quantifies the

absorbing centrality of the best single node in the candidate set. Thus, the value of

acgQ(C) expresses how much we gain in expected random-walk length when we use

the set C as absorbing nodes compared to when we use the best single node. Our

goal is to maximize this gain.

Observe that the gain function acgQ is not non-negative everywhere. Take for

example any node u such that acQ({u}) > mQ. Then, acgQ({u}) < 0. Note also that

we could have obtained a non-negative gain function by defining gain with respect

to the worst single node, instead of the best. In other words, the gain function

acg′Q(C) = MQ−acQ(C), withMQ = maxv∈D{acQ({v})}, is non-negative everywhere.

Nevertheless, the reason we use the gain function acgQ instead of acg′Q is that

acg′Q takes much larger values than acgQ, and thus, a multiplicative approximation

guarantee on acg′Q is a weaker result than a multiplicative approximation guarantee

on acgQ. On the other hand, our definition of acgQ creates a technical difficulty with

the approximation guarantee, that is defined for non-negative functions. Luckily, this

difficulty can be overcome easily by noting that, due to the monotonicity of acgQ, for

any k > 1, the optimal solution of the function acgQ, as well as the solution returned

by Greedy, are both non-negative.

Approximation guarantee. The fact that the Greedy algorithm gives an approxima-

tion guarantee to the problem of maximizing absorbing centrality gain is a standard
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result from the theory of submodular functions.

Proposition 3. The function acgQ is monotonically increasing, and submodular.

Proposition 4. Let k > 1. For the problem of finding a set C ⊆ D with |C| ≤ k,

such that acgQ(C) is maximized, the Greedy algorithm gives a
(
1− 1

e

)
-approximation

guarantee.

We now discuss the complexity of the Greedy algorithm. A näıve implementation

requires computing the absorbing centrality acQ(C) using Equation (3.5) for each set

C that needs to be evaluated during the execution of the algorithm. However, apply-

ing Equation (3.5) involves a matrix inversion, which is a very expensive operation.

Furthermore, the number of times that we need to evaluate acQ(C) is O(k|D|), as for

each iteration of the greedy we need to evaluate the improvement over the current set

of each of the O(|D|) candidates. The number of candidates can be very large, e.g.,

|D| = n, yielding an O(kn4) algorithm, which is prohibitively expensive.

We can show, however, that we can execute Greedy significantly more efficiently.

Specifically, we can prove the following two propositions.

Proposition 5. Let Ci−1 be a set of i − 1 absorbing nodes, Pi−1 the corresponding

transition matrix, and let Fi−1 = (I−Pi−1)
−1. Let Ci = Ci−1 ∪ {u}. Given Fi−1 the

value acQ(Ci) can be computed in O(n2).

The proof makes use of the following lemma.

Lemma 2 (Sherman-Morrison Formula (Golub and Van Loan, 2012)). Let M be a

square n × n invertible matrix and M−1 its inverse. Moreover, let a and b be any

two column vectors of size n. Then, the following equation holds

(M+ abT )−1 = M−1 −M−1abTM−1/(1 + bTM−1a).

Proof. Without loss of generality, let the set of absorbing nodes be Ci−1 =

{1, 2, . . . , i − 1}. The expected number of steps before absorption is given by the

formulas
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ac
Q
(Ci−1) = sT

Q
Fi−11,

with Fi−1 = A−1
i−1 and Ai−1 = I−Pi−1.

We proceed to show how to increase the set of absorbing nodes by one and calculate

the new absorption time by updating Fi−1 in O(n2). Without loss of generality,

suppose we add node i to the absorbing nodes Ci−1, so that

Ci = Ci−1 ∪ {i} = {1, 2, . . . , i− 1, i}.

Let Pi be the transition matrix over G with absorbing nodes Ci. Like before, the

expected absorption time by nodes Ci is given by the formulas

ac
Q
(Ci) = sT

Q
Fi1,

with Fi = A−1
i and Ai = I−Pi.

Notice that

Ai −Ai−1 = (I−Pi)− (I−Pi−1) = Pi−1 −Pi

=








0(i−1)×n

pi,1 . . . pi,n

0(n−i)×n







= abT

where pi,j denotes the transition probability from node i to node j in transition matrix

Pi−1, and the column-vectors a and b are defined as

a = [

i−1
︷ ︸︸ ︷

0 . . . 0 1

n−i
︷ ︸︸ ︷

0 . . . 0], and

b = [pi,1 . . . pi,n].

By a direct application of Lemma 2, it is easy to see that we can compute Fi from

Fi−1 with the following formula, at a cost of O(n2) operations.

Fi = Fi−1 − (Fi−1a)(b
TFi−1)/(1 + bT (Fi−1a))

We have thus shown that, given Fi−1, we can compute Fi, and therefore ac
Q
(Ci) as
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well, in O(n2).

Proposition 6. Let C be a set of absorbing nodes, P the corresponding transition

matrix, and F = (I − P)−1. Let C ′ = C − {v} ∪ {u}, u, v ∈ C. Given F the value

acQ(C
′) can be computed in time O(n2).

Proof. The proof is similar to the proof of Proposition 5. Without loss of generality,

let the two sets of absorbing nodes be

C = {1, 2, . . . , i− 1, i}, and

C ′ = {1, 2, . . . , i− 1, i+ 1}.

Let P′ be the transition matrix with absorbing nodes C ′. The absorbing centrality for

the two sets of absorbing nodes C and C ′ is expressed as a function of the following

two matrices

F = A−1, with A = I−P, and

F′ = A′−1
, with A′ = (I−P′).

Notice that

A′ −A = (I−P′)− (I−P) = P−P′

=











0(i−1)×n

−pi,1 . . . − pi,n

pi+1,0 . . . pi+1,n

0(n−i−1)×n











= a2b
T
2 − a1b

T
1

where pi,j denotes the transition probability from node i to node j in a transition

matrix P0 where neither node i or i+ 1 is absorbing, and the column-vectors a1, b1,

a2, b2 are defined as

a1 = [

i−1
︷ ︸︸ ︷

0 . . . 0 1 0

n−i−1
︷ ︸︸ ︷

0 . . . 0]

b1 = [pi,1 . . . pi,n]

a2 = [

i−1
︷ ︸︸ ︷

0 . . . 0 0 1

n−i−1
︷ ︸︸ ︷

0 . . . 0]

b2 = [pi+1,1 . . . pi+1,n].
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Algorithm 4 Greedy

Input: graph G, query nodes Q, candidates D, k ≥ 1
Output: a set of k nodes C

1: Compute acQ({v}) for arbitrary v ∈ D
2: For each u ∈ (D − {v}), use Prop.6 to compute acQ(u)
3: Select u1 ∈ D s.t. u1 ← argmaxu∈D acQ(u)
4: Initialize solution C ← {u1}
5: for i = 2..k do
6: For each u ∈ D, use Prop.5 to compute acQ(C ∪ {u})
7: Select ui ∈ D s.t. ui ← argmaxui∈(D−C) acQ(C ∪ {u})
8: Update solution C ← C ∪ {ui}
9: return C

By an argument similar with the one we made in the proof of Proposition 5, we can

compute F′ in the following two steps from F, each costing O(n2) operations for the

provided parenthesization

Z = F− (Fa2)(b
T
2F)/(1 + bT

2 (Fa2)),

F′ = Z+ (Za1)(b
T
1Z)/(1 + bT

1 (Za1)).

We have thus shown that, given F, we can compute F′, and therefore ac
Q
(C ′) as well,

in time O(n2).

Proposition 5 implies that in order to compute acQ(Ci) for absorbing nodes Ci in

O(n2), it is enough to maintain the matrix Fi−1, computed in the previous step of the

greedy algorithm for absorbing nodes Ci−1. Proposition 6, on the other hand, implies

that we can compute the absorbing centrality of each set of absorbing nodes of a

fixed size i in O(n2), given the matrix F, which is computed for one arbitrary set of

absorbing nodes C of size i. Combined, the two propositions above yield a greedy al-

gorithm that runs in O(kn3) and offers the approximation guarantee discussed above.

We outline it as Algorithm 4.

Practical speed-up. We found that the following heuristic lets us speed-up Greedy

even further, with no significant loss in the quality of results. To select the first node

for the solution set C (see Algorithm 4), we calculate the PageRank values of all
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nodes in D and evaluate acQ only for the t << k nodes with highest PageRank score,

where t is a fixed parameter. In what follows, we will be using this heuristic version

of Greedy, unless explicitly stated otherwise.

3.6.2 Efficient heuristics

Even though Greedy runs in polynomial time, it can be quite inefficient when employed

on moderately sized datasets (more than some tens of thousands of nodes). We

thus describe algorithms that we study as efficient heuristics for the problem. These

algorithms do not offer guarantee for their performance.

Spectral methods have been used extensively for the problem of graph partitioning.

Motivated by the wide applicability of this family of algorithms, here we explore three

spectral algorithms: SpectralQ, SpectralC, and SpectralD. We start by a brief overview

of the spectral method; a comprehensive presentation can be found in the tutorial by

von Luxburg (Von Luxburg, 2007).

The main idea of spectral approaches is to project the original graph into a low-

dimensional Euclidean space so that distances between nodes in the graph correspond

to Euclidean distances between the corresponding projected points. A standard spec-

tral embedding method, proposed by Shi and Malik (Shi and Malik, 2000), uses the

“random-walk” Laplacian matrix LG = I−D−1A of a graph G, where A is the adja-

cency matrix of the graph, and forms the matrixU = [u2, . . . , ud+1] whose columns are

the eigenvectors of LG that correspond to the smallest eigenvalues λ2 ≤ . . . ≤ λd+1,

with d being the target dimension of the projection. The spectral embedding is then

defined by mapping the i-th node of the graph to a point in R
d, which is the i-row of

the matrix U.

The algorithms we explore are adaptations of the spectral method. They all start

by computing the spectral embedding φ : V → R
d, as described above, and then,

proceed as follows:
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SpectralQ performs k-means clustering on the embeddings of the query nodes, where k

is the desired size of the result set. Subsequently, it selects candidate nodes that are

close to the computed centroids. Specifically, if si is the size of the i-th cluster, then

ki candidate nodes are selected whose embedding is the nearest to the i-th centroid.

The number ki is selected so that ki ∝ si and
∑

ki = k.

SpectralC is similar to SpectralQ, but it performs the k-means clustering on the em-

beddings of the candidate nodes, instead of the query nodes.

SpectralD performs k-means clustering on the embeddings of the query nodes, where k

is the desired result-set size. Then, it selects the k candidate nodes whose embeddings

minimize the sum of squared ℓ2-distances from the centroids, with no consideration

of the relative sizes of the clusters.

Personalized Pagerank (PPR). This is the standard Pagerank (Brin and Page,

1998) algorithm with a damping factor equal to the restart probability α of the

random walk and personalization probabilities equal to the start probabilities s(q).

Algorithm PPR returns the k nodes with highest PageRank values.

Degree and distance centrality. Finally, we consider the standard degree and

distance centrality measures.

Degree returns the k highest-degree nodes. Note that this baseline is oblivious to the

query nodes.

Distance returns the k nodes with highest distance centrality with respect to Q. The

distance centrality of a node u is defined as dc(u) =
(
∑

v∈Q d(u, v)
)−1

.

3.7 Experimental evaluation

3.7.1 Datasets

We evaluate the algorithms described in Section 3.6 on two sets of real graphs: one set

of small graphs that allows us to compare the performance of the fast heuristics against
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Table 3.1: Dataset statistics

Dataset |V | |E|
karate 34 78

dolphins 62 159

lesmis 77 254

adjnoun 112 425

football 115 613

kddCoauthors 2 891 2 891

livejournal 3 645 4 141

ca-GrQc 5 242 14 496

ca-HepTh 9 877 25 998

roadnet 10 199 13 932

oregon-1 11 174 23 409

the greedy approach; and one set of larger graphs, to compare the performance of the

heuristics against each other on datasets of larger scale. Note that the bottleneck of

the computation lies in the evaluation of centrality. Even though the technique we

describe in Section 3.4.1 allows it to scale to datasets of tens of thousands of nodes

on a single processor, it is still prohibitively expensive for massive graphs. Still,

our experimentation allows us to discover the traits of the different algorithms and

understand what performance to anticipate when they are employed on graphs of

massive size.

The datasets are listed in Table 3.1. Small graphs are obtained from Mark New-

man’s repository1, larger graphs from SNAP.2 For kddCoauthors, livejournal, and

roadnet we use samples of the original datasets. In the interest of repeatability, our

code and datasets are made publicly available.3

1http://www-personal.umich.edu/%7Emejn/netdata/
2http://snap.stanford.edu/data/index.html
3https://github.com/harrymvr/absorbing-centrality
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3.7.2 Evaluation Methodology

Each experiment in our evaluation framework is defined by a graph G, a set of query

nodes Q, a set of candidate nodes D, and an algorithm to solve the problem. We

evaluate all algorithms presented in Section 3.6. For the set of candidate nodes D,

we consider two cases: it is equal to either the set of query nodes, i.e., D = Q, or the

set of all nodes, i.e., D = V .

Query nodes Q are selected randomly, using the following process: First, we select

a set S of s seed nodes, uniformly at random among all nodes. Then, we select a

ball B(v, r) of predetermined radius r = 2, around each seed v ∈ S.4 Finally, from

all balls, we select a set of query nodes Q of predetermined size q, with q = 10 and

q = 20, respectively, for the small and larger datasets. Selection is done uniformly at

random.

Finally, the restart probability α is set to α = 0.15 and the starting probabilities

s are uniform over Q.

3.7.3 Implementation

All algorithms are implemented in Python using the NetworkX package (Hagberg

et al., 2008), and were run on an Intel Xeon 2.83GHz with 32GB RAM.

3.7.4 Results

Figure 3·1 shows the centrality scores achieved by different algorithms on the small

graphs for varying k (note: lower is better). We present two settings: on the left, the

candidates are all nodes (D = V ), and on the right, the candidates are only the query

nodes (D = Q). We observe that PPR tracks well the quality of solutions returned

by Greedy, while Degree and Distance often come close to that. Spectral algorithms do

not perform that well.

4For the planar roadnet dataset we use r = 3.
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Figure 3·2 is similar to Figure 3·1, but results on the larger datasets are shown,

not including Greedy. When all nodes are candidates, PPR typically has the best

performance, followed by Distance, while Degree is unreliable. The spectral algorithms

typically perform worse than PPR.

When only query nodes are candidates, all algorithms demonstrate similar per-

formance, which is most typically worse than the performance of PPR (the best per-

forming algorithm) in the previous setting. Both observations can be explained by

the fact that the selection is very restricted by the requirement D = Q, and there is

not much flexibility for the best performing algorithms to produce a better solution.

In terms of running time on the larger graphs, Distance returns within a few minutes

(with observed times between 15 seconds to 5 minutes) while Degree returns within

seconds (all observed times were less than 1 minute). Finally, even though Greedy

returns within 1-2 seconds for the small datasets, it does not scale well for the larger

datasets (running time is orders of magnitude worse than the heuristics and not

included in the experiments).

Based on the above, we conclude that PPR offers the best trade-off of quality

versus running time for datasets of at least moderate size (more than 10 k nodes).
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(a) karate (b) dolphins

(c) lesmis (d) adjnoun

(e) football

Figure 3·1: Results on small datasets for varying k and s = 2.
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(a) ca-GrQc (b) ca-HepTh

(c) livejournal (d) oregon-1

(e) roadnet (f) kddCoauthors

Figure 3·2: Results on large datasets for varying k and s = 5.
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Chapter 4

Coverage-based prize-collecting Steiner

tree

4.1 Introduction

In this chapter, we focus on the family of selection-based importance measures, and,

more specifically, the ones that are parameter-free. As a reminder, the selection-based

measures aim at finding a group of k entities, with k being part of the input, that

collectively are important in the graph. The measures under the parameter-free sub-

category additionally define a prize function on the nodes of the graph. As a result,

instead of requiring the size of the group to be fixed, they let the prize function guide

this decision.

One of the most popular examples of a parameter-free selection-based measure is

the prize-collecting Steiner tree (PCST) (Bienstock et al., 1993). In this setting, each

node in the graph is associated with a prize. Given a group (subgraph), this impor-

tance measure focuses on two factors: (i) the cost for keeping the group connected,

i.e., the weight of the edges in the subgraph, and (ii) the foregone profit, i.e., the

prize of the nodes that are not part of the selected group. An “important” group is

one that minimizes both of these values simultaneously1.

The original application of PCST was in cable networks; a phone company for

1In the original definition of PCST, there is a special set of nodes, called terminal, which have to
be part of the solution, i.e., the solution is required to connect the terminal nodes with each other.
However, in this chapter, in order for PCST to fit our use case, we drop this requirement.
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example wants to dig the roads and install their own cable network, in order to

connect their customers. However, the further they need to dig, the more expensive

the project becomes. At the same time, the company wants to minimize the foregone

profits, i.e., avoid building a very small (and cheap) network, which however cannot

reach potentially well-paying customers. This is exactly the motivation that describes

the impact of PCST in the real world. More recently, PCST has been applied to

various other domains as well. The work by Rozenshtein et al. (Rozenshtein et al.,

2014) focuses on activity networks — graphs, in which nodes represent an event

in a city (festival, accident, etc.), together with its coordinates, while edge weights

reflect the distance between a pair of such event coordinates. Their target is to

report compact regions in cities that minimize the ignored activity. Nikolakaki et

al. (Nikolakaki et al., 2018) used PCST in the setting of road networks. There, the

prizes on the nodes correspond to that place’s popularity, e.g., the number of photos

on Flickr taken in that particular location. The aim of the work is to report tours

and paths in the city that are short and cover most of the popular locations.

In this chapter, we consider a different notion for prize. We assume that each

node v ∈ V is assigned a set of discrete attributes Av = {a1, . . . , aℓ}. The prize of a

node is now defined as the size of its attribute set. Equivalently, the prize of a set of

nodes S ⊆ V is equal to the number of attributes covered by all the nodes in S, i.e.,
∣
∣
⋃

v∈S Av

∣
∣. The intuition behind this choice of prize function is that an “important”

group is one, which is cheap to connect and which minimizes the coverage of the

nodes not included in it. This change of the prize function initially seems to make

the problem of finding the best group completely impractical, requiring the use of

techniques for submodular function minimization. We provide algorithms that avoid

these computationally expensive tools, while guaranteeing solutions that are at most

a factor of 2 worse than the optimal.
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4.2 Preliminaries

In this chapter, unless otherwise noted, we will use the following notation. A graph

G = (V,E) is a connected, weighted and undirected graph with |V | = n nodes and

|E| = m edges. The weight function, also called edge cost, is described by a function

c : E → R
+
0 that returns non-negative values. For a subset of edges M ⊆ E, we

write c(M) =
∑

e∈M c(e). Let us also introduce a prize function defined on subsets of

nodes of G. We will use the notation π(S) to denote the prize of the set S ⊆ V . More

details on how this function is defined will be provided in the following sections. The

notation V will be used to denote the complement of a set V . Finally, whenever the

meaning is clear from the context, we use the subgraph H = (VH , EH) of G in place

of the corresponding node or edge sets.

4.3 Prize-collecting Steiner Tree

We first start with an overview of the classic prize-collecting Steiner tree (PCST)

problem. We formally define the problem and describe a practical algorithm from

Hegde et al. (Hegde et al., 2015; Hegde et al., 2014) that comes with strong theoretical

guarantees.

4.3.1 Problem definition

In this setting, we assume that each node v ∈ V is assigned a non-negative prize

π(v) ≥ 0, and that the prize function of a set S ⊆ V is defined as π(S) =
∑

v∈V π(v).

In other words, the prize of a set is equal to the sum of the prizes of the nodes in

the set. The goal of the Prize-collecting Steiner tree problem is to find a connected

subgraph T that minimizes c(T ) + π(T ).

Problem 2. Prize-collecting Steiner tree (PCST): Given a graph G = (V,E), a

cost function c, a prize function π and a root node r, identify a connected subgraph
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T = (VT , ET ), such that r ∈ VT and

c(ET ) + π(V \ VT ) (4.1)

is minimized.

Here, we defined the rooted version of the PCST problem. Equivalently, one can

define the unrooted version, where the solution is not forced to include any particular

node. In the rest of the chapter, unless explicitly stated, we will refer to the rooted

variant of the PCST problem.

4.3.2 Algorithms for the prize-collecting Steiner tree problem

Being a generalization of the Steiner tree problem, the PCST problem is NP-hard

(Karp, 1972). Hence, research on the problem has been focused in finding polynomial-

time algorithms that provide good approximation guarantees. The work by Goemans

and Williamson (Goemans and Williamson, 1995) describes a 2−approximation algo-

rithm that runs in O(n2 log n) time. More recently, Hegde et al. (Hegde et al., 2014)

proposed a more efficient algorithm based on the one by Goemans and Williamson.

This new work delivers a solution with the same approximation guarantees but runs

in O(dm log n), where d denotes the number of bits needed to represent the cost

function. The rest of this section provides an overview of this faster algorithm.

Formulating PCST as a primal-dual problem

Both the aforementioned algorithms are based on the primal-dual scheme. According

to this, the analyst formulates the problem (primal), transforms it into its dual and

uses this second formulation to guide the algorithm design. Let us formally define

the linear relaxation of the PCST problem.
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(Primal)

min
∑

e∈E

cexe +
∑

S⊆V

π(S)zS (4.2)

∑

e∈δ(L)

xe +
∑

S⊇L

zS ≥ 1 ∀L ⊆ V \ {r}

xe ≥ 0 ∀e ∈ E

zS ≥ 0 ∀S ⊆ V \ {r}

This problem formulation is also called primal. Here, δ(S) is the set of edges with

exactly one endpoint in S, also known as the cut of S.

For each edge e ∈ E, we introduce a variable xe that indicates if e belongs to

the solution or not. Similarly, for each set of nodes S ⊂ V , let us use zS to indicate

whether S the a set of nodes for which we will pay the prize π(S). The main constraint

of the linear program reflects that, for each set of nodes L that does not contain the

root, either we pay the cost of some edge e in the set δ(L), or the set L is contained in

the set S that is not in the solution. The above explanation is more straightforward

to understand in the case of the integer program version of 4.2. In that case, the

non-negativity constraints are transformed to integrality, i.e., variables xe and zS are

either 0 or 1. However, we choose to work with the linear relaxation of this problem,

because it is necessary for the process of designing the primal-dual algorithm.

Let us now introduce the dual formulation of 4.2. Instead of xe and zS, we will

use the dual variables yL, for each set of nodes L ⊆ V \ {r}.
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(Dual)

max
∑

L⊆V \{r}

yL (4.3)

∑

L : e∈δ(L)

yL ≤ ce ∀e ∈ E

∑

L⊆S

yL ≤ π(S) ∀S ⊆ V \ {r}

yL ≥ 0 ∀L ⊆ V \ {r}

The first constraint now can be interpreted as follows: for each edge e, the total

dual value (sum of dual variables) of all the sets that contain one of the endpoints

of e cannot be larger than the cost of that edge. Similarly, the second constraint

establishes that for a given set S, the total dual value of all subsets of S is at most

equal to the prize of S.

The primal-dual algorithm

The above formulation leads to the 2−approximation algorithm that was introduced

by Goemans and Williamson (Goemans and Williamson, 1995); we will call this algo-

rithm GWAlgorithm. Following, we give a high-level overview of GWAlgorithm

and discuss about the improvements introduced by Hegde et al.. We will refer to this

faster variant of the GWAlgorithm as PCSTFast.

Let us first introduce the notion of the laminar family, which is going to be

crucial for the rest of the chapter. A collection of sets is called laminar if, for any

two intersecting sets, one is contained in the other.

Definition 3. Laminar family: A collection of sets L = {L1, L2, . . . , Lk} is called

laminar if, for any two sets Li, Lj ∈ L either (i) Li ∩Lj = ∅, or (ii) Li ⊆ Lj, or (iii)

Lj ⊆ Li.
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We will be using the laminar family to capture a partition of the nodes of G into

nested sets, i.e., Li ⊆ V for all Li ∈ L. In other words, the laminar family will be used

to track a hierarchical clustering of the nodes, where a cluster is produced only by

merging two existing clusters together. We will use the terms cluster and component

to refer to members of the laminar family.

GWAlgorithm works in two stages. First, it operates on a laminar family of

clusters by merging and deactivating them, until there is only a single active cluster

left. Then, it executes a pruning process to remove unnecessary nodes from the final

cluster and reports a solution. We will focus solely on the first part, as the second part

is a heuristic that is used specifically to improve the cost of the solution. For further

details on pruning strategies, we refer the reader to (Goemans and Williamson, 1995)

and (Johnson et al., 2000).

Let us now describe the first stage of GWAlgorithm, also called the growth

phase. We start by initializing L to be a collection of singleton sets, one for each

node v ∈ V . We label all these sets as active, except for the one corresponding to the

root node r, which is marked as deactivated. Also, for each set L ∈ L, we assign to it

a value yL = 0, which we call dual value. During the execution of the growth phase,

the dual values of the active clusters will be increase. However, two properties will

always hold, which correspond to the main constraints of Equation 4.3:

• For each edge e ∈ E, let Le ⊆ L be the clusters that contain exactly one

endpoint of e. More specifically, if e = (u, v), then for each C ∈ Le, either

u ∈ C or v ∈ C, but not both. Then the total dual value of Le cannot grow

beyond c(e), i.e.,
∑

L∈Le
yL ≤ c(e). This is exactly the first constraint of the dual

problem. When this holds as an equality, we will say that the edge constraint

for edge e became tight.

• For all clusters L ∈ L, let LL ⊆ L be the collection of clusters C ∈ L for



73

which C ⊆ L. Intuitively, if the laminar family can be viewed as a hierarchy of

clusters, LL corresponds to the set of the nodes in the tree rooted at L. This

contains the nodes that were merged to create L, together with their respective

predecessors. Then, the total dual value of the clusters in LL cannot grow

beyond the prize of L, i.e.,
∑

C∈LL
yC ≤ π(L). Again, this corresponds to the

second constraint of the dual, and, whenever this holds as an equality, we will

say that the cluster constraint for cluster L became tight.

Overall, GWAlgorithm starts by initializing the laminar family as we described

above, and begins increasing the dual values of the active clusters until either an

edge constraint or a cluster constraint becomes tight. In the first case, let us assume

that the constraint of edge e = (u, v) ∈ E became tight. We denote as Cu, Cv ∈ L

the maximal clusters in the laminar family that contain nodes u and v respectively.

The algorithm labels both Cu and Cv as deactivated, creates a new active2 cluster

C ′ = Cu ∪ Cv, updates L to be L ∪ C ′ and sets the dual value of this new cluster

yC′ equal to 0. Otherwise, if the constraint for cluster C became tight, the algorithm

labels C as deactivated. After both of these cases, GWAlgorithm continues its

execution by increasing the dual values of the active clusters further. We summarize

GWAlgorithm in Algorithm 5.

The bottleneck of this algorithm is at Lines 6–7, where it finds when the next

event (cluster constraint or edge constraint becoming tight) will happen. Specifically,

one can find which is the next cluster to become tight quite efficiently, by maintaining

a priority queue with the cluster prizes. However, finding which edge becomes tight

(Line 7) is much more challenging. The straightforward approach is to check all

edges at each iteration of GWAlgorithm, which would incur an O(mn) increase in

the computational complexity of the algorithm. Hegde et al. proposed an alternative

2If either Cu or Cv contains the root node r, C ′ will be marked as inactive.



74

Algorithm 5 High-level description of the primal-dual algorithm GWAlgorithm

1: L ← {{v} : v ∈ V } ⊲ Laminar family of clusters
2: yL ← 0 for all L ∈ L ⊲ Initial dual solution
3: EF = ∅ ⊲ Initial forest
4: A ← L ⊲ Family of active components
5: while |A| > 1 do ⊲ Growth stage
6: ǫd ← next cluster deactivation ⊲ Cluster constraint becomes tight
7: ǫm ← next edge event time
8: ǫ = min{ǫd, ǫm}
9: for L ∈ A do

10: yL ← yL + ǫ ⊲ Fast-forward time

11: if ǫd ≤ ǫm then ⊲ Cluster event
12: for L ∈ A, such that

∑

C∈L : C⊆L yC = π(L) do
13: A ← A \ {L} ⊲ Mark L as deactivated

14: else ⊲ Edge event
15: Let e be such that

∑

L∈L : e∈δ(L) yL = c(e) and e ∈ δ(L) for some L ∈ A
16: Let Cu and Cv be the clusters of L containing the endpoints of e
17: L ← L ∪ {Cu ∪ Cv} ⊲ Merge the two components
18: EF ← EF ∪ {e} ⊲ Add e to the solution
19: yCu∪Cv

← 0
20: A ← A∪ {Cu ∪ Cv}
21: A ← A \ {Cu, Cv} ⊲ Deactivate the merged components

22: Run the pruning function on EF with respect to the last active component
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method for keeping track of these edge events, which is based on dynamic edge splitting

and runs in nearly-linear time (Hegde et al., 2014). We give a brief overview of this

approach in the next paragraph.

Instead of considering the edges as simple entities, PCSTFast splits each edge

e = (u, v) into two parts, eu and ev. For each edge part, we maintain an event value

µ, which tracks how much the dual value of its active endpoint can grow before it

triggers an edge event. A property that holds throughout the algorithm’s execution

is that µ(eu) + µ(ev) = c(e). Initially, we set µ(eu) = µ(ev) = c(e)
2
. An edge event

will occur, when the total dual value of the clusters that contain the endpoint node

is equal to the corresponding µ value, i.e.,

µ(eu)−
∑

L∈L : u∈L

yL = 0 (4.4)

This does not however mean that the corresponding edge constraint has become tight.

It might instead mean that only one of the edge’s endpoints has been actively growing

and it has grown as much as it could. In that case, we compute the remaining slack

of the edge, i.e., c(e)−∑L∈Le
yL, and update the values µ(eu) and µ(ev) respectively.

The authors show that, together with a smart choice of data structures, this method

guarantees an O(dm log n) runtime. Here, d represents the number of bits that are

required to represent the values (costs and prizes) in the input, which also reflects

the maximum number of times an edge event can be triggered for a particular edge.

4.4 Coverage-based PCST

After revisiting the definition of the PCST problem and presenting two seminal algo-

rithms for finding approximate solutions, we proceed by defining our variation of the

PCST, when the prize is the coverage function. As mentioned previously, we assume

that there exists a universe of attributes AG, and that each node v ∈ V is described
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by a subset of these attributes Au ⊆ AG. We will denote the set of all Au’s as A, i.e.,

A = {Au : ∀u ∈ V }.

Problem 3. Coverage-based prize-collecting Steiner tree (PCST-Cover): Given a

graph G = (V,E,A), a cost function c, and a root node r, identify a connected

subgraph T = (VT , ET ), such that r ∈ VT and

c(ET ) + π(V \ VT ) (4.5)

is minimized. Here, the prize function of a set S ⊆ V is defined as the attribute

coverage of S, i.e., π(S) = |∪v∈SAv|

4.4.1 Analysis of the primal-dual approach

The algorithms we will present for PCST-Cover will follow the same primal-dual

scheme as the GWAlgorithm. In the later sections, we will elaborate more about

the computational challenges that the coverage function introduces and how we deal

with them. However, from a broad perspective, all algorithms will perform the same

steps as GWAlgorithm. Here, we will show that the 2-approximation guarantee of

these algorithms is still valid.

Let us first analyze the prize function, since the analysis for the cost is the same

as in the original PCST setting. We start with some useful observations.

Lemma 3. Let y(S) =
∑

L⊆S yL denote the total dual value of a set S. The function

y is supermodular, i.e., y(S) + y(T ) ≤ y(S ∩ T ) + y(S ∪ T ).

Proof. For every set L not containing r, we have the following disjointed cases: (i)

L 6⊆ S ∪ T , (ii) L ⊆ S ∩ T , (iii) L ⊆ S and L 6⊆ T , (iv) L ⊆ T and L 6⊆ S, and

(v) L ⊆ S ∪ T and L 6⊆ S and L 6⊆ T . In each of these cases, we can see that the

contribution of L to the right-hand side of the claimed inequality is at least as much

as its contribution to the left-hand side. Actually, the contribution is the same in

all cases except for the last. In that case, L only contributes to the union on the

right-hand side.

We will say that a set S is y-tight, if y(S) = π(S), i.e., when the dual value of the
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set is equal to the number of attributes covered by S. Since y is supermodular and π

is submodular (the coverage function is submodular), we can show that if two sets S

and T are y-tight, then S ∩ T and S ∪ T are also y-tight.

Lemma 4. For any feasible dual solution y, if S and T are y−tight, then S ∩ T and

S ∪ T are also y−tight.

Proof. We have

π(S) + π(T ) = y(S) + y(T ) (S and T are y-tight) (4.6)

≤ y(S ∩ T ) + y(S ∪ T ) (y is supermodular) (4.7)

≤ π(S ∩ T ) + π(S ∪ T ) (y is feasible) (4.8)

Due to the submodularity of π, we also have that π(S)+π(T ) ≥ π(S∩T )+π(S∪T ).
As a result, the inequalities above hold with equality.

The above lemma means that at any point of the execution of the algorithm, there

exists a unique inclusion-maximal cluster that becomes tight and which contains all

the clusters that became tight. Moreover, each cluster that becomes tight will remain

tight throughout the execution, and, in particular, it will be tight with respect to the

final dual solution.

Now, let us consider the vertices that are not in the final solution T , which are

the ones whose prize we pay for. All of these vertices are in the union of the maximal

clusters whose constraints became tight. This holds because every inactive cluster is

either containing the root, in which case it will be part of the solution, or otherwise

it was marked as deactivated because it was contained in a cluster whose constraint

became tight. Let X be the union of the clusters whose constraint became tight.

Each of these clusters is tight with respect to the final dual solution y, which means

that X is y-tight as well. Thus, the prize of X is at most equal to the total dual value
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of X.

π(V \ VT ) ≤ π(X) (V \ vT ⊆ X and π is monotone) (4.9)

=
∑

L⊆X

yL (X is y-tight) (4.10)

At the same time, the edge cost of the final solution is the same as in the original

PCST formulation:
∑

e∈ET

c(e) ≤
∑

L 6⊆X

yL (4.11)

Theorem 2. The primal-dual algorithm for the PCST-Cover problem retrieves solu-

tions that are a 2-approximation to the optimal.

Proof. Combining Equations 4.10 and 4.11, we have that

∑

e∈ET

c(e) + 2π(V \ VT ) ≤ 2
∑

L⊆V

yL (4.12)

where T is a solution returned by the primal-dual algorithm. Following the same

steps as in Feofiloff et al. (Feofiloff et al., 2010), we can show that

∑

e∈ET

c(e) + 2π(V \ VT ) ≤ 2

(
∑

e∈EOpt

c(e) + π(V \ VOpt)

)

(4.13)

where Opt corresponds to the optimal solution of PCST-Cover on the input.

4.5 Approximation algorithms for the coverage-based PCST

Although we mentioned that there are strong similarities between the algorithms that

we will introduce below and the GWAlgorithm, there are still some important dif-

ferences. These are caused by the change in the prize function, which switches from

a linear function (sum) to a submodular (coverage). These differences are concen-

trated on how the algorithm interacts with the components in the laminar family; (i)

how it picks the next cluster to deactivate, and (ii) how it executes the deactivation
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process. Following, we will look into these differences, we will go over the new com-

putational challenges that are introduced and, finally, we will propose elegant and

efficient algorithmic solutions.

4.5.1 Finding the next component to deactivate

As we previously established, a component L deactivates when its corresponding

constraint becomes tight. This happens, when its total dual value y(L) becomes

equal to its prize π(L). We also mentioned that as “time” passes, the algorithm slowly

increases the dual values of all the active components. Consequently, an increase of

the dual values by ǫ will cause y(L) to increase by ǫ · active(L), where active(S) =

|{C ∈ A : C ⊆ S}|. This means that, for each set S ⊆ V , we can increase its dual

values by at most π(S)−y(S)
active(S)

.

The aim of Line 6 in GWAlgorithm is to find the maximum value ǫ that we

can increase the duals before a component becomes deactivated, and also identify

this maximal component. In the case of the original PCST this is straight-forward,

as we only need to iterate over the clusters C ∈ A, and return the one with the

minimum slack π(C) − y(C). A submodular prize function however complicates the

situation. Consider for example two nodes, u and v, with attributes Au = {a, b, c, d}

and Av = {b, c, d, e} respectively. Let us assume that the corresponding singleton

components in the laminar family, i.e., {u} and {v}, are active, and that all the dual

values are equal to zero. The slack of these two components individually is equal to

π({u})
active({u})

= π({v})
active({v})

= 4. However, looking at the set {u, v}, we see that its slack is

much smaller, i.e., π({u,v})
active({u,v})

= 2.5. This example aims to show that the change of

prize function introduces significant computational challenges to the problem.

Thus, finding the next component that deactivates turns into a submodular func-

tion minimization problem. Specifically, the method for identifying which cluster

constraint becomes tight first can be summarized as:
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1. Make a guess λ ∈ R
+

2. Find the minimizer S⋆ of the function

f(S) = π(S)− y(S)− λ · active(S) (4.14)

and check that f(S⋆) ≥ 0.

3. Repeat steps 1 and 2 to find the maximum feasible λ and the corresponding S⋆.

The function f is a submodular function, since π is submodular, y is supermodular,

and active is modular. As a result, given a value λ, minimizing f becomes an instance

of a submodular function minimization problem. Using such a generic process to find

the largest feasible λ would be computationally very expensive. Instead, we will show

how we can reduce this optimization problem to the minimum cut problem on a

specially constructed graph.

4.5.2 Reduction to minimum-cut

Here, we will introduce the coverage graph, an object specifically constructed to

quickly find the minimizer of the function introduced in Equation 4.14. Then, we

will prove that minimizing f is equivalent to finding the minimum cut on the cover-

age graph.

For each set L in the laminar family L, let w(L) = yL + λ if L is active, and

w(L) = yL if it is inactive. Notice that the way we defined w, it is a non-negative

function. Our goal from Equation 4.14 is to minimize π(S) −∑L⊆S w(L). This

is equivalent to minimizing π(S) +
∑

L 6⊆S w(L) −
∑

L⊆V w(L). However, the last

component of this formula is a constant, so instead, one may choose to minimize

π(S) +
∑

L 6⊆S

w(L) (4.15)
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Now, let us construct the coverage graph. This will be a tri-partite network,

consisting of the following layers:

- The first layer contains a vertex ai, for each element i in the ground set of

attributes, AG.

- The second layer contains a vertex bj, for each set Aj ∈ A. Initially, there are

|V | such vertices, each corresponding to the attribute set of each original node

v ∈ V .

- The third layer has a vertex cL, for each set L in the laminar family.

We finally add a source node s and a sink node t. In this coverage graph, we add the

following edges:

- Between the first and the second layer, we add an infinite capacity edge from

ai to any node bj, such that i ∈ Aj.

- Between the second and the third layer, we add an infinite capacity edge from

bj to cL, if j ∈ L.

- We connect the source node with every node in the first layer, using an edge of

capacity 1.

- We connect each node cL in the third layer with the sink node. That edge will

have capacity w(L), i.e., yL + λ if L is active, or yL otherwise.

We will denote this coverage graph as GCov.

Now, we will show that instead of minimizing the quantity in Equation 4.15, which

is equivalent to minimizing our original function f that we defined in Equation 4.14,

we can compute a minimum cut on GCov. The nodes of the third layer that belong

in the sink-side cut will correspond to the minimizer S⋆, while the value of the cut
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will be equal to f(S⋆). The proof includes two steps, that are summarized in the

following Lemmas.

Lemma 5. Any solution S of Equation 4.15 can be mapped to a cut on GCov with

cost π(S) +
∑

L 6⊆S w(L).

Proof. Consider a set S ⊆ {1, 2, . . . , n}. We obtain a valid cut in the graph GCov as

follows:

1. We cut all the edges (s, aj), with j ∈ Ai for all i ∈ S. The total capacity of

these edges is π(S).

2. We cut all the edges (cL, t), with L 6⊆ S. The total capacity of these edges is
∑

L 6⊆S w(L).

We need to verify that, after removing these edges, s is disconnected from t. Any

path from s to t is of the form s → ai → bj → cL → t, where j ∈ L and i ∈ Aj. If

j ∈ S, then we removed the edge (s, ai), and the path did not survive. Otherwise, we

removed the edge (cL, t), and again the path was invalidated. Therefore, the removed

edges form a cut, with total capacity equal to π(S) +
∑

L 6⊆S w(L).

Lemma 6. The minimum cut in GCov can be mapped to a solution S ⊆ {1, 2, . . . , n},
whose value π(S) +

∑

L 6⊆S w(L) is equal to the minimum cut capacity.

Proof. Let Z be the set of edges in a minimum cut of GCov. Let S be the union of

the components that are not reachable from the source, i.e.

S =
⋃

L∈L :
cL is not reachable from s in GCov\Z

L (4.16)

Now, consider the nodes cL that correspond to components not in S, i.e., L 6⊆ S.

These are by design reachable from s and, consequently, the edge (cL, t) has to be part

of the cut. The total capacity of these edges is
∑

L 6⊆S w(L). Furthermore, since we are

not allowed to remove edges between the second and the third layer, the components

that are in S have been disconnected from the source, because edges (s, ai), such that

i ∈ Aj for all j ∈ S, are in the cut. The total capacity of these edges is π(S). As a

result, the overall capacity of the minimum cut Z is π(S) +
∑

L 6⊆S w(L).

Together, Lemmas 5 and 6 provide a proof that the solution to the minimization

of Equation 4.14 can be given by a minimum cut computation on the coverage graph.
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4.5.3 A 2-approximation algorithm based on the minimum-cut reduction

We can now describe in detail the changes that need to be done in GWAlgorithm

(Algorithm 5) in order to design an algorithm for PCST-Cover. Actually, the algo-

rithm we will build upon in practice is PCSTFast and not GWAlgorithm, how-

ever, the changes do not affect the novelties that PCSTFast introduces to achieve

the improved running time.

Initialization

During the initialization phase of the algorithm, we need to build the coverage graph,

as we described in Section 4.5.2. Following, we will show how we can maintain it

up-to-date throughout the algorithm’s execution.

Finding the next cluster deactivation (Line 6)

Here, we will combine the reduction we showed previously, together with a search on

the values of λ. Specifically, we will follow this process:

1. Initialize λ with a small value.

2. Solve the minimum cut on the coverage graph, for the particular value of λ.

Find minimizer S⋆ and cut value f(S⋆).

3. While f(S⋆) ≥ 0, run galloping search on the values of λ; set λ = 2 · λ and go

to Step 2.

4. After finding an upper bound for λ, run binary search on the values of λ in the

range
[
λ
2
, λ
]
, each time following the same steps as in Step 2. If the resulting

f(S⋆) < 0, update the upper bound of the range, otherwise, update the lower

bound.
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It suffices to repeat the binary search until we narrow the search interval down to

Θ( 1
n
) around 0. The total number of binary calls is O

(
log(nmaxS⊆V π(S))

)
.

Computing the minimum cut

This is going to be a central part of the algorithm. The minimum cut computation

will need to be repeated multiple times and, as result, we need to speed it up as

much as possible. We will use the very practical preflow-push algorithm (Goldberg

and Tarjan, 1988), together with the global relabeling and gab relabeling heuristics

(Cherkassky and Goldberg, 1997). Its complexity is O(n2m), however it has proven

to be very fast in practice. Additionally, it is worth noting that we do not need the

complete flow assignment on the edges of the coverage graph. We simply need the

cut and its value, which we can retrieve early in the algorithm’s execution. Finally,

oftentimes, we will be able to use a solution of the minimum cut for a specific value

of λ as a preflow in the next iteration of the search.

Cluster deactivation (Lines 12 – 13)

After the binary search above indicates that the constraint for a set S will become

tight next, we need to deactivate the corresponding clusters, when that event is

triggered. We mark as inactive all clusters L ∈ A, such that L ⊆ S.

Update the coverage graph

In order to maintain a valid coverage graph, we will need to update it throughout

the execution of the algorithm. The only time that we need to change the graph is

whenever two clusters need to be merged into a new one. Let us assume that cL and

cM are the two nodes in the third layer of the coverage graph that correspond to the

two cluster being merged. We will create a new node, cL∪M , which will correspond to

the new cluster, and add it to the third layer of GCov. Furthermore, we will iterate
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over all the in-neighbors of cL and cM , and connect them to this new node with edges

of infinite capacity. Finally, we will connect cL∪M with t using an edge of capacity

yL∪M = 0.

We refer to the algorithm that builds on top of PCSTFast and implements the

changes we just mentioned as PCSTCover.

4.5.4 A parametric-search approach for finding λ

In the previous section, we described how we can find by how much we can grow the

dual values before a cluster deactivation happens. For this, we had to solve multiple

minimum-cut problems, each time guessing a different value for λ. Now, we will show

how we can find the best such λ doing a single minimum-cut computation.

In order to understand how we can transform our problem into a parametric-

search, we need to look back at how we constructed the coverage graph. Across the

different minimum-cut calls of our search for λ, the only quantity that changes in the

graph is the capacity of the edges from nodes in the third layer that correspond to

active clusters to the sink node t. This situation sounds very similar to the parametric

max-flow problem definition, as discussed by Gallo et al. (Gallo et al., 1989). In their

problem definition, the capacities of the edges that are outgoing from the source node

and the edges incoming to the target node are considered to be functions of a single

parameter, which they conveniently call λ. More specifically, Gallo et al. require that

(i) the outgoing edges from the source have capacity, which is described as a non-

decreasing function of λ, and (ii) the incoming edges to the sink have capacity, which

is defined as a non-increasing function of λ. In their work, they show that in this

setting, the preflow-push algorithm can be modified to compute all possible cuts, for

all the values of λ, with a single call. In fact, because of their capacity requirements,

they can show that these cuts are nested and are at most n. Equivalently, there are

at most n different values of λ that produce these different cuts. Moreover, they show



86

that these values of λ, together with their corresponding cuts, can be computed in

increasing order, i.e., the algorithm finds λ1 < λ2 < . . . < λn.

In our case, our problem is to find the next cluster deactivation time, i.e., find the

value λ⋆ = minS⊆V
π(S)−y(S)
active(S)

. This can equivalently be written as a parametric-search

problem:

λ⋆ = max{λ : π(S)− y(S)− λ · active(S) ≥ 0, ∀S ⊆ V } (4.17)

The above holds because, for λ⋆, there exists a set S⋆, which minimizes the function

f . In Equation 4.14, we are requiring f(S⋆) ≥ 0. Consequently, f(S) ≥ f(S⋆) ≥ 0,

for any S ⊆ V when using λ⋆. Following, we will describe an algorithm that solves

parametric-search problems like this, and we will show how we can use it.

A discrete Newton’s method for finding the next cluster deactivation time

Algorithm 6 describes a method for finding the next cluster deactivation time, denoted

by λ⋆. Technically, λ⋆ represents how much we can grow the dual values of the active

clusters in the laminar family, before one of them becomes tight.

Algorithm 6 Finding the next cluster deactivation time as a parameter-search

1: Initialize a value λ0 > λ⋆

2: i← 0
3: while true do
4: Si ← the minimizer of π(S)− y(S)− λi · active(S)
5: if π(Si)− y(Si)− λi · active(Si) = 0 then
6: λ⋆ ← λi

7: break
8: else
9: λi+1 ← π(Si)−y(Si)

active(Si)

10: i← i+ 1

11: return λ⋆

Following, we will prove that indeed the algorithm computes what it is expected

to.

Lemma 7. Algorithm 6 retrieves a decreasing sequence of values λ0 > λ1 > . . . ≥ λ⋆.
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Proof. Let S⋆ be the minimizing set that corresponds to λ⋆, i.e., λ⋆ = π(S⋆)−y(S⋆)
active(S⋆)

. We

have

π(Si)−y(Si)− λi · active(Si)

≤ π(S⋆)− y(S⋆)− λi · active(S⋆) (Si is the minimizer) (4.18)

≤ π(S⋆)− y(S⋆)− λ⋆ · active(S⋆) (λi ≥ λ⋆ and active(S⋆) ≥ 0) (4.19)

= 0 (4.20)

Therefore, π(Si)− y(Si)−λi · active(Si) ≤ 0. If this value is equal to 0, then λ⋆ = λi,

and we are done. Otherwise, we let λi+1 =
π(Si)−y(Si)
active(Si)

. Note that λi+1 ≥ λ⋆, since

λi+1 =
π(Si)− y(Si)

active(Si)
≥ min

S⊆V

π(S)− y(S)

active(S)
= λ⋆ (4.21)

Additionally, λi+1 < λi, since π(Si)− y(Si)−λi+1 · active(Si) = 0 and π(Si)− y(Si)−
λi · active(Si) < 0.

Let us now return to the parametric maximum flow algorithm by Gallo et al., and

describe how we can use it within Algorithm 6, and more specifically at Line 4. There

are two main problems with using the former algorithm as is:

1. The algorithm requires that the capacity of the edges incoming to the sink node

is a non-increasing function of the parameter λ. In our case, this function is

either non-decreasing (yL + λ), or constant.

2. The algorithm produces a sequence of solutions that correspond to increasing

values of λ. However, Algorithm 6 retrieves a decreasing sequence of values

λ0 > λ1 > . . . ≥ λ⋆.

In order to deal with these two issues, we switch the capacity of the edges from

yL + λ to yL − λ and we consider the sequence −λ0 < −λ1 < . . . ≤ −λ⋆. This

little trick allows to combine the discrete Newton’s method of Algorithm 6 with the

parametric max-flow algorithm of Gallo et al.. The running time complexity of this
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combined algorithm for the PCST-Cover problem is O(dm log n+dm2n2). As before,

the solutions retrieved by the algorithm are still a 2-approximation to the optimal.

Choosing a value for λ0

Algorithm 6 requires an initial guess for λ0. The closer this guess is to λ⋆, the fewer

number of iterations are needed before the algorithm terminates. A pessimistic guess

would be the number of attributes in the ground set, i.e. λ0 = |AG|. We will call this

algorithm PCSTCover-parametric⋆.

Another, more aggressive strategy, is to set λ0 equal to the smallest component

slack, i.e.,

λ0 = min
L∈A

π(L)− y(L)

active(L)
(4.22)

The intuition behind this choice is the following: looking at the active clusters, there

is one, which we will denote as L⋆, whose slack is the smallest. The longest L⋆

can remain active is equal to its remaining slack value. There is no way that the λ

returned by Algorithm 6 will point to a later deactivation time than this. As a result,

we can use this value as a good first guess. This is the most efficient algorithm among

the ones we provide, as we will see in the next section. We refer to this algorithm as

PCSTCover-parametric.

4.6 Experiments

In this section, we will explore the behavior of our algorithms both in a controlled

environment and on a real-world collaboration dataset. First, using synthetic data,

we will investigate how changes in the input affect different aspects of the algorithms’

output. Later, using the real data, we will provide an example of the type of practical

information that the proposed importance measure offers. Furthermore, we will see

how the analyst can preprocess the data depending on the specific aim of the analysis,
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and how this can affect the end result.

Experimental setup

All of our proposed algorithms were implemented in C++. For PCSTFast, we used

the implementation that is available on GitHub3. The experiments were ran on a

MacBook Pro (early 2015 version), with a 2.7 GHz Intel Core i5 CPU and 8GB of

memory.

4.6.1 Experiments on synthetic data

First, we will synthetically generate the graph G, the attribute sets A and the cost

function c, in order to explore how changes in the input can affect the performance

of our algorithms, as well as the properties of the solution.

More specifically, we will create our input in the following way: the graph G will

be an instance of an Erdős-Rényi random graph with n = 1000 nodes and ρ = 0.05

connection probability. Each node v in the graph will be fixed to contain 12 attributes,

i.e., |Av| = 12. In order to control how common these attributes are, we will split

the attribute set of each node in two parts: (i) the common attributes, that exist

in all the nodes of the graph, and (ii) the unique attributes, that are only present

in the particular node. Putting together the common and the unique attributes for

each node results in the attribute set Av of that particular node. The default sizes

for these two parts is 6 common attributes and 6 unique attributes per node. Finally,

each edge is assigned a weight uniformly at random c(e) ∈ (0, 800).

Experiment parameters

For the purpose of exploring the algorhtms’ behavior, we will control and change the

following variables when generating the input data:

3https://github.com/fraenkel-lab/pcst_fast
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- number of nodes : One important property of the data is the size of the graph.

As indicated by the complexity of our algorithms, we are expecting that larger

graphs will be more computationally demanding.

- number of edges : Another important property of the graph is its density. This is

expected to have a significant impact on the running time. Additionally, adding

more edges in a graph gives the algorithm more flexibility as to how to build

the solution. Therefore, the size of the returned subgraph is also expected to

grow.

- number of attributes : Another parameter that can significantly affect the be-

havior of our algorithms is the size of Av, i.e., the number of attributes that

each node has. Whenever we change this value, we still assume that the ratio

of the common and the unique attributes remains the same as in the default

case, i.e., 50% for both.

- overlap: The final parameter we can change affects how many attributes are

common and how many are unique, within the 12 attributes that correspond to

each node. We will refer to the fraction of the node attributes that are common

among the graph as overlap. As we described, the default value for the overlap

is 0.5. Increasing this value means that the nodes are described mostly by the

same attributes, i.e., the size of the ground set of attributes AG is limited.

For all of these changes apart from the overlap, we will apply a multiplier to the

default values that we described above. The value of the multiplier is captured in the

x-axis of the relevant figures.
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Performance measures

At the same time, there are multiple measurements that we can track, in order to

better describe the performance of the algorithm and the changes in the retrieved

solution:

- solution size: The first measure that captures changes in the algorithms’ behav-

ior is the size of the retrieved subgraph. We expect this size to grow, whenever

the algorithm can either use more attributes to “pay” for the required edges,

or, whenever it can find alternative ways to keep the subgraph connected.

- number of preflow-push calls : An important measure of performance is the

number of times that our algorithms execute a min-cut computation on the

coverage graph.

- number of pushes : Another important measure of performance is the number

of pushes that the preflow-push algorithm is executing. This number is the

aggregate sum of across all the min-cut computations.

- execution time: Finally, a significant but also mostly indicative measure is the

time the each algorithm requires for its execution. This time is expected to

change across different computer architecture, hardware, and environments,

however it still provides a ball-park estimate of the performance.

All experiments are repeated at least ten times.

Algorithms

In our experiments, we will be comparing our three algorithms, i.e., PCSTCover,

PCSTCover-parametric⋆ and PCSTCover-parametric. As a reminder, the

first algorithm is executing a binary-search combined with a regular preflow-push

method in order to identify the next cluster deactivation. The other two algorithms
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PCSTCover

PCSTCover-parametric*

PCSTCover-parametric

(a) The effect of the overlap on the execution time (in milliseconds)
of the algorithms.

PCSTCover

PCSTCover-parametric*

PCSTCover-parametric

(b) The size of the retrieved solution changes as we increase the
overlap. The effect is the same across all the algorithms.

Figure 4·1
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are using a discrete Newton’s type of parametric-search together with a paramet-

ric preflow-push method. Finally, PCSTCover-parametric⋆ uses a pessimistic

upper bound for the parametric-search, while PCSTCover-parametric is more

aggressive. In some experiments, we skip the results from PCSTCover, because its

execution was too slow.

Presentation method

The figures present the results of the experiments as boxplots. This kind of plot visu-

alizes the minimum and the maximum value for a set of executions (10 repetitions),

as well as the 1st and the 3rt quartile, and the median value.

Varying the overlap

First, let us explore how changing the overlap parameter affects the performance of

our algorithms. As a reminder, higher overlaps means that the unique attributes of

each node are fewer than the common. This, in turn, means that the size of the

ground set of attributes AG is also smaller, since each node does not contribute much

to it. Equivalently, this means that the nodes do not afford to “pay” for the more

expensive edges any more.

Figures 4·1a and 4·1b capture the change in running time and in solution size

respectively. Across all algorithms, we observe that although there is not big change

between the values 0.25 and 0.5, increasing the overlap to 0.75 causes the algorithms

to return much earlier. Figure 4·1b indicates what we mentioned previously regarding

how much each node affords to “pay”. The size of the solution drops as we increase

the overlap in the attributes.

One thing that becomes clear in Figure 4·1a is the vast difference in running

times between PCSTCover and the parametric algorithms. This difference is often

more than an order of magnitude. The reason for this will become clear in the next
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paragraph. However, for this reason, in most of the experiments we skip running

PCSTCover because of time constraints.

Figures 4·2a and 4·2b explain both why PCSTCover is much slower than the

parametric algorithms, and why the algorithms retrieve a solution faster as overlap

grows. First, Figure 4·2a shows the number of calls that each of the algorithms is mak-

ing to a minimum-cut solver. It is clear that the parametric algorithms make almost

an order of magnitude fewer calls than PCSTCover. Computing the minimum-cut

on the coverage graph turns out to be the biggest bottleneck of all our algorithms.

Furthermore, even if that solver is extremely optimized, to run under 10ms even for

large graphs, calling it thousands of times makes a huge impact in the running time.

Since the parametric algorithms by design are making fewer calls (by substituting

the binary search with a parametric-search, and the simple preflow-push with the

parametric preflow-push), their speed advantage is obvious.

The preflow-push algorithm has two basic operations; push and relabel. By far,

the most common one during the computation is push. In Figure 4·2b we plot the

total number of pushes per execution. We observe that, as the overlap grows, the

algorithm terminates earlier and does not require as many pushes as when the overlap

is smaller. At the same time, we can see that there is very strong correlation between

the number of calls of the preflow-push algorithm, and the total number of pushes.

That is something we expect, as there is a clear trend and small variance in the

number of pushes at a per-iteration level, as the algorithm progresses.

Varying the size of the input graph

The next parameter we will experiment with has to do with the size of the input

graph, and specifically the number of nodes. In Figure 4·3, we plot how the number

of pushes, i.e., a proxy to how long the preflow-push algorithm takes, changes as

the input graphs become larger. As expected, the trend is increasing. Notice, that
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PCSTCover

PCSTCover-parametric*

PCSTCover-parametric

(a) The total number of calls to the minimum-cut solver.

PCSTCover

PCSTCover-parametric*

PCSTCover-parametric

(b) The total number of pushes that the preflow-push algorithm
executes during the minimum-cut computation.

Figure 4·2
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PCSTCover-parametric*

PCSTCover-parametric

Figure 4·3: The number of pushes of the preflow-push algorithm when
we increase the size of the graph. The x-axis indicates the multiplier
on the number of nodes.

we only provide data points for the parametric algorithms, as PCSTCover did not

scale well in practice. Furthermore, PCSTCover-parametric seems to have a

slight advantage over the more naive algorithm, although the difference is not very

pronounced in this experiment.

Varying the density of the input graph

The next parameter we experiment with is the density of the graph. We keep the

number of nodes fixed, and we only change the number of edges. Figures 4·4a and

4·4b show the results of this experiment. Specifically, Figure 4·4a shows how the

size of the retrieved solution changes as the graph becomes denser. As we mentioned

before, adding more edges in the graph allows the algorithm to be more flexible in

its choices. As a result, the algorithm has more opportunities to grow the solution

by using alternative cheaper edges. As expected, the trend here is increasing; denser

graphs result in bigger solutions.

Figure 4·4b indicates that there is a cost to be paid for adding these edges. The

preflow-push algorithm becomes clearly more expensive. Additionally, in this fig-
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PCSTCover-parametric*

PCSTCover-parametric

(a) The size of the retrieved solution, as we increase the number of
edges in the input graph.

PCSTCover-parametric*

PCSTCover-parametric

(b) More dense graphs result in more expensive preflow-push execu-
tions.

Figure 4·4
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ure we can clearly notice the difference between PCSTCover-parametric and

PCSTCover-parametric⋆. While they both show an increasing trend, the former

becomes more expensive more slowly. Our choice to introduce this more aggressive

upper bound for λ0 in the case of PCSTCover-parametric seems to be paying

off.

Varying the number of attributes per node

Finally, we experiment with changing the number of attributes that we assign to

each node. Originally, we set this value to 12. Figure 4·5a shows that having more

attributes leads to larger solutions. This is exactly supporting what we saw in Fig-

ure 4·1b, where the shortage of unique attributes resulted in smaller solutions.

Figure 4·5b plots the number of pushes as the number of attributes per node

increases. This increasing trend should be expected; more attributes per node means

that the coverage graph will be larger, both in terms of nodes as well as edges. Still,

PCSTCover-parametric handles this increase much more elegantly than the naive

PCSTCover-parametric⋆. This effect is also reflected in Figure 4·5c, where we

plot the execution time for each different value of the parameter.

4.6.2 Experiments on real data

In this section, we switch our focus from the analysis of the algorithmic contributions

of our work to its practical implications. More specifically, we apply our novel impor-

tance measure on a real world dataset, we show how one can preprocess a dataset in

order to leverage this measure appropriately, and we conclude with some interesting

insight gained from the particular dataset.
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PCSTCover-parametric*

PCSTCover-parametric

(a) The effect of changing the number of attributes per
node on the size of the retrieved solution.

PCSTCover-parametric*

PCSTCover-parametric

(b) More attributes per node require more pushes.

PCSTCover-parametric*

PCSTCover-parametric

(c) As the attributes per node grow, the algorithms become
slower.

Figure 4·5
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Creating the co-authorship network

The data we use is part of the raw XML dump of DBLP4. This datasets contains

publication records for scientific articles and books. Using this, we build the following

co-authorship network. Each author is represented as a node. Whenever two authors

have written a paper together, we draw an edge between the two corresponding nodes.

That edge is weighted, and its weight reflects the number of times these two authors

have collaborated. Furthermore, for each author we compile a list of all the venues5

she has published in. This list will correspond to the attribute set of that particular

node.

Since this network is very large and noisy, we filter the authors and keep only

those that have published in the FOCS6 conference at least once. We also remove

the edges with weight equal to 1, i.e., a collaboration which only happened once.

We considered such edges to be noise and not representing a scientific relationship

between two researchers. This results in a network with around 2.5k authors and 7k

edges. The total number of venues that appear in the union of the authors’ attribute

sets is around 3.5k.

Dataset statistics

Before we proceed with preprocessing, let us first compile some statistics on the data.

This will allow us to build a better plan on how to proceed.

The first question we can ask to better understand the data is “Do authors like

variety?”. Do answer this, build a histogram on the size of the attribute set for

each author. Again, this corresponds to the number of unique venues that an author

has published in. We can see the plot in Figure 4·6. The x-axis is cropped at 100,

4https://dblp.uni-trier.de/xml/
5We filter only the @inproceedings records. These are mostly conferences and workshops.
6IEEE Annual Symposium on Foundations of Computer Science (FOCS)
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Figure 4·6: A histogram of the number of venues that each author
in our network has published in. The corresponds to the size of the
attribute set.

however the distribution has a long tail. The mean of this distrubution is equal to

18.7 attributes per author. Notice the shape of the distribution; there is a distinct

peak around 10, and later it drops slowly until 60.

Another question one might ask is “How common is each venue?”. This translates

into the number of nodes that share each single attribute. Again, we can provide an

answer to this question by drawing the matching histogram. As Figure 4·7 shows,

most venues appear only once. The distribution quickly drops to very low numbers

even before 20. In other words, even venues that appear in 20 different authors’ lists

are quite rare. Once again, the x-axis is cropped at 100.

Finally, one last interesting question we look into is “How frequently do researchers

collaborate?”. Figure 4·8 provides the answer to this, by plotting the distribution of

edge weights. This is a power-law type of distribution, that quickly drops to very

small numbers. Once more, the x-axis is cropped at the value 40.
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Figure 4·7: A histogram of the number of authors that share a par-
ticular venue.

Figure 4·8: A plot of the distribution of the edge weights, i.e., the
number of collaborations between two authors.
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Figure 4·9: A plot of how the size of the solution and the number of
covered venues in the solution change, as we change the scaling multi-
plier of the edge weights. The root node is Alina Ene.

Preprocessing the data

Looking back at how we defined our importance measure, we declared that a strong

and meaningful connection between two nodes in the graph is captured by a small

edge weight. In the network we just generated, the inverse actually holds; frequent

collaborations between researchers result in large edge weight. To fix this, we subtract

each edge weight from the maximum, i.e.,

c(e)′ = max
(u,v)∈E

c((u, v))− c(e) + 1 (4.23)

Another issue that we need to deal with is that the value prize function, i.e., the

number of attributes, and the cost function, i.e., the number of collaborations, are

not on the same scale. One needs to decide how to rescale these values, such that the

number of attributes that need to be used to “pay” for an edge of weight equal to

1 makes sense. In our case, we rescale the edge weights to (0, 1] and multiply them

with a predefined scaling multiplier. We experiment with how to set this value in

Figure 4·9.
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Picking a scaling value for the edge weights

Let us know explore how the different choices for the edge scaling multiplier affect the

retrieved solution. To this end, for each different choice of multiplier, we will execute

PCSTCover-parametric on that particular instance, and report the size of the

group and the number of venues that the group collectively covers. We present the

result of this experiment in Figure 4·9. As expected, for small multiplier values, the

size of the group is large. Before dropping to zero, we get solutions of small size, i.e.,

less than 50. Even for these “small” groups, the number of covered attributes is fairly

large. The data analyst can look at such a plot and decide what scaling she wants to

use.

Comparison with PCST

As a baseline, one could only keep the number of attributes at each node and, in-

stead of using the coverage function, formulate this problem as an instance of PCST.

The question is how good would the final group be in terms of attribute coverage.

To answer this, we present Figure 4·10. Again, we experiment with different val-

ues of the scaling parameter, and report the group size and the number of venues

covered by the solution. For PCST, we use the PCSTFast algorithm. We ob-

serve that, although the two lines are close to each other, the line corresponding to

PCSTCover-parametric is always higher. This means that for the same group

size, this algorithm is returning groups that are covering more venues. This should be

expected, since PCSTCover-parametric is built for this particular problem. Still,

we have to note that the size of the gap between the two lines is heavily dependent

on the type of dataset.
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PCSTCOVER-PARAMETRIC

PCSTFAST

Figure 4·10: A comparison between the PCSTFast and
PCSTCover-parametric in terms of number of attributes covered
for a particular group size. Here, we vary the edge scaling multiplier.
The root node is Alina Ene.

Case study

Finally, for a better insight into what kind of groups our algorithm retrieves, we run

the following case study. We pick a scaling multiplier for the edges such that the

mean of the edge weights matches the mean of Figure 4·6. We then set Aline Ene

as the root node, i.e., we indicate that we want her to be a member in the retrieved

group. The final solution, which can be seen in Table 4.1, selects 29 authors, who in

total cover 1110 venues out of the 3.5k that exist in the dataset. This shows that

our algorithm can indeed retrieve a small group that still exhibits big diversity in its

attributes.
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András A. Benczúr (51) Thomas A. Henzinger (110) Scott Shenker (59)

Chandra Chekuri (24) David R. Karger (58) Alistair Sinclair (11)

Ning Chen (84) Phokion G. Kolaitis (35) Daniel A. Spielman (16)

Xi Chen (242) Orna Kupferman (51) Shang-Hua Teng (45)

Costas Courcoubetis (45) Rasmus Kyng (5) Moshe Y. Vardi (111)

Xiaotie Deng (76) Nicola Leone (49) Mihalis Yannakakis (43)

Alina Ene (18) Liang Li (78) Yitong Yin (9)

Georg Gottlob (99) Pinyan Lu (23) Peng Zhang (170)

Rachid Guerraoui (84) Fabio Martinelli (117) Yuan Zhou (85)

David Harel (111) Christos H. Papadimitriou (69)

Table 4.1: The members of the group with Alina Ene as the root
node. The number next to each name corresponds to the number of
venues each author has published in. The total number of unique venues
covered from this group is 1110.
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Chapter 5

Conclusion

In this thesis, we studied the problem of evaluating the importance of nodes and edges

in graphs. This research problem has received a lot of attention, especially due to the

popularity of graphs as a means for data representation. We presented a classification

of these measures into two big categories, depending on their goal; some measures

target nodes and entities as singleton entities, while others are tailored to evaluate

groups of entities. We then focused on three importance measures, two of which

were first introduced in this dissertation. Furthermore, we provided novel, efficient

and theoretically-sound algorithms, which aim at making the computation of these

measures practical for real-world scale datasets.

The first importance measure we discussed is the spanning edge centrality. This

falls under the category of ranking-based measures, which evaluate graph entities as

singletons. We proposed a novel algorithmic framework that allows the data analyst

to find the most important edges in large graphs realistically fast. We also showed how

this framework can be used to enable the fast computation of other related measures

as well. Finally, we provided evidence indicating that the spanning edge centrality

has a direct connection with information propagation processes on a network, and

can be used to strategically stop such processes early on.

Then we introduced the absorbing random walk centrality, a novel selection-based

measure, that gauges the importance of groups of nodes. In fact, this measure allows

the analyst to select a set of query nodes and finds a group of nodes, which are central



108

with respect to the query. We proposed an approximation algorithm that retrieves

such important groups and showed how it can be used in practical settings.

Finally, we focus on a particular sub-category of selection-based measure: those

that are parameter-free. Instead of specifically predetermining the size of the retrieved

group, these measures leverage a prize function to guide this decision. We assume

that the nodes in our graphs are also assigned a set of attributes, and propose a

novel importance measure that captures the following intuition: an important group

needs to be compact and to contain as many attributes as possible. We show how

this measure can be connected to the problem of the prize-collecting Steiner tree, and

design efficient algorithms with theoretical guarantees. Last, we showcase how this

measure behaves on both synthetic and real datasets, and how it can prove useful to

the data analyst.
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