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ABSTRACT

The Higgs sector is the collection of fields and particles responsible for the spontaneous

symmetry breaking of the electroweak symmetry. It is the keystone of the Standard

Model of particle physics. While the Standard Model Higgs sector is in agreement with

current experiments alternative models often arise to explain experimental anomalies,

or to answer puzzles about the Higgs model itself. In this dissertation I explore two

such alternative models of the Higgs sector. The first is a model of a composite

Higgs boson that is designed to be “minimally fine-tuned.” I demonstrate how it

generates a light Higgs boson with one fine-tuned parameter. The most accessible

expected phenomenological signatures of such a model are heavy resonances decaying

into weak vector bosons. I compare the predicted behavior of these resonances to

recent experiments at the Large Hadron Collider. The second is alternative model

attempts to use multiple Higgs to explain a possible 30 GeV resonant excess in dimuon

production arising from Z boson decays. I show that the simplest such model cannot

explain the excess, and then argue that all such multiple-doublet models also fail.
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Chapter 1

A Composite Higgs Model

1.1 Fine-tuning and Renormalization

We specify a quantum field theory by choosing a set of fields and then writing down

a Lagrangian, which is some function of the fields and their derivatives. Specifically,

the Lagrangian is a sum of products of the fields, each of which comes with a coupling

constant. For example, the mass term of the Higgs doublet is the term m2H†H where

the coupling constant m2 is the square of the mass. A Yukawa coupling yHff is a

term involving two fermion fields and one scalar field. The Yukawa coupling constant

y measures the strength of the interaction between the scalar and the fermion, as

might be measured in a scattering experiment. The Lagrangian is fully specified

by choosing which terms to include and choosing specific values for the coupling

constants.

In a classical theory the coupling constant in the mass term is the same as the

physical mass one measures in experiments. In a quantum theory, however, the

physical quantity is determined by the coupling constant plus quantum corrections

that depend on all the other terms in the Lagrangian. One can understand as a result

of the path-integral picture of quantum mechanics: transition amplitudes include

contributions from the classical trajectories of the particles, but also from trajectories

where the particles interact with each other in every possible way as they propagate.

As a concrete example we can consider a theory with a single scalar field φ(x) and



2

+ + · · · = −iδm2
φ

Figure 1·1: Diagrams that lead to quantum corrections to m2
φ in the

φ4 theory of equation 1.1. The corrections are shown up to two-loops,
and second order in the coupling constant λ.

the Lagrangian

L =
1

2
(∂φ)2 − 1

2
m2

0φ
2 − λ

4!
φ4 (1.1)

When we calculate the observed scalar mass of this theory we get corrections from

loop diagrams diagram that involves the quartic coupling λ, as in figure 1·1. These

diagrams involve integrals over all possible momenta for the particles in the loops.

The integrals are formally divergent; if we introduce a cutoff, a maximum allowed

momentum Λ, then we find that the integrals have a quadratic divergence in Λ.

Choosing an arbitrary large Λ gives the resulting physical mass

m2
phys. = m2

0 −
λ

2(4π)2

(
Λ2 −m2

0 log
Λ2

m2
0

)
. (1.2)

If Λ is large enough then the observed mass m2
phys can be very different from the

bare parameter m2
0 even if λ is a small coupling constant. However, since m2

0 isn’t a

physical parameter we can pick whatever value is needed to make our theory predict

the experimentally correct value for the mass.

This means, however, that when choosing the parameters of our theory we must

consider a high energy scale which will affect the low energy physics. In fact, some

physical observables will be quite sensitive to the high energy scale, like the mass in
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+ +

+ + = cHΛ2 + . . .

Figure 1·2: The dominant one-loop contributions to the Higgs boson
mass corrections. Each diagram contributes to the quadratic divergence
cHΛ2. The top loop dominates the other is stronger than the other
fermion loops by a factor of at least m2

t/m
2
b .

the example just given. When Λ is much larger than mphys if we change m2
0 by a

factor of (1 + δ) then m2
phys changes by a factor of (1 + δ λ

2(4π)2
Λ2

m2
phys

). This can be

a large correction even if δ is small if Λ � mphys. Small perturbations in the high

energy physics can lead to huge differences in the low energy observables. This is

called fine-tuning.

Fine-tuning in a model is generally viewed by theorists as unsatisfactory. If a fine-

tuned parameter is so incredibly sensitive to unknown physics, how did that unknown

physics happen to produce exactly the value that we see, when a slightly different

high-energy value would have produced a wildly different observed value?

1.1.1 Fine-tuning in the Standard Model

In the Standard Model the mass of the Higgs boson is a fine-tuned parameter. As the

mass of the Higgs boson and the associated symmetry-breaking constant v = 246 GeV

are so fundamental to the Standard Model their fine-tuning are viewed as especially

unsatisfactory.
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The dominant contributions to the Higgs boson quantum mass corrections are

shown in figure 1·2. There is a loop involving the a top quark, some loops with

W and Z bosons, and loops with the Higgs boson itself. All other fermions also

contribute, but as we saw the Yukawa couplings of the Standard Model Higgs boson

are proportional to the mass of each fermion, and the top quark is nearly 100 times

more massive than any other fermion. Considering these diagrams, if the Higgs boson

mass is to be natural or not fine-tuned, there must be some new physics at the scale

Λ equal to a few TeV (see the introduction to (Schmaltz and Tucker-Smith, 2005) for

a good review).

Any theory that removes the fine-tuning of the Higgs mass must somehow remove

the effect of the diagrams in figure 1·2. This is typically accomplished by adding new

particles whose contribution to the Higgs mass correction cancels out the Standard

Model corrections. These extra particles are associated with physics at some new

scale Λ. For example, in supersymmetric theory, the correction from the top quark is

canceled by additional loop diagrams involving its superpartner, the stop. The new

scale is the scale of spontaneous supersymmetry breaking. In theories with composite

Higgs the top quark contributions are canceled by other fermionic “top partners” that

form a representation of some spontaneously broken symmetry. The new scale is the

confining scale of the theory.

While these theories remove contributions quadratic in the cutoff, they do still

they still correct the Higgs mass with terms proportional to log Λ. If the new scale

of the theory is large enough, these contributions can still be large enough to make

the mass fine-tuned. For supersymmetric theories, as well as many composite Higgs

models, the natural cutoff is a few TeV. Hence, almost all natural theories require

new particles to appear at or around the TeV scale.
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1.2 A Fine-Tuned Composite Model

The 2012 discovery of a 125 GeV Higgs boson is beginning to strain most natural

models. No other new particles have been discovered that might indicate natural

electroweak symmetry breaking. For example, certain Little Higgs theories are con-

strained to sub percent level fine-tuning (Dercks et al., 2018; Cheung et al., 2018;

Reuter et al., 2013), and more general pseudo-Nambu-Goldstone Higgs theories and

extra dimension theories are similarly constrained (Bellazzini et al., 2014). Natural

supersymmetric theories are also becoming more constrained as experiments exclude

higher and higher superpartner mass ranges (Giudice, 2013).

We take this as a sign that the electroweak sector does, in fact, exhibit fine-tuning.

To this end, we begin to search for theories that are “minimally fine-tuned.” By this,

we mean a theory that involves the smallest possible fine-tuning for m2
H and has the

fewest number of free parameters that must be fine-tuned to achieve this. In this

work we look in particular for a composite model that is minimally fine-tuned in this

way. Our model takes inspiration from a model of Bardeen, Hill, and Lindner (BHL)

(Bardeen et al., 1990). In this section we will review that model and their analysis.

Afterwards we will introduce our model and apply a similar analysis.

The BHL model uses the fact that the top Yukawa coupling is strong to build

a model where the Higgs boson is a composite of some physics at a high scale Λ,

involving the third generation quarks qL = (tL, bL) and tR. At scales below Λ the

interaction is modeled by a four-fermion term,

Ltt = GqixL tRxt
y
RqLiy (1.3)

where the SU(2)EW and color-SU(3)c indices i, and x, y are summed over, and qLi =

(tL, bL)i. The theory has an SU(2)EW × U(1)Y gauge symmetry, but G if given the

right strength it can generate a mass term for the top quark via the Nambu-Jona-



6

−imt

=
−iG

−imt

Figure 1·3: The Schwinger-Dyson equation for the top mass in the
model of Bardeen, Hill, and Lindner. The four-fermion interaction is
able to create a mass for the fermion without an explicit mass term.

Lasinio mechanism (Nambu and Jona-Lasinio, 1961). This spontaneously breaks the

electroweak symmetry just like a Standard Model Higgs doublet would. We can

estimate the required coupling strength in the large-Nc, small gauge-coupling limit.

G must satisfy the mass gap equation of figure 1·3:

mt = −1

2
G 〈tt〉 (1.4)

= 2GNcmt
i

(2π)4

∫
d4l(l2 −m2

t )
−1

where Nc = 3 is the number of quark colors. The mass arises because the four-fermi

interaction generates a top condensate. For this to happen G must satisfy (assuming

Λ2 � m2
t )

GNc

8π2

(
Λ2 −m2

t log
Λ2

m2
t

)
= 1,⇒ G > Gc =

8π2

NcΛ2
. (1.5)

In addition to a top quark mass, when equation (1.5) is satisfied we get a mass for

the SU(2)EW vector bosons, and a scalar resonance in the tt channel that acts like

a Higgs boson. Using the same approximations as above we can sum the tt bubble

diagrams in figure 1·3 and apply equation (1.5) to find that the scalar propagator has
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the form

〈tt tt〉 (p2) =
(4π)2

2Nc

(p2 − (2mt)
2)

1∫
0

dx log
(
Λ2/(m2

t − x(1− x)p2)
)−1

(1.6)

implying a Higgs boson associated with the pole at mH = 2mt. Similar analysis for

the weak boson propagators yields the relation m2
t log Λ2

m2
t

= 8π2v2

Nc
where v = 246 GeV

is the experimentally measured electroweak-symmetry-breaking scale. If we take Λ =

1015 GeV we get mt ' 165 GeV.

The fine-tuning comes in the relation between G−1 and m2
t . In order to satisfy

equation (1.5) with mt ' v with very large Λ the difference G−1 −G−1
c must be very

small. However, this is the only fine-tuning required. Once we choose G correctly to

get a small mt, mH and v are automatically small without any additional fine-tuned

parameter choices.

Of course, this analysis is very limited. It uses the approximation Nc = 3 � 1,

and ignores all gauge couplings, even the strong coupling. It also ignores the fact that

the logarithmic terms can be quite large, i.e. log(Λ2/m2
t )� 1, which can make ruin

calculations that appeared to be perturbative and convergent.

To fix this we need to improve our calculation procedure to remove large logarithms

from the analysis. This is accomplished with renormalization group analysis, and it

is key to both the analysis of BHL, and our analysis later on.

1.2.1 Renormalization group analysis and fine-tuning

In order to improve the predictions from above we must remove the large logarithms

from the procedure using what is called renormalization group analysis. The large

logarithms arise in parameter corrections when loop diagrams require us to integrate

over all momenta from 0 to the cutoff of the theory Λ. Doing these integrals allows

us to write the parameter at low energy in terms of a bare parameter at the cutoff.
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The bare parameter is then associated with a particular momentum scale, Λ.

What if we instead specify the theory in terms of a different scale and a different

associated parameter? For example, we could choose an arbitrary µ2 and specify

what that when p2 = µ2, the φ propagator looks like (p2 − m(µ)2)−1. Then when

p2 is close to µ2 the propagator will look like (p2 −m(µ)2 +O(log(p2/µ2)))−1, which

involves only small logarithms, meaning we can put more trust in our predictions.

Furthermore, the physics of the theory should not depend on the arbitrary µ2

scale we chose. We could just as well have specified m(µ′)2 instead of m(µ)2. We can

then define the running mass: for every µ, m(µ)2 is the mass parameter specification

that gives the physically correct propagator for energies near µ. The physical mass

is the scale where the propagator has a pole, so that m2
phys −m(mphys)

2 = 0.

Even better, we have already seen that m(µ′)2 ' m(µ)2 +O(log(µ′2/µ2)), meaning

we can compute the running mass at one value in terms of the running mass at values

nearby. This leads to a differential equation called the renormalization group equation

dm2(µ)

d log(µ)
= β

(
m2(µ)

)
(1.7)

The function on the right-hand side is some function of all the parameters in the

theory and can be computed by evaluating the loop diagrams used to compute the

mass corrections. In general there is one such beta function for every parameter in

the theory, and all the coupling constants and parameters depend on an energy scale,

or run.

From this perspective, fine-tuning is a question of the relationship between the

values of a running parameter at two different scales. If we have a cutoff Λ we can

calculate the dependence of m2
phys on m(Λ2)2. Specifically, the amount of fine-tuning

is measured by d logm2
phys/d logm(Λ)2, where values much greater than one indicate

severe fine-tuning.
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In order to apply renormalization group techniques to the BHL model, we first

swap the four-fermion interaction term that generates spontaneous symmetry break-

ing in favor of scalar Higgs doublet. This is accomplished by adding a non-propagating

doublet to the theory at the cutoff and shifting it to absorb the four-fermi term. That

is, we start with the Lagrangian and the extra doublet:

L(Λ) = · · ·+GqiLtRtRq
i
L −m2

0H
†
iHi (1.8)

then making the shift Hi 7→ Hi +
√
G/m2

0 tRq
i
L, which gives

L(Λ) = · · · −m2
0H
†
iHi − yt0(Hiq

i
LtR + h.c.) (1.9)

where yt(Λ) = yt0 =
√
m2

0G. This looks like the Standard Model Higgs doublet

mass term and Yukawa term, but the doublet does not have a kinetic term or any

quartic self-coupling, meaning at this scale the doublet is a non-propagating degree

of freedom.

However, if we begin to compute loop corrections at lower scales we find that

the doublet does develop both a kinetic term and a quartic term. It also gets mass

corrections that begin to drive the mass down. At a lower scale µ the effective

Lagrangian becomes

L(µ) = ZH(µ)|DµH|2 −m2
H(µ)− λH

2
(H†H)2+ (1.10)

− yt(µ)Hi

(
qiLtR + h.c.

)
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where

ZH =
3y2

t0

(4π)2
log

Λ2

µ2

m2
H(µ) = m2

0 −
6y2

t0

(4π)2
(Λ2 − µ2) (1.11)

λH(µ) =
6y2

t0

(4π)2
log

Λ2

µ2

Note that ZH(Λ) = 0, but becomes non-zero at lower scales. This indicates that the

H field is a non-propagating term at Λ, but as propagating degrees of freedom at

lower scales. We will use ZH(Λ) → 0 as the condition for compositeness later on.

We can also see that at a certain µ the Higgs doublet mass term becomes negative,

indicating spontaneous symmetry breaking. If we define v2(µ) = 4mH(µ)2/λ(µ) and

impose the condition that v(246 GeV) = v = 246 GeV then we can see that this

quantity is fine-tuned: d log v2/d logm2
0 ' Λ2/v2. However, this is the only fine-

tunning. The running top mass is mt(µ) = yt(µ)v/
√

2 and the Higgs boson mass is

mh(µ)2 = λ(µ)v2, so once we fix v the other masses need no more fine-tuning.

Equation (1.11) is still a naive result with large logarithms. To improve the cal-

culation we use the beta functions for each parameter. Since the effective Lagrangian

below the cutoff is the same as the Standard Model Lagrangian, we can pull the beta

functions from there. The relevant beta functions are (Pendleton and Ross, 1981)

(4π)2 dyt
d log µ

= yt
(
(3/2 +Nc)y

2
t − 8g2

3 − 9
4
g2

2 − 17
12
g2

1

)
(1.12)

(4π)2 dλ

d log µ
= 12

(
λ2 + (Nc

3
y2
t − A)λ+B − Nc

3
y4
t

)
(1.13)

where A = 1
4
g2

1 + 3
4
g2

2, B = 1
16
g4

1 + 2
16
g2

1g
2
2 + 3

16
g4

2, and the gi are the gauge couplings of

the Standard Model gauge group. They are also running quantities, though we can

ignore exactly how they run for now.

Finally, we must specify boundary conditions. The Standard Model beta functions
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Λ (GeV) 1019 1015 1010 106 104

mt (GeV) 218 229 255 318 455
mh (GeV) 239 256 296 391 605

Table 1.1: The predicted masses of the model of Bardeen et al.
(Bardeen et al., 1990), where the Higgs boson is a composite of the
top quark. It requires very large values of the cutoff Λ to produce
result even close to realistic.

assume that the kinetic term of each field is normalized at every scale, i.e. ZH(µ) = 1.

Since ZH(µ) runs, we can arrange this by redefining Hµ−dµ = Hµ/Z(µ − dµ) at

each scale, and absorb the factors of 1/ZH into the other couplings. For example,

yt(µ−dµ) = (yt(µ)+δyt)/(1+δZH). The compositeness condition requires ZH → 0 at

Λ. We can use the Standard Model beta functions and account for the compositeness

condition by requiring the couplings to diverge at Λ, yt(Λ), λ(Λ)→∞.

In addition, since the divergence is meant to come from powers of the Higgs field

the ratio y4
t /λ should remain finite because the Yukawa term couples to one power

of the Higgs doublet while λ couples to four. In practice, we use the initial condition

y2
t (Λ) ' λ(Λ) ' 4π.

The procedure in summary is this:

1. Write down the Standard Model renormalization group equations for yt(µ),

λ(µ), and the gauge couplings.

2. Choose a cutoff scale Λ and specify large values for the Yukawa and Higgs

quartic couplings at this scale.

3. Solve the renormalization group equations to the get the running couplings at

lower scales.

4. Use the result to find the physical pole masses: mt(mt,phys) = yt(mt,phys)v/
√

2 =

mt,phys and mh(mh,phys)
2 = λ(mh,phys)v

2 = m2
h,phys where v = 246 GeV.



12

Bardeen et al. followed this procedure for their model and got the results summa-

rized in table 1.1. It does produce masses for the Higgs boson and the top quark that

are not fine-tuned, assuming that v is chosen correctly. However, the model produces

a top and Higgs that are too heavy, especially for lower cutoffs.

1.3 Our new model

1.3.1 Introduction and UV perspective

We propose a new candidate for a minimally fine-tuned model. It is inspired by the

model of Bardeen et al., and is modified to produce lower masses with lower cutoffs

than that model.

To the particles and couplings of the BHL model we add an extra set of fermions,

charged under an additional non-abelian gauge interaction. The (SU(2)L, U(1)Y ,

SU(3)c, SU(N)TC) quantum numbers of the relevant fermions are

qL =

(
tL
bL

)
∈ (2, 1

6
, 3, 1), tR ∈ (1, 2

3
, 3, 1), bR ∈ (1,−1

3
, 3, 1)

TL =

(
UL
DL

)
∈ (2, 0, 1, dTC), UR ∈ (1, 1

2
, 1, dTC), DR ∈ (1,−1

2
, 1, dTC) (1.14)

where dTC is the dimension of some representation of the technicolor (TC) gauge

group. We refrain here from specifying which group that is, or even if dTC is the

fundamental representation. We ignore light quarks and leptons, and any additional

technifermion flavors.

Please note that, while we will use the names “technicolor”, “technifermions”,

and ”extended technicolor” our theory differs from technicolor and its variants in

crucial ways. Much of the conventional wisdom about technicolor will not apply. For

example, our technicolor coupling must be small at the extended technicolor scale, as

we shall see, whereas in walking technicolor it is large.

The electroweak symmetry breaking comes from a condensate formed from a linear
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combination of tLtR and ULUR. As in the BHL model, we can imagine this occurring

as the result of four-fermion interactions from physics at a high scale Λ. We call this

the extended technicolor (ETC) sector of the theory. We are agnostic as to its origin

or details, except that it involves both quarks and technifermions. We will choose Λ

to be of the order of hundreds of TeV or more to avoid issues with flavor-changing

neutral currents.

LETC = G1q
i
LtRtRq

i
L +G2

(
qiLtRURT

i
L + h.c.

)
+G3T

i

LURURT
i
L (1.15)

This ignores, for now, the mass of the b and D fermions. We will take that issue up

in a later section.

There are now two gap equations for the two fermion masses, mt and mU . Each

mass has contributions from a top loop and a U loop, so the Computing the gap

equations as in section 1.2, the leading-log gap equations for mt and mU are of the

form

mt = −1

2
G1 〈tt〉 −

1

2
G2 〈UU〉

=
G1Ncmt

8π2

(
Λ2 −m2

t log
Λ2

m2
t

)
+
G2dTCmU

8π2

(
Λ2 −m2

U log
Λ2

m2
U

)
(1.16)

mU = −1

2
G2 〈tt〉 −

1

2
G3 〈UU〉

=
G3dTCmU

8π2

(
Λ2 −m2

U log
Λ2

m2
U

)
+
G2Ncmt

8π2

(
Λ2 −m2

t log
Λ2

m2
t

)
(1.17)

Multiplying equation 1.16 by mU and equation 1.17 by mt, and requiring the two

equations to hold for all Nc and dTC we see we must have G2
2 = G1G3. Imposing

these requirements imply the single fine-tuning condition

G1Nc

8π2

(
Λ2 −m2

t log
Λ2

m2
t

)
+
G3dTC

8π2

(
Λ2 −m2

U log
Λ2

m2
U

)
= 1 (1.18)

This relation ignores the effect of gauge interactions like the strong interaction and
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Figure 1·4: The one loop diagrams that make up the tt (and UU)
propagator in the scalar channel, including only ETC interactions.
Both propagators include contributions from both t and U loops. We
will include the TC interactions later on.

technicolor, assumes Nc, dTC � 1, and is not renormalized beyond the cutoff Λ. How-

ever, it does give us an idea of the fine-tuning involved. Together with the requirement

that G2
2 = G1G3 it implies that only one of the Gi is independent. Furthermore, once

we impose this fine-tuning condition we will see that all the other predicted masses

become small without additional fine-tuning. The model thus satisfies part of our

minimal fine-tuning condition.

Scalar and vector poles

When G2
2 = G1G3 the loop diagrams that make up the 〈tt tt〉 propagator sum geo-

metrically (see figure 1·4), yielding a form with a single pole once the gap equations

are applied:

〈tt tt〉 (p) = m2
t

Ncm
2
t (p

2 − 4m2
t )

8π2

1∫
0

dx log

(
Λ2

m2
t − x(1− x)p2

)

+
dTCm

2
t (p

2 − 4m2
U)

8π2

1∫
0

dx log

(
Λ2

m2
U − x(1− x)p2

)−1

(1.19)

This is of the form 〈tt tt〉 (p) = A/(p2 − m2
h), which is the form we get if tt to tt

scattering is mediated by a massive scalar particle. The effect of the strong four-
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fermi interactions is to create a massive scalar particle that interacts with tt. The

mass of this particle is the value of p2 where the pole vanishes, so it is the solution to

Ncm
2
t (m

2
h − 4m2

t )

1∫
0

dx log

(
Λ2

m2
t − x(1− x)m2

h

)

+ dTCm
2
U(m2

h − 4m2
U)

1∫
0

dx log

(
Λ2

m2
U − x(1− x)m2

h

)
= 0 (1.20)

or approximately

mh ' 2

√
Ncm4

t + dTCm4
U

Ncm2
t + dTCm2

U

(1.21)

We also need to check that the four-fermi terms cause spontaneous electroweak

symmetry breaking, and that this massive scalar particle is the Higgs boson we are

looking for. In the symmetry unbroken phase gauge invariance requires that the

kinetic term for the weak gauge bosons have the form (pµpν − p2gµν)/g
2
W (p2), where

g2
W (p2) is the effective running coupling of the weak interaction. This form always

produces a propagator with a pole at p2 = 0, corresponding to massless bosons.

However, it is possible for corrections from the four-fermi interactions to produce an

effective kinetic term of the form

1

g2
W

〈WµWν〉−1 (p) =
1

g2
W

(pµpν − p2gµν) +
i

2

∫
d4x eip·x 〈JWµ (x)JWν (0)〉 (1.22)

= (pµpν − p2gµν)

(
1

g2
W (p2)

− f 2
W (p2)

p2

)
(1.23)

which implies a propagator with the form A/(p2 − f 2
W (p2)g2

W (p2)). The weak gauge

bosons then get a mass that satisfies m2
W − f 2

W (m2
W )g2

W (m2
W )) = 0. Additionally,

the Fermi constant is the coupling constant between the two gauge currents at low

energies, so f 2
W (0) = 1/(2

√
2GF ).
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In our theory the gauge currents are

J±µ = qLγµτ
±qL + TLγµτ

±TL (1.24)

J0
µ =

1

6
(qLγµqL + qRγµqR) + qRγµτ

3qR + TRγµτ
3TR (1.25)

J3
µ = qLγµτ

3qL + TLγµτ
3TL (1.26)

where the τ i are the generators of SU(2) in the fundamental representation. If we

sum all the bubble diagrams in figure 1·3 and apply the gap equation we can compute

the propagators for each current. The charged current tells us about the charged weak

bosons.

f 2
W (p2) =

1

(4π)2

1∫
0

dx x

[
Ncm

2
t log

(
Λ2

m2
tx− x(1− x)p2

)
+

+dTCm
2
U log

(
Λ2

m2
Ux− x(1− x)p2

)]
(1.27)

g−2
W (p2) = g−2

2 +
1

(4π)2

1∫
0

dx 2x(1− x)

[
Ncm

2
t log

(
Λ2

m2
tx− x(1− x)p2

)
+

+dTCm
2
U log

(
Λ2

m2
Ux− x(1− x)p2

)]
(1.28)

We can produce numerical results as a check on this picture of the model. We

fix Λ, mt, and require that fW (0) = (4
√

2GF )−1/2 ' 123 GeV. The first two re-

quirements combined with the third and equation (1.18) tell us how to choose mU .

This in turn allows us to determine all the other parameters in the theory using

equations (1.20),(1.27), and (1.28). Note that the mt and mU that appear in all

the formulae above are the values of the running masses at the cutoff and are dif-

ferent than the physical pole masses of those particles. We can obtain an approx-

imation mt(Λ) by using the Standard Model renormalization equations starting at

mt(173 GeV) = 173 GeV and running up to Λ. The gauge couplings are chosen so
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Λ mt mU mH

20 TeV 134 GeV 167 GeV 330 GeV
500 TeV 118 GeV 126 GeV 250 GeV

Λ mW (pole) mZ (pole) ρ
20 TeV 80.8 GeV 91.0 GeV 1.052
500 TeV 80.6 GeV 93.0 GeV 1.030

Table 1.2: Unrenormalized mass values in the ETC-only scheme for
two ETC cutoff scales Λ = 20 TeV and 500 TeV. The pole value of
mH is different due to renormalization, but we cannot say how much
without including TC dynamics. Compare to the results of the BHL
model in table 1.1

that they match their Standard Model values at the scale mZ = 91.17 GeV.

The results of this numeric calculation are in table 1.2. The value of mH is the

unrenormalized value defined at the cutoff. We expect the physical pole value to

be lower, but we cannot say by how much without more sophisticated calculations.

However, we can note that our values for mH are already lowered relative the values

of BHL for similar cutoffs.

1.3.2 Technicolor interactions

Our computation so far has ignored the extra gauge interactions of the technifermions.

However, the technicolor interaction is a significant part of the model. The TC gauge

group is the set of unbroken ETC symmetries. We expect that not all of the ETC

symmetries are broken. Otherwise ETC would be IR free, and it is not clear that

such a theory could also be UV free.

We also expect that in the IR the technicolor interaction will be strong enough

to spontaneously break the electroweak symmetry by itself, which might invalidate

the large-N , ETC-only analysis of the previous sections. Lastly, the TC interaction

can have a significant effect on the fermion and Higgs boson masses that arise after

spontaneous symmetry breaking. We will see later that it can help to lower the top

quark mass relative to the ETC-only result.
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Figure 1·5: The technicolor interaction modifies the four-fermion
kernel by adding TC-gluon exchange diagrams.

In order that the symmetry breaking be dominated by the higher energy ETC

interactions we assume that the TC interaction is weak in the UV, becoming strongly

coupled only around the 1 TeV scale. We will also assume that the coupling runs

towards an infrared fixed-point in the IR. We will find that this is not strictly nec-

essary, however; the most important feature is the asymptotic freedom with a low

strong-coupling scale.

TC and symmetry breaking

The technicolor interaction is able to break the electroweak symmetry by itself when

it becomes strongly coupled. That is the original motivation for technicolor, but as

naive technicolor is ruled out (Particle Data Group, 2016a), our model must rely on

ETC to dominate the symmetry breaking.

Including TC modifies the gap equation (1.16-1.17) by adding additional compo-

nents to the four-fermion kernel, as in figure 1·5. The gap equation is the same as

the first leading lines of equation (1.16), but computing the expectation values 〈tt〉
and 〈UU〉 now involves contributions from the TC interactions. Schematically, the

four-fermion vertex on the right-hand side of figure 1·3 is replaced with the more

complicated kernel in 1·5.

Computing the 〈tt tt〉 propagator also now uses the four-fermion vertex of figure 1·5
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and includes diagrams with TC-gluons being exchanged. These diagrams no longer

form a geometric series when summed — even with the G2
2 = G1G3 condition — so

the analysis of the previous section does not work.

The combined ETC + TC kernel has been studied elsewhere, in studies of the

dynamical mass function Σ(p2) in the technifermion propagator S−1(p) = /pA(p)2 −
Σ(p2). For a simplified model with only G3 6= 0 The Schwinger-Dyson gap equation

for Σ(p2) is (for Euclidean momentum p2 � Λ2)

Σ(p2) = (GΛ2)

Λ2∫
0

dk2 k
2

Λ2

Σ(k2)

k2 + Σ2(k2)
+

1

4αc

Λ2∫
0

dk2 αTC(M2)
k2

M2

Σ(k2)

k2 + Σ2(k2)
. (1.29)

Here αc is the critical value of the TC coupling αTC for spontaneous chiral symme-

try breaking in a pure-technicolor theory (Cohen and Georgi, 1989). In the ladder

approximation it is π/3C2(dTC). Finally, M2 = max(k2, p2).

In a pure ETC theory Σ(0) = 0 when λ ≡ GΛ2 < 1. There is a rapid phase

transition at λ = 1 which causes Σ(0) to rise to O(Λ) just above the transition.

In a pure TC theory with αTC weak in the UV, αTC reaches αc at a scale ΛTC ,

and we get Σ(0) ' Σ(ΛTC) = O(ΛTC). Additionally, Σ(p2) falls off as Λ3
TC/p

2 when

αTC becomes weak (Lane, 1974).

For constant αTC (Appelquist et al., 1988) the Σ(0) behaves as it does in the pure

ETC theory except that, for αTC < αc the phase transition occurred at

λαTC
=

(
1 +

√
1− αTC/αc

2

)
. (1.30)

Takeuchi (Takeuchi, 1989) studied the gap equation for a running, asymptotically

free TC coupling with beta function β(αTC) = −b1α
2
TC with b1 > 0. As long as

ΛTC � Λ (as we expect), he found that Σ(0) = O(ΛTC) for λ < λαTC(Λ). At this

critical value of λ there is a smooth but rapid transition up to Σ(0) = O(Λ). The
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Figure 1·6: The behavior of Σ(0) as a function of λ = GΛ2 in the
model of Takeuchi, extended to a more realistic TC β function. At a
critical value of λ, Σ(0) jumps from a very small scale to O(Λ).

transition is more abrupt for small αTC(Λ)/αc (or equivalently λαTC
= 1).

We have verified Takeuchi’s results for a TC β-function that is more like the one

we will use in section 1.4.4. Moreover, we computed the p2 dependence of Σ for

various values of the couplings. For λ < λαTC(Λ) we found that Σ is small and falls

off approximately as 1/p2 for ΛTC < p < Λ. This is the behavior we see from Σ in

the pure-TC unbroken phase. On the other hand, at and above the critical value of

λ, Σ(p) rises rapidly to O(Λ) and then remains nearly constant in p, which is the

behavior of a hard mass as in the broken phase. See figure 1·6, for an example.

In essence, the fine-tuning of our model is picking a value of λ so that Σ(0) is not

very small, and not O(Λ), but in between at O(mt). Since the transition between

those two phases is very rapid in λ, we have to pick λ very precisely to achieve this.

All together, this is the reassuring result that the TC dynamics do not ruin the
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symmetry breaking patterns of the ETC physics that we saw in previous sections. If

αTC(Λ) is small compared to αc (as it must be for this model to work) then Σ(0)

is much smaller than Λ below λαTC
and then rises abruptly above, almost to O(Λ).

The critical value of λαTC
is smaller than one because TC has the approximate effect

of producing an interaction of the same form and sign as the G3 in the spin-zero

channels.

To see why this is in detail, we can use the fact that the TC coupling involved in

the EW phase transition is approximately αTC(Λ). The relevant TC interaction then

involves exchange of a technigluon with Euclidean momentum transfer ' −Λ2,

LTC = −3παTC(Λ)

2Λ2
TγµtAT TγµtAT, (1.31)

where T is the technifermion doublet and tA are the TC generators. Using Fierz

identities on both the Lorentz matrices and the TC matrices we get the scalar channel

term (among other terms)

LTC =
3πC2(dTC)αTC(Λ)

dTCΛ2
TT TT, (1.32)

which combines with the G3 term in equation 1.15 to give the effective four-fermi

coupling

λeff =
G3dTCΛ2

8π2
+

3C2(dTC)αTC(Λ)

4π
= λ+

αTC(Λ)

4αc
. (1.33)

When this effective λeff equals 1, we have λ = 1− αTC(Λ)/4αc ' λαTC
.

Technicolor bound states

Since the TC interaction becomes strongly coupled and may form a condensate of its

own accord at around the TeV scale, we expect that the theory includes many TC

bound states, a la QCD. While the details of the TC spectrum are outside the scope
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of this dissertation, it does raise some questions we should at least consider.

First, what are the most accessible bound TC states? The lowest-lying states are

the Higgs boson H and the longitudinal modes of the weak bosons, W±
L and ZL. But

what are the next modes? What would these look like in a collider experiment? We

will address this question in chapter 2, where we will argue that they are isotriplet

vector and axial vector technimesons that decay mostly to the Higgs and weak bosons.

We will apply this hypothesis to attempt to explain some excesses reported by LHC

experiments.

Second, what is the scale of the bound states? The Higgs and weak bosons have

masses around O(100 GeV). The other bound states must have masses greater than

approximately 1 TeV to have remained unobserved so far (see, for example, the Par-

ticle Data Group experimental review of technicolor (Particle Data Group, 2016a)).

Is our theory consistent with this splitting between the lowest lying scalars and the

other bound states?

There are roughly three possibilities. One, the other bound states sit around

the ΛTC = O(few TeV) scale as we would expect from a strongly-coupled theory in

isolation. Two, the other bound states are as light as the electroweak bosons without

any additional fine-tuning due to ETC dynamics. Or three, there is some sort of

complex interplay between TC and ETC and we can’t say much of anything.

We do not attempt to fully answer this question in this dissertation. However,

we can at least rule out the second possibility: the ETC four-fermi terms in equation

(1.15) do not have any overlap with isotriplet vector states, so they will not affect the

mass of such bound states. If the ETC physics does include other four-fermi terms

that do overlap vector states then they will also need to be fine-tuned to create light

states. If they are not fine-tuned like the G1, G2, G3 terms then they will not create

additional light states without additional fine-tuning1. We can tentatively conclude

1The only other possibility is if whatever UV physics is responsible for the fine-tuned scalar ETC
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that in minimally-fine-tuned models the other bound states will have masses of the

scale either Λ or ΛTC ' O(TeV).

terms also generates fine-tuned vector terms.
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1.4 Renormalization

The masses in table 1.2 of section 1.3 are unrenormalized and limited by a large-dTC

and Nc approximation and their calculation ignores the effects of the technicolor in-

teraction entirely. We can improve the mass predictions and remove these limitations

using the renormalization group, as in BHL.

A renormalization group treatment also allows us to consider the model from a

purely low-energy perspective. Since our UV view of the model is not really a complete

model (we don’t pretend know to what physics generates the fine-tuned four-fermi

interactions), it is helpful to consider what happens with just the IR ingredients and

make sure that it is consistent with our claims.

1.4.1 Degrees of freedom and running couplings

First we must determine the IR degrees of freedom of our model. As in BHL, we can

integrate out the four-fermi terms using a scalar SU(2)L doublet:

LETC = −m2
0H
†H +G1qLtR tRqL +G2(qLtRURTL + h.c.)

+G3TLURURTL

7→ −m2
0H
†H − yt0(qLtRH + h.c.)− yU0(TLURH + h.c.) (1.34)

It is important to note that the shift in the scalar doublet required to “complete the

square” in this way is only possible when G2
2 = G1G3. Otherwise the four-fermi terms

cannot be removed with only a single scalar doublet; extra degrees of freedom are

required. This corresponds to the fact that the bubble diagrams in the gap equation

of section 1.3 can only be geometrically summed to produce a simple scalar pole when

G2
2 = G1G3.

Assuming that a single scalar Higgs doublet is sufficient, the only other additional

degrees of freedom we need are the technifermions, U and D, and the gauge bosons
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of the technicolor interaction. Everything else is just as in the Standard Model.

(However, for now we will ignore all the Standard Model fermions except for (tL, bL),

and tR.)

The effective Lagrangian at low energies is like the Standard Model. The interac-

tion terms are

LIR = Lkinetic + Lgauge −m2
0H
†H

− yt(qiLtRH i + h.c.)− yU(T
i

LURH
i + h.c.)

− λ

2
(H†H)2 (1.35)

If we assume the doublet mass coefficient m2
0 is tuned so that it generates the cor-

rect Higgs vacuum expectation value 〈H〉 = (v/
√

2, 0)T , with v = 246 GeV, then

the couplings of interest are the Yukawa couplings yt and yU and the Higgs quartic

coupling. (Note: this definition of the Higgs field is different from the one of the Stan-

dard Model; the SM Higgs gets a vacuum expectation value in its lower component).

These determine the masses mt, mU , and mH , respectively, via the pole equations

yt(mt)v/
√

2 = mt, (1.36)

yU(mU)v/
√

2 = mU , (1.37)

and λ(mh)v
2 = m2

h. (1.38)

The composite nature of the Higgs boson can be enforced in the UV behavior of

the couplings. If the IR couplings become strongly coupled as they run to the UV

that is an indication that the theory is breaking down and that additional degrees

of freedom must be added. We can also recall the BHL analysis and imagine the

Higgs propagator term ZH(µ) vanishing at Λ, causing the other couplings to diverge.

Hence, the compositeness condition of our theory is a boundary condition on the
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running couplings imposed at the cutoff Λ. Specifically, we will require that the

Yukawa couplings and the quartic coupling become non-perturbative:

y2
t,U(Λ), λ(Λ)� 4π. (1.39)

1.4.2 Renormalization group equations

We can use the IR Lagrangian to compute the renormalization group equations for

the running couplings. They are like the Standard Model results modified by the

extra technifermions. For the Yukawa couplings they are

(4π)2 dy2
t

d log µ
= 2y2

t

(
(3/2 +Nc)y

2
t + dTCy

2
U − zc

)
, (1.40)

(4π)2 dy2
U

d log µ
= 2y2

U

(
Ncy

2
t + (3/2 + dTC)y2

U − zTC
)
, (1.41)

where zc and zTC are functions of the Standard Model running gauge couplings,g1, g2

and g3, and the technicolor gauge coupling αTC = g2
TC/(4π). Specifically, these are

zc = 8g2
3 + 9

4
g2

2 + 17
12
g2

1 (1.42)

zTC = 1
2
(4π)2αTC

αcrit

+ 9
4
g2

2 + 3
4
g2

1. (1.43)

The Higgs quartic coupling has the beta function

(4π)2 dλ

d log µ
= 12

[
λ2 + λ

(
Nc

3
y2
t + dTC

3
y2
U − A

)
+B − Nc

3
y2
t − dTC

3
y2
U

]
(1.44)

with

A = (g2
1 + 3g2

2)/4 (1.45)

B = (g4
1 + 2g2

1g
2
2 + 3g4

2)/16 (1.46)
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The gauge couplings also run. At one loop the beta functions for the Standard Model

gauge couplings are

(4π)2 dg2
i

d log µ
= −2cig

4
i (1.47)

with

c1 = −1
6
− 20

3
Ng, c2 = 43

6
− 4

3
Ng, c3 = 11− 4

3
Ng (1.48)

where Ng specifies the number of quark / lepton generations. The Standard Model

value is 3, but it is not obvious that we should use that number in a model that

doesn’t explicitly contain those particles. However, we will find that the outcome of

the analysis depends very little on this choice, and we use Ng = 3. Since we expect

the technicolor interaction to become confining and perhaps also approach a non-

trivial fixed point, we need a beta function beyond the one-loop approximation we

used for the Standard Model couplings. We will specify the form for the technicolor

beta function later on.

Fixed points

The renormalization group flow to be controlled largely by the fixed points of the

beta functions. Since we can learn quite a bit about the model from looking at the

fixed points, we do so now. We will assume that only the strong gauge coupling and

the technicolor coupling are significant, and that they both run slowly enough at low

scales that we can treat them as constants, g∗3 and α∗TC .

To get an idea of how the fixed points affect the masses we first examine the top

Yukawa coupling by itself. In this case and with the assumptions above the beta
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Figure 1·7: The beta function for y2
t , in the approximation that the

SM gauge couplings do not run, and ignoring TC contributions. There
is a fixed point at zero, and one non-zero fixed point. The non-zero
fixed point is attractive as yt runs down to IR scales from yt(Λ)� 4π.
The value of the non-zero fixed point is determined by the strength of
the QCD gauge coupling, g3.

function is simple:

(4π)2 dy2
t

d log µ
= 2y2

t

(
(3/2 +Nc)y

2
t − 8g∗23

)
. (1.49)

This has a fixed points at y2
t = 0 and y2

t = 8g∗23 /(3/2+Nc), as illustrated in figure 1·7.

The trivial fixed point is attractive for increasing log µ and the non-trivial one is

repulsive. We can also see that as y2
t → ∞, dy2

t /d log µ → ∞, so there is also a UV

attractor at infinity.

When we start with y2
t (Λ) � 4π and then run log µ down, the Yukawa cou-

pling is attracted towards the non-trivial fixed point. When y2
t is much larger than

the fixed point value it runs like y2
t (µ) ' yt(Λ)2 + 3/2+Nc

(4π)2
yt(Λ

2) log(µ/Λ). When

y2
t is smaller it decays towards the fixed point value like y(µ)2 ' y∗2t + (y2

t (µR) −
y∗2t )(µ/µR)(3/2+Nc)/(4π)2 .

The result is that yt(mt), and hence the physical value of mt, is not fine-tuned,

given the correct value of the vacuum expectation value v. The Yukawa coupling at
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weak couplings is a marginal coupling and so does not run at tree level. Any quantum

corrections due to interactions with small couplings only change the running of the

Yukawa coupling by a small amount. Hence, we expect the Yukawa coupling to run

very little and not be fine-tuned.

At one-loop the yt beta function does not depend on the quartic coupling λ, and

so the beta function for λ also has two approximate fixed points that depends on y∗2t .

They are

λ∗± =
−Nc ±

√
12Nc +N2

c

6
y∗2t . (1.50)

The larger fixed point is IR-attractive. Moreover, if λ(Λ)� 4π then λ will run down

towards λ∗+ in the IR, generating a Higgs mass without any additional fine-tuning

just as we saw for the top.

More fixed points

All of the analysis above is found in Bardeen et al. (Bardeen et al., 1990). If we include

the technifermion Yukawa coupling the fixed point structure of the beta functions

becomes more complex. If we again assume that the strong gauge and technicolor

couplings do not run and that the other gauge couplings are negligible then the

Yukawa beta functions are governed by four fixed points:

y2
t = 0, y2

U = 0 (1.51)

y2
t = zc/(3/2 +Nc), y2

U = 0 (1.52)

y2
t = 0, y2

U = zTC/(3/2 + dTC) (1.53)

(1.54)
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and

y2
t =

1 + 2
3
dTC(zc − zTC)

3
2

+Nc + dTC
,

y2
U =

1 + 2
3
Nc(zTC − zc)

3
2

+Nc + dTC
(1.55)

There is also a UV-attractor at y2
t , y

2
U →∞.

The trivial fixed point is always IR-repulsive. Which of the other three is attractive

or repulsive depends on the parameters zc, zTC , Nc, dTC .

When zTC > (1 + 3
2
dTC)zc the y2

t = 0 solution has two attractive eigenvectors,

while the y2
U = 0 solution has one repulsive and one attractive eigenvector. The

reverse is true when zc > (1 + 3
2
Nc)zTC . In both of these cases the third non-trivial

fixed point — with y2
t , y

2
U 6= 0 — has unphysical negative values for y2

t or y2
U and has

one repulsive eigenvector.

In the limited region where zc < (1 + 3/2Nc)zTC and zTC < (1 + 3/2dTC)zc the

third fixed point has positive values for both y2
t and y2

U and both of its eigenvectors

are attractive. The other tw non-trivial fixed points have one repulsive eigenvector

in this case. Figure 1·8 illustrates the overall fixed point structure.

This suggests that for a given set of parameters the renormalization flow will

end up approaching the single fixed point that has two attractive eigenvectors. The

existence of the y2
t = 0 attractive fixed point offers hope for lowering the mass of the

top quark relative to the Bardeen model; this hope is realized, as we shall see in the

final results.

Solving the RG equations with constant gauge couplings demonstrates that cou-

plings do flow to the attractive fixed point, albeit indirectly. When the Yukawa

couplings are comparable at the cutoff and one of the couplings is zero at the fixed

point the flow tends to undershoot the non-zero fixed point value before flowing slowly

back towards it. This tends to produce lower values of the associated physical mass
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Figure 1·8: A figuring detailing which fixed point is dominant for
different values of the gauge couplings α3 and αTC . For large αTC the
yt = 0 fixed point is overall attractive, but for small αTC the yU = 0
fixed point dominates.
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Figure 1·9: An illustration of how solutions to the full beta functions
undershoot the fixed point values. We have chosen a constant αTC so
that the yt 6= 0 fixed point is overall attractive. Both yt(µ) and λ(µ)
undershoot their non-zero fixed point values before running back up.
This lowers the resulting masses relative to the fixed point predictions.

than the fixed-point prediction, as illustrated in figures 1·9 and 1·10.

In the same approximation, the RG equation for λ has two fixed points whose

values are determined by the fixed point values of y2
t and y2

U . There are two fixed

points for λ for each fixed point of the yt, yU equations. One of the λ fixed points is

always positive and the other negative, and the positive one is always IR-attractive.

This again means that λ will run down from its large value at the cutoff towards the

positive fixed point.

Whether the fixed-points are perturbative (i.e. have y2
t,U , λ . 4π) depends on the

gauge coupling strengths and the number of quark colors and technicolors. The known

values of zc = 8g2
3 ' 11 and Nc = 3 are consistent with the perturbativity of all the

fixed-points and the yU = 0 fixed point is perturbative for all values of zTC and dTC .

The yt = 0 fixed point can be non-perturbative in yU if αTC/αcrit. ≥ (3 + 2dTC)/4π.
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Figure 1·10: Another illustration of the undershoot effect. Compare
to figure 1·9. The mass of each particle is the scale where the black
curve meets its associated running mass. In this figure mt and mH

are lower than if their running masses ran straight to their fixed-point
values.
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For dTC = 10 this means we need αTC/αcrit. . 1.8 for the theory to be perturbative.

Running gauge couplings

So far we have assumed that all the gauge couplings are constant or negligible. This is

clearly not a good approximation, especially since the technicolor coupling is required

to run from a small value at Λ to a value strong enough to confine at ΛTC ' 1 TeV.

However, if the gauge couplings run slowly compared to the Yukawa couplings we

can consider a sort of adiabatic approximation. In this scheme we expect the Yukawa

couplings at any scale to run towards the fixed point that is dominant and attractive,

as determined by the values of the gauge couplings at that scale.

For example, if the technicolor gauge coupling is very weak at the cutoff then the

couplings will be attracted to the yU = 0 fixed-point initially. Then if the strength

of the technicolor coupling surpasses the strength of the QCD coupling the behavior

will switch and the couplings will be attracted to the yt = 0 fixed-point.

This hypothetical behavior is demonstrated in figures 1·12 and 1·12, where the

technicolor coupling is approximated as a step-function for simplicity. We can see

in those figures how mt is lower than it would have been in the BHL model (which

has only the single attractive fixed point), but also higher than it would be if yt were

attracted to yt = 0 the whole time.

This is still an approximation, of course, but it helps us to understand the behavior

we see when we solve the full RG equations. The full results are not too different

from these approximate ones.

1.4.3 Mass thresholds

Renormalization group equations are the result of Feynman diagrams where off-shell

particles run in closed loops. So far we have ignored the masses of the virtual particles,

but this is not necessarily appropriate. For example, the contribution of a quark loop
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to a photon propagator is diminished when the four-momentum of the photon is

not sufficient to create a quark anti-quark pair. That is, when p2 < (2mq)
2. Thus,

at scales well below 2mt, contributions to the RG equations from top loops should

vanish. Likewise for contributions from the up technifermion.

If the up technifermion is significantly heavier than the top quark this can affect

the top quark mass prediction. At scales below the technifermion mass the beta

function for the top Yukawa changes to the same for as in the BHL model. It will be

attracted towards the non-trivial fixed-point value where it may have been attracted

to zero under the full RG equations. It is possible for this to affect the top mass

prediction (or whichever fermion ends up lighter). We do not expect it to be a large

effect since the change is only active over the energy range [mt,mU ], which we expect

to be relatively small. However, our calculations do account for it, for completeness’

sake.

To account for the changing RG equations without knowing the physical masses

beforehand we calculate the physical masses of the fermions with a guess for where

to cut out the fermion loops. We can then repeat the calculation with those results

as the new guess for the cut-out points. As we repeat this process the guess and the

resulting mass begin to converge. Once the guesses and the results are close enough

to each other we use the resulting masses as the final result. In practice this algorithm

converges after only a few iterations.

1.4.4 Running technicolor coupling

We have left the technicolor coupling unspecified so far. Since it is an integral part

of the RG equations, we correct that now.

We have only a few requirements on the running of the TC coupling. First, it

should be weakly coupled at our ETC cutoff. We want EWSB to be driven largely by

ETC and not technicolor, so it should be comparably weak at that scale. Second, it
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should be strong and confining at a low scale ΛTC . The mass scale of the lowest-lying

vector mesons of the TC interaction should be ∼ 1 TeV or greater to explain why

they have not yet been observed (Particle Data Group, 2016a).

We will assume that the technicolor interaction becomes confining at the critical

scale αTC,crit = π/3C2(R) (Cohen and Georgi, 1989), and we call the scale where

the coupling reaches this value ΛTC . 1 TeV. The technicolor coupling enters the

Yukawa RG equations proportionally to aTC = αTC/αcrit so we only need to specify

that ratio. This allows us to remain agnostic about which gauge group defines the

interaction and which representation the technifermions live in.

The requirement that αTC be weak at Λ while the ETC interaction at the same

scale is strong enough to trigger symmetry-breaking may seem inconsistent. However,

the couplings Gi that cause the symmetry-breaking are essentially independent of the

ETC gauge coupling. As in the electroweak theory at low energies, they are of the

form g2
ETC/M

2
ETC , where METC ∝ gETC times a Goldstone boson decay constant.

Thus the gauge couplings gTC(Λ) ' gETC(Λ) may be weak while the four-fermion

couplings are “strong” enough to trigger symmetry-breaking as required.

For simplicity, we use an RG equation for aTC that allows both an IR fixed point

and asymptotic freedom:

daTC
d log µ

= β0 a
2
TC(aTC − a∗) (1.56)

where β0 can be chosen so that a(ΛTC) = 1 and a(Λ) is as small as we’d like, as long

as the IR fixed point value a∗ is greater than 1 (and hence α∗TC > αcrit.).

Ultimately the physical masses are not very sensitive to the exact for we use for

αTC as long as the coupling becomes large around ΛTC . This is expected from the

fixed-point analysis from above. As long as the coupling causes the dominant fixed-

point to switch at some point the running masses will have roughly the same behavior
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as in figures 1·11 and 1·12.

1.5 Renormalization group results

The plots in figure 1·13 summarize the results of the renormalization group analysis.

There are many parameters to the theory that can be adjusted, but most choices

yield similar results.

The predicted Higgs mass tends to be in the range 150 to 300 GeV, with the

lowest values occurring as αTC(Λ) → 0. The top mass, on the other hand ranges

from around 50 to 100 GeV with larger values occurring at lower αTC(Λ). The U

mass follows the same pattern as the Higgs mass, but is usually less than the Higgs

mass. In nearly every case we investigated the Higgs was heavier than both the top

quark and the U technifermion.

This dependence of the masses on αTC(Λ) is expected based on the fixed point

analysis of section 1.4.2. The larger αTC is the more the yt = 0 fixed point will

dominate the RG flow, leading to a lighter top and a heavier U technifermion.

The examples in figure 1·13 have values of dTC that range from 5 to 25. Smaller

values of dTC produce higher masses across the board. Large dTC lowers mU because

the attractive fixed-point value of yU has dTC in the denominator, see equation 1.53.

Large dTC lowers mt by increasing the threshold value of zTC that causes the yt 6= 0

fixed point to become attractive (recall section 1.4.2). This means yt runs towards

zero over a longer range, lowering its final value. Once mt and mU are lowered mH is

lowered as well, since its fixed point value depends on those two masses.

Raising ΛTC also raises mH and mU and lowers mt. ΛTC approximately marks

the scale where αTC becomes strongly coupled, and when αTC is strongly coupled the

yt = 0 fixed point dominates the RG evolution. The higher ΛTC the more time mt

has to run towards 0, and the more time mU has to run to its non-zero fixed point.



39

0 2 4 6 8 10
ΛTC (TeV)

100

150

200

250

300

350

400

450

500

m
 (

G
e
V

)

dTC=5

αTC,UV/αc =1.5

100 TeV <Λ< 10,000 Tev

(a)

1.0 1.2 1.4 1.6 1.8 2.0 2.2
αTC,IR/αc  

100

150

200

250

300

350

400

450

500

m
 (

G
e
V

)

dTC=5

ΛTC=1 TeV

100 TeV <Λ< 10,000 Tev

(b)

0 2 4 6 8 10
ΛTC (TeV)

100

150

200

250

300

350

400

450

500

m
 (

G
e
V

)

dTC=25

αTC,UV/αc =1.5

100 TeV <Λ< 10,000 Tev

(c)

1.0 1.2 1.4 1.6 1.8 2.0 2.2
αTC,IR/αc  

100

150

200

250

300

350

400

450

500

m
 (

G
e
V

)

dTC=25

ΛTC=1 TeV

100 TeV <Λ< 10,000 Tev

(d)

Figure 1·13: The results of the RG analysis outlined in section 1.4,
showing the masses of the top quark, U technifermion, and the Higgs
boson as they depend on αTC,IR (right column), ΛTC (left column), and
dTC (rows). The colored bands show the variation of each mass as Λ is
varied between 100 and 10,000 TeV. For almost all cases mh is between
200 and 400 GeV, and mt is less than 200 GeV. The lowest values of
mh occur when dTC is large. Increasing Λ tends to lower the masses
slightly.
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Λ mt mU mH

20 TeV 187 GeV 263 GeV 338 GeV
500 TeV 154 GeV 229 GeV 256 GeV

Table 1.3: Masses of the fermions and the Higgs boson with ΛTC =
1 TeV and αTC,IR = 1.5αc. Compare to table 1.2, which lists the same
masses computed without renormalization or TC effects. At ΛTC =
1 TeV the Higgs mass is unchanged, but both mt and mU are raised.

When ΛTC = 1 TeV, for example, mt ranges from 0 to 50 GeV. More realistic masses

like mt & 100 GeV require smaller ΛTC , closer to 200 GeV.

All of the reported resulting masses are insensitive to Λ, as expected. Once the

electroweak scale is set by a single fine tuning (i.e. setting v = 246 GeV) all of the

other fermion masses and the Higgs mass are naturally around the 100 − 300 GeV

range, even with Λ as high as thousands of TeV.

However, no choice of parameters seems to be able to produce a Higgs mass as

low as 125 GeV, and obtaining a realistic value of mt ' 173 GeV requires very large

technicolor representations. The model accomplishes the goal of producing a light

Higgs and top quark without other light top partners, it cannot produce a Higgs that

is light enough to model the real world.



Chapter 2

Composite Higgs Phenomenology

In the previous chapter we introduced a model for “minimally fine-tuned” composite

Higgs. While that model did not work to describe a realistic Higgs boson mass, we

will use the basic idea as inspiration in this chapter. Specifically, we will investigate

the next-lightest bound states implied by that sort of model. We will show that such

states can plausibly explain a excess that was possibly observed in diboson production

at LHC experiments.

In the first section we will review the relevant LHC Run 1 experimental results. In

the second section section we will present the general properties of the bound states

of a fine-tuned composite Higgs sector, especially the lowest-lying isotriplet vectors.

Then we will introduce an effective Lagrangian and calculate production sections /

branching ratios, and compare those predictions to experiment.

2.1 Diboson Excesses

In 2014 and 2015 the ATLAS and CMS collaborations at the LHC both reported

excesses in the production of pairs of weak bosons that have an invariant mass of ap-

proximately 2 TeV (ATLAS Collaboration, 2015b; CMS Collaboration, 2014a; CMS

Collaboration, 2014b). The excess was observed in various channels in
√
s = 8 TeV

data: the ATLAS data is non-leptonic, i.e. both vector bosons decay to qq jets, while

the CMS signal appears in both semi-leptonic data and dijet data.

The original signal had a significance of ' 3σ, depending on the channel and the

41
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Figure 2·1: Limits on cross-sections published by ATLAS and CMS
from Run 1 data in various channels. A ∼ 2σ excess is visible around
2 TeV in each. The top row shows the WZ channel with WH in the
bottom row. ATLAS data is on the left, CMS on the right. Figures are
from the ATLAS and CMS papers cited in the text.



43

“WW”→ JJ “WW”→ `νJ WH → `νbb
ATLAS 3.2σ < 1σ 1.5− 2σ
CMS 2.2σ 1.8σ 2.2σ

Table 2.1: The significance for a ∼ 2 TeV excess in each channel
as reported by each experiment from Run 1,

√
s = 8 TeV data. The

ATLAS significance in the WH → `νbb channel is from preliminary
Run 2 data. The reported significances are found in the papers cited
in the text.

analysis with the highest significance in the dijet searches. ATLAS also searched in

the semi-leptonic channel but reported no significant excess (ATLAS Collaboration,

2015c; ATLAS Collaboration, 2015d).

Both ATLAS and CMS also looked for resonant production of a vector boson in

association with a Higgs boson (CMS Collaboration, ; ATLAS Collaboration, 2015a).

CMS reported a 2σ excess near 1.8 TeV in WH → `νbb. ATLAS looked for WH and

ZH in semi-leptonic modes in Run 1 data but saw no excess.

The ATLAS non-leptonic WZ excess was initially estimated to correspond to a

signal cross section times branching ratio of 3 fb (Brooijmans and Pollard, 2015;

Brehmer et al., 2015). Overall the statistics of the excesses was sparse in the 8 TeV

data, around 5 to 10 events. See (Brehmer et al., 2015) for a good overview of the

experimental results and significances.

The analyses bin the events into WW , WZ, and ZZ “pots”, and events appear in

all three, though there may be as much as 30% spillover between them. The ATLAS

analysis identifies a V -jets as a W if its mass is within 13 GeV of mW = 82.4 GeV,

and likewise for a Z. In the non-leptonic CMS data a V -jet is considered a W -jet

candidate if 65 < MV < 105 GeV and a Z-candidate if 70 < MV < 110 GeV.

The significances of the excesses in the various channels in the Run 1 data is

summarized in table 2.1. CMS combined its semi-leptonic and non-leptonic data and

still obtained a 2σ effect at 1.8 TeV.
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More recent analyses of Run 2,
√
s = 13 TeV data did not observe the excesses.

Both ATLAS and CMS put an upper limit on the cross section for pp → V ′ → WZ

of about 10 fb for a 2 TeV resonances, and 8 − 10 fb for a 1.8 or 1.9 TeV resonance

(CMS Collaboration, 2018a; ATLAS Collaboration, 2018a). CMS reports an upper

bound on σ(pp → V ′ → WH,ZH) of 4-5 fb for WH and about 6 fb for ZH when

MV ′ = 2 TeV (CMS Collaboration, 2017b). We will cover these Run 2 analyses in

more detail at the end of this chapter.

The non-observation of the excesses in the Run 2 data may be evidence that the

excesses were statistical anomalies of the Run 1 data. However, it is also possible

that the Run 1 excesses were statistical up-fluctuations of a real signal that is not yet

observable in the Run 2 data.

If the latter is true, then we argue that a plausible explanation is that the reso-

nances are the lightest vector and axial-vector triplet bound states of strong interac-

tions responsible for the compositeness of the Higgs boson H.

2.2 Other Technicolor States

Any composite Higgs model requires new degrees of freedom at high energies to

describe the constituents of the Higgs. Often, and in technicolor-like models like the

one of the previous chapter, the extra particles are fermions with additional strongly-

coupled gauge interactions between them.

Strong interactions will create other bound states besides the Higgs boson. These

extra states should be active around the scale where the Technicolor interaction be-

comes strong. This scale is usually assumed to be of the order up to ∼ 10 TeV so

that the electroweak breaking is not fine-tuned.

In the model of the previous chapter we presented a model where the Higgs boson

and longitudinal modes of the weak bosons are composites. Their mass is made light
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by a fine-tuned interaction like extended technicolor (ETC). The ETC interaction

had an unbroken subgroup interaction like technicolor (TC) that became confining

at the scale ΛTC ' 1 TeV. While the symmetry-breaking pattern of that model is

different from the usual technicolor pattern, we expect that the other bound states

will be more typical.

Since these technicolor bound states participate in the weak interaction they can

potentially affect measured electroweak precision observables. The most common and

well-measured of these are the ρ parameter (Veltman, 1977) and the Peskin-Takeuchi

parameters S, T , and U (Peskin and Takeuchi, 1992). The ρ parameter is a ratio

of weak boson masses m2
W/m

2
Z cos2 θW ' 1, while the Peskin-Takeuchi parameters

measure corrections to the weak current propagators.

The ρ parameter and the T parameter are linked via ρ ' 1 + αT . They are

protected from large corrections in theories that have a custodial symmetry (Sikivie

et al., 1980). The custodial symmetry the SU(2)L×SU(2)R ' SO(4) global symmetry

of the Standard Model Higgs sector. We can see that the Standard Model Higgs sector

has a such a symmetry by noting that we can write the Higgs Lagrangian in terms of

a bidoublet ΣP where

Σ =
(
iσ2H

∗ H
)
. (2.1)

The custodial symmetry acts on ΣP via ΣP 7→ ULΣPU
†
R. In the case where the Higgs

is composite the symmetry is implemented in the underlying technifermions via

TL,R =

(
UL,R
DL,R

)
7→ UL,R

(
UL,R
DL,R

)
. (2.2)

As long as this symmetry is not badly broken in the technicolor sector then the new

bound states will not cause excluded corrections to ρ and T .

We expect, then, that the new states should organize into isoscalars and isotriplets
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of the custodial isospin symmetry. The Higgs boson and the longitudinal modes of

the weak bosons, W±
L and ZL, are the lightest bound states of the technifermions.

We assume that they are made light by fine-tuning the strength of the ETC coupling,

as explained in the previous chapter.

2.2.1 Isovectors

The next lightest bound states after the Higgs and weak Goldstone modes should be

isovector and isoscalar bosons analogous to the ρ, ω, and a1 mesons. In this chapter

we will concentrate on the isovectors and show how they can be responsible for the

Run 1 excesses. We will call the parity-odd vector isotriplet ρ±,0H and the parity-even

axial-vector isotriplet a±,0H .

While the custodial isospin symmetry protects ρ and T we also consider the Peskin-

Takeuchi S parameter. S is not protected by the custodial symmetry. However,

the technivector contribution to S can be appropriately small if MaH ' MρH and

gρH ' gaH , where gaH ,ρH measure the couplings of those bosons to the weak current.

See (Lane and Martin, 2009) for references arguing this. The masses of of aH and ρH

in a technicolor-like theory can be expressed as mρH = gρHf where f ' ΛHC . From

the earliest days of technicolor, the mass of the technirho in a one-doublet model was

estimated (naively) to be ∼ 1.8 TeV (Dimopoulos, 1980; Dimopoulos et al., 1981).

We will hence search for a theory with an approximate parity symmetry that will

help enforce gρH = gaH and maH ' mρH .

This means that the vector triple ρH and the axial vector triplet aH should have

similar masses. If they are to explain the diboson excesses of section 2.1 we must

have maH ' mρH ' 2 TeV.
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2.2.2 Decays

The technivectors ρH and aH must decay primarily to the Higgs boson and the longi-

tudinal modes of the weak bosons, as those are the only lighter technihadrons. The

production mechanisms of ρH and aH are the Drell-Yan (DY) process, induced by

mixing with the photon and weak bosons, and weak vector boson fusion (VBF). In

section 2.4.2 we will find production times decay rates of a few femtobarns, dominated

by Drell-Yan.

Since the underlying dynamics are strongly-coupled we expect to see large widths,

dominated by decays involving longitudinally polarized weak bosons VL. The Run

1 diboson data favors Γ(ρH) . 200 GeV, though a somewhat greater width is still

allowed.

The parity and isospin symmetries of the theory tell us quite a bit about the

decays of ρH and aH . The approximate parity symmetry further constrains which

decays are allowed. The longitudinal modes of the weak bosons VL are axial vectors,

and so the vector ρH should decay to VLVL, while the aH is an axial vector and should

decay to VLVT (where VT is a weak boson with transverse polarization) or VLH.

For nearly degenerate ρH and aH and a light Higgs the decay rates ρH → VLVL

and aH → VLH are identical. That is, they are precisely identical in the Wigner-Weyl

mode of the electroweak symmetry in which (H,~π) form a degenerate quartet, where

the π’s are the pseudoscalar Goldstone modes eaten by the weak bosons. Furthermore,

VLVT modes are suppressed relative to VLVL modes because for a highly boosted weak

boson VLµ = ∂µπ/mV , and mV ∝ gv. Hence, decays of ρH / aH involving VT will

be suppressed by a factor of g2 relative to ones involving VL. We can conclude that

aH → VLH will dominate aH → VLVT .

The approximate SU(2) isospin symmetry of the theory acts on both the weak

bosons and the for Run 1 and Run 2 and scenarios and compare those to the actual
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results. technivectors. This constrains the decays somewhat. In particular, an I =

1, I3 = 0 particle cannot decay into two I = 1, I3 = 0 bosons, and so ρ0 → ZLZL is

strongly suppressed. Likewise, two I = 0 particles cannot arise from an I = 1 particle

so ρ0 → HH is suppressed.

All together this suggests that Br(ρ± → W±
L ZL) ' Br(ρ0 → W+

LW
−
L ) ' 1and

Br(a± → W±
L H) ' Br(a0 → ZLH) ' 1. Hence we can potentially account for the

Run 1 excesses by hypothesizing that the WZ and WW events come from a 2 TeV

ρH and that the WH events come from a 2 TeV aH .

In the next section we will present an effective Lagrangian for ρH and aH , and

use it to compute production cross-sections and decay rates. Then we will compare

our calculations to the Run 1 and Run 2 data, and make predictions for future

experiments.

2.3 Effective theory for vector mesons

We use the effective Lagrangian for ρH and aH that was derived by Lane and Martin

in (Lane and Martin, 2009), adapted to the case of a single technidoublet with no

light pseudo-Goldstone bosons, and with couplings chosen to cancel the ρH and aH

contributions to S. Similar Lagrangians were derived in (Marzocca et al., 2012)

and (Bellazzini et al., 2012). The Lagrangian is obtained from the Hidden Local

Symmetry (HLS) approach, describing the ρH and aH isovectors as SU(2)L×SU(2)R

gauge bosons.

In order to derive an effective theory for the technivectors we use the Hidden Local

Symmetry (HLS) formalism introduced in (Bando et al., 1988), which was introduced

to derive a phenomenological Lagrangian for the QCD ρ meson with some success

(Bando et al., 1985). The whole derivation is that of (Lane and Martin, 2009), and

so we give only a overview in this section.



49

The idea of the HLS formalism is to treat the global SU(2)L×SU(2)R symmetry

of the technicolor interactions as a local symmetry. The ρH and aH are then treated

as the vector and axial vector combinations of the requisite “gauge bosons.” This

symmetry — in addition to the Standard Model gauge group SU(2)EW ×U(1)Y — is

then spontaneously broken to U(1)EM , yielding the weak bosons along with massive

ρH and aH . We will take the two extra gauge couplings gL and gR to be equal, in

view of the approximate parity symmetry of our intended theory.

The ρH mass in (Lane and Martin, 2009) is nominally given by mρH = 1
2
gρHfρH

where fρH is the HLS decay constant (analogous to the decay constant of a pseudo-

Goldstone boson composite Higgs). The coupling gρH ' gaH is the coupling of the

ρH/aH meson to the weak current, and is related to the HLS gauge couplings. If we

take fρH = 1 TeV ' 4v, where v = 246 GeV is the Higgs vacuum expectation value,

then gρH = 4 for MρH = 2 TeV.

The result of the work in (Lane and Martin, 2009) is the following interaction

terms, showing only terms the terms most relevant for technivector decays:

L(ρH → V V ) = −ig
2gTv

2

2M2
ρH

(
ρ0
T µνW

+
µ W

−
ν + (ρ+

T µνW
−
µ − ρ−T µνW+

µ )Zν/ cos θW
)

(2.3)

L(aH → V V ) = i
g2gTv

2

2M2
ρH

(
a0
T µ(W+

µνW
−
ν −W−

µνW
+
ν )

−
[
a+
T µ(W−

ν Zµν −W−
µνZν)− h.c.

]
/ cos θW

)
(2.4)

where Vµν means ∂µVν − ∂νVµ and we have assumed that all the technivectors have

very close to the same mass, MρH . We can also calculate the couplings of the aH to

the Higgs boson, as we expect them to be stronger than the aHV V couplings.

L(aH → V H) = ggTv(a+
µW

−
µ + a−µW

+
µ )H +

ggρv

cos θW
a0
µZµH (2.5)

We can note how the aHV V couplings all have at least one factor of Wµν or
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Zµν term. Since the longitudinal part of a massive boson is VL = i∂µπ/m for some

pseudoscalar Goldstone mode π, Vµν = VT µν + i[∂µ, ∂ν ]π/m = VT µν . That is, those

terms will couple the aH to at least one transverse weak boson. We have already

argued that those decays are much smaller than decays with two longitudinal modes.

The aHV H couplings can be derived from the fact, already mentioned in sec-

tion 2.2.2 that the decay rates of ρH → WLWL and aH → VLH should be identical.

2.4 Predictions

With the effective theory we can calculate production cross-sections, branching ratios,

and decay widths, and then compare to experimental data.

2.4.1 Decays

The ρH decays, as expected, primarily to VLVL. The branching ratios B(ρ±H → W±Z)

and B(ρ0
H → W+W−) are both nearly 100%. Note that neither the ρ0

H nor the

a0
H decays to ZZ in our model. This is because both the ρ, a0

H and Z are isospin

I = 1, I3 = 0 states, and an isospin-conserving theory forbids such decays. Hence,

our model predicts that the ZZ signals claimed by ATLAS and CMS in the Run 1

data must have been one or two misidentified Z-bosons. (Another possibility is the

production of an I = 0 scalar technimeson, like the QCD f0, which could decay to

ZZ. We do not explore this possibility). We will see later that the Run 2 data is

consistent this prediction.

Since the ρH decays to longitudinal modes and the ρH is much heavier than the

weak bosons, the associated decay amplitudes pick up factors proportional to the

energy of the weak bosons E/MW ∝MρH/MW , one for each longitudinally polarized

boson. These two factors of MρH cancel the 1/M2
ρH

from the coupling in equation

2.3, and the factors of 1/MW cancel against the g2v2. Hence the decay rates for the
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MρH Γ(ρH → V V ) (GeV) Γ(aH → V H) (GeV) Γ(aH → V V ) (GeV)
1800 178 184 0.82
1900 188 196 0.78
2000 198 208 0.74

Table 2.2: Principal decay rates of the ρH and aH for g = 3.862 and
MaH = 1.05MρH . The width of the the bosons is generically about 10%
for this value of gT . The width varies as g2

T for fixed MρH .

heavy ρH are

Γ(ρ0
H → W+W−) ' Γ(ρ± → W±Z) ' g2

TMρH

48π
(2.6)

As noted earlier, the aH → V H decay rate rate should be identical to this, and from

equation (2.5) we find

Γ(a0
H → ZH) ' Γ(a±HW

±H) ' g2
TMaH

48π
(2.7)

We recall that CMS reported a 2σ excess in the WH channel, though ATLAS did

not. If this signal is real it must be due to the aH .

For comparison, the much weaker decay rate of aH to pairs of weak bosons is

Γ(a0
H → W+W−) ' Γ(a±H → W±Z) ' g2

TM
2
WM

3
aH

24πM4
ρH

(2.8)

Table 2.2 lists the cumulative decay rates for MρH = 1800, 1900, and 2000 GeV

with MaH = 1.05MρH . For these calculations we fix gT = 1900 GeV/2v = 3.862. This

yields widths for the new particles near 200 GeV, which is compatible with the Run 1

experimental data. For this value of gT the widths are generically 10% of the particle

mass.

2.4.2 Production Mechanisms

The main production mechanisms of the technivectors are Drell-Yan (DY) production

and Vector Boson Fusion (VBF), as illustrated in figure 2·2. The DY channel proceeds
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MρH (GeV) σDY+V BF (ρ±) (fb) σDY+V BF (ρ0) (fb) σ(a±) (fb) σ(a0) (fb)
1800 1.53 + 0.36 0.74 + 0.18 0.71 0.37
1900 1.05 + 0.24 0.50 + 0.12 0.51 0.27
2000 0.73 + 0.15 0.36 + 0.075 0.36 0.17

Table 2.3: Production cross sections at the LHC of the isovector
bosons ρH and aH with

√
s = 8 TeV for gT = 3.862 and MaH =

1.05MρH . The individual DY + VBF contributions are given for ρH ;
The VBF rates for aH are very small and not given. As explained in
the text, gT = 2.73 gives 75% large cross sections and widths half as
large for ρH → V V . No K-factor has been applied.

MρH (GeV) σDY+V BF (ρ±) (fb) σDY+V BF (ρ0) (fb) σ(a±) (fb) σ(a0) (fb)
1800 7.61 + 3.67 3.74 + 1.93 4.65 2.23
1900 5.74 + 2.62 2.81 + 1.37 3.16 1.69
2000 4.37 + 1.90 2.16 + 0.99 2.39 1.27

Table 2.4: Production cross sections at the LHC of the isovector
bosons ρH and aH with

√
s = 13 TeV for gT = 3.862 and MaH =

1.05MρH . The individual DY + VBF contributions are given for ρH ;
compare to table 2.3.

through the mixing of the ρH and aH with the weak current. The VBF channel

proceeds through the same interactions as the ρH , aH decays.

The cross sections for the dominant decay modes are listed in tables 2.3 and 2.4

and figure 2·3 for MρH = 1800 − 2000 GeV, MaH = 1.05MρH , and gT = 3.862. The

DY and VBF rates for ρH are given separately. The VBF rates for aH are very small.

The cross sections were computed at both
√
s = 8 TeV and 13 TeV, in anticipation

of LHC Run 2, and they exhibit the following patterns:

• σDY (aH) ' 0.5σDY (ρH)

• σDY (13 TeV) = 5− 6× σDY (8 TeV

• σV BF (aH) . 0.01σV BF (ρH)

• σV BF (ρH) ' 0.25σDY (ρH) at
√
s = 8 TeV, rising to about 0.5σDY (ρH) at 13

TeV.
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Figure 2·2: The two principal production mechanisms for ρH and aH
at the LHC. The Drell-Yan contribution (a) comes from the mixing of
the ρH , aH with the weak current. The VBF vertex is the same that is
used in calculating decay rates. Drell-Yan is the dominant channel for
both ρH and aH .

• σ(ρ±T ) ' 2σ(ρ0
H) uniformly. This is strongly dominated by ρ+ over ρ− for both

DY and VBF and is a consequence of the proton parton distribution functions.

The Drell-Yan cross sections vary roughly as 1/g2
T for fixed MρH . On the other

hand, the VBF rate for ρH → V V varies as g2
T . Then, e.g., gT = 2.73 instead of 3.862

gives a 75% larger production rate for ρH → V V and a ρH width half as large.

2.4.3 Comparison to experiment

The largest predicted cross-section at
√
s = 8 TeV is the WZ channel, proceeding

mainly through a ρ±. At Mρ = 2 TeV this amounts to a total cross-section times

branching ratio for WZ of about 0.88 fb. This is smaller than the estimated WZ

cross section from (Brooijmans and Pollard, 2015).

The predicted
√
s = 13 TeV cross-sections are significantly larger, by five or six

times. This brings them in just under the upper-bounds from ATLAS and CMS

analyses of the 13 TeV data. At MρH = 2 TeV we predict a total cross section for

the WZ channel of 6.27 fb, increasing to 11.28 fb at MρH = 1.8 TeV. The various
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Figure 2·3: Production cross-sections for the isovectors with
mρH ,aH = 1800 − 2000 TeV at

√
s = 8 TeV and 13 TeV. Compare to

tables 2.3 and 2.4. The largest cross-sections are Drell-Yan production
of ρ±, which decays to W±Z.
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CMS and ATLAS analyses report an upper limit for σ(pp → ρH → WZ) of about

10 fb (CMS Collaboration, 2018a; ATLAS Collaboration, 2018a; CMS Collaboration,

2018b). One ATLAS analysis (ATLAS Collaboration, 2018b) reports an upper bound

on Drell-Yan production of ρH → WZ 2 to 3 fb at Mρ = 2 TeV, along with a VBF

upper bound of 10 fb. At Mρ = 1.9 TeV the upper bound increases to 9 fb DY and

10 fb VBF. Almost all of these bounds are just above the predicted ones in table 2.4.

One CMS Run 2 analysis (CMS Collaboration, 2017b) reports an upper limit on

σ(pp → a → WH,ZH) of 4 to 5 fb for WH and about 6 fb for ZH. This is just

above the predicted cross sections for aH in table 2.4.

Our model predicts that there are no ZZ signal events. This was possibly in

conflict with the Run 1 data, which assigned a non-negligible number of events to

the ZZ channel ((ATLAS Collaboration, 2015b; CMS Collaboration, 2014b), etc.).

However, there is significant overlap between the WW , WZ, and ZZ bins, so it is

possible that the reported ZZ events were mis-assigned. Since the 13 TeV data does

not exhibit the excess it has nothing to say about ZZ versus other channels.

Our model predicts cross-sections below the observed upper limits for both the 8

TeV and 13 TeV data. If the excesses are real and explained by our model (a big if!)

it must mean that the 8 TeV excesses were statistical up-fluctuations. The 13 TeV

data is not strong enough yet to rule out our model. More data is required.

In the meantime, we present a few other predictions that can be used to identify

our model in the case that additional Run 2 data starts to bear out our predictions.

2.4.4 Other signatures

In this section we present a few phenomenological signatures of our model beyond

just cross-sections and branching fractions.

First, as mentioned above, decays of ρH , aH to ZZ are isospin-violating and so

their rates are very small. Therefore we expect that channel to have next to no signal
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in future data. This is seems to be borne out by Run 2 data ()

Second, there should be significant numbers of events in semi-leptonic V V events

as in all other channels. Their spotty evidence in the
√
s = 8 TeV data must have

been a consequence of low statistics. The `νqq events should have σ(`+)/σ(`−) ' 2,

as a consequence of σ(ρ+) ' 2σ(ρ−).

Third, the ρH width is almost entirely due to strong-interaction decays to V V

and is about 200 GeV with our parameters. Presumably, it would be best measured

in semi-leptonic events.

Fourth, the ρH → V V decays involve a pair of longitudinally-polarized weak

bosons. Boosted longitudinal vector bosons tend to produce quark subjets that have

more equal momenta along the parent V -direction than do boosted VT . There may

be other ways of eventually distinguishing VL from VT . See, (Cui et al., 2011), e.g.

Note that a measurement of the ρH width is in effect a measurement of V V

polarizations. A large width can be due only to strong dynamics, and hence emission

of VLVL. A small width is more likely to be an electroweak decay involving VLVT or

VTVT .

Fifth, the V H decay should strengthen with more data, and it should have a large

width as it comes from the strong decay aH → VLH. In our model Γ(aH) ' Γ(ρH).

Sixth, we can look for forward jets in the detector to distinguish the ρH from

the aH . The ρH has a significant vector boson fusion production cross-section, which

comes along with forward jets. The aH is produced almost entirely through Drell-Yan

processes, which does not produce forward jets. Hence, we predict that there will be

no forward jets associated with WH signal events, but forward jets with V V events.
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Chapter 3

Alternative Higgs Models for a Dimuon

Excess

3.1 Excess at LEP

In a 2016 paper Heister analyzed archived data from the ALEPH experiment at

LEP and found apparent evidence for a narrow dimuon (µ+µ−) resonance at 30 GeV

(Heister, 2016).

The purpose of this chapter is to present models where the resonance is a new

scalar particle with mass 30 GeV. Our conclusion will suggest that general models of

this type are not viable, and that this intriguing experimental signature calls for more

theoretical attention. In the first section we review the experimental data and analy-

sis. In the subsequent sections we introduce multiple Higgs doublet models to explain

the signal. After showing that a two Higgs doublet model (2HDM) cannot explain

the signal without also introducing excluded Z decays, we introduce a three Higgs

doublet model (3HDM). The three Higgs doublet model can explain the signal, but

is excluded by other unavoidable constraints. Finally we argue that the constraints

that rule out the three Higgs doublet model exclude out all models for the resonance

with new light scalars.

3.1.1 The excess

The data in which the excess appears is from the LEP collider taken between 1992

and 1995. The LEP collider was a circular electron-positron collider that ran from
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Figure 3·1: The mµµ invariant mass distributions in the opposite sign
muon channel (3·1a) and same sign muon channel (3·1b). The excess
is visible at 30 GeV in the opposite sign channel, while none is visible
in the same sign channel. This figure is from (Heister, 2016)

.

1989 to 2000 (Schael et al., 2006). Its tunnel now houses the Large Hadron Collider.

During the relevant period it operated at a beam center-of-momentum energy of 91

GeV, allowing it to act as a factory for Z bosons. The opposing electron and positron

beams collide and produce Z bosons at rest.

The ALEPH experiment was designed to measure the mass and decays of the Z

bosons in detail (ALEPH Collaboration, 1990). The relevant dataset comprises 1.9

million hadronic decays of Z-bosons. The analysis in question looked at decays of the

form Z → qq``′.

The result was an excess in the channel Z → bbµ+µ−, as illustrated in figure 3·1.

The apparent excess forms a narrow peak around a dimuon invariant mass of around

mµ+µ− = 30 GeV. According to (Heister, 2016) this has a local significance of 2.6σ,

or 5.4σ depending on the benchmark method used. The second method requires using

the look-elsewhere effect, which reduces the reported significance by 1.4− 1.6σ.

The resonant peak in figure 3·2 corresponds to 32 ± 11 signal events. Fitting a

Breit-Wigner peak to the signal yields a width of 1.78 GeV. This width measurement
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Figure 3·2: ALEPH Z → bbµ+µ− data with signal plus background
model used the extract the 30 GeV signal parameters in Heister’s anal-
ysis. This figure is from (Heister, 2016).

is close to the dimuon mass reconstruction performance of the ALEPH experiment

at 30 GeV, so it is theoretically likely to be at least as narrow as the mass Using the

b-tag and muon-ID efficiencies in (Heister, 2016) this yields the branching ratio

B(Z → bbX(→ µ+µ−)) = (2.77± 0.95)× 10−4. (3.1)

If this signal does arise from a process of the form Z → bbX, X → µ+µ−, we cannot

say from the data whether it is emitted from the Z — as in Z → Z∗X with Z∗ → bb

— or from one of the b-quarks, or if there are two new particles Z → XY with

Y → bb.

Since the Z bosons at LEP are produced at rest we know the total momentum of

the system. The ALEPH data allows us to reconstruct the momentum of the dimuon,

which must be the same as the momentum of the two b quarks. The dimuon (and bb)

momentum distribution of the background and signal is plotted in figure 3·3. There
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is no noticeable narrow peak at any particular momentum. In the signal region most

events have |~p| around 5 GeV. When mZ = 91.17 GeV and mµ+µ− = 30 GeV this

corresponds to a bb mass of mbb = 60.5 GeV.

Figure 3·4 shows the distribution of the angle θ∗ between the dimuon boost axis

and the µ−, in both the signal region and the sideband. Most of the events are at large

| cos θ∗| ' 1 and have the muons close to a b-jet. Presumably, most of these events

are semi-leptonic b decays. There is also a smaller component of the distribution that

is isotropic that appears in both the signal and sideband regions.

The decay angle (cos θ∗) distribution for muons in the dimuon rest frame, where

θ∗ is the angle between the dimuon boost axis and the µ− is shown in figure 3·4
for the signal region, a mass range of 2σ around the fitted mean mass mµ+µ− =

(30.40 ± 3.85) GeV. There is a clear preference for forward-backward production,

i.e., with each muon close to a b-jet. This looks like semi-leptonic b + b decay, and

presumably most of these events are just that. There is a smaller, approximately

isotropic component for | cos θ∗| < 0.8. This could indicate a different — scalar —

production mechanism. However, figure 3·4b shows the angular distribution in the

sidebands, with mµ+µ− = 15 − 50 GeV and excluding the signal region. It does

not appear substantially different from figure 3·4a, though the ratio of events at

| cos θ∗| > 0.8 to those in between is greater than in figure 3·4b.

3.1.2 Other channels

Of the other Z decay channels investigated, only the channel Z → bbe+e− shows any

excess. That channel shows a small excess of 8.0± 4.5 events near me+e− = 30 GeV,

with a significance of only ' 1.5σ. This is significantly lower than in the dimuon

channel. We will ignore it for the remainder of this chapter.

The same-sign channel, Z → bbµ±µ± shows no excess near 30 GeV (see figure 3·1),

nor does the opposite-sign electron-muon data, Z → bbe±µ∓.
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Figure 3·5: The opposite-sign dimuon mass distribution in Z →
hadrons + µ+µ− with the b-tag inverted shows no visible evidence for
an excess near 30 GeV; figure from (Heister, 2016).
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The apparent signal seems to be associated with b production. If the analysis

is performed with its b-tag inverted then the excess disappears, as in figure 3·5,

suggesting that there is not an associated qqµ+µ− signal for q 6= b.

3.2 Scalars and Multiple Higgs Doublet Models

Let us briefly survey the sorts of models that could possibly explain the experimental

signal. We will make a few assumptions as we do so. First, we will assume that the

signal events are actually comprised of two b quarks and two muons, and not muons

plus something that fakes b-jets. Second, we will assume that the signal really does

appear only in the b channel, as the data suggests.

Finally, we will assume that the signal is actually a resonance. That is, there is

a new particle with a narrow width that decays into a muon pair. We considered

models of the opposite type, where a new particle decays to a muon plus a b quark

(or something that fakes a b jet), with the excess bump being a kinematic edge.

Our investigations of models of this type yielded no candidates that could plausibly

generate the required resonant signal.

We also reject the possibility that the signal is an anomaly in semi-leptonic b-

decays. If it were so, we should see the signal in the e+e− and even the e±µ∓ channels

as well as in the µ+µ− channel, but we do not.

If the signal does come from a process like Z → XY with X → µ+µ− and Y → bb

we must explain why we do not see a resonant peak in the mbb mass distribution

in figure 3·3. One possibility is that Y is an off-shell Z boson that then decays to

bb. Another possibility is that Y is another new particle with mass very close to

mZ−mµ+µ− . The model we will ultimately construct has both channels, though only

the one where Y is a new scalar particle is non-negligible. We will see this in detail

in section 3.3.1.
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This leaves us with two general possibilities. Since muons are spin 1
2

a pair of

them must arise from the decay of either a spin 0 or a spin 1 particle.

Other authors have considered the possibility of a new spin 1 vector boson as the

30 GeV vector boson, in (Ko et al., 2016). While this explanation is not inherently

implausible, we do not pursue that avenue further, and instead focus on models with

a spin 0 particle.

Again, we have a few general possibilities. The spin 0 scalar field must couple

to a scalar muon-anti-muon operator. The left-handed muon transforms under the

Lorentz group and the gauge groups SU(2)L and U(1)Y as µL ∈
(
(1

2
, 0), 2,−1

2

)
, while

the right-handed muon transforms as µR ∈
(
(0, 1

2
), 1,−1

)
. This means there is only

one possible µ-µ terms that a new scalar could couple to:

µRµL ∈
(
(0, 0), 2, 1

2

)
(3.2)

(3.3)

A scalar field that couples µRµL must have the same quantum numbers as the

Standard Model Higgs doublet. This stands to reason, as µLµR by itself is a mass

term, and the Higgs doublet is how the mass terms in the Standard Model arise in a

gauge-invariant way.

Since the Standard Model Higgs doublet contains the 125 GeV Higgs boson as its

only physical degree of freedom, we must add at least one additional doublet field to

get the 30 GeV resonance we are looking for.

It is worth noting that a Higgs doublet has an additional attractive feature for

our purposes. Since Higgs bosons have couplings to fermions that are proportional

to the mass of the fermion, it is easy to explain why the signal should appear mainly

in the bb channel. If the b quark is the most massive fermion a 30 GeV Higgs-type

boson can decay to, then that decay rate should be the strongest by at least a factor
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of (mb/mc)
2 ' 15.

On the other hand, it takes some doing to make a Higgs-type boson to decay

significantly to muons. If the hypothetical 30 GeV boson can decay to the τ then

that rate will be larger by a factor of (mτ/mµ)2 ' 280. We will see that we must

arrange a model with lepton flavor non-universality so that a Higgs boson can decay

to muons but not taus, avoiding this problem.

We are thus lead to the so-called multiple Higgs doublet models. The simplest

examples are Two Higgs Doublet Models (2HDM). The 2HDMs have been studied

extensively, mostly in the context of supersymmetric theories of the Standard Model,

where the second Higgs doublet is required to avoid chiral anomalies. However, almost

all of the typical 2HDMs have very specific, flavor-universal fermion couplings. Our

model is different, so only some of the standard 2HDM results apply to the model

that we will build.

We will first review the basics of general multiple Higgs doublet models, then

deduce the sort of fermion couplings needed to explain the observed signal.

3.2.1 General Multiple Higgs Doublet Models

In the Standard Model there is one scalar field H that transforms as a doublet under

the SU(2)L gauge group, and has a weak hypercharge of YH = +1
2
. The potential for

this field has the form

V (H) = −m2
0(H†H) +

λ

2
(H†H)2 ≡ λ

2

(
(H†H)− v2

2

)2

(3.4)

When m2
0 and λ are both positive the minimum for this potential has a nonzero value

for |H|, and so the field accquires a vacuum expectation value, 〈H〉 = (0, v/
√

2)T .
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We can then write

H =

(
G+

(v + h+ iGZ)/
√

2

)
(3.5)

The G+ and GZ fields are the Goldstone modes that are eaten by the vector bosons

to give them mass. The remaining degree of freedom is the scalar field h. It gets a

mass m2
h = λv2.

Since the field is a doublet we can also write the Yukawa terms (e.g.)

Lyuk = yµL
i

µµRH
i + h.c. (3.6)

→ yµv√
2
µµ ≡ mµµµ (3.7)

In a more general model there are multiple scalar doublet fields, Ha. If the scalar

sector of the potential has a non-trivial global minimum then at least some of the

fields get vacuum expectation values (vevs), and the gauge symmetry can be broken

down to U(1)EM .

The extra fields contained in the doublets mix to form a collection of massive

scalar bosons. If there are N doublets and the Higgs sector is CP conserving there

will be N physical neutral scalars, N − 1 physical neutral pseudoscalars, and N − 1

physical charged scalars. One linear combination of the neutral scalars must be the

125 GeV Higgs boson observed at the LHC. Additionally, we need one combination

of scalars or pseudoscalars to have a mass of 30 GeV and decay to muons. We need

the rest to either be massive enough or to have the right couplings to have escaped

searches for additional Higgs bosons.

We must also ensure that the 125 GeV scalar has couplings to other particles that

are close to the values predicted by the Standard Model. The ratios between the

measured couplings of H(125) and the Standard Model predictions are currently all

consistent with one (CMS Collaboration, 2015).
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3.2.2 Fermion Couplings and the Glashow-Weinberg Theorem

The most general Yukawa couplings are

LY =
∑
f,f ′,a

L
i

fΓ
a
`,ff ′`RH

i
a + h.c.

+D
i

L,fΓ
a
d,ff ′dRH

i
a + h.c.

+ U
i

L,fΓ
a
u,ff ′uR(iσ2)ijH

†j
a + h.c. (3.8)

After spontaneous symmetry breaking, these turn into non-diagonal mass terms for

the leptons and quarks. The mass matrix is M`,u,d =
∑

a vaΓ
a
`,u,d/
√

2. This matrix

is not necessarily hermitian but can be diagonalized by separate rotations of the

right-handed and left-handed fermions. That is, M = Pmdiag.Q
†.

However, for multiple doublets and generic Yukawa couplings Γ the transformation

that diagonalizes the mass matrix does not also diagonalize the couplings of the

fermions to the neutral physical bosons. That is, P †ΓaQ is not diagonal for any

general Γa even though
∑

a P
†vaΓ

aQ is. This implies that each of the neutral bosons

can act as a flavor-changing neutral current (FCNC), the existence of which is largely

ruled out. Quark FCNCs are well-studied, and bounds on lepton-flavor violating

decays of the τ and µ leptons constrain interactions like the one in figure 3·6.

Glashow and Weinberg proved (Glashow and Weinberg, 1977) that a necessary

and sufficient condition for a multiple Higgs doublet model to not introduce FCNCs is

that there must be a basis for the doublets where all flavors of fermion that share the

same quantum numbers must couple to a single doublet. In the Standard Model with

lepton flavor-universality this implies that all leptons must couple to one doublet, all

the up-type quarks couple to one doublet, and all the down-type quarks couple to

one doublet.

This requirement is too strict for our model; if the muons couple to the same scalar
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µ+
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Figure 3·6: An example of a lepton-flavor-violating decay of a τ lep-
ton mediated by some scalar φ with flavor non-diagonal couplings. This
particular decay has a measured width of < 6.12 × 10−20 GeV (Parti-
cle Data Group, 2016a), which puts constraints on yφ,µµ × yφ,eτ/m

2
φ.

Such considerations suggest that off-diagonal Yukawa couplings must
be forbidden by a symmetry.

as the taus then the branching ratio to muons will be tiny, suppressed by a factor

of at least (mµ/mτ )
2 ' 1/285. We can get around this requirement by introducing

additional global symmetries so that the muon has different quantum numbers than

the taus. This will require extra symmetries for the Higgs doublets as well. We will

use a scheme where one doublet couples to the muons only, and other doublets couple

to all the other fermions.

3.3 Two Higgs Doublet Model – An Instructive Warm-up

We will start by investigating the minimal model with a scalar resonance, a two Higgs

doublet model (2HDM). We will see that this model is too simple to be able to both

explain the 30 GeV signal and avoid known bounds on Z branching ratios and Higgs

searches. However, since other models are more complicated, studying the 2HDM

will show us how multiple Higgs doublet models work and it will help us understand
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the key problems that must be addressed.

There are two doublets H1 and H2. They each get vacuum expecation values,

(v1, v2) ≡ v(cos β, sin β). They have subfields

H1 =

(
φ+

2

(v1 + ρ1 + iπ1)/
√

2

)
H2 =

(
φ+

2

(v2 + ρ2 + iπ2)/
√

2

)
(3.9)

The charged φ+ fields mix to form the longitudinal mode of the W and a charged

scalar, the π fields form the Z longitudinal mode and a neutral pseudoscalar. The ρ

fields mix to form two neutral scalars, one of which should correspond to H(125).

As promised we use a theory with a global U(1) symmetry that allows us to break

flavor-universality without introducing FCNCs. The charge assignments are

H2 7→ eiθH2 (3.10)(
νµL
µL

)
7→ eiθ/2

(
νµL
µL

)
(3.11)

µR 7→ e−iθ/2µR (3.12)

All the other fields are neutral under this symmetry. We could include the electron

in the symmetry as well without affecting the results of this chapter, but we will not

do so now.

The most general scalar potential that respects CP symmetry and the global U(1)

symmetry above has the form

VH = m2
11H

†
1H1 +m2

22H
†
2H2 −m2

12(H†1H2 + h.c.)

+ λ1(H†1H1)(H†1H1) + λ2(H†2H2)(H†2H2)

+ λ3(H†1H1)(H†2H2) + λ4(H†1H2)(H†2H1) (3.13)

The off-diagonal mass coupling m2
12 breaks the global U(1) softly, which does not

spoil the Yukawa couplings or introduce FCNCs.
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The mass parameters m2
11,m

2
22 can be chosen so the potential has a minimum at

〈H1,2〉 = v1,2/
√

2. The mass matrices for the ρ, φ, and π fields then become

m2
π =

m2
12v

2

v1v2

(
v22
v2

−v1v2
v2

−v1v2
v2

v21
v2

)
(3.14)

m2
φ+ =

(m2
12 − λ4v1v2)v2

v1v2

(
v22
v2

−v1v2
v2

−v1v2
v2

v21
v2

)
(3.15)

m2
ρ =

(
m2

12
v2
v1

+ λ1v
2
1 −m2

12 + (λ3 + λ4)v1v2

−m2
12 + (λ3 + λ4)v1v2 m2

12
v1
v2

+ λ2v
2
2

)
(3.16)

which are non-diagonal. The physical fields are the mass eigenstates of these ma-

trices. The π mass matrix and the φ+ mass matrix both have one zero eigenvalue,

corresponding to the eaten Goldstone bosons that act as longitudinal modes for the

massive gauge bosons. The other eigenvalues are the masses of the physical pseu-

doscalar η and charged scalar h+. Their masses are

m2
η =

m2
12v

2

v1v2

(3.17)

m2
h+ =

(
m2

12 − λ4v1v2

) v2

v1v2

= m2
η − λ4v

2 (3.18)

The matrix

T ≡
(

cos β sin β
− sin β cos β

)
, (3.19)

rotates the doublets to the basis where only one doublet gets a vev, and also diago-

nalizes the mass matrices m2
π and m2

φ+ . Hence,(
G+

h+

)
= T

(
φ+

1

φ+
2

)
,

(
GZ

η

)
= T

(
π1

π2

)
(3.20)

On the other hand, the neutral scalar mass matrix requires an additional diagonal-
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ization angle, (
H125

h

)
= WhT

(
ρ1

ρ2

)
=

(
cos Θ sin Θ
− sin Θ cos Θ

)
T

(
ρ1

ρ2

)
(3.21)

where Θ is the mixing angle between the mass eigenstate H125 and the scalar mode

that has purely Standard Model couplings. The limit where cos Θ → 1 is the align-

ment limit, where H125 has exactly the couplings of the Standard Model Higgs boson.

Since the 125 GeV Higgs boson does appear to have Standard Model-like couplings,

most of our analysis will be very close to the alignment limit. (See section 3.3.1 for a

more detailed discussion of Θ and Higgs alignment)

We take mη = 30 GeV and mh = 50 − 60 GeV. We consider the mass of the

charged scalar later. The LEP signal will then proceed through Z → hη, η →
µµ, h→ bb.

The Z couples to scalars through the terms

LZss =
2e

sin 2θW
Zµ

[
sin Θ

(
η
←→
∂ µH125

)
+ cos Θ

(
η
←→
∂ µh

)]
(3.22)

This means that in the alignment limit, θ → Θ, the decay rate of Z to hη is given by

Γ(Z → hη) =
1

3

mZ

16π

(mZ

v

)2

×
[(

1− (mh +mη)
2

m2
Z

)(
1− (mh −mη)

2

m2
Z

)]3/2

(3.23)

corresponding to a branching ratio between 1.4×10−2 (mh = 30 GeV) and 1.2×10−4

(mh = 60 GeV). Recall that the signal corresponds to a branching of approximately

4× 10−4. That these branching ratios depend only on the masses of the scalars is the

first cause of a problem with the 2HDM that we will see later.

The global U(1) symmetry makes the Yukawa sector simple; all couplings of

fermions to physical scalars are proportional to the mass of the fermion times some

mixing angles.
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The Yukawa coupling of h to muons and b quarks is given by

yµ(µLµRH2 + h.c.)→ mµ

v2

(WhT )22hµµ, (3.24)

yb(bLbRH1 + h.c.)→ mb

v1

(WhT )21hbb (3.25)

and the Yukawa couplings of the η are

yµ(µLµRH2 + h.c.)→ mµ

v2

T22η µγ
5µ =

mµ

v
cot β η µγ5µ, (3.26)

yb(bLbRH1 + h.c.)→ mb

v1

T21η bγ
5b =

mb

v
tan β η bγ5b (3.27)

In general the lepton Yukawa couplings are

Ly` = − mµ

v sin β
µ
[
v sin β +H125 sin(β + Θ) + h cos(β + Θ) + iηγ5 cos β

]
µ

−
∑
`k=e,τ

m`k

v cos β
`k
[
v cos β +H125 cos(β + Θ)− h sin(β + Θ)− iηγ5 sin β

]
`k

+ h+

[√
2mµ cot β

v
νµPRµ−

∑
`k=e,τ

√
2m`k tan β

v
ν`kPR`k

]
+ h.c. (3.28)

The quark Yukawa couplings are

LYq = −
∑

dk=d,s,b

mdk

v cos β
dk
[
v cos β +H cos(β + Θ)− h sin(β + Θ)− iηγ5 cos β

]
dk

−
∑

uk=u,c,t

muk

v cos β
uk
[
v cos β +H cos(β + Θ)− h sin(β + Θ) + iηγ5 sin β

]
uk

−
√

2 tan β

v

∑
k,l=1

3
[
uk(VMd)klPRdlh

+ − dk(V †Mu)klPRuh
−]+ h.c. (3.29)

where Mu,d are the diagonal up- and down-quark mass matrices and V is the Cabibbo-

Kobayashi-Maskawa matrix.

The angle factors in these these Yukawa couplings arise from the scalar mixing

matrices. In particular, the Yukawa coupling of the ith scalar in (H125, h) or (0, η)
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Figure 3·7: The possible channels for signal Z → bbµµ events in the
2HDM, shown schematically (not all possible diagrams are included).
We assume that only one of the new scalar particles has a mass of
30 GeV. The Z → Z∗h and Z → bb amplitudes are too small to
contribute to the observed signal branching ratio. Only the Z → hη
channel

to a fermion that couples to the jth doublet is equal to mf/v(WhT )ij(v/vj) for the

scalars and mf/vTij(v/vj).

Crucially, in the alignment limit the neutral mixing matrix Wh reduces to the

identity matrix, and so the h Yukawa couplings are identical to the η couplings. This

implies B(h→ X) = B(η → X). This is the second problem for the model.

3.3.1 Replicating the signal

In the 2HDM there are three channels that can potentially produce the signal, illus-

trated in figure 3·7 We require a 30 GeV resonance that decays to muons, and if the

bb pair arises from a resonant particle it must have a mass of mbb ' 60 GeV. The

first channel is Z → Z∗h where Z∗ → bb and h → µ+µ−. The second has Z → bb

where one of the b quarks radiates an η which subsequently decays into µ+µ−. The

third is Z → hη with h → bb and η → µ+µ−. In all cases but the first we take the

η to be the 30 GeV particle that decays to muons. In theory we could have that be

the scalar h, but when mη < mh it is too easy to violate the unitarity and positivity

bounds that we will discuss in section 3.4.3

The Z∗ channel cannot be strong enough to produce the required signal branching
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ratio Bsignal ' 3 × 10−4. With mµµ = 30 GeV the Z∗ is far off-shell and so the

decay rate is suppressed by factors of the Z mass. It produces the branching ratio

B(Z → Z∗h → bbµ+µ−) = 4.58 × 10−5 × sin2 Θ × B(h → µ+µ−). Since sin Θ needs

to be small to match the observed couplings of H(125) we cannot make this channel

large enough to explain the signal.

The Z → bb channel is also too weak to produce the signal. Generically it yields

the branching ratio B(Z → b(b → µ+µ−b)) = 9.36 × 10−8 × (yη,bbv/mb)
2 × B(η →

µ+µ−). Since increasing the ηbb Yukawa coupling simultaneously decreases the η →
µ+µ− branching ratio, we cannot choose parameters that makes this channel signifi-

cant.

Only the hη channel can contribute appreciably to the signal. Ideally we would

like to find B(η → µ+µ−) ' 1 and B(h → bb) ' 1 to avoid adding other new Z

decays. However, investigating the Yukawa couplings of the scalar particles to the

Standard Model fermions reveals that this is impossible in the 2HDM, as we will now

see.

Yukawa couplings

The decay width of the Z boson is ΓZ = 2.4952± 0.0023 GeV (Particle Data Group,

2016a). The 1σ uncertainty corresponds to a possible additional branching ratio

of 9.2 × 10−4. The ATLAS collaboration has measured the specific decay channel

Z → 4` where the leptons include 4e, 4µ, and 2e2µ (ATLAS Collaboration, 2014c).

The corresponding branching ratio is B(Z → 4`) = (3.2± 0.2) × 10−6, which is

in agreement with the Standard Model prediction of 4.45 × 10−6. This means any

additional branching ratio to four muons from our model must be less than 0.8×10−6

or so.

On the other hand, we can see that an aligned 2HDM that produces the correct

2b2µ signal branching rate necessarily violates either the bound on 4µ decays or the
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bound on the total Z width. This is because, in the alignment limit, all the branching

ratios of the h and η are equal, as in equations (3.24-3.27). The 2HDM contributions

to Z → 2b2µ and Z → 4µ are

B(Z → 2b(2µ)30 GeV) = B(Z → hη)B(η → 2µ)B(h→ 2b) = Bsignal (3.30)

B(Z → 4µ) = B(Z → hη)B(η → 2µ)B(h→ 2µ). (3.31)

The 2HDM contribution to the total Z width includes the Z → 2b2µ and Z → 4µ

channels as well as Z → 4q and Z → 2q2µ. It is enough for our purposes to consider

Z → 4b, which is equal to

B(Z → 4b) = B(Z → hη)B(η → 2b)B(h→ 2b). (3.32)

It follows that

B(Z → 4b) = Bsignal ×
B(η → 2b)

B(η → 2µ)
(3.33)

B(Z → 4µ) = Bsignal ×
B(h→ 2µ)

B(h→ 2b)
= Bsignal ×

(
B(η → 2b)

B(η → 2µ)

)−1

, (3.34)

where in the last line we have used the equality of the h and η branching ratios. If we

are to arrange that Bsignal = 4.7 × 10−4 and B(Z → 4µ) < 0.8 × 10−6 then we must

have B(η → 2b)/B(η → 2µ) > 590. But this then implies that

B(Z → all)2HDM > B(Z → 4b) > 0.28

which is dramatically too large.

There is simply no way to choose couplings in the alignment limit to avoid all the

bounds on Z decays. Note that the argument above did not depend at all on how the

Yukawa couplings were chosen. The only way out in the 2HDM is to leave the align-

ment limit and let | cos Θ| 6= 1. This is constrained, however, by measurements of the
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couplings of the H125 signal strengths, which are the ratios of measured cross-sections

to their Standard Model predictions, µ = (σ × BR)/(σ × BR)SM . Signal strength

measurements from the LHC experiments are consistently within one standard de-

viation of µ = 1 for all processes. Lower limits are typically µ & 0.9 (see (ATLAS

Collaboration, 2014a), (CMS Collaboration, 2015), (Aad et al., 2016) for details.)

The 2HDM signal strengths are proportional to cos2 Θ, meaning | cos Θ| & 0.95.

In general

B(h→ 2b)

B(h→ 2µ)
=

(
mb

mµ

)2

tan4 β ×
(

cos Θ− sin Θ cot β

cos Θ + sin Θ tan β

)2

(3.35)

which differs from B(η → 2b)/B(η → 2µ) by a factor that depends on Θ. However,

the bound cos2 Θ & 0.9 means this is not enough; The h term is too close to the η

term and in general the same argument as above applies and rules out the theory.

In the next section we will see that in a three Higgs doublet model the h and η

Yukawa couplings are uncorrelated, even in the alignment limit. This extra freedom

allows us to produce the correct signal branching ratio while also satisfying the bounds

on Z decays. However, it has another unavoidable problem in the charged scalar

sector, as we shall see. The 2HDM has this issue as well, and it is helpful to look at

it now before we investigate the more complicated situation in the 3HDM.

3.3.2 Charged Higgs Decays

The last new particle of the 2HDM is the charged scalar boson h+. There have been

extensive searches for the h+, as it is one of the most accessible predictions of all

multiple Higgs doublet models.

Our model’s h+ is possibly very different from most. Since it has the same mass-

mixing matrix as the η it also has Yukawa couplings of the same strength. So if the

η decays primarily to µ’s then the h+ will decay mostly to µνµ.
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This is markedly different from standard 2HDMs, where the h+ decays primarily

to either the heaviest possible quark pair or to τντ . This means that almost all past

searches for a charged Higgs potentially miss ours. Hence, we have some freedom in

choosing its mass. If mh+ ≤ 62.5 GeV then it will be ruled out by the large decay

H(125)→ h+h−.

If the η and h+ decay primarily to b quarks then most of the the standard searches

apply and require mh+ & 300 GeV, as summarized in the Particle Data Group review

of charged Higgs searches (Particle Data Group, 2016b).

On the other hand, the strongest limit on a h+ that decays mainly to µ+νµ appears

to come from searches at LEP for pair-production of supersymmetric partners of the

muon µ̃+. They limit mh+ > 95 GeV; see (Particle Data Group, 2016a), for example.

Also, even when the µνµ decays dominate, h+ → tb can still be significant when the

h+ is massive enough. It is excluded by a CMS search for t(b)h± production followed

by h+ → tb with large branching ratio (Eysermans et al., 2016). Based on a CMS

search we estimate on mh+ in our model to be mh+ . 200 GeV.

However, these fermionic decays are almost irrelevant in light of the decisive con-

straint from LHC searches for off-shell weak bosons muons. The h+ contributes to

this process through diagrams like figure 3·8. The W ∗ decays to h+η or h+h. The h+

then decays further to h or η plus on on-shell W . The coupling between the W , h+,

and neutral scalars is

LWss =
mW

v
W+
µ

(
cos Θh−

←→
∂ µh+ sin Θh−

←→
∂ µH125 + ih−

←→
∂ µη

)
+ h.c., (3.36)

which means in the alignment limit the h+ always couples to W+h,W+η at maximum

strength.

We used the Contur analysis tools (Butterworth et al., 2017) to put limits on

the mass of the h+ using data from LHC experiments, as described in detail by
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h, η

h+

W+

h, η
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µ+
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µ−

Figure 3·8: An example of a W ∗ decaying to four leptons through
the charged higgs. Though the pairs of muons arising from the neutral
scalar vertices may have invariant masses that do not pass the ATLAS
cuts (50 < M`` < 120 GeV for at least one pair), other pairings may.
There are enough events of this type that a significant number pass the
cuts and constrain the 2HDM.

Butterworth et al. in (Brooijmans et al., 2018a). We generated simulated events in

many experimental channels using a Monte-Carlo procedure and the 2HDM model

with a range of values for mh+ . The analysis then compared the number of simulated

events to actual data from the same channels. The most constraining channels were

events of the type

qq → γ∗, Z∗ → h+h− → µ+µ− + Emiss
T (3.37)

qq → W ∗ → h±h, h±η → µ±µ+µ− + Emiss
T (3.38)

along with a few other processes. The experimental data was taken from an ATLAS

8 TeV measurement (ATLAS Collaboration, 2016), a CMS measurement of H →
WW (CMS Collaboration, 2017a), and various 7 TeV ATLAS measurements (ATLAS

Collaboration, 2014b) (and see (Brooijmans et al., 2018a) for more). The simulations

predicted many more events of these types than were observed in the data.

This data excludes the entire mass range 95 GeV ≤ mh+ ≤ 200 GeV at a 99.9%

confidence level. The most constraining dataset is the ATLAS four-lepton lineshape.

This is surprising at first, since the ATLAS measurement requires at least one lepton
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pair relatively close to the Z mass (50 < M`` < 120 GeV). However, when h and η

both decay mostly to µ+µ−, and we consider that W has a combined 20% branching

ratio to eν and µν, we can see that a large portion of the signal events have four or

more leptons. So while some pairs of muons come from a narrow, non-Z resonance,

pairs selected from different vertices in the decay have no mass peak. The high

multiplicity and high cross section then mean that many events pass the fiducial

selection of the experiment.

This is a very strong constraint on our scalar models. While the 2HDM was ruled

out even before considering this analysis, we will see that it also rules out the 3HDM

despite the additional freedom that model has in the charged Higgs sector.

3.4 Three Higgs Doublet Model — Trouble with Triples

The two Higgs doublet model cannot explain the Aleph dimuon signal without intro-

ducing additional signals that contradict experiment. We have seen two ways it does

this: the equality of the h and η Yukawa couplings introduce too large Z decays, and

the charged Higgs shows up in LHC data even when it evades most direct searches.

A three Higgs doublet model allows us to circumvent the first of these problems,

but not the second1. We will show how this happens in the 3HDM, which should also

suggest how similar problems would arise in even more general models.

Our 3HDM has the muons couple to the third doublet, H3, and all the other

fermions couple to H2.2 The three doublets all get vevs,

(v1, v2, v3) = v(cos β cos γ, cos β sin γ, sin β) (3.39)

1The next simplest model after the 2HDM is one with two Higgs doublets along with a SU(2)
singlet scalar field, but this has exactly the same problems as the 2HDM.

2In theory we could let up-type quarks couple to one doublet and down-type quarks couple to the
remaining one, but we would then have to choose parameters to suppress both η → bb and η → cc
instead of just the single parameter choice to suppress all quark decays.
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We again introduce a global symmetry that allows the Yukawa structure just

outlined. We must have at least a U(1) symmetry where each doublet has a different

charge, YHa . One possible charge assignment is YH1 = 1, YH3 = −1, YµR = 1, with

all other fields invariant. This protects the coupling structure of H3 with muons, H2

with all other fields, and H1 with none.

Each doublet has subfields

Hi ≡
(

φ+
i

(vi + ρi + iπi)/
√

2

)
(3.40)

that mix to make the physical states. In the symmetry-broken phase there are now

two physical charged scalars, two pseudoscalars, and two physical scalars besides the

125 GeV Higgs. The matrix

T =

 cos β cos γ cos β sin γ sin β
− sin γ cos γ 0

− sin β cos γ − sin β sin γ cos β

 (3.41)

rotates the vevs into the basis where only doublet has a non-zero vev. As in the

2HDM, the top row T also determines the combinations of φ+’s and π’s that form

the longitudinal W+ and Z modes. The analogous combination of ρ’s has exactly

Standard Model-like couplings, though it is not necessarily a mass eigenstate.

The scalar potential becomes

V3HDM =
∑
ij

H†im
2
ijHj +

∑
i

λii(H
†
iHi)

2+

+
∑
i<j

λij(H
†
iHi)(H

†
jHj) + λ̃ij(H

†
iHj)(H

†
jHi)

+ La
(
H†aHbH

†
aHc + h.c.

)
(3.42)

where m2
ij is a hermitian matrix. There are three diagonal quartic couplings and six

off-diagonal quartic couplings, along with the nine mass parameters. This is again
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the most generic CP-invariant potential consistent with a softly-broken global U(1)

symmetry that has different charges for each of the three doublets. The symmetry

allows us to couple the doublets to fermions in a non-flavor-universal way without

introducing flavor-changing neutral currents.

In the term on the last line only one of H†3H1H
†
3H2, H†1H2H

†
1H3, or H†2H1H

†
2H3

is allowed. This term breaks the U(1)3 global symmetry of the potential down to a

single U(1) where 2Ya = Yb + Yc (this is still compatible with the Yukawa structure,

which allows any YH1 6= YH3 6= 0 and YH2 = 0). If more than one of those terms is

present then all three doublets must have the same charge which means no symmetry

protects the Glashow-Weinberg condition and the theory can generate FCNCs. We

hence limit ourselves to just one term at most and Ya 6= Yb 6= Yc. It is fully consistent

to have none of the terms appear and for most of the analysis here we will let L = 0

as it makes several calculations much easier. We will consider it again briefly in the

section on triple-scalar interactions.

The undiagonalized mass matrices are

m2
π =

(
2v2

1λ11 +m2
12
v2
v1

+m2
13
v3
v1
−m2

12 + v1v2λ12 −m2
13 + v1v3λ13

. . .

)
(3.43)

In the 2HDM, the matrix T was enough to diagonalize the charged and pseu-

doscalar mass matrices because they were 2× 2. Now that all the mass matrices are

3×3 the charged and pseudoscalar mass matrices both require an extra mixing angle

to fully diagonalize, corresponding to a rotation around the vector ~v. We writeH(125)

h1

h2

 = W+T

ρ1

ρ2

ρ3

 (3.44)
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GZ

η1

η2

 = W−T

π1

π2

π3

 G+

h+
1

h+
2

 = WcT

φ+
1

φ+
2

φ+
3

 (3.45)

where

W−,c =

1 0 0
0 cos θ−,c − sin θ−,c
0 sin θ−,c cos θ−,c

 (3.46)

and

W+ =

 cΘ −sΘsψ −sΘcψ
sΘsψ−θ+ cψ−θ+cψ + cΘsψ−θ+sψ cΘsψ−θ+cψ − cψ−θ+sψ
sΘcψ−θ+ cΘcψ−θ+sψ − sψ−θ+cψ cΘcψ−θ+cψ + sψ−θ+sψ

 (3.47)

. where cx and sx stand for cos x and sinx. The angle Θ is again the one that

measures the alignment of the H125 couples with those of the Standard Model Higgs

boson. When cos Θ = 1 then W+ takes the same form as W− and Wc with θ+ as its

only remaining mixing angle.

We will again take the 30 GeV resonance to be the lightest pseudoscalar η1. The

signal decay proceeds through Z → η1h1 → 2µ2b, where mh1 ' 60 GeV and the η1

decays mostly to muons.

The couplings that control the decay of Z into h, η now depend on the mass-mixing

angles:

LZss = i
mZ

v
Zµ
(
hi
←→
∂ µηj

)
(W+W

T
− )ij (3.48)

In the alignment limit this has the form

LZss = i
mZ

v
Zµ
(
H125 h1 h2

)1 0 0
0 cos(θ+ − θ−) sin(θ+ − θ−)
0 − sin(θ+ − θ−) cos(θ+ − θ−)

←→∂ µ

 0
η1

η2


(3.49)

Hence, in the alignment limit, the Z → h1η1 decay rate picks up a factor of cos2(θ+−
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θ−) relative to the 2HDM rate in equation (3.23).

3.4.1 Yukawa couplings and signal

The advantage of the 3HDM is that in the alignment limit the Yukawa couplings of

the η1 and the h1 are no longer the same. The Yukawa couplings of the η1 are

yη1,µ =
mµ

v3

(W−T )23 = −mµ

v
cot β sin θ− (3.50)

yη1,b =
mb

v2

(W−T )22 =
mb

v
(cos θ− cot γ sec β + sin θ− tan β) (3.51)

while the h1 couplings are

yh1,µ =
mµ

v3

(W+T )23 '= −mµ

v
cot β sin θ+ (3.52)

yh1,b =
mb

v2

(W+T )22 '
mb

v
(cos θ+ cot γ sec β + sin θ+ tan β) (3.53)

If we choose cos θ− cot γ sec β+ sin θ− tan β ' 0 so that yη1,µ/yη1,b is large then η1 will

decay mostly to muons. As long as θ+ is not very close to θ− it will still decay mostly

to b’s. Note that attempting to make B(η1 → µµ) large by choosing β small has the

same problem as the 2HDM; we need to make use of the extra mixing angles θ± to

make sure h1 and η1 have different branching ratios.

In choosing θ+ we need to take into account equation (3.49) and make sure that

Γ(Z → h1η1) is not too small. We must balance the cos2(θ+−θ−) factor there against

the fact that if θ+ = θ− the h1 and η1 branching ratios will be the same. Figure 3·9
shows that this is possible. There are regions in the θ+ − θ− plane that produces the

correct signal branching ratio without exceeding known bounds on Z → 4µ or the

total Z width. This is true for sizeable ranges of β and γ. For example, with β = 0.2,

γ = 0.5, θ+ = 2.7 and θ− = 1.6 we get Bsignal = 3.58×10−4, B(Z → 4µ) = 3.84×10−8,

and B(Z → all)NP = 7.02 × 10−4. Interestingly, meeting all these requirements

simultaneously requires η1 to decay to muons and b-quarks about half and half. With
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Figure 3·9: Constraints on θ± from bounds on Z decays for γ =
0.5 and β = 0.1. The regions where three constraints are satisfied
separately are shown; B(Z → 4µ) must be less than 10−6 (green region),
the signal branching ratio B(Z → 2b2µ) must be in the range 1− 9×
10−4 (blue region), and the total Z branching ratio to new particles
must be less than 9×10−4 (yellow region). There are two small regions
where all three constraints are satisfied.
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the numbers above, B(η1 → µ+µ−) = 0.51, while h1 goes almost entirely to bb:

B(h1 → bb) > 0.999.

3.4.2 The charged scalars

There are now two physical charged scalars h+
1 and h+

2 , and we must worry about

their contribution to the same channel that ruled out the charged Higgs of the 2HDM.

Like in the 2HDM, we have the basic constraint that both charged scalars must

have mass greater than half of 125 GeV. Besides this, there are two major possible

issues. The extra freedom in the mass mixing angles means that we can possibly

avoid the Contur analysis that ruled out the 2HDM, but it also means that one of

the charged scalars will not decay predominantly to muons, but more like the charged

scalar from a typical 2HDM. The charged scalar that decays to quarks or τ leptons

is subject to many of the existing searches for a charged Higgs. We will investigate

both of these constraints in more detail. Ultimately, the 3HDM is not able to balance

the two constraints and so is excluded.

Fermionic decays

The charged scalars can decay to lepton-neutrino pairs or to quark pairs. Which

fermions each charged scalar decays to is determined by θc, and β and γ. If θc is close

to θ− then h+
1,2 will have similar fermionic decay rates to η1,2. On the other hand, if

θc ' θ− ± π/2 then h+
1,2 will decay like η2,1.

If one of the charged scalars has large branching ratios to quarks the typical

constraints from charged higgs searches apply as in 3.3.2, and it must be quite massive.

If it decays largely to µνµ then its mass must be at least 95 GeV or so, following the

same arguments as in the 2HDM case.

However, like in the 2HDM, once the mass of a charged Higgs is above 100 GeV

or so the fermionic decays are swamped by decays to η1W
+ and h1W

+. Figure 3·10
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Figure 3·10: The decay rates of a charged Higgs h+ in the 2HDM
with mη = 30 GeV, mh = 60 GeV, and β chosen so that h+ and η both
decay muons much more than other fermions. A charged Higgs heavier
than 100 GeV or so decays mainly to a lighter scalar plus a W boson,
despite large muon Yukawa couplings. The situation in the 3HDM is
similar for at least one charged scalar.

shows how the fermionic decays become irrelevant for most of the allowed mass range.

This brings us back to the problem of the LHC W ∗ data.

W ∗ processes

For considering h+ → W+h decays, the relevant couplings in the 3HDM are

LWss =
∑
ij

igW+µ
(

(WcW
T
+ )ijh

−
i

←→
∂ µhj + i(WcW

T
− )ijh

−
i

←→
∂ µηj

)
(3.54)

In the alignment limit this means the W couples to h1h
+
1 and h2h

+
2 with the mixing

factor cos(θc − θ+), and to h2h
+
1 etc. with sin(θc − θ+), and likewise for the η’s with

θ− instead of θ+.

We can use this mixing factor to suppress the processes in the Contur analysis, that

depend on W+∗ → h+
i ηj and h+

i → ηjW
+. Assuming that the rate of η1 → µ+µ−
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is sizeable, the worst process is W+∗ → η1h
+
i → η1η1W

+. For h+
1 this has a rate

proportional to cos4(θc − θ−), and sin4(θc − θ−) for h+
2 .

Generically, if we try to use θc to tune away one of the h+
i → η1W

+ decays the

other will still be large, and the Contur analysis will rule out the 3HDM. There are

some tricky possibilities. By taking θc − θ− ' π/4 we could reduce both the h+
1 and

h+
2 contributions to the W → 4` process by 1/4. Additionally, since the analysis

in section 3.4.2 suggests that B(η1 → µ+µ−) the contribution may be lower than

assumed for the Contur analysis (Brooijmans et al., 2018a).

We have not used Contur to do an explicit analysis of the 3HDM contribution to

W ∗ → 4`, despite these possibilities, for two reasons. The first is that the Contur

analysis so thoroughly excluded a h+ that there is no obvious avenue for exploration;

the factors of 1/2 and 1/4 in the previous paragraph offer little to no hope against

the theory-to-data ratios of 20 to > 100 discovered in the Contur analysis. Especially

when we consider all the possible excluded fermionic decays on the other hand. The

second reason is that it hardly matters if we fix this problem — the 3HDM, and

all other Higgs doublet models, has another critical flaw in the form of triple scalar

decays interactions. We will cover these next.

3.4.3 The neutral scalars

The 3HDM has two additional neutral bosons besides h1 and h2. Three of the neutral

scalars have their masses fixed by the data — mη1 = 30 GeV, mh1 ' 55 GeV, and

mH = 125 GeV. The remaining masses are constrained by perturbative unitarity

and positivity considerations. We shall see that they both must have mass less than

about 200 GeV, which allows them to show up and be excluded by existing searches
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Unitarity and positivity bounds

The quartic couplings of the 3HDM, λ11 etc., are determined by the physical masses

of the Higgs bosons, along with the mixing angles and vacuum expecation values of

the theory. However, for the theory to be sensible they must also satisfy certain other

bounds.

Lee, Thacker, and Quigg showed that if the quartic couplings of a Higgs doublet

model are too large then they can produce four-scalar scattering amplitudes that

violate partial-wave unitarity bounds (Lee et al., 1977). Theories that violate these

bounds must either be non-unitary (which is right out!) or non-perturbative, which is

certainly beyond the scope of this dissertation, and probably excluded experimentally.

The unitarity constraints on the 3HDM can be by generalize the procedure for the

2HDM found in (Kanemura et al., 1993). A set of discrete symmetries in the scalar

potential allows us to reduce the task to constraining the eigenvalues of a few 3 × 3

matrices and 2× 2 matrices, which are not shown here.

A sensible Higgs theory also requires that the scalar potential be bounded from

below. This requires the potential to be positive at large Higgs field strength for all

orientations of the three Higgs fields. We can again obtain the 3HDM constraints by

generalizing the 2HDM procedure found in (Branco et al., 2012). This requires

λij > λii + λjj

λij < 2
√
λiiλjj (3.55)

for all i, j.

Figure 3·11 shows the mass ranges allowed by these two constraints. Neither mh2

or mη2 can be much greater than 100 GeV without violating the bounds. The actual

upper bounds depend on the other parameters of the model in ways that are too

complicated to investigate in detail, but they are mostly insensitive for the range of
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Figure 3·11: Bounds on mh2 and mη2 from the positivity and unitarity
conditions on the 3HDM quartic couplings. Neither coupling can be
much more than 100 GeV, putting both in reach of current experiments.
The other model parameters used are the same as in figure 3·9

parameters that we use.

Triple scalar interactions

Once the doublets of the 3HDM get a vacuum expecation value the quartic part of

the scalar potential generates cubic interactions between the Higgs bosons. These

can be quite large, and they are difficult to avoid, especially since we require at least

one relatively light neutral boson with m = 30 GeV.

The first dangerous decay is H125 → η1η1, and to a lesser extent, H125 → h1h1.

As long as mh2 ,mη2 > 0.5 × 125 GeV those decays don’t happen. In the Standard

Model the decay width of Higgs boson is thought to be no more than a few MeV, and

current experiments agree (Particle Data Group, 2016a; CMS Collaboration, 2016).

Since the Higgs decays to scalars generically have strength

Γ(H → ss) =
mH

16π

(
gHssv

mH

)2

(3.56)
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if Γ(H → ss) � 1 MeV we must have gHss � 1 × 10−2 for all pairs of scalars

lighter than 61.25 GeV. However, the triple scalar couplings are generically O(1) or

larger. Scanning carefully over the angles Θ and β show that it is possible to choose

parameters so that gHη1η1 and gHh1h1 are small enough (gHh1h1 does not need to be

quite so small because when mh1 ' 60 GeV that decay is also suppressed by phase

space). However, it is an extremely small parameter range that successfully suppresses

these two decays. This is no sense a natural choice of parameters. As in the 2HDM,

there is no symmetry that forces this parameter choice, and both parameters run

independently, meaning the two coefficients can only be suppressed at a particular

scale — they will be larger when measured at a different scale.

However, There are other dangerous decays. The fact that mh2 ,mη2 > 60 GeV

means that h1 can decay to η1η1, and possibly h1h1, while η2 can possibly decay to

η1h1 The η1η1 is especially dangerous as η1 decays significantly to µµ, and H → 4µ

was one of the principal search channels for the Higgs boson.

If we do some parameter-counting we can see a problem. The 3HDM potential

is specified by 19 parameters: nine mass terms and nine U(1)3 symmetric quartic

couplings, and possibly one L parameter. The physical parameters of the theory are

also 18. There are the three vevs (or v and the two angles β and γ). There are two

η masses and one η mixing angle, and likewise two charged masses and one η mixing

angle. There are also three scalar masses and three mixing angles, making 15 or 16

physical parameters total.

This means that the values of the triple-scalar couplings are fixed in terms of the

physical masses and mixing angles. The ghηη couplings depend only on the diagonal

quartic couplings and the combinations λij + λ̃ij, and possibly the L coupling. Hence

the couplings depend only on the neutral masses and mixing angles and the vacuum

expectation values.
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Three of the five neutral masses are fixed by experiment; 30 GeV, ∼ 55 GeV, and

125 GeV. Three of of the four mass mixing angles are also highly constrained: Θ

needs to be near 0 or π, and θ+ and θ− are constrained by the signal and Z width as

in section 3.4.1. That leaves the mixing angle ψ, the two vacuum expectation value

angles β and γ, and possibly L as independent parameters, three or four in total.

On the other hand, we need to tune away at least three triple-scalar couplings.

If mh2 ≥ 120 GeV or mη2 ≥ 90 GeV then we likely also need to tune away gh2h1h1

and gη2h1η1 . Numerical scans suggest that even if there is a choice of parameters that

makes these vanish, it is an extremely narrow range.

3.5 Conclusions

At this point we leave off investigating scalar models for the dimuon resonance. The

initial appeal of scalar models is their straightforward-ness and how the relationship

between fermion masses and couplings make it easy to explain flavor-non-universal

effects. But we have seen that even the most minimal scalar models either do not have

enough freedom in their couplings to explain the theory, or add too many unobserved

particles without means to hide them from experiments.

Extending the 2HDM to a 3HDM added extra degrees of freedom that allowed us

to correctly explain the signal without disturbing the Z width. But it also added too

many particles like the h2 and an extra h+ that cannot evade detection. As far as we

can tell, extending the model further would only make these problems worse.

Scalar models that have light scalars will naturally have upper limits for at least

some of their other scalars, as we saw in the 3HDM. Perturbativity and positivity

bounds constrain the size of quartic couplings, but quartic couplings are generically

expressible in terms of differences of squared masses. Hence, we expect that it is not

possible to hide additional scalar states by making them very massive while keeping
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the 30 GeV scalar.

What’s more, we see no indication that there are other ways to hide the decays of

the additional scalars. The triple-scalar interactions exist even with additional sym-

metries added to the theory, as do the couplings to the weak bosons. And the com-

bined requirements of matching physical observables and avoiding unitarity bounds

suggests that there are simply not enough degrees of freedom to tune away all the

bad decays.

The experimental results presented in (Heister, 2016) are intriguing, and call for

more data. This is especially true in light of the difficulty of devising a simple the-

oretical model for the result. More data and more theoretical input are required to

fully understand it.
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