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Abstract
A critical component of any statistical modeling procedure is the ability to assess the goodness-of-fit between a model
and observed data. For spike train models of individual neurons, many goodness-of-fit measures rely on the time-rescaling
theorem and assess model quality using rescaled spike times. Recently, there has been increasing interest in statistical
models that describe the simultaneous spiking activity of neuron populations, either in a single brain region or across brain
regions. Classically, such models have used spike sorted data to describe relationships between the identified neurons, but
more recently clusterless modeling methods have been used to describe population activity using a single model. Here we
develop a generalization of the time-rescaling theorem that enables comprehensive goodness-of-fit analysis for either of
these classes of population models. We use the theory of marked point processes to model population spiking activity, and
show that under the correct model, each spike can be rescaled individually to generate a uniformly distributed set of events
in time and the space of spike marks. After rescaling, multiple well-established goodness-of-fit procedures and statistical
tests are available. We demonstrate the application of these methods both to simulated data and real population spiking in rat
hippocampus. We have made the MATLAB and Python code used for the analyses in this paper publicly available through
our Github repository at https://github.com/Eden-Kramer-Lab/popTRT.
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1 Introduction
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(Georgopoulos et al. 1986; Wu et al. 2002; Pillow et al.
2008; Paninski et al. 2009; Shanechi et al. 2012). This shift
has generated a need for statistical modeling and goodness-
of-fit tools that can address neural coding problems at the
population level.

Considering spikes as localized events in time, which
are most appropriately described using the theory of point
processes, has led to a class of statistical models that has
been highly successful at capturing the coding properties
and dynamics of individual neurons (Kass and Ventura
2001; Truccolo et al. 2005; Pillow et al. 2008). The
traditional neural point process modeling framework relates
the spiking activity of isolated or sorted neurons to their own
recent spiking history, that of other neurons in its network,
and to the behavioral and biological signals to which the
neurons respond (Brown et al. 2002; Smith and Brown
2003; Truccolo et al. 2005; Deng et al. 2013; Arai and Kass
2017). Notable examples include modeling of spatial coding
and movement trajectories using firing in the CA1 region
in the rat hippocampus (Brown et al. 1998; Huang et al.
2009; Eden et al. 2018), as well as the neural decoding
of hand velocities and collective dynamics in the primary

Statistical models have proven to be a powerful approach to
capturing the coding properties of neural systems (Brown
et al. 2004; Kass et al. 2005, 2014; Paninski et al. 2007).
In addition to describing the associations between spiking
activity and the biological and behavioral signals being
represented, they also provide tools for model assessment
and refinement. As electrophysiological experiments have
become more sophisticated, incorporating simultaneous
spiking data from more neurons across multiple brain areas,
the focus of neural data analysis problems has begun to shift
from ones that attempt to understand the tuning properties
of individual neurons to ones that attempt to capture the
combined structure of activity from neural populations
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motor cortex (Georgopoulos et al. 1986; Eden et al. 2004;
Brockwell et al. 2004; Srinivasan et al. 2006). Relating
population neural activity to behavior may be improved if
instead of using spikes sorted according to neural identity,
sorting is skipped entirely, and a joint model of behavior
and features of unsorted spike waveforms across the neural
population is built directly (Kloosterman et al. 2014; Deng
et al. 2015; Sodkomkham et al. 2016).

Models of this type can be described using the theory
of marked point process models (Daley and Vere-Jones
2003), in which each spike is associated with a random
mark variable. In this case, the mark could be the full
spike waveform, but is often taken instead to be some
feature or low dimensional set of features related to the
waveform, such as amplitude or half-width. Marked point
process models can also be used to describe spiking activity
from populations of sorted spikes, where the mark is
often a discrete label indicating into which cluster each
spike was sorted. Due to the generality of this class of
marked point process models and its ability to model
both sorted and unsorted population spiking data, it is
of great importance that a corresponding set of tools for
model assessment and validity, commonly referred to as
goodness-of-fit, be developed. When properly developed
and implemented, these types of model assessment metrics
are helpful for determining whether a model accurately
reflects the structure of a neural representation and whether
the representation remains stable in the face of experimental
dynamics. They can also provide a way to further refine a
given model and understand the specific ways in which it
may be underperforming or lacking fit.

Multiple goodness-of-fit tools have been established for
point process models of individual neurons. Notably, many
of these methods are based on a fundamental theoretical
result known as the time-rescaling theorem (Papangelou
1972; Brown et al. 2002), which states that any point process
representing a neural spike train can be rescaled based on its
instantaneous spiking intensity so that it becomes a simple
Poisson process with a constant spike rate. In terms of model
assessment, this means that for any proposed neural spiking
model, we can rescale the observed spikes according to that
model and assess the goodness-of-fit between the rescaled
spiking and the known properties of Poisson processes.
Notably, researchers often use Kolmogorov-Smirnov (KS)
plots, which compare the empirical distribution of the
rescaled interspike intervals to the distribution of interspike
intervals expected from a Poisson process. This is one of
a range of goodness-of-fit tools made available through the
time-rescaling approach.

However, with the expanding development of these new
marked point process models for population data, there
is a need for a corresponding development of appropriate
goodness-of-fit tools that can be applied generally to these

models. Gerhard et al. (2011) describe an approach based
on time-rescaling multiple univariate point processes. Vere-
Jones and Schoenberg (2004) prove the general time-
rescaling theorem for marked-point processes, but do not
develop its use for goodness-of-fit over a fixed observation
interval. In this paper, we describe a new methodology
that extends these approaches, based on a generalization
of the time-rescaling theorem to marked point processes.
We provide a heuristic proof of the theorem, and illustrate
the method with simulated and real data from population
spiking.

The key idea behind this generalization is to consider
a marked point process model as providing a description
of the spiking intensity about a neighborhood of any mark
value, and to rescale each observed spike individually,
based on its mark. The marked point process time-rescaling
theorem then indicates that the resulting rescaled marked
point process has spikes that are uniformly distributed
in time and mark space, in a region that is defined
by rescaling the observation interval, [0,T] across all
marks. Therefore, assessment of marked point process
models can be performed using goodness-of-fit techniques
for uniformity of the spikes. Additionally, by taking the
superposition of the rescaled spikes over all marks we obtain
a univariate point process in time and a rescaled intensity.
If the original marked point process model is correct, the
resulting process will be an inhomogeneous Poisson process
with the given intensity, allowing for the use of standard
point process goodness-of-fit tools such as KS plots. In fact,
this procedure allows for an extensive array of goodness-of-
fit techniques.

Section 2 will provide a brief summary of point process
modeling methods and the time-rescaling theorem in a
single dimension for general univariate point processes,
followed by a description of the approach for modeling
neural populations as marked point processes. We will then
describe a generalization of the time-rescaling theorem for
these models, and provide a heuristic proof of the theorem.
In Sections 3 and 4, we illustrate our model assessment
method by simulation as well as a real-data application,
respectively.

2Methods for goodness-of-fit based
on the time-rescaling theorem

2.1 The conditional intensity function
and the time-rescaling theorem for univariate point
processes

Define an observation interval [0, T ] and let 0 ≤ s1 <

s2 <, ..., < sn−1 < sn ≤ T be a set of event (spike)
times. Let N(t) be the number of spikes up to time t ,
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which will increase by 1 at times when a spike occurs and
will remain constant otherwise. Any point process N(t)

describing neural spiking can be fully characterized by its
conditional intensity function (Daley and Vere-Jones 2003)

λ(t |Ht) = lim
�→0

Pr(a spike in(t, t + �]|Ht)

�

= lim
�→0

Pr(N(t + �) − N(t) = 1|Ht)

�
, (1)

where Ht = {0 ≤ s1 < s2 <, ..., < sN(t) ≤ t} is the
history of spiking activity up to time t . The conditional
intensity function expresses the instantaneous likelihood
of observing a spike at time t , and implicitly defines
a complete probability model for the point process. It
therefore serves as the fundamental building block for
constructing the likelihoods and probability distributions
needed for the point process data analysis.

The basic idea of the time-rescaling theorem is to
transform a general temporal point process to a constant-
intensity Poisson process by rescaling the spike times.

Theorem 1 (time-rescaling theorem) For a given point
process N(t) with conditional intensity function λ(t |Ht)

with event (spike) times 0 ≤ s1 < s2 <, ..., < sN(T ) ≤ T in
an observation interval [0, T ], let

uj =
∫ sj

0
λ(t |Ht)dt, (2)

for j = 1, ..., N(T ). Then uj are the spike times of
a homogeneous Poisson process with unit intensity rate,
called the rescaled spike times.

Note that uj , j = 1, ..., N(T ), will be independent,
identically uniformly distributed on the observation interval
[0, ∫ T

0 λ(t |Ht)dt] (Ross 1996). Once a point process model
is fitted, we can integrate the estimated conditional intensity
between the observed spike times sj−1 to sj to get a
set of rescaled interspike intervals, ẑj = ûj − ûj−1,
which should be independent, and follow an exponential
distribution with rate equal to 1 if the fitted model is
correct. We can then use well studied methods for assessing
whether the rescaled times are well fit by a unit rate
Poisson process model. For example, the Kolmogorov-
Smirnov (KS) plot, which plots an empirical distribution
from data against a model distribution, can be used to
compare the rescaled interspike intervals to the exponential
distribution. Similarly an autocorrelation analysis of the
rescaled interspike intervals should show no significant
structure at any lag if the estimated conditional intensity
from the fitted model accurately describes the spiking
observations (Brown et al. 2002; Truccolo et al. 2005).

2.2 The jointmark intensity function and the general
time-rescaling theorem for marked point processes

We describe spike data from a neural population using a
combination of the spike time, and another variable, m,
called the mark, which can provide information about the
spike waveform or the identity of the neuron to which
that spike is associated (Kloosterman et al. 2014; Deng
et al. 2015). This mark may be discrete (e.g. Neuron 1 vs
Neuron 2) or continuous (e.g. spike amplitude); it may be
univariate, a vector (e.g. spike amplitude from each channel
in a tetrode), or even a function (e.g. a continuous waveform
function). The population spiking activity is then given by
the set of observations (s1,m1), (s2,m2), ..., (sn,mn).

A marked point process is completely defined by its joint
mark intensity function such that:

∫
M

λ(t,m|Ht)dm

= lim
�→0

Pr(a spike with mark vector m in M in(t, t + �]|Ht)

�
,

(3)

where M is a subset of the mark space M and Ht is
the history of spiking activity, including all the marks, up
to time t . Here λ(t,m|Ht) characterizes the instantaneous
likelihood of observing a spike with mark m at time t .
For fixed value m and t , λ(t,m|Ht) may depend on the
past history of spikes with similar marks (corresponding
to the intrinsic history dependence of each neuron), on
the history of spikes with dissimilar marks (corresponding
to functional connectivity between neurons), and on
the extrinsic covariates that the neural population is
encoding (for example, place and movement coding in rat
hippocampus).

Taking an integral of λ(t,m|Ht) over the entire mark
space M ,

�(t |Ht) =
∫
M

λ(t,m|Ht)dm, (4)

gives the conditional intensity of observing a spike at time
t regardless of the mark value. �(t |Ht) is often called the
ground intensity of the marked point process (Daley and
Vere-Jones 2003).

Marked point process modeling has been successfully
applied to multi-unit spiking data (Kloosterman et al. 2014;
Deng et al. 2015) and to the analysis of simultaneously
recorded spike events (Ba et al. 2014). While some
theoretical results related to time-rescaling of the marked
point processes have been developed (Vere-Jones and
Schoenberg 2004), a complete goodness-of-fit paradigm for
population spiking models over fixed observation intervals
has yet to be established. Here, we present a general time-
rescaling theorem for marked point processes observed on a
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finite observation interval [0, T ], with marks that could be
either continuous or discrete.

Theorem 2 (General time-rescaling theorem) For a marked
point process with observed marks mi ∈ M , i =
1, ..., N(T ), associated with the spike times 0 ≤ s1 <

, ..., < sN(T ) ≤ T and with joint mark intensity function
λ(t,m|Ht). Let

τj (m) =
∫ sj

0
λ(t,m|Ht)dt, forj = 1, ..., N(T ) (5)

be a set of rescaled spike times, let

b(m) =
∫ T

0
λ(t,m|Ht)dt, (6)

be a mark dependent boundary based on the rescaled value
of T for each mark, and letR = {(τ,m) : 0 ≤ τ ≤ b(m)} be
a stochastic region defined by this boundary. Then the joint
distribution of {(τj ,mj )}N(T )

j=1 and the number of spikes in
region R is equal to that of a homogeneous marked Poisson
process with constant mark intensity equal to 1. Therefore,
conditional on the boundary b(m), each (unordered) spike
is independently, uniformly distributed in the region R.

A heuristic proof of this theorem arises from a
simple change of variables. Consider the joint probability
distribution of all of the spike times and marks, which is
given by the product of the joint mark intensity function,
λ(sj ,mj |Hsj ), at the spike locations and the exponential
of the negative integral of λ(t,m|Ht) over the whole time-
mark space:

p({(sj ,mj ), j = 1, ..., n}, N(T ) = n)

=
n∏

j=1

[λ(sj ,mj |Hsj )]e− ∫
M

∫ T
0 λ(t,m)dtdm. (7)

Note that these marked spikes completely specify the joint
mark intensity (which is history dependent) everywhere in
the observation interval and therefore also specify the extent
of the stochastic region R. By the multivariate change-of-
variables formula (Port 1994), the joint distribution of the
rescaled times and marks is given by the expression:

p({(τj ,mj ), j = 1, ..., n}, N(T ) = n)

= p({(sj ,mj ), j = 1, ..., n}, N(T ) = n)

∣∣∣∣∂τ

∂s

∣∣∣∣
−1

. (8)

The elements of
[

∂τi

∂sj

]
are equal to λ

(
sj ,mj |Hsj

)
if i = j ,

and are 0 if i < j . Therefore
[

∂τ
∂s

]
is a lower triangular

matrix, and its determinant is given by the product of its
diagonal terms, | ∂τ

∂s
| = ∏n

j=1 λ(sj ,mj |Hsj ), so that

p({(τj ,mj ), j = 1, ..., n}, N(T ) = n)

= e− ∫
M

∫ T
0 λ(t,m)dtdm = e− ∫

M b(m)dm = e−|R|, (9)

where |R| is the volume of region R. This is equivalent to
the joint distribution of a marked point process with constant
unit joint mark intensity over the region R.

We can further conclude that the number of spikes in
region R follows a Poisson distribution with mean equal to
|R|. Thus the conditional joint distribution of rescaled spike
times given that there are n spikes in the region R is

p({(τj ,mj ), j = 1, ..., n}|N(T ) = n)

= p({(τj ,mj ), j = 1, ..., n}, N(T ) = n)

Pr(N(T ) = n)

= e−|R|

|R|ne−|R|/n!
= n!

|R|n . (10)

This is exactly the joint density function of a temporally
ordered set of independent uniformly distributed events in
the rescaled stochastic region R.

Here, we presented a heuristic proof of the marked
point process time-rescaling theorem based on a change-of-
variables argument with the intension of providing intuition
about the effect of rescaling. A complete proof requires a
few additional details to ensure that the resulting process is
well behaved, and more technical proofs are available in the
literature (Meyer 1971; Brown and Nair 1988; Vere-Jones
and Schoenberg 2004).

Based on the time-rescaling theorem result above, we can
also derive the spike rate for the ground process of all the
rescaled spikes across all marks.

Corollary 1 For a rescaled, marked point process with unit
joint intensity function in region R as defined above, the
(rescaled) spike times will be an inhomogeneous Poisson
process with conditional intensity given by

λ̃(τ ) =
∫
M

λo(τ,m)dm, (11)

where

λo(τ,m) = I{(τ,m)∈R}, (12)

is the indicator function that specifies whether the point
(τ,m) is in the region R or not.

2.3 Simulating amarked point process using
the general time-rescaling theorem

The focus of the remainder of this paper is on using the
generalized time-rescaling theorem to enable methods for
evaluating the goodness-of-fit of a marked point process
model to recorded population spiking data. Before delving
into that topic, it is worth noting that the generalized time-
rescaling theorem can also be used to generate simulated
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spiking data from any joint mark intensity function for a
marked point process. This method parallels the well-known
method for generating a spike train from the conditional
intensity of a univariate point process using the classic
time-rescaling theorem.

For a deterministic joint mark intensity function, λ(t,m),
the simulation procedure is relatively simple. First, compute
the total integrated intensity, � = ∫

M

∫ T

0 λ(t,m)dtdm,
and sample the total number of spikes from a Poisson
distribution with parameter �. For each of these spikes,
sample its location uniformly from the region enclosed by
the boundary, b(m) = ∫ T

0 λ(t,m)dt . This can be achieved
by sampling uniformly a rectangular volume encasing this
region and only accepting samples that are within the
boundary. If the ith uniformly sampled spike has mark mi

and time τi , compute the spike time as si = min{s : τi =∫ s

0 λ(t,m)dt}, where min gives the minimum (technically
the infimum) value of s that satisfies thins integral. The
resulting set of spike times and marks, (si ,mi ) represents
a sample from the marked point process with joint mark
intensity λ(t,m).

When the joint mark intensity depends on its own history,
λ(t,m|Ht), the simulation procedure is slightly more
complicated, as each spike can influence the future values
of the joint mark intensity as well as the computations of
the total integrated intensity, the boundary, and the scaling
of other spikes. In this case, the above procedure can be
performed iteratively. Start by initializing with a history
that includes no spikes, and generate a set of rescaled
spikes. Fix the earliest occurring spike, update the joint
mark intensity to include this spike time, and simulate a
new set of spikes from this time forward. Continue iterating,
fixing the earliest new spike, until you obtain a sample of
zero new spikes from the Poisson sample. This procedure
will produce a sample consistent with λ(t,m|Ht), where Ht

is the history of the sampled spikes.

2.4 Assessingmodel goodness-of-fit using
the general time-rescaling theorem

The marked point process time-rescaling theorem estab-
lishes the joint distribution of the rescaled spikes under the
assumption that the joint mark intensity model is correct.
Therefore, the problem of assessing the goodness-of-fit of
any proposed model can be reduced to the simpler prob-
lem of determining whether the distribution of the rescaled
spike times and marks are consistent with a unit-rate marked
Poisson process, or equivalently, whether the spikes occur
uniformly over the region R.

There are a variety of well studied approaches for
assessing goodness-of-fit based on this rescaled process.
These multiple methods are complimentary in that one
method may detect lack of fit due to particular structure in

the data that may not be detected by another method. A
number of these are discussed in the discussion section, but
here we focus on two relatively simple approaches that are
easy to interpret and highlight multiple ways in which the
model may fit the data well or poorly.

The first approach is based on Pearson’s chi-square
statistic. To implement this, we divide the region R into
M smaller subregions, Ri , each with volume |Ri |, and
count the number of rescaled spikes, ri , in each of these
subregions. The test statistic is

X2 =
M∑
i=1

(ri − npi)
2

npi

, (13)

where pi = |Ri ||R| and n is the total number of points in
R. We select the subregions such that npi is sufficiently
large (say, above 5) in each. If our marked point process
model is correct and the rescaled spikes are uniform in
this region, then X2 will follow a chi-square distribution
with M − 1 degrees of freedom. We will reject the null
hypothesis that the points are uniformly distributed in region
R if X2 > χ2

M−1,1−α , where χ2
M−1,1−α is the critical value

of the chi-square distribution with M − 1 degrees at a level
of significance α.

Another approach for assessing the goodness-of-fit for
the rescaled process is based on the Kolmogorov-Smirnov
(KS) plot. For a univariate (unmarked) point process, if
the model is correct, the rescaled process should be a
homogeneous Poisson process with interspike intervals that
have independent exponential distributions with mean 1.
A KS plot then simply plots the empirical cumulative
distribution function (CDF) of the rescaled times against the
model CDF of an exponential distribution to visualize the
deviation from the 45 degree line (Johnson and Kotz 1970).
For a marked point process, the set of rescaled spike times
(ignoring the mark values) should be an inhomogeneous
Poisson process with rate λ̃(τ ), as defined in Section 2.2.
We can therefore rescale this process one more time, based
on the univariate time-rescaling theorem, construct KS
plots, and make inferences from them. Additionally, we can
perform KS tests to the supposed spikes over any subspace
of the full mark space. That is, the set of rescaled spike
time in a subspace Rs ⊂ R should be an inhomogeneous
Poisson process with rate λ(τ) = ∫

M I(τ,m)∈Rs
dm. This

provides additional methods for detecting model misfit
around particular marks, even when the marginal spike
times over the full mark space is not rejected by the full KS
test.

An alternative approach for constructing KS plots is first
to normalize the rescaled spike times, τj , at each mark by
the value of the boundary at the mark b(m). The following
corollary gives the distribution of the resulting unordered
rescaled spike times.
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Corollary 2 For a marked point process with observed
marks mi ∈ M , i = 1, ..., N(T ), associated with the spike
times 0 ≤ s1 <, ..., < sN(T ) ≤ T and with joint mark
intensity function λ(t,m|Ht). Let

τ̃j (m) = τj (m)

b(m)
=

∫ sj
0 λ(t,m|Ht)dt∫ T

0 λ(t,m|Ht)dt
,

for j = 1, ..., N(T ) be the normalized rescaled spike times.
Ignoring the mark values, these unsorted rescaled spike
times τ̃j are the event times of a homogeneous Poisson
process with rate parameter λ = N(T ).

Note that the resulting transformed marked process is no
longer a spatiotemporal homogeneous Poisson process. On
the other hand, all the normalized rescaled spike times will
lie in the cubic region [0, 1]p, where p is the dimension
of joint time-mark space. The KS plot would then compare
the empirical CDF of the interspike intervals of these
rescaled spike times against the model CDF, the exponential
distribution with parameter λ = N(T ), without the need
for an additional rescaling step. This approach is a general
marked point process analogue of the method described in
Gerhard et al. (2011) for multiple univariate point processes.

We will demonstrate the time-rescaling theorem as well
as these two goodness-of-fit approaches to simulated data
in Section 3, and to real neural population spiking data
recorded from a rat performing a memory-guided spatial
navigation task in Section 4.

3 Simulation study

We developed a set of simple simulation examples to
demonstrate the process of using this general time-rescaling
approach on spike train data, both for models of sorted
spikes and for clusterless models of population spiking.

3.1 Simulation study 1

The first simulation scenario comprises two neurons with
spiking tuned to a single covariate, xt , with coordinated,
history dependent firing and overlapping mark distributions.
We can think of xt as a one-dimensional position variable,
and our neurons as place cells with distinct place fields.
Each neuron has a history dependent structure leading to
a brief refractory period, and neuron 2 has an excitatory
influence on neuron 1 at a lag of 10 time steps.

The position variable, xt , is modeled as a stationary
autoregressive (AR(1)) process. Mathematically, we define
the state update equation for xt as:

xt = αxt−1 + εt , (14)

where α = 0.98 and εt is a zero mean white noise process,
with standard deviation 0.3. The top panel of Fig. 1 shows a
realization of xt , over 10,000 time steps.

Spiking data was simulated according to a marked point
process model with a joint mark intensity function with two
modes, each corresponding to place fields with different
locations in space and mark values. Both the spike time and
mark are generated as a function of the process xt and the
mark can be thought of as a waveform amplitude. The two
peaks are centered at 2 and −2 in position and 11 and 12
in mark space. These peaks are each modeled as Gaussian
functions with peak values of 0.15 spikes per time step and
covariance matrix [0.5, 0; 0, 0.09]. This leads to moderate
overlap between the peaks in the mark space (making
perfect spike sorting impossible) but minimal overlap in the
place coding. Finally, each neuron has a refractory period
defined by the negative of a Gaussian function, centered
at zero lag after a spike and with a standard deviation of
14 time steps, and neuron 2 has an excitatory influence on
neuron 1 defined by a positive Gaussian function, centered
at lag 10 time steps after a spike and with a standard
deviation of 2 time steps.

Mathematically, the population spiking model is given by
the joint mark intensity function

λ(t, m) = [λx1(xt ) + λE1(Ht )] · λH1(Ht ) · N(m; μm1, σ
2
m1)

+λx2(xt ) · λH2(Ht ) · N(m; μm2, σ
2
m2), (15)

where

λx1(xt ) = exp

[
a1 − (xt − μx1)

2

2σ 2
x1

]

and

λx2(xt ) = exp

[
a2 − (xt − μx2)

2

2σ 2
x2

]

represent the place fields for neurons 1 and 2 respectively,

λE1(Ht ) =
N(t−)∑
i=1

exp

[
a3 − (t − si − r)2

2σ 2
1

]
I{si∈S2},

represents the excitatory influence of neuron 2 on neuron 1,

λHj (Ht ) =
N(t−)∏
i=1

[
1 − exp

[
− (t − si)

2

2σ 2
2

]]
I{si∈Sj },

for j = 1, 2 represents the refractoriness of neuron j , and
N(m; μmj , σ

2
mj ) expresses the normal distribution of marks

for neuron j .
Here, N(t−) is the total number of spikes up to, but

not including, time t , and for neuron index j = 1, 2,
Sj are the sets of spike times. The parameters aj are the
numeric values for the peak firing rates, the μxj , μmj are
centers and the σ 2

xj , σ
2
ml are variances in location and mark
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Fig. 1 Simulated spiking from a marked point process model with
joint mark intensity that depends on a state variable xt defined as
an AR(1) process, as defined in Eq. 15. There are 383 spikes in this
example. Panel A: simulated x-values and spike locations in time.
Panel B:mark values of each spike. Red and blue spike colors indicate
whether a spike comes from neuron 1 or neuron 2

space for these 2 place cells, and the σ 2
j is the variance

of excitatory influence and refractoriness. a3 is the peak
excitatory influence from neuron 2 on the firing rate of
neuron 1. The numeric values for these constants used in the
simulation can be found in Table 1.

Figure 1 shows the simulated spiking from this popula-
tion as a function of the simulated xt trajectory. There are
a total of 383 spikes in this example. In panel A, spikes are
shown as a function of time and position as red and blue
dots. The red and blue coloration indicate whether a spike
comes from neuron 1 or neuron 2, respectively. We can see
a set of red spikes that tend to occur whenever xt is near -2,
and a set of both blue and red spikes that occur whenever xt

is near 2. This is due to the place field of neuron 2 and its
excitatory influence on neuron 1. Note that the purpose of
this simulation is not to mimic actual place field populations
accurately and find the best model to fit, but to generate data
that will provide intuition and highlight the ability of the
general time-rescaling theorem to assess the goodness-of-fit
in data with different types of dependence structures.

Using the simulated data, we performed goodness-of-
fit analysis using the time-rescaling theorem we developed
above on three possible spiking models. The first uses the
true model that generated the data from Eq. 15, including
the correct structure for the place fields and the mark
distribution, and the full history dependence capturing the
refractoriness of each neuron and the excitatory influence of
neuron 2 on neuron 1.

The second model uses the correct place and mark
structure of the spiking, but omits the history dependent
structure completely. Mathematically, this is given by the
joint mark intensity function

λ(t, m) = λx1(xt ) · N(m; μm1, σ
2
m1)

+λx2(xt ) · N(m; μm2, σ
2
m2). (16)

The third model uses a crude spike sorting procedure
based on whether each mark value is above or below
11.5, to fit individual intensity models for each of the two
sorted neurons. Each neuron has the correct place field
structure and history dependent structure, but some spikes
are mis-sorted due to the overlap in the mark distribution.
Mathematically, the pair of the intensity models for these
neurons are given by the following equations:

λ1(t) = [λx1(xt ) + λ̃E1(Ht )] · λ̃H1(Ht )

and

λ2(t) = λx2(xt ) · λ̃H2(Ht ) (17)

where the excitatory and refractory history dependent
component now use the sorted spike identities:

λ̃E1(Ht ) =
N(t−)∑
i=1

exp

[
a3 − (t − si − r)2

2σ 2
1

]
I{mi>11.5},

λ̃H1(Ht ) =
N(t−)∏
i=1

[
1 − exp

[
− (t − si)

2

2σ 2
2

]]
I{mi≤11.5},

and

λ̃H2(Ht ) =
N(t−)∏
i=1

[
1 − exp

[
− (t − si)

2

2σ 2
2

]]
I{mi>11.5}.

The parameters for the centers and variances, including
μx1, μx2, μm1, μm2, σx1, σx2, σm1 and σm2, were fit
from the simulated data using a maximum-likelihood
estimate (MLE). The excitatory influence parameter, r , was

Table 1 Simulation study model parameters

a1 a2 a3 μx1 μx2 σx1 σx2 μm1 μm2 σm1 σm2 σ1 σ2 r

log(0.15) log(0.15) log(0.3) -2 2
√
.5

√
.5 11 12 0.3 0.3 2 14 10
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estimated using the method of moments from the cross-
correlation coefficients. The remaining model parameters,
including a1, a2, a3, σ1 and σ2, were assumed to be known.

Figure 2 shows the results of the time-rescaling analysis
applied to each of the proposed models, using the same
simulated spike data. The leftmost panels (Fig. 2a) show the
goodness-of-fit assessment based on the true model and the
true parameters used to generate the data given by Eq. 15.
The next pair of panels (Fig. 2b) to the right show the
analysis using the complete model form in Eq. 15 with
parameters estimated by maximum likelihood. The next
pair of panels (Fig. 2c) to the right show the goodness-
of-fit for the marked point process model in Eq. 16 with
correct mark and state dependence, but missing the history
dependent component and with estimated parameter values.
The rightmost panels (Fig. 2d) show the goodness-of-fit
based on crudely sorted spikes given by the models in Eq. 17
with the correct state and history dependence structure and
estimated parameters. The top panels show the rescaled
spike times for each model. For the top-right panel, this is
just the rescaled spikes for the two sorted neurons. For the
other top panels, the rescaled spike times are given by blue
dots, and the rescaled values of the end of the observation

interval, τ(m, T ), are shown as a function ofm as a solid red
line. The bottom panels show KS plots for all of the rescaled
spike times under each of these models.

For the true model with the true parameter values, the
value of τ(m, T ) has local peaks around mark values of
11 and 12, corresponding to the two peaks in the joint
mark-intensity function at these values. The peak around
m = 11 is larger because of the excitatory influence in the
history dependence from neuron 2 to neuron 1. Visually, the
rescaled spike times appear to fill out this rescaled time-
mark subspace uniformly. To perform the Chi-square test,
we partitioned the mark space into a grid with M equal
segments, and partitioned the rescaled region R up into M

subregions Ri . The number M was chosen such that the
expected number of spikes in each subregion is above 5.
We then counted the number of rescaled spikes, ri , in each
of these subregions and calculated the Chi-square statistic
by Eq. 13. The Pearson chi-square test for homogeneity of
the rescaled times in this interval yields a p-value of 0.37,
suggesting no clear evidence of inhomogeneity. The KS
plot everywhere stays within its 95% significance bounds,
suggesting no clear lack of fit among the full set of rescaled
spike times.
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Fig. 2 Goodness-of-fit analysis for simulated data based on candi-
date models: Leftmost panels (a) use the true model and parameter
values that generated the data, including correct structure for place
fields, marks, and history dependence; Middle-left panels (b) use
the complete model with parameters estimated by maximum likeli-
hood; Middle-right panels (c) use an estimated model that includes
the correct structure for place fields and marks, but omits the his-
tory dependence; Rightmost panels (d) use an estimated model that
includes correct structure for place fields and history dependence, but
uses crude spike sorting rather than true mark structure. Top panels
show rescaled spike times (blue dots) and observation intervals (red
line) across all mark values. For spike sorted model, rescaled times

for each cluster are shown. Bottom panels show KS plots based on all
rescaled spike times. The true model produces rescaled spikes that are
uniformly distributed in time-mark space with p-value= 0.37 for the
Pearson chi-square test and a KS plot that stays within 95% confidence
bands. The estimated true model produces rescaled spikes that are not
uniformly distributed in time-mark space with p-value ≤ 10−5 for the
Pearson chi-square test and a KS plot that stays roughly within 95%
confidence bands. The Pearson chi-square test for the model missing
history dependence has a p-value < 10−5, indicating non-uniformity
of rescaled spikes. The two intensity models for the sorted spikes
demonstrate lack of fit in the KS plots
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The middle-left panels (Fig. 2b) show the goodness-of-
fit analysis results using this same model, with parameters
estimated by maximum likelihood. It is immediately evident
that the quality of fit differs for the model between the true
and estimated parameter values. The two clear modes in the
boundary region under the true parameters are not present
in the boundary using the estimated parameters, and there
are evident regions where the density of the rescaled spikes
in reduced. The Pearson test for uniformity now gives a
p-value of p = 1.1 × 10−10. Similarly, the KS plot now
slightly departs from its 95% bounds, suggesting some lack
of fit due to the imprecision of the parameter estimates.

For the marked point process model missing the history
dependent structure (middle-right panel (Fig. 2c)), the peak
around m = 12 is larger because xt stays near the place
field of neuron 2 more often than neuron 1, while the
missing history dependence does not affect the intensity.
By eye, it seems that the rescaled times for mark values
below 11.5 occur more densely than those for mark values
above 11.5. This is borne out by the Pearson chi-square test
(p < 10−10), which suggests inhomogeneity on the rescaled
times, and therefore lack of fit between the model and the
original spike data. The lack of fit is also visible in the KS
plot, where the observed rescaled interspike intervals are
consistently significantly larger than the model estimates.

The panel on the top right shows the rescaled times
based on two sorted clusters. As a population model, this
could be considered as a marked point process where
the marks represent the cluster assignment. In that case,
rescaling each spike according to its mark is equivalent to
rescaling based on the intensity for whichever neuron the
spike is clustered into. Missorted spikes therefore tend to be
incorrectly scaled, leading to lack of fit, as observed through
the KS plot.

3.2 Simulation study 2

We performed a second simulation to illustrate how the KS
plot and chi-square test highlight different aspects of the
goodness-of-fit. We consider again the same two neurons
tuned to a single covariate xt , and remove the history
dependence of spiking, so that two neurons are simply
inhomogeneous Poisson spiking units. In this case, the true
joint mark intensity model, from which we generate the
data, has the same form as Eq. 16, with parameters given in
Table 1.

Figure 3 shows a goodness-of-fit analysis on the resulting
data for four different candidate models we propose, Fig. 3a,
the true model, Fig. 3b and c, two models whose λ(t, m) are
uniformly scaled by 0.56 and 1.6, respectively, and Fig. 3d,

Unifom scaling

p=0.35p=0.35

p=0.38

p=0.35 p=1.5 x 10

p=0.57

-6

p=6.8 x 10
-9

p=8.1 x 10
-12

True model Unifom scaling Non-unifom scaling
a b c d

Fig. 3 Goodness-of-fit analysis for simulated data based on four can-
didate models: The top panels show the rescaled spikes (blue) and
region, R (red), and the p-values for the chi-square test; the lower
panels show KS plots and corresponding p-values. The models are
(left panel) true model, (next two panels) true model λ(xt , m) scaled
uniformly by 0.56 and 1.6, and (right panel) true model whose compo-
nents ac, c = 1, 2 scaled separately by 0.56 and 1.6, respectively. The

last model roughly preserves overall firing rate. KS plots detect the
correctness of the firing rate irrespective of mark value, while the Pear-
son chi-square test characterizes how well the model captures mark
structure of the joint mark intensity, which explains why the middle
two wrong models still pass the Pearson chi-square test, while the last
model passes the KS test



156 J Comput Neurosci (2018) 45:147–162

a non-uniformly scaled model, with ac (from Table 1) scaled
separately by 0.56 and 1.6, for c = 1, 2. Rescaling of
the spikes according to the true model λ(t, m) produces
good fits according to both tests, while the uniformly
scaled candidate models pass the Pearson chi-square test
with p-value 0.35, but the KS plot are far from being
in the 95% confidence bounds. The deviation direction
from the 45 degree line can be used to determine that
the misspecified models underestimate and overestimate
the intensity, respectively. Utilizing 523 spikes, the non-
uniformly scaled candidate model, where each neuron has
been scaled separately while keeping the overall firing rate
close to that generated by the true model, passes the KS
test, but the chi-square p-value is very small at 1.5 × 10−6,
highlighting the complementarity of the tests.

While the overall pattern of rescaled interspike intervals
doesn’t show lack of fit, the rescaled spikes are more
concentrated at low mark values and less concentrated at
high mark values. This example illustrates the importance of
having multiple goodness-of-fit approaches to characterize
different features of the data that may be captured or
misspecified by a model. In this example both the KS
analysis and the Pearson chi-square test are enabled by
time-rescaling of the marked point process.

3.3 Simulation study 3: power analysis

In this subsection, we perform a third simulation to illustrate
how the sample size N(T ) affects the statistical power for
chi-square and KS tests in each of our simulation models.
We consider again the same two neurons with spiking tuned
to a single covariates, xt , with history dependent firing and
overlapping mark distributions, as described in Eq. 15. In
this case we compare the ability to detect model misfit in
three models, the true model that generated the data, the
misspecified model that is missing history dependence, and
the crude sorted spike model.

We simulated spike trains with increasing duration
ranging from .5 to 20 seconds, and performed a goodness-
of-fit analysis using the time-rescaling theorem and Pearson
and KS tests we described above on these three possible
spiking models. We repeated each simulation 100 times and
recorded the resulting Pearson uniformity test and KS test
p-values. Figure 4 shows the power as a function of the
expected number of spikes on the rejection rate of Pearson
(left panel) and KS (right panel) tests for the three different
models, the true model (black), the missing history model
(red), and the sorted spike model (blue). The rejection rate
is calculated as the proportion of p-values smaller than a
significance level of 0.05.

From both panels, we see that when the expected number
of spikes is small, both the Pearson uniformity test and KS
test reject the hypothesis of a well-fit model a relatively
small fraction of the time. For example, as seen in the left
panel of Fig. 4, the rejected fraction of simulations using the
Pearson uniformity test for the misspecified missing history
model is around 0.4 when the expected number of spike is
about 20, and increases to 1 as the expected spike count
increases to 800. We can also see similar trend for the KS
test for both the missing history model and the sorted spike
model. Note that the rejection rate of KS test for the sorted
spike model increases more slowly than that of the missing
history model, due to the misspecification of the latter. Also,
as the expected spike count becomes large, both tests will
reject with a probability approaching 1.

4 Data analysis

We analyzed recordings from tetrodes placed in the CA1
and CA3 regions of hippocampus of 3 rats traversing a W-
shaped environment, performing a continuous alternation
task. Spikes were detected offline by choosing events whose
peak-to-peak amplitudes were above a 40μV threshold in

Fig. 4 Power analysis: sample
size effect Chi-square and KS
test The effect of the expected
spike count on the rejection rate
of 100 realizations of the
Pearson uniformity (left panel)
and KS (right panel) tests for
three different models, the true
model (black line), the missing
history model (red line), and the
sorted spike model (blue line).
The gray dotted lines indicate
the significance level of 0.05
and the power = 1 value
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at least one of the channels. For each spike, the peak
amplitudes across each electrode channel were used as a 4-
dimensional mark. Some spikes with lower amplitude peaks
may include events whose origin may not be from well-
isolated neurons sought in traditional spike-sorting, and may
well simply be electrical noise. These spikes are referred to
as ”hash spikes”, and exist on a continuum extending below
the single channel threshold often used for spike detection.
In our clusterless population model, we include these hash
spikes. We model the joint mark intensity using a mixture
of Gaussians (MoG).

λ(t,m) = (18)
M∑

c=1

λc exp

[
− (xt − fc)

2

2σ 2
c

− (m − μc)
T �c(m − μc)

2

]

where M is the number of Gaussian components, xt is
the position of the animal, m is the four-dimensional mark
vector, and fc, σ 2

c and μc, �c are the means and covariances

in position and mark spaces, respectively. Model parameters
were estimated marginally, using the empirical median of
the Gibbs samples (Geman and Geman 1984; Gelfand and
Smith 1990) for each component as an estimator. We note
that the fixed M is estimated at the start of the Gibbs
sampling procedure, and is not the number of putative
neurons that a traditional spike sorting would estimate, but
is conceptually the sum over all neurons of the number of
place fields that each neuron has. For the tetrode shown in
Fig. 5, M = 31, and for the summary in Fig. 6c of the 30
tetrodes, M ranged from 15 to 40.

Figure 5 shows the mark data from a single example
tetrode from animal 1. Figure 5b shows the time and
position of occurrence of unsorted spikes, tracing out the
path a rat traveled in the maze. Figure 5c, right, shows the
mark value of each spike, the spike peak amplitude on each
channel, as a function of time. Spikes are seen to occur
preferentially at certain times, indicating place specific
firing from one or more neurons. Figure 5c, left, shows

a

c

b

Fig. 5 Unsorted spikes and their marks from rat CA3 as it traverses
a W-shaped maze, and fitted mark intensity function: a Schematic of
the maze. There are 4 landmarks, the home well H, the choice point C
and the left L and right R reward wells. b Timing and location of all
observed spikes in the 1-dimensional position representation. c Left,

the fitted joint mark intensity function and spikes, shown in all com-
binations of 2-dimensional projections. Orange dots are spikes, and
the darker color shows higher intensity. Right, timing and mark (spike
amplitude) in each of the tetrode channels of observed spikes. The
clustering of spikes in time is a consequence of place-specific firing
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the 5-dimensional joint mark intensity function, estimated
based on Eq. 18, displayed two dimensions at a time. The
rightmost column shows the place-specific firing structure,
while the rest of the rows show various projections of the
spike waveform features familiar to practitioners of manual
spike sorting. Figure 6 shows the results of a time-rescaling
analysis of the joint mark intensity function. Figure 6a
shows the rescaled times and marks for each channel using
the estimated joint mark intensity in Fig. 5c. Here, we do
not expect the time-rescaled spikes to appear uniform for
each 2D projection, since the other mark dimensions on
which the rescaling depends have been collapsed, leading to
high density at shorter times. The KS plot in Fig. 6b shows
that the rescaled spikes stay in the 95% confidence bounds
(KS test p-value = 0.81), and for the accompanying chi-
square test for uniformity, we obtained a p-value of 0.25,
suggesting that these tests do not identify substantial lack of
fit in this model.

Figure 6c shows a summary of p-values of the KS and
chi-squared tests for the MoG model fits. In about half
the cases, the MoG model produced good fits to the data
(13/30 passed both KS test and chi-squared tests with p-
values > 0.05). We further utilized the GoF test to compare
the MoG model to the kernel-based (KB) model described
in detail in Deng et al. (2015). The KB model places a
Gaussian kernel around the position and mark of each spike,
whose bandwidth (BW) parameters {Bx, Bm, bx} can be
varied to use more or less smoothing over the position
and mark space. Under this model, the joint mark intensity
function is estimated from N spikes observed at times
{s1, ...sN } as

λ(xt ,m) =
∑N

n Ks(xt − xsn)Km(m − mn)

�t
∑T

i Ko(xt − xi)
(19)

a b

c d

Fig. 6 Rescaling analysis for unsorted spikes and their marks from rat
CA3: a Time-rescaled spikes in each of the 4 tetrode channels. The
same spikes appear in each of the 4 panels at the same rescaled time,
but at different mark values. b The corresponding KS plot. The p-
values for the KS test and Pearson chi-square test are = 0.81 and =
0.25, respectively. c Summary from 10 tetrodes each from 3 animals of

p-values of the KS and Pearson chi-square tests (13/30 passed both
with p-values > 0.05 for both tests) of the MoG fit of the CA1 or
CA3 spiking activity. d A comparison of goodness of fit of MoG and
KB models for the spiking activity. 3 tetrodes from each animal were
chosen for MoG and KB goodness-of-fit comparison
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where �t is the bin size of the discretized time steps of the
data, T is the total number of time bins, and the kernels are
Ko(x) = 1√

2πb2x
exp

[
− x2

2b2x

]
, Ks(x) = 1√

2πB2
x

exp
[
− x2

2B2
x

]

and Km(m) =
(

1√
2πB2

m

)K

exp
[
−m·m

2B2
m

]
. BW parameters

were selected by maximizing the leave-one-out cross-
validated likelihood of the observed spike data (Prerau and
Eden 2011). Figure 6d shows a comparison, for 9 of these
tetrodes, between the fit of this MoG model to the KB
model. Many tetrodes land in the upper-right corner, where
both MoG and KB models provide good fit. However, these
points tend to be above the 45 degree line, suggesting
improved generalizability of the MoG model.

5 Discussion

5.1 General comments

In this paper, we developed a general toolbox for assessing
statistical models of neural populations based on a general-
ization of the time-rescaling theorem. Given technological
advances in neural data acquisition, experiments involving
multiple electrodes have now become standard in the prac-
tice of neuroscience, making these neural population models
of great interest. Understanding these network structures
sheds light on how groups of neurons interact with, react and
respond to one another and help define possible functions of
regions of the brain (Chen et al. 2011; Macke et al. 2011).
In addition, the prevalence of multiunit data has brought
into question the necessity of spike sorting in every neural
population analysis. While many population analyses begin
with a spike sorting step and a characterization of the recep-
tive field properties of each sorted neuron, multiple recent
experiments have explored the power of clusterless popu-
lation models (Kloosterman et al. 2014; Deng et al. 2015).
Therefore it is valuable to have goodness-of-fit tools that
can apply equivalently to both sorted and clusterless pop-
ulation models. A fundamental challenge in assessing the
goodness-of-fit of models of spiking systems is that the tim-
ing of each spike has its own distribution, based on many
factors that can include coding of dynamic biological and
behavioral variables, past spiking history, network effects,
and adaptation. The time-rescaling theorem allows us to
take any candidate model, and all the dependence structures
it describes, and rescale the spikes in such a way that, if the
model is correct, they should become samples from a sim-
ple uniform distribution. We can then use well-established
methods for assessing uniformity to assess the quality of the
original model used for rescaling. Furthermore, by taking
only the rescaled spike times and disregarding the marks, we

can generate a new univariate spike train and use the many
existing goodness-of-fit tools for individual spike trains to
assess the quality of the joint mark intensity model. An
important feature of this general time-rescaling theorem is
that not only are the spike times rescaled, but the observa-
tion interval [0, T ] is also rescaled for each possible mark
value. Since a joint mark intensity model can depend on
other stochastic processes (such as its own history or the
biological and behavioral variables encoded by the pop-
ulation), the intensity is itself a stochastic process, and
therefore the rescaled observation region is also stochastic.
Therefore, the assessment of uniformity is based both on the
rescaled spike times and the rescaled region.

5.2 Simulation and data analyses

We illustrated our approach via a series of simulation
analyses as well as an application involving place cell
spiking activity from the CA3 region of the hippocampus
in a rat performing memory guided navigation task on a W-
shaped maze. In the first simulation, we implemented the
goodness-of-fit tests in three different model fits: the true
model, a model intentionally missing history-dependence,
and a model for which the mark corresponds to one of
two labels given by spike sorting. As expected, the results
indicated proper fit with the true model, and a lack-of-
fit in both the model missing history dependence as well
as the sorted model. This demonstrated the ability of
the approach to discern different reasons for lack of fit.
Importantly, we could assess the quality of fit for both
sorted and clusterless spiking models and determine the
degree to which sorting affected the model fit. In our second
simulation, we demonstrated that distinct goodness-of-fit
measures, both based on the same time-rescaling approach,
could be used to determine different aspects of the model fit
quality. Incorrectly scaling the intensity uniformly over all
marks led to lack of fit evidenced by the KS plot but not the
assessment of uniformity; differentially scaling subsets of
mark values, as might occur with a model that misspecified
the receptive fields of particular neurons, led to lack of fit
evidenced by lack of uniformity.

In our real-data example, we used a 4-dimensional mark
representing the waveform peak amplitudes across a tetrode
to exhibit the ability to generalize to more complicated mark
spaces. The fit of a Gaussian mixture model with no history
dependence captured much of the temporal structure, as
evidenced by the KS plot, but perhaps fit the spikes in
some mark regions better than others, as suggested by the
analysis of uniformity in disjoint subsets of the mark space.
A follow-up analysis, suggested that the model may not be
capturing the hash spikes as well as the higher amplitude
spikes.
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5.3 Extensions and limitations

In this paper we focused on two goodness-of fit measures
that could be applied to the rescaled spike times and
marks, a Pearson chi-square test comparing the expected
and observed number of spikes in subsets of the rescaled
observation region, and a KS plot analysis based on
rescaling the rescaled spike times again based on the
expected rescaled spiking rate. However, there are a variety
of other goodness-of-fit tools available after rescaling that
could also be used, either instead of, or to compliment these
analyses. For example, a well-studied statistical approach
for assessing uniformity is based on Ripley’s K-function
(Ripley 1977). This function, K(x, r), is defined as the
expected number of points within a ball b(r) with radius
r centered at x. For uniform rescaled spikes, this function
should grow as rd , where d is the dimension of the mark-
time space. We can compute the empirical K function,
K̂(r) = 1

n

∑
i �=j Idij

< r/n, where dij is the Euclidean
distance between rescaled spikes i and j , and Idij

< r is
equal to 1 if that distance is less than r , and otherwise 0. We
can then compare the empiricalK function to the theoretical
one under a uniform model to assess the quality of our
original model. We can also construct confidence intervals
for the estimated function and compute a corresponding p-
value via Monte Carlo simulations (Baddeley et al. 2005).
A variety of other well-documented and tested methods are
also available (Petrie and Willemain 2013) and could be
used interchangeably with those we specifically mention in
this paper. A few examples include those that perform a
two-sample test on a subsample of points in a high-density
region and a subsample in a low-density region (Jain et al.
2002), or those that consider the distribution of distances
from points to the boundary of support, both in the case
of known support (Berrendero et al. 2006) and unknown
support (Berrendero et al. 2012).

It is important to note that no single goodness-of-
fit technique can demonstrate that a model completely
captures the statistical structure present in a data. Thorough
model assessment requires applying multiple goodness-of-
fit tools to characterize the ways in which a model fails
to capture different features of the data. Here, we focus
on goodness-of-fit approaches that are enabled by time-
rescaling, which have been used extensively for models
of sorted spike train data. These approaches, along with
complementary methods, such as those based on the model
deviance, cross-validation, residual analysis, and auto and
cross-correlation estimation, provide a powerful toolbox for
model assessment (Ogata 1988; Truccolo et al. 2005; Kass
et al. 2014).

There are a number of extensions and avenues for
future exploration for this goodness-of-fit framework. In
the simulations, we provided examples of how assessments

based on time-rescaling could be used to help identify areas
of lack of fit, and to suggest refinements to population
spiking models. The ways in which different measures
might be used for model refinement should be explored in
more detail, and specific recommendations could be made
about the best measures to use to identify particular features
that should be added or altered in a model. Also, in our
examples, we limit the standard point process goodness-of-
fit analysis to KS plots but with the appropriate adaptations
and generalizations, one could also employ other common
techniques such as the QQ plot, autocorrelations of rescaled
wait times, or a Fano Factor analysis to assess dispersion.

Another possible extension might focus on mark
rescaling rather than time-rescaling. We could retain the
observed times of each spike, and modify each spike mark to
produce uniform spikes over a stochastic region with a fixed
temporal extent, but random mark boundaries. For a one-
dimensional mark, this could be achieved by replacing the
mark of the ith spike, mi , with the integral

∫ mi

0 λ(ti , m)dm

(Merzbach and Nualart 1986). An advantage of such an
approach would be that the spike times would remain the
same and be interpretable. For example a cluster of points
at a particular time point might suggest model lack of fit
specific to that time. However, since the temporal pattern
of spikes would be unchanged, it would still retain all
the temporal dependence structure in the original data.
Additionally, how to best rescale in general mark spaces is
still unknown.

Additional research could also be done on improving the
computational burden of these methods in high dimensional
mark spaces. While the rescaling of times is based only
on the number of spikes, not the dimensionality of the
marks, the computation of the boundary of the stochastic
region will grow in complexity with the mark dimension,
and it can be challening to determine which model features
lead to lack-of-fit. There may be multiple ways to deal
with this, including methods of efficiently approximating
the boundary assuming smoothness of the intensity, or
goodness-of-fit measures that are less sensitive or do not
require direct knowledge of the full boundary.

With this method, we provide model assessment tools
that can be used appropriately for both population
models and sorted models and and help collect more
detailed information on their respective fits. In this
way, researchers can better understand the advantages
and disadvantages posed by population and single-unit
modeling. Ultimately, this could provide significant insights
into the question of when neural network structures can
be better understood with spike sorting or direct ensemble
modeling. Additionally, as experiments head in more
complex directions and datasets become richer, modeling
methods will need to improve and develop alongside
them. For researchers to maintain confidence in any
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conclusions drawn from the application of a particular
modeling approach, a corresponding goodness-of-fit toolset
is essential. Here, we present a general goodness-of-fit
approach that can assess and indicate areas of lack-of-fit
for a wide variety of population spiking models, enabling
researchers to gain more understanding and insight into the
increasingly complex data structures being made available
in neuroscience. We have made the MATLAB and Python
code used for the analyses in this paper publicly available
through our Github repository at We have made the
MATLAB and Python code used for the analyses in this
paper publicly available through our Github repository at
https://github.com/Eden-Kramer-Lab/popTRT.
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