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How does the brain maintain stable fusion of 3D scenes when the eyes move? Every
eye movement causes each retinal position to process a different set of scenic features,
and thus the brain needs to binocularly fuse new combinations of features at each
position after an eye movement. Despite these breaks in retinotopic fusion due to each
movement, previously fused representations of a scene in depth often appear stable. The
3D ARTSCAN neural model proposes how the brain does this by unifying concepts about
how multiple cortical areas in the What and Where cortical streams interact to coordinate
processes of 3D boundary and surface perception, spatial attention, invariant object
category learning, predictive remapping, eye movement control, and learned coordinate
transformations. The model explains data from single neuron and psychophysical studies
of covert visual attention shifts prior to eye movements. The model further clarifies how
perceptual, attentional, and cognitive interactions among multiple brain regions (LGN, V1,
V2, V3A, V4, MT, MST, PPC, LIP, ITp, ITa, SC) may accomplish predictive remapping as part
of the process whereby view-invariant object categories are learned. These results build
upon earlier neural models of 3D vision and figure-ground separation and the learning of
invariant object categories as the eyes freely scan a scene. A key process concerns how an
object’s surface representation generates a form-fitting distribution of spatial attention, or
attentional shroud, in parietal cortex that helps maintain the stability of multiple perceptual
and cognitive processes. Predictive eye movement signals maintain the stability of the
shroud, as well as of binocularly fused perceptual boundaries and surface representations.

Keywords: depth perception, perceptual stability, predictive remapping, saccadic eye movements, object

recognition, spatial attention, gain fields, category learning

1. INTRODUCTION
1.1. STABILITY OF 3D PERCEPTS ACROSS EYE MOVEMENTS
Our eyes continually move from place to place as they scan a scene
to fixate different objects with their high resolution foveal rep-
resentations. Despite the evanescent nature of each fixation, we
perceive the world continuously in depth. Such percepts require
explanation, if only because each eye movement causes the fovea
to process a different set of scenic features, and thus there are
breaks in retinotopic fusion due to each movement. Within a
considerable range of distances and directions of movement, the
fused scene appears stable in depth, despite the fact that new
retinotopic matches occur after each movement. How does the
brain convert such intermittent fusions into a stable 3D percept
that persists across eye movements?

This article develops the 3D ARTSCAN model to explain and
simulate how the brain does this, and makes several predictions
to further test model properties. The model builds upon and
integrates concepts and mechanisms from earlier models:

FACADE (Form-And-Color-And-DEpth) is a theory of 3D
vision and figure-ground separation that proposes how 3D

boundaries and surfaces are formed from 3D scenes and 2D pic-
tures that may include partially occluding objects (Grossberg,
1994, 1997; Grossberg and McLoughlin, 1997; Grossberg and
Kelly, 1999; Kelly and Grossberg, 2000; Grossberg et al.,
2002, 2007, 2008; Grossberg and Swaminathan, 2004; Cao and
Grossberg, 2005, 2012; Grossberg and Yazdanbakhsh, 2005; Fang
and Grossberg, 2009). The articles that develop FACADE also
summarize and simulate perceptual and neurobiological data
supporting the model’s prediction that 3D boundary and surface
representations are, indeed, the perceptual units of 3D vision.

aFILM (Anchored Filling-In Lightness Model) simulates psy-
chophysical data about how the brain generates representations of
anchored lightness and color in response to psychophysical dis-
plays and natural scenes (Hong and Grossberg, 2004; Grossberg
and Hong, 2006).

ARTSCAN (Grossberg, 2007, 2009; Fazl et al., 2009) models
and simulates perceptual, attentional, and neurobiological data
about how the brain can coordinate spatial and object attention
across the Where and What cortical streams to learn and recog-
nize view-invariant object category representations as it scans a
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2D scene with eye movements. These category representations
form in the inferotemporal cortex in response to 2D boundary
and surface representations that form across several parts of the
visual cortex. In order to learn view-invariant object categories,
the model showed how spatial attention maintains its stability in
head-centered coordinates during eye movements as a result of
the action of eye-position-sensitive gain fields.

These earlier models did not, however, consider how 3D
boundary and surface representations that are formed from
binocularly fused information from the two eyes is maintained as
the eyes move to fixate different sets of object features. The cur-
rent article shows how the stability of 3D boundary and surface
representations and of spatial attention are ensured using gain
fields. With this new competence incorporated, the 3D ARTSCAN
model can learn view-invariant object representations as the eyes
scan a depthful scene.

3D ARTSCAN is also consistent with the pARTSCAN (posi-
tional ARTSCAN) model (Cao et al., 2011), which clarifies how an
observer can learn both positionally-invariant and view-invariant
object categories in a 2D scene; the dARTSCAN (distributed
ARTSCAN) model (Foley et al., 2012), which clarifies how
visual backgrounds do not become dark when spatial attention
is focused on a particular object, how Where stream transient
attentional components and What stream sustained attentional
components interact, and how prefrontal priming interacts with
parietal attention mechanisms to influence search efficiency; and
the ARTSCAN Search model (Chang et al., 2014), which, in
addition to supporting view- and positionally-invariant object
category learning and recognition using Where-to-What stream
interactions, can also search a scene for a valued goal object
using reinforcement learning, cognitive-emotional interactions,
and What-to-Where stream interactions. It thereby proposes a
neurobiologically-grounded solution of the Where’s Waldo prob-
lem. With the capacity of searching objects in depth added,
which the results hereby about 3D perceptual stability permit,
a 3D ARTSCAN Search model could learn and recognize both
positionally-invariant and view-invariant object categories in a
depthful scene, and use eye movements to search for a Where’s
Waldo target in such a scene, without disrupting perceptual
stability during the search.

Section 1 summarizes conceptual issues and processes that
are needed to understand and model the maintenance of 3D
perceptual stability across saccadic eye movements. Section 2
heuristically reviews the ARTSCAN model upon which the 3D
ARTSCAN model builds. Section 3 provides a heuristic descrip-
tion of 3D ARTSCAN concepts and mechanisms. Section 4 sum-
marizes simulation results using the 3D ARTSCAN model that
demonstrate 3D perceptual stability across saccadic eye move-
ments. Section 5 summarizes the mathematical equations and
parameters that define the 3D ARTSCAN model. Sections 3 and 5
are written with a parallel structure, and with cross-references to
model equation numbers and model system diagrams, in order
to facilitate model understanding. Section 6 provides a com-
parative discussion of key concepts and their relationships to
other data and models. A reader can skip from Section 4 to 6
if the mathematical structure of the model is not of primary
interest.

The main theoretical goal of the current article is to demon-
strate the property of perceptual stability of 3D visual boundaries
and surfaces across saccadic eye movements, which has been clar-
ified using a variety of experimental paradigms (Irwin, 1991;
Carlson-Radvansky, 1999; Cavanagh et al., 2001; Fecteau and
Munoz, 2003; Henderson and Hollingworth, 2003; Beauvillain
et al., 2005). The article also predicts how this process interacts
with processes of spatial and object attention, invariant object cat-
egory learning, predictive remapping, and eye movement control,
notably how they all regulate and/or respond to adaptive coordi-
nate transformations. As explained more fully below, the brain
can prevent a break in binocular fusion after an eye movement
occurs by using predictive gain fields to maintain 3D boundary
and surface representations in head-centered coordinates, even
though these representations are not maintained in retinotopic
coordinates. This property is demonstrated by simulations using
2D geometrical shapes and natural objects that are viewed in
3D. In particular, the simulations show that the 3D boundary
and surface representations of these objects are maintained in
head-centered coordinates as the eyes move.

These simulation results generalize immediately to 3D objects
that have multiple 2D planar surfaces, since the simulations due
not depend upon a particular binocular disparity. Indeed, other
modeling studies have demonstrated how the same retinotopic
binocular mechanisms can process object features at multiple dis-
parities (Grossberg and McLoughlin, 1997; Grossberg and Howe,
2003; Cao and Grossberg, 2005, 2012), including objects per-
ceived from viewing stereograms (Fang and Grossberg, 2009) and
natural 3D scenes (Cao and Grossberg, submitted), as well as
objects that are slanted in depth (Grossberg and Swaminathan,
2004). All these results should be preserved under the action
of predictive gain fields to convert their retinotopic boundary
and surface representations into head-centered ones, since the
gain fields merely predictively shift the representations that are
created by the retinotopic mechanisms. The key point is thus
that the gain field mechanism does not disrupt the retinotopi-
cally computed 3D boundary and surface representations. It just
changes their coordinates from retinotopic to head-centered to
create invariance under eye movements.

The current model computes target positions to which the eyes
are commanded to move, but does not model the neural machin-
ery that is needed to accomplish the yoked saccadic movements
themselves. Earlier models of the saccadic and smooth pursuit
eye movement brain systems that are commanded by such posi-
tional representations can be used to augment the current model
in future studies (e.g., Grossberg and Kuperstein, 1986; Grossberg
et al., 1997, 2012; Gancarz and Grossberg, 1998, 1999; Srihasam
et al., 2009; Silver et al., 2011).

1.2. PREDICTIVE REMAPPING AND GAIN FIELDS: MAINTAINING
FUSION ACROSS SACCADES

The brain compensates for the changes in retinal coordinates of
fused object features fast enough to prevent fusion from being
broken. This compensatory property is called predictive remap-
ping. Predictive remapping has been used to interpret neurophys-
iological data about the updating of the representation of visual
space by intended eye movements, particularly in cortical areas
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such as the parietal cortex, prestriate cortical area V4, and frontal
eye fields (Duhamel et al., 1992; Umeno and Goldberg, 1997;
Gottlieb et al., 1998; Tolias et al., 2001; Sommer and Wurtz, 2006;
Melcher, 2007, 2008, 2009; Saygin and Sereno, 2008; Mathot and
Theeuwes, 2010a). Predictive remapping is often explained as
being achieved by gain fields (Andersen and Mountcastle, 1983;
Andersen et al., 1985; Grossberg and Kuperstein, 1986; Gancarz
and Grossberg, 1999; Deneve and Pouget, 2003; Pouget et al.,
2003), which enable featural representations to incorporate infor-
mation about the current or predicted gaze position. Gain fields
are populations of cells that enable movement-sensitive trans-
formations to occur between one coordinate frame (say, retino-
topic), whose representations change due to eye movements, and
another (say, head-centered), whose representations are invariant
under eye movements.

In both the ARTSCAN model and the 3D ARTSCAN model,
gain fields are proposed to be updated by corollary discharges
of outflow movement signals that act before the eyes stabi-
lize on their next movement target. In the ARTSCAN model,
these predictive gain field signals maintain the stability of spa-
tial attention to an object as eye movements scan the object;
see Section 2. In the 3D ARTSCAN model, gain field sig-
nals also prevent binocularly-fused object boundary and sur-
face representations of the object from being reset by such eye
movements. The 3D ARTSCAN model hereby proposes how
the process of predictive remapping of 3D boundary and sur-
face representations is linked to the processes of figure-ground
separation of multiple objects in a scene, and of learning to
categorize and attentively recognize these objects during active
scanning of the scene with saccadic eye movements. The follow-
ing sections summarize how these processes are predicted to be
coordinated.

2. REVIEW OF ARTSCAN MODEL
2.1. SOLVING THE VIEW-TO-OBJECT BINDING PROBLEM WHILE

SCANNING A SCENE
The ARTSCAN model and its variants propose answers to the
following basic questions: What is an object? How does the
brain learn what an object is under both unsupervised and
supervised learning conditions? ARTSCAN predicts how spa-
tial and object attention are coordinated to achieve rapid object
learning and recognition during eye movement search. In par-
ticular, ARTSCAN proposes how the brain learns to recognize
an object when it is seen from multiple views, or perspec-
tives. How does such view-invariant object category learning
occur?

As the eyes scan a scene, two successive eye movements may
focus on different parts of the same object or on different objects.
ARTSCAN proposes how the brain avoids erroneously classifying
views of different objects together, even before the brain knows
what the object is. ARTSCAN also proposes how the brain con-
trols eye movements that enable it to learn multiple view-specific
categories and to associately link them with view-invariant object
category representations.

The ARTSCAN model (Figure 1) predicts how spatial atten-
tion may play a crucial role in controlling view-invariant object
category learning, using attentionally-regulated signals from the

Where cortical stream to the What cortical stream to modulate
category learning. Several studies have reported that the distri-
bution of spatial attention can configure itself to fit an object’s
form. Form-fitting spatial attention is sometimes called an atten-
tional shroud (Tyler and Kontsevich, 1995). ARTSCAN explained
how an object’s pre-attentively formed surface representation in
prestriate cortical area V4 may induce such a form-fitting atten-
tional shroud in parietal cortex. In particular, feedback between
the surface representation and the shroud are predicted to form
a surface-shroud resonance that locks spatial attention on the
object’s surface. While this surface-shroud resonance remains
active, it is predicted to accomplish the following: First, it ensures
that eye movements tend to end at locations on the object’s sur-
face, thereby enabling different views of the same object to be
sequentially explored (Theeuwes et al., 2010). Second, it keeps
the emerging view-invariant object category active while differ-
ent views of the object are learned by view-specific categories and
associated with it.

The ARTSCAN model thus addressed what would otherwise
appear to be an intractable infinite regress: If the brain does not
already know what the object is, then how can it, without external
guidance, prevent views from several objects from being asso-
ciated and thus distort the learning of object categories? How
does such unsupervised learning until naturalistic viewing con-
ditions get started? The ARTSCAN model shows that an object’s
pre-attentively and automatically formed surface representation
(Figure 1) provides the object-sensitive substrate that enables
view-invariant object category learning to occur, and thereby
circumvents this infinite regress.

The fact that a surface representation can form pre-
attentively is consistent with the burgeoning psychophysical
literature showing that 3D boundaries and surfaces are the
units of pre-attentive visual perception (Grossberg and Mingolla,
1987; Grossberg, 1987a,b, 1994; Paradiso and Nakayama,
1991; Elder and Zucker, 1993; He and Nakayama, 1995;
Rogers-Ramachandran and Ramachandran, 1998; Raizada and
Grossberg, 2003) and that attention selects these units for recog-
nition (Kahneman and Henik, 1981; He and Nakayama, 1995;
LaBerge, 1995).

The ARTSCAN model used the simplest possible front end
from the FACADE model of 3D vision and figure-ground percep-
tion (Grossberg, 1994, 1997; Grossberg and McLoughlin, 1997)
in order to process letters of variable sizes and fonts in sim-
ple 2D images. The 3D ARTSCAN Search model elaborates this
front end to enable binocular fusion of objects in a 3D scene (see
Figures 2–4 and Section 3 for details).

2.2. ATTENTIONAL SHROUD INHIBITS RESET OF AN INVARIANT
OBJECT CATEGORY DURING OBJECT LEARNING

ARTSCAN processes can be described as a temporally coordi-
nated interaction between multiple brain regions within and
between the What and Where cortical processing streams, includ-
ing the Lateral Geniculate Nucleus (LGN), cortical areas V1,
V2, V3A, V4, MT, MST, PPC, LIP, ITp, and ITa, and the supe-
rior colliculus (SC): The Where stream maintains an attentional
shroud whose spatial coordinates mark the surface locations
of a current “object of interest,” whose identity has yet to be
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FIGURE 1 | Model diagram of the ARTSCAN model (reprinted with

permission from Chang et al., 2014). A few simplified stages from
the FACADE model (Grossberg and Todorović, 1988; Grossberg, 1994,
1997; Grossberg and McLoughlin, 1997) preprocess 2D images. The
3D ARTSCAN model is a synthesis and further development of the

ARTSCAN model, the aFILM model of anchored lightness and color
perception (Hong and Grossberg, 2004; Grossberg and Hong, 2006),
and the FACADE model to enable 3D surface percepts to remain
stable as saccadic eye movements scan a scene (as elaborated in
Figures 2–5).

determined in the What stream. As each view-specific category
is learned by the What stream, say in posterior inferotempo-
ral cortex (ITp), it focuses object attention via a learned top-
down expectation on the critical features in the visual cortex
(e.g., in prestriate cortical area V4) that will be used to recog-
nize that view and its variations in the future. When the first
such view-specific category is learned, it also activates a cell
population at a higher cortical level, say anterior inferotem-
poral cortex (ITa), that will become the view-invariant object
category.

Suppose that the eyes or the object move sufficiently to expose
a new view whose critical features are significantly different from
the critical features that are used to recognize the first view. Then
the first view category is reset, or inhibited. This happens due
to the mismatch of its learned top-down expectation, or proto-
type of attended critical features, with the newly incoming view

information. This top-down prototype focuses object attention
on the incoming visual information. Object attention hereby
helps to control which view-specific categories are learned by
determining when the currently active view-specific category
should be reset, and a new view-specific category should be
activated.

However, the view-invariant object category should not be
reset every time a view-specific category is reset, or else it can
never become view-invariant. This is what the attentional shroud
accomplishes: It inhibits a tonically-active reset signal that would
otherwise shut off the view-invariant category when each view-
based category is reset. As the eyes foveate a sequence of views on
a single object’s surface through time, they trigger learning of a
sequence of view-specific categories, and each of them is associa-
tively linked through learning with the still-active view-invariant
category.
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FIGURE 2 | Retinal adaptation of input scene followed by pre-attentive

boundary and surface processing in the 3D ARTSCAN model. Light
adaptation at the model’s outer segment of the photoreceptors and spatial
contrast adaptation at the inner segments of photoreceptors are
implemented as in the aFILM model (Grossberg and Hong, 2006) (Equations
1–8). The outputs from the inner segment of the photoreceptors input to the
model LGN. These inputs are contrast-normalized by single opponent
networks of ON and OFF cells via on-center off-surround and off-center

on-surround interactions, respectively, among cells that obey membrane
equation, or shunting, dynamics (Equations 9–14) and then by
double-opponent networks (Equations 15, 16). LGN double-opponent outputs
are used to compute orientationally- and contrast-selective simple cells that
are selective to four different orientations (Equations 17–20). Simple cell
outputs are pooled across all four orientations to yield complex cells
(Equation 21).Complex cells, in turn, input to monocular left (L) and right (R)
eye retinotopic boundaries.

When the eyes move off an object, its attentional shroud col-
lapses in the Where stream, thereby transiently disinhibiting the
reset mechanism that shuts off the view-invariant category in
the What stream. When the eyes look at a different object, its
shroud can form in the Where stream and a new view-specific cat-
egory can be learned that can, in turn, activate the cells that will
become a new view-invariant category in the What stream. Chiu
and Yantis (2009) have described rapid event-related fMRI exper-
iments in humans showing that a spatial attention shift causes a
domain-independent transient parietal burst that correlates with
a change of categorization rules. This transient parietal signal
is a marker against which further experimental tests of model
mechanisms can be based; e.g., a test of the predicted sequence
of V4-parietal surface-shroud collapse (shift of spatial attention),
transient parietal burst (reset signal), and collapse of currently
active invariant object category in cortical area ITa (shift of cat-
egorization rules). These and related results (e.g., Corbetta et al.,
2000; Yantis et al., 2002; Cabeza et al., 2008) are consistent with
the model prediction of how different regions of the parietal cor-
tex maintain sustained attention to a currently attended object
(shroud) and control transient attention switching (reset burst)
to a different object.

2.3. BOUNDARY AND SURFACE REPRESENTATIONS FORM
PRE-ATTENTIVELY

Convergent psychophysical and neurobiological data (e.g.,
He and Nakayama, 1992; Elder and Zucker, 1998; Rogers-
Ramachandran and Ramachandran, 1998; Lamme et al., 1999)
support the 1984 prediction of Grossberg and colleagues that the
units of pre-attentive visual perception are boundaries and sur-
faces (Cohen and Grossberg, 1984; Grossberg, 1984; Grossberg
and Mingolla, 1985a,b; Grossberg and Todorović, 1988). The
model that embodies this prediction is often called the BCS/FCS
model, for Boundary Contour System and Feature Contour
System. This hypothesis was generalized by Grossberg in 1987 to
the prediction that 3D boundaries and surfaces are the units of
3D vision and figure-ground perception. This prediction is part of
the FACADE (Form-And-Color-And-DEpth) theory of 3D vision
and figure-ground separation, which has been used to explain and
predict a wide range of perceptual and neurobiological data; see
Grossberg (1994, 2003) and Raizada and Grossberg (2003) for
reviews. Perceptual boundaries are predicted to form in the (LGN
Parvo)-(V1 Interblob)-(V2 Interstripe)-V4 cortical stream, while
perceptual surfaces are predicted to form in the (LGN Parvo)-
(V1 Blob)-(V2 Thin Stripe)-V4 stream. Various psychophysical
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FIGURE 3 | 3D ARTSCAN model macrocircuit for maintaining the

stability of fused binocular boundaries during eye movements.

Retinotopic monocular boundaries (Equation 22) are computed from
complex cell inputs (Equation 21). These boundaries are reset whenever
the eyes move. The retinotopic monocular boundaries input to invariant
monocular boundaries via gain fields. The invariant boundaries are not
reset by eye movements because they are predictively remapped by eye
position-selective gain fields before the eyes move to a new fixation
position. The invariant monocular boundaries, in turn, feed back to
modulate the retinotopic monocular boundaries. The gain fields receive
their inputs from target positions that are computed from salient features
on surface contours (see Sections 3.4, 3.6, and Equations 45, 64–66). The

invariant monocular boundaries (Equation 26) are binocularly fused to form
the invariant binocular boundaries (Equation 33). Both excitatory and
inhibitory (obligate) inputs to the invariant binocular boundaries are
needed to ensure their disparity selectivity. The maintained fusion of
binocular boundaries is a primary goal of predictive remapping, since
these boundaries support the persistence of object percepts during
saccadic eye movements. These fused binocular boundaries modulate the
activities of the invariant monocular boundaries and thus the activity of
the retinotopic boundary layer via top-down feedback. This top-down
feedback ensures that any changes or collapse in the invariant boundary
activity is propagated all the way back to the retinotopic boundaries (see
Section 3.3 and Equations 22–35).

(Rubin, 1921; Beardslee and Wertheimer, 1958; Driver and Baylis,
1996), fMRI (Kourtzi and Kanwisher, 2001), and electrophysio-
logical data (Baylis and Driver, 2001) support the hypothesis that
boundaries and surfaces can form pre-attentively as they help to
separate figures from their backgrounds in depth. These exper-
iments show that whether an edge is assigned to a figure or to a
background serves as an important factor for attracting attention,
activating object recognition areas, and remembering it later. It
has also been argued that, prior to attentive selection of an object,
figure-ground segregation occurs (Baylis and Driver, 2001), and

that it is yoked to bottom-up processes that do not need a top-
down attentive influence to be initiated. The boundaries and
surfaces that are implemented in the 3D ARTSCAN Search model
are generalized in two ways beyond their implementation in the
ARTSCAN model:

2.3.1. 3D boundaries and surfaces
As noted above, the monocular boundaries and surfaces in the
ARTSCAN model are generalized using FACADE theory mech-
anisms to form disparity-selective boundaries and surfaces that
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FIGURE 4 | Maintenance and perceptual stability of fused binocular

surfaces during eye movements. The monocular surfaces Sl/r fill-in
(Equation 36) (Figure 2) brightness signals from the double-opponent ON and
OFF cells (Equations 15, 16). The diffusion that governs filling-in is gated by
invariant binocular boundaries (Equation 33) after they are converted into
retinotopic binocular boundaries (Equation 40) via gain fields (Equations
42–44). The monocular surfaces are fused to form a binocular surface Sb

(Equation 39). The rectified sum of the ON and OFF filling-in domains is the
final binocular surface percept (Equation 41) and is assumed to be the
consciously seen retinotopic surface percept in depth. Gain fields operating
at different levels guarantee the stability of the binocular percept (Section 3.4
and Equations 36–50). Binocular surface representations give rise to surface

contours C (Equation 45) from which the most salient feature positions F
(Equation 64) are chosen as the next target positions P (Equation 66) for eye
movements. Corollary discharges from the target positions are used to
predictively remap key boundary and surface representations via gain fields
(Section 3.6). In particular, a retinotopic binocular surface percept is
remapped via gain fields (Equation 56) into attentional interneurons (Equation
55) that input to the spatial attention map at which a head-centered
attentional shroud is chosen. The attentional shroud (Equation 51) habituates
at an activity-dependent rate (Equation 61) and is inhibited by a burst of the
parietal reset signal (Equation 62) that is rendered transient by its own
habituative transmitter gate (Equation 63). This enables a shift in attention to
occur to a different surface (see Sections 3.4–3.6 and Equations 36–66).

can represent an object in depth. In this generalization, processing
stages for retinal adaptation as well as opponent and double-
opponent processing in ON and OFF cells (Grossberg and Hong,
2006) feed into monocular and binocular laminar cortical bound-
ary representations (Cao and Grossberg, 2005); see Sections 3 and
5 for details.

The surface representations that compete for spatial atten-
tion in shroud formation are called Filling-In Domains, or
FIDOs (Grossberg, 1994). FACADE theory predicts that each of
the depth-selective boundary representations that capture sur-
face lightness and color at prescribed depths interacts with a
complete set of opponent filling-in domains (light vs. dark,
red vs. green, blue vs. yellow) that compete at each posi-
tion. In addition, each FIDO’s activity pattern is processed
by an on-center off-surround shunting network that contrast-
normalizes its input patterns (Grossberg, 1973, 1980). These two
types of competition (opponent and spatial), acting together,

define a double-opponent field of cells. There are multiple
FIDOs, each sensitive to a different range of depths. These
double-opponent FIDOs can represent conjunctions of depth
and color across space. A unique conjunction of depth and
color may pop out during visual search (Nakayama and
Silverman, 1986) because it is the only active region on the
FIDO corresponding to that depth and color. FACADE the-
ory models its highest level of surface filling-in in corti-
cal area V4, where visible surfaces are represented and 3D
figure-ground separation is completed (e.g., Schiller and Lee,
1991).

These depth-selective double-opponent surface representa-
tions in V4 provide the computational substrates that compete
for spatial attention in the model’s parietal cortex. The reciprocal
shroud-to-surface feedback may also be expected to be selective
to conjunctions of depth and color. Such a mechanism may clar-
ify various color-specific search data; e.g., Egeth et al. (1984) and
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Wolfe et al. (1994) wherein human subjects may break up a con-
junctive search task into a color priming operation followed by
depth-selective pop-out.

The 3D ARTSCAN Search model simulates a single depth-
selective double-opponent FIDO, for simplicity.

2.3.2. Predictive remapping maintains binocular fusion and shroud
stability

In ARTSCAN, predictive remapping is used to maintain the
stability of an attentional shroud as eye movements explore
an attended object. This stability is needed to prevent the
shroud from collapsing and disinhibiting the reset mechanism
in response to every sufficiently large saccade that explores the
object. In the current 3D ARTSCAN model, predictive remapping
also has another role: it maintains binocular fusion of previously
fused features as the eyes move within a certain spatial range to
foveate a different set of features on the object. Thus, predictive
remapping mechanisms that were previously predicted to operate
in areas such as parietal cortex are here also suggested to operate
as early as visual cortical area V1; see Sections 3.4, 3.5, and 5 for
details.

The following sections summarize how the two types of pre-
dictive remapping are proposed to be related.

2.4. SURFACE CONTOUR SIGNALS INITIATE FIGURE-GROUND
SEPARATION

Shroud stability is achieved in ARTSCAN using feedback sig-
nals between surfaces and boundaries in the following way: 3D
boundary signals are topographically projected from where they
are formed in the V2 interstripes to the surface representations
in the V2 thin stripes (Figure 1). These boundaries act both as
filling-in generators that initiate the filling-in of surface lightness
and color when the corresponding boundary and surface signals
are aligned, and as filling-in barriers that prevent the filling-in of
lightness and color from crossing object boundaries (Grossberg,
1994). If the boundary is closed, it can contain, or gate, the filling-
in of an object’s lightness and color within it. If, however, the
boundary has a sufficiently big gap in it, then surface lightness
and color can spread through the gap and surround the bound-
ary on both sides, thereby equalizing the contrasts on both sides
of the boundary.

Feedback from surfaces in V2 thin stripes to boundaries in V2
interstripes is achieved by surface contour signals. Surface contour
signals are generated by contrast-sensitive on-center off-surround
networks that generate contour-sensitive output signals from the
activities across each FIDO after surface filling-in occurs. The
inhibitory connections in the network’s off-surround act across
position and within depth. As a result, each FIDO generates out-
put signals via its own contrast-sensitive on-center off-surround
network. Surface contour signals are the output signals that are
generated by contrast changes across each FIDO.

Such contrast changes typically occur if the filled-in surface is
surrounded by gating signals from a closed boundary, because a
closed boundary can contain a FIDO’s filling-in process. In par-
ticular, gating at closed boundary positions generates contrasts of
filled-in lightnesses or colors at these positions by blocking the
spread of lightnesses or colors across these positions. As a result,

surface contour signals can be generated at the positions where
the gating signals of closed boundaries occur. The positions at
which surface contour signals in the surface stream are generated
are thus a subset of the same positions as those of the corre-
sponding boundaries in the boundary stream. These boundary
and surface contour positions typically include positions where
there are salient features on an object’s surface.

Surface contour signals are not, however, generated at bound-
ary positions near a big gap, or hole, in an object boundary,
since filled-in lightnesses and colors can flow out of, and around,
such a boundary break to cause approximately equal filled-in
activities on both sides of the boundary. Since there is then zero
contrast of filled-in activity across such a boundary, the contrast-
sensitive on-center off-surround network does not generate an
output signal at these positions, and hence no surface contour
forms there.

The boundary positions that limit the filling-in process within
the surface stream are thus a superset of the positions in the sur-
face stream at which surface contours form after filling-in. As
a result, surface contour output signals back to the boundary
stream are received at a subset of boundary positions. In par-
ticular, gating signals that are generated by closed boundaries
block the flow of filled-in brightness and/or color signals out-
side the regions that they surround. Closed boundaries hereby
mark the positions where a contrast different across space in the
filled-in brightness and/or color can occur. They are therefore also
positions where surface contour feedback signals can arise.

The surface contour feedback signals from the surface stream
to the boundary stream are delivered via an on-center off-
surround network that acts within position and across depth. The
on-center signals strengthen the closed boundaries that generated
the successfully filled-in surfaces, whereas the off-surround sig-
nals inhibit spurious boundaries at the same positions but farther
depths. Surface contour signals hereby strengthen the bound-
aries that lead to successfully filled-in surfaces, while inhibiting
those that do not. By eliminating spurious boundaries, the off-
surround signals initiate figure-ground separation by enabling
occluding and partially occluded surfaces to be separated onto
different depth planes, and partially occluded boundaries and
surfaces to be amodally completed behind their occluders. See
Grossberg (1994), Kelly and Grossberg (2000), and Fang and
Grossberg (2009) for further discussion of figure-ground percepts
and computer simulations of them.

2.5. ATTENDED SURFACE CONTOUR SIGNALS CREATE ATTENTION
POINTERS TO SALIENT EYE MOVEMENT TARGET POSITIONS

Figure-ground separation needs to occur at an earlier process-
ing stage than the learning of view-specific and view-invariant
categories of an object, since if different objects were not pre-
attentively separated from each other, the brain would have no
basis for segregating the learning of views that belong to one
object. Once figure-ground separation is initiated, ARTSCAN
predicts how surface contour signals can be used to determine
a sequence of eye movement target positions to salient features
on an attended object surface, and thus to enable multiple view-
specific categories of the object to be learned and associated with
an emerging view-invariant object category.
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This works as follows: the pre-attentive bottom-up inputs from
the retina and LGN activate multiple surface representations in
cortical area V4. These surfaces, in turn, attempt to topographi-
cally activate spatial attention to form a surface-fitting attentional
shroud in parietal cortex. As they do so, they generate top-down
excitatory topographic feedback to visual cortex and long-range
inhibitory interactions in parietal cortex. Taken together, these
interactions define a recurrent on-center off-surround network
that is capable of contrast-enhancing the strongest shroud and
inhibiting weaker ones. Positive feedback from a winning shroud
in parietal cortex to its surface in V4 is thus predicted to increase
the contrast gain of the attended surface, as has been reported in
both psychophysical experiments (Carrasco et al., 2000) and neu-
rophysiological recordings from cortical areas V4 (Reynolds et al.,
1999, 2000; Reynolds and Desimone, 2003), possibly carried by
the known connections from parietal areas to V4 (Cavada and
Goldman-Rakic, 1989, 1991; Distler et al., 1993; Webster et al.,
1994).

How do salient features on an attended surface attract eye
movements? If figure-ground separation begins in cortical area
V2, with surface contours as one triggering mechanism, then
these eye movement commands need to be generated no earlier
than V2. The surface contour signals themselves are plausible can-
didates from which to derive eye movement target commands
because, being generated by a contrast-sensitive on-center off-
surround network, they are stronger at contour discontinuities
and other distinctive contour features that are typical end points
of saccadic movements. When the contrast of an attended sur-
face increases, the strength of its surface contour signals also
increases (Figure 1). Corollary discharges of these surface contour
signals are predicted to be computed within a parallel pathway
that is mediated via cortical area V3A (Nakamura and Colby,
2000; Caplovitz and Tse, 2007), which occurs after V2, and to
generate saccadic commands that are restricted to salient fea-
tures of the attended surface (Theeuwes et al., 2010) until the
shroud collapses and spatial attention shifts to enshroud another
object. Consistent with this prediction, it is known that “neu-
rons within V3A· · · process continuously moving contour curva-
ture as a trackable feature. . . not to solve the “ventral problem”
of determining object shape but in order to solve the “dorsal
problem” of what is going where” (Caplovitz and Tse, 2007, p.
1179).

In particular, ARTSCAN proposed how surface contour signals
within the corollary discharge pathway are contrast-enhanced to
select the largest signal as the next position upon which spa-
tial attention will focus and the next saccadic eye movement will
move (Figure 1). These positions have properties of the “attention
pointers” reported by Cavanagh et al. (2010).

2.6. PREDICTIVE SURFACE CONTOUR SIGNALS CONTROL GAIN FIELDS
THAT MAINTAIN SHROUD STABILITY

Each eye movement target signal that is derived from a surface
contour generates a gain field that maintains a stable shroud in
head-centered coordinates as the eyes move (Figure 5). These
outflow movement commands thus control predictive remap-
ping that maintains attentional stability through time. The stable
shroud, in turn, can maintain persistent inhibition of the category

reset mechanism as the eyes explore the object and the brain
learns multiple view-specific categories of it (Figure 1).

3. 3D ARTSCAN MODEL
The 3D ARTSCAN model unifies properties of the ARTSCAN,
3D LAMINART, and aFILM models in a way that is compatible
with the pARTSCAN and ARTSCAN Search models. The model
does not include the log-polar transformation of cortical magni-
fication, however. This simplification reduces the computational
burden in its simulations due to the need to transform binocu-
lar inputs into 3D boundary and surface representations that are
preserved during eye movements.

3.1. RETINAL ADAPTATION
Two stages of retinal adaptation (Figure 2; Section 5.1 Equations
1–8) are implemented from the aFILM model of Grossberg and
Hong (2006): light adaptation at the outer segment of the pho-
toreceptors and spatial contrast adaptation at the inner segments
of photoreceptors. In the outer segment of the photoreceptors,
intracellular gating mechanisms such as calcium negative feed-
back occur (Koutalos and Yau, 1996). This process facilitates light
adaptation in vivo, by shifting the operating range of the pho-
toreceptor to adapt to the ambient luminance of the visual field.
Spatial contrast adaptation at the inner segments of photorecep-
tors occurs through light adapted inputs from the outer segment,
with negative feedback from the horizontal cells (HC) that mod-
ulate the influx of calcium ions and control the amount of gluta-
mate release from the photoreceptor terminals (Fahrenfort et al.,
1999). The HC network computes spatial contrast using gap junc-
tion connections (syncytium) between the HCs. The permeability
of the gap junctions between HCs decreases as the difference of
the inputs to the coupled photoreceptors increases, and the HCs
in the light and dark image regions deliver different suppressive
feedback signals to the inner segments of the photoreceptors to
properly rescale the inputs that have too much contrast. For sim-
plicity, only gap junction connections between nearest neighbor
cells are considered.

During active scanning of natural images with eye movements,
the scanned image intensities can vary over several orders of mag-
nitude (Rieke and Rudd, 2009). The model retina uses these two
different mechanisms to map widely different input intensities to
sensitive, and therefore discriminable, portions of the response
range.

3.2. LGN POLARITY-SENSITIVE ON AND OFF CELLS
The LGN ON and OFF cells normalize the adapted contrast and
brightness information of the input pattern from the retina using
on-center off-surround shunting networks which are solved at
equilibrium for computational speed (Figure 2 and Equations 9–
12). LGN ON cells respond to image increments (Equation 13)
whereas OFF cells respond to image decrements (Equation 14).
These single-opponent cells generate output signals that compete
at each position, thereby giving rise to double-opponent ON and
OFF cells (Equations 15, 16).

3.3. BOUNDARY PROCESSING
The output signals of the double-opponent ON/OFF LGN cells
are the inputs to simple cells that respond selectively to one
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FIGURE 5 | Schematic for surface-shroud resonance through a

feedback interaction between a retinotopic binocular surface and a

head-centered spatial attentional shroud. (A) In the absence of any eye
movement to a new target position, the gain fields maintain the stable
object shroud of a given object surface. (B) When a surface contour is
contrast-enhanced to localize salient features (Equation 45), and the
position of the most salient feature is chosen as the next target position
signal (Equation 67), the gain field is predictively remapped by the target
position corollary discharge signal before the corresponding saccadic eye

movement occurs (Equation 56), with the result that the shroud retains
its stability across eye movements. While the shroud remains active and
spatial attention remains focused on a single object surface, the eyes can
explore different views of the object, and the What stream of ARTSCAN
can learn multiple view-selective object categories and associatively link
them to an emerging view-invariant object category. (C) If the currently
attended shroud collapses, competition across the spatial attention layer
(Equation 51)nables another shroud to win the competition and to focus
object attention upon the corresponding object surface.

of four orientations (Equation 17). Simple cell output signals
are pooled over all orientations and opposite contrast polarities
to create polarity-insensitive complex cell boundaries (Figure 2
and Equation 21). The simplification of pooling over orienta-
tion was done because the model is not used to simulate any
polarity-specific interactions.

Both monocular and binocular boundaries are needed to gen-
erate depthful representations of object boundaries during bio-
logical vision (Nakayama and Shimojo, 1990; McKee et al., 1994;
Smallman and McKee, 1995; Cao and Grossberg, 2005, 2012).
The retinotopic monocular boundaries (Figure 3 and Equation
22) are computed using bottom-up inputs from complex cells
(Equation 21). Because they are computed in retinal coordinates,
these boundaries are reset whenever the eyes move to fixate a dif-
ferent scenic position. The retinotopic monocular boundaries are
also modulated by top-down signals from invariant monocular
boundaries (Equation 26) that are not reset by an eye movement.
This modulation facilitates predictive remapping. Invariance is
achieved using a gain field (Equations 28–32); see Figure 3.

The invariant monocular boundaries (Equation 26) are
derived from the retinotopic monocular boundaries (Equation

22), but are computed in head-centered coordinates that are
invariant under eye movements. Before the eyes move, the invari-
ant boundaries represent the same positions as the retinotopic
boundaries (Equations 24, 25). The invariant monocular bound-
aries of a stationary object are, however, not reset when the eyes
move. They derive their stability due to updated gain field sig-
nals that are derived from the next eye movement command
even before the eyes actually move to the commanded position.
Such predictive remapping of the invariant monocular bound-
aries to continuously represent the monocular boundaries in
head-centered coordinates enables them to be maintained even
while the retinotopic boundaries are reset.

The eye movement command is computed from surface con-
tour signals (Sections 3.4–3.6) that are derived from the attended
object surface (Figures 1, 4) and that strengthen the boundaries
that formed them. Moreover, when the contrast of a surface is
increased by feedback from an attentional shroud, the surface
contour signals increase, so the strength of the boundaries around
the attended surface increase also.

Surface contour signals also activate a parallel, corollary dis-
charge, pathway that projects to the salient features processing
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stage (Figure 4). In order to compute the position of the next eye
movement, these salient features signals are contrast-enhanced by
an on-center off-surround network until the most active posi-
tion is chosen as the next target position. The salient features
of an attended surface have an advantage in this competition
because they are amplified by shroud-to-surface-to-surface con-
tour feedback.

This target position signal is used both to determine the
target position of the next eye movement and to update gain
fields that predictively remap retinotopic left and right monocu-
lar boundaries into invariant left and right monocular boundaries
that remain continuously computed even during eye movements
(Figure 3).

The invariant monocular boundaries (Figure 3 and Equation
26) for a given object are fused to yield invariant binocular
boundaries (Figure 3 and Equation 33). Because of their com-
putation from invariant monocular boundaries, the invariant
binocular boundaries are also maintained as the eyes move. This
maintained fusion is a main functional goal of the predictive
remapping, since it enables the object percept to persist during
eye movements. The fused binocular boundaries, in turn, modu-
late the activities of the invariant monocular boundaries and thus
the activity of cells in the retinotopic boundary layer via top-down
feedback through the gain field (Figure 3). This top-down mod-
ulatory feedback from the invariant binocular boundary to the
invariant monocular boundary ensures that any change or col-
lapse in the invariant binocular boundary activity is propagated
back to the retinotopic boundaries (Figure 3).

In the brain, binocular fusion of monocular left and right
boundaries tends to occur only between edges with the same con-
trast polarity (same-sign hypothesis; Howard and Rogers, 1995;
Howe and Watanabe, 2003) and approximately the same magni-
tude of contrast (McKee et al., 1994). This constraint naturally
arises when the brain fuses edges that derive from the same
object in the world, and helps the brain to solve the classi-
cal correspondence problem (Julesz, 1971; Howard and Rogers,
1995). The model satisfies this constraint through interactions
between excitatory and inhibitory cells (Equation 33) that are
proposed to occur in layer 3B of cortical area V1 (Grossberg and
Howe, 2003; Cao and Grossberg, 2005, 2012). These interactions
endow the binocular cells with an obligate property (Poggio, 1991)
whereby they respond preferentially to left and right eye inputs of
approximately equal contrast (Equations 34, 35).

The original ARTSCAN model used gain fields only to pre-
dictively update the head-centered representations of attentional
shrouds. The current model uses gain fields at several processing
stages (Figures 3, 4). They ensure that stable fusion of 3D binoc-
ular boundaries and surfaces is maintained in head-centered
coordinates as the eyes move. The weights between the gain field
neurons and the invariant boundary neurons are presumably
learned. For simplicity, only the end product of the learning pro-
cess, as suggested by Pouget and Snyder (2000), was used in the
3D ARTSCAN model.

3.4. SURFACE PROCESSING
The invariant binocular boundaries help to main-
tain the surface representations of stationary objects

during eye movements. This is proposed to occur as
follows:

Bottom-up inputs from double-opponent ON and OFF cells
(Figure 2 and Equations 15, 16) trigger monocular surface filling-
in via a diffusion process (Figure 4 and Equation 36), which
is gated (Equation 37) by the retinotopic monocular object
boundaries (Equation 22) that play the role of filling-in bar-
riers (Grossberg and Todorović, 1988; Grossberg, 1994). The
model computes filled-in binocular surfaces in separate double-
opponent ON and OFF Filling-In Domains, or FIDOs (Equations
38–40). The final binocular percept is computed as the rectified
sum of the ON and OFF FIDO activities [Equation (41) and
Figures 6–9 for simulation results]. This computation enables
both light and dark filled-in surfaces to attract spatial attention
in a surface-shroud resonance (see Figure 4).

The monocular and binocular FIDOs are computed in retino-
topic coordinates, corresponding to the percept that objects that
are seen with coarse spatial resolution when the fovea looks
elsewhere are seen with cortically-magnified high acuity when
they are themselves foveated. The surface contour signals that
are derived from these filled-in surfaces are also computed in
retinotopic coordinates. These surface contour signals are used
to compute the eye movement signals that can command the eyes
to move the correct direction and distance to foveate the com-
manded new fixation position. Aspects of how this happens have
been simulated in neural models of saccadic eye movements (e.g.,
Grossberg et al., 1997; Gancarz and Grossberg, 1998, 1999; Silver
et al., 2011).

On the other hand, the invariant binocular boundaries that
maintain their fusion across eye movements are computed in
head-centered coordinates, even though the monocular left and
right boundaries on which they build are initially computed in
retinotopic coordinates. Gain fields at several processing stages
(Figures 3, 4) cause predictive remapping between these several
retinotopic and head-centered representations to maintain binoc-
ular fusion of the head-centered boundary representations while
eye movements occur.

The head-centered invariant binocular boundaries
(Equation 33) regulate surface filling-in within the two retino-
topic monocular FIDOs (Figure 4 and Equations 36, 37), which
in turn form retinotopic binocularly-fused, or binocular, surface
percepts (Figure 4 and Equations 38–40). The head-centered
binocular boundaries are converted into retinotopic binocular
boundary signals (Equation 40) via gain fields (Figure 4 and
Equations 42–44) before they interact with the retinotopic
monocular FIDOs. The retinotopic binocular surface percept
can support a conscious percept of visible 3D form. Such a con-
sciously seen surface percept in depth is maintained across eye
movements due to the predictive remapping of their supporting
boundaries by gain fields which occurs at several processing
stages (Figure 4 and Equation 38).

The retinotopic binocular surfaces generate surface contour
output signals (Figure 4 and Equation 45) through contrast-
sensitive shunting on-center off-surround networks (Equations
46, 47). The surface contour signals (Equation 45) provide
feedback (Equation 40) to the head-centered binocular bound-
aries (Equation 33) after being converted back to retinotopic
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FIGURE 6 | Model simulations of the 3D ARTSCAN model with simple

homogenous surfaces showing stability of binocular surface fusion.

(A) The retinal input (I) (Equations 1–3) is a scene containing only two
simple objects: two homogenously filled rectangles. This retinal image is
presented monocularly to both the eyes. All simulation results are shown
for far allelotropic shifts of+3o . (B) In the absence of any eye movements,
an initial binocular surface percept (Sb ) (Equation 41) is formed through the
mechanisms of the pre-attentive processing stage for boundaries and
surfaces (Figures 2, 3). (C) The surface contour map (C) (Equation 45)
with a cumulative record of all the eye movements to target positions
(Equation 66) made within and across the object surfaces is shown. (D) As
an initial surface percept is formed, competition in the spatial attention
map helps to choose a winning attentional shroud (A) (Equation 51). The

shroud is represented in head-centered coordinates. The eye movements
are initiated to salient target positions on the surface contour of a given
object surface. In this simple stimulus, the salient features in the surface
contours are always one of the corners of the rectangles. The first such
surface shroud is activated with an eye movement to the top right corner
of the rectangle on the right. Over time, a new target position (dots at
rectangle corners) is chosen within or outside the object surface and the
next saccade is made. (E) The fused binocular surface percept (Equation
41) after each eye movement to a salient feature is shown. Despite eye
movements and the collapse of one surface shroud leading to another, the
overall binocular surface percept is maintained in retinotopic coordinates.
The active surface-shroud resonance enhances the brightness of the
attended surface. See Section 4.1 for details.

coordinates by gain fields (Figure 4 and Equations 48–50). The
surface contour signals from a surface back to its genera-
tive boundaries strengthen consistent boundaries, inhibit irrele-
vant boundaries, and trigger figure-ground separation (Figure 4;

Grossberg, 1994; Kelly and Grossberg, 2000). The feedback inter-
action between boundaries, surfaces, and surface contour sig-
nals is predicted to occur between V2 pale stripes and V2 thin
stripes.
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FIGURE 7 | Model simulations of the 3D ARTSCAN model showing stability of binocular surface fusion with four homogenous objects. This simulation
illustrates that the model scales robustly without any parameter changes. The simulation environment and results are similar to those shown in Figure 6.

The coordinated action of all these gain fields acting between
boundaries and surfaces, taken together with the surface-based
spatial attentional shroud, achieves predictive remapping of
the binocularly fused and attended surfaces. See Section 5
for details.

Although the surface filling-in here is modeled by a diffusion
process, as in Cohen and Grossberg (1984) and Grossberg and
Todorović (1988), Grossberg and Hong (2006) have modeled key
properties of filling-in using long-range horizontal connections
that operate several orders of magnitude faster than diffusion.
Both processes yield similar results at equilibrium.

3.5. SPATIAL SHROUDS
A surface-shroud resonance fixes spatial attention on an object
that is being explored with eye movements. The spatial attention
neurons interact via recurrent on-center off-surround interac-
tions (Equations 51–55) whose large off-surround enables selec-
tion of a winning attentional shroud. The recurrent on-center
interactions enhance the winning shroud, and enable this shroud
to remain active as other attentional neurons are persistently
inhibited. Top-down attentional feedback from the resonating
shroud (Equation 56) increases the contrast of the attended
surface (Equation 39).
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FIGURE 8 | Model simulations with natural objects showing binocular

surface stability. The results are presented similar to those in
Figures 6, 7. The input consists of four non-overlapping grayscale objects
with uniform and noiseless gray backgrounds from the Caltech 101 image
database (Fei-Fei et al., 2004). The pre-attentive processing stages of the
model enabled both the fusion and perceptual quality, including
adaptation of ambient illumination, of the binocular surface percepts.
Using ON and OFF channels for both boundary and surface

representations (e.g., Equations 13–16) improved the perceptual quality of
the attended surfaces. (A) Input I to the system. (B) Initial binocular
surface percept Sb (Equation 41). (C) Surface contour map C (Equation
45). (D) Attentional shrouds A (Equation 51) over time. (E) The activity of
the binocular surface percept (Sb ) over time. Several saccades were
made within each object’s surface contour before moving to the next
object. Detailed temporal dynamics of activity of attended shrouds and
surfaces are shown in Figures 10–13.

Such a resonance habituates through time in an activity-
dependent way (Equations 51, 61; Grossberg, 1972). Winning
shrouds will thus eventually collapse, allowing new surfaces
to be attended and causing inhibition of return (IOR). In
addition, when a shroud collapses sufficiently during the first
moments of a spatial attentional shift, a transient burst of
activation by a reset mechanism (Equations 62, 63) helps
to complete the collapse of the shroud (Equation 51), as

well as to reset the invariant object category in the What
stream.

As noted above, object surface input is combined with eye
position signals via gain fields to generate a head-centric spatial
attentional shroud in the parietal cortex (Figures 4, 5). Such gain
field modulation is known to occur in posterior parietal cortex
(Andersen and Mountcastle, 1983; Andersen et al., 1985; Gancarz
and Grossberg, 1999; Deneve and Pouget, 2003; Pouget et al.,
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FIGURE 9 | Model simulations with an increased number of natural

objects. The stimulus and results presented are similar to those in Figure 8,
except that the number of objects in the scene is increased to six. (A) Input.

(B) Initial binocular surface percept. (C) Surface contour map. (D,F)
Attentional shrouds over time. (E,G) Activity of binocular surface percepts
over time.

2003). The inputs from the gain fields (Equations 56–60) acti-
vate attentional interneurons (Equation 55) that interact through
recurrent excitatory signals with attentional cells that excite and
inhibit each other via a recurrent on-center off-surround net-
work whose cells obey membrane equation, or shunting, laws
(Equation 51).

3.6. EYE SIGNALS
The eye movement signals serve a major role in predictive
remapping of boundaries, surfaces, and shrouds. They also deter-
mine the object views that will be attended, and thus which
view-specific categories will be learned and associated with the

emerging view-invariant object category. The eye movement sig-
nals are generated from the surface contour signals (Equation
45) that are derived from the currently active surface-shroud
resonance. Surface contour signals tend to be larger at high cur-
vature points and other salient boundary features due to the
contrast-enhancing on-center off-surround interactions that gen-
erate them from filled-in surface lightnesses and colors. The
surface contour signals are further contrast-enhanced to choose
the position with the biggest activity, using a recurrent shunt-
ing on-center off-surround network (Equations 64–66). This
transformation from surface contours to the next eye move-
ment target position is predicted to occur in cortical area V3A
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(Nakamura and Colby, 2000; Caplovitz and Tse, 2007). These eye
movement signals are used to predictively update all the gain field
signals (e.g., Equation 48), even before they generate the next sac-
cadic eye movement. The chosen eye movement signal (Equation
66) habituates in an activity-dependent way (Equation 65) and
hereby realizes an inhibition-of-return process that prevents per-
severation on the same eye movement choice, thereby enabling
exploration of multiple views of a given object. See Section 5 for
details.

4. SIMULATION RESULTS
The entire input visual field is a 3000 × 3000 pixel grid with coor-
dinates (i, j) and input intensity Iij. Each pixel step corresponds
to a distance of 0.01o in visual space, so that each input spans
30o × 30o in Cartesian space. All object surfaces in the stimulus
are within 5o on either side of the fixation point. Eye movements
were controlled to be within 10o of the entire visual field—that is,
within the parafoveal region—in order for binocular fusion to be
possible. In order to simulate the effects of binocular inputs, the
simulations were performed with the monocular inputs shifted
with respect to one another by +3o (allelotropic far shift). Thus,
the inputs to the left and right eye are Il

(i +3o)j, and Ir
(i − 3o)j, respec-

tively. Binocular fusion also works for other allelotropic shifts, far
and near, within the range of binocular fusion, as demonstrated in
Cao and Grossberg (2005). The range of values of the allelotropic
shift s, and thus the number of depth planes simultaneously repre-
sented in the 3D ARTSCAN model, are {+8o, +3o, 0o,−3o,−8o}.
The model can readily be extended, without a change of mecha-
nism, to represent any finite number of depth planes. In all the
simulations, the initial fixation point was not on any object and
was at the center of the visual field. The simulations show how
the model’s disparity sensitivity to the monocular left and right
eye inputs leads to selective activation of the depth plane that is
represented by the allelotropic far shift.

4.1. SIMULATIONS OF BINOCULAR FUSION OF HOMOGENEOUS
SURFACES

The first simulation tested the ability of 3D ARTSCAN to main-
tain stable binocular fusion using rectangular-shaped objects as
the eyes explored them in a scene. The input consisted of a
scene with either two homogenously filled rectangles of equal size
(Figure 6A) or four homogeneously filled squares (Figure 7A)
on either side of the initial eye fixation point before any eye
movements occurred. Each of the rectangles in Figure 6A is
300 × 400 pixels in size. The square stimuli in Figure 7A are each
200 × 200 pixels. The pixellated images are converted into a rec-
tilinear grid in terms of degrees of visual angles as described
earlier.

After the initial binocular surfaces are computed, the surface
contour map (Equation 45) is also computed, and is shown in
Figures 6C, 7C before any eye movements occur. Due to the
contrast-sensitive on-center off-surround interactions that gen-
erate surface contours from successfully filled-in surfaces, the
positions of highest activity (salient features) occur at the corners
of the rectangles. When the maximum activities are chosen by a
subsequent on-center off-surround network (Equation 66), they
determine the targets of the eye movements, which are shown as

black arrows. In Figure 6C, the chosen salient feature initiates the
first predictive eye movement to the top right corner of the rect-
angle on the right, consistent with the fact that the rectangle on
the right is part of an active surface-shroud resonance (first panel,
Figure 6D). Similarly, for the stimulus with four squares, the first
eye movement is initiated to the top left corner of the bottom right
square (Figure 7C) after the spatial attentional shroud is formed
over the corresponding square surface (first panel, Figure 7D). As
the eyes continue to move, the scene representation and percep-
tual stability of the fused binocular surfaces are maintained due
to the predictive remapping of the boundaries and surfaces by
the gain fields, which ensure that fusion is maintained as the eyes
move to the next location. Figures 6D, 7D show the activities of
the head-center shrouds, and Figures 6E, 7E show the activities
of the corresponding surface representations, of the rectangles
and squares through time. When spatial attention is focused on
a particular surface as part of a surface-shroud resonance, its
activity is enhanced. This is seen in the first panel of Figure 6E,
where the rectangle on the right is more active (brighter) than
the rectangle on the left. Similarly, the square on the bottom
right is more active than others in Figure 7E. This is the fused
binocular surface percept and is always in retinotopic coordi-
nates. The attentional shrouds are computed in head-centered
coordinates.

As the eyes freely scan the scene, they make several saccades
within and across the different object surface contours. As this
happens, spatial attention moves from one object, disengaging
before engaging another object, based on the salient features
in the surface contour map (see Figure 5). A temporal evolu-
tion of the spatial attention and binocular percepts are shown
from left to right in Figures 6D,E, 7D,E, respectively, for the two
stimuli. Before the eyes can move from one object to the other,
the currently active attentional shroud begins to collapse due to
habituation (Equation 61), which leads to its reset (Equation 62).
Multiple saccades move sequentially to the most salient positions
on one object’s surface contours before moving onto another
object’s surface contours.

These simulations establish a proof of concept that the exten-
sion of the ARTSCAN model to the 3D ARTSCAN model main-
tains stable fusion of binocular surfaces as the eyes explore them
and other objects in their vicinity.

4.2. SIMULATIONS OF BINOCULAR FUSION OF NATURAL OBJECTS
Simulations were also carried out using 3D scenes with natural
objects in them. For this set of simulations, grayscale images of
objects from the Caltech 101 dataset (Fei-Fei et al., 2004) were
used. The image backgrounds are a uniform gray and do not have
any noise or texture. Each object is 100 × 100 pixels in size. The
objects were tiled on the visual field, and two sets of stimuli with
four (Figure 8A), and six (Figure 9A) objects were used to test
the system’s robustness and scalability to more realistic scenes.
These pixellated images were rescaled to a rectilinear grid into
degrees of visual field, as described earlier. The naturally occur-
ring objects used in the simulations are “cell phone,” “soccer ball,”
“metronome,” “barrel,” “yacht,” and “yin yang.”

The pre-processing stages for the natural objects are the same
as for the rectangular and square stimuli in Figures 6, 7. The
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initial binocular surface percept that is represented in retinotopic
coordinates is shown in Figures 8B, 9B for the four and six image
stimuli, respectively.

The surface contour maps for the natural objects, before any
eye movements occur, are shown in Figures 8C, 9C. These sim-
ulation figures show the results of when the eyes move from one
object’s surface contour to the other after the shifting of atten-
tional shrouds. The maintenance of binocular fusion as the eyes
move across a single object’s surface, followed by shroud col-
lapse and an eye movement to another object, are explained, with
simulations, in the remainder of this section and in Section 4.3.

In Figure 8, the first eye movement is made to the soccer ball.
Thus, the first spatial attentional shroud is linked to the soccer ball
(first panel, Figure 8D). After several saccades explore the soccer
ball using its surface contour map to determine salient saccadic
target positions, the shroud begins to collapse and spatial atten-
tion begins to shift to the metronome as the next eye movement
is made to a position chosen from the metronome’s surface con-
tour (second panel, Figure 8D). This process then proceeds to the
cell phone (third panel, Figure 8D) and then finally to the barrel
(fourth panel, Figure 8D). Several saccades are made within each
object, thus exploring the object and learning invariant object cat-
egories for it (Fazl et al., 2009; Grossberg, 2009; Cao et al., 2011),
before moving onto the next object. During all these saccadic
eye movements within or across objects and shifts in attention
across objects, all the binocular surfaces are maintained in fusion
in retinotopic coordinates (Figures 8E, 9E,G). Each panel that
illustrates the binocular percept shows enhanced activity of the
currently attended object surface.

FIGURE 10 | Surface contour activity C (Equation 45) with attention

first maintained on the soccer ball, followed by a then shift in

attention to the cell phone. Saccades to target positions marked “1,” “2,”
and “3” are made within the soccer ball. Saccades to target positions
marked “4,” “5,” and “6” are made within the cell phone after a shift in
attention. The thick gray arrow marks the shift in attention from the soccer
ball to the cell phone following parietal reset (see Section 4.3 for details).

The same experiment was repeated with more stimuli (six
instead of four) in the scene to test the scalability and robustness
of the system; see Figure 9. Here, the first predictive eye move-
ment is made to the yin yang symbol (first panel, Figure 9D)
as its attentional shroud suppresses the shrouds of the other
objects. After a few saccades on the yin yang surface contour,
an eye movement is made to the soccer ball surface contour as
spatial attention is disengaged from the yin yang and engaged
with the soccer ball (second panel, Figure 9D). After this, an
eye movement is made to the cell phone surface contour: spa-
tial attention is disengaged from the soccer ball, and engaged
with the cell phone (third panel, Figure 9D). This is then fol-
lowed by an eye movement to the barrel, yacht, and finally to
the metronome (panels in Figure 9F). Within each object, sev-
eral saccades were made before moving onto the next object (see
Figure 10).

The binocular surface percept remains fused in retinotopic
coordinates while all this change occurs in spatial attention
and eye movements. Here again, the perceptual contrast of
the attended surface, which is in surface-shroud resonance, is
enhanced (Figures 8E, 9E,G). This simulation shows that sys-
tem properties, using the same set of parameters, are robust in
response to variable numbers of natural images. The invariant
binocular boundaries were as well maintained in fusion by the
predictive remapping signals. These dynamics are elaborated in
Sections 4.3 and 4.4.

4.3. SIMULATIONS OF WITHIN OBJECT EYE MOVEMENTS AND
ATTENTION SHIFTS BETWEEN OBJECTS

Sections 4.1–4.2 and Figures 6–9 summarized simulations that
illustrate how homogeneous surfaces (rectangles and squares)
and natural objects induce surface representations that remain
binocularly fused as attention shifts from one object to another
during scanning eye movements. Figure 10 describes the sur-
face contours (Equation 45) before any eye movements occurred,
as well as six of the eye movement target positions that were
determined by the surface contours and which led to eye
movements.

When attention is disengaged from the yin yang and shifts to
the soccer ball, the fixated eye position (Equation 66) within the
soccer ball is marked as “1” on the surface contour in Figure 10.
The activities of the attentional shroud and the fused binocu-
lar surface after the eye position “1” is attained are shown in
Figures 9D,E (second row), respectively. Following this, two more
saccades numbered “2” and “3” are made to surface contour
salient features of the soccer ball (Figure 10). While these sac-
cadic explorations are made within the soccer ball, its shroud
starts to collapse due to a combination of inhibition of return
and habituation. This disinhibits and triggers the burst of the
parietal reset signal (Equation 62), which was thus far inhib-
ited by the active shroud of the soccer ball. This burst of the
reset signal collapses the habituating attentional shroud on the
soccer ball completely, thus initiating a shift in spatial attention
(thick gray arrow) from the soccer ball to the cell phone. Once
the spatial shift in attention to the cell phone occurs, the new
eye position (Equation 66) within the cell phone is marked as
“4” on the surface contour (Figure 10). Two saccades numbered
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FIGURE 11 | Temporal dynamics after attention is engaged by the soccer

ball and saccades are made within it, followed by a shift in attention to

the cell phone and saccades within the cell phone. (A) Temporal evolution
of the parietal reset signal CRESET (Figure 4 and Equation 62) for the
paradigm described in Figure 10. When saccades are made within the

attended object, CRESET remains inhibited, thereby allowing for explorations
of different views within the attended object that can be learned and
associated with a view-invariant category of the object. A few moments after∑

ij g(Aij )
100+∑

ij g(Aij )
in Figure C crosses beneath the threshold (1 − ε), the parietal

(Continued)
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FIGURE 11 | Continued

reset signal is disinhibited and inhibits the currently active shroud,
thereby enabling a shift in spatial attention. The time when CRESET turns
on is marked by the dashed vertical line. When the next winning shroud
starts to become active (E), it inhibits the reset signal. (B) The
habituative neurotransmitter yC (Equation 63) is at its maximum activity
when the reset signal is inhibited. When the reset signal is activated,
the transmitter habituates in an activity-dependent way. The net reset
signal CRESET yC that inhibits the spatial attention map (Equation 51) is
therefore transient. An attention shift to a new surface-shroud resonance
can hereby develop after it shuts off. When the reset signal is inhibited
by the newly active shroud, the habituative neurotransmitter gradually
replenishes over time before the next reset event occurs. (C) The

temporal evolution of the ratio of the attention function
∑

ij g(Aij )
100+∑

ij g(Aij )
that

is subtracted from the constant threshold (1 − ε) = 0.93 to define the
parietal reset signal. As long as the ratio of the attention function
remains above the threshold, the reset signal remains inhibited. After the
ratio crosses the threshold (marked by the dashed vertical line), the
parietal reset signal is turned on. (D) The transient reset burst CRESET yC

inhibits the spatial attention map. (E) Temporal evolution of the
attentional shrouds A (Equation 51) of the soccer ball and cell phone.
The reset mechanism does not collapse the shroud when saccades (e.g.,
“2-3” or “5-6” in Figures 10, 11D) are made within the surface of an
active shroud. The small dips in activity of the active shroud correspond
to saccades within the attended object. (F) Temporal evolution of the
binocular surface percepts Sb (Equation 41). The attended binocular
surface activity (dashed curve, soccer ball; solid curve, cell phone) is
enhanced by surface-shroud resonance. See Section 4.3 for details.

“5,” “6” are next made within the cell phone. The binocular sur-
face percept and attentional shroud activity of the cell phone, for
the position marked as “6” was shown previously (third panel,
Figures 9D,E).

The temporal evolution of the parietal reset signal (Figure 4
and Equation 62) during these six eye movements (Figure 10) is
shown in Figure 11A. A reset signal occurs only when the soc-
cer ball shroud collapses, thereby enabling a spatial attention shift
to the cell phone. The eye movements within these objects do
not cause a reset signal. The temporal profile of the habituative
transmitter (Figure 4 and Equation 63) that gates the parietal
reset signal is shown in Figure 11B. The temporal evolution of

the ratio
∑

ij g(Aij)

100+∑
ij g(Aij)

that is subtracted from the constant thresh-

old (1 − ε) to define the parietal reset signal CRESET in Equation

(62) is shown in Figure 11C. When
∑

ij g(Aij)

100+∑
ij g(Aij)

becomes smaller

than (1 − ε), CRESET turns on at the time marked by the dashed
vertical line, as in Figure 11A, and the habituative gate begins
to decay in an activity-dependent way, as in Figure 11B. As a
result, the net reset signal CRESETyC in Figure 11D is a transient
burst. This transient burst completely inhibits the active soccer
ball shroud (dashed line) in Figure 11E via Equation (51). There
is a time lag between the activation of successive shrouds, follow-
ing the collapse of soccer ball shroud and the formation of the cell
phone shroud (solid line), that corresponds to the time needed
to shift spatial attention between the two objects (Figure 11E).
The inhibition of the soccer ball shroud enables the cell phone
shroud to win the competition for spatial attention. The binoc-
ular surface representation of the cell phone (Figure 11F and
Equations 38–41) is then enhanced by top-down excitatory feed-
back from its shroud as a surface-shroud resonance develops. The
newly activated shroud inhibits the tonically active reset signal
(Figure 11A) and the habituative transmitter gradually recovers
through time (Figure 11B). These dynamics repeat when next
reset event occurs.

Figure 12 presents the evolution of the activities shown in
Figure 11 at finer temporal resolution at times just before, dur-
ing, and after the occurrence of the reset event so that the
reader can better appreciate these temporal details. When sac-
cades (e.g., “2–3” or “5–6” in Figure 10) are made within the
surface of an active shroud, they do not cause the reset mechanism
to collapse the shroud. The small dips of activity in the active

shrouds in Figure 11E correspond to such eye movements within
an object. As a result of these saccadic explorations within an
attended object, different view-specific categories of the object
can be learned and associated with a view-invariant category of
the object (see What stream of ARTSCAN in Figure 1).

Figure 13 shows the simulated activity profiles of the atten-
tional shroud and binocular surface representations when sac-
cades are made, as summarized in Figure 10, within an attended
surface, and after shifts in attention to other surfaces. Figure 13A
shows the profiles of the attentional shrouds which are repre-
sented in head-centered coordinates, and Figure 13B shows the
profiles of the corresponding binocular surface percepts in retino-
topic coordinates. The markings “2,” “3,” “4,” “5,” and the thick
gray arrow on the sides of each pair of panels correspond to
the eye positions after each saccade, and the shifts in attention
described in Figures 10–12.

Figure 13C shows the average reaction time (RT) data in
human subjects of Brown and Denny (2007). Figure 13D shows
the average RTs to attend for the simulations shown in Figure 9.
Average RTs in the simulations are computed on the spatial
attention map(A) (Equation 51). The average reaction times for
attending within-object different position (dark gray bar) after
saccades are faster than the average response times for between-
object (light gray bar) shifts of attention. The average reaction
times for within-object different position after saccades were cal-
culated as the time it takes the active shrouds to recover from
the small dips in activity, corresponding to eye movement made
within the object to a different target position (e.g., Figure 11E).
The average reaction times for between-object shifts in attention
were calculated as the time between the complete collapse of
the previous shroud and the activation of the next shroud to
half its maximum value (Figures 11E, 12E). The investigations
of Brown and Denny (2007) showed that between-object shifts
of attention take longer than within-object shifts. This within-
object advantage occurs because attention need not be disengaged
from the object when eye movements to target positions are
made inside it. Brown and Denny (2007) also found that shift-
ing attention from an object to another object, or to another
position with no object present, takes nearly the same amount
of time (369 ± 10 vs. 376 ± 9 ms), concluding that the engage-
ment of attention is not the time limiting step in object-based
experiments.
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FIGURE 12 | Temporal dynamics of the plots in Figure 11, but at a finer temporal resolution before, during, and after the transient reset burst.

In the ARTSCAN model (cf. Fazl et al., 2009, Figure 1),
the RTs for the corresponding simulations were scaled to be
equal to the valid trials in the data. The dARTSCAN (cf.
Foley et al., 2012) model has generalized ARTSCAN beyond its

parietal spatial attentional capabilities to include prefrontal work-
ing memory storage, and has thereby extended the Fazl et al.
(2009) simulations to quantitatively simulate all of the exper-
imental cases described by Brown and Denny (2007). The 3D
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ARTSCAN model replicates two of the trial conditions from
the Brown and Denny (2007) experiment. The within-object
different position (341 ± 9 ms, dark gray) and between-object
(369 ± 10 ms, light gray) RTs in Figure 13C correspond to the

invalid within, and invalid between, object trials of the exper-
iment. The simulation RTs of within-object different position
(40 ms, dark gray) and between-object (75 ms, light gray) pre-
sented in Figure 13D consistent with the data in Figure 13C. In

FIGURE 13 | Snapshots of the attentional shroud and the binocular

surface percept during saccades within the soccer ball, followed by a

shift in attention to the cell phone and a saccade within it. (A)

Activities of attentional shrouds A (Equation 51) in head-centered
coordinates after saccades to target positions “2,” and “3” within the
soccer ball, followed by an attentional shift to the cell phone (thick gray
arrow), when no shroud is active, after which a cell phone shroud forms
around target position “4,” and then a saccade occurs within the cell
phone to target position “5.” (B) Corresponding activation patterns of the
binocular surface percept (Sb ) (Equation 41) in retinotopic coordinates. The
eye positions and the attentional shift correspond to the paradigm

explained in Figure 10 and for the temporal profiles shown in Figure 11

(see Section 4.3 for details). (C) Reaction time (RT) data from Brown and
Denny (2007) for within-object different position (341 ± 9 ms, dark gray),
and between objects (369 ± 10 ms, light gray) trials. (D) Simulations of
RTs to object-based attention computed over the spatial attention map A.
Average RTs to within-object different position (40ms, dark gray), and
between objects (75 ms, light gray) are shown for the complete simulation
run in Figure 9. RTs to attend to within-object different positions are faster
than between objects, consistent with the data in (C) See Section 4.3 for
an explanation of why the RT difference matches the data, but the total
simulated RTs are 300 ms shorter.
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FIGURE 14 | Predictive remapping of fused invariant binocular

boundaries. The input stimulus is the same as in Figure 9 and the paradigm is
from Figure 10. The maintained fusion of boundaries is demonstrated when
saccades are made to target positions within one object, in this case, the
soccer ball. For convenience, only ON channel ( + ) responses are shown. The
OFF channel ( − ) responses look similar and thus the +/− superscripts are
dropped for convenience. (A) Temporal evolution of the fused invariant

binocular boundaries
∑

ij Bb
ij (Equation 33) when saccades are made within the

soccer ball. The markings “1,” “2,” and “3” correspond to the target positions
on the surface contour map shown in Figure 10. The dashed gray box is the
duration of the saccade (60 ms) for which the dynamics are presented in (B–F).
(B) Temporal evolution of the invariant binocular boundaries

∑
ij Bb

ij before,
during, and after an eye movement to target position “2” in Figure 10

(Continued)
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FIGURE 14 | Continued

following fusion of the invariant monocular boundaries. The dotted gray box
shown covers the duration of the saccade shown in (A). Even before the eye
movement is completed, there is predictive remapping of the fused
boundaries by the boundary gain fields. (C–F) show the boundary gain field
activity for the left eye (l). The right eye profiles are the same. To achieve
predictive remapping of the invariant left monocular boundary, the invariant
left monocular boundary gain fields GLl

klij (Equation 28) are activated by

top-down inputs
∑

ij Bl
ij E

BI
klij from invariant left monocular boundaries

(Equation 26), eye position signals
∑

klij Pij EPI
klij (Equation 66), and bottom-up

inputs
∑

klij Rl
ij E

RI
klij from retinotopic left monocular boundaries (Equation 22).

(C) Temporal profile of the eye position input
∑

klij Pij EPI
klij . ((D) Temporal

evolution of the summed invariant left monocular boundary gain field activity∑
klij GRl

klij . (E) Temporal profile of the invariant left monocular boundary input∑
klij Bl

ij E
BI
klij . (F) Temporal evolution of the retinotopic left monocular boundary

input
∑

klij Rl
ij E

RI
klij . The gray dotted lines in (D–F) show the change in activity

from baseline. See Section 4.4 for details.

ARTSCAN and dARTSCAN, trials were run explicitly instructing
the system of the prime and cue, followed by a long inter-
stimulus interval (ISI) before the target appears and a response
is made with the appearance of the target. However, in 3D
ARTSCAN, the cue and target selections are internally evaluated
from the salient features on the surface contour map without
any experimenter supervision, and only the response time is cal-
culated from when the salient feature appears followed by an
eye movement to the target position. The RTs shown here are
thus 300 ms less than what was reported in Brown and Denny
(2007).

4.4. SIMULATIONS OF PREDICTIVE REMAPPING OF BINOCULAR
BOUNDARIES

Figures 14, 15 summarize simulations of predictive remapping by
gain field modulation to maintain fusion of invariant binocular
boundaries during eye movements. The inputs used in this anal-
ysis are the same as in previous sections (Sections 4.2–4.3 and
Figures 9, 10). The surface contour map from which eye posi-
tion signals are generated is shown in Figure 10. The temporal
dynamics of the predictive remapping of fused invariant binocu-
lar boundaries of all the objects are presented in Figure 14 at the
position marked “2” in Figure 10 while saccadic eye movements
are made to the target positions within the soccer ball to positions
marked “1,” “2,” and “3.”

Figure 14A shows the temporal profile of the summed

response of the fused invariant binocular boundaries
(∑

ij Bb
ij

)
(Figures 3, 4, and Equation 33) for all the objects following
a shift in attention from the yin yang to position “1” within
the soccer ball. This is followed by two saccades to target
positions “2” and “3” within the soccer ball. The duration of
the saccade from position “1” to “2” is indicated by the gray
dotted box, and is 60 ms. In all plots in Figure 14, only the
ON channel profiles are shown. The OFF channel responses
look similar. The +/− superscripts are thus dropped for con-
venience. The summation of the invariant binocular bound-
ary values

(∑
ij Bb

ij

)
is plotted to show how the boundaries

of all the objects are maintained in fusion while saccades are
made to target positions within the soccer ball. This happens
because the binocular boundaries are maintained in fusion in
head-centered coordinates before the eye movement to the next
target position, following predictive remapping of monocular
boundaries in head-centered coordinates by monocular bound-
ary gain fields (Equations 28–32). The monocular boundary gain
fields are updated by predictive eye signals (Equations 64–66)
that are derived from the surface contour map (Equation 45),

as illustrated in the remainder of Figure 14. Additionally, the
binocular boundaries of the attended object (the soccer ball)
are strengthened by top-down feedback from the surface con-
tour map (Equation 45) via gain fields (Equation 48). Thus,
in Figure 14A it can be observed that there is an increase in
summed activity of all the binocular boundaries by predictive
buildup of the boundary gain fields acting on the monocu-
lar gain fields (their dynamics are explained in Figures 14C–F).
Enhanced activity after the initial buildup for the invariant
binocular boundaries of the attended surface (soccer ball) is
maintained by its surface contour feedback (see Figure 15 for
illustration).

Figures 14B–F show a blown-up time scale (note the finer time
scale) of these boundary dynamics achieved by a combination of
the gain field activities and how they correlate with gain field pre-
dictive dynamics during the duration of the saccade. Figure 14B
shows the temporal profile of the invariant binocular bound-
aries before, during, and after the eye movement from target
position “1” to “2.” This corresponds to the activity of the binoc-
ular boundaries shown in the gray dotted box in Figure 14A.
Note the buildup and maintenance of the fused binocular
boundary activity even before the eye movement (Equation
66) to the target position is completed, which only ends after
180 ms.

The invariant binocular boundaries Bb (Equation 33) are

fused from invariant monocular boundaries Bl/r
ij (Equation 26)

that are derived from the retinotopic monocular boundaries Rl/r
ij

(Equation 22). This transformation from retinotopic to invariant
monocular boundaries is achieved through predictive remapping
by boundary gain fields (Equations 28–32), which are subse-
quently fused to yield the binocular boundaries (Equation 33). In
Figures 14C–F, only the left monocular ON channel predictive
remapping activities are presented. The summed activation pat-
terns for the right monocular ON/OFF channels are exactly the
same as that of the left images. In Figures 14D–F, the horizontal
gray dashed lines are drawn to show how predictive remapping
enhances the activities from before the eye movement to the target
position.

Figure 14C plots the summed temporal activity of the eye
position signal’s P (Equation 66) gain modulation, defined as∑

klij PijEPI
klij [in Equation (28)]. This modulates the boundary

gain field in order to achieve predictive remapping of the invari-
ant monocular boundary (see Figure 3). Only one target position
is active at any given time and it can be observed that during
the period of eye movement, there is a gradual buildup of this
activity. Before the eye movement to a target position derived
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FIGURE 15 | Snapshot of fused invariant binocular boundaries Bb

(Equation 33) of all the objects after saccades to target positions

within the attended soccer ball. Only ON channel invariant binocular
boundaries are shown. Following the paradigm in Figure 10, and the
temporal profile in Figure 14A, the corresponding fused binocular
boundaries are shown after the shift in attention to target position “1”
followed by saccades to target positions “2,” and “3” within the soccer
ball. All the binocular boundaries are maintained in head-centered
coordinates. The activities of the fused soccer ball boundaries are enhanced
(“1,” dashed box; “2,” solid box; and “3,” dotted box) as saccades are
made to the corresponding target positions. Binocular boundaries of
unattended objects remain fused as well. See Section 4.4 for details.

from the salient features is completed, the modulation from
the predictive target position signal ensures that the invariant
monocular boundaries are remapped to maintain the fusion
of the binocular boundaries. The activity of this component is

maintained at that level until the next eye movement occurs (here
from target position “2” to “3”).

The temporal evolution of the summed boundary gain field

activity GRl
(Equation 28) as

∑
klij GRl

klij, responsible for predictive
remapping of the invariant monocular boundaries, is presented
in Figure 14D. These boundary gain fields are modulated by
the bottom-up inputs from retinotopic monocular boundaries
(Equation 22), the target eye position signal (Equation 66), and
feedback from the invariant monocular boundaries (Equation
26). These gain fields in turn modulate and predictively remap
the invariant monocular boundaries (Equation 26) as well as
the retinotopic monocular boundaries [Equation (22), also see
Figure 3]. In Figure 14D, it can be observed that during the eye
movement, there is a predictive buildup of the gain field activity.
At the end of the eye movement, the overall gain field activ-
ity is enhanced from the initial value as marked by the dashed
gray line. The transient increase in activity followed by plateauing
is caused by a combination of top-down feedback from the
invariant monocular boundaries and the bottom-up retinotopic
monocular boundaries.

Figure 14E plots the summed temporal activity of the invari-
ant left monocular boundaries’ Bl (Equation 26) gain modulation
expressed as

∑
klij Bl

ijE
BI
klij (in Equation 28). Again there is a predic-

tive buildup of this component and, after the transient activation,
the activity plateaus. This transient activation is a combination
of feedforward retinotopic inputs via the gain fields, followed by
modulatory feedback from the fused invariant binocular bound-
aries to the invariant monocular boundaries. The gray horizontal
line clearly shows an enhanced activation of the invariant monoc-
ular activation from its initial value before the saccade.

Figure 14F plots the summed temporal activity of the
retinotopic left monocular boundaries’ Rl (Equation 22) gain
modulation

∑
klij Rl

ijE
RI
klij [in Equation (28)]. During the eye

movement to the target position “2,” there is a buildup of this
activity, followed by a transient activity before plateauing. The
transient activity is caused by feedback from the invariant left
monocular boundary via the boundary gain fields. The invariant
left monocular boundaries in turn are modulated by invari-
ant binocular boundaries (Figure 3 and Equation 26). Thus,
even before an eye movement is completed to the target posi-
tion, the boundary gain fields predictively remap the invariant
monocular boundaries. These invariant monocular boundaries
are fused to yield invariant binocular boundaries, in which
the binocular boundaries of the attended object are further
strengthened by top-down feedback from their surface contour
signals.

Figure 15 shows snapshots of activation profiles of the invari-
ant fused binocular boundaries after a saccade occurs to those
target positions (“1,” dashed; “2,” plain; and “3,” dotted box)
as shown in Figure 10. Again for convenience, only the ON
channel invariant binocular boundaries are shown. It can be
observed from the three snapshots in Figure 15 that the binoc-
ular boundaries of all the six objects in the scene remain fused
after every subsequent eye movement to the three different target
positions within the soccer ball. They are also maintained in head-
centered coordinates throughout the time when eye movements
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are made to target positions within the soccer ball. Further, the
activity of binocular boundaries of the attended soccer ball sur-
face is enhanced with every eye movement due to surface contour
feedback.

5. MATHEMATICAL EQUATIONS AND PARAMETERS
Unless specified otherwise, the equations are all solved dynam-
ically. Symbol I is the input image and Iij is the value of the
input image in the visual field at position (i, j). The dynamic
range of inputs Iij is [0, 1]. The superscripts l/r are used to denote
the boundary/surface processing in the left or right eyes, respec-
tively. The superscripts +/− are used to denote ON and OFF
processing, respectively. The equations and parameters used for
monocular cells that are responsive to the left or right eyes, and for
ON and OFF cells are the same in the simulations, unless specified
otherwise. The binocular cells/networks have a b superscript. The
simulations are shown for a single depth with allelotropic shifts of
s = +3o where the neurons are tuned for far disparity. The image
input Iij at position (i, j) gives rise to monocular inputs to the left

and right eyes equal to Il
(i + s)j, and Ir

(i − s)j, respectively, for all i
and j that project to the retina. The simulations were carried out
in MathWorks (R) MATLAB R2012a (TM) on a Linux GNOME
x64 bit machine with Intel Quad-Core (TM)/3.10 GHz/7.7 GB of
RAM.

5.1. RETINAL ADAPTATION
The retinal equations have been adapted from the aFILM model

of Grossberg and Hong (2006). The potential φ
l/r
ij at position

(i, j) of the outer segment of the retinal photoreceptor is simu-
lated by the equation:

φ
l/r
ij (t) = Il/r

ij zl/r
ij (t), (1)

where Il/r
ij is the monocular input image and zl/r

ij
(t) is a habituative

gate that realizes an automatic gain control term simulating neg-
ative feedback mediated by Ca2+ ions, among others. It is defined
as follows:

dzl/r
ij

dt
=

(
BZ − zl/r

ij

)
− zl/r

ij

(
CIIl/r

ij + CI∗ I∗) , (2)

where BZ = 5 is the asymptote to which zl/r
ij (t) accumulates, or

recovers, in the absence of input, and the term zl/r
ij (CIIl/r

ij + CI∗ I∗)

describes the inactivation of zl/r
ij by the present input, Il/r

ij , and

by a spatial average, I∗, of all the inputs that approximates the
effect of recent image scanning by sequences of eye movements.
Parameters CI = 2, and CI∗ = 6. Solving Equations (1, 2) at
equilibrium yields the equilibrium potential:

φ
l/r
ij =

BZIl/r
ij

1 + CIIl/r
ij + CI∗ I∗ . (3)

In the simulations, I∗ = 0.5 best approximates the effect of recent
image scans.

The inner segment of the photoreceptor receives the signal φl/r
ij

from the outer segment and gets feedback Hl/r
ij from the horizon-

tal cells (HC) at position (i, j). HC modulation of the output of
the inner segment of the photoreceptor is modeled by:

�
l/r
ij =

φ
l/r
ij

Bhe
Hl/r

ij (Bs − φ
l/r
ij ) + 1

, (4)

where Bh = 0.05 is a small constant, and Bs = Bz / CI = 2.5. This
constant value of Bs ensures that perfect shifts (viz., adaptation)

of the log (Il/r
ij ) − �

l/r
ij curve occur as Hl/r

ij is varied. For more
details, see Grossberg and Hong (2006). Many increasing func-

tions of Hl/r
ij will generate the shift property of �

l/r
ij as a function

of log (Il/r
ij ). Function f (Hij) = Bhe

Hl/r
ij was chosen because e

Hl/r
ij

makes the sensitivity curve shift in an accelerating manner with

increasing Hl/r
ij , where Hl/r

ij is the sigmoid output of the HC at

(i, j) in response to its potential hl/r
ij :

Hl/r
ij =

aH

[
hl/r

ij

]2

b2
H +

[
hl/r

ij

]2
, (5)

where aH = 6 and bH = 0.1.
The potential of an HC connected to its neighbors through gap

junctions is defined as follows.

dhl/r
ij

dt
= −hl/r

ij +
∑

pq∈NH
ij

�
l/r
pqij

(
hl/r

pq − hl/r
ij

)
+ �

l/r
ij , (6)

where �
l/r
pqij is the permeability between cells at (i, j) and (p, q);

namely:

�
l/r
pqij = −1

1 + exp
[
−

(∣∣∣�l/r
ij − �

l/r
pq

∣∣∣ − βp

)
/μp

] + 1, (7)

where βp = 0.01, and μp = 0.002, and NH
ij is the neighborhood

of cells to which the HC at position (i, j) is connected:

NH
ij =

{
(p, q) :

√
(p − i)2 + (q − j)2 ≤ 13

}
. (8)

5.2. LGN POLARITY-SENSITIVE ON AND OFF CELLS
5.2.1. Center-surround processing
The retinally adapted signal �

l/r
ij is processed by on-center off-

surround (ON cells) and off-center on-surround (OFF) cells that
obey the membrane, or shunting, equations of neurophysiology.

The activity xl/r, +
ij of the on-center off-surround (ON) network

that receives input signals �
l/r
ij (Equation 4) from the inner
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segment of the photoreceptors is defined as follows:

dxl/r, +
ij

dt
= −xl/r, +

ij +
(

1 − xl/r, +
ij

) (
0.6�

l/r
ij

)
−

(
xl/r, +

ij + 1
)

El/r
ij + �l/r, +. (9)

In Equation (9), the term 0.6�
l/r
ij is the on-center input, El/r

ij is

the off-surround input, and �l/r, + is the resting activity. The off-
surround obeys:

El/r
ij =

0.6
(∑

(p,q)∈ NE
ij
�

l/r
pq El/r

pqij

)
∑

(p,q)∈ NE
ij

El/r
pqij

, (10)

where NE
ij is the off-surround neighborhood to which the cell at

(i, j) is connected:

NE
ij =

{
(p, q) :

√
(p − i)2 + (q − j)2 ≤ 6

}
, (11)

and El/r
pqij

is the inhibitory off-surround kernel:

El/r
pqij = 0.6e

(
− (p−i)2+(q−j)2

16

)

∑
(p,q)∈ NE

ij
e

(
− p2+q2

16

) , (12)

which is normalized by the terms in the denominator. With
this LGN ON-center/OFF-surround processing, the single and
double-opponent LGN polarity-sensitive cells can be computed
as follows.

5.2.2. ON/OFF channels and double-opponent cells
As defined in Grossberg et al. (1995), the equilibrium, ON-cell
activities of Equation (9) are thresholded to yield the output
signals:

xl/r, +
ij =

⎡
⎣�l/r, + + 0.6�

l/r
ij − El/r

ij

1 + 0.6�
l/r
ij + El/r

ij

⎤
⎦

+
. (13)

The corresponding equilibrium outputs of the off-center on-
surround (OFF) network are:

xl/r, −
ij =

⎡
⎣�l/r, − + El/r

ij − 0.6�
l/r
ij

1 + 0.6�
l/r
ij + El/r

ij

⎤
⎦

+
. (14)

By (14), the on-center and off-surround of an OFF cell is the
off-surround and the on-center of the corresponding ON cell,
respectively. The rest level parameters �+ and �− were chosen
with �− > �+ — in particular, �l/r, + = 1.5 and �l/r, − = 4.5,
which allows the OFF cells to be tonically active in the presence of
uniform inputs, including in the dark. The inhibitory interactions

that define the ON and OFF cells in Equations (13, 14) are com-
puted across space among other ON and OFF cells, respectively.
In contrast, the next processing stage of, double-opponent cells is
defined by subtracting the ON and OFF cell output output signals
at each position, and then thresholding the result:
Double-opponent ON-cell:

Xl/r, +
ij =

[
xl/r, +

ij − xl/r, −
ij

]+
. (15)

Double-opponent OFF-cell:

Xl/r, −
ij =

[
xl/r, −

ij − xl/r, +
ij

]+
. (16)

5.3. BOUNDARY PROCESSING
5.3.1. Simple cells
The simple cell activities Tl/r

ijθ in model cortical area V1 receive
their inputs from double-opponent LGN cells and are com-
puted as in Raizada and Grossberg (2003). At each position (i, j),
and for each of the four orientations θ = {0◦, 45◦, 90◦, 135◦},
a Difference-of-Offset-Gaussian (DOOG) kernel was used to
compute each simple cell’s orientationally-tuned ON and OFF
subregions. In response to an oriented contrast edge in an input
image, a suitably oriented simple cell of correct polarity will have
its ON subfield stimulated by a luminance increment and its OFF
subfield stimulated by a luminance decrement. The simple cell

activity Tl/r
ijθ for a given orientation θ , is the rectified sum of

activities of each subfield, minus their difference:

Tl/r
ijθ = ϑ

[
Ul/r

ijθ + Vl/r
ijθ −

∣∣∣Ul/r
ijθ − Vl/r

ijθ

∣∣∣]+
, (17)

where ϑ = 6, and the term Ul/r
ijθ and Vl/r

ijθ in Equation (17)
represent the ON and OFF subregions, respectively:

Ul/r
ijθ =

∑
mn

([
Xl/r, +

mn

]+ −
[

Xl/r, −
mn

]+)[
Dl/r

mnijθ

]+
(18)

and

Vl/r
ijθ =

∑
mn

([
Xl/r, −

mn

]+ −
[

Xl/r, +
mn

]+)[
−Dl/r

mnijθ

]+
, (19)

and Dl/r
mnijθ is the DOOG kernel:

Dl/r
mnijθ = 1

2πσ 2
D

⎡
⎢⎢⎣

exp
(
− (m − i + δ cos θ)2+(n − j + δ sin θ)2

2σ 2
D

)
−

exp
(
− (m − i − δ cos θ)2 + (n − j − δ sin θ)2

2σ 2
D

)
⎤
⎥⎥⎦(20)

in which σD = 0.5 is the standard deviation of the kernel width.

5.3.2. Complex cells
The model boundary is not used to simulate any polarity-specific
properties. Thus, for simplicity, the simple cell responses are
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pooled across all four orientations to define the complex cell
activities and output signals:

Zl/r
ij = 0.25

∑
θ

Tl/r
ij θ (21)

5.3.3. Monocular retinotopic boundaries
The monocular retinotopic boundary activities Rl/r

ij (Figure 2)
obey:

dRl/r
ij

dt
= −aRRl/r

ij +
(

bR − Rl/r
ij

)⎛
⎝Zl/r

ij + c
∑
klij

h
(

GRl/r

klij

)
EIR

klij

⎞
⎠

−
(

Rl/r
ij + dR

)⎛
⎝∑

pq

Zl/r
pq + d

∑
klij

h
(

GRl/r

klij

)
EIR

klij

⎞
⎠ , (22)

where the decay rate αR = 5, the shunting excitatory satu-
ration activity bR = 10, and the shunting inhibitory satura-

tion activity dR = 2. A bottom-up on-center Zl/r
ij off-surround∑

pq Zl/r
pq network of inputs come from complex cell outputs

Zl/r
ij . Retinotopic monocular boundaries also receive top-down

on-center off-surround signals
∑

klij h(GRl/r

klij )EIR
klij from invariant,

or head-centered, monocular boundaries that are first trans-
formed by gain fields. Functions GRl/r

klij are the top-down gain

field output signals from position (k, l) to (i, j), and EIR
klij are the

top-down connection weights from this gain field to the retino-
topic boundary cells. These gain field functions and weights are
defined in Equations (28–32). The feedback signal function h is
threshold-linear:

h(a) = [a − 0.2]+. (23)

These top-down gain field signals are multiplied in Equation (22)
by excitatory and inhibitory gains c = 10 and d = 2, respectively.

5.3.4. Invariant monocular boundaries
The invariant monocular boundary activities Bl/r

ij receive bottom-

up inputs via gain fields GRl/r

klij that transform the retinotopic
monocular boundaries into invariant monocular boundaries
(Figure 3). Before an eye movement occurs, the dark-light
monocular invariant boundary activity is defined to equal the
corresponding retinotopic monocular boundary activity:

Bl/r, +
ij = Rl/r

ij , (24)

and the light-dark monocular invariant boundary activity is
defined as

Bl/r, −
ij =

{
[1 − Bl/r, +

ij ]+ if Bl/r, +
ij �= 0

0 otherwise.
(25)

As eye movements occur, the invariant monocular boundaries
receive retinotopic monocular boundary inputs (Equation 22)

through the gain fields GRl/r

klij described in Equations (28–32). Their

left (L) Bl, +/−
ij and right (R) Br, +/−

ij activities are defined as
follows:

dBl/r,+/−
ij

dt
= −abBl/r,+/−

ij +
(

1 − Bl/r,+/−
ij

) (
f
(

Bl/r,+/−
ij

)

+pb

∑
klij

h
(

GRl/r

klij

)
EIB

klij + λh
(

Bb,+/−
ij

)⎞⎠

− Bl/r,+/−
ij

∑
kl

⎛
⎝f

(
Bl/r,+/−

kl

)
+qb

∑
klij

h
(

GRl/r

klij

)
EIB

klij

+h
(

Bb,+/−
kl

))
, (26)

where ab = 20 is the decay rate, and

f (a) = a2

4 + 2a2
(27)

is the feedback sigmoid signal function that transforms the activ-
ities of the invariant monocular boundaries into a recurrent
on-center off-surround network of feedback signals that maintain
the persistent activity of the invariant boundaries in the network.
Parameters pb = 16 and qb = 16 are excitatory and inhibitory
gains that multiply the bottom-up excitatory and inhibitory
signals, respectively, from the gain fields. Invariant monocular
boundaries receive the same bottom-up excitatory and inhibitory

signals
∑

klij h(GRl/r

klij )EIB
klij from retinotopic monocular boundaries

that are first transformed by gain fields. Functions GRl/r

klij are the
bottom-up gain field output signals from position (k, l) to (i, j),
and EIB

klij are the bottom-up connection weights from this gain
field to the retinotopic boundary cells. These gain field func-
tions and weights are defined in (Equations 28–32). Parameter
λ = 1.5 is a gain constant that multiplies the excitatory feed-

back signal h(Bb,+/−
ij ) from the invariant binocular boundary

Bb,+/−
ij (Equation 33). The inhibitory feedback signal h(Bb,+/−

ij )
has a gain of 1. Signal function his the threshold-linear function
defined in Equation (23).

5.3.5. Boundary gain fields
Boundary gain field activities GRl/r

klij receive inputs from retino-

topic monocular boundary signals Rl/r
ij (Equation 22), predictive

eye position signals Pij (Equation 66), and invariant monocular

boundary signals Bl/r,+/−
ij (Equation 26 and Figure 3) in order

to activate and maintain the invariant monocular boundaries
Bl/r,+/−

ij (Equation 26):

dGRl/r

klij

dt
=

(
1 − GRl/r

klij

)
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⎛
⎝∑

ij

Rl/r
ij ERI

klij +
∑

ij

PijE
PI
klij +

∑
ij

Bl/r,+/−
ij EBI

klij

⎞
⎠

−(GRl/r

klij + 0.15)
∑
klij

GRl/r

klij . (28)

Gaussian kernels ERI
klij, EPI

klij, and EBI
klij represent the gain field

weights from each of these input sources:

ERI
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GR

R

⎞
⎠ ; σGRI

R
= 2 (29)

EPI
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GP

R

⎞
⎠ ; σGPI

R
= 2 (30)

EBI
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GB

R

⎞
⎠ ; σGBI

R
= 3.5 (31)

The top-down and bottom-up gain field weights are the same.
Separate copies of these weights are defined for conceptual clarity:

EBI
klij = EIB

klij; EPI
klij = EIP

klij; ERI
klij = EIR

klij (32)

5.3.6. Invariant binocular boundaries
The model considers how a 2D planar surface that is viewed in
3D is binocularly fused and how its 3D boundaries and surfaces
are maintained during eye movements. It assumes a fixed, but
otherwise arbitrary, binocular disparity of the left and right eye
monocular boundaries corresponding to the object’s image con-

tours. The output signals Bl/r
ij from the left and the right invariant

monocular boundaries (Figure 3 and Equation 26) are binocu-
larly fused as follows to create the invariant binocular boundary
activities Bb

ij:

dBb,+/−
ij

dt
= −γ1Bb,+/−

ij +
(

1 − Bb,+/−
ij

)
([

Bl,+/−
(i + s)j − κ

]+ +
[

Br,+/−
(i − s)j − κ

]+)

+
⎛
⎝1 + 3.2

∑
klij

h
(

GC
klij

)
JCB
klij

⎞
⎠ − α

([
Ol,+/−

ij

]+

+
[

Ol,−/+
ij

]
+

[
Or,+/−

ij

]+ +
[

Or,−/+
ij

]+)
, (33)

where γ1 = 0.1 is the rate of decay of the membrane potential.
In Equation (33), the binocular disparity is assumed to cause

allelotropically shifted monocular boundary signals Bl,+/−
(i + s)j and

Br,+/−
(i − s)j , with shift s, which are binocularly fused via the sum

[Bl,+/−
(i + s)j − κ]+ + [Br,+/−

(i − s)j − κ]+, where κ = 0.4 is the boundary
signal threshold. The selectivity of binocular fusion is achieved by

balancing these excitatory terms against the sum of inhibitory sig-

nals α([Ol,+/−
ij ]+ + [Ol,−/+

ij ] + [Or,+/−
ij ]+ + [Or,−/+

ij ]+), where
α = 7.2 is the inhibitory gain. Together, these balanced excitatory
and inhibitory terms help to realize the obligate property (Poggio,
1991; Grossberg and Howe, 2003), whereby these binocular cells
respond only to left and right eye inputs of approximately equal
size, one of the important prerequisites for solving the correspon-
dence problem of binocular vision (Howard and Rogers, 1995, pp.
42, 43).

The left Ol,+/−
ij and right Or,+/−

ij inhibitory interneuron cell
activities that ensure the obligate property are defined by:

dOl,+/−
ij

dt
= −γ2Ol,+/−

ij +
[

Bl,+/−
(i + s)j − κ

]+

−β

([
Or,+/−

ij

]+ +
[

Or,−/+
ij

]+ +
[

Ol,−/+
ij

]+)
(34)

and

dOr,+/−
ij

dt
= −γ2Or,+/−

ij +
[

Br,+/−
(i − s)j − κ

]+

−β

([
Ol,+/−

ij

]+ +
[

Ol,−/+
ij

]+ +
[

Or,−/+
ij

]+)
,(35)

where the decay rate γ2 = 4.5; [Bl/r,+/−
(i+s)j − κ]+ are the excita-

tory signals from the monocular invariant boundaries that drive
the inhibitory interneurons; and β = 4 is the gain of the recur-

rent inhibitory signals β([Or,+/−
ij ]+ + [Or,−/+

ij ]+ + [Ol,−/+
ij ]+)

among the inhibitory interneurons that are needed to ensure the
obligate property (Grossberg and Howe, 2003). In Equations (33–
35), the subscript s denotes the allelotropic, or positional, shift
between the left and the right eyes that depends on the dispar-
ity to which the model neurons are tuned. In the simulations,
results are shown for an allelotropic shift of s = +3o to illustrate
neurons that are tuned to a far disparity. The simulations also
work for other binocular disparities and the allelotropic shifts that
they induce. The obligate cell theorem from Grossberg and Howe
(2003) was used to solve Equations 33–35 at equilibrium to speed
up the simulations.

The invariant binocular boundaries in Equation (33) also
receive feedback

∑
klij h(GC

klij)JCB
klij from the surface contour sig-

nals (Equation 45) that are generated from filled-in surfaces to
their inducing boundaries. These surface contour signals enhance
the corresponding closed boundaries, a crucial step in figure-
ground separation whereby partially occluded object surfaces are
separated in depth (Grossberg, 1994; Kelly and Grossberg, 2000).
Since the fused binocular boundary is invariant, and thus com-
puted in head-centered coordinates, but the surface contour is
computed in retinotopic coordinates, the feedback from the sur-
face contour is mediated through a gain field GC to execute this
coordinate change (Figure 4). The activity of the surface contour
gain field GC and the gain field kernel JCB are defined in Equations
(48, 49).

Frontiers in Psychology | Perception Science January 2015 | Volume 5 | Article 1457 | 28

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Grossberg et al. Binocular fusion during eye movements

5.4. SURFACE PROCESSING
5.4.1. Monocular retinotopic surface capture and filling-in
The monocular retinotopic surface filling-in activities Sl/r,+/−

ij
are computed from the brightness information that is driven
by monocular retinotopic double-opponent ON and OFF cell

activities Xl/r,+/−
ij (Figure 2 and Equations 15, 16):

dSl/r,+/−
ij

dt
= −40Sl/r,+/−

ij +
∑

pq ∈ Nij

Pl/r
pqij

(
Sl/r,+/−

pq − Sl/r,+/−
ij

)

+Xl/r,+/−
ij . (36)

The activities Sl/r,+/−
ij diffuse via nearest-neighbor interactions

via term
∑

pq ∈ Nij
Pl/r

pqij(Sl/r,+/−
pq − Sl/r,+/−

ij ), where Nij is the set

of nearest neighbors around cell (i, j), and the permeability
coefficients

Pl/r
pqij = 104

0.01 + 20
(

Kb,+/−
pq + Kb,+/−

ij

) (37)

are determined by binocular boundary gating signals Kb,+/−
pq and

Kb,+/−
ij at positions (p, q) and (i, j), respectively. Since the binoc-

ular boundaries are computed in head-centered co-ordinates,
whereas the monocular surfaces are computed in retinotopic
coordinates, the boundary gating signals need to also be com-
puted in retinotopic coordinates. This is accomplished by con-
verting the binocular boundaries into retinotopic coordinates
(Figure 4) using a predictive gain field:

Kb,+/−
ij =

∑
kl

h
(

GS,+/−
klij

)
QBS

klij (38)

that is defined in Equations (42–44).

5.4.2. Binocular retinotopic surface capture and filling in
The binocular surface representations are preserved during eye
movements, even though they are computed in retinotopic coor-
dinates, due to the action of predictive gain fields that control
the binocular filling-in process. In particular, the retinotopic sur-

face filling-in activities Sb,+/−
ij are activated by the rectified sum[

Sl,+/−
ij

]+ +
[

Sr,+/−
ij

]+
of the monocular retinotopic surface

activities captured by the invariant binocular boundary (Equation
36) corresponding to the same retinotopic position (i, j):

dSb,+/−
ij

dt
= −28Sb,+/−

ij +
∑

pq ∈ Nij

Npqij

(
Sb,+/−

pq − Sb,+/−
ij

)

+
[

Sl,+/−
ij

]++
[

Sr,+/−
ij

]++9
∑

kl

h
(

GA
klij

)
MIS

klij(39)

The binocular surface activities undergo diffusion∑
pq ∈ Nij

N(
pqijS

b,+/−
pq − Sb,+/−

ij ) in response to these input signals.

The diffusion takes place among their nearest-neighbor cells Nij,
whose permeabilities

Npqij = 104

0.01 + 20
(

Kb,+/−
pq + Kb,+/−

ij

) (40)

are determined by binocular boundary gating signals Kb,+/−
pq

and

Kb,+/−
ij

at positions (p, q) and (i, j), respectively. Similar to the

monocular surfaces, binocular surfaces are as well computed in
retinotopic coordinates. However, the binocular boundaries are
computed in head-centered co-ordinates and thus the boundary
gating signals need to also be computed in retinotopic coordi-
nates. This is accomplished by converting the binocular bound-
aries into retinotopic coordinates (Figure 4) using a predictive

gain field. The retinotopic boundary gating signals Kb,+/−
ij were

defined earlier in Equation (38). The gain fields for accomplishing
this conversion are defined in Equations (42–44).

The binocular surface representation also receives top-down
excitatory feedback from spatial attention (Figure 4) to induce
and maintain a surface-shroud resonance. Spatial attention is in
head-centered coordinates, whereas the binocular surface repre-
sentation is retinotopic. Hence the spatial attentional feedback∑

kl h(GA
klij)MIS

klij in Equation (39) is also computed in retinotopic

coordinates using the predictive gain field GA
klij that is defined by

Equations (56–60).

Sb,+/−
ij is the fused binocular surface representation that is

maintained in retinotopic coordinates despite eye movements
across the visual scene. These ON and OFF binocular FIDO activ-
ities are rectified and combined to yield the final binocular surface
percept:

Sb =
[

Sb,+]+ +
[

Sb,−]+
(41)

In the simulation results, Sb is shown as the final binocular surface
percept. This rectified summation of the ON and OFF domains
enables surface-shroud resonance by attracting spatial attention
on both light and dark filled-in surfaces. However, all the differ-
ent representations, not just of brightness information, but also of
brightness and color in depth, can be held as separate representa-
tions. The ensemble of all such parallel representations is what is
learned, recognized, and categorized as belonging to a particular
object in the What stream.

5.4.3. Surface gain fields
The gain fields that enable binocular invariant boundaries to gate
binocular and monocular surface percepts are defined as fol-
lows. Surface gain fields receive inputs from binocular invariant
boundaries and predictive eye position signals (Figure 4):

dGS,+/−
klij

dt
=

(
1 − GS,+/−

klij

)⎛
⎝∑

ij

Bb,+/−
ij QBS

klij +
∑

ij

PijQ
PS
klij

⎞
⎠

−
(

GS,+/−
klij + 0.37

)∑
klij

GS,+/−
klij (42)

www.frontiersin.org January 2015 | Volume 5 | Article 1457 | 29

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Grossberg et al. Binocular fusion during eye movements

where Bb,+/−
ij is the invariant binocular boundary activity defined

in (Equation 33), and Pij is the predictive eye position described
in Equation (66). Gaussian kernels QBS

klij and QPS
klij multiply the

invariant binocular boundary signals and the eye position signals,
respectively:

QPS
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GPS

S

⎞
⎠ ; σGPS

S
= 1.2 (43)

QBS
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GBS

S

⎞
⎠ ; σGBS

S
= 1.4 (44)

5.4.4. Surface contour activity
The binocular surface activities Sb

pq (Equation 41) are contrast-
enhanced by on-center off-surround output networks to generate
surface contour signals that modulate the invariant binocular
boundaries (Figure 3 and Equation 33) and, through them, the
corresponding retinotopic boundaries (Equation 22). Surface
contour signals (Figure 4) are also used to determine the pre-
dictive target position signal (Equation 66) that maintains the
stability of boundaries, surfaces, and attentional shrouds in head-
centered coordinates via gain fields (Figures 1, 3, 4), even before
the next eye movement is made, and to generate this eye move-
ment signal. Surface contour signals occur only at positions cor-
responding to the boundary contours of the surface. The contour
signals Cij obey:

Cij =
⎡
⎣

∑
pq Sb

pq

(
�+

pqij − �−
pqij

)
0.04 + ∑

pq Sb
pq

(
�+

pqij + �−
pqij

)
⎤
⎦

+

+
⎡
⎣

∑
pq Sb

pq

(
�−

pqij − �+
pqij

)
0.04 + ∑

pq Sb
pq

(
�+

pqij + �−
pqij

)
⎤
⎦

+

, (45)

where �+
pqij and �−

pqij are the contrast-enhancing Sb on-center
and off-surround kernels, respectively:

�+
pqij = 1

3.61
exp

(
− (p − i)2 + (q − j)2

2σ 2
�+

)
; σ�+ = 0.5 (46)

�−
pqij = 1

12.27
exp

(
− (p − i)2 + (q − j)2

2σ 2
�+

)
; σ�− = 2 (47)

5.4.5. Gain fields from surface contour to invariant binocular
boundary

Since the surface contour is in retinotopic coordinates and the
fused binocular boundary that it modulates is in head-centered
coordinates, a gain field GC

klij transforms the input from surface
contour to binocular boundary (Figure 4):

dGC
klij

dt
=

(
1.8 − GC

klij

)⎛
⎝∑

ij

CijJ
CB
klij +

∑
ij

PijJ
PB
klij+

⎞
⎠

−
(

GC
klij + 0.7

)∑
klij

GC
klij, (48)

where Cij is the surface contour activity defined in Equation
(45), and Pij is the predictive target position signal described in
Equation (66). Terms JCB

klij , and JPB
klij in Equation (48) represent the

Gaussian gain field kernels that transform the surface contour and
the target position signals, respectively:

JCB
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GCB

C

⎞
⎠ ; σGCB

C
= 2.6 (49)

JPB
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GPB

C

⎞
⎠ ; σGCB

C
= 1.2 (50)

5.5. SPATIAL SHROUDS
5.5.1. Spatial attention activity
The spatial attention cell activities Aij that support attentional
shrouds obey:

1

10

dAij

dt
= −0.2Aij + (

2 − Aij
) (

AI
ij +

∑
mn

g(Amn)�+
mnij

)
yA

ij

−Aij

(∑
mn

(
AI

mn + g (Amn) �mnij
) + CRESET

yc

)
.(51)

These cell activities receive bottom-up excitatory inputs AI
ij from

the corresponding attention interneurons (see Equation 55). They
also receive recurrent on-center signals

∑
mn g(Amn)�+

mnij and

off-surround signals g(Amn)�−
mnij from other spatial attention

cells, where g is a sigmoid signal function that converts cell
activities into output signals:

g(a) = 7

1 + e−25a + 11
. (52)

Kernels �+
mnij, and �−

mnij are the on-center and off-surround
Gaussian weights, respectively, from position (m, n) to position
(i, j):

�+
mnij = 0.04 exp

(
− (m − i)2 + (n − j)2

2σ 2
�+

)
; σ�+ = 0.5 (53)

�−
mnij = 2.2 exp

(
− (m − i)2 + (n − j)2

2σ 2
�−

)
; σ�− = 100 (54)

The excitatory inputs and recurrent signals in Equation (51)
are multiplied by habituative attentional transmitter gates yA

ij
(Equation 61) that enable inhibition-of-return (IOR). The sys-
tem also receives a parietal reset signal CRESET (Equation 62)
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that inhibits the currently active shroud. The reset signal CRESET

is multiplied by a habituative transmitter gate yC (Equation 63)
which ensures that the net reset signal CRESETyC is transient.

5.5.2. Attentional interneuron cell activity
Attentional interneuronal activities AI

ij input to the spatial atten-
tion cell activities in Equation (51), receive reciprocal top-down
feedback from the spatial attention cells (Figures 4, 5), and
are themselves activated by bottom-up signals from the binoc-
ular filled-in surfaces (Equation 41) to form surface-shroud
resonances:

dAI
ij

dt
= −0.9AI

ij + 1.2
∑

kl

h
(

GA
klij

)
MIA

klij + g
(
Aij

)
. (55)

Because the binocular filled-in surfaces are computed in retino-
topic coordinates, whereas the attentional shrouds are computed
in head-center coordinates, gain fields are needed to transform
their inputs between them. In Equation (55),

∑
kl h(GA

klij)QIA
klij is

the bottom-up input from the spatial attention gain fields.

5.5.3. Gain fields for spatial attentional shrouds
The gain fields GA

klij from binocular surface to attentional
interneuron (Figures 4, 5) obey:

dGA
klij

dt
=

(
1 − GA

klij

)⎛
⎝∑

ij

Sb
ijM

SI
klij +

∑
ij

PijM
PI
klij +

∑
ij

AI
ijM

AI
klij

⎞
⎠

−
(

GA
klij + 0.37

)∑
klij

GA
klij, (56)

where Sb
ij is the binocular surface representation (Equation 41),

Pij is the target position signal (Equation 66), and AI
ij is the atten-

tional interneuronal activity (Equation 55). The Gaussian gain
field kernels MSI

klij, MPI
klij, MAI

klij obey:

MSI
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GSI

A

⎞
⎠ ; σGSI

A
= 3.2 (57)

MPI
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GPI

A

⎞
⎠ ; σGPI

A
= 1.3 (58)

MAI
klij = exp

⎛
⎝− (k − i)2 + (l − j)2

2σ 2
GAI

A

⎞
⎠ ; σGAI

A
= 5 (59)

In the simulations, the top-down and bottom-up gain field
weights are symmetrical:

MSI
klij = MIS

klij; MPI
klij = MIP

klij; MAI
klij = MIA

klij (60)

5.5.4. Habituative attentional transmitter gates
The habituative attentional transmitter gate (Equation 51) obeys:

dyA
ij

dt
= ηA

((
1.5 − yA

ij

)
− 103AI

ijy
A
ij

)
, (61)

where ηA = 10−5 is a slow rate of decay, (1.5 − yA
ij ) says that the

gate yA
ij passively accumulates to a maximal activity of 1.5, and

−103AI
ijy

A
ij describes the activity-dependent habituation of yA

ij .

5.5.5. Shroud-mediated parietal reset and habituation
The parietal reset neurons are tonically active and their activi-
ties are inhibited by inputs from all the active cells across the
spatial attention map. Their activity is disinhibited when an atten-
tional shroud collapses, and generates a transient activity burst
that inhibits, and resets, the spatial attention map. This reset
mechanism (Chang et al., 2014) obeys:

CRESET = 10

[
1 − ε −

∑
ij g(Aij)

100 + ∑
ij g(Aij)

]+
, (62)

where ε = 0.07 is a small threshold, Aij (Equation 51) is the
activity of spatial attention at position (i,j) and g is defined in
Equation (52).

The reset habituative transmitter yC that gates the parietal reset
signal obeys:

dyC

dt
= 10

(
0.75

(
1.5 − yC) − 4CRESETyC)

. (63)

As in Equation (61), this habituative gate also consists of a pas-
sive accumulation term 0.75(1.5 − yC) and an activity-dependent
habituation term −4CRESETyC .

5.6. EYE SIGNALS
5.6.1. Eye movement signals to salient features and inhibition of

return
Surface contour cell activities (Equation 45) are contrast-
enhanced using a recurrent on-center off-surround network to
choose the activity Fij of the most salient feature, and thus
the target position (i,j) for the next saccadic eye movement. A
movement habituative transmitter gate weakens this choice in
an activity-dependent way, thereby providing an inhibition-of-
return mechanism which ensures that the same target position
is not perseveratively chosen.

Salient feature Fij at position (i, j) obeys:

dFij

dt
= −15Fij + (

2 − Fij
) ([

Cij
]+ + 250F2

ij

)
yF

ij

−0.04Fij

∑
ij

([
Cij

]+ + F2
ij

)
, (64)
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where Cijis the surface contour activity (Equation 45), and yF
ij is

the movement habituative gate::

dyF
ij

dt
= ηF

(
(2 − 105yF

ij

([
Cij

]+ + 250F2
ij

))
, (65)

where ηF = 10−4 is rate of decay. Note that this rate of decay
is an order of magnitude larger than ηA, the rate of habituative
decay for the spatial shrouds (Equation 61). Thus, the atten-
tional shroud collapses much slower than inhibition-of-return of
individual saccades that search the corresponding object (Chang
et al., 2014). This rate difference enables multiple saccades within
the attended surface to be explored and to thereby trigger learn-
ing of view-specific categories that encode multiple views of the
attended object.

5.6.2. Target position signal
The target position signal at (i, j) obeys:

Pij =
{

1 for Fij = maxij
(
Fij

) ∀ (i, j)
0 otherwise.

(66)

This determines the next predictive eye position signal from
the highest activity position, or salient feature, on the surface
contour map (Equation 45). All the gain field cells for bound-
aries, surfaces, and spatial attention processing have access to this
positional signal (cf. Pouget and Snyder, 2000).

6. DISCUSSION
This article builds on the ARTSCAN and pARTSCAN models
of how spatial attention in the Where stream modulates invari-
ant object learning, recognition, and eye movement exploration
of multiple object views in the What stream (Grossberg, 2007,
2009; Fazl et al., 2009; Cao et al., 2011; Foley et al., 2012; Chang
et al., 2014). The 3D ARTSCAN model that is described herein
extends these insights to explain how these processes can work
in response to 3D objects and scenes. Together, these interacting
processes model how mechanisms for maintaining stable binocu-
lar percepts of 3D objects are related to mechanisms for learning
to invariantly categorize and recognize these objects.

A key insight of the current model concerns how predictive
remapping through eye position-dependent gain fields main-
tains perceptual stability of binocularly fused images and scenes
during saccadic eye movements. Additional processes of the 3D
LAMINART model, a laminar cortical embodiment and fur-
ther development of the FACADE model of 3D vision and
figure-ground segregation (Grossberg, 1994, 1999; Kelly and
Grossberg, 2000; Raizada and Grossberg, 2003; Grossberg and
Swaminathan, 2004; Cao and Grossberg, 2005, 2012; Grossberg
and Yazdanbakhsh, 2005; Fang and Grossberg, 2009), may be
joined to the ARTSCAN model to clarify how more complex
properties of 3D scenes than are simulated herein retain their
perceptual stability under free viewing conditions.

6.1. FACADE AND 3D ARTSCAN
FACADE theory proposes how visible 3D surfaces are captured
by binocularly fused 3D boundaries. Surface capture is achieved

when depth-selective filling-in of surface brightness and color is
triggered by these boundaries through their function as filling-
in generators (Grossberg, 1994). Boundaries also function as
filling-in barriers that restrict filling-in within surface regions that
the boundaries surround. The filled-in features can be derived
either from bottom-up object brightness and color contrasts or
from top-down attentional spotlights. An attentional spotlight
can, for example, arise when top-down spatial attentional sig-
nals from parietal cortex modulate filled-in object surfaces in a
depth-selective manner within visual cortical areas such as V4.

The 3D ARTSCAN model shows, in addition, how binocularly
fused boundaries can use eye position-dependent gain fields to
maintain fusion and an invariant head-centered representation
during eye movements (Figure 3). These invariant boundaries
can capture left and right eye monocular surface features in a
depth-selective way (Figure 4). The captured monocular surfaces
can, in turn, form and maintain binocular surfaces (Figure 4).
An attended binocular surface is modulated by an attentional
shroud, with gain fields again ensuring that the interactions are
dimensionally consistent (Figure 4). Thus, during filling-in, sur-
face contrasts are activated either bottom-up from the binocularly
combined monocular surfaces after they are captured in depth
by the binocular boundaries, or top-down from the surface’s
attentional shroud.

FACADE model retinal lightness adaptation, spatial contrast
adaptation, and double opponent processing (Grossberg and
Hong, 2006) are among the useful pre-processing stages that are
incorporated in the 3D ARTSCAN model. The 3D ARTSCAN
model does not, however, yet process chromatic natural scenes,
such as in the aFILM simulations of anchoring (Hong and
Grossberg, 2004; Grossberg and Hong, 2006); or orientationally-
selective depth-selective boundary completion processes, such as
in the 3D LAMINART model simulations of binocular stere-
ograms (Fang and Grossberg, 2009), the LIGHTSHAFT model
simulations of 3D shape-from-texture (Grossberg et al., 2007),
and the FACADE model simulations of da Vinci stereopsis
(Grossberg and McLoughlin, 1997; Cao and Grossberg, 2005,
2012); or moving-form-in-depth processes, such as in the 3D
FORMOTION model simulations of coherent and incoherent
plaid motion, speed perception, and the aperture problem (Chey
et al., 1997, 1998), transformational apparent motion (Baloch
and Grossberg, 1997), the chopsticks and rotating ellipse illu-
sions (Berzhanskaya et al., 2007), and the barberpole illusion,
line capture, and motion transparency (Grossberg et al., 2001).
All of these other studies are computationally consistent with
the 3D ARTSCAN model and hence their competences can be
incorporated in future model extensions.

6.2. ATTENTIONAL SHROUDS AND SURFACE-SHROUD RESONANCES:
SEEING AND KNOWING

The 3D ARTSCAN model also does not explicitly study invariant
object category learning and recognition, although the concept
of attentional shrouds in the ARTSCAN and pARTSCAN models,
which plays a key role in modulating invariant category learning
in those models, also clarifies in the current study how an object
in depth maintains its perceptual stability and attentional focus
during eye movements (Figures 1, 4).
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The original use of the attentional shroud concept is closer to
its perceptual role in 3D ARTSCAN than it is to its learned cate-
gorization role in ARTSCAN and pARTSCAN. In particular, the
concept of an attentional shroud was introduced by Tyler and
Kontsevich (1995) to clarify how spatial attention could morph
itself to the shape of an object in depth, and how, in response
to a transparent display, only one depth at a time might be per-
ceived. Likova and Tyler (2003), also noted that “depth surface
reconstruction is the key process in the accuracy of the inter-
polated profile from both depth and luminance signals” (see p.
2655), and thus that shroud formation involves surface fillng-in.
However, they did not provide a design rationale or mechanistic
explanation of these empirical facts.

The 3D ARTSCAN model does explain and simulate mech-
anistically how such depth-selective shrouds may form in the
brain (Figure 4). Moreover, as noted above, the ARTSCAN fam-
ily of models proposes how shrouds can form in response to
either exogenously activated attention, via bottom-up inputs
from objects in a scene, or endogenously activated attention,
via a top-down route. In the 3D ARTSCAN model, once the
attentional shroud fits itself to binocular surface input signals,
the 3D surface-shroud resonance (Figures 4, 5) is the dynami-
cal state corresponding to “paying spatial attention” to the object
surface. Such a 3D surface-shroud resonance is a mechanistic
revision and explanation of the proposal of Tyler and Kontsevich
(1995, p. 138) that “stereoscopic-attentional process therefore
would be much more valuable if it could be wrapped around
the form of any spatial object, rather than being restricted to
frontoparallel planes. . . more vivid representation of this pro-
cess is to think of it as an attentional shroud, wrapping the
dense locus of activated disparity detectors as a cloth wraps
a structured object.” The 3D ARTSCAN model extends this
view by proposing that it is the 3D surface-shroud resonance
which embodies a unified representation of consciously per-
ceived object structure, not just the shroud taken alone, as in
the Tyler and Kontsevich (1995) proposal. Boundary-category
resonances and surface-category resonances are other aspects
of object structure, whereby 3D boundary and surface repre-
sentations interact reciprocally with their corresponding object
category representations to invariantly categorize and recognize
these object properties. Said more simply, these various reso-
nances can synchronously represent seeing an object and knowing
what it is.

6.3. COMPARISON WITH OTHER MODELS
To study object-based attention, LaBerge and Brown (1989) mod-
eled attention as a gradient across the visual field with the peak
at the expected target location. This gradient hypothesis could
explain attention shifts better than a moving spotlight of atten-
tion, especially when spatial attention can form over more than
one object. They also discussed how such a system could help in
object recognition, especially in the identification of a visual shape
in a cluttered scene. The model proved better than non-gradient
based models of attention in explaining data on pre-cueing of
locations in the visual field and of words.

Within the 3D ARTSCAN model, gradient properties
can arise due to bottom-up properties of filling-in, the

spatially distributed kernel that carries surface-to-shroud inputs,
and the non-uniform distribution of shroud activity due
to inhibition-of-return and activity-dependent habituation
(Equations 51–66). Gradient properties can also be induced when
a prefrontally-mediated top-down attentional spotlight, as mod-
eled by Foley et al. (2012), remains on through time due to
persistent volitional gain control (Brown et al., 2004; Grossberg,
2012, 2013) and combines with bottom-up shroud-maintaining
mechanisms.

Logan (1996) integrated space-based and object-based
approaches to visual attention by combining the COntour
DEtector (CODE) theory of perceptual grouping by proximity
(Van Oeffelen and Vos, 1982, 1983) with the Theory of Visual
Attention (TVA) (Bundesen, 1990). In this unified Code Theory
of Visual Attention (CTVA), CODE provides input to TVA,
thereby accounting for spatially based between-object selection,
while TVA converts the input to output, thereby accounting
for feature- and category-based within-object selection. CODE
clusters nearby items into emergent perceptual groupings that are
both perceptual objects and regions of space, thereby integrating
object-based and space-based approaches to attention. The
theory assumes that attention chooses among perceptual objects
by sampling the features that occur within an above-threshold
region. The features of different items within this region are
sampled with a probability that equals the area of the distribution
of the item that falls within the region. This sampling probability
is called the feature catch.

ARTSCAN also combines space-based and object-based visual
attention. The space-based attention concerns how an object-
fitting attentional shroud (cf. an “above-threshold region”) con-
trols both the learning of invariant object categories and their
recognition, including when recognition may break down due
to the inability of a shroud to form around a target object, as
is predicted to happen during perceptual crowding (Foley et al.,
2012). At least three types of grouping occur in the ARTSCAN
framework: The first concerns the kind of feature-based group-
ing of perceptual boundaries that explains Gestalt grouping laws
(e.g., Grossberg and Pinna, 2012). The second concerns the sur-
face grouping that occurs during a surface-shroud resonance.
And the third concerns how these emergent boundary and sur-
face representations are bound into view-specific categories, and
how view-specific categories are, in turn, bound into invariant
object categories. Object attention enters ARTSCAN in two ways:
Adaptive Resonance Theory top-down expectations control the
learning of ARTSCAN categories by focusing object attention
upon predictive combinations of object features. Object attention
also plays a key role in controlling a primed search for a desired
object, as during a solution of the Where’s Waldo problem, which
is modeled by the ARTSCAN Search model (Chang et al., 2014).
These various processes occur on multiple spatial and temporal
scales, and clarify some of the complexities that occur when object
and spatial attentional processes interact.

Visual attention and search models, such as Guided Search
(Wolfe et al., 1989; Wolfe, 2007), and Saliency Map (Itti and
Koch, 2001) models, have their genesis in Feature Integration
Theory (Treisman and Gelade, 1980). In these models, the units
are local features or positions. The models are thus pixel-based.
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The model mechanisms are based on competition between paral-
lel visual representations, whereby a strong local salient feature
wins and directs shifts in attention and eye movements to it
(Deubel and Schneider, 1996; Deubel et al., 2002). In particu-
lar, in Saliency Map models, (e.g., Itti and Koch, 2001) different
feature maps, such as brightness, orientation, color, or motion
are computed in parallel visual representations. In each feature
map, the strongest feature is selected by competition using an
on-center, off-surround mechanism. The winning outputs of all
these feature maps are then combined into a single map to
build the saliency map. This saliency map predicts the probabil-
ity with which a certain spatial positions will attract an observer’s
attention and eye movements.

Unlike pixel-based models, 3D ARTSCAN, as well as its
ARTSCAN, pARTSCAN, dARTSCAN, and ARTSCAN Search
variants, are object-based (Pylyshyn, 1989, 2001; Kahneman et al.,
1992; Vergilino-Perez and Findlay, 2004) to enable the models to
learn to attend, categorize, recognition, and search for objects in
a scene. In these models, the competition for focusing attention,
whether spatial (leading to a surface-shroud resonance) or object
(leading to a feature-category resonance) is regional rather than
local (Duncan, 1984).

The pre-processing of the 3D ARTSCAN model can be read-
ily enhanced, as noted above, to include features such as color,
orientation, and motion, as in the pixel-based models, but these
features are bound into invariant binocular boundaries and
retinotopic binocular surfaces which are the perceptual units that
compete for spatial and object attention.

3D ARTSCAN can search a 3D scene to learn and recognize
objects in it based on the salience of its boundary and surface
properties, but it currently does so without accumulating evi-
dence about contextual information. In contrast, in response to
seeing a refrigerator and a stove, humans would expect to next
see a sink more probably than a beach. 3D ARTSCAN does not
learn such contextual expectations. In addition, 3D ARTSCAN,
just like ARTSCAN and pARTSCAN before it, is devoted to object,
rather than scene, perception, attention, learning, and recogni-
tion. 3D ARTSCAN is, however, one of a family of ART-based
models (Carpenter and Grossberg, 1991, 1993) that do have these
capabilities, and that can be combined in an enhanced future 3D
ARTSCAN model.

For example, the ARTSCENE model (Grossberg and Huang,
2009) uses attentional shrouds to learn and recognize the gist
of a scene as a large-scale texture category. ARTSCENE can also
accumulate scenic evidence by using shrouds to iteratively focus
attention on salient regions of the scene, and thereby learn texture
categories at a finer scale, which can be combined by voting to
improve scene recognition. However, ARTSCENE does not have
a contextual memory of this accumulated scenic evidence through
time.

Contextual cueing (e.g., Jiang and Chun, 2001; Olson and
Chun, 2002) is modeled in the ARTSCENE Search model (Huang
and Grossberg, 2010), which shows how spatial and object work-
ing memories can learn to accumulate and remember sequen-
tial contextual information to facilitate efficient search for an
expected goal object, in the manner of the refrigerator/stove/sink
example. In the ARTSCENE Search model, the object working

memory involves perirhinal cortex interacting with prefrontal
cortex, and the spatial working memory involves parahippocam-
pal cortex, again interacting with prefrontal cortex. These brain
regions also interact with inferotemporal and parietal cortices,
respectively, among other brain areas, to determine where the eyes
will look next. Thus, in ARTSCENE Search, each eye movement
enables currently attended objects to be seen and recognized,
while also triggering new category learning and working memory
storage that can better predict goal objects in the future.

Another search variant that was mentioned above: the
ARTSCAN Search model (Chang et al., 2014), uses pARTSCAN
mechanisms to learn and recognize view- and positionally-
invariant object categories using Where-to-What stream inter-
actions. In addition, ARTSCAN Search can also search a scene
for a valued goal object using What-to-Where stream interac-
tions. Such a search may be activated by a top-down cogni-
tive prime or motivational prime. The model hereby proposes
a neurobiologically-grounded solution of the Where’s Waldo
problem.

6.4. ATTENTIONAL GAIN CONTROL AND NORMALIZATION: A
CONVERGENCE ACROSS MODELS

Recent models of attention have focused on studying the effects
of attention on neuronal responses in visual cortical areas such
as MT and V4 (e.g., Ghose, 2009; Lee and Maunsell, 2009;
Reynolds and Heeger, 2009). These models explored how atten-
tion enhances processing of selected areas of the visual field,
and concluded that divisive normalization using center-surround
processing causes the effects of attention on V4 neurons. Top-
down attentional priming had earlier been modeled in the
FACADE, ART, and 3D LAMINART models using top-down,
modulatory on-center, off-surround networks acting on cells that
obey the membrane, or shunting, equations of neurophysiology
(e.g., Carpenter and Grossberg, 1987, 1991, 1993; Gove et al.,
1995; Grunewald and Grossberg, 1998; Grossberg et al., 2001;
Berzhanskaya et al., 2007; Bhatt et al., 2007). In ART, such a top-
down circuit for attention is called the ART Matching Rule. These
ART results, in turn, built on the fact that cells which obey shunt-
ing dynamics in on-center off-surround anatomies automatically
compute the property of divisive normalization. Grossberg (1973)
provided an early mathematical proof of this normalization
property, and Grossberg (1980) contained an early review.

More recently, there has been a convergence across models
of how to mathematically instantiate the ART Matching Rule
attentional circuit. For example, the “normalization model of
attention” (Reynolds and Heeger, 2009) simulates several types
of experiments on attention using the same equation for self-
normalizing attention that the distributed ARTEXture (dAR-
TEX) model (Bhatt et al., 2007, Equation A5) used to simulate
human psychophysical data about Orientation-Based Texture
Segmentation (OBTS, Ben-Shahar and Zucker, 2004). Whereas
Reynolds and Heeger (2009) described an algebraic form-factor
for attention, Bhatt et al. (2007) described and simulated the
attentional dynamics whose steady state reduces to that form fac-
tor. Although the 3D ARTSCAN model uses shunting competitive
dynamics to define its attentional modulation at multiple process-
ing stages, it is difficult to summarize their net effect in a single
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steady-state equation due to the role of gain fields between sur-
face and shroud representations to maintain perceptual stability
during eye movements (see Equations 38–61).

6.5. BALANCING OBJECT EXPLORATION vs. PERSEVERATION:
INHIBITION-OF-RETURN

The brain can learn view-invariant object categories by exploring
multiple salient features on each object. But why are not
successive eye movement positions instead chosen randomly,
thereby preventing efficient intra-object exploration? Indeed, psy-
chophysical data support the idea that the eyes prefer to move
within the same object for awhile (Theeuwes et al., 2010), rather
than randomly. The stability of the surface-shroud resonance
while the eyes explore an object’s surface helps to explain how
this happens. Such a resonance maintains spatial attention on
a given object for awhile, while also enhancing the activity of
the attended surface’s surface contours. The most active posi-
tion on a surface contour is chosen as the next saccadic target
position on the attended object (Fazl et al., 2009), a transfor-
mation that is predicted to take place using cortical area V3A
(Figure 1).

The brain must also solve the problem of not perseveratively
choosing the same maximally activated position over and over
again. Inhibition of return (IOR) is an important mechanism
for any model of attention (List and Robertson, 2007), or, for
that matter, any model of sequential performance. Perseverative
performance of maximally active eye movement representations
is prevented by their activity-dependent habituation as they are
chosen to determine next eye movement target position (see
Equations 64–66). This choice-dependent inhibitory feedback
enables the 3D ARTSCAN model to choose the next most active
position as the next saccadic target location. The combination of
a self-normalizing activity map, selection of the maximal activity
for the next output, and choice-dependent inhibitory feedback
was introduced in Grossberg (1978a,b; see also Grossberg and
Kuperstein, 1986) and has been used in many subsequent models,
notably Koch and Ullman (1985).

6.6. PREDICTIVE REMAPPING VIA EYE COMMAND-MEDIATED GAIN
FIELDS

Visual stability and object constancy requires the visual system
to keep track of the spatiotopic or allocentric positions of sev-
eral objects in a scene during saccades (Mathot and Theeuwes,
2010a,b). Retinotopic coordinates generate different represen-
tations of the same scene when it is viewed at different cen-
ters of gaze. This fact has led many investigators to conclude
that retinotopic representations are predictively remapped by
eye movement commands, with eye position-sensitive gain fields
as a key remapping mechanism (Von Holst and Mittelstaedt,
1950; Von Helmholtz, 1867; Duhamel et al., 1992; Gottlieb et al.,
1998; Tolias et al., 2001; Melcher, 2007, 2008, 2009; Saygin and
Sereno, 2008; Mathot and Theeuwes, 2010a,b). Corollary dis-
charges of outflow movement signals that act before the eyes sta-
bilize on their next movement target are used to update the gain
fields.

Several fMRI studies suggest that various visual representa-
tions in the Where, or dorsal, cortical stream that are sensitive to

visual attention are computed in retinotopic coordinates. At least
one area in anterior parietal cortex has been found using fMRI
to be responsive to head-centered, or some sort of spatiotopic
or absolute, coordinates (Sereno and Huang, 2006). Perisaccadic
remapping of receptive fields has been reported in electrophysi-
ological studies in frontal eye fields (Goldberg and Bruce, 1990),
in parietal areas, including LIP (Andersen et al., 1990; Duhamel
et al., 1992), and in V4 (Tolias et al., 2001). Interestingly, in
these regions, after saccades, no new transient activity is caused
when targets are attended (see Mathot and Theeuwes, 2010a for a
review).

Psychophysical experiments have suggested that predictive
remapping is mediated by predictive shifts of attention to the
positions of intended targets. Cavanagh et al. (2010) called these
shifts “attention pointers” (see Section 2.5). Predictive remapping
of visual attention enables improved attentional performance that
enhances perceptual processing at target positions and speeds
up the eye movements to the new target’s position (Rolfs et al.,
2011). In the 3D ARTSCAN and related ARTSCAN models, the
maximally active position on a surface contour is chosen as the
next saccadic target position before the eye movement occurs,
and causes a predictive updating of gain fields to maintain the
stability of a currently active shroud and of the 3D surface per-
cept during intra-object movements, and to facilitate the shift
of spatial attention to a newly attended object (Sections 2.5 and
2.6). It therefore seems that the maximally active surface contour
position, as described in the Fazl et al. (2009) ARTSCAN article,
predicted key properties of the Cavanagh et al. (2010) atten-
tion pointer data. One way to test if this proposed connection
is mechanistically sound is to link it to other ARTSCAN predic-
tions. For example, are attention pointers computed in cortical
area V3A (Figure 1), as is compatible with the data of Caplovitz
and Tse (2007, p. 1179) showing “neurons within V3A. . . process
continuously moving contour curvature as a trackable fea-
ture. . . not to solve the ‘ventral problem’ of determining object
shape but in order to solve the ‘dorsal problem’ of what is going
where”?

6.7. RETINOTOPIC vs. SPATIOTOPIC REPRESENTATIONS
A recent behavioral study using fMRI in higher visual areas pro-
posed that, in the dorsal visual stream and the intraparietal sulcus,
all object locations are represented in retinotopic coordinates as
their native coordinate system (Golomb and Kanwisher, 2012).
These authors found little to no evidence of spatiotopic object
position and suggested that a spatiotopic, or head-centered, abil-
ity to interact with objects in the world might be achieved by
spatiotopic object positions that are “computed indirectly and
continually reconstructed with each eye movement” (Golomb
and Kanwisher, 2012, p. 2794), presumably using gain fields.
One concern about an fMRI test of spatiotopic representation is
that such a representation may be masked by the more rapidly
changing retinotopic representations, especially given the kind of
theoretical analyses presented here which suggest a preponder-
ance of retinotopic representations, such as retinotopic bound-
ary, surface, surface contour, and eye command representations,
that are nested among a smaller number of spatiotopic repre-
sentations, such as binocular boundary and attentional shroud
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representations (Figures 2–4). Finer neurophysiological methods
will likely be needed to sort out these retinotopic and spatiotopic
differences, as they have begun to in past research.

Some behavioral experiments report a brief retinotopic facil-
itation (priming) effect followed by a sustained spatiotopic IOR
effect (Posner and Petersen, 1990). The kind of stimuli in these
experiments include attending to events in a given visual position,
covert shifts in attention or orienting to a new position upon
cuing, visual search (Posner and Cohen, 1984; Posner, 1988), as
well as letter and word matching (Posner, 1978). Some behavioral
measures for such data are collated from reaction times to effi-
ciently respond to activities in the cued location (Posner, 1988),
enhanced scalp electrical activity (Mangoun and Hillyard, 1987),
higher discharge rates of neurons in several areas of the monkey
brain (Mountcastle, 1978; Wurtz et al., 1980; Petersen et al., 1987),
spared abilities of patients with lesions and monkeys with chem-
ical lesions in different areas of the brain (Posner and Cohen,
1984; Posner et al., 1984; Posner, 1988), and how each area and
hemispheric differences affects the ability to engage in attention,
orient or remain alert to a target (Gazzaniga, 1970; Sergent, 1982;
Robertson and Delis, 1986).

The brief facilitation was due to the activation of retinotopic
units representing the stimulus, in which case, the selection of a
response occurs more quickly than when not expecting a target
to occur or when targets occur without warning. This selection
of a response, though, is based upon a lower quality of infor-
mation about the classification of the target stimulus, resulting
in an increase in error rate to respond to the stimulus. This
increase in errors, while not affecting the build-up of informa-
tion in the retinotopic system, affects the rate at which attention
can respond to the stimulus leading to a sustained spatiotopic
IOR. 3D ARTSCAN mechanisms are compatible with such data,
since the retinotopic representations are used to build spatiotopic
representations, and shroud IOR mechanisms are computed in
spatiotopic coordinates.

Various experiments find persistent spatiotopic facilitation
along with short-term retinotopic facilitation in certain task
conditions (Golomb et al., 2008, 2010a,b). Thus, contextual rel-
evance of tasks may play a role in whether object locations are
coded in retinotopic or head-centered/spatiotopic coordinates
systems. For example, in Golomb et al. (2008), the manipula-
tion of the Stimulus Onset Asynchrony of the probe stimulus
enabled the tracking of when the transition between retino-
topic and spatiotopic coordinates occurs. In one of the experi-
ments to sustain a stable spatiotopic representation, immediately
after a saccade, attention is primarily maintained at the previ-
ously relevant retinotopic coordinates of the cue. However, after
100–200 ms, the task-relevant spatiotopic coordinates start to
dominate and the retinotopic facilitation decays. On the other
hand, when the experiment was modified to make the retinotopic
location the task-relevant location and the spatiotopic location
task-irrelevant, the retinotopic location was facilitated over the
entire delay period of 75–600 ms probed. This kind of manipula-
tion gives insight into the temporal dynamics of spatial attention
and the mechanisms by which attention is maintained across
saccades.

6.8. REMAPPING OF BORDER-OWNERSHIP IN V2 AND ATTENTIVE
ENHANCEMENT IN V1

The electrophysiological experiments of O’Herron and von der
Heydt (2013) on border-ownership neurons in visual cortical
area V2 of monkeys showed that there is remapping of border-
ownership signals when the retinal image moves either due
to saccades or object movements. A border-ownership neuron
responds to borders with differing firing rates depending on
whether the border is owned by a figure on one side or the other.
The difference in firing rates to the two conditions is defined as
the border-ownership signal. An ambiguous edge was used as
a probe in both cases. In the saccade paradigm, the edge of a
figure (square) is presented outside the cell receptive field (RF)
in the first phase. This is substituted by the ambiguous edge
in the second phase. In the third phase, a saccade is induced
to move the RF into the ambiguous edge. The V2 neuron did
not respond during the first two phases, but responded when
the saccade brought the RF onto the edge. The difference in the
response was related to neither the direction of the saccade nor
the location of the figure relative to the RF, but to the initial
border-ownership. The border-ownership defined by the figure
edge was inherited by the ambiguous edge and transferred across
cortex at the time of saccade. In the object movement paradigm,
the displays used in the first two phases were the same as for the
saccades paradigm. In the third phase, instead of moving the fixa-
tion point (as was done in the saccade condition), the figure edge
along with the object were moved to have the edge land in the
RF of the neuron. The results were similar to those of the sac-
cade experiment in terms of the amplitudes of the transferred
signals. The response onset and rise of the border-ownership sig-
nal in the object movement were more abrupt and aligned to
the edge movement. For the saccade condition, they were aligned
with the movement of the fixation point and the response onset
varied with saccade latency. This remapping of border-ownership
was observed in both the paradigms at the V2 population level
as well.

Border-ownership modulation of neurons in area V2 is akin
to the remapping often observed in neurons in areas controlling
visual attention and planning of eye movements, in which a stim-
ulus activates a neuron whose RF has not yet seen the stimulus
(e.g., Duhamel et al., 1992), showing that remapping may occur
in low-level visual areas as well.

The FACADE and 3D LAMINART models have simulated a
number of figure-ground percepts using model neural mecha-
nisms in V2. These percepts include Bregman-Kanizsa figure-
ground separation and various lightness percepts, including
the Munker-White, Benary cross, and checkerboard percepts
(Kelly and Grossberg, 2000), percepts of Kanizsa stratifica-
tion, transparency, and 3D neon color spreading (Grossberg
and Yazdanbakhsh, 2005), and bistable percepts, including their
modulation by attention, such as the percept of a Necker
cube (Grossberg and Swaminathan, 2004) and binocular rivalry
(Grossberg et al., 2008). Because these models can be consis-
tently added to the pre-processing levels in 3D LAMINART, they
can be explained in this model in a manner consistent with the
figure-ground remapping results.
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A study involving a curve tracing task, with multi-unit activity
recorded from monkey visual cortical area V1, established remap-
ping of response modulation for attentive enhancement (Khayat
et al., 2004). In this work, the monkeys performed a curve trac-
ing task, and had to make two successive saccades along a single
curve to which they were attending, while ignoring another curve.
Response enhancement for the neurons representing the selected
curve was observed. After the first saccade, there was enhance-
ment in the response of the neurons representing the curve in the
new retinal locations. Response modulation appeared in neurons
that had not been activated initially, and the attentive enhance-
ment was remapped, or transferred across cortex. This response
modulation to attentive enhancement in V1 is strikingly similar
to the predictive remapping often observed in neurons in LIP and
other areas that control visual attention and planning of predic-
tive eye movements and requires the selective attention of one
stimulus over the other for response modulation.

The two studies summarized above appear to differ in the
role of attention in remapping, but are complementary and can
be integrated within the 3D ARTSCAN model. To achieve such
remapping, both the systems need to compute the displacement
vector of the shift. In predictive remapping, this displacement
information is provided by the outflow command of the eye
movement centers, which update gain fields that drive the remap-
ping. The similarity of the results for saccades or object movement
in the border-ownership in V2, and the response modulation in
V1 to attentive enhancement, are consistent with the remapping
via gain fields, that is used in the 3D ARTSCAN model, and lend
further support to the FAÇADE theory claim that figure-ground
mechanisms for boundary formation, and thus for their remap-
ping, can occur at early stages of visual cortex. Despite frequent
saccades or displacement on the retina, early remapping is essen-
tial to maintain assignment of local features to an external object.
Such congruity serves as a crucial step toward building object
invariance, and enabling the integration of details of the object
into a coherent percept.
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