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ABSTRACT 

 Genome-wide association studies (GWAS) have successfully identified thousands 

of variants robustly associated with hundreds of complex traits, but the biological 

mechanisms driving these results remain elusive. Functional annotation, describing the 

roles of known genes and regulatory elements, provides additional information about 

associated variants. This dissertation explores the potential of these annotations to explain 

the biology behind observed GWAS results. 

 The first project develops a random-effects approach to genetic fine mapping of 

trait-associated loci. Functional annotation and estimates of the enrichment of genetic 

effects in each annotation category are integrated with linkage disequilibrium (LD) within 

each locus and GWAS summary statistics to prioritize variants with plausible functionality. 

Applications of this method to simulated and real data show good performance in a wider 

range of scenarios relative to previous approaches. The second project focuses on the 

estimation of enrichment by annotation categories. I derive the distribution of GWAS 

summary statistics as a function of annotations and LD structure and perform maximum 

likelihood estimation of enrichment coefficients in two simulated scenarios. The resulting 



 

 vi

estimates are less variable than previous methods, but the asymptotic theory of standard 

errors is often not applicable due to non-convexity of the likelihood function. In the third 

project, I investigate the problem of selecting an optimal set of tissue-specific annotations 

with greatest relevance to a trait of interest. I consider three selection criteria defined in 

terms of the mutual information between functional annotations and GWAS summary 

statistics. These algorithms correctly identify enriched categories in simulated data, but in 

the application to a GWAS of BMI the penalty for redundant features outweighs the modest 

relationships with the outcome yielding null selected feature sets, due to the weaker overall 

association and high similarity between tissue-specific regulatory features. 

 All three projects require little in the way of prior hypotheses regarding the 

mechanism of genetic effects. These data-driven approaches have the potential to 

illuminate unanticipated biological relationships, but are also limited by the high 

dimensionality of the data relative to the moderate strength of the signals under 

investigation. These approaches advance the set of tools available to researchers to draw 

biological insights from GWAS results.  
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CHAPTER 1. INTRODUCTION 

 
1.1. Background 

 As the volume and types of available genomic and biological data increase, there 

is a need to develop methods for integrative analysis across data types to extract clinically 

meaningful conclusions. Genome-wide association studies (GWAS) have been extremely 

successful in identifying genetic loci associated with numerous heritable diseases and 

complex traits. However, these studies identify trait-associated loci that are hundreds of 

kilobases in size, rather than pinpointing specific causal variants. Furthermore, variants 

with moderate effect size may only reach statistical significance in large sample sizes 

from meta-analysis in consortia, which have access to association summary statistics but 

not individual-level genotype data. Thus, to take full advantage of the potential for 

biological discoveries from GWAS results, novel methods are needed to further analyze 

marginal summary statistics of genetic associations in order to prioritize causal variants 

and investigate the mechanisms by which they affect phenotypic outcomes. 

Both the strength and limitations of GWAS methodology are due in large part to 

the presence of linkage disequilibrium (LD), or correlation between single nucleotide 

polymorphisms (SNPs) located in nearby genomic regions due to joint inheritance of 

contiguous sections of chromosome. This phenomenon allows GWAS to identify loci 

associated with the trait of interest even when the true causal variant is not observed, but 

also complicates interpretation of results. Recently developed methods in post-GWAS 

analysis have proposed various approaches to exploit knowledge of this correlation 

structure in order to study the genetic architecture of traits. Several fine mapping methods 
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use LD information to elucidate local patterns of genetic effects. These include GCTA, 

which calculates conditional association from summary statistics [57, 56], CAVIARBF 

which compares Bayes factors for all possible models with one causal SNP [13], 

PAINTOR which uses an E-M algorithm to estimate the prior probability of causal sets of 

variants conditional on functional annotation [34, 32], and bfGWAS which performs 

Bayesian variable selection by partitioning loci of interest into distinct LD blocks [58].  

On the genome-wide scale, LD score regression combines GWAS summary statistics 

with a reference LD panel to estimate systematic properties of the distribution of 

marginal associations, due to population structure or enriched heritability among certain 

functional categories [10, 20]. This method has been applied to GWAS of complex traits 

including schizophrenia, Crohn’s disease, and BMI to identify relevant regulatory 

mechanisms.  

Parallel developments in genomic annotation have illuminated the functional 

elements of human genetic variation, at the nucleotide scale. These resources describe the 

locations of regulatory elements, including promoters, enhancers, transcription factor 

binding sites, and histone modification in intergenic loci where large proportions of 

GWAS results have been found [22, 31, 15]. These measures collectively provide 

extensive information at the single nucleotide scale, regarding the biological function of a 

given variant. Tissue-specific annotation facilitates the investigation of even more 

targeted biological mechanisms underlying the observed GWAS signals [41, 36]. 

In this thesis, I present three projects that use genomic functional annotation to 

gain greater understanding of the biology responsible for GWAS results. 
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1.2. Previous Literature: Fine Mapping 

 Genetic fine mapping has been an area of active research in this decade. I will first 

review existing methods based on GWAS summary statistics, then methods that integrate 

functional annotation. The models described below apply to the most general case of a 

continuous phenotype Y generated by an additive genetic model, at the population level: 

� = �� + � 

Here, � is a (column) vector of length M equal to the number of SNPs included in the 

analysis, with non-zero entries corresponding to causal SNPs. This depends upon an 

assumption that all causal SNPs in a locus of interest are observed through direct 

genotyping or imputation, so that the genetic effect is modeled directly rather than through 

LD tagging, the genotypes and phenotypes have been standardized to mean zero and unit 

variance, and the phenotype has already been adjusted for all relevant non-genetic 

covariates. The genotypes for a specific individual form a (row) vector � of length M. In 

the most basic GWAS study design, the genotypes and phenotypes of N unrelated 

individuals are observed, and represented as a matrix X of dimension � × � , with the 

genotype vectors �� for individuals � = 1, … , � and the phenotypes as a column vector y 

of length N. This model assumes that the true causal SNPs are observed, either directly 

genotyped or imputed in the analysis sample. For each individual, �� ∼ �(0, ��
�) 

represents the phenotype variation due to non-genetic factors, assumed independent and 

identically distributed, with variance ��
�. The methods based only on summary association 

statistics are often directly applicable to cases beyond a continuous phenotype (e.g. logistic 

regression for binary outcomes), though in some cases a scale transformation is required. 
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Many fine mapping studies use a simple conditional regression analysis to identify the 

number of distinct genetic signals in a trait-associated locus. Suppose a GWAS study has 

been performed in a sample of size N, resulting in marginal tests of association between 

phenotype vector � and genotype vector ��  (i.e. a column of X) of length N containing all 

sampled genotypes at SNP j: 

� = ���� + � 

This univariate test of association is performed at a large number of SNPs (� =

1, … , �). If multiple SNPs in a given locus attain genome-wide significance, a conditional 

analysis tests the null hypothesis that all observed associations are due to LD with the SNP 

with lowest p-value in the region. If ���� is the vector of genotypes across individuals at 

the most significant SNP, then the conditional regression is 

� = ��
� �� + ����

� ���� + ����� 

If any coefficients ��
�  are significantly different from zero there is evidence of multiple 

association signals in the locus, and the conditioning is iteratively repeated. Genome-wide 

complex trait analysis (GCTA [56]) presents a method to estimate these conditional tests 

of association from marginal effect estimates and an LD matrix approximated from an 

external reference panel. In particular, the conditional effect estimate 

��
�|��

� = (��
���)����

�� − (��
���)����

���(��
���)����

�� 

is calculated by the approximations ��
���� ≈ ����(��, ���)   and ��

��� ≈ �������� =

�2��(1 − ��) for the ��� and �′�� genotype vectors, both of which may be estimated from 

a population-matched reference panel. 
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 The primary shortcoming of the conditional analysis approach is its reliance on the 

marginal or conditional p-values as statistics for the evidence of causality at a given SNP. 

In cases of measurement error due to imputation, sampling variation, or complex patterns 

of LD that lead to cancelling of effects with opposite direction, the variant with lowest p-

value may be in LD with a causal SNP but not itself functional. For this reason, conditional 

analysis may be used to count the number of distinct genetic signals in the locus, but is not 

useful for prioritizing variants for follow-up studies of causality. 

 A series of methods approach the problem of quantifying the evidence for causality 

in favor of each SNP in a region by modeling the joint distribution of the vector of test 

statistics at all SNPs under various causal configurations. The CAusal Variants 

Identification in Associated Regions method (CAVIAR [30]) defines the non-centrality 

parameter �� =
��

�
√� , where ��  is the residual variance from the GWAS regression, 

giving the asymptotic distribution of the Wald test statistic at a causal SNP c in the absence 

of LD: 

�� =  
��
�

��(��
�)

∼ �(��, 1) 

At a non-causal SNP j tagging a causal variant, the least squares effect estimate is weighted 

by the Pearson correlation between genotypes i and j: 

 ��
� = ���

��� �
��

��
�� =

1

�
��

�(�� + �) = � ��
�������

�

����

+ �′ = � �������

�

����

+ ��    (�. �) 

where ����� =
�

�
��

����  and �� =
�

�
��

�� ∼ �(0,
�

�
��

�) . By the same argument, the Wald 

statistic distribution is 
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�� ∼ �(� ����� ���

�

����

, 1) 

The authors define a causal indicator vector c of length M with value �� = 1 for every 

causal SNP j in the locus and 0 otherwise. Then, the joint distribution of the vector of Wald 

test statistics is 

                                      � ∼ ���(Σ(� ∘ �), Σ)                               (�. �) 

where Σ =
�

�
��� is the correlation matrix representing LD structure within the locus, and 

∘ indicates element-wise multiplication. The LD correlation matrix Σ appears in both the 

mean and variance of the distribution of test statistics as a consequence of the so-called 

tagging of true genetic effects in the association tests of other SNPs in LD. The CAVIAR 

method uses maximum likelihood estimation based on the vector of test statistics � 

observed from a GWAS, and Σ estimated from a population-matched reference panel to 

identify the set of causal SNPs c which yields greatest likelihood of the observed data. 

 In practice, enumeration over all 2� causal sets is computationally prohibitive, so 

an upper limit l is placed on the number of causal SNPs considered simultaneously. The 

default value of l=6 is chosen as a compromise between model flexibility and expediency. 

 The CAVIARBF method adapts this model to estimate Bayes factors, quantifying 

the evidence of each causal set relative to the null model of no causal variants in the locus 

[13]. By placing independent normal priors on the distribution of each SNP effect, they 

derive a closed form estimator of the Bayes factor for a specific causal SNP model 

represented by the causal SNP vector � versus the null model with no causal SNPs, given 
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a prior distribution of the SNP effects � ∼ �(0,
��

�

�
��), where ��

� depends upon the total 

trait heritability and ��  is the � × �  identity matrix. These Bayes factors are used to 

calculate the posterior probability of each model � in the set �� of models with at most l 

causal SNPs. From these posterior probabilities of causal SNP sets, the probability of 

including a given SNP as causal is then given by the posterior inclusion probability (PIP) 

which may be used to rank the evidence for each variant in the locus: 

���� = 1��, Σ, ��
�� = � �(�|�, Σ, ��

�)

������ �:����

 

The Bayes factor is approximately equivalent to the likelihood ratio statistic used in 

CAVIAR, where the former uses the complete data likelihood, and the latter evaluates the 

likelihood at its maximum value. Both of these methods are limited by the constraint on 

the number of causal variants considered in each model [30].  The authors present 

simulations showing that the results of estimation of SNP-specific causality over the 

constrained model space and full space of 2� models are very similar when there are 1 or 

2 true causal SNPs in the locus. However, neither paper investigates the validity of the 

assumption that trait-associated loci are expected to contain relatively few causal SNPs. In 

reality, the number of causal SNPs will vary by locus and by trait, but simulation studies 

could be designed to assess the sensitivity of model performance under a range of 

generative genetic models. 
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1.3.Functional Annotation 

 Additional, independent information regarding the biological function of SNPs 

within a locus may be used to aid fine mapping analysis and improve interpretability of 

results. Functional annotation provides the positions of known genomic elements, 

comprising both genes and regulatory regions such as histone modifications, transcription 

factor binding sites, DNAse hypersensitive sites and regions of enriched DNA methylation. 

Many of these regulatory elements show differential patterns of activation across tissue 

types, leading to the definition of tissue-specific functional annotation. Additionally, 

conservation of a given sequence across species gives evidence of its importance for 

survival, even if the functional mechanism is unknown. The ENCODE Project [22] and 

ROADMAP Epigenomics Consortium [15] have published extensive databases of 

functional annotation, and several methods have been developed to integrate these data into 

genetic fine mapping studies. 

JAM (Joint Analysis of Marginal summary statistics, [42]) is based on a model 

similar to CAVIARBF, except that it models the residual variance ��
�  as an unknown 

parameter in the model, rather than conditioning on the median observed value, as 

CAVIARBF does. To facilitate computation, JAM uses a Cholesky decomposition of the 

LD matrix in terms of an upper triangular � × � matrix � such that 

��� = ��� 

The existence of this decomposition depends upon ��� being positive definite, 

which cannot be the case when the locus under consideration contains more SNPs than the 

number of subjects in the reference panel. Thus, the LD matrix is rank-deficient. For this 
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reason, JAM is only applicable to fine mapping studies after initial screening criteria reduce 

the number of SNPs under consideration. Functional annotation may be incorporated by 

means of SNP-specific parameters for the prior distribution of the proportion of causal 

SNPs. 

The GenoWAP (Genome-Wide Association Prioritization) method calculates the 

posterior probability that each SNP is causal using Bayes’ Theorem with prior probabilities 

of causality pre-computed as a function of annotation from NHGRI GWAS catalog training 

data [40]. This method does not model local LD structure, and assumes that the functional 

genetic architecture is consistent for all traits. 

 The Functional GWAS method (fGWAS [45]) is based on a hierarchical model 

where first the probability of a true association at each locus genome-wide is estimated, 

and then, the probability that each SNP is causal conditional on being located in an 

associated locus is estimated. The GWAS effect estimates and standard errors are used to 

calculate a Bayes factor comparing the model in which that SNP is causal to the null model 

in which the genetic effect is attributable to other SNPs. Prior probabilities of causality for 

each locus and SNP are defined in terms of locus-level and SNP-level functional annotation 

by means of penalized maximum likelihood estimation. This hierarchical model depends 

upon a partition of the genome into independent loci of equal size, and makes the 

assumption that each locus contains at most one causal SNP. These assumptions are 

generally not justifiable. 

 The Bayesian Functional GWAS method (bfGWAS [58]) method attempts to 

correct these shortcomings by including all SNPs within a locus in a multiple regression 
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model for the phenotype, and modeling both the probabilities of causality �, and the effect 

size distribution of causal SNPs within each annotation category. 

� = �� + � 

The effect of a SNP j in functional annotation category k is modeled by a slab and spike 

prior distribution with annotation-level hyperparameters �� = �� and ��
� = ��

�, where �� 

is a probability point mass at zero: 

�� ∼ ���(0, �����
�) + (1 − ��)�� 

A binary vector indicating causality at each SNP then has elements �� ∼ ���������(��) 

and the joint distribution of effect sizes at causal SNPs with �� = 1 is given by the diagonal 

covariance matrix �� = ����(��
�, … , �|�|

� )  where |�|  is the number of causal SNPs in 

model c: 

�� ∼ ���|�|(0, �����) 

Estimation of this model uses the EM-MCMC algorithm based on approximately 

independent genome-blocks containing 5,000-10,000 variants. These genome-blocks must 

be selected so that significantly trait-associated variants in LD with each other are in the 

same block. Genome-block selection, based on marginal association evidence, genomic 

distance and LD, is the first practical step in the implementation of this approach. The 

bfGWAS algorithm performs MCMC estimation within each block with fixed category-

level parameter values (�, ��) to obtain posterior estimates of (�, �[�]), then uses these 

posterior estimates from all loci genome-wide to maximize the posterior likelihoods of 
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(�, ��) and update their estimates. The parameters (�, �) are the primary quantities of 

interest, representing the causal SNPs in each genome-block and their effect sizes. 

 This method addresses the primary weakness of fGWAS by removing the 

assumption on the number of causal SNPs per locus. However, the likelihood function used 

to summarize across loci in the M-step of the estimation algorithm requires the functional 

annotations to be defined so that each SNP is included in exactly one annotation category. 

It also uses individual-level genotype and phenotype data as input, though the authors write 

that they are developing an extension based on GWAS summary statistics. 

 Another method builds on the CAVIAR model described above. PAINTOR 

(Probabilistic Annotation INTegratOR, [34, 33]) defines prior probabilities for each causal 

SNP vector by independent logistic models for causality at each SNP. Given K binary 

annotation categories, the annotation at SNP j is represented as a vector �� of length K+1 

where ��� = 1 if SNP j is in category k (� = 1, … , �) and 0 otherwise, and ��� = 1 is a 

baseline annotation representing the intercept of the logistic model 

����� ����� = 1�� = ���� 

�(�; �, �) = � �
1

1 + exp������
�

��

�
1

1 + exp�−�����
�

����

 

�

���

 

The coefficients � represent the enrichment (or depletion) of causal SNPs within each 

annotation category. These are estimated with an E-M algorithm based on the complete 

data likelihood across all loci in the fine-mapping analysis: 

�(�; �, �, �) = � � �(�|�, �)�(�; �, �)

�∈�����

 



 

 

12

Here, �(�|�, �)  is the probability density function of the observed test statistics, 

conditional on the causal SNP vector � and the vector of non-centrality parameters � as 

defined in equation (1.2). To make the parameters �  identifiable, the non-centrality 

parameters � are fixed at the observed values of the GWAS test statistics, with small 

magnitudes rounded up to 3.7 times the sign of the observed value, to ensure the inclusion 

of all SNPs in the locus for consideration. 

 Because PAINTOR iterates over causal sets in a similar manner to CAVIAR, the 

original method implemented shares the same limit on the permitted number of causal 

SNPs. In version 3 [33] this requirement is relaxed by the introduction of an Importance 

Sampling approach  which concentrates computational resources on causal models with 

high probability, while drawing fewer samples from the likelihood of models with low 

probability, and therefore smaller contribution to the posterior. 

 The proposed E-M algorithm is only practicable when the dimension of � is low, 

allowing the incorporation of no more than 5 or 10 annotation categories. The authors 

suggest an iterative procedure for selection of annotation categories, based on likelihood 

ratio tests of nested models adding each available annotation to those already selected, 

requiring repeated fitting of computationally demanding estimation algorithms. Version 3 

provides an option for users to supply externally-derived estimates of �. 

 

1.4.Partitioning Heritability by Functional Annotation Enrichment 

 Incorporation of functional annotation data into genetic fine mapping studies 

requires estimation of enrichment coefficients which quantify the extent to which each 
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annotation category contributes to the phenotype of interest. Two recent methods aim to 

estimate these coefficients from genome-wide summary statistics. 

 Finucane et al [20] build on the LD score regression framework, initially proposed 

to distinguish confounding due to population structure from polygenicity where large 

numbers of SNPs have weak effects on the phenotype. This approach treats the observed 

GWAS ��  statistics as the dependent variable in a regression model, and statistics 

calculated from LD as independent variables. 

 For the purpose of annotation enrichment estimation, the authors model the SNP 

effects � as a random vector with mean 0 and diagonal covariance matrix, so the random 

effects are pairwise independent but not necessarily identically distributed. The variance 

of each SNP effect depends on enrichment coefficients of the annotation categories to 

which that SNP belongs: 

������� = � ��

�:�����

 

From this and equation (1.1), and using the fact that the phenotype vector has been 

standardize, and each individual SNP effect is expected to be much smaller than the total 

trait variance, so that �����
� � ≈

�

√�
 they derive the expected value of ��

� ≈ ���
��: 

����
�� = � � �� � ����

��

��:������

�

���

+ ��
� 

= � � �� � ����
�

��:������

�

���

+ � � ��

�:������

�

����

+ ��
� = � � ��ℓ(�, �)

�

���

+ 1 
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The second equality uses the fact that ������
�� � = ����

� +
�

�
 and the third uses the fact that the 

phenotype is standardized so that ∑ ∑ ���:������
�
���� + ��

� = ∑ ���(���)
�
���� + ��

� = 1 . 

The category-specific stratified LD scores, defined as ℓ(�, �) = ∑ ����
�

��:������  , where 

���� = 1 if SNP j’ is in category k (� = 1, … , �) and 0 otherwise, quantify the extent to 

which SNP j tags variation in category k (stratified refers to the cumulative LD with the set 

of SNPs in a given annotation category). These scores may be calculated from a population-

matched reference panel external to the GWAS analysis sample. 

 The LD score regression software estimates the coefficients ��  by means of a 

weighted linear regression model. The weights are incorporated to adjust for the non-

independence and heteroscedasticity of the ��
� statistics. This linear regression may give 

negative estimates of ���, despite their definition as variance components which must be 

between 0 and  ���(�) = 1. The authors recommend truncating these estimates to the 

permissible range when mean squared error is more important than unbiasedness (as when 

reporting the results from a single analysis), or using the original estimates when 

unbiasedness is a desired property (as in a simulation study). 

 MQS is an alternative Method of Moments approach for estimation of partitioning 

genetic variance components by annotation categories using GWAS summary statistics 

[60]. This method assumes the annotation categories are disjoint, so that each SNP j is 

included in at most one annotation. Then the genetic effects on the phenotype may be 

summarized by annotation category as �� = ∑ �����:�����  
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� = � ����

�

���

+ � =  � ��

�

���

+ � 

For each category k, ��  is a vector of length n modeled by the multivariate normal 

distribution �� ∼ ���(0, ��
���) where �� = ����

�/�� is the genetic relationship matrix 

estimated from only the ��  SNPs in that category. This model parallels the standard 

formulation of variance components estimation in mixed effect models. Restricted 

maximum likelihood (REML) estimation, which is commonly used in this context, is 

statistically efficient in terms of the variance of the estimator, but requires individual level 

genotype and phenotype data, and is computationally demanding in large samples. The 

method of moments approach to variance component estimation depends upon a system of 

equations 

�������� = � ����������
�

�

���

+ ��������
� 

Zhou shows that the matrices �� may be derived from a weighting function on the observed 

SNPs, and that different choices of SNP weights give estimators that are equivalent to LD 

score regression and IBS Haseman-Elston regression as special cases.[12, 60] 

 Comparison between partitioned heritability results from MQS and LDSC requires 

a reparametrization of variance components. For a given category k, the parameter ��
� in 

the MQS model represents the total trait variance due to all SNPs in that category, while 

the LDSC parameter �� represents the average per-SNP heritability. These parameters are 

related by the function ��
� = ����. 
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 Both the MQS and LDSC estimators are theoretically unbiased for the true variance 

components. However, both estimators can also yield negative estimates for the variance 

components, which are outside the parameter space. Additionally, the linear regression 

model with GWAS summary statistics as a function of stratified LD scores is misspecified, 

thereby reducing the efficiency of the estimator. The method of moments approach 

implemented in MQS makes an intentional trade-off of computational efficiency at the 

expense of statistical efficiency. Its inability to analyze overlapping annotation categories 

is a substantial impediment for applications to real-world data, where SNPs likely fall into 

more than one annotation category. 

 

1.5.Outline of this Dissertation 

 

 

Figure 1.1. Diagram representing inputs and outputs of the three projects in this dissertation. 
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In this thesis, I present three projects that integrate GWAS results with genomic 

functional annotation to improve upon existing methods for fine mapping, partitioning trait 

heritability, and selection of tissue-specific annotations relevant to a given trait. The 

common goal for these projects is to provide tools for investigators seeking to glean 

clinically relevant biological insights from genome-wide association results. 

Chapter 2 develops a fine mapping method to prioritize potentially causal variants 

in a locus of interest based on GWAS association statistics, patterns of linkage 

disequilibrium (LD) among all variants in the region, and functional annotation. Unlike the 

CAVIAR and PAINTOR approaches, this method does not place an upper bound on the 

number of causal SNPs per locus. In contrast to the previous approaches described above, 

I separate the estimation of annotation effects from that of SNP effects in the loci of 

interest. The annotation effects are estimated from genome-wide summary statistics, taking 

advantage of low-level systematic enrichment of association signals throughout the 

genome including those outside of regions reaching genome-wide significance. In the 

implementation I present in Chapter 2, these estimates are obtained by stratified LD score 

regression [20], though the fine mapping model can accept alternative estimates of these 

quantities. The annotation enrichment coefficients are then used to define variant-specific 

distributions for the effect size in a multiple regression model accounting for all variants 

in the locus. This approach is analogous to a penalized regression model in which larger 

penalties are applied to variants in annotation categories that are not enriched for trait 

heritability. I apply the proposed method to both simulated data and a published GWAS of 

body mass index (BMI) [37]. 
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 In Chapter 3, I focus on the estimation of functional enrichment coefficients from 

genome-wide summary data. Previous approaches to this problem make simplifying 

assumptions that result in estimators with high variance, limiting their ability to identify 

weak levels of enriched association. By modeling the noncentrality parameter of the 

GWAS �� test statistics as a function of annotation-specific LD scores and enrichment 

coefficients, I am able to estimate the proportion of heritability attributable to each 

annotation category with maximum likelihood estimation. I explore reparametrization of 

the likelihood in order to ensure non-negative estimates of the variance components. 

However, this induces symmetry between positive and negative values in the new 

parameter space, so that the transformed likelihood function is non-convex and difficult to 

optimize 

 Chapter 4 explores the application of mutual information based feature selection 

algorithms to the problem of identifying functional annotation categories that are relevant 

to a given trait of interest. Feature selection refers to methods for the identification of 

optimal sets of predictors for a given outcome, when the available predictors (also called 

features) are highly correlated with each other, or simply too numerous to model 

simultaneously. In Chapter 3 I demonstrated that estimation of enriched heritability by 

functional annotation is improved by including the correct set of annotations in the model. 

Previous approaches have dealt with this problem by selecting annotation categories that 

show significant enrichment when modeled singly, as in PAINTOR, or by considering all 

available annotations simultaneously, as in LDSC. To my knowledge, there have not been 

any previous applications of statistical feature selection criteria to functional annotation for 
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GWAS statistics. The approach presented in Chapter 4 is based upon mutual information, 

a non-parametric measure of dependence between random variables which does not require 

distributional assumptions, in contrast to the highly model-specific approach of Chapter 3. 

I apply three feature selection criteria to a data set consisting of tissue-specific histone 

marks, in hopes of identifying both relevant tissues and specific regulatory mechanisms 

involved in the genetics of BMI. 

 These three projects demonstrate several themes that appear in various ways 

throughout the field of statistical genetics. They each work with GWAS summary statistics 

rather than requiring individual-level genotype and phenotype data, to facilitate 

implementation in consortium-based studies and maximize the available sample sizes. 

Generally, I take an exploratory perspective, assuming that the underlying trait biology is 

largely unknown, rather than incorporating targeted biological hypotheses, as for example 

in a candidate gene study. Finally, due to the scale of these data sets, I recognize 

computational efficiency as critical to the practical applicability of any novel statistical 

method. Chapter 5 contains discussion of these themes and directions for future research. 

 The methods I develop in this thesis address the challenges that investigators face 

in using findings from GWAS to understand the genetic etiology of complex traits, and 

translate this understanding into advancements in the prevention and treatment of disease, 

and ultimately improve public health.
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 CHAPTER 2. GENETIC FINE MAPPING WITH FUNCTIONAL 

ANNOTATION: A RANDOM EFFECTS APPROACH 

 
2.1. Introduction 

Large-scale genotyping studies have great potential to enhance our understanding of 

the genetic etiology of human complex traits. Genome-wide association studies (GWAS), 

in which a large number of single nucleotide polymorphisms (SNPs) are individually tested 

for association with an outcome of interest, have been the primary study design for such 

investigations [53]. However, the findings from such analyses typically suggest genomic 

loci with hundreds of kilobases in size, often containing hundreds of SNPs that exceed the 

genome-wide significance threshold.  

Patterns of linkage disequilibrium (LD) within such loci present a challenge for 

researchers seeking to identify the true causal variants. Functional validation in 

experimental organisms is necessary to confirm findings from epidemiological studies, but 

these experiments are costly and time-consuming. Statistical fine mapping methods can be 

useful to prioritize variants for follow-up. In order to take advantage of large sample sizes 

available in meta-analysis of GWAS within consortia of studies, there is demand for 

methods that need only summary association statistics rather than individual-level data 

[43].  

Functional annotation, which describes both protein-coding genes and epigenetic 

regulatory elements such as promoters, enhancers, and transcription factor binding sites, 

provides valuable information about the potential biological relevance of SNPs within a 

trait-associated locus.  
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Several methods to integrate functional annotation into fine mapping of loci identified 

by GWAS were described in Chapter 1. These methods attempt to jointly model the 

influence of functional annotation categories and the individual-level SNP effects, 

requiring computationally demanding iterative algorithms or resampling procedures, and 

limiting the number of functional categories that can be modeled simultaneously. Of these 

previously developed methods, PAINTOR is the only one that uses summary statistics as 

input and incorporates both functional annotation and LD structure into the fine mapping 

analysis. Earlier versions of PAINTOR placed an upper bound on the number of causal 

SNPs per locus, while version 3 uses Importance Sampling to explore the space of potential 

causal sets [33]. 

 In this chapter, I propose AnnoRE, a random effects model for genetic fine mapping 

that integrates the genome-wide heritability attributable to each functional annotation 

category to prioritize SNPs in each locus identified by GWAS. Specifically, the effect 

distribution of each SNP is defined by annotation-specific functional variance components. 

For the implementation presented here, I estimated annotation-specific functional variance 

components by the LD score regression method of partitioning heritability [20], but other 

estimators may be substituted. This method uses GWAS summary statistics to estimate 

enrichment of association signals across a large number of functional categories. The sum 

of these variance components yields high-resolution SNP effect distributions, and by 

conditioning on the variance components we obtain an efficient closed form solution within 

the fine mapping locus. In the Methods section, we present the details of the proposed 

model. Simulation studies compare the performance of AnnoRE to previously published 
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fine-mapping methods. Finally, we apply AnnoRE to a large-scale GWAS meta-analysis 

of body mass index (BMI) [37]. And we conclude with a discussion of the strengths and 

potential limitations of this approach. 

 

2.2. Methods 

 The parameters of the proposed approach, the AnnoRE model, may be estimated 

either directly from subject-level genotype and phenotype data, or from marginal genetic 

association statistics in combination with allele frequency and LD information from an 

ancestry-matched reference panel.  For computational efficiency we restrict fine mapping 

analysis to variants exceeding a nominal significance threshold of p<0.05 in the 

preliminary GWAS analysis.  

2.2.1. Random Effects Model 

In each fine mapping locus, with M SNPs genotyped or imputed in N subjects, we 

assume an additive genetic model in a multiple regression equation with all candidate SNPs 

included as predictors 

� = �� + � 

Given an unrelated sample, the subject-level residuals �  follow a multivariate normal 

distribution, � ∼ ���(0, ��
���), where ��

� is the residual variation in the phenotype not 

attributable to additive genetic effects.  

We assume that the � × � genotype matrix X is standardized so that each column 

has mean zero and unit variance. Annotation describing C functional categories is 
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summarized in a (� × �) matrix � of binary indicators ��� = 1 if SNP j is included in 

functional category k and zero otherwise. 

 We define a random effect for each standardized SNP by a Gaussian distribution 

with mean zero and variance ������� = � ∑ ������  where the sum is taken over all 

annotation categories containing SNP j. The annotation-specific variance component �� 

represents the coefficient of expected per-SNP heritability in category k. These variance 

components may be estimated by the LD score regression method for partitioning 

heritability [20], with negative estimates truncated at zero. The factor ℎ��� is defined as the 

expected heritability per SNP within each fine mapping locus, relative to the genome-wide 

heritability per SNP. Inclusion of this factor adjusts the random effect variances for the 

strength of the observed genetic association within the locus.  

ℎ��� =
(ℎ����������� �� �����)/(# �� ���� �� �����)

(����� ����� ℎ�����������)/(# �� ���� �� ����)
 

The vector of SNP effects �~�(0, �)  is modeled as random effects with 

independent Gaussian distributions, with � = ����(ℎ�����) . Then, the best linear 

unbiased predictor (BLUP), obtained by maximizing the joint distribution of Y and  � 

conditional on H and ��
� is given by 

�� = �
���

��
� + ����

��
���

��
�  

and its variance-covariance matrix, conditionally on the parameters � 

��������� = �
���

��
� + ����

��
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This is a well-known result in the theory of random effects models and coincides with the 

estimator implemented in SAS PROC MIXED [28]. 

 Note that, under this model, genotype vector standardization encodes the 

assumption that less frequent variants will have larger effect sizes, as we would expect due 

to negative selection [54].  

From the diagonal elements of this covariance matrix we may construct a Wald test 

statistic, conditional on �, for the effect of each SNP in the locus: ��
� /��(���). 

2.2.2. Estimation from Summary Statistics 

The AnnoRE model may also be estimated from GWAS summary statistics and 

local LD information from a population-matched reference panel as an approximation of 

the genetic correlation structure.  Suppose that a given fine mapping locus contains M 

SNPs, with allelic effect estimates ��
� , standard errors ��(��

� ) and allele frequencies ���  

available from a study with ��  unrelated subjects contributing to analysis at SNP j. 

Additionally, suppose that the LD matrix �� of pairwise Pearson correlations between all M 

SNPs is available from a reference panel of the same ancestral population as the GWAS 

sample. 

These summary statistics are calculated in terms of the SNP genotypes �� , the 

length-N column vectors of the matrix X, with a simple linear regression model at each 

SNP j: 

� = ���� + �� 

By assumption, the subjects are unrelated, so �� ∼ �(0, ��
����

).  
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If all genotypes were independent, i.e. if there was no tagging due to LD and the 

GWAS effect estimates at a given SNP represented only the causal effect of that SNP and 

independent residual error, the asymptotic distributions of the least squares estimators  

��
� = ���

����
��

��� would give rise to the GWAS test statistics: 

�� =  
��
�

��(��
� )

 ~ � ����
��

��
� , 1� 

 Following the notation in Hormozidari et al [30], define the non-centrality 

parameter �� = ���
��

��
� , which is related to the statistical power to detect a significant 

association between genotype j and the trait of interest.  

Allowing for genotype correlation within the locus gives the LD-induced non-

centrality parameter Λ� = ∑ ���������  where ��� =
�

������
�����

�  is the LD (Pearson 

correlation) between SNPs j and k. 

 Then the multivariate distribution of the vector of Wald statistics across the locus 

is 

�|�~���(�, �) 

where � is the LD matrix, which may be approximated from a reference panel. Define � =

���� ��
��

��
�� �, so that � = ��, yielding a multiple regression model 

� = �� + � 

where � ~ �(0, �). Using the same random effect variance matrix H defined in Section 

2.2.1, the BLUP for this regression is 
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�� =  [������ + ���]�������� 

Variances of the individual SNP effect estimates are given by the diagonal elements of the 

matrix [������ + ���]��, which may be used to define Wald statistics for the estimators. 

These test statistics �� = ��
� ��(��

� )�  follow an asymptotic standard normal distribution 

under the null hypothesis �� = 0, conditional on the random effect variances �� [47, 28]. 

The details of this derivation are given in Appendix A. 

 
2.3. Simulation Study 

2.3.1. Design of Simulations 

I simulated GWAS test results in a 1MB region from 28,000,000 to 29,000,000 

base pairs on chromosome 21. Using HAPGEN2 [50], I constructed synthetic samples of 

size N=10,000 from haplotypes of the 379 individuals of European ancestry included in the 

Phase 1 of the 1000 Genomes Project [14]. This reference panel contained M=2,159 SNPs 

in the locus of interest. Annotation-specific variance components �� were estimated from 

the GIANT Consortium GWAS of BMI [37] for 52 regulatory annotation categories from 

the ENCODE project [22], to define the random effect distributions for all SNPs in the 

locus. Negative estimates ��� were truncated at zero, effectively removing 28 annotation 

categories from the model, representing no evidence of enriched heritability in these 

categories. 

Each simulation scenario had one causal SNP, and these 20 causal SNPs were used 

to define a range of simulation scenarios. For each simulation scenario, or model with one 

of the 20 SNPs as causal, I created 1000 phenotype replicates under a genetic model, fixing 
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SNP-specific heritability at ℎ� =  0.001 and calculating the genetic effect size to account 

for different allele frequencies between the scenarios.  

Causal SNPs were selected in scenarios of both high and low total LD with other 

variants in the region. High and low LD SNPs were defined as those with �� = ∑ ���
�

�  in the 

top or bottom quartile for the locus. To assess the contribution of annotation across 

methods, I considered scenarios with one causal SNP near the 10th, 20th, 30th, 40th, 50th, 

60th, 70th, 80th, 90th and 100th percentiles of the distribution of random effects 

variances ∑ ������ , where the sum is taken over all annotation categories in the model. 

Characteristics of the selected causal variants are reported in Table 1. 

 In these simulated samples, I compared the ranking by AnnoRE with (1) a naïve 

GWAS approach based solely on marginal association p-values, (2) LASSO regression 

using subject level genotype and phenotype data, (3) the PAINTOR method [34] with the 

top 5 most highly enriched annotation categories (conserved regions, extended H4K5me1 

peaks, extended H3K9ac peaks, H3K9ac peaks, and extended Super Enhancers [20]) and 

(4) the GenoWAP method, using prior probabilities of causality pre-computed from 

NHGRI GWAS catalog training data [39, 40]. 

2.3.2. Results of Simulation Study 

AnnoRE gave a higher ranking on average across 1000 replicates to the true causal 

SNP than comparison methods for all selected causal SNPs, except in three scenarios where 

the causal SNP was in at least the 90th percentile of functional annotation and PAINTOR 

gave higher average ranking (Table 2.1 and Figure 2.1). The causal SNPs that PAINTOR 

ranked higher than AnnoRE were located in 3 or 4 of the annotation categories considered 
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in the PAINTOR estimation, suggesting that this method is powerful when the selected 

annotations contain the true causal SNPs, but is sensitive to the choice of annotation 

categories included in the model. In fact, PAINTOR often failed to converge entirely for 

SNPs not included in any of the annotation categories it considered. AnnoRE is more robust 

to scenarios of moderate evidence from annotation because it summarizes the effects of a 

large number of annotation categories which are estimated from genome-wide summary 

statistics. 

  overall 
LD 

Anno. 
Pctile 

Average rank at causal SNP 

Causal SNP MAF GWAS LASSO GenoWAP PAINTOR Anno.RE 

rs9974258 0.413 low 10 69.2 55.3 1191.3 NA 23.0 

rs77960433 0.037 low 20 1602.2 48.1 2076.9 2129.2 14.4 

rs433893 0.381 low 30 42.1 52.5 1466.8 NA 13.5 

rs2830795 0.278 low 40 1931.4 49.8 946.1 2142.6 13.9 

rs2830794 0.493 low 50 1414.6 52.1 1003.7 2098.7 19.3 

rs189506146 0.305 low 60 52.1 50.6 1333.0 28.3 6.8 

rs235952 0.193 low 70 59.0 45.2 1201.8 13.8 6.6 

rs235938 0.467 low 80 59.9 50.8 1212.5 18.6 6.8 

rs235936 0.495 low 90 54.4 50.9 1040.7 4.1 7.0 

rs2830854 0.393 low 100 53.7 49.7 1704.9 1.8 6.5 

rs381814 0.286 high 10 70.5 67.7 1090.4 2044.7 29.9 

rs229093 0.299 high 20 75.0 22.6 981.3 NA 52.1 

rs7281968 0.33 high 30 77.4 NA 32.7 NA 49.5 

rs229087 0.303 high 40 72.0 NA 27.2 1938.1 53.8 

rs229061 0.305 high 50 88.4 NA 505.6 NA 58.3 

rs229060 0.305 high 60 72.6 NA 99.4 146.6 34.1 

rs162497 0.331 high 70 76.1 58.4 86.3 154.2 28.3 

rs229063 0.305 high 80 81.5 NA 473.9 165.8 30.7 

rs371445 0.292 high 90 82.5 72.9 327.0 78.7 15.9 

rs162508 0.282 high 100 72.3 NA 73.2 5.2 25.4 
 

Table 2.1. Selected causal SNPs characteristics: minor allele frequency (MAF), overall LD �� =

∑ ����∈�����  in the bottom quartile (low) or top quartile (high) within the locus, and percentile of 

annotation score ∑ ������ . Methods used to evaluate simulated data are compared in terms of 

average rank of the true causal variant across 1,000 replicates. LASSO was unable to estimate 
several SNPs due to high collinearity with other variants in the locus. Additionally, the PAINTOR 
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algorithm did not converge for 4 scenarios where the causal SNP was not located in any of the most 
relevant annotations included in the PAINTOR model. 

All methods performed better in scenarios where the simulated causal variant was 

in low LD with all other SNPs in the locus (top row of Figure 2.1), except for GenoWAP, 

which does not model LD. However, the improved performance of GenoWAP at high LD 

variants is not consistent across scenarios. The prior probabilities of causality used by 

GenoWAP are different from the annotations used by AnnoRE and PAINTOR in these 

analyses, possibly accounting for the discrepancy. Additionally, the EM algorithm used by 

PAINTOR to estimate simultaneously the annotation-level heritability enrichment and the 

SNP-level effects was unable to converge in simulation scenarios where the true causal 

SNP was not located in any of the top 5 most highly enriched annotation categories, which 

were the only annotation data provided to PAINTOR. The developers of PAINTOR, in 

showing its application to practical data, used a stepwise selection procedure to choose a 

set of annotations for inclusion in the final model based on goodness-of-fit statistics from 

� fine mapping models, each with only one annotation category included. However, the 

annotation feature selection step is outside the scope of this project, so PAINTOR results 

are presented based only on the scenarios that reached convergence. 
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Figure 2.1. Box plots of ranking of simulated causal SNP within fine mapping locus by all methods under comparison, truncated to only show rankings in the 
top 500 SNPs. Note that LASSO was unable to obtain estimates in 6 high LD scenarios due to extreme collinearity, and PAINTOR estimation did not converge 
when the causal SNP was not included in any of the five annotation categories considered by that analysis. 
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2.4. Real Data Analysis 

Body mass index (BMI) is an important risk factor for numerous diseases, such as Type 

2 diabetes, hypertension, and heart disease. It is highly heritable, with twin study estimates 

of the genetic contributions accounting for 49-90% of trait variance [19]. The Genetic 

Investigation of Anthropometric Traits (GIANT) consortium is an international 

collaboration studying the genetic basis of anthropometric phenotypes including BMI. I 

performed AnnoRE analysis fine mapping with summary statistics from the GIANT 

GWAS meta-analysis of BMI in 322,154 subjects of European ancestry [37]. This study 

reported 77 loci with the strongest signals separated by at least 500kb, and reaching 

genome-wide significance (� < 5 × 10��) in the European ancestry sample. Summary 

statistics for all reported SNPs within a 500kb radius of the most significantly associated 

markers were extracted for fine mapping, with LD information from the 1000 Genomes 

Project Phase 1 European ancestry reference panel.  

Within each locus, I defined a locus-specific significance threshold by Bonferroni 

correction based on the number of SNPs included in the fine mapping analysis, to adjust 

for multiple testing of the BLUP Wald statistics. In the analysis of summary statistics from 

77 loci with genome-wide significant associations with BMI in the GIANT consortium 

meta-analysis of European ancestry studies, 6 loci contained results exceeding the locus-

specific significance threshold. In each of these cases, the top SNP selected by fine 

mapping was different from the SNP with lowest GWAS p-value, though all of the top fine 

mapping SNPs did exceed genome-wide significance in the GWAS results (Table 2.2).  
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Table 2.2. Top ranked SNPs from random effects fine mapping (AnnoRE) and GWAS analysis in each of the loci with AnnoRE results attaining locus-wide 
significance. 

 

 

 

 

 

 

SNP Chr: position 

Nearest 
gene 

LD �′ 
and 
�� MAF 

GWAS 

��  GWA.pval 

AnnoRE 

�� 

Wald 
scores 

AnnoRE 
pval 

GWA 
rank 

AnnoRE 
rank 

rs1477196 16:53808258 FTO 1.0 0.28 -0.058 3.22E-72 -0.147 348.049 1.13E-77 50 1 

rs1558902 16:53803574  0.41 0.45 0.082 7.51E-153 0.014 2.930 0.087 1 31 

rs34358 5:74965122 LOC441087 0.96 0.35 0.023 2.31E-12 0.037 37.200 1.07E-09 11 1 

rs2112347 5:75015242  0.87 0.38 -0.026 6.19E-17 -0.001 0.368 0.544 1 56 

rs988748 11:27724745 BDNF 0.99 0.22 -0.041 5.90E-23 -0.027 33.935 5.70E-09 16 1 

rs11030104 11:27684517  0.89 0.20 0.041 5.56E-28 0.003 0.729 0.393 1 43 

rs11676272 2:25141538 ADCY3 1.0 0.48 0.032 1.12E-21 0.031 28.952 7.42E-08 3 1 

rs10182181 2:25150296  0.99 0.50 -0.031 8.78E-24 -0.009 5.028 0.025 1 4 

rs1048932 11:115044850 CADM1 0.90 0.50 -0.019 9.43E-10 -0.019 17.367 3.08E-05 2 1 

rs12286929 11:115022404  0.57 0.43 0.022 1.31E-12 0.002 1.884 0.170 1 7 

rs1800437 19:46181392 QPCTL 0.99 0.18 0.035 1.73E-17 0.022 12.912 3.27E-04 3 1 

rs2287019 19:46202172  0.89 0.15 0.036 4.59E-18 0.002 1.159 0.282 1 10 
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The strongest fine mapping signal, rs1477196, identified by the AnnoRE is in the 

FTO locus on chromosome 16 (Figure 2.2) which has been studied extensively in the 

genetics of obesity [59]. Identified in association with obesity in previous publications [46, 

25], this SNP is located in a haplotype block with two other highly associated SNPs, 

rs17817449 and rs9939609. However, the random effect variance for rs1477196 is higher 

than that of the other SNPs on the haplotype due to its inclusion in the super enhancer and 

H3K27ac histone mark annotation categories, both of which were estimated to contain 

enriched heritability signal for BMI by LD score regression. 

In the ANKDD1B locus on chromosome 5, the top GWAS signal is located in an intron 

of the gene, while the top SNP selected by AnnoRE, rs34358, is a stop gain mutation in an 

exon of the gene, located in a highly conserved region across vertebrate species, a ChIP-

seq peak and DNaseI hypersensitive site. 

The BDNF (brain-derived neurotrophic factor) gene on chromosome 11 has been 

implicated in numerous psychiatric and neurological diseases [11, 2]. Both the top GWAS 

hit in this locus, rs11030104, and the top SNP selected by AnnoRE fine mapping, 

rs988748, are located in conserved regions in introns of this gene. The SNP selected by 

AnnoRE fine mapping is included in the super enhancer, fetal DNaseI hypersensitive site, 

and H3K4me3 peak annotation categories, while the SNP with lowest GWAS p-value is 

not in these important categories. 
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Figure 2.2. Plots of local LD structure, -log10 GWAS p-values, and –log10 AnnoRE p-values in six loci with 
significant fine mapping results. Horizontal red lines show genome-wide (GWAS) and locus-wide (AnnoRE) 
significance thresholds, respectively. Physical length in kilobase (kb) refers to the number of base pairs (in 
1000s) from beginning to end of locus, defined by nominally associated SNPs less than 500kb from the strongest 
GWAS association. 
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AnnoRE identified the SNP with lowest GWAS p-value as the most likely causal 

variant in 13 (16.8%) of the 77 loci analyzed. Among the remaining loci, the median 

GWAS ranking of the top fine mapping SNP was 14, and the median AnnoRE fine 

mapping ranking of the top GWAS SNP was 9. Remarkably, only 39 (51%) of the top 

SNPs identified by AnnoRE attained genome-wide significance ( � < 5 × 10�� ) in 

univariate GWAS analysis. 

To assess the ability of our fine mapping method to discriminate between SNPs in the 

locus, I computed the ratio between the random effect Wald statistics of the top ranked 

SNP, and the second and third ranked SNPs. In 17 (22%) of the loci, the signal at the top 

ranked SNP was more than twice as strong as the second ranked, and in 30 (39%) of loci, 

the top ranked signal was more than twice the third ranked signal. 

2.5. Discussion and Conclusions 

I present AnnoRE, a method for genetic fine mapping incorporating functional 

annotation. This model uses random effects to perform multiple regression with smoothing 

of the SNP effect estimates dependent on their functional annotation, so that SNPs in 

categories with enriched heritability receive less shrinkage relative to those without 

evidence of biological function. 

AnnoRE makes no assumptions regarding the number of true causal signals, because 

all SNPs in a given locus are included as predictors in the random effects model. This 

approach is compatible with the omnigenic or infinitesimal models of inheritance, which 

hypothesize that complex traits are influenced by large numbers of genetic variants with 

small effect magnitudes [4, 7]. Under this model, I assume that a locus containing 
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functional elements that affect trait outcomes may contain several causal SNPs modifying 

the protein product of genes or regulatory elements that control gene expression. However, 

existing fine mapping methods generally assume a model of inheritance in which only a 

few SNPs are truly causal, and all other association signals are artifacts of confounding due 

to LD. In regions of high LD, the tagging effect of numerous weak signals may 

substantially influence test statistics, in ways that cannot be captured by a model that 

assumes zero effect sizes at all but a few SNPs. 

Using a two-stage procedure for the estimation of the annotation-level effects and the 

SNP-level effects allows for improvements in computational efficiency while exploiting 

information about the annotation effects from all genome-wide test statistics. Thus, 

AnnoRE is able to account for systematic enrichments of association signal below the 

genome-wide significance level to identify functional categories that are more likely to 

contain causal SNPs. On the other hand, the AnnoRE approach assumes that the 

distribution of trait heritability among functional categories is consistent genome-wide. If 

a given annotation category is important only in specific genomic locations, AnnoRE may 

fail to identify causal SNPs in that category. 

The AnnoRE method shows superior performance to naïve GWAS ranking, LASSO 

penalized regression, and GenoWAP [40] in simulation studies across a range of LD 

structures and annotation scenarios. PAINTOR [34] showed superior performance when 

the five annotation categories provided for its model included at least three containing the 

causal variant. Because PAINTOR is only capable of considering a few annotation 

categories simultaneously, it is at a disadvantage for causal variants outside of those 
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annotations and must be conduct several times to build a small set of strongly enriched 

annotations, requiring substantial computation time. AnnoRE ranked the true causal variant 

in the top 10 percent by ordering of the fine mapping statistics, on average across the 1000 

simulation replicates, even in simulation scenarios where LASSO and PAINTOR were 

unable to obtain estimates at all. 

In our analysis of loci identified by a large GWAS meta-analysis of BMI, I found six 

loci where the top variant identified by random effects fine mapping exceeded a locus-wide 

significance threshold. In all of these cases, the top SNP selected during fine mapping was 

in very high LD with the most significant GWAS signal, with �� statistic greater than 0.9 

in all six loci. The �� statistic accounts for differences in allele frequency, whereas the 

standard correlation statistic ��  cannot attain its maximum value of one between SNP 

genotypes with different allele frequencies. In these six loci, the SNPs selected as most 

significant by AnnoRE fine mapping are located in annotation categories with greater 

plausible functional relevance that the top SNPs selected by GWAS. In 25 additional loci, 

the AnnoRE test statistic at the top SNP is more than twice the magnitude at the third 

ranked SNP. These loci are promising candidates for further exploration, as the fine 

mapping analysis distinguishes one or two SNPs with stronger evidence of causality 

relative to others in the locus. 

Our proposed method addresses the problem of collinearity due to high LD among sets 

of SNPs within a locus by defining random effect variances that depend on SNP annotation. 

The resultant estimator is similar to a penalized method such as ridge regression [29], with 

the smoothing penalty differing by SNP annotation. Thus, even if two SNPs are in perfect 
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LD, the one with stronger annotation evidence will receive a larger effect estimate. For this 

reason, it is desirable to include many annotation categories in the estimation of variance 

components to ensure that differences in annotation allow the estimator to prioritize the 

genetic variants within LD blocks. However, the variance component estimates may be 

unstable when there is high correlation among the annotation marks themselves, as may be 

the case for tissue-specific annotation of the same signal across similar tissues. Further 

work is required to identify optimal sets of annotation categories for use in fine mapping 

studies. 

One limitation of AnnoRE is the fact that the distribution of the test statistics is 

conditional upon the variance components estimated by LD score regression and does not 

account for the uncertainty in these estimates. Large GWAS sample sizes reduce the 

variability of these estimates, making this simplifying assumption more acceptable. This 

method is designed to identify causal SNPs in common allele frequency ranges and may 

be less powerful in the case of rare variants, as is also the case for other existing fine 

mapping methods. 

In summary, I have proposed a framework to prioritize variants with known biological 

relevance that are associated with the phenotype independently of other variants in the 

locus. Integrating local LD structure and functional annotation, this proposed approach can 

either be applied to individual level data or utilize GWAS summary statistics data. The 

resulting SNPs are promising candidates for the functional follow-up studies that are 

necessary to translate findings from genetic epidemiology towards increased understanding 

of human biology and clinical applications. 
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CHAPTER 3. PARTITIONING HERITABILITY BY GENOMIC ANNOTATION 

 
3.1. Introduction 

 Heritability is a fundamental concept in statistical genetics. Informally, it represents 

the proportion of phenotype variation attributable to genetic effects. To understand the 

genetic architecture of a given trait, it is useful to partition the heritability by categories of 

genetic variants, to investigate which categories have greater effect on the trait than others. 

Such an analysis contributes to the interpretation of genome-wide association studies 

(GWAS) by translating results from the level of individual variants to that of genome-wide 

functional features. These category-level enrichment estimates may be used to estimate 

variant-level effect distributions, such as those presented in Chapter 2. In Chapter 1, I 

described two previously published methods for estimating partitioned heritability--

stratified LD score regression (LDSC) [20], and MinQue for Summary statistics (MQS) 

[60]. Both of these methods can result in estimates of heritability outside of the permissible 

range of 0-1. In addition, LDSC estimates partitioned heritability from GWAS summary 

statistics, but its linear regression model is only a first-order approximation of the 

relationship between SNP categories and heritability, yielding highly variable estimates 

from GWAS of moderate sample size. The MQS method also does not require individual-

level data, but does require summary statistics beyond those calculated for a standard 

GWAS, and is only capable of analyzing non-overlapping categories. For this project, I 

present an alternative approach based on maximum-likelihood estimation (MLE) from 

GWAS test statistics, and perform simulation studies to compare performance of these 

methods across different numbers of truly enriched categories. 
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3.2. Methods 

 Suppose the true genetic model for the continuous trait of interest is an additive 

linear combination of M genetic variants: 

� = �� + � 

In this model for N individuals, y is a � × 1 vector and X is a matrix of genotypes. For 

each individual, �� represents a genotype row vector of length M for the ��� subject, � is a 

� × 1 vector of random regression coefficients and � is random residual error. For this 

model, genotypes are standardized. For a given SNP j, define ��� to be the genotype of 

subject i at SNP j, coded as (0,1,2). In a sample of �  unlrelated individuals, ���  is the 

(sample) minor allele frequency, the standardized genotype vector ��with entries ��� =

�

�����(�����)
(��� − 2��� ) has mean zero and ��

��� = �. Standardizing the genotypes induces 

a scaling of the genetic effects. If �� is the per-allele effect of SNP j coded as �� without 

standardization, then �� = �2��� (1 − ��� )��  is the effect size of SNP j coded as the 

standardized genotype ��. Without loss of generality, the vector y of phenotype values is 

also assumed to be standardized to have mean of zero and unit variance. 

Under this model, where all causal SNPs are observed, and all genetic effects are 

linear (in particular, precluding gene-gene or gene-environment interactions), we may 

define the trait heritability attributable to a set of SNPs � = {1, … , �} as ℎ�
� = ∑ ��

�
�∈� , 

and the partitioned heritability attributed to annotation category ��  as ℎ�
� = ∑ ��

�
�∈��

. 

When the categories (��, … , ��) overlap, it may be the case that ℎ�
� ≤  ∑ ℎ�

��
��� . When the 

categories are disjoint (non-overlapping), it coincides with the definition of partitioned 
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heritability used by Gusev et al., who “define the ℎ�
� for each functional category as the 

squared correlation �� between the true phenotype and the prediction only from SNPs in 

that functional category when all functional categories are jointly analyzed for a best linear 

prediction.” [26]  

 

3.2.1. Model and Likelihood 

 To aggregate association signals by functional category, the random effect of each 

(standardized) genotype  �� is modeled, independently of all other genetic effects, with the 

distribution 

�� ∼ � �0, � �����

�

���

� 

Here ���, … , ��� are binary annotation indicators for K categories, and ��� = 1 represents 

background heritability not attributable to these categories.  The category-specific variance 

components �� are the estimand of interest. 

 Linkage disequilibrium (LD) leads to tagging of causal signals at nearby markers 

which are associated with the phenotype solely due to correlation with the true causal 

SNPs. This is the same phenomenon as confounding or omitted-variable bias. In an 

unrelated sample with no population structure and � ∼ ���(0, ��
���) where ��

�  is the 

residual variance of the trait not attributable to additive genetic effects, GWAS tests of 

univariate association use the least squares estimator: 

��
� = (��

���)����
�� =

1

�
��

�(�� + �) 
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=
1

�
� ��

�������

�

����

+
1

�
��

�� = � ����
^

�

����

��� + �� 

In this notation, ����
^

=
�

�
��

����  is the maximum likelihood estimator of the correlation 

between SNPs j and j’, and �� =
�

�
��

�� ∼ �(0,
�

�
��

�).  

 The GWAS Wald test statistics are defined in terms of the estimated residual 

variance, from the equality of ��
��� = �, so that ����

����
��

=
�

√�
 as a result of genotype 

standardization, and the uniform minimum variance unbiased estimator of the standard 

error of ��
�  given as ��� (��

� )� =
�

���
����� where �̂ = � − �� = � − ����

� =  �����
����

��
��

�� 

and because this estimator is unbiased, it converges in expectation to ������
� � =

�

�
��

� 

 ����� converges in expectation to � ∗ ���(��� ) = ��
� �1 − ������

����
��

��
��

��
�  

�� =
��
�

��� (��)�
=

���
����

��
��

��

����
����

�� 1
� − 2 �����

=

1

√�
��

��

� 1
� − 2

(� − ��)�(� − ��)

 

 
�� �����������
�⎯⎯⎯⎯⎯⎯⎯⎯⎯� √�

���(��, �)

���(�)
 

When the trait is highly polygenic, each univariate GWAS model will only explain a small 

proportion of phenotypic variance, so that ���(�) ≈  ���(�) = 1 and �� ≈ ���
� �

. This 

relationship allows us to approximate the expectation of GWAS Z scores as a weighted 

sum of true effect sizes at all causal SNPs in LD with SNP j, with weighting according to 

the strength of LD correlation:  ����
� � = ∑ ����� ���

�
���� . 
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To quantify the strength of association without cancelling of effects in opposite 

directions, consider the distribution of GWAS �� statistics of association. �� =
��
��

���(��
�)

 , 

which is distributed as ��  with 1 df under the global null hypothesis �� = 0  for � =

1, … , �. If any SNPs have true non-zero effects, then the distribution is non-central �� 

with non-centrality parameter related to that of the Z scores derived above: �� ∼

����
�(��). In Chapter 1, I described the LD Score Regression method [20], which depends 

on derivation of the expected value of GWAS �� statistics as a function of stratified LD 

scores ��� =  ∑ ����
�

��∈�  quantifying the extent to which each SNP j tags variation in 

annotation category k: 

����� = � � �����

�

���

+ 1 

 Because the expected value of a ����  variable is equal to the sum of its non-

centrality parameters and its degrees of freedom, define �� = � � �����

�

���
. To ensure 

non-negativity of the estimates, and to avoid the problem of variance component estimates 

on the boundary of the parameter space (�� = 0), I reparametrize the model with the 

transformation ��
� = ��� . The invariance principle of maximum likelihood estimation 

ensures that finding the MLE of � and inverting the transformation will yield the MLE of 

� . The suggestion of transforming variance components to avoid the problems of 

estimation caused by the bounded support on non-negative values was proposed by Box 



 

 

44

and Tiao [6]. This estimator may be biased, especially if the true parameter value is on the 

boundary, i.e. �� = 0, but the properties of the MLE guarantee asymptotic unbiasedness. 

To calculate this estimator, we maximize the complete data log likelihood function 

with respect to �: 

ℓ(�; �) =
−1

2
� � �����

�

�

���

+ � log ��
��� � �����

�

� + �
���� � �����

�

� �

�

���

�

���

 

3.2.2. Gradient and Hessian 

To perform optimization by means of a quasi-Newton algorithm requires the gradient 

function 

∇ℓ(�; �) = �
∂

∂��
ℓ(�; �)� 

Using the notation ��(�) = � �����
�

�

���
   with 

�

���
��(�) = 2����� and ��(�) = �����(�) 

with 
�

���
��(�) = ������

��

��(�)
, the pth element of the gradient is: 

∂

∂��
ℓ(�, �) =

−1

2
�

∂

∂��
��(�) + �

∂

∂��
���(���(�) + ����(�))

�

���

�

���

 

=
−1

2
� 2�����

�

���

+ �

∂
∂��

(���(�) + ����(�))

���(�) + ����(�)

�

���

∂

∂��
��(�) 

= −�� � ���

�

���

+ �
���(�) − ����(�)

���(�) + ����(�)

�

���

������
��

��(�)
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= −�� � ���

�

���

[1 − �
��

��(�)
(
���(�) − ����(�)

���(�) + ����(�)
)] 

  

Because the likelihood function is twice differentiable, and the parameter vector � 

(though not �) is unbounded on ℝ�, the regularity conditions are met and it is thus possible 

to use the asymptotic distribution of the MLE to derive standard errors of the estimators: 

�� ∼ �(�, �(�)��), from the information matrix I(). [18] 

 The information matrix contains second derivatives of the log likelihood function. 

For this derivation, define �� = ��� � �����
�

�
 , and �(�, ��) = 1  if � = ��  and zero 

otherwise, so that the (�, ��) element of �(�) is given by: 

∂�

∂�� ∂��
ℓ(�, �) = −�� � ���

�

���

∂

∂��
[1 − �

��

��(�)
(
���(�) − ����(�)

���(�) + ����(�)
)] 

= �� � ���

�

���

 ��
��

��(�)

∂

∂��
�

���(�) − ����(�)

���(�) + ����(�)
�

∂��

∂��
+

∂

∂��
�

��

��(�)

∂��

∂��
�

���(�) − ����(�)

���(�) + ����(�)
�� 

= ���� � ������

�

���

�
��

��(�)
�1 − �

���(�) − ����(�)

���(�) + ����(�)
�

�

� − �
��

��(�)�
�

���(�) − ����(�)

���(�) + ����(�)
��

− �(�, �) � ��� �1 − �
��

��(�)
�

���(�) − ����(�)

���(�) + ����(�)
 ��

�

���

 

 
The last equality follows from the derivatives: 

∂

∂��
(
���(�) − ����(�)

���(�) + ����(�)
) = 1 − (

���(�) − ����(�)

���(�) + ����(�)
)� 

∂

∂��
�

��

��(�)
=

−1

2
�

��

��(�)�
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 Inverting the observed Information Matrix, consisting of the Hessian evaluated at 

the MLEs gives the estimated variance-covariance matrix of the estimators. Standard errors 

for each parameter estimate are obtained from square roots of the diagonal elements of this 

inverse.  

Confidence intervals of �� are obtained by transforming the endpoints of confidence 

intervals for ��, keeping in mind that if the endpoints have opposite sign, the interval is of 

the form [0,
�

�
max(���

� , ���
� )). 

3.2.3. Estimation algorithms 

 Optimization was performed with the variable metric algorithm published 

independently in 1970 by Broyden, Fletcher, Goldfarb and Shanno (BFGS) [9, 21, 24, 48]. 

This algorithm belongs to the class of quasi-Newton methods, which approximate the 

quadratic Taylor expansion of the target function. If �(�)  is a continuous, twice-

differentiable scalar-valued function with vector input x, which attains its maximum value 

at �� , then the gradient function ∇�(��) = 0. The optimization algorithm performs an 

iterative search for this optimum point by means of the update equation ���� = �� + ��� 

using the second order Taylor series, with ��(��) representing the Hessian matrix of 

second derivatives: 

0 =
�

��
(�(��) + ∇�(��)� + ��(��)��)     

Solving this with respect to p gives �� = −[��(��)]��∇�(��), and the step size � is then 

found by maximizing the one-dimensional function �(�� + ���) . Newton’s method 

calculates these updates by solving a system of linear equations [��(��)]� = −∇�(��), 
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while quasi-Newton methods use an approximation �� ≈ [��(��)] which is updated at 

each iteration to 

���� = �� +
����

�

��
���

−
������

���
�

��
�����

, 

where �� = ∇�(����) − ∇�(��)  and �� = ��� . Implementation of this algorithm is 

available in the function optim() in the stats package of the R Project for Statistical 

Computing.  

 The non-central ��  likelihood function is non-convex and multimodal, due to 

symmetry introduced by the reparametrization as well as the original functional form. In 

this setting, gradient-based optimization may identify a local maximum, rather than the 

desired global maximum. To address this issue, I ran the optim() function 100 times for 

each simulation replicate with initial values for all parameters sampled independently from 

a �������(0,1) distribution. The optimization result with the maximum value of the 

likelihood function is selected as the estimator, to obtain point estimates �� and thus �� =

�

�
���. 

3.2.4. Comparison of Methods 

The primary comparison of interest is between maximum likelihood estimation of 

�, and estimation via stratified LD score regression [20]. The set of annotation categories 

used in this simulation study were the same as those presented in the Finucane et al. paper, 

and published online at https://data.broadinstitute.org/alkesgroup/LDSCORE/ [1].  

These annotations represent dichotomized results from several distinct genomic 

functional elements published as part of the ENCODE project [22]. These genomic 
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elements exons, introns, and untranslated regions of genes, as well as promoter and 

enhancer regions, highly conserved regions, and specific regulatory elements including 

DNaseI hypersensitive sites, transcription factor binding motifs, and others (see Appendix 

B). Corresponding to each of the 24 core categories, an extended category was defined by 

enlarging the boundaries of the annotated regions by 500 base pairs on each side. These 

were by Finucane et al. to capture possible measurement error in the process of 

dichotomizing the annotations [20]. For four of the core categories, derived from raw 

annotations that proved difficult to dichotomize neatly, additional peak annotation 

categories were defined. Finally, a baseline category was included containing all SNPs, for 

a total of � = 53 binary annotation categories considered in the analysis. 

The stratified LD scores for these annotation categories, calculated from 1000 

Genomes Project sample of European ancestry were also downloaded from the LD Score 

Regression project website [1]. As recommended by the developers, only common 

(MAF>0.05) SNPs in the HapMap3 panel were used as LD score observations, though all 

SNPs with annotation were used in calculation of the scores. All simulations presented in 

this chapter are based on chromosome 21 only. 

I also compared performance with the Method of Moments approach implemented 

in GEMMA, which can only analyze disjoint annotation categories [12, 60]. To make this 

possible, I defined disjoint categories based on the K=28 core and peak annotations by 

assigning each SNP to the smallest category in which it is located. The intention of this 

approach is to facilitate estimation of per-SNP heritability in all categories by avoiding any 

disjoint category to contain too few SNPs. 
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3.2.5. Simulation Study 

To assess performance of these methods, I simulated GWAS summary statistics. These 

were based on a synthetic genotype sample of � = 10,000 individuals generated from the 

European ancestry reference panel in the 1000 Genomes Project Phase 1 [14], with 

HAPGEN2 software [50].  

The number of reported SNPs on chromosome 21 was 409,331 of which 129,150 were 

diallelic with annotation available in the dichotomized ENCODE data. The LD scores for 

15,379 HapMap3 variants on chromosome 21 with minor allele frequency at least 0.05 are 

used in LD score regression and maximum likelihood estimation. 

I generated GWAS analysis based on simulated individual level data for a continuous 

trait with heritability of 0.25 on chromosome 21, under two scenarios of category-specific 

heritability enrichment.  In the first scenario, all 28 core and peak categories were assigned 

non-zero values of �� of random magnitude, while the baseline and extended categories 

were not enriched for heritability. I drew 28 values from a uniform (0,1) distribution, and 

linearly rescaled them to attain chromosome-wide heritability of ℎ�
� = 0.25  by the 

relationship  ℎ�
� = ∑ ����

�
��� , where �� is the number of SNPs in annotation category k.  

In the second scenario, only two categories were given true non-zero values of ��. The 

Enhancer_Andersson (���
= 822) and H3K4me1_Trynka methylation (���

= 55,649) 

categories were selected from the extremes of the category sizes to investigate the influence 

of category size on the estimates of heritability enrichment. These categories were assigned 

the same true value of �� = 4.43 × 10�� selected to generate a phenotype with heritability 

of ℎ�
� = 0.25. These two categories are highly overlapping, with 736/822 of the SNPs 
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annotated as Enhancers also included in H3K4me1 marks. These categories were chosen 

to assess performance at both a large annotation category, and a subset with additional 

enrichment. This mimics the conditions of, for example, including all promoter regions in 

one annotation, when a subset of these regions are directly involved in regulating trait-

related processes. In order to implement the GEMMA analysis, which requires non-

overlapping annotations, modified disjoint sets were defined by removing all Enhancer 

SNPs from the H3K4me1 category. 

For each replicate, given a fixed vector of variance components �, I simulated 

GWAS summary statistics by the following procedure: 

1. Define random effect variance ������� = ∑ �����
�
���  for SNP j=1, … , M. 

2. Draw length-M vector � of SNP effects by sampling each ��  independently 

from ��0, ∑ �����
�
��� �distributions with variances defined in step 1. 

3. Draw length-N vector �  of independent subject-level residuals from 

�(0, 0.75), to maintain heritability of ℎ� = 0.25 and unit phenotype variance. 

4. Calculate length-N phenotype vector as � = �� + �. The simulated genotype 

sample of � = 10,000  individuals described in the first paragraph of this 

section was used for all simulation replicates. Because simulated genotypes are 

on the (0, 1, 2) scale, I multiply each �� by a factor of �2���1 − ����
��/�

 to 

obtain per-allele effect size ��. 
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5. Perform the univariate test of association between each SNP j=1, … , M and 

phenotype y. Obtain estimates ��� , standard errors, and �� test statistics �� =

����

���(���)
 using the GWASTools R package [23]. 

6. Estimate �� by 5 methods: 

a. GEMMA method-of-moments with 28 disjoint categories 

b. LD score regression (LDSC) with K=29 strictly defined categories; 

c. LDSC with K=53 extended categories; 

d. LD-MLE with K=29 core categories;  

e. LD-MLE, with K=53 extended categories. 

For each scenario, I simulated 500 random phenotype replicates, and used the GWAS 

results from these replicates as input for the comparison methods. After encountering 

issues with identifiability of the MLE estimator at saddle points of the likelihood 

function, I performed an additional 2,000 replicates to increase the effective sample 

size for the MLE methods. 

3.3. Results 

To assess the sensitivity of maximum likelihood estimation to the initial values used 

by the BFGS algorithm, I plotted the maximized value of the likelihood function across all 

100 repetitions of optimization. Representative results from one of the simulation replicates 

of scenario 1 are shown in Figure 3.1. The maximum likelihood estimates are largely 

independent of the initial values provided to the optimization algorithm, with the symmetry 

in ±�� for the transformed parameters (defined in section 3.2.1) visible for several of the 
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categories. In other cases, such as the Enhancer_Andersson category, all estimates were 

positive, and in other annotations the estimates are indistinguishable from zero. 

For legibility of presentation in describing the point estimates of the extremely 

small quantities ��, I report results for the estimation of � ∗ �� = ��
� (k=1, …, K), with 

� = 10,000 in the simulations. Figure 3.2 (top panel) plots the estimates of � ∗ �� across 

replicates of simulation scenario 1, from the model with only the 28 non-zero categories 

and the base annotation containing all SNPs included. The bias and root mean squared error 

(RMSE) of LDSC and MLE estimators of the 28 non-zero variance components from both 

scenarios are reported in Appendix B.  
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Figure 3.1. Maximum likelihood estimates of all simulated non-zero �� across 100 random initializations of the likelihood maximization algorithm for replicate 
number 7 under simulation scenario 1.  
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Figure 3.2. Distribution plots of estimates, bias, and root mean squared error (RMSE) of estimates of 
� ∗ �� for categories with non-zero simulated parameter value, and base category including all SNPs. 
Compared estimators are method of moments implemented in GEMMA, LD score regression with 29 
annotations (LDSC.29) and with 53 annotations (LDSC.53), and maximum likelihood estimation with 
29 annotations (MLE.29) and 53 annotations (MLE.53). The horizontal black lines in the top panel 
indicate true parameter values. Categories are ordered left-right from least to greatest heritability. 

The bias of the MLE method was similar to that of the LDSC method (Figure 3.2, 

middle panel, and Table B.1. in Appendix B). When the model was correctly specified, 

with only the 28 truly enriched annotations and the base annotation including all SNPs, the 
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average bias of MLE estimates was less than that from LDSC for 16 of the 28 enriched 

categories, but when the redundant extended-500 categories were included in the model 

the average bias of LDSC estimates was lower for 16 of the 28 annotations. The GEMMA 

estimators had higher average bias than the correctly specified MLE in 26 of the 28 

categories. This may be partly due to the fact that I recoded the annotations for GEMMA 

to be non-overlapping, as that method requires. 

Figure 3.2, bottom panel, summarizes the   RMSE of the compared estimators across 

categories. There is a consistent trend of lower bias and RMSE for larger categories with 

more SNPs on the right side of the figure, across all estimation methods. The point 

estimates from MLE are less variable than LD score regression or GEMMA, regardless of 

whether the extraneous extend-500 categories are included in the model. All methods 

showed a trend of greater estimation error (measured as RMSE) for annotation categories 

containing fewer SNPs. Though the bias of MLE estimates is almost entirely positive, this 

asymmetry is compensated by the lower variability. 

3.3.1. Standard Errors and Confidence Intervals 

The confidence intervals derived from permutation-based standard errors provided 

by the GEMMA and LDSC software packages cover the true parameter value at close to 

the nominal level.  

However, the confidence intervals of the maximum likelihood estimates derived 

from the observed Fisher Information matrix ����� = −�(��) show dramatically deflated 

coverage proportions. Upon closer inspection, I found that a substantial proportion of 

simulation replicates had negative eigenvectors of the Fisher Information matrix. This 



 

 

56

suggests that the maximum likelihood estimate ��  is located at a saddle point of the 

likelihood function, rather than a maximum value. Figure 3.3 shows the proportion out of 

2,500 simulation replicates for which each annotation category obtained a negative 

estimate of �����. These results are included in the summary of point estimates in Figure 

3.2, but the parameters corresponding to negative entries in ����� are excluded from the 

assessment of confidence intervals in Figure 3.4 because no standard errors exist from 

which to calculate confidence intervals. 

 

Figure 3.3 Proportion of MLE with negative diagonal elements of �(��), from least to greatest proportion of 
heritability per annotation category. 

Saddle points may be characterized as positions in parameter space with zero 

gradient of the likelihood function, which are neither maxima nor minima. Inspecting the 

gradient function, derived in section 3.2.2, we observe that 
�

���
ℓ(�, �) = 0 whenever 

�� = 0, as a consequence of the transformation ��
� = ��� taken to enforce non-negativity 

of the variance component estimates. Because of symmetry about the axes of the parameter 

space, these saddle points are not isolated but orthogonal hyperplanes through the origin. 
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The asymptotic theory of maximum likelihood estimation is not applicable at these points. 

Therefore, we consider standard errors in those parameter estimates with positive values 

along the diagonal of the Fisher Information matrix. These results are shown in Figure 3.4. 

 

Figure 3.4. Coverage proportions and median width of confidence intervals, for estimates with 
positive diagonal entries in the Fisher Information matrix. 

3.4. Discussion and Conclusions 

I have presented an approach for estimating partitioned heritability of complex 

traits from GWAS summary statistics via a maximum likelihood approach. This approach 

depends upon modeling the distribution of univariate Wald test statistics as a function of 
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stratified LD, which quantifies the extent to which a given SNP tags variation in annotation 

categories under consideration. In contrast to the LD score regression method, I derive the 

joint likelihood of GWAS test statistics for common variants, and maximize this function 

to obtain estimates of the heritability enrichment parameters. 

 Both of these methods rely upon simplifying assumptions about the underlying 

genetic model. In particular, the LD score framework assumes that all true causal variants 

are used for estimation of the LD scores, which are then used as independent variables in 

the regression or MLE analysis. The distribution of summary test statistics also depends 

upon an additive genetic model with no gene-gene or gene-environment interactions. The 

presented likelihood function will be misspecified in the presence of such more complex 

genetic effects. While it would theoretically be possible to model non-additive or 

interaction effects, the computational burden would increase, and the number of possible 

alternative models is so large that selecting interactions, or recessive or dominant effects 

for consideration would require stronger hypotheses about the underlying genetic model. 

I simulated two scenarios: with 29 and 2 enriched functional categories, and 

analyzed each with LD score regression and MLE using both 29 core categories, and 53 

categories with overlapping extended categories added. When the redundant categories 

were included in the model, a higher proportion of the core annotations with non-zero 

simulated enrichment were set to zero at saddle points of the likelihood function. The 

asymptotic normal distribution of the maximum likelihood estimator does not apply in this 

case, so we cannot obtain theoretical standard errors for those parameter estimates that 

were optimized at (or within computational tolerance of) zero.  
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 A practical limitation for the applicability of the MLE approach to partitioning 

heritability lies in the method of optimizing the likelihood function. Reparametrizing to 

obtain non-negative estimates exchanged the problem of maximum likelihood estimates on 

the boundary of the parameter space for the problem of symmetry in the new parameter �. 

In fact, the K-fold symmetry (where K is the number of annotation categories) induced by 

reparametrization causes the model not to be uniquely identifiable, in the sense that 

different parameter values generate the same likelihood function:  ℓ(�; �) = ℓ(�; −�). 

This violates one of the most basic conditions necessary for the consistency of the 

maximum likelihood estimator, because there is not a single true parameter value in the 

transformed space, but as many as 2� equivalent parameter vectors, corresponding to the 

positive and negative square roots of the original parameter �. 

 However, if we consider this property of the proposed estimator to be removing 

from the model those parameters with negative entries in �(��), this may be interpreted as 

an approach for model selection, where confidence intervals are less relevant. 

The burden of optimizing the reparametrized likelihood increases with the number 

of SNPs in the analysis, as it requires calculating the gradient of the joint likelihood at 

every iteration of the algorithm. Extension of this approach to genome-wide summary 

statistics may be facilitated by stochastic optimization algorithms which evaluate the 

gradient at a subsample of observations at each iteration [16, 3, 38]. This is a potential 

direction for further work.
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CHAPTER 4. FEATURE SELECTION FOR TISSUE-SPECIFIC ANNOTATION 

4.1. Introduction 

Biological mechanisms regulating gene expression vary across tissues and cell types. 

For example, histone modifications are epigenetic variation that affect the accessibility of 

DNA for transcription, as well as the recruitment of RNA and other molecules involved in 

gene expression. The exact genomic locations of these histone modifications are known to 

vary across cell types, with evidence suggesting a role in cellular differentiation across 

tissues and organ systems within the body [51]. In Chapter 3 I investigated estimation of 

partitioned heritability by genomic annotations defined by aggregation across multiple 

tissue and cell types. For regulatory elements such as histone modifications that are 

activated in a tissue-specific manner, this aggregation was part of the process of 

dichotomizing the annotation categories published with the stratified LD score regression 

software and used in Chapter 3 [20]. However, this aggregation may obscure regulatory 

mechanisms that affect a trait of interest, but are only observed in certain types of cells. 

Typically, there is little or no prior knowledge about the genetic architecture of the trait 

of interest; so we expect that the true mechanism is unknown. Because the large number of 

functional annotation categories exceeds the capability of existing methods for integrative 

analysis, a principled approach to selecting relevant annotation categories would improve 

the performance of the procedures for the partitioning of heritability described in Chapter 

3, and integrative fine mapping as presented in Chapter 2. Problems where the desired 

outcome is an optimal set of predictor variables for a given outcome are known as feature 

selection, and various methods have been developed to address these problems. 
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In this chapter, I present a novel approach to the selection of functional annotation 

categories for post-GWAS integrative analysis, and compare three specific 

implementations of the general approach. These are each based on criteria defined in terms 

mutual information (MI) and conditional mutual information (CMI), two quantities 

developed from the field of information theory to represent the degree of dependence 

between variables in a non-parametric manner. I will briefly compare several feature 

selection methods that make use of these quantities in various ways. I then compare results 

from the minimum redundancy, maximum relevance (mRMR) and conditional feature 

selection algorithms in tissue-specific histone mark annotations in 100 tissues, classified 

into 10 tissue groups. I apply these methods to selection of these tissue-specific annotations 

in relation to GWAS summary statistics from the Genetic Investigation of ANthropometric 

Traits (GIANT) consortium meta-analysis of BMI in populations of European ancestry 

[37]. These methods aim to facilitate more focused examination of tissue-specific 

annotations to enable a better path to understanding the biology of GWAS results. 

4.2. Methods 

In this chapter, I present the application of three methods based on MI and CMI 

criteria to the problem of selecting tissue-specific histone mark annotations for subsequent 

integration with GWAS results. These methods seek a balance between comprehensive 

inclusion of features that are informative for the outcome, and parsimonious selection of 

non-redundant features. They are the minimum redundancy, maximum relevance (mRMR) 

method of Peng et al [17, 44], the joint mutual information (JMI) method of Yang and 

Moody [55], and the general form of conditional mutual information method (“cond”) 
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described by Brown et al [8]. To my knowledge, these methods have not been used in the 

context of genomic functional annotation or GWAS, though the mRMR and JMI 

approaches have been applied to studies of gene expression for classification of cancer sub-

types [17]. The goal in that example was to identify a subset of genes whose expression 

levels are highly informative of cancer subtype, but which are as independent of each other 

as possible. 

Each of these methods follows a similar strategy for selecting an optimal set of 

features by means of an iterative stepwise process that selects one additional feature at each 

iteration by maximizing a scoring function over the set of features not yet selected. 

Formally, if Y is the outcome of interest, and Ξ = {��, … , ��} is the set of all available 

annotation categories (or, more generally, candidate features), then the first step selects 

�� = {�(�) ∈ Ξ} as the feature that is most informative for the outcome (by the definition 

of MI in section 4.2.1). Then, at each subsequent step of the iteration, given a set of selected 

features �� = {�(�), �(�), … , �(�)} , select the next feature �(���) = �� ∈ Ξ\��  that 

maximizes the scoring function �∗(��, ��, �). The specific form of the scoring functions is 

what distinguishes the three methods. All three scoring functions are defined in terms of 

the MI and CMI between the outcome, the previously selected features, and the remaining 

features which are considered as candidates for selection.  

4.2.1. Definitions 

Mutual information (MI) is a measure of dependence between two random 

variables, defined from the joint and marginal probability densities of two variables (which 

may be scalar or vector-valued) as:  
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�(�; �) = � � �(�, �)log � 
�(�, �)

�(�)�(�)
 �

��

���� 

This quantity will be zero when X and Y are independent, so that their joint and marginal 

pdfs will be related by the equation �(�, �) = �(�)�(�). The MI is more general than a 

correlation coefficient, requiring no distributional assumptions about either variable or the 

form of their relationship, as long as the joint and marginal distributions are known or 

estimated empirically. The MI may be interpreted as an answer to the question: “how much 

does knowing the value of X reduce the uncertainty regarding Y?” 

The conditional MI (CMI), also useful for feature selection using iterative search 

procedures, is defined as  

�(��; ��|�) = � �(�)
�

� � �(��, ��|�)log � 
�(��, ��|�)

�(��|�)�(��|�)
 �

����

�������� 

This quantity answers the question: “If we already know the value of Y, how much does 

knowing �� reduce uncertainty regarding ��?” 

4.2.2. Feature Scoring Functions 

The score functions for each of the three methods I compared in this project are as 

follows, with |��| representing the number of features in the previously selected set: 

1. The Minimum Redundancy Maximum Relevance (mRMR) criterion [44] was 

developed as a greedy, iterative algorithm to optimize the Max-Dependency criterion 

over all subsets � of the set of candidate features: 

�(�, �) = �({��, … , ��}; �) 
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Peng et al show that the greatest possible increase at each iteration, conditional on the 

previously selected set, is obtained by maximizing the scoring function: 

�����(��) = �(��; �) −
1

|��|
� �(��; ��)

�∈��

 

The first term, �(��; �) represents the relevance of feature �� for the outcome �, and 

the penalty term 
�

|��|
∑ �(��; ��)�∈��

 represents the redundancy of  ��  given the 

previously selected features �� ∈ �� . This penalty term will be minimized for the 

candidate feature that is most independent of those already selected. 

2. The Joint Mutual Information (JMI) criterion is based on the intuition that the desired 

property of a feature set is that all selected features are collectively predictive of the 

outcome [55]. To quantify this property, the definition of the scoring function is:  

����(��) = � ��(��, ��); ��

�∈��

 

By the identity ��(�, �); �� = �(�; � |�) + (�; �) [5] this is equivalent to 

����(��) = �(��; �) −
1

|��|
� �����; ��� − �(��; ��|�)�

�∈��

 

The additional term  �(��; ��|�) is interpreted as measuring the extent to which the 

information �� contains regarding � is complementary to the information contained 

in the previously selected features. 

3. The conditional mutual information criterion (“cond”, not to be confused with the 

conditional mutual information statistic “CMI”) allows for higher-order interactions. 

�����(��) = �(��; �) − �(��; ��) + �(��; ��|�) 
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The last 2 terms are multi-dimensional integrals, which are more computationally 

demanding. These also depend on the full previously selected set ��, and therefore 

must be computed at each step of the iterative selection process. In theory, this criterion 

considers the possibility of higher-order interactions between the features, as would 

occur with pairwise mutually independent variables that are not jointly independent. 

 

4.2.3. Estimation Algorithm 

The definition of MI as a function of the joint and marginal densities makes no 

distributional assumptions on the outcome or feature variables. However, this generality 

contributes to the challenge of estimation. For multivariate normal distributions, MI is an 

exact function of the covariance.  

In this project, I use a nonparametric estimator, which approximates the empirical 

probability density in a neighborhood around each observed point as a function of the 

distance to its kth-nearest neighbor, given a well-defined metric on the space of 

(��, … , ��, �) [35]. Both the order k and the choice of metric norm on the joint feature-

outcome space are tuning parameters of the algorithm. This method builds upon the 

estimation of the Shannon entropy of a (possibly multidimensional) random variable X, 

defined as �(�) = − ∫ �(�)log �(�)��
�

 [49]. The kth-nearest neighbor algorithm is 

based on the probability distribution ��(�) of the distance � from a given data point to its 

kth-nearest neighbor. This is calculated as 

��(�)�� =  
(� − 1)!

(� − 1)! (� − � − 1)!

���(�)

��
�� × ��

��� × (1 − ��)
����� 



 

 

66

Here, ��(�) is the probability mass of a ball of radius � centered at the ��� data point. 

Integrating the density above yields 

�(log ��) = � log �� (�)��(�)��
�

�

= �(�) − �(�) 

with �(�) =
�

��
log (Γ(�))  representing the digamma function. Then, by assuming 

constant probability density of X within the � ball, so that ��(�) ≈ �����(��) where d 

is the dimensionality of X, and �� is the volume of the ball given the choice of metric 

used, and combining these equations to obtain 

��(�) = �(�) − �(�) +
�

�
� log �(�)

�

���

 

Extending this concept to the estimation of mutual information hinges upon the 

identity �(�, �) = �(�) + �(�) − �(�, �). However, in order to avoid accumulation 

of bias due to using different length scales � for each of the three components of this 

sum, the marginal entropy estimations are conditioned upon the distance to the �th-

nearest neighbor in the complete (�, �)  space. Specifically, the quantity ��(�)  is 

defined as the number of points ��  whose distance from ��  is less than �(�)/2 , 

regardless of their location in the � dimensions, and ��(�) defined analogously. Then 

the MI estimate is given by 

����(�, �) = �(�) + �(�) −
1

�
���(��(�) + 1) + �(��(�) + 1)�

�

���

 

This algorithm is implemented in the Non-parametric Entropy Estimation Tooolbox 

(NPEET) Python library [52]. When the number of observations (here, SNPs) is large, 
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the computational bottleneck of these algorithms is identifying nearest neighbors in the 

feature space. In this situation, the software documentation recommends a subsampling 

strategy of estimating MI as the average of estimates from small random samples. I 

performed estimation within each chromosome separately, and then calculated a 

weighted average of these estimates with weights given by the number of SNPs per 

chromosome.  

4.2.4. Materials 

To assess relative performance of the feature selection methods described in section 

4.2.2, I analyzed the simulated GWAS summary statistics described in section 3.2.6 of the 

previous chapter. The independent variables of the simulation are the stratified LD scores 

for 53 non-tissue-specific functional annotations analyzed in the paper on partitioning 

heritability with LD score regression, and available for download from the investigators’ 

website [20, 1]. To briefly summarize the simulations, I simulated a sample of GWAS 

genotypes on chromosome 19 from the 1000 Genomes Project reference panel of European 

ancestry using HAPGEN2 software [14, 50]. Individual SNP effects were drawn from 

mean-zero Gaussian random effect distributions with variance dependent upon the SNP-

level functional annotation and specified parameter values fixed for each simulation 

scenario. Both scenarios are specified so that there is total trait heritability of ℎ� = 0.25 

on chromosome 21. In the first scenario, heritability is enriched in 28 annotation categories, 

the sizes and simulated heritability of which are reported in Table 4.2. An additional 24 

categories are defined with 500bp extension beyond 24 of the truly enriched categories, to 

examine the performance of the selection method when features have large degree of 
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overlap. Four of the annotations, encoding DNAse hypersensitive sites, H1K4me1, 

H1K5me3 and H3K9ac1 histone mark data included annotations of even more strictly 

defined “peaks”. These were considered as distinct annotations with additional heritability 

enrichment on top of that of the non-peak annotations, however these peak annotations do 

not have corresponding “extend.500” annotations. In the second scenario, only two features 

are truly enriched. One of the enriched categories (H3K4me1_Trynka) contains 55,649 

SNPs out of 129,155 with observed annotation. The other truly enriched category 

(Enhancer_Andersson) is much smaller with only 822 SNPs, and substantial overlap with 

the larger, enriched H3K4me1_Trynka annotation. 

The tissue-specific histone marks used in the real data analysis of BMI contain 

dichotomized peaks from assays measuring H3K4me1 and H3K4me3 methylation, and 

H3K9ac and H3K27ac acetylation in 100 diverse tissue samples, though not all histone 

marks are observed in all tissues. These data were generated as part of the Roadmap 

Epigenomics project [15], and post-processed by Trynka et al [51] and Hnisz et al [27]. LD 

scores for each of these annotations in populations of European ancestry were calculated 

by Finucane et al [20]. These category-specific LD scores are the features of interest. The 

tissues are organized into ten groups corresponding to functional organ systems as adrenal, 

cardiovascular, central nervous system (CNS), bone, gastrointestinal (GI), immune, 

kidney, liver, muscle, and other. The number of tissues and specific annotations in each 

group are shown in Table 4.1 and a list of the specific tissues and histone marks are located 

in Appendix C. Genome-wide summary statistics of SNP-BMI association are the 

dependent variable in the real data analysis. These are obtained from the GIANT 
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consortium meta-analysis results in the stratum of European ancestry only [37]. A total of 

968,740 SNPs have both annotation and GWAS statistics available. 

Group Adrenal Cardio CNS Bone GI 

Tissues 3 7 10 3 16 

Histone Marks 10 15 34 4 44 

Group Immune Kidney Liver Muscle Other 

Tissues 41 2 3 11 4 

Histone Marks 67 5 6 10 25 

Table 4.1. Number of tissues and tissue-specific histone mark annotations per group. 

4.3. Results 

4.3.1. Feature Selection in Simulated Data 

 The application of these methods to simulated data considers two distinct questions 

regarding the performance for selecting sets of functional annotations with enriched 

heritability for a trait of interest. First, to see how well each of the methods was able to 

distinguish between annotations with a high degree of overlap, I compared the selection 

probabilities for the strict core annotation categories to their corresponding extended 

annotations. Second, to assess the impact of the magnitude of heritability enrichment, I 

compared the simulated enrichment coefficients to the order of feature selection in the 

stepwise procedure. 

Feature selection results in the simulated data are reported in Table 4.2. The 

proportion of simulated replicates in which each feature was selected are shown for the 

mRMR and JMI selection criteria. Neither selection criterion was able to distinguish 

between the signal in the truly enriched, narrowly defined core annotation categories and 
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the corresponding extended categories. In simulation scenario 1, I considered 24 pairs of 

overlapping strict and extended annotation categories, eleven of which (45.8%) had higher 

selection proportion for the extended category than the strict one. When I examined the 

effect of simulated trait heritability within each annotation, counting the extended 

categories as tagging the heritability in their corresponding restricted annotation, it became 

apparent that categories responsible for a greater proportion of (simulated) trait heritability 

were selected more often, regardless of whether they contained the unnecessary extension 

regions. This may be seen in Table 4.2, where the JMI selection rate of the extended 

annotations, reported in the rightmost column, is higher in rows where the strict annotation 

it contains has higher simulated total heritability (ℎ�
�, third column).  

   Strict annotations Extended annotations 

 �� ℎ�
�  # SNPs 

�������  
mRMR 

�������  
JMI # SNPs 

������� 
mRMR 

������� 
JMI 

Scenario 1                 

Intron_UCSC 8.3E-07 0.0399 47763 0.006 0.869 49052 0.006 0.976 

Repressed_Hoffman 5.3E-07 0.0317 59924 0.002 1 93092 0.008 1 

H3K27ac_Hnisz 5.5E-07 0.0302 55210 0.143 1 59040 0.217 1 

Transcribed_Hoffman 6.6E-07 0.0262 39649 0.002 1 92792 0.033 1 

SuperEnhancer_Hnisz 7.7E-07 0.0205 26690 0 0.181 27124 0 0.334 

H3K4me1_peaks_Trn 8.1E-07 0.0183 22418 0 0.002 -- -- -- 

DHS_Trynka 7.3E-07 0.0161 22099 0 0.002 64211 0.017 1 

H3K9ac_Trynka 8.2E-07 0.0145 17766 0 0 31900 0.064 0.785 

H3K27ac_PGC2 3.2E-07 0.0117 37171 0.01 0.874 46211 0.041 1 

H3K4me1_Trynka 1.0E-07 0.0057 55649 0.105 1 77594 0.194 1 

FetalDHS_Trynka 4.8E-07 0.0055 11513 0 0 37854 0 0.838 

H3K4me3_Trynka 2.9E-07 0.0053 18168 0 0 34945 0.002 0.867 

Enhancer_Hoffman 4.2E-07 0.0036 8623 0 0 20664 0 0.002 

H3K4me3_peaks_Trn 6.1E-07 0.0035 5711 0 0 -- -- -- 

Promoter_UCSC 6.7E-07 0.0033 4849 0 0 6000 0 0 

Conserved_Lindblad 7.3E-07 0.0026 3568 0 0 46664 0.002 1 

TFBS_ENCODE 1.4E-07 0.0024 17935 0 0 44867 0.004 0.993 

DGF_ENCODE 1.2E-07 0.0023 18790 0 0 69172 0.058 1 

TSS_Hoffman 6.4E-07 0.0015 2336 0 0 4509 0 0 
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H3K9ac_peaks_Trynk 2.1E-07 0.0011 5277 0 0 -- -- -- 

DHS_peaks_Trynka 7.0E-08 0.001 14724 0 0 -- -- -- 

CTCF_Hoffman 3.1E-07 0.0009 2910 0 0 8789 0 0 

WeakEnhancer_Hoff 2.8E-07 0.0007 2603 0 0 10578 0 0 

UTR_5_UCSC 5.4E-07 0.0005 829 0 0 4175 0 0 

Coding_UCSC 1.6E-07 0.0003 1938 0 0 8630 0 0 

PromoterFlanking_Hof 2.5E-07 0.0002 856 0 0 3772 0 0 

Enhancer_Andersson 2.2E-07 0.0002 822 0 0 3352 0 0 

UTR_3_UCSC 1.0E-07 0.0001 1419 0 0 3740 0 0 

base 0 0 129150 0.085 1 -- -- -- 

Scenario 2                 

Enhancer_Andersson1 4.4E-06 0.0036 822 0 0 3352 0 0 

H3K4me1_Trynka1 4.4E-06 0.2464 55649 0.174 1 77594 0.171 1 
Table 4.2. Feature selection results for the annotation categories with non-zero simulated enrichment in 
simulations scenarios 1 and 2. In scenario 1, all strict features are enriched with varying enrichment coefficients 
�� while the extended annotations have no additional enrichment (�� = �), but they have effective enrichment 
due to tagging of the strict annotation as a subset. Four annotations, defined as peaks of the DHS, H3K4me1, 
H3K4me3, and H3K9ac reads, do not have corresponding extended categories. Selection rates ������� are 
calculated out of 452 simulated replicates of scenario 1 and 484 replicates of scenario 2. 

The extended annotation was selected in substantially more replicates than the strict 

annotation in the DHS_Trynka, H3K4me3_Trynka, Conserved_LindbladToh, and 

DGF_ENCODE categories. In all of these, the number of SNPs in the extended category 

was more than double the number in the strict category, suggesting the possibility of 

substantial overlap with other enriched annotations. 

To address the second question regarding the impact of the magnitude of 

heritability enrichment per category, Figure 4.1 shows the mean selection ranking (i.e. 

order in which it was selected) of each annotation category across 500 simulation replicates 

plotted against the true simulated heritability per category. The Y axis of these plots shows 

the mean selection rank, with annotations selected earlier appearing towards the top. The 

upwards diagonal trend visible in the plots for JMI and cond indicates that these methods 

select the most strongly enriched annotations early in their stepwise process, while the plot 

for mRMR shows a substantially weaker relationship. 
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Figure 4.1. Selection rates of 53 strict and extended features based on 500 replicates of simulation scenario 1. 
Tagged heritability assigns the same true enrichment to the extended categories as the strict core categories 
inside of them. 

 I assessed the specificity, or true negative rate of the selection criteria from the 

results of the simulation scenario 2 analysis. The annotations defined by extending the 

truly enriched categories were excluded from calculation of the true negative rate. The 

mRMR criterion led to specificity of 98.7%, while the specificity of the JMI criterion was 

63.3%. The JMI method selected more features than the mRMR method, as expected 

from the fact that the penalty term is reduced by a factor of ����; ����) relative to the 

mRMR scoring function. 

 For the purpose of selecting features for inclusion in further statistical modeling, 

it is more important to include all relevant features than to avoid selecting uninformative 

features. The JMI criterion shows similar performance to the cond method, and is much 

more computationally efficient. Of these three methods, JMI is the most suitable for this 

reason. 
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4.3.2. Distribution of Mutual Information for Tissue-Specific Histone Features 

 The distribution of MI and CMI in the tissue-specific histone mark annotation and 

real data BMI summary statistics showed distinct structure due to the correlations in the 

underlying experiments, where the same histone marks were measured in many related 

tissue types. Figure 4.2 shows the relative magnitude of �(��; �), ����; ���, �(��; ��|�) 

for histone marks in the 34 histone marks annotations of the central nervous system (CNS) 

tissue group. The mutual information with the outcome, �(��; �), is shown in the top row 

and right-most column of the upper heatmap panel. The magnitude of �(��; �)  is 

substantially smaller than  ����; ���, represented by the darker-colored center of the plot. 

The CMI shows a similar pattern as the MI, with smaller magnitude. The block diagonal 

structure visible in both plots suggests that histone marks of the same type across different 

tissues have higher similarity than marks of different types in the same tissue. 
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Figure 4.2. Heatmaps of pairwise Mutual Information �(��; ��) and Conditional Mutual Information 

�(��; ��|�) among tissue-specific annotations in the central nervous system group sorted by type of histone 

mark. MI between annotations and Y (GWAS �� statistics for BMI) are shown in the top row and rightmost 
column of the upper panel. 
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4.3.3. Comparison of Feature Selection Criteria 

Real histone mark data was analyzed by tissue group, as described in Table 4.1. 

Figure 4.3 shows the sequence of selection scores returned by the mRMR, JMI, and 

conditional scoring criteria. These plots show the cumulative sum of the maximized 

selection scoring functions defined in section 4.2.2. The X axis indicates the number of 

selected features at each step of the iterative search, and as no termination rule is defined, 

a complete ordering of the candidate features is returned. 

 

Figure 4.3. Comparison of feature selection criteria in real data from tissue-specific histone marks and BMI 
summary statistics. 
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 In every group, all three criteria selected only the baseline annotation, containing 

all SNPs. If we consider that the baseline annotation will represent all residual heritability 

not attributable to any of these categories, it would make sense for this to be selected first. 

The downward slope of all lines in Figure 4.3 indicates that subsequent features considered 

by the MI selection criteria is due to negative values of the selection scoring functions, 

indicating that the penalty for redundancy with the previously selected features was greater 

than the positive mutual information between the annotation-stratified LD scores and the 

outcome GWAS summary statistics. The conditional method exceeded the available 

computational resources for the groups containing more than 30 features, so only mRMR 

and JMI are shown for these (bottom row of Figure 4.3). 

4.4. Discussion and Conclusions 

Based on the analysis of simulated GWAS data, we found the JMI feature selection 

method to be preferable among the three methods compared. None of the methods was 

capable of distinguishing the truly enriched core annotations from the corresponding 

extended annotations containing the same enriched regions with the addition of a 

surrounding buffer without additional enrichment. However, both the JMI and cond 

methods showed a pattern of selecting the annotation categories with strongest enrichment 

early in the stepwise selection process. Of these, JMI is substantially more computationally 

efficient, because it only depends upon pairwise MI and CMI statistics, whereas the cond 

criterion requires calculation of the MI and CMI between candidate features and the vector 

of all previously selected features at each iteration. 
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In all groups of the real data set of tissue specific histone modifications, all criteria 

were negative for all features after the first was selected. This result may be interpreted as 

indicating that these tissue-specific annotation features are more strongly related to each 

other than they are to the outcome GWAS statistics. This could be a consequence of histone 

marks in the same genomic locations across tissue types, combined with weak enrichment 

of heritability within the sets of SNPs defined by these annotations. One potential approach 

to addressing this issue would be to down-weight the penalty terms in the scoring function, 

essentially allowing more redundancy in the selected feature set. However, it is unclear 

how this weighting parameter should be estimated from the data. Alternatively, if there is 

an a priori reason to select a certain number of features, the results obtained by MI-based 

feature selection may be useful in ranking the features in order to select the most salient 

for statistical modeling. Recoding or compressing these annotations to isolate the 

independent signatures of each one may be a promising direction of future work. 

Despite the difficulty in determining a useful stopping rule for the stepwise selection 

procedure in the presence of high overlap among categories, MI-based approaches to 

feature selection provide a promising avenue for researchers overwhelmed by the 

numerous tissue-specific functional annotations available. When the purpose of 

annotation feature selection is to choose annotations for inclusion in a method such as 

PAINTOR with a fixed upper bound on the number of annotations that can be included, 

this approach provides ranked ordering of the available annotations in terms of the 

strength of evidence for their relevance to the trait of interest.
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CHAPTER 5. DISCUSSION 

This thesis examines three approaches to translate the results of genome-wide 

association studies into practicably applicable insights into the biological processes 

underlying complex traits. In all of these approaches, genomic functional annotation 

provides an additional source of information about the associated genetic variants. 

Functional annotation classifies SNPs according to their locations in protein coding genes 

and known regulatory elements, including tissue-specific regulatory elements that are 

active only in certain cell types, providing opportunities and challenges for the aggregation, 

attribution, and characterization of genetic effects and trait heritability. Each project 

presented in this thesis addresses a specific question in genetic epidemiology by 

synthesizing data from GWAS and functional annotation. The fine mapping project in 

Chapter 2 regionally investigates genetic effects in terms of identifying individual causal 

variants with plausible functionality, while the problems of heritability enrichment in 

Chapters 3 and 4 evaluate genetic effects on the level of annotated SNP sets. In Chapter 3, 

I proposed a novel method to estimate the coefficients of enrichment for genomic 

annotation, based on the derived distribution of GWAS summary statistics as a function of 

annotation and LD structure. In Chapter 4, I explore approaches to select relevant 

annotations in a model-free, non-parametric framework based on mutual information 

statistics. These projects provide new tools and methods for researchers to hone in on those 

genetic variants that are most likely functional for the phenotype of interest. 

 In this summary chapter, I discuss a few themes that recur in the three projects, how 

each project demonstrates those themes, and possible directions for future work. One 
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commonality is that all three projects use SNP-trait association statistics as the observed 

outcome, and SNP-level annotation and LD structure as predictors for the estimation of 

true genetic effects. The derivation in Chapter 2 of the AnnoRE fine mapping estimator as 

best linear unbiased predictor for SNP effects shows that the estimate constructed from 

individual-level genotype and phenotype data may be approximated by GWAS summary 

statistics and LD structure from an ancestry-matched reference panel. In the LD score 

regression model framework of Chapters 3 and 4, the units of observation are SNPs, rather 

than people. This is advantageous for practical reasons, to maximize sample size by 

facilitating the application of these methods in consortia of study samples seeking to pool 

their results. The logistical requirements of both informed consent and privacy protection 

for the study participants, as well as the increased computational burden of storing and 

analyzing all individuals together has led to an interest in statistical methods that use 

GWAS summary statistics as input. A second theme in the three projects is the trade-off 

between investigating focused hypotheses as opposed to a more exploratory approach. I 

have generally assumed that the investigator does not have specific biological question, 

such as “are regulatory regions in the Amygdala enriched for association with BMI?” But 

rather, I have supposed that there is no a priori evidence to prefer some specific subset of 

the available annotations. Both of these themes contribute to another—issues of 

computational complexity arising from the scale of these data. Even in the simulation 

studies, where I considered smaller sample regions rather than genome-wide data, the 

importance of considering algorithmic efficiency was apparent. For example, a major 

advantage of the AnnoRE fine mapping method over the multi-level modeling approach of 
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PAINTOR was in avoiding the issues of algorithmic convergence in PAINTOR’s EM 

algorithm, by estimating the annotation-level enrichment separately from genome-wide 

level data. In Chapter 3, maximum likelihood estimation in the model of the complete 

distribution of GWAS �� statistics of association introduced, rather than simply modeling 

their mean values as in stratified LD score regression. To the extent that “fitting” a model 

entails optimizing a function of some sort, the tractability of this optimization problem may 

be far from trivial in cases where classical methods break down or require strong 

distributional assumptions to be applicable. In many cases, these computational challenges 

have been studied in the computer science or physics literature, each of which has their 

own standards and conventions for acceptable methodology, which differ from those in 

statistics or epidemiology. Throughout this thesis, I attempt to describe the high-level 

strategy of the algorithms used in each project, but in some cases alternative estimation 

methods may be better suited to the functions of interest. Because algorithmic development 

is beyond the scope of these projects, I only consider algorithms with up-to-date 

implementations in R or Python. 

 The fine mapping project in Chapter 2 addresses these issues by using a highly 

specific model, conditional on estimates of the heritability enrichment in each annotation 

category. In the simulation analysis, I supposed that the annotation-level heritability 

enrichment coefficients were equal to the true parameter values used in simulation, while 

for the real data analysis I used heritability enrichment calculated with the LD score 

regression software from the GIANT consortium GWAS summary statistics for BMI in 

European ancestry populations. In light of the results of Chapter 3, which showed wide 
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variation in the estimates of enriched heritability between simulation replicates with the 

same true parameter scenarios, incorporating the standard errors of the estimates of 

heritability enrichment into the fine mapping model may be a promising direction for future 

work. By treating these heritability estimates as fixed and known values, I was able to 

obtain closed form expressions for the conditional causal SNP effects, and avoided the 

necessity of setting an upper bound on the number of causal SNPs per locus. Because the 

enrichment coefficients are estimated separately from the fine mapping model, further 

research may be done to evaluate the robustness of the choice of predicted causal variants 

to varying estimates of these parameters. 

The maximum likelihood approach to partitioned heritability estimation presented 

in Chapter 3 aimed to improve the heritability estimates used to prioritize SNPs in the fine 

mapping model by building upon the LD score regression method [20]. I derived the 

likelihood of the non-central �� GWAS statistics of association as a function of stratified 

LD scores and reparametrized enrichment coefficients ��
� = ���, to ensure non-negativity 

of the estimated variance components. This likelihood function proved challenging to 

optimize, as the symmetry in ±�� induced non-convexity of the target function and saddle 

points along each hypersurface with �� = 0. Maxima of the likelihood function on those 

surfaces may be interpreted as removing the corresponding annotation category from the 

model, but the asymptotic theory of maximum likelihood estimation is not applicable for 

estimation of standard errors and hypothesis testing at those estimates. In retrospect, if this 

relatively simple trick for estimating variance components was easy and gave good results, 

it would be common practice by now. Other transformation that limit estimates to the 
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acceptable parameter space need to be considered in future research. Additionally, scaling 

up this method from the simulation study on chromosome 21 presented in Chapter 3 to 

genome-wide applications would require rethinking the algorithmic implementation for 

maximizing the likelihood function. Stochastic gradient descent methods are a promising 

direction for further investigation, as this class of algorithms is well suited to high-

dimensional non-convex optimization problems [16, 3, 38]. Alternative approaches to 

reparametrizing the model of observed GWAS statistics, or estimation of standard errors 

with a block jackknife approach such as that used in LDSC and GEMMA [10, 60] are 

possible solutions to the problems encountered with obtaining standard errors from the 

Fisher Information matrix under the asymptotic theory of maximum likelihood estimation. 

The mutual information feature selection project in Chapter 4 aims to identify sets 

of tissue-specific functional annotations most relevant to a given trait of interest, using a 

model-free non-parametric framework to reduce the dependence upon distributional 

assumptions. The formulation of the problem is related to Chapter 3 where the independent 

variables are stratified LD scores for functional annotation and the outcome is GWAS 

marginal �� statistics, with the distinct goal of identifying an optimal set of annotations for 

inclusion in more stringently specified parametric models such as those in Chapters 2 and 

3. Brown, Pocock, Zhou and Luján decompose the conditional log likelihood as a sum of 

terms representing the model goodness of fit, the selection of relevant features for 

modeling, and the residual entropy of the outcome unrelated to the available features [8]. 

This decomposition suggests an interpretation of model goodness of fit as composed of 

three distinct components representing the choice of predictive variables, the functional 
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form of model specification, and the true residual error not attributable to the observed 

candidate predictors. In particular, if an outcome y is related to the available features � 

with a true generative model given by the conditional probability density �(�|�). If � is a 

binary vector representing selection of a subset �� of the available features, then ������� 

represents the distribution of y given that subset, and ������, �� is a specific model relating 

these selected features to the outcome of interest. With these definitions, the conditional 

log likelihood can be decomposed as a finite sample estimator 

−ℓ(�, �|�, �) ≈ ��� ����
�������

������, ��
� + ��� ����

�(�|�)

�������
� − ���{�(�|�)} 

The middle term in this decomposition, ��� ����
������

�������
�  represents the divergence 

between the conditional distributions of y given the selected set of features, and given all 

features. This term is minimized by the selection of an optimal feature set, as investigated 

in Chapter 4, whereas the first term represents the estimation of a model relating the 

features to the outcome, as in Chapter 3. These may be considered as distinct components 

of statistical modeling, because the estimation of model parameters is performed 

conditional on a choice of included features, and the question of selecting an optimal 

feature set may be considered independent of a given model specification. Mutual 

information approaches have been successfully applied to feature selection problems in 

gene expression studies, and other situations where the number of available predictors 

would overwhelm the capability of a given model. When applied to the question of 

selecting tissue specific functional annotations in Chapter 4, the high degree of overlap 
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between tissue-specific histone mark annotations, relative to the modest enrichment effects 

of association, led the penalties for redundancy among selected features to outweigh the 

improvement to the explained variability of the outcome, and no tissue-specific features 

were selected for relevance to BMI. However, the results of the MI selection algorithm did 

give an ordering of the candidate features in terms of strength of evidence of relevance to 

the trait. If we are willing to accept redundancy due to overlapping categories, this approach 

can estimate an optimal set of annotations when the investigator specifies the desired 

number of annotations. 

 These themes of estimation from marginal summary statistics, trade-offs of model 

complexity or generality, and computational challenges are quite general and certainly not 

unique to genetic association studies. Yet, any researcher attempting to integrate functional 

annotation into the interpretation of GWAS must in some way confront them. The methods 

I have proposed offer solutions to specific questions of causal SNP identification in fine 

mapping, estimation of partitioned heritability enrichment coefficients, and selection of 

relevant annotation features. These projects have been presented in the order in which they 

were performed, but an applied analysis of GWAS results would more naturally proceed 

in the opposite order: first selecting relevant annotations from the set of all available 

candidates, then estimating the enrichment coefficients from genome-wide summary 

statistics, and finally performing fine mapping in loci with genome-wide significant trait 

associations. This series of analysis steps would identify strong candidate SNPs for follow-

up validation in vitro or model organism studies. Well validated causal variants explain the 

observed signal in significant GWAS loci in a way that is both more biologically 
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interpretable in terms of potential mechanism of action (e.g. disruption of a transcription 

factor binding site) and more clinically relevant as for inclusion in genetic risk score 

models. Integrating functional annotation with GWAS summary statistics advances our 

understanding of the genetic foundations of human complex traits. 
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APPENDIX A. Derivation of Best Linear Unbiased Predictor for Random Effects 

Suppose we have specified a linear random effects model for a mean-centered 

outcome y and M predictors observed in N subjects, where X is the � × � design matrix: 

� = �� + � , � ∼ ���0, �(��)�  , � ∼ ���0, �(��)� 

The quantities ��, ��  represent hyperparameters for the residual covariance, and the 

random effects covariance. If the study sample is independent and identically distributed, 

then �� =  ��
� and � = ��

���, but if there is a known correlation structure in the sample, 

for example in a GWAS of related individuals, then the covariance matrix �  may be 

specified accordingly. For the fine mapping model defined in Chapter 2, I let the random 

effects covariance � be diagonal, with unequal entries defined by the estimated heritability 

enrichment coefficients (see Section 2.2.1). Conditional on these covariance parameters, 

the joint probability density of �, � may be written as: 

�(�, �|�, �, �) = �(�|�, �)�(�|�) 

=
1

�2�|�|
exp �

−1

2
 (� − ��)����(� − ��)�

1

�2�|�|
exp �

−1

2
 ������� 

We maximize this function with respect to  �  by considering its logarithm: 

log �(�, �|�, �, �) = � −
1

2
[log(|�|) + log(|�|) + (� − ��)����(� − ��) + ������] 

To find the maximizing value, set the derivative with respect to � equal to zero: 

0 = ∇� log �(�, �|�, �, �) = ���−1� −
1

2
���−1� −

1

2
����−1��

�
+ �−1� 

Solving this expression yields:  

��|�, �, �, � = [������ + ���]��������
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APPENDIX B. Partitioned Heritability Estimates 

 category 
size 

True  MLE LDSC MLE LDSC 
disjoint 
size 

GEMMA 
 

Categories in model  K=53 K=53 K=29 K=29  K=28 

Scenario 1                 

Enhancer_Andersson 822 2.15E-07 
12.80 -11.43 17.85 

-
17.32 

822 19.59 

UTR_5_UCSC 829 5.43E-07 4.24 -1.72 5.88 -1.35 829 7.23 

PromoterFlanking 856 2.45E-07 4.14 -6.69 6.69 -11.2 813 34.32 

UTR_3_UCSC 1419 1.02E-07 24.55 6.69 26.75 12.05 1344 30.33 

Coding 1938 1.64E-07 3.76 6.37 6.08 -0.06 705 51.35 

TSS 2336 6.40E-07 1.28 0.64 2.04 2.11 1801 9.23 

WeakEnhancer 2603 2.79E-07 6.75 3.75 11.96 3.61 2165 12.67 

CTCF 2910 3.12E-07 0.92 -0.99 2.93 -2.59 2540 11.12 

Conserved 3568 7.26E-07 2.06 -2.27 3.24 -2.81 2574 -0.18 

Promoter_UCSC 4849 6.70E-07 -0.69 -0.36 -0.25 0.39 2940 1.18 

H3K9ac_peaks 5277 2.13E-07 -0.09 -1.99 -0.04 -4.45 2799 36.29 

H3K4me3_peaks 5711 6.13E-07 -0.07 1.77 0.21 2.37 2193 3.82 

Enhancer_Hoffman 8623 4.22E-07 0.92 1.07 1.89 0.85 3161 7.85 

FetalDHS 11513 4.80E-07 -0.11 2.99 0.59 2.31 4837 5.33 

DHS_peaks 14724 6.98E-08 0.46 -25.07 1.10 -26.5 3389 17.67 

H3K9ac 17766 8.16E-07 -0.95 0.53 -0.92 0.75 4948 3.1 

TFBS_ENCODE 17935 1.36E-07 -0.01 -2.59 0.62 -1.74 4579 8.87 

H3K4me3 18168 2.92E-07 -0.53 -0.43 -0.32 -2.87 2741 10.3 

DGF_ENCODE 18790 1.23E-07 -0.47 10.79 0.30 8.46 3624 5.05 

DHS_Trynka 22099 7.30E-07 -0.86 -0.08 -0.61 1.21 1447 6.56 

H3K4me1_peaks 22418 8.15E-07 -0.89 -0.16 -0.79 -0.1 4163 -1.89 

SuperEnhancer 26690 7.68E-07 -0.38 -1.40 0.07 -0.04 7493 3.26 

H3K27ac_PGC2 37171 3.15E-07 -0.93 0.25 -0.81 -1.84 6285 2.44 

Transcribed 39649 6.62E-07 -0.90 -0.01 -0.81 -0.67 15326 0.49 

Intron_UCSC 47763 8.35E-07 -0.43 2.84 -0.23 -0.06 9578 0.83 

H3K27ac_Hnisz 55210 5.48E-07 -0.84 0.83 -0.73 0.26 3779 -0.95 

H3K4me1 55649 1.02E-07 -0.99 -0.52 -0.91 0.59 2345 64.92 

Repressed 59924 5.29E-07 -0.33 -0.26 0.51 0.23 26444 -0.55 

All 129150 0     NA  

Scenario 2                 

Enhancer_Andersson 822 4.43E-06 -0.27 -0.55 0.11 -0.77 822 1.31 

H3K4me1_Trynka 55649 4.43E-06 -0.99 -0.03 -0.95 -0.07 2345 2.14 

Table B1. Proportional bias of estimates of SNP effect variance components, defined as ratio of bias to true 
simulated value, for annotation categories with non-zero parameter . Results of LD score regression and MLE 
analysis are shown from models including only the 28 enriched annotations plus baseline (K=29), and with the 
addition of 24 “extend-500” annotations (K=53). 
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 category 
size 

True  MLE LDSC MLE LDSC 
disjoint 
size 

GEMMA 
 

Categories in model  K=53 K=53 K=29 K=29  K=28 

Scenario 1                 

Enhancer_Andersson 822 2.15E-07 37.47 121.68 41.75 88.37 822 65.61 

UTR_5_UCSC 829 5.43E-07 11.73 33.26 10.64 25.08 829 21.39 

PromoterFlanking 856 2.45E-07 17.99 105.59 21.58 77.32 813 73.4 

UTR_3_UCSC 1419 1.02E-07 52.92 162.81 40.6 131.84 1344 89.4 

Coding 1938 1.64E-07 16.18 93.11 14.93 78.88 705 160.58 

TSS 2336 6.40E-07 5.72 29.26 4.45 13.71 1801 28.76 

WeakEnhancer 2603 2.79E-07 17.13 54.86 18.85 39.04 2165 31.66 

CTCF 2910 3.12E-07 7.26 42.19 9.69 28.27 2540 23.31 

Conserved 3568 7.26E-07 5.26 11.82 6.15 9.77 2574 5.85 

Promoter_UCSC 4849 6.70E-07 1.43 26.64 1.99 5.29 2940 7.11 

H3K9ac_peaks 5277 2.13E-07 5.03 49.14 3.2 47.82 2799 56.08 

H3K4me3_peaks 5711 6.13E-07 3.06 16.25 2.08 15.99 2193 12.55 

Enhancer_Hoffman 8623 4.22E-07 4.14 21.05 2.73 14.43 3161 15.22 

FetalDHS 11513 4.80E-07 2.64 17.72 2.08 14.8 4837 11.56 

DHS_peaks 14724 6.98E-08 7.92 119.57 8.61 119.06 3389 55.78 

H3K9ac 17766 8.16E-07 1.00 7.83 0.97 5.07 4948 7.23 

TFBS_ENCODE 17935 1.36E-07 3.87 41.66 8.16 32.17 4579 40.31 

H3K4me3 18168 2.92E-07 1.73 19.51 1.85 12.93 2741 25.02 

DGF_ENCODE 18790 1.23E-07 3.30 45.56 3.83 40.49 3624 55.02 

DHS_Trynka 22099 7.30E-07 1.07 8.98 1.01 8.35 1447 22.27 

H3K4me1_peaks 22418 8.15E-07 1.06 5.78 0.99 5.62 4163 4.25 

SuperEnhancer 26690 7.68E-07 0.98 28.97 0.83 1.55 7493 4.69 

H3K27ac_PGC2 37171 3.15E-07 1.02 17.78 1.18 6.96 6285 10.08 

Transcribed 39649 6.62E-07 0.96 4.26 0.92 2.95 15326 1.74 

Intron_UCSC 47763 8.35E-07 0.65 21.28 0.57 0.62 9578 1.89 

H3K27ac_Hnisz 55210 5.48E-07 0.96 11.87 0.89 2.28 3779 6.24 

H3K4me1 55649 1.02E-07 1.01 35.31 1.63 22.7 2345 123.14 

Repressed 59924 5.29E-07 0.85 5.61 0.76 4.64 26444 1.5 

All 129150 0     0  

Scenario 2                 

Enhancer_Andersson 822 4.43E-06 1.67 6.02 1.84 4.45 822 3.67 

H3K4me1_Trynka 55649 4.43E-06 0.99 0.86 0.92 0.52 2345 3.29 
 

Table B2. Proportional root mean squared error (RMSE) of estimates of SNP effect variance components, 
defined as ratio of RMSE to true simulated value, for annotation categories with non-zero parameter values. 
Results of LD score regression and MLE analysis are shown from models including only the 28 enriched 
annotations plus baseline (K=29), and with the addition of 24 “extend-500” annotations (K=53). 
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APPENDIX  C. Tissue-specific Histone Mark Data 

Tissue group Cell type H3K4me1 H3k4me3 H3K27ac H3K9ac 
Adrenal/ 
Pancreas 

Fetal adrenal X X   

 Pancreas X X   
 Pancreatic islets X X X X 
CNS Angular gyrus X X X X 
 Anterior caudate X X X X 
 Cingulate gyrus X X X X 
 Fetal brain X X X X 
 Germinal matrix  X   
 Hippocampus middle X X X X 
 Inferior temporal 

lobe 
X X X X 

 Mid frontal lobe X X X X 
 Neurosphere   X  
 Substantia nigra X X X X 
Cardiovascular Aorta  X   
 Fetal heart X X  X 
 Fetal lung X X  X 
 Left ventricle X X   
 Lung X X   
 Right atrium X X   
 Right ventricle X X   
Connective/ 
Bone 

Breast fibroblast 
primary 

X X   

 Chondrogenic dif   X  
 Osteoblast   X  
 Penis foreskin 

fibroblast primary 
X X   

Gastrointestinal Colon smooth 
muscle 

X X X X 

 Colonic mucosa X X X X 
 Duodenum mucosa X X X X 
 Duodenum smooth 

muscle 
X X X  

 Esophagus X    
 Fetal large intestine X X   
 Fetal stomach X X   
 Gastric X X   
 Rectal mucosa X X X X 
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 Rectal smooth 
muscle 

X X X X 

 Sigmoid colon X X   
 Small intestine X X   
 Stomach mucosa X X  X 
 Stomach smooth 

muscle 
X X X X 

Immune CD14   X  
 CD14 primary X X   
 CD15 primary X X   
 CD19   X  
 CD19 primary (BI) X X   
 CD19 primary (UW) X X   
 CD20   X  
 CD25+ CD127-   X  
 CD25- CD45RA+   X  
 CD25- IL17+ Th17   X  
 CD25- IL17- Th stim   X  
 CD25int CD127+   X  
 CD3 primary   X  
 CD3 primary (BI) X X   
 CD3 primary (UW) X X   
 CD34 primary X X   
 CD4 memory 

primary 
X X   

 CD4 naïve primary X X   
 CD4 primary  X   
 CD4+ CD25+ 

CD127- 
X X   

 CD4+ CD25- 
CD45RO+ 

X X   

 CD4+ CD25- 
CD45RA+ 

X X   

 CD4+ CD25- IL17+ 
Th17 

X X   

 CD4+ CD25- IL17- 
PMA 

X X   

 CD4+ CD25+  Th X X   
 CD4+ CD25int 

CD127+ Tmem 
X X   

 CD56 primary X X   
 CD8 memory 

primary 
X X   
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 CD8 naïve primary 
(BI) 

X X   

 CD8 naïve primary 
(UCSF-UBC) 

X X  X 

 CD8 primary  X   
 Fetal thymus X X   
 Mobilized CD34   X  
 Mobilized CD34 

primary 
X X   

 Peripheral blood 
mononuclear primary 

X X  X 

 Spleen X X   
 Th0   X  
 Th1   X  
 Th2   X  
 Thymus X    
 Treg primary  X   
Kidney Kidney X X X X 
Liver Liver   X  
 Liver (BI) X X  X 
 Liver (UCSD) X X   
Other Adipose nuclei X X X X 
 Breast luminal 

epithelial 
X    

 Breast myopithelial X X  X 
 Breast vHMEC X X   
 Fetal placenta X X   
 Ovary X X   
 Penis foreskin 

keratinocyte 
X X  X 

 Penis foreskin 
melanocyte 

X X   

 Placenta amnion X X   
 Placental chorion X X   
Skeletal muscle Fetal leg muscle X X   
 Fetal trunk muscle X X   
 Psoas muscle X X   
 Skeletal muscle X X X X 
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APPENDIX  D. Comparison of Mutual Information Estimators 

 

 

Figure D. Comparison of Mutual Information Estimators 
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