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ABSTRACT

Metabolism is a key attribute of life on Earth at multiple spatial and temporal scales, involved in

processes ranging from cellular reproduction to biogeochemical cycles. While metabolic network

modeling approaches have enabled significant progress at the cellular-scale, extending these tech-

niques to address questions at both the ecosystem and planetary-scales remains highly unexplored.

In this thesis, I integrate various multi-scale metabolic network modeling approaches to address

key questions with regard to both the long-term evolution of metabolism in the biosphere and the

metabolic processes that take place in complex microbial communities.

The first portion of my thesis work, focused on the evolution of ancient metabolic networks,

attempts to model the emergence of ecosystem-level metabolism from simple geochemical pre-

cursors. By integrating network-based algorithms, physiochemical constraints, and geochemical

estimates of ancient Earth, I explored whether a complex metabolic network could have emerged

without phosphate, a key molecular component in modern-day living systems, known to be poorly

available at the onset of life. We found that phosphate may have not been essential in early liv-

ing systems, and that thioesters may have been the primitive energy currency in ancient metabolic

networks. By generalizing this approach to explore the scope of geochemical scenarios that could

have given rise to living systems, I found that other key biomolecules, including fixed nitrogen, may

have not been required at the earliest stages in biochemical evolution. The second portion of my

thesis deals with a different aspect of ecosystem-level metabolism, namely the role of metabolism

in shaping the structure of microbial communities. I studied the relationship between metabolism

and microbial community assembly using microbial communities grown in synthetic laboratory

vii



environments. We found that a generalized statistical consumer-resource model recapitulates the

emergent phenomena observed in these experiments.

Future work could seek to better clarify the connection between the fundamental rules that led

to lifes emergence over 4 billion years ago and the laws that shape microbial ecosystems today. An

ecosystems-level metabolic perspective may aid in our understanding of both the emergence and

maintenance of the biosphere.
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Chapter 1

Introduction and background

This introduction was published as the following Review Article:

Goldford, J. E. and & Segrè, D. Modern views of ancient metabolic networks.

Current Opinion in Systems Biology. 2018 Apr; (8) 117-124 [64]

Summary

Metabolism is a molecular, cellular, ecological and planetary phenomenon, whose fundamental

principles are likely at the heart of what makes living matter different from inanimate one. Systems

biology approaches developed for the quantitative analysis of metabolism at multiple scales can

help understand metabolism’s ancient history. In this review, we highlight work that uses network-

level approaches to shed light on key innovations in ancient life, including the emergence of proto-

metabolic networks, collective autocatalysis and bioenergetics coupling. Recent experiments and

computational analyses have revealed new aspects of this ancient history, paving the way for the

use of large datasets to further improve our understanding of lifes principles and abiogenesis.

Introduction

The metabolic network of a cell transforms free energy and environmentally available molecules

into more cells, moving electrons step by step along gradients in a complex energetic landscape

[145, 23]. The ability of a cell to efficiently and simultaneously manage hundreds of metabolic

processes so as to accurately balance the production of its internal components constitutes a very

complex resource allocation problem. In fact, it is only through recent systems biology research
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that we have begun to quantitatively assess this resource allocation problem at the whole-cell level

[144, 14]. A common perspective in the analysis of cellular self-reproduction is the notion that

the genome, with its crucial information-storage role, is the central molecule of the cell, and that

everything else can be collectively regarded as the machinery whose role is to produce a copy of

the DNA. It is therefore not surprising that, as we struggle with the fascinating question of how life

started on a lifeless planet, it is tempting to look for how a single information-containing molecule

could arise spontaneously from prebiotic compounds. However, in spite of the appeal of thinking

of DNA (or its historically older predecessor, RNA) as the central molecule who is being repli-

cated in the cell, no molecule in the cell really self-replicates: the cell is a network of chemical

transformations capable of collective autocatalytic self-reproduction. Collective autocatalysis is

the capacity for a collection of chemicals to enhance or catalyze the synthesis or import of its own

components, enabling a positive feedback mechanism that can lead to their sustained amplifica-

tion. Combining this systems-level view of a cell with the argument of what is usually called the

metabolism first view of the origin of life, one could propose that the ability of a chemical network

to produce more of itself (or to grow autocatalytically) is and has always been a key hallmark of

life [171, 45, 90, 6, 175]. An interesting modern version of this very same principle is embedded

in one of the most popular systems biology approaches for the study of whole cell metabolism:

this approach, based on reaction network stoichiometry and efficient constraint-based optimization

algorithms, is commonly known as flux balance analysis (FBA) [144]. FBA solves mathematically

the resource allocation problem that every living cell needs to solve in real life in order to transform

available nutrients into the macromolecular building blocks that are necessary for maintenance and

reproduction. When an FBA calculation estimates the maximal growth capacity of a cell, it es-

sentially computes the set of reaction network fluxes that enable optimally efficient autocatalytic

self-reproduction. While in cellular life this process is finely regulated and controlled, ancient life

must have gone through many different stages of similar, but much less organized collectively au-

tocatalytic processes. Thus, one of the key problems of the origin of life is the question of how an

initially random path in the space of possible chemical transformations driven far from thermody-

namic equilibrium could have ended up being dynamically trapped in a collectively autocatalytic
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state.

The focus on cellular self-reproduction as the fundamental level at which life and its origin

should be understood is however too narrow. An exciting recent development in systems biology

of metabolism is the rise of methods to extend FBA models from the genome scale to the ecosys-

tem level [172, 75, 55]. In addition to solving the resource allocation problem of metabolism

for individual organisms in a given environment, these approaches take into account the fact that

metabolites can be exchanged across species, giving rise to metabolically-driven ecological net-

works (11). These advances suggest that metabolism may be best understood as an ecosystem-level

phenomenon (Fig. 1.1b), where the collective biochemical capabilities of multiple co-existing or-

ganisms may reflect better than any individual metabolic network an optimal capacity of life to uti-

lize resources present in a given environment [175, 19]. The ecosystem-level nature of metabolism

is another feature of present-day life whose roots likely date back to the early stages of life on our

planet. For example, the chemical networks that gradually gave rise to reproducing protocells may

have wandered for quite some time in a broader chemical space, effectively generating molecular

ecosystems before the rise of spatially and chemically well-defined cellular structures.

At an even larger scale, metabolism could be viewed as operating not just at the level of in-

dividual cells or ecosystems, but even as a planetary phenomenon, in which cellular processes

collectively affect (and are affected by) the flow of molecules at geological scales (Fig 1c). The

strong coupling between the metabolic processes of ecosystems and planetary-scale geochemistry

[86, 132] suggest that biosphere-level metabolism should be viewed as one of the natural scales for

the study of lifes history. A paramount challenge in the study of lifes history is thus bridging the

gap between material and energy fluxes at the biosphere scale, and detailed molecular mechanisms

responsible for the properties of life at the cellular and subcellular level [121]. Bridging this gap

could greatly benefit from the use of integrative models similar to the ones used in systems biology

research and data science. In this perspective, we will discuss some recent system-level approaches

that have provided new important insight into lifes ancient history at multiple scales, highlighting

the fact the metabolism and its multiscale nature from the single reaction to the biosphere are

taking a center stage role in this endeavor.
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Figure 1.1: Metabolism at different scales. (a) metabolic networks can be modeled at the or-
ganismal level, where environmentally-supplied resources, under an energy flow, are collectively
transformed into biomass of the self-reproducing and evolving organisms. (b) at higher scales,
metabolic networks can be viewed as an ecosystem-level phenomenon, where biochemical pro-
cesses include metabolic exchange and competition between species. (c) metabolism can be also
considered a planetary scale phenomenon, whereby the energy flow maintains global biogeochem-
ical cycles.

Protometabolism before enzymes

A top-down reconstruction of ancient metabolic networks can be achieved based on the inferred

history of gene families, using traditional phylogenomic techniques [22, 20, 88]. Leveraging in-

formation on the newly mapped genomic diversity of modern life [198], Martin and colleagues

recently proposed a comprehensive phylogenetic reconstruction of the metabolic capabilities of the

last universal common ancestor (LUCA), suggesting that LUCA was an autotrophic, thermophilic,

N2-fixing anaerobic prokaryote, living in hydrothermal vents and equipped with lifes most complex

molecular machines (e.g. ATP synthase) [196]. Although the details of LUCAs specific repertoire

of metabolic enzymes are still subject of debate [59, 195], these results corroborate the notion that

LUCA was very complex, highlighting a massive gap in knowledge with regard to the transition

from prebiotic geochemical processes to the biochemical complexity of LUCA and its progeny. A

major challenge in the study of the origin of metabolic networks is to gain insight on the structure

of metabolic networks before LUCA and before the rise of genetic coding. At the core of this chal-

lenge is the question of whether and how metabolic reactions which depend on genome-encoded
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enzymes in modern cells could have been carried out without such enzymes, resulting in a classical

origin of life chicken-and-egg problem. One possible way out of this conundrum is the possibil-

ity that some of these metabolic reactions were initially catalyzed by less sophisticated and less

specific catalysts, such as small organic molecules, metal ions, minerals, short RNA polymers, pre-

biotic amino acids or peptides. These small molecules could have persisted throughout evolution,

gradually becoming incorporated into protein enzymes as catalytic cores or cofactors [192, 197].

Adding to a large body of evidence on individual metabolic reactions being catalyzed by small

molecule [166, 106], recent experimental work has demonstrated that several key pathways found

in modern day metabolic networks can be catalyzed non-enzymatically [97, 96, 127, 135, 180].

For instance, Ralser and colleagues [97, 96, 127, 95] have shown the feasibility of non-enzymatic

networks that resemble modern day biochemical pathways, including the TCA cycle, glycolysis

and gluconeogenesis. In addition, Moran and colleagues have demonstrated that metals can se-

lectively catalyze and drive portions of non-enzymatic reductive TCA cycle (rTCA) [135]. These

experimental results support the hypothesis that the catalytic cores of some modern enzymes may

represent evolved variants of simple geochemically available prebiotic catalysts like transition met-

als, iron-sulfur clusters or organic cofactors [101]. Despite these important advances, the known

instances of non-enzymatic catalysis are still the tip of the iceberg relative to the large number

of possible catalyst-reaction pairs. Future high-throughput experiments could greatly expand the

scope of possible prebiotic chemical networks and test the limits of non-enzymatic catalysis, shed-

ding important light on the complexity of prebiotic chemistry obtainable before the availability of

protein-coded enzymes.

From non-enzymatic catalysis to collective autocatalysis

The above examples illustrate the fact that chemical reactions, and whole pathways, typically

viewed in biological context as feasible only in the presence of protein enzymes, could take place

under much more primitive conditions, through the catalytic action of small molecules, minerals or

even non-covalent supermolecular assemblies [170]. As mentioned above, however, a major leap
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Model for protometabolism

a

Network expansion algorithm

network + seed molecule(s)

b

scope

Sources of molecules Non-enzymatic

catalysts

Zn2+

Driving forces Network autocatalysis

Xred

Xox

Xred

Xox

FeS

Figure 1.2: Towards a model of ancient metabolism (a) models of protometabolism can be con-
structed using a wide range of data including geochemically-supported data of environments and
atmospheres in the early Archaean Eon, knowledge of non-enzymatic chemical reactions, plausible
driving forces keeping protometabolism out of equilibrium and a mechanism for sustained growth
(e.g. network autocatalysis). (b) The structure of plausible networks can be investigated using the
network expansion algorithm which models the integrative expansion of metabolic networks from
a set of seed compounds and allowable chemical reactions.
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in the history of life must have involved the rise of a collectively autocatalytic chemical system.

The feasibility of pre-enzymatic chemistry suggests a possible path for the rise of such collective

autocatalysis: if the molecules produced by these reactions are themselves good catalysts, or if

these reactions contribute to solubilize from rocks inorganic catalysts, there is a chance that a sub-

set of reactions and molecules will effectively display a dynamic behavior that is equivalent to that

of a single autocatalytic, exponentially growing entity [45, 90, 6, 175].

Recent insight into how these autocatalytic sets may have operated has come from both the-

oretical and experimental work. Recent theoretical work has uncovered generic constraints of

autocatalytic networks [13], and offered plausible biophysical mechanisms leading to sustained

autocatalysis of biopolymer ensembles [69, 102]. Experimentally, Whitesides and colleagues have

constructed an autocatalytic chemical network based on simple, biologically relevant organic com-

pounds [173]. In particular, by using a continuous flow of nutrients into and out of their reaction

vessel, they showed that simple mixtures of thiols and thioesters could display a wide range of

dynamical properties, such as bistability, oscillations and autocatalysis. Notably, this work demon-

strated that dynamical properties observed in biological networks can emerge from simple mixtures

of prebiotically plausible chemicals held out of equilibrium. As described recently by Vetsigian and

Baum, the time is ripe for experimental explorations of how collectively autocatalytic cycles could

spontaneously arise from mixtures of small molecules and mineral surfaces [16].

Navigating possible paths from primordial to present-day networks

Prior studies in evolutionary biology suggest that biological systems evolve by partially building

on prior innovations. If this principle extends back to the origin of metabolic networks, then it is

reasonable to hypothesize that early proto-metabolic networks were based on previously accessi-

ble chemistry. Such logic leads to the conjecture that the structure of metabolic networks encodes

the evolutionary history of metabolism, and that the chemistry of core metabolism is similar to

the initial abiotic chemical networks that lead to lifes emergence [77, 133]. This conjecture is

supported, as discussed above, by experimental work demonstrating that a significant portion of



8

core metabolism is accessible without the use of protein-coded enzymes. While these concepts

have been heavily utilized in origin of life research, recent efforts have transformed this concep-

tual paradigm into an algorithmic and quantitative framework using metabolic network modeling

[20, 61]. A modeling approach recently used to explore the plausible evolutionary history of very

early stages of biochemistry is the network expansion algorithm, which iteratively simulates the

growth of new metabolites and reactions starting from an initial seed set [47, 73, 160]. We used

the network expansion algorithm to construct a model for ancient prebiotic metabolism, specifi-

cally addressing the question of whether any portion of current biochemistry could have possibly

emerged in the absence of phosphate (and thus prior to transcription/translation) [61]. Models

of prebiotic networks were constructed starting from minimal sets of compounds thought to have

been readily available on early Earth. Notably, even if these initial compounds did not include

any phosphate-containing molecule, a surprisingly large expanded network could ensue, covering

several pathways that are part of central metabolism today, and of previously proposed models of

biogenesis [133]. This finding is consistent with the possibility that thioesters, sulfur-based energy

rich chemical moieties, could have predated phosphates as energy carriers in the cell, providing the

required thermodynamic driving force. Interestingly, recent work has experimentally demonstrated

the possibility that a thioester-based chemistry could fuel autocatalytic networks [173]. Future ap-

proaches could extend the use of network expansion models by incorporating additional constraints

on metabolic network growth, such as the removal of likely toxic intermediates. Although further

experimental and theoretical work is required to fully address the scope, implications and funda-

mental limitation of an early phosphate-free biosphere, the use of the network expansion algorithm

to explore plausible routes of abiogenesis represents an interesting research direction.

Although the majority of chemical reactions important in early living systems may still be en-

coded in modern day living systems, there is also a possibility that key reactions and compounds

initially critical for living systems were lost throughout the course of evolution. Even more broadly,

it is plausible that much bigger space of chemically possible reactions could have given rise to an

organized metabolism [126, 174]. As shown in recent elegant experimental work, molecules impor-

tant for life as we know it may in principle be producible through reactions and pathways that are
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not part of current biochemistry [150, 184]. On the theoretical side, recent advances in computa-

tional chemistry [4] have enabled the construction of chemical network models beyond the scope of

modern living systems, paving the way for future broader analyses of possible transient chemistries

along the history of life, and of putative alternative outcomes that may have materialized but didnt

[126].

Beyond these realistic chemical spaces, biochemical organization has been studied extensively

using simplified toy models based on artificial chemical rules, such as the so called string chemistries

[8]. Similar approaches were the foundation of some of the early work on collectively autocatalytic

networks [91, 6]. More recently, a very simple string chemistry, simulated and analyzed using sys-

tems biology approaches (including FBA [144]) yielded a family of optimally efficient pathways,

some of which resemble functionally and topologically the rTCA cycle network [163]. An artificial

dchemistry which incorporated catalytic polymers with a toy folding process was recently shown

to be helpful towards explaining the emergence of polymer-based structures within a compositional

inheritance world [69]. In addition to serving as a basis to explore possible scenarios for the emer-

gence of metabolism, abstract chemistry models can be very helpful in the exploration of statistical

physics-based models of non-equilibrium chemical systems [84].

Overcoming energy barriers, then and now

Whether realistic or abstract, ancient or modern, any metabolism can operate only if kept far from

thermodynamic equilibrium by an external free energy source. Thus, to achieve a working theory

for the origin of metabolism, one should identify not only sources of materials, but also sources of

free energy consistent with geochemical data. Effectively, even if early life may have extensively

used abiotic organic material heterotrophically, this question largely hinges on our understanding

of what free energy source could have fueled the production of electron donors capable of reducing

abundant gases like CO2 and N2 into the reduced forms readily used by biological systems. Two

potential sources include chemical energy from hydrothermal vents, and photochemical energy

from solar (especially UV) radiation [41]. The former scenario is consistent with recent phyloge-
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nomic studies [196], where chemical energy in the form of molecular hydrogen is used to fix carbon

dioxide using a variant of the Wood-Ljungdahl pathway in LUCA. However, it is unclear whether

this scenario would be compatible with thioesters as a key component for free energy transduction,

given that these molecules have been recently shown to be highly unstable in simulated hydrother-

mal systems [28]. Interestingly, UV light can support the synthesis of organic molecules [76, 11]

and iron-sulfur clusters [18] as well as drive the reductive steps in the rTCA cycle [199]. Fu-

ture work exploring the potential roles of various energy sources to fuel non-enzymatic prebiotic

networks will be important in determining plausible models for ancient metabolism.

Even if a source of free energy is available, a major open question in the evolution of bioener-

getics is the rise of coupling between driving forces and driven reactions. Through this coupling,

currently enabled by large proteins, reactions that dissipate free energy (e.g. thioester or phos-

phodiester bond breaking) drive reactions that require a free energy input. Such couplings have

recently been proposed to universally operate as a Brownian ratchet, in which enzyme complexes

rely on the step-wise, gated mechanism of highly coordinated multi-domain enzymes [23]. Martin

and colleagues proposed that electron bifurcation, the most recently discovered energy conserving

process [179, 123], may have been the first mechanism through which ancient metabolic networks

coupled free energy sources to drive endergonic reactions. Electron bifurcation is a mechanism

that enables coupling between available, mid-potential electron donors (e.g. H2) and acceptors

(e.g. CO2) to generate low-potential electron donors. This mechanism is for example capable of

producing reduced ferrodoxin, an energy source common in diverse biochemical pathways like

photosynthesis and methanogenesis [122]. In general, identifying the scope of non-enzymatic ana-

logues for such free energy coupling processes remains an open challenge, and efforts to this end

will undoubtedly shed light on the earliest phases of bioenergetic evolution.

Towards data-driven origin of life research

As the above examples clearly illustrate, origin of life research is a multidisciplinary endeavor,

requiring consideration of multiple, increasingly large datasets (chemical, geological, biological,
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physical) for both experimental and computational analyses [21]. Currently available databases

that may be useful for the study of ancient life range from collections of genetic and phenotypic

diversity of microbial species and communities [119], to knowledge-base resources available for

exploring metabolites, reactions and biochemical pathways [89]. As origin of life research may

require data from broader categories of molecules and reactions beyond present-day biochemistry

[150], databases of known organic and inorganic chemicals [100] and reactions [174], will consti-

tute important components of future attempts to reconstruct the first biochemical processes. Other

categories of data relevant to the ancient history of metabolism are available on more specialized

databases [65, 52]. Future efforts could assemble other databases useful for the computational anal-

ysis of prebiotic chemistry, including a database of documented prebiotic chemistry experiments.

Furthermore, and most importantly, a standardization of experimental and computational results

would enable comparisons across different efforts, allowing researchers to build more systemati-

cally on previous work. Integrating data from various sources, ranging from prebiotic chemistry

experiments to inferred early Earth geochemical data, could allow for the construction of large-

scale models of ancient metabolic states at unprecedented levels of resolution.

Future work aimed at understanding early life will increasingly benefit from ongoing synthetic

biology efforts towards the implementation of minimal living systems, and from quantitative ap-

proaches developed for systems biology of metabolism [156]. It would be highly beneficial for

origin of life research to embrace theory and modeling as essential tools for transforming data and

hypotheses into testable, nontrivial predictions, i.e. predictions whose outcome may not be known

a priori, and whose validation or falsification may be clearly achievable, even if technologies may

be years away from feasibility. Conversely, the study of early metabolism has a chance to provide

new tools and ideas for how to move systems biology approaches beyond the current paradigms.

For example, the exploration of putative early metabolic pathways not known in present-day organ-

isms bears some similarities with the huge and challenging efforts of annotating metabolic enzyme

functions in newly sequenced genomes and metagenomes [29]. Furthermore, biosphere-level anal-

yses of ancient metabolism [61, 160] could inspire new approaches for studying the collective

biochemistry of microbial ecosystems.



Chapter 2

Architecture of ancient metabolic networks without

phosphate

Summary

This thesis chapter was published as the following Research Article:

Goldford, J. E., Hartman, H., Smith, T.F., & Segrè, D. Remnants of an ancient metabolism without

phosphate. Cell. 2017 Mar 9; 168(6): 1126-1134 [61]

Abstract

Phosphate is essential for all living systems, serving as a building block of genetic and metabolic

machinery. However, it is unclear how phosphate could have assumed these central roles on primor-

dial Earth, given its poor geochemical accessibility. We use systems biology approaches to explore

the alternative hypothesis that a protometabolism could have emerged prior to the incorporation

of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism pro-

ducible from simple prebiotic compounds. This network can support the biosynthesis of a broad

category of key biomolecules. The enrichment of this network for enzymes utilizing iron-sulfur

clusters, and the fact that thermodynamic bottlenecks are more readily overcome by thioester rather

than phosphate couplings, suggest that this network may constitute a metabolic fossil of an early

phosphate-free nonenzymatic biochemistry. Our results corroborate and expand previous proposals

that a putative thioester-based metabolism could have predated the incorporation of phosphate and

an RNA-based genetic system.
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Introduction

While most research on the evolution of living systems has been focused on sequences and genomes,

some answers to fundamental questions about the emergence of life may be hidden in the archi-

tecture of the complex biochemical reaction networks that sustain the cell [175]. The field of

metabolic network modeling and analysis is expanding as a major research area of relevance to

multiple practical applications [141, 152] . However, the use of such techniques to address funda-

mental questions on the emergence of living systems is still highly unexplored.

Among the many unanswered questions on life’s origin, the enigma of how phosphate ended

up playing a prominent role in cellular biochemistry has been puzzling scientists for decades [169],

resurfacing in recent years in light of novel discoveries [1, 149]. Phosphate is present in a large

proportion of known biomolecules. It is an essential component of biochemical energy transduction

(most notably through ATP), cofactors such as NADH, and information storage (in DNA and RNA

polymers). However, phosphate is geochemically scarce and difficult to access, often serving as

the limiting nutrient in a variety of modern ecosystems [72]. Phosphate is found in terrestrial

and marine ecosystems, tightly complexed with rocks and minerals, requiring mechanisms for

environmental extraction and transport [148].

The ensuing dilemma of phosphate’s high importance in spite of its poor bioavailability is par-

ticularly challenging for early life, as primordial protocells would have needed both a readily avail-

able phosphate source and a simple mechanism for early phosphate acquisition. Currently, there

is no consensus for a phosphate source in early life, with theories ranging from acid-mediated ion

solubilization, high concentrations of reduced phosphorus species in early oceans, or accumulation

during late heavy bombardment [169, 149]. Even provided a phosphate source, the mechanisms of

phosphate utilization and polymerization in early life remain debated [92].

The alternative solution to this dilemma is that primitive forms of life could have initially

emerged and endured without major dependence on phosphate. Multiple scenarios for early metabolic

pathways that do not rely on phosphate have been proposed [40, 78, 41, 193]. In many of these sce-

narios, sulfur and iron are conjectured to have fulfilled major catalytic and energetic functions prior
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to the appearance of phosphate. Most notably, in the thioester world scenario [40], thioesters are hy-

pothesized to have played a role similar to the one played today by ATP. Thioesters are widespread

in modern metabolism, primarily as Coenzyme A (CoA) derivatives (e.g. Acetyl-CoA), and are

used as condensing agents, enabling the synthesis of heterogeneous biopolymers.

The thioester world hypothesis, and other phosphate-independent proto-metabolism models,

are typically invoked to explain the prebiotic plausibility of general biochemical mechanisms, and

are illustrated through specific reactions or pathways. Could systems biology approaches help

achieve a more systematic and quantitative understanding of the biosynthetic potential of a putative

pre-phosphate metabolic networks? Is it at all possible for a phosphate-independent geochemical

setting to support the emergence of a rich and complex organized biochemistry?

Here we address these questions using computational systems biology approaches originally

developed for performing large-scale analyses of complex metabolic networks [47, 73]. Similar

approaches have been previously used to describe the biosphere-level metabolic changes that ac-

companied the transition to an oxic atmosphere, about 2.2 billion years ago [160]. Specifically,

we use these and other computational methods to study systematically the size, architecture and

physico-chemical properties of phosphate-independent biochemical networks. Given that our goal

is to shed light on processes that predate the estimated last universal common ancestor (LUCA)

[181, 196], and given the long-term reshuffling of genes among organisms through horizontal-gene

transfer, we focused our analysis on a global, biosphere-level biochemical network, which encom-

passes all known metabolic reactions across all organisms. In exploring the prebiotic relevance

of metabolic reactions that in extant life are catalyzed by highly evolved, efficient and specific

protein-based enzymes, we implicitly formulate the hypothesis that many of such reactions could

have been initially catalyzed to a much weaker and less specific extent by a number of small

molecules. Such a hypothesis in itself is not new to origin of life research [121], and is supported

by a large body of literature, both pertaining to individual small-molecule catalysts and reactions

[151, 128, 66, 134, 32, 33], as well as to whole networks [139, 96, 173].

The major finding we report below is the discovery of a phosphate-independent core metabolism

hidden within this biosphere-level network. This core protometabolism is capable of support-
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ing the synthesis of a broad set of biomolecules, including several amino acids and carboxylic

acids. Statistical analysis of the physiochemical properties of enzymes within this network show

an enrichment for iron-sulfur and transition metal coenzymes. By broadening our analysis of pro-

tometabolism with the inclusion of different types of coenzyme precursor couplings, we further

show that thioesters, rather than phosphate, could have enabled this core metabolism to overcome

energetic bottlenecks, supporting the feasibility of a metabolically rich thioester-based world.

Results

Removal of phosphate from biosphere-level metabolism leaves intact a core connected net-

work

The first goal of our analysis was to evaluate the impact of removing all reactions and metabolites

involving phosphates (or, more broadly, phosphorus) from metabolism. Rather than analyzing the

metabolic networks of individual organisms, we aimed at uncovering effects at the level of the

complete collection of all known biochemical reactions (see Methods). This ”biosphere-level”

metabolism (which we inferred from the KEGG database [89]) allowed us to explore the properties

of putative early biochemical networks, beyond the organismal boundaries [191].

We started by searching for regions of global metabolism that could be accessible starting from

simple molecules likely to have been geochemically abundant on early Earth (Fig. 2.1A). To this

end we adopted the network expansion algorithm, which simulates the emergence of metabolic

networks from a predefined set of compounds [47, 73, 160]. The algorithm adds metabolites and

reactions to an initial seed set, iteratively asking whether any new reaction could take place given

the available substrates, until convergence to a final set of reactions and metabolites (or “scope”)

(see Methods). This algorithm is seed-set dependent, typically resulting in the recovery of a subset

of reactions/metabolites within a defined metabolic network (Fig. 2.2). Network expansion was

performed with a seed set of eight compounds thought to have been available in prebiotic environ-

ments, notably lacking phosphate (Fig. 2.1A, see Methods) [32, 121, 167, 103]. Importantly, the

set of seed molecules we define contains simple carboxylic acids in the form of acetate and for-
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mate, which could be provided by either an abiotic mechanism or a primitive pathway for carbon

fixation (e.g. a primitive variant of the Wood-Ljungdahl pathway [179, 177, 196] or the reductive

TCA cycle [192, 133, 174], see also Discussion). The resulting scope of this seed set consisted of

a fully-connected network of 315 reactions and 260 metabolites (Fig. 2.1A), the composition of

which was robust to variations of the seed set compounds (Fig. 2.2-2.3). Although this network re-

quires the addition of catalytically accessible carbon, nitrogen and sulfur sources (Fig. 2.2), acetate

and formate were substitutable by several alternative carboxylic acids like pyruvate (Fig. 2.3).

This core, phosphate-independent network is significantly enriched with reactions within pri-

mary metabolic pathways such as amino acid biosynthesis, pyruvate metabolism, glyoxylate/dicarboxylate

and the TCA cycle, as well as intermediary metabolic pathways such as C5-branched dibasic

metabolism (Fig. 2.1B, Fishers exact test, Bejamini-Hochberg procedure, FDR < 0.05). Fur-

ther analysis showed significant enrichment for metabolites/reactions involved in various carbon

fixation pathways, including the dicarboxylate-hydroxybutyrate cycle, the hydroxypropionate bi-

cycle, and the reductive TCA cycle, which has been previously proposed as a primitive carbon

fixation pathway in ancient autotrophs [133]. Several reactions involved in heterotrophic carbon

utilization were also observed within pathways for one-carbon (serine pathway) and two-carbon

assimilation (Krebs cycle, methylaspartate, and glyoxylate cycle). In addition to a diverse cen-

tral carbon metabolism, half of the proteinogenic amino acids (G, A, D, N, E, Q, S, T, C, and H)

were producible, representing six of the ten amino acids observed in the Miller-Urey experiment

[147]. In this network, building upon a core carbon, energy and nitrogen metabolism, hydrogen

sulfide enables the production of sulfur-containing heterogeneous peptides like glutathione, as well

as thioester derivatives like S-formyl and S-succinyl glutathione. Intermediates in the degradation

and biosynthesis of more complex biomolecules are also observed; 5,6-dihydrouracil is an oxi-

dized catabolic product of uracil and pyrrole is the basic building block for complex heterocyclic

aromatic rings like heme (Fig. 2.1A). Thus, we report the existence of a phosphate-independent

core metabolic network reachable from simple putative prebiotic compounds .
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Figure 2.1: Network expansion yields a core phosphate-independent network (A) A network
expansion algorithm was implemented using a simple set of seed compounds (bottom left box) and
all balanced reactions in the KEGG database. The figure displays a simplified view of the resulting
network, in which reactions are not explicitly shown, and metabolites are linked if they are inter-
converted through reactions that are responsible for the expansion. Node color indicates the time
(iteration) at which the metabolite appears during the network expansion algorithm, while node size
indicates the degree of that node, i.e. the number of reactions added in the subsequent iteration.
Note that major hub metabolites (including pyruvate, glutamate and glycine - center of the network)
are reachable after a few iterations from the seed (blue nodes). Catalytically important amino acids
(e.g. His, Ser [66]) are producible in this network as well. (B) Pathway enrichment analysis of
KEGG pathways within the core network. The fractional abundance of pathway reactions within
the core network are plotted for pathways with an FDR < 0.05. (C) The core network reactions
are enriched with enzyme functions (E.C.), protein folds (SCOP) and orthologous genes (COGs)
proposed to be present in LUCA, relative to all known metabolic reactions (aerobic network) or
to the oxygen-independent (anaerobic) portion of the complete network. [42, 65, 131, 181, 194]
(Fishers exact test).
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Figure 2.2: Monte Carlo sampling of seed sets recovers substantial fractions of the non-
phosphate core network 104 random samples of size k = 8 metabolites were chosen as seeds
for network expansion. Each sample was required to contain at least one of the following ele-
ments: C, H, O, N and S. Network expansion was first performed using the randomly assembled
seed set. For each simulation, the final number of reactions was recorded (x-axis). Next, the frac-
tion of the the core network recovered after network expansion was computed for each seed set
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Core network enzymes are enriched with features associated with protometabolism

Is there independent evidence that this core phosphate-independent network may indeed resemble

the very early stages of biochemical processes? The plausibility of this early metabolism relies

on the possibility that catalysts for these reactions would initially have been much different than

they are today, composed of short prebiotically-formed peptides [66, 129], metal-ion cofactors

[32], mineral catalysts [79], or iron-rich clays [77, 105]. Such initial catalysts would have been

gradually replaced by longer and more complex genome-encoded protein-enzymes, potentially

still retaining properties or components of the early catalysts [129, 79, 179]. Thus, we performed

multiple analyses to test whether current enzymes within this network contain taxonomic, sequence

and biochemical signals pointing to potential associations with early modes of catalysis.

Taking a taxonomic approach, we found that enzymes in the core network are overrepresented

within genomes (Monte Carlo permutation test, P = 10−4). The core network is also enriched

with enzymes (E.C. numbers) and protein folds (SCOP) previously identified as likely components

of the last universal common ancestors (LUCA) proteome [181, 194, 65] (Fig. 2.1C, Fisher’s exact

test: P < 10−5 and P < 10−3, respectively), suggesting that a significant fraction of the reac-

tions in this core network appeared in the earliest organisms. One limitation of using comparative

phylogenetic analysis is that it only provides information as far back as LUCA. Furthermore, evo-

lutionary processes like horizontal gene transfer [142] and cataclysmic extinction events hamper

the elucidation of LUCAs metabolism with certainty. In order to investigate the pre-LUCA features

of the phosphate-free core network, we examined the corresponding enzymes in terms of their ba-

sic physiochemical properties, with special attention given to properties proposed to be associated

with ancient metabolism.

One fundamental property we focused on is the reliance of these enzymes on iron-sulfur or

metal coenzymes, reflecting the notion that modern biochemistry emerged from mineral geochem-

istry [121, 193, 79] and that metal-based cofactors in modern day enzymes represent a living relic

of this contingency [48, 71, 137]. Using a manually curated list of known protein-coenzyme pairs

[65], we found that enzymes within the core network were enriched for both zinc and iron-sulfur-
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dependent coenzymes relative to the full network (Fig. 2.4A P < 0.05). For comparison, amino

acid derived-coenzymes were observed with comparable frequencies in the core and full KEGG

networks, while nucleotide-derived coenzymes (e.g. enzyme-bound FAD, TPP, molybdopterin)

were slightly depleted amongst reactions in the core network, highlighting the coordination be-

tween nucleotide and phosphate biochemistry. The occurrence of metal-associated enzymes within

the core network was independently corroborated by identifying protein structures with verifiable

metal ligands in a separate database [82], allowing for the identification of KEGG reactions that

rely on enzymes bound to metal ions. Out of the 47% (148/315) of the core network reactions with

crystal structures available, 86% (127/148) relied on enzymes with a metal ligand, which consti-

tuted a significant enrichment relative to the full KEGG network (Fig. 2.4b, Fisher’s exact test:

P < 10−5).

In addition to a biased coenzyme usage, we investigated other features that could be associated

with an ancient proto-metabolic network. First, motivated by the notion that early catalysts may

have been composed of smaller polypeptides relative to present day enzymes [129], we tested if

the enzymes in the core network are on average smaller relative to all genome encoded enzymes.

We found that sequences are considerably shorter for catalysts in the core network (median = 309)

compared to all known metabolic enzymes (median = 354) (Fig. 2.4C; one-tailed Kolmogorov-

Smirnov: P < 10−39). Second, we thought of checking whether enzymes in the core network

are enriched, in their composition, for amino acids producible by the core network itself. Such

an enrichment would be consistent with the expectation of self-sustainability and homeostasis in a

proto-metabolic network, whereby the network would be capable of producing the building blocks

necessary for replenishment and accumulation of its catalysts. We found indeed that core network

enzymes are more highly composed of the 10 amino acids found within the core network relative

to all known metabolic enzymes (Fig. 2.4D; one-tailed Kolmogorov-Smirnov: P < 10−14). One

potential simple reason for this enrichment could be attributed to the known sequence bias in FeS-

proteins for cysteine, both of which are present in the core phosphate-free network. However, we

found no detectable enrichment for cysteine in our core network enzymes (one-tailed Kolmogorov-

Smirnov test, P = 0.948).
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Figure 2.4: Reactions in the core network are enriched for iron-sulfur and transition metal
coenzymes (A) The fraction of coenzyme-coupled KEGG reactions in the core network (red bars),
the anaerobic KEGG network (blue bars) and the aerobic KEGG network (green bars) are com-
pared. Each set of reactions is composed of a manually curated list of coenzyme-coupled reactions
in KEGG [65], We found that a significant number of reactions require iron-sulfur coenzymes
(Fishers exact test, P < 0.05) and zinc (Fishers exact test, P < 0.05) within the core network
relative to the aerobic KEGG network. (B) Structural data support metal-protein enrichment in the
core network. The number of reactions catalyzed by enzymes with structural data were determined
for all KEGG reactions using the MIPS database [82]. For all reactions with crystal structures
available, we classified each reaction as either without (-) a metal cofactor, or with (+) a metal
cofactor. We performed enrichment tests for metal cofactors within the core network relative to
both the aerobic KEGG network (green text), or the anaerobic network (parenthesis, blue text).
Core network reactions relied more heavily on enzymes with metal cofactors relative to both the
aerobic and anaerobic KEGG reactions. The enzymes in the core network are shorter (C) and bi-
ased in their amino acid composition (D) relative to either the aerobic or anaerobic KEGG network.
For B-D, we tested for enrichment within the phosphate-free core network enzymes compared to
both the aerobic and anaerobic networks. Significance values are reported for the aerobic network,
followed by the anaerobic network in parenthesis.
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Thioesters alleviate thermodynamic bottlenecks

So far, our analysis was focused on the core network structure, ignoring possible energetic con-

straints. In extant metabolism, phosphate-mediated group transfer plays a key role by driving

unfavorable, or energetically up-hill reactions [41]. To investigate the energetic consequences of

phosphate unavailability, we implemented a thermodynamically constrained network expansion al-

gorithm, which blocks endergonic reactions with standard molar free energies above a cutoff value

τ (Fig. 2.5B, black line). The network becomes dramatically limited to< 12% of the core network

as τ remains below 55 kJ/mol, preventing the condensation of oxalate and acetate to yield oxaloac-

etate. Energetic constraints of this magnitude would have prohibited the expansion of an early

metabolism, given plausible ranges of intracellular metabolites concentrations [17] (see Methods).

Consequently, a mechanism to overcome these thermodynamic bottlenecks would be essential for

a phosphate-independent metabolism.

Could thioester chemistry [40] serve as a solution to this energetic conundrum? Thioesters,

proposed to have served as ancient condensing agents [40, 179], are widespread throughout central

metabolic processes (e.g. Coenzyme A (CoA) derivatives in TCA cycle and lipid biosynthesis)

and can facilitate energy-rich group transfer. While CoA contains phosphate, this serves mainly

as a structural component with no catalytic role, motivating the hypothesis that ancient reactions

may have relied on pantetheine, the simpler, phosphate-free variant of CoA [46, 101] thought to be

available in prebiotic environments [93]. We explored the energetic consequences of a primitive

thioester-based reaction coupling scheme by substituting pantetheine for CoA in modern CoA-

coupled reactions, followed by adding pantetheine into the seed set (Fig. 2.5A, see Methods).

These changes caused a 33 kJ/mol reduction in the bottlenecks that limited network expansion,

enabling the viability of alternative metabolic pathways under physiologically realistic conditions

[10] (Fig. 2.5B, red line). Interestingly, these bottlenecks could not be easily overcome through

an alternative phosphate-based coupling scheme, in which NTP-coupled reactions are substituted

with either pyrophosphate or acetyl-phosphate (Fig. 2.5B, blue line, Fig. 2.6 ). The uniqueness

of this behavior is also emphasized by the fact that removal of elements other than phosphate (e.g.
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sulfur or nitrogen) would dramatically limit the possibility of expansion (Fig. 2.6 ).

Primitive coenzymes enable widespread network expansion

A larger metabolic network may have been reachable if phosphate-free versions of modern day

coenzymes drove several primordial reactions. Like CoA, many modern day coenzymes contain

nucleotide phosphate groups that are important for enzyme-binding but not directly involved in

catalysis. For example, the redox coenzyme NAD contains adenine and phosphate, but facili-

tates electron transfer at the nicotinamide moiety (Fig. 2.8A). By substituting CoA with pan-

theteine and implicitly assuming that oxidoreductase reactions could be coupled to primitive elec-

tron donors/acceptors instead of NAD(P)/FAD (Fig. 2.8B), we found that the core network expands

to nearly 3 times more metabolites (814), incorporating 5 more amino acids (K, R, L, V and P),

uracil and ribose (Fig. 2.7). Addition of these 5 amino acids to the repertoire of amino acids would

have enabled broader catalytic capabilities, and paved the way for increased richness of peptides,

once suitable and energetically supportable mechanisms for peptide synthesis became available

(perhaps, initially driven by thioesters themselves [40]) . Further, the formation of pyrimidines,

pentoses and vitamins could have set the foundation for the assembly of nucleotides triphosphate

and modern coenzymes upon the addition of phosphate.

Discussion

To obtain insight into the early stages of the evolution of metabolism, prior to LUCA, we ana-

lyzed the biosphere-level collection of all known metabolic reactions, which throughout the his-

tory of life may have greatly shifted their assortment into organisms [142, 191]. By integrating

network algorithms and biochemical database analyses at the biosphere-level, we have uncov-

ered a phosphate-independent metabolism that prompts us to revisit models of early biochem-

istry. This network is enriched with enzyme’s requiring inorganic and iron-sulfur cofactors, con-

sistent with the hypothesis that iron-sulfur proteins are among the most ancient in biological sys-

tems [48, 71, 193, 79, 137, 179]. This network incorporates several components of the reduc-
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Figure 2.5: Thioesters alleviate thermodynamic bottlenecks (A) Models of ancient coenzymes
were constructed to simulate the roles of thioesters and phosphates in models of ancient biochem-
istry (see Methods). (B) Network expansion from the core seed set was performed after removing
reactions exceeding a thermodynamic threshold. For each value of this threshold (x-axis) we plot
(black line) the size of final network (in terms of the number of metabolites, y-axis). The effect of
thioester coupling was simulated by adding a Coenzyme A substitute (pantetheine) to the seed set
(red line). For comparison, a phosphate-coupled network was simulated by substituting nucleotide
triphosphate-coupled phosphoryl-transfer reactions with pyrophosphate (or acetyl-phosphate) (blue
line), followed by adding pyrophosphate (or acetyl-phosphate) to the seed set. Although signifi-
cantly more metabolites are observed in the phosphate-coupled network with no thermodynamic
barrier (due to the addition of sugars and phosphorylated intermediates), network expansion would
not be feasible under physiologically realistic conditions (unshaded region) [10]. More than one
third of reactions in KEGG lack a free energy estimate. In the main plot, all these reactions with
unknown free energies are assumed to be available (equivalent to assuming that they have a free
energy barrier lower than then predefined threshold). Results are qualitatively very similar if all
such reactions lacking free energy estimates are removed from the network (Top left inset).
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Figure 2.6: Sulfur and nitrogen are required for thermodynamically feasible network expan-
sion. This analysis aims at testing the uniqueness of the feasibility of a phosphorus-free network, in
comparison to other hypothetical scenarios in which other atoms are missing from the initial seed
set. Specifically, we compare the size of the expanded network under elimination of phosphorus,
sulfur or nitrogen, with and without the thermodynamic feasibility constraints. Network expansion
was performed for all KEGG reactions using a seed set without sulfur (no H2S and pantetheine,
green bars), phosphate (no pyrophosphate, blue bars), or nitrogen (no ammonia, nitrogen gas, and
pantetheine, pink bars) (see also Venn diagram for specific seeds and atomic compositions). The
left set of bars represent the size of expanded networks without imposition of thermodynamic con-
straints, while the right plot shows the network sizes when thermodynamic feasibility is imposed.
It can be seen that removal of sulfur, without thermodynamic constraints, gives rise to a larger
network relative to the P-free core network, due to the appearance of sugars and phosphosugars.
However, when taking into account thermodynamic feasibility, the P-independent network is the
only one that can reach a large size. Thus, a thermodynamically feasible network expansion is
conditional on the presence of sulfur and nitrogen, but not phosphate. One should also stress that
while there is debate about the prebiotic availability of phosphorus [40, 169], consensus is much
higher among researchers about the availability of sulfur [33, 41, 79, 192]. Thus the significance
of our analysis is particularly clear in light of this prior.
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Coenzyme A, while the purple lines are the phosphate-free reactions coupled to nicotinamide or
flavin coenzymes.
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tive TCA cycle, proposed to be one of the first autotrophic, autocatalytic cycles in metabolism

[77, 133, 174]. Its enrichment for enzymes containing iron-sulfur clusters is strikingly consistent

with the iron-sulfur world theory [193]. Our results are compatible with the possibility that the

iron-sulfur dependent reactions in the TCA cycle and the methylaspartate cycle in haloarchaea [99]

may represent modern variants of an iron-sulfur based intermediary metabolism. Upon including

phosphate-independent precursors of high-energy and redox cofactors in our model, the resulting

network became free of prohibitive thermodynamic bottlenecks, and expanded to a much larger

proto-metabolism that includes several precursors for DNA/RNA and modern-day coenzymes. Our

work corroborates previous work emphasizing the potential role of thioesters in protometabolic

systems [40, 179].

Specific hypotheses generated by our analysis could be testable in future work. For example, it

would be interesting to extend currently available evidence of non-enzymatic catalysis of metabolic

reactions to a larger set of reactions and potential catalysts, with and without the specific constraint

of phosphate availability. In particular, one could test the possible role of previously identified

small-molecule catalysts (e.g. amino acids, short peptides and metal sulfides) in enabling reactions

within the core network. While our calculations suggest that thioester chemistry had an initial

thermodynamic advantage towards generating a surprisingly large and connected metabolism, this

set of metabolites constitutes less than 20% of the complete phosphate-dependent set of known

metabolites we know today. In future work it will be interesting to search for more evidence that the

network dependent on thioesters may have been self-sustaining (i.e. capable of producing its own

small-molecule catalysts), and for signatures of a putative thioester-to-phosphodiester transition

The plausibility of a rich phosphate-independent metabolism has a number of implications on

important questions about the origin of life. In particular, the expansion of a phosphate-independent

metabolism requires the availability of reduced-carbon precursors (i.e. the seed set) and energy

(e.g. the driving force for the production of thioesters). Although these could be explainable by

purely geochemical (i.e. abiotic) processes (see SI and [167, 103]), a number of scenarios involving

ancient variants of modern carbon fixation pathways have been proposed as a source of reduced

carbon and thioesters [57]. One such scenario is based on the reductive TCA cycle [133, 174],
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which uses several reactions found in our core network, and is compatible with the iron-sulfur

enrichment previously discussed. One of the challenges in this scenario is that alternative energy

coupling schemes instead of ATP hydrolysis (found in Succinyl-CoA synthetase and ATP-citrate

lyase) would have been required to make the process exergonic. An alternative scenario, which

could simultaneously explain the availability of formate, acetate and thioesters, is the viability

of a primordial Wood-Ljungdahl (WL) pathway, previously suggested to proceed exergonically

under prebiotic conditions [179]. One of the appeals of this pathway is that it is the only carbon

fixation pathway present within both bacteria and archaea, and that it may have been the first

carbon-fixation pathway in LUCA ([196]. For this pathway to be viable in a pre-phosphate world,

however, its ancient variants would have to rely on simple coenzyme precursors to pterins, which

are currently not known to be synthesized biotically without GTP.

While we cannot rule out possible alternative interpretations of our findings, such as a gradually

evolved reliance on metabolic routes that make minimal use of phosphate, it is interesting to ask

whether our result could help bridge a fundamental gap between geochemistry and biochemistry.

The properties of the core phosphate-free network suggest that a thioester-based proto-metabolism

may have started from a few, simple geochemically abundant molecules, and expanded to a sur-

prisingly rich and diverse biochemistry, potentially a network-level fossil of biosphere metabolism,

even prior to the appearance of the phosphate based genetic coding system. This network could

have enabled the synthesis of a diverse set of (bio)chemical compounds, providing precursors for

the subsequent rise of informational nucleic acid polymers. Whether or not such a primordial

system could have been endowed with features essential for cellular life as we know it, such as

autocatalysis and information processing, remains an open question.

Methods

Reconstruction of biosphere-level metabolism

All metabolic reactions in the KEGG database [89] were downloaded in July of 2015, and an m-

by-n stoichiometric matrix S was constructed formmetabolites and n reactions based on chemical
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reaction equations. Reactions that were unbalanced or contained metabolites in unspecified molec-

ular formulas were removed (see SI) resulting in a global network of n = 6880 reactions utilizing

m = 5944 metabolites. All reactions were initially assumed to be reversible, except for reactions

that utilized molecular oxygen [160]. These reactions were constrained to be irreversible, such that

oxygen could never be produced as a byproduct during network expansion, reflecting the expecta-

tion that early Earth was anoxic. A more detailed discussion of network construction is provided

in the SI.

Network expansion

Network expansion has been described in detail elsewhere [47, 73, 160]. Briefly, let S represent

the set of seed metabolites, and the scope of seed set be represented by F(S), which contains all

reactions and metabolites reachable from the seed set S. At each iteration k, the set of reactions

where all substrates were present, Rk, were added to the scope. Reactions were then allowed to

produce metabolites, Mk. The scope was updated by taking the union of F(S), Rk, and Mk,

where:

F(S)← union (F(S),Rk,Mk) .

The algorithm terminates when no more reactions or metabolites can be added to the scope, result-

ing in a final stationary network composition. Although it is possible that an expansion will span

the set of all metabolites in the network, a seed set typically is capable of expanding to only a frac-

tion of the network. For more details regarding implementation, see the supporting information.

Seed set

Seed set compositions were chosen based on previously reported putative molecular composition

on prebiotic earth (see e.g. [121]). Fig. 2.1 lists the compounds used in the seed set to generate the

core network referenced throughout the paper. Volatiles and gases widely considered to be present

on early Earth are dinitrogen, water, hydrogen sulfide and carbon dioxide [159]. Although it is

unclear at what time biotic nitrogen fixation emerged, abiotic nitrogen reduction to ammonia has
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been demonstrated at high concentrations of hydrogen sulfide [79], and is thought to have been the

dominant nitrogen source in early organisms [38], motivating us to include ammonia into the seed

set.

Reduced carbon is an essential component of metabolism, requiring either an autotrophic car-

bon fixation process or the heterotrophic carbon assimilation of abiotically reduced carbon. We

tested two scenarios: (i) an autotrophic origin of metabolism from carbon dioxide and hydrogen

gas and (ii) a heterotrophic origin of metabolism from formate and acetate. We did not see sig-

nificant growth from scenario (i), indicating that a reduced form of carbon is required. Acetate

and formate were chosen based on previous work suggesting early forms of abiotically fixed car-

bon may have been of the form of simple carboxylic acids which in principle could have been

synthesized at hydrothermal vents from hydrogen and carbon dioxide using the processes of ser-

pentinization [121, 167, 103], or via a primitive variant of a modern carbon fixation pathway such

as the Wood-Ljungdahl pathway [57, 179, 177, 196]. We explored variations to this seed set in

two ways. First, we performed a Monte Carlo permutation test on the seed set (see Fig. 2.2) and

second, we varied the identity of the carbon sources (see Fig. 2.2).

Reaction thermodynamics

To sustain net flux for a chemical reaction, the laws of thermodynamics require that the difference in

free energy between products and reactants, ∆rG
′, has to be negative [10]. For a given biochemical

reaction at fixed temperature and pressure, ∆rG
′ is defined as:

∆rG
′ = ∆rG

′◦ +RT ln
∏
i

asiri

where ∆rG
′◦ is the free energy change of the reaction at standard molar conditions, R is the

ideal gas constant, T is temperature, ai is the activity of metabolite i and sir is the stoichiometric

coefficient for metabolite i in reaction r, which is negative for reactants and positive for products.

Assuming metabolite concentrations, ci, can be substituted for activities, the disequilibrium ratio,

Γr is defined as Γr =
∏
i c
sir
i . The necessary condition of a negative free energy of reaction can be
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recast as:

Γr < −
∆rG

′◦

RT

This indicates that for large ∆rG
′◦, a small Γr is required to maintain feasibility. ∆rG

′◦ represents

a “thermodynamic barrier,” which can be overcome by reducing Γr (i.e. increasing the reactants

relative to the product concentration).

To identify potential thermodynamic barriers, we performed network expansion without reac-

tions above a predefined free energy threshold, τ . In this variant of network expansion, reaction r

was removed if ∆rG
′◦ > τ , for varying levels of τ . We obtained estimates for ∆rG

′◦ from Equili-

brator [52], which uses the component contribution method to estimate free energies of formation

of metabolites based on the group decomposition of compounds [138]. We obtained estimates of

∆rG
′◦ at various pH values, ranging from pH 5 to pH 9 in increments of 0.5, while assuming a

constant ionic strength of 0.1 M and temperature of 298.15 K. We performed network expansion at

thresholds varying from 0 to 60 kJ/mol in 1 kJ/mol increments. Final network sizes in all scenarios

were insensitive to the choice of pH.

Over one third of all KEGG reactions did not have estimates for ∆rG
′◦, due to the large set of

metabolites with no estimate for the free energy of formation. We accounted for this by either as-

suming (i) all reactions with unknown ∆rG
′◦ were feasible regardless of the cutoff or (ii) reactions

with no estimate for ∆rG
′◦ were infeasible, and subsequently removed altogether. The qualitative

results presented in Figure 3 of the main text are unaffected by the treatment of these reactions.

Primitive coenzyme coupling

Coenzymes in modern day metabolism are composed of highly heterogenous functional units, com-

posed of distinct moieties involved in protein-binding and catalysis (for comprehensive review,

see [21]). Two groups of coenzymes are readily observed that contain phosphate: Phosphoryl-

donating/accepting coenzymes (e.g. ATP and GTP) and phosphate-containing coenzymes with no

phosphoryl group transfer (e.g. Coenzyme A, TPP, NAD, FAD, Molybdopterin). For Phosphoryl-

donating/accepting coenzymes, removing phosphate would clearly abolish the catalytic function
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of the coenzymes, while in phosphate-containing coenzymes, removing all phosphate-containing

moieties may not eliminate catalytic function. Phosphoryl-donating/accepting coenzymes may

have been preceded by non-nucelotide metabolites with phosphodiester bonds, such as phospho-

enolpyruvate, acetyl-phosphate, or pyrophosphate [40] while phosphate-containing coenzymes

may have been preceded by less complex versions of these coenzymes [101].

The following subsections summarize the introduction in our network of variants of present-

day reactions in which current cofactors are substituted with putative primitive alternatives. In

particular, this amounts to the addition of putative prebiotic reactions utilizing primitive thioester,

phosphate, and redox couplings, as described below (Fig 2.5 and 2.7, main text). Fig. 2.8 pro-

vides the structures of Coenzyme A, NAD and ATP, highlighting the role of phosphates in each

biomolecule.

Thioester coenzymes. For the proposed thioester-coupled network, we directly modified metabo-

lites and reactions such that CoA-mediated acyl transfer reactions were substituted with pantetheine-

mediated acyl transfer reactions. This required us to first identify metabolites with CoA thioesters

(i.e. Acetyl-CoA, Malonyl-CoA), then substitute the CoA moiety with pantetheine. Second, all

reactions typically using these molecules were substituted with the pantetheine thioesters. We also

ensured that degradation of pantetheine did not contribute to network growth by blocking degra-

dation pathways. This was achieved by removing (R)-pantetheine amidohydrolase (KEGG ID:

R02973) and N-((R)-Pantothenoyl)-L-cysteine carboxy-lyase (KEGG ID: R02972), which pre-

vented the hydrolysis of pantetheine into pantothenate and cysteamine. Network expansion was

then performed with pantetheine added to the core seed set, resulting in a final network size of 365

metabolites. Simulating the thioester-coupling can also be achieved by (i) blocking degradation of

CoA and (ii) adding CoA into the seed set. By removing CoA nucleotido-hydrolase (KEGG ID:

R10747), and adding CoA into the core seed set, we obtained the final network observed with the

pantetheine substituted network.

Phosphate coenzymes. For the proposed model of a primitive phosphate-coupled network, nu-

cleotide (A, G, C, U, T, and I) phosphate-coupled and phosphotransferase reactions were sub-

stituted with pyrophosphate. Pyrophosphate has been proposed to have been used for primitive



35

energy coupling in early protometabolic systems before NTP [40, 121]. Using pyrophosphate cou-

pling instead of NTP prevents network expansion from artificial catabolism of NTP precursors like

ribose and nucleobases, which are not assumed a priori to be abundant in geochemical models of

Hadean environments. In particular, monophosphate transfer reactions were replaced with the dis-

phosphate/monophosphate coenzyme couple, while diphosphate transfers were replaced with the

triphosphate/monophosphate coenzyme couple. This model of primitive phosphate-coupled reac-

tions was seeded with orthophosphate, diphosphate and triphosphate, in addition to the “core seed

set” listed in Fig. 2.1 of the main text. For monophosphate transfer reactions, we also subsituted

NTPs with acetyl-phosphate, and found no difference beteween the network sizes at different free

energy threshold cutoffs (Fig 2.5).

Redox coenzymes. We found that a much larger network was reachable without phosphate by

relaxing the condition that major redox reactions require the phosphate-containing coenzymes

NAD(P) or FAD as substrates. For this analysis, in addition to adding modified thioester-coupled

reactions (see Thioester coenzymes), major redox reactions mediated by NAD(P) and FAD were

allowed to proceed using only the half reactions. Reactions utilizing the NAD(P)+/NAD(P)H or the

FAD/FADH2 redox couples were replaced with the associated redox half reactions with no cofactor

pair. For example, the reaction X + NAD(P)H→ Y + NAD(P)+ was replaced by the half reaction:

X+2e−+2H+ → Y, where both e− and H+ are in the seed set. Several alternative redox coupling

schemes may have been available in proto-metabolic systems, including glutathione or primitive

iron-sulfur proteins. For our analysis, we simply decomposed redox reactions into half reactions

and allowed for free exchange of electrons. This alteration effectively adds low potential reduced

ferrodoxin as a seed molecule, potentially producible via electron bifurcation from H2 [24].

Supplemental Methods

Construction of a biosphere-level metabolic network

The set of all known metabolic reactions was assembled into a biosphere-level (or pangenome)

metabolic model using the KEGG database. All KEGG reactions and compounds were downloaded
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using the KEGG REST API. We constructed a stoichiometric matrix from the KEGG reaction

database using reaction equations. Reactions were removed if they either consumed or produced

compounds that (i) did not include a SMILES string or (ii) included an n-subunit polymer with

undefined molecular formulas. Metabolites with arbitrary, “R” groups were retained as long as

“R” groups were balanced in reaction equations. Reactions that were elementally imbalanced for

any element except hydrogen were removed. The elementally balanced network consisted of 6880

reactions utilizing 5944 metabolites. This network is reference in the main text as the “full KEGG

network” or the “aerobic network” in Figs. 2.1 and 2.4. The KEGG network used throughout

the manuscript is depleted in enzymes that catalyze reactions that either chemically unbalanced

(e.g. Fatty Acid Elongation reactions, Lysine biosynthesis), and depleted in enzymes with no

assigned KEGG reaction like arsenate reductase (EC 1.20.4.4) and ketol-acid reductoisomerase

(EC 1.1.1.382). Future versions of KEGG and other knowledgebases will contain a more accurate

and comprehensive collection of biosphere-level metabolism.

The results presented in Fig. 2.1, 2.2 and 2.3 were generated using network expansion with

all reactions assumed to be reversible, except for reactions utilizing molecular oxygen. Oxygen is

thought to have become available in the biosphere after the appearance of the last universal common

ancestor, and it was previously shown that widespread network growth is achievable once oxygen

is available. To limit network expansion to anoxic metabolism, we prevented the production of

molecular oxygen by blocking reactions that produced oxygen, including oxygenic photosynthesis.

For statistical analysis, we compared enrichment features of the phosphate-free core network

to the full network (aerobic) and the network accessible without oxygen (anaerobic network). The

anaerobic network was generated by removing subsets of reactions and metabolites from the global

metabolic network reachable only through reactions that utilize molecular oxygen, resulting in a

modified biosphere-level metabolic network we called the “anaerobic network”. This was per-

formed to ensure that statistical enrichment tests were not biased by including reactions and en-

zymes likely added to the global metabolic network after oxygen accumulated in the atmosphere.

We first removed all reactions that utilize oxygen. Second, the stoichiometric matrix was con-

verted into a bipartite undirected graph, where nodes were either reactions or metabolites. In this
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Table 2.1: LUCApedia datasets used in this study
Dataset Name Data type Examples Citation
E.C. Enzyme Srinivasan et al., 2009 [181]
PFAM Protein motifs Delaye et al., 2005 [42]
COG Genes Mirkin et al., 2003 [131]
SCOP Protein folds Wang et al., 2007 [194]
Iron-sulfur Coenzyme 4Fe-4S, 2Fe-2S Goldman et al., 2013 [65]
Zinc Coenzyme Goldman et al., 2013[65]
Amino-acid Coenzyme Biotin, Coenzyme F430 Goldman et al., 2013[65]
Nucleotide Coenzyme TPP, Molybdopterin Goldman et al., 2013[65]

bipartite graph, an edge exists between a reaction and a metabolite if that reaction either consumes

or produces that metabolite. The graph was used as an input into the python package NetworkX

(https://networkx.github.io/), and all connected components were detected. For this case, a single

major connected component was observed that contained the majority of all metabolic reactions.

Enzyme feature datasets

To determine the plausibility that our portions of metabolism are potential relics of non-enzymatic

prebiotic chemistry, we obtained various datasets corresponding to taxonomic, sequence and phys-

iochemical properties of enzymes in modern metabolism. These features of enzymes are indepen-

dent of our network generation method; the network expansion algorithm simulates the emergence

of metabolites via a set of allowable reactions. In our simulation, we assume that all metabolic

reactions are feasible. Thus, properties of the enzymes found in simulated networks can be used to

as an independent validation of prior assumptions. Below we describe the datasets obtained from

previous studies.

LUCApedia

KEGG genes associated with components in LUCA were downloaded from the LUCApedia web-

page. For each dataset (see table 2.1 for list), we obtained a list of genes, and we used the KEGG

REST API to map genes to reactions.
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MIPS

Data from the MIPS database was downloaded as an HTML page from the website, and an in-house

python script was written to parse the webpage into a list of PDB IDs. PDB IDs were mapped

to uniprot proteins using PDBWSW [?], followed by the conversion of uniprot to KEGG genes

using using the KEGG conversion tool (http://www.genome.jp/kegg/tool/conv_id.

html).

Gene sequence composition

Gene lengths and amino acids compositions were obtained from the KEGG database using the

REST API. For each reaction in the full KEGG network, we found all orthologous groups (KO)

associated with each reaction. For each KO group, we downloaded the amino acid sequence for

each gene within the associated orthologous group. For gene lengths, we computed the number of

characters in each sequence. For the amino acid composition, we computed the average amino acid

composition across all orthologous groups for each reaction, resulting in an averaged number of

each amino acid per reaction. For Fig. 2.4D, we computed the fraction of each sequence consisting

of the 10 amino acids found within the core network.

KEGG reaction to species mapping

The KEGG REST API was used to identify all reactions in each species (n = 3838) in KEGG.

Network expansion

This section provides a formal description of our implementation of the network expansion al-

gorithm. We also provide the MATLAB function used to implement network expansion in the

manuscript.

http://www.genome.jp/kegg/tool/conv_id.html
http://www.genome.jp/kegg/tool/conv_id.html
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2.0.0.1 Definitions

For m metabolites and n reactions, let the binary vectors x ∈ {0, 1}m and y ∈ {0, 1}n represent

the states of metabolites and reactions, respectively. The component xi (yj) is either 0 or 1, cor-

responding to whether or not metabolite i (reaction j) is absent or present, respectively. Let S be

the stoichiometric matrix where sij is the stoichiometric coefficient of metabolite i in reaction j,

which is positive for a product and negative for a reactant. Let us define a reactant matrix, R, and

product matrix P , whose elements are defined respectively as follows:

rij =


1, if sij < 0

0, otherwise

and

pij =


1, if sij > 0

0, otherwise

Let B represent an n-dimensional vector containing the total number of reactants within each

reaction, such that: bj =
∑m

i=1 rij . Let ρ(u) and φ(u) represent vector-valued functions operating

on the vector u, where

ρi =


1, if ui = 0

0, otherwise

and

φi =


1, if ui > 0

0, otherwise

Let a set of seed metabolites, Cs, contain the indices of metabolites, where for all i ∈ Cs,

xi = 1.
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2.0.0.2 Pseudocode

Initialize x such that xi = 1 if i ∈ Cs

l0 = 0, l1 =
∑m

i xi

while: lk > lk−1

do:

y = ρ(RTx−B)

x = φ(Py + x)

lk+1 =
∑

i xi

k = k + 1

Data analysis

For the taxonomic enrichment test, we first computed the average number of phosphate-free core

network reactions across all species in KEGG. We then randomized the set of 315 reactions and

repeated the calculation 105 times. To test for enrichment for categorical features associated

with the core network enzymes (Fig 2.1C, 2.4A-B), a 2x2 contingency table was constructed

and a Fisher’s exact test was performed. For continuous metrics, we used the nonparametric

Kolmogorov-Smirnov test. For all pathway and module enrichment analysis, we used a Benjamini-

Hochberg multiple comparison’s correction and report only pathways and modules with a False-

discovery rate < 0.05. All statistical tests were performed in MATLAB 2015a, using built-in

functions for two-sample Kolmogorov-Smirnov tests (kstest2.m), Fisher’s exact tests (fishertest.m),

multiple hypothesis testing (multcompare.m). Monte carlo permutation tests were performed using

the randsample.m function.



Chapter 3

Ancient geochemical scenarios converge to an

organo-sulfur proto-metabolism

Summary

This thesis chapter will be published in the following paper:

Goldford, J. E., Hartman, H., Marsland, R., & Segrè, D. Ancient geochemical scenarios converge

to an organo-sulfur proto-metabolism. manuscript in preparation

Abstract

Evidence of the key steps that led to the emergence of living systems is likely hidden in the struc-

ture of metabolism. One of the main challenges in unraveling these early steps is the difficulty in

connecting the uncertain geochemical boundary conditions with the structure and physiology of

possible early living systems. Here we first combine network-based algorithms with physiochem-

ical constraints on chemical reaction networks to systematically show how different combinations

of boundary conditions (temperature, pH, redox potential and availability of molecular precursors)

could have affected the structural evolution of metabolism. We find that a subset of boundary con-

ditions converges to an organo-sulfur-based proto-metabolic network that may have been fueled by

a thioester- and redox-driven variant of the reductive TCA cycle, capable of producing lipids and

keto acids. Surprisingly, we find that environmental sources of fixed nitrogen and low-potential

electron donors (e.g. ferredoxin) may not have been necessary for the earliest phases of biochem-

ical evolution. Next, in analogy with genome-scale models of cellular metabolism, we use one of
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these networks to build a steady-state dynamical metabolic model of a proto-cell. We found that

different combinations of carbon sources and electron acceptors could support the continuous pro-

duction of a minimal ancient biomass composed of putative early biopolymers and fatty acids. Our

approach highlights the power of multi-scale modeling and systematic analysis to identify plausible

geochemical scenarios that could have led to the emergence of ancient living systems.

Introduction

The structure of modern day metabolic networks has been proposed to recapitulate the evolutionary

history of metabolism even before the onset of an RNA-based genetic system [48, 77, 76, 40, 133,

175]. Based on this hypothesis, it is possible to propose models for how geochemical initial points

may have transitioned into a large and diverse biochemical network [77, 133, 174, 179, 175]. Re-

cent work has translated this hypothesis into a quantitative framework using the network expansion

algorithm, which iteratively simulates the emergence of chemical reaction networks from a set of

initial compounds [47, 73]. This algorithm has been used to explore the effect of oxygen [160] and

phosphate [61] on the structure of biosphere-level metabolism. The network expansion algorithm,

when used to reconstruct the earliest history of metabolism prior to a protein translation system, re-

lies on three key assumptions: (1) the majority of enzyme-catalyzed reactions can be catalyzed by

inorganic or small molecular catalysts, albeit at much slower rates [61, 64] (due to the large number

of plausible non-enzymatic catalysts in ancient living systems [97, 96, 127, 95, 135]), and (2) over

long time-scales, there are high rates of horizontal transfer of biochemical reactions [191], and (3)

the chemical transformations important in the earliest phases of living systems are still retained in

the biosphere. While prior work has focused on either studying the initial expansion of metabolism

with a predefined set of compounds [61], or the random exploration of initial geochemically sup-

plied compounds [161], a systematic exploration of plausible geochemical scenarios responsible

for the emergence and function of ancient metabolic systems remains unexplored.

Estimates of plausible Archean environments that led to the emergence and evolution of living

systems vary dramatically [107, 41], ranging from alkaline hydrothermal vents driven by chemical
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gradients [120] to acidic ocean seawater driven by photochemistry [40, 78]. More specifically, there

is uncertainty in the composition and availability of geochemically produced substrates for early

living systems, including the availability of suitable electron donors and acceptors, fixed carbon

(e.g. formate, acetate), fixed nitrogen (e.g. ammonia) and phosphate. Although geochemical data

support the available of mid-potential electron donors (H2 [167]), sulfur (H2S) and potentially fixed

carbon [188] in ancient environments, several key molecules used in living systems may have been

severely limiting, including a source of fixed nitrogen [43, 136] (e.g. ammonia), low-potential

electron donors [123, 178] and phosphate [72, 169, 93]. Rather than assuming a steady supply of

these biomolecules, it is important to ask the question of whether these molecules would have been

necessary in ancient proto-metabolic systems. Indeed, we recently used systems biology techniques

to ask whether ancient proto-metabolism would have required a source of phosphate, and found

evidence that thioesters, rather than phosphate, endowed ancient metabolism with key energetic

and biosynthetic capacity [61]. However, it is currently unclear whether other molecules previously

proposed to be limiting on early Earth or physiochemical conditions of ancient environments would

have prohibited the emergence of proto-metabolism.

In this paper, we systematically explored the environmental conditions that could have led to

the emergence of proto-metabolism, and determined the functional capacity of plausible proto-

metabolic networks using constraint-based modeling. We found that a thioester-driven network

may have lacked phosphate, nitrogen and low-potential electron donors, consisting of only or-

ganic molecules and thioesters capable of synthesizing keto acids and fatty acids. Extant enzymes

that catalyze reactions in this network are depleted in nitrogen-containing side chains within their

active sites, and are depleted in nitrogen-containing coenzymes, suggesting that extant reaction

mechanisms may bear similarity to those of primitive organo-sulfur catalysts. We next constructed

a constraint-based model of ancient proto-metabolism, and simulated growth in plausible prebi-

otic environments. Our results suggest that simple thioester-based organic networks embedded in

modern-day metabolism may have lead to a complex proto-metabolism, potentially capable of sus-

tainability producing proto-cellular components, a critical feature for a metabolism-first theory for

the origin of life.
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ancient metabolic network
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Environmental conditions

(e.g. H2/CO2)
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Electron donors

(H2, H2S)

Carbon Sources
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(N2, NH4
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(RSH)
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A

B

Figure 3.1: Computational pipeline for the reconstruction and analysis of plausible metabolic
networks. (A) We implemented a thermodynamically-constrained network expansion algorithm
using various chemical and physical parameters thought to have been important for the develop-
ment of ancient proto-metabolism. We varied sources of electrons, carbon, nitrogen, sulfur/thiols,
and physical parameters like pH, temperature and the standard reduction potential of primitive
electron donors or acceptors, resulting in a draft biosphere-level metabolic network. (B) We then
integrated the draft metabolic reconstruction, along with proposed environmental conditions and
proposed compositions of ancient proto-cells to construct a metabolic model of ancient proto-
cells. We used the model of ancient proto-cells to perform thermodynamic metabolic flux analysis
(TMFA) and other constraint-based modeling approaches for a variety of purposes, including deter-
mining which reactions are plausibly essential for proto-cell self-replication, as well as estimating
which environmental conditions are capable of supporting proto-cellular growth.
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Results

Results

Nitrogen and low-potential electron donors are not required for initial metabolic expansion

We first sought to systematically characterize the effect of various geochemical scenarios on the

plausible structure of ancient metabolism. Building on prior work [160, 61], we constructed a

model of ancient biosphere-level metabolism from the KEGG database [89]. To this end, we mod-

ified the network in several ways to account for previously proposed primitive thioester-coupling

and redox reactions [61], as well as pruned reactions likely causing local thermodynamic bottle-

necks at specific environmental parameters including temperature, pH and redox potential (see

Methods). Next, we used a thermodynamically-constrained network expansion algorithm to re-

construct models of ancient biochemical networks [61], which iteratively adds metabolites and

thermodynamically-feasible reactions to a network until convergence (see Methods). We per-

formed thermodynamically-constrained network expansion (see Methods and Fig. 3.1A) for n =

672 different geochemical scenarios, systematically varying physical parameters like pH, temper-

ature, the redox potential of primitive redox systems, and the availability of key biomolecules in-

cluding thiols (that subsequently form thioesters), fixed carbon (formate/acetate) and fixed nitrogen

(ammonia) (Methods, Fig. 3.2). Of the 672 different simulated geochemical scenarios, we found

that 288 (43%) expanded to networks above 100 metabolites (Fig. 3.2A). To determine which pa-

rameters strongly affected whether or not networks expanded beyond 100 metabolites, we trained a

logistic regression classifier using geochemical parameters as predictors (see Methods), resulting in

a classifier with an area under the receiver operator curve (AUC) of 0.97 with a leave-one out cross

validation accuracy of 0.89 (Fig. 3.2B). To determine which parameters were important for the per-

formance of the classifier, we performed backward elimination of variables by removing individual

predictors from the classifier, and measured the drop in AUC for each reduced model (Fig. 3.2C).

Surprisingly, removing the variable encoding whether ammonia was in the seed set resulted in no

drop in AUC, suggesting that a source of fixed nitrogen was not an important parameter leading
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Figure 3.2: Nitrogen is not essential for initial expansion. A thermodynamically-constrained
network expansion algorithm was used to simulate the early expansion of metabolism under 672
scenarios, systematically varying the availability of reductants in the environment, pH, carbon
sources, the presence of thiols, temperature and the availability of ammonia. (A) A histogram
of network sizes (x-axis, number of metabolites) revealed that 43 % (288/672) of the scenarios
resulted a bimodal distribution, where expansion either occurred beyond 100 metabolites. (B) A
logistic regression classifier was constructed to predict whether a geochemical scenario resulted
in a network that exceeded 100 metabolites, and a receiver operating curve (ROC) was plotted.
The trained classifier resulted in an area under the curve (AUC) of 0.97 and leave-one out cross-
validation accuracy of 0.89. (C) Models were trained without information on specific geochemical
variables (y-axis), and the ensuing AUC was plotted as a bar-chart (x-axis), revealing that knowl-
edge of the availability of fixed nitrogen offers no information on whether networks expanded.
(D) We plotted the network sizes (number of metabolites) before the addition of ammonia (x-axis)
verse after the addition of ammonia (y-axis), revealing a strong linear relationship, fitting a model
that a fixed fraction (γ = 0.517± 0.007) of compounds can react with ammonia.
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to initial expansion. Analysis of the network sizes with and without the addition of ammonia into

the seed set revealed a strong linear relationship (Fig. 3.2D), suggesting that a fixed proportion of

molecules in the network reacted with ammonia. Interestingly, the enzymes that catalyze reactions

in the expanded networks before the addition of ammonia were depleted in nitrogen-containing

coenzymes (Fig. 3.6), one-tailed Wilcoxon sign rank test: P < 10−24) and active site amino acids

with nitrogeneous side chains (see Fig. 3.6, one-tailed Wilcoxon sign rank test: P < 10−24) rel-

ative to enzymes added after the addition of ammonia (see Supplemental Text). Together, these

results suggest that the addition of ammonia played no role in the initial expansion of the network,

only amending compounds to an thioester-coupled organo-sulfur metabolic network (Fig. 3.2).

The simulations described above revealed a number of relationships between plausible geo-

chemical scenarios and the structure and size of our simulated proto-metabolic networks. First,

expansion beyond 100 metabolites occurred without a source of fixed carbon only when thiols were

provided in the seed set, highlighting the importance for thioester-coupling for ancient carbon fix-

ation pathways [61, 123, 178]. The presence of thiols enabled the production of key biomolecules,

including fatty acids and branched chain keto acids. Second, we explored the effect of the primitive

redox system by systematically varying the reduction potential of the electron donor in the seed set

(see Methods, Fig. 3.3A). Surprisingly, we found that as we increased the fixed potential of the

electron donor, expansion collapsed above reduction potentials between -150 and 50 mV, suggest-

ing that low-potential electron donors were not necessary for expansion (Fig. 3.3B). Overall these

results suggest that the emergence of an autotrophic proto-metabolic network capable of producing

key biomolecules were contingent on a mid-potential redox couples as well as thiols capable of

forming thioesters, two functions potentially carried out by disulfides. Moreover, these results sug-

gest that production of low-potential ferredoxin from H2 may have not been necessary in ancient

proto-metabolic systems.

Expanded models converge to a core thioester- and redox-driven rTCA cycle

Analysis of the expanded networks without nitrogen revealed that a large number of scenarios

converged to similar metabolic networks, spanning variants of key pathways in central carbon
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Figure 3.3: Reduction potential of nicotinamide and flavin substitutes influences network ex-
pansion (A) Redox coenzymes (NAD, NADP, and FAD) were substituted with an arbitrary electron
donor/acceptor at a fixed reduction potential. (B) We performed thermodynamic network expan-
sion in acidic (pH 5), neutral (pH 7) and alkaline (pH 9) conditions at two temperatures (T = 50
and 150 ◦C), using a two electron redox couple at a fixed potential (x-axis) as a substitute for
NAD(P)/FAD coupling in extant metabolic reactions (see Methods). We plotted the final network
size across all pH and temperatures with no fixed carbon sources (e.g. only CO2) and thiols. No-
tably, for these simulations, we used a base seed set of: H2, H2S, H2O, HCO−3 , H+ and CO2.

metabolism (Fig. 3.4). For the majority of simulations, variants of modern heterotrophic carbon as-

similation pathways, including the glyoxylate cycle and TCA cycle, were highly represented in the

network (Fig. 3.4A). Additionally, several carbon fixation pathways were also highly represented

in the simulated networks: in over half of the networks that expanded beyond 100 metabolites, 92

% (12/13) of the compounds (or generalized derivatives) in the reductive tricarboxylic acid (rTCA)

cycle were observed, with the exception of phosphoenolpyruvate. We also found that in several

geochemical conditions, all intermediates were producible for three carbon fixation pathways, in-

cluding the 3-hydroxypropionate bi-cycle, the hydroxypropionate-hydroxybutylate cycle, and the

dicarboxylate-hydroxybutyrate cycle (Fig. 3.4A). At-most, only 3 of 9 metabolites used in the
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Wood-Ljungdahl (WL) pathway was observed, due to the lack of nitrogen-containing pterins in the

network. Early variants of the WL-pathway could have been radically different than today’s WL-

pathway, relying on native metals to facilitate reduction of CO2 to acetate in ancient living systems

[188, 178]. In addition to observing a large number of metabolites used in carbon fixation path-

ways, we found that a large fraction of the β-oxidation pathway was represented in our networks,

which may have supported the production of fatty acids in ancient living systems by operating in

the reverse direction. Lastly, we also observed that the majority of intermediates involved in the

production of branched-chain amino acids were also producible our networks.

We next analyzed the convergent organo-sulfur proto-metabolic network in more detail by com-

paring the network to extant metabolic pathways, as well as identifying classes of compounds pro-

ducible from the network. In Fig. 3.4B, we show a variant of the (r)TCA cycle that may have

served as the core organo-sulfur network fueling ancient living systems. Rather than using ATP-

dependent reactions used in extant species (e.g. Succinyl-CoA synthetase and ATP citrate lyase),

these reactions are substituted with non-ATP-dependent reaction mechanisms. For instance, the

production of a succinyl-thioester in the extant rTCA cycle relies on Succinyl-CoA synthetase,

performing the following reaction: ATP + Succinate + CoA→ Succinyl-CoA + ADP + Pi. How-

ever, in the network presented in Fig. 3.4B, malyl-thioester, producible through alternative reac-

tions, donates a thiol to succinate, subsequently forming a succinyl-thioester. From this (r)TCA

cycle analogue, eight keto acids normally serving as key intermediates and precursors to common

amino acids in central carbon metabolism were producible, namely glyoxylate, pyruvate, oxaloac-

etate, 2-oxoglutarate and hydroxypyruvate, as well as the following branched-chain keto acids:

2-oxoisovalerate, 2-oxoisocaproate, and (S)-3-methyl-2-oxopentanoate. Additionally, long-chain

fatty acids like palmitate are producible in this network, driven by thioester and redox-coupling

rather than ATP, like in extant fatty acid biosynthesis. Thus, despite the simplicity of seed com-

pounds, several small molecular weight keto acids and fatty acids may have been producible in an

organo-sulfur proto-metabolism.
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Figure 3.4: Systematic exploration of prebiotic scenarios reveals a core organo-sulfur net-
work. (A) A thermodynamically-constrained network expansion algorithm was used to simulate
the early expansion of proto-metabolism under various scenarios, including the availability of re-
ductants in the environment, pH, temperature, and the availability of fixed carbon sources and
thiols. The proportion of molecules selected KEGG modules involved carbon metabolism are
plotted as a heatmap to the right of the parameters. (B) A representation of the core network pro-
ducible from a prebiotically plausible seed set without both nitrogen and phosphate (bottom left
box). Acetyl-thioesters are first produced, potentially from a primitive Wood-Ljungdahl pathway
[179, 188] from acetate and thiols provided as seed molecules (green). Acetyl-thioesters enable the
production of all intermediates in the reductive tricarboxylic acid (rTCA) cycle, with the exception
of phosphoenolpyruvate. ATP-dependent reactions in the rTCA cycle may have been substituted
with a primitive malate sythase and transthioesterification of succinate as well as the recently dis-
covered reversible citrate synthase [117, 140]. The keto acid precursors for 8 common amino acids
(A,D,E,G,I,L,S,V) are highlighted in purple, while routes to thioester-mediated polymerization of
fatty acids and polyketides are highlighted in pink.
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Flux balance model of primitive proto-cells supports a chemoautotrophic origin of life

So far, we have studied only the topology of ancient metabolic networks, agnostic to whether and

how such a metabolic network could fuel primitive proto-cells with internal energy sources (e.g.

thioesters), redox gradients, and proto-cellular materials used for catalysis and compartmentaliza-

tion. Flux balance analysis (FBA), originally developed for the study of microbial metabolism,

enables the prediction of systems-level properties of metabolic networks at steady-state. Funda-

mentally, FBA simulates the balanced growth of a collection of biomolecules, which are the major

material and energy demands of the cell. In microbial metabolism, FBA is used to simulate the

production of cellular biomass (e.g. protein, lipids, and nucleic acids) at fixed proportions, which

are derived from known composition of extant cells. However, unlike modern day microbial cells,

the biomass composition of plausible ancient proto-cells is unknown.

Christian de Duve suggested that the thioester-driven polymerization of monomers producible

from ancient proto-metabolism may have produced ”catalytic multimers,” which were proposed to

serve as catalysts for ancient biochemical reactions [40]. If prebiotic environments were severely

nitrogen limited, keto acids producible from protometaboliosm (see Fig. 3.4B) may have been re-

duced to α-hydroxy acids, and polymerized into polyesters using thioesters as a condensing agent

(Fig. 3.8). Recent work has suggested that polymers of α-hydroxy acids may have been stably pro-

duced in geochemical environments [?], and that these molecules may serve as primitive catalysts

[53]. Thus, we propose that the thioester-driven polymerization of α-hydroxy acids, producible

from keto acid precursors for common amino acids, may have served as ancient catalysts.

Using an expanded metabolic network as a scaffold for network reconstruction (Fig. 3.1A),

we constructed a constraint-based model of an ancient proto-cell using a biomass composition

consisting of fatty acids (for proto-cellular membranes), ”catalytic multimers” derived from eight

keto acids (Fig. 3.4B), and redox and thioester-based free energy sources (Methods, Fig. 3.5A),

and determined if growth was achievable using thermodynamic metabolic flux analysis (TMFA),

a variant of FBA that explicitly considers thermodynamic constraints [83] (see Methods). Using

this approach, we found that growth of the proto-cell metabolic model is feasible under a wide
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variety of assumptions regarding macromolecular compositions, as well as input molecules (Fig.

3.5B). Notably, we found that growth is achievable in simple chemoautotrophic conditions with

either H2 or H2S, but not Fe(II) or ferredoxin, as electron donors (Fig. 3.5B). In this model, thiols

and thioesters were not supplied as food sources in our model, and are recycled during steady-state

growth of the model proto-cell. Initially, thiols could have been supplied abiotically, with the rapid

takeover of biotic production of mercaptopyruvate, a keto acid that could have been incorporated

into primitive multimers.

In addition to predicting growth yields of metabolic networks, constraint-based modeling of

cellular metabolism also enables predictions of flux distributions of intracellular reactions. We

hypothesized that if these steady-state flux distributions accurately recapitulated plausible ancient

proto-cellular metabolism, then there should be a high flux through reactions relying on inorganic

and transition metals relative to random sets of reactions in the network. Indeed, the total flux

through reactions relying on inorganic or metal ions was significantly higher than randomly sam-

pled sets of reactions for both chemoautotrophic growth on H2 (Monte Carlo Permutation test:

P < 0.05), or chemoautotrophic growth on H2S (Monte Carlo Permutation test: P < 0.05).

We next used the proto-cell metabolic model to determine which reactions are essential for

growth by removing individual reactions from the metabolic model and solving for maximum

growth yield. We found that 28 reactions were essential for chemoautotrophic growth on either H2

or H2S. These essential reactions were primarily involved in the synthesis of keto acid precursors

to branched chained amino acids, and fatty acids: 18 of the essential reactions were involved in

thioester-mediated fatty acid metabolism and biosynthesis, while 9 were involved in the synthesis

of branched-chain keto acids. While recent work has showed that several reactions in central

metabolism can by catalyzed non-enzymatically, little work has been done to test for the non-

enzymatic synthesis of these important molecular components. Thus, constraint-based modeling

may serve as a useful tool to identify key metabolic reactions that would have been necessary for

proto-cellular growth.
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Discussion

While most efforts to reconstruct the ancient phases of biochemistry have traditionally relied on

building qualitative models of small pathways or metabolic reactions [77, 40, 192, 133, 174], we

found that quantitative modeling of ancient proto-metabolic networks illuminated key constraints

that, if not satisfied in ancient environmental conditions, may have limited the development of

ancient living systems. By computationally mapping geochemical scenarios to plausible ancient

proto-metabolic structures, we were able to estimate portions of extant biochemistry that may have

been very sensitive to initial geochemical conditions, and simultaneously identify the emergent

pathways which were robust to variations in environmental conditions. For example, we were

able to identify that thiols and thioesters would have been essential for the production of fatty

acids and branched-chain keto acids (Fig. 3.4A). Thus, by quantitatively identifying associations

between plausible ancient environmental conditions and the plausible structures of ancient proto-

metabolism, we can propose key geochemical conditions that may have been required for the ear-

liest phases of biochemistry.

Our approach also revealed that environmental sources of fixed nitrogen and low-potential elec-

tron donors, two important molecules typically assumed to have been required in ancient metabolic

systems [121, 179, 123], may have not been necessary during the earliest phases of biochemical

evolution. The feasibility of nitrogen and phosphate-free proto-metabolic network suggests that

a substantial degree of complexity may have evolved prior to incorporation of nitrogen into the

biosphere [76]. In addition to being a key component of biomolecules like amino acids and nucleic

acids, nitrogen plays critical roles in catalysis within the active sites of modern day enzymes, in-

cluding several enzymes within the network model constructed here. It is possible that such roles

may have been preceded by positively charged surfaces or metal ions [135, 188], which could have

been replaced by amino /keto acids with nitrogen side chains once nitrogen became incorporated

into proto-metabolism. Furthermore, contrary to our expectations [179, 178, 123], our simulations

predict that low-potential ferredoxin was not a necessary component of early living systems, con-

sistent with the proposal that low-potential ferredoxin is not necessary for acetogenesis [9]. If the
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Figure 3.5: Constraint-based modeling of plausible ancient proto-cells. (A) We constructed a
metabolic of model of plausible ancient proto-cell and used thermodynamic metabolic flux analysis
[83] to simulate the maximum growth yields, steady-state fluxes, and metabolite concentrations un-
der a variety of environmental conditions. The metabolic model was constructed using internally-
generated reductants and thioesters that fueled biomass formation. The biomass composition was
specified as variable fractions of fatty acids, and polymerized hydroxyacids from keto-acid precur-
sors (see Methods). In this model, the internal redox coenzyme was assumed to be disulfide/dithiol
at a standard reduction potential of -220 mV, and the production of biomass was fueled by the
hydrolysis of acetyl-thioesters. We parameterized the biomass composition using a two parameter
model (see Methods), with the mass fraction of lipids in the proto-cell set to φL = 0.2, and the
the average size of a catalytic multimer, n = 10. (B) We simulated growth on a variety of simple
carbon sources (y-axis) and electron donors (x-axis), and show environments supporting non-zero
growth (light grey) or no growth (dark grey). Interestingly, H2, H2S and glutathione were the only
reductants capable of supporting fully autotrophic growth on CO2. Furthermore, CO and Methane
could not support growth in this model, while other one-carbon sources like methanol, formate and
formaldehyde could support biomass growth.

high driving force provided by low-potential ferredoxin is not necessary for proto-metabolism, then

the process of energy conservation via electron bifurcation might also not have been necessary in

ancient living systems. The fact that our reconstructed networks lack a dependence on both low-

potential ferredoxin and ATP, both of which are key substrates for nitrogen fixation [44], suggests

that nitrogen fixation may have evolved much later throughout the history of life [196, 59, 195].

By identifying the convergent proto-metabolic network emerging from various geochemical

scenarios, we were able to propose that ancient proto-metabolism consisted of a core organo-sulfur

proto-metabolic network capable of producing various keto acids and fatty acids (Fig. 3.4B). We

propose that the thioester-driven polymerization of α-hydroxy acid monomers (derived from pro-
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ducible keto acids) could have lead to primitive organic catalysts [40], in combination with inor-

ganic minerals or metal ion catalysts [135, 188]. Future experiments could synthesize these putative

catalysts to directly test for the catalysis of key reactions in the network. Additionally, it remains

interesting to see if these proposed organic compounds are produced in living systems today via

mechanisms similar to polyketide or non-ribosomal peptide synthesis.

By building a constraint-based model from this core organo-sulfur proto-metabolism, we were

able to simulate non-equilibrium steady-states achievable by the reconstructed proto-metabolic

model. This approached allowed us to determine which environmental conditions could have led

to collective growth of the chemical network, revealing that high-potential electron donors (e.g.

Fe(II)), would have prohibited collective autocatalysis. Simulations using constraint-based mod-

eling thus help refine the scope of environmental conditions worth testing in future experimental

studies for the origin of proto-metabolism.

Although detailed predictions regarding the specific mechanisms of catalysis and information

storage are not explored in this work, our results highlight the utility of constraint-based model-

ing in assessing feasible scenarios that may have led to the emergence of living systems. Models

could improve iteratively by incorporating new experimental information, including non-enzymatic

reactions recently observed experimentally [97, 96, 127, 95, 135, 188]. Thus, beyond simply iden-

tifying constraints that might have lead to emergence of living systems, constraint-based models of

proto-metabolism offer the ability to concretely synthesize testable models of ancient living sys-

tems, a key tool for the ultimate goal of experimentally synthesizing artificial proto-cells capable

of collective self-replication.

Materials and methods

Reconstruction of biosphere-level metabolic network

Biosphere-level metabolism was reconstructed from the KEGG database [89] according to protocol

described previously [61]. We modified the network in several ways to model primitive thioester-

based metabolic network without nitrogen or phosphate. First, to simulate the availability of thiols
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capable of forming thioesters, we included Coenzyme A, Acyl-Carrier Protein and Glutathione into

the seed set. However, to enforce the constraint these metabolites could only be used in reactions

as coenzymes (and not products or substrates), we prevented the degradation by removing KEGG

reactions R10747, R02973 and R02972.

We next assigned standard molar free energies to reactions using eQuilibriator at a predefined

pH [52]. Next we substituted NAD, NADP and FAD-coupled reactions with an arbitrary redox

couple. For example, if the redox reaction Xox + NADH → Xred + NAD+ was swapped with

electron donor with a redox potential of E+
0 mV, we would use the following formula to adjust the

standard molar free energy for the new reaction r′:

∆r′G
′◦ = ∆rG

′◦ + nF (E+
0 − E0)

where n are the number of electrons transferred in reaction r and F = 96.485 kJ/V. Note that if

we assumed that the electron donor/acceptor substitute was a two electron donor/acceptor, we did

not change the stoichiometry in the reaction equation. However, in the case where the electron

donor/acceptor substitute was a single electron donor/acceptor, we change the stoichiometric co-

efficients to scj = 2 for all reactions j, where c represents metabolites NAD(H), NADP(H) and

FAD(H2). For this work, we systematically varied the reduction potential E+
0 and stoichiometry

of the primitive redox coenzyme.

Thermodynamically-constrained network expansion

We performed network expansion using thermodynamic constraints in a different way than per-

formed previously [61] Previously, we removed reactions above a predefined free energy threshold

of τ = 30kJ/mol [61]. For this work, we computed the lowest reaction free energy possible using

estimates for upper and lower bounds on metabolite concentrations, ui and li, and removed reac-

tions with a positive reaction free energy. For a given biochemical reaction at fixed temperature
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and pressure, ∆rG
′ is defined as:

∆rG
′ = ∆rG

′◦ +RT ln
∏
i

asiri

where the ∆rG
′◦ is the free energy change of the reaction at standard molar conditions, R is the

ideal gas constant, T is temperature, ai is the activity of metabolite i and sir is the stoichiometric

coefficient for metabolite i in reaction r. We fixed ai for each reactions according to the following

rules:

ai =


ui, if sir < 0,

li, if sir > 0.

(3.1)

We then removed reactions with a ∆rG
′ ≥ 0. For all simulations we assumed that ui = 10−1 M

and li = 10−6 M. Note that because we model each reaction independently, metabolite concen-

trations could be inconsistent . For instance, if metabolite i is the substrate for reaction a and a

product for reaction b, then xi = ui for reaction a and xi = li for reaction b.

Using this procedure to systematically remove reactions that were considered to be thermo-

dynamically infeasible, we performed network expansion [47, 73, 160] using the computational

procedure described in [61].

Parameters for network expansion

We systematically studied the size and composition of networks under precise environmental con-

ditions by varying (a) the reduction potential from the environment, (b) pH, (c) temperature, (d) the

presence or absence thiols, (e) the inclusion of fixed carbon into the seed set and (f) the inclusion

of fixed nitrogen into the seed set. We now discuss each of these parameters in more detail:

• Reduction potential and stoichiometry. A wide range of environmental conditions could

have provided electron donors at various potentials: high potential redox pairs, with strong

oxidants like Fe(III), may have been present in oceans at high concentrations, while strong
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reductants like H2, disulfides, proto-ferredoxin, or reductive carboxylation of thioesters have

been produced via serpentinization or geochemical analogues of primitive metabolic path-

ways [123]. We substituted reactions coupled to NAD, NADP and FAD with a generic

single or double electron donor and acceptor pair at a fixed potential. To prevent unbalanced

electron transfer, we removed the following transhydrogenase reactions: R10159, R01195,

R00112, R09520, R09748, R05705, R05706, R09662, R09750. We then created a single or

double electron donor/acceptor pair with a fixed reduction potential, E+
0 , ranging from -600

to 600 mV.

• pH We modified the pH by setting reaction free energies at various pH’s (5.0-9.0) using

eQuilibriator [52] which relies on the component contribution method [138].

• Temperature. Temperatures were assumed to have been within a range of 50-150 ◦C, span-

ning estimates of ocean seawater temperature in the Archean [70], up to some alkaline hy-

drothermal vent systems [121].

• Thiols. In our model we provided thiols that serve as substitutes for coenzymes that form

thioester bonds in extant metabolic networks. To this end, we provided Coenzyme A, acyl-

carrier protein and Glutathione in the seed set, but removed key degradation reactions to

ensure these compounds only served as coenzymes, rather than material sources, during

network expansion [61].

• Fixed nitrogen. To study the consequences of adding or removing a source of fixed nitrogen

as a seed compounds for network expansion, we either added or removed ammonia from the

seed set prior to expansion.

In addition to parameters we varied, we kept constant two additional parameters that could be

studied in future work:

• Metabolite concentrations. Metabolite concentrations were assumed to be within 1 µM -

100 mM. The upper bound estimate is consistent with recent experimental data showing
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that key metabolites (formate, methanol, acetate and pyruvate) can be produced near 100

mM [188]. Although we do not have empirical evidence to suggest a reasonable lower

bound on metabolite concentrations in ancient metabolic networks, we assumed that 1 µM,

the estimated lower bound in today’s cells [10], was also the lower bound in our model of

ancient metabolism.

• Reactions with no free energy estimate. 53 % of the biosphere-level metabolic network

reactions have no free energy estimate (4851 of 9074). For all simulations presented in this

paper, we assumed these reactions were blocked and did not include them in the network.

Generalized linear modeling of network expansion results

To access the effects of various parameters on the outcome of network expansion, we used general-

ized linear models to construct logistic regression classifiers to predict whether or not the network

expanded beyond 100 metabolites using a combination of predictors, including categorical vari-

ables encoding whether or not ammonia, thiols or fixed carbon was provided in the seed set, and

continuous variables encoding the reduction potential, pH and temperature used in each simulation.

We first define the response variable for simulation i as yi where yi = 1 if the simulation resulted

in a network that expanded beyond 100 metabolites, and zero otherwise. For the set of simulations

performed in Fig. 2 in the main text, we constructed a design matrix consisting of categorical

variables representing the following scenarios:

1. xN,i ∈ {0, 1}: 1 if ammonia was included in the seed set, and 0 otherwise.

2. xS,i ∈ {0, 1}: 1 if thiols were included in the seed set, and 0 otherwise.

3. xC,i ∈ {0, 1}: 1 if fixed carbon (acetate/formate) was included in the seed set, and 0 other-

wise.

4. xH,i ∈ R>0: A continuous variable representing the pH. Note for our simulations, we only

explored acidic (pH=5), neutral (pH=7) and alkaline (pH=9) regimes.
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5. xE,i ∈ R: A continuous variable representing the reduction potential at standard molar

conditions (a the specified pH listed above). For our simulations, we explored a wide range

of standard molar reduction potentials (from -600 mV to +600 mV).

6. xT,i ∈ R: A continuous variable representing the temperature. For our simulations, we

explored two temperatures: a high temperature regime (T = 150 ◦C), and a low temperature

regime (T = 50 ◦C).

We next constructed the following generalized linear model to model whether the network

expanded beyond metabolites:

logit(yi) = β0 + βNxN,i + βSxS,i + βCxC,i + βHxH,i + βExE,i + βTxT,i (3.2)

We fit the parameters (β) using the fitglm.m function in MATLAB 2015a, and a receiver op-

erating curve (ROC) was generated using the perfcurve.m function. For results presented in Fig.

2C in the main text, individual predictors were removed in the generalized linear model presented

above. To access whether the trained logistic model served as an accurate classifier, we performed

leave-one out cross-validation by removing individual samples from the training set an testing the

accuracy of the trained classifier on the removed sample. This procedure resulted in an cross-

validation accuracy of 0.89.

In Fig. 2D in the main text, we plotted the network size before (x) and after (y) the addition of

ammonia, and fitted the following linear to the data y = (1 + γ)x + ε, where γ represents a fixed

fraction of compounds that react with ammonia, and ε is a normally distributed noise term. We

used the MATLAB function fitglm.m to fit the linear model, revealing that γ = 0.517± 0.007.

Constraint-based modeling

We constructed a model of a autocatalytic network at steady state using a variant of constraint-based

modeling of cellular metabolism called thermodynamic-based metabolic flux analysis (TMFA)

[83]. TMFA transforms the non-linear constraints induced by imposing thermodynamic consis-

tency into mixed-integer linear constraints. In this section, we first describe (a) the construction
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of primitive biomass composition for a model of an ancient proto-cell and (b) the formulation of

TMFA used in this analysis.

Prebiotic biomass equation

We constructed a simple model for the macromolecular composition of primitive proto-cells, using

empirical knowledge of extant cellular life. Since our metabolic model of proto-metabolism does

not included macromolecular production of nucleotides (and thus a nucleic acid based genetic

system), we assume that the primary role of proto-cellular metabolism was to initially produce

components for a cellular membrane and catalysts. Building off of Christian de Duve’s multimer

hypothesis [40], we first propose that the biomass can be constructed using a simple two parameter

model consisting of the mass fraction of lipids φL and the average length of each catalytic multimer

n.

• Lipid mass fraction. The lipid content in modern cells is roughly 10% of the total dry mass

(Bionumbers ID: 111209) [130], primarily composed of the fatty acid palmitate. For our

analysis, we assume that palmitate represents the sole component of lipids. Future mod-

els could incorporate glycerol, which enables the production of glycerolipids. While phos-

phate is used in cellular membranes as a polar head group to produce amphiphilic molecules,

primitive processes may have conjugated negatively charged organic acids (e.g. oxalate) to

glycerol via a thioester-mediated synthesis mechanism to create ampiphilic lipid molecules

resembling modern phospholipids. For our initial model, we simply propose that palmitate

was the initial amphiphilic component of primitive membranes, where the negatively charged

polar carboxylate ion was sufficient for forming a membrane, and assumed that proto-cells

consisted of a lipid mass fraction of φL.

• Catalytic multimer mass fraction. We propose that ancient catalysts were composed of inor-

ganic molecules (e.g. iron-sulfur clusters, metal ions, mineral surfaces) chelated with mul-

timers of α-hydroxy-acids (see Fig. 5A in main text). For our model, we assume that the

eight keto acid precursors producible from our network were the dominate monomers of
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ancient multimeric catalysts. We assume that the total mass fraction of these catalysts are

1− φL = φC =
∑

k φk, where φk is the mass fraction of polymerized monomer k. For our

analysis, we assumed that each monomers is uniformly distributed, so that φk = constant for

all k. Additionally, since each monomer must be reduced to α-hydroxy acids, there is linear

relationship between the electron demand, se, and the number of molecules of monomers

produced. The stoichiometric equivalents of electron donors are thus:

se = 2
∑
k

φk
Mk

where Mk is the molar mass of monomer k.

• Average size of catalytic multimers. The average size of mulimeric catalysts sets the number

of thioester bonds required for synthesis of catalytic multimers. For each polymer of size n,

there are n-1 thioester bonds required. In our model, the total number of monomers are fixed

to be:
∑

k
φk
Mk

, whereMk is the molecular weight for monomer k. Thus for a fixed monomer

length n, we can compute the number polymers using the following formula:

P (n) =
1

n

∑
k

φk
Mk

The thioester demand is thus st(n) = (n− 1)P (n), or:

st(n) =
n− 1

n

∑
k

φk
Mk

For our analysis we assumed a fixed polymer length of size n = 10 monomers.

Using these two parameters, we constructed the biomass equation for the proto-cellular model.

Thermodynamic Metabolic Flux Analysis (TMFA)

To simulate a thermodynamically-feasible steady-state behavior of this metabolic network, we used

thermodynamic metabolic flux analysis (TMFA) [83]. Briefly, TMFA transforms the non-linear
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constraints induced by imposing thermodynamic consistency into mixed-integer linear constraints.

We first converted the model into an irreversible model by modeling each reaction as both forward

and backward half reactions. We then constructed the following mixed-integer linear program

(MILP) to find a flux vector, v (with elements vr for each reaction r), log-transformed metabolite

concentrations (ln(x)) and binary variables indicating whether a reaction is feasible (z) given a

specific objective function was satisfied. The objective function used in this work was to maximize

biomass yield, similar to the objectives frequently used in FBA model of microbial metabolism.

Thus, the optimization problem was constructed according the following MILP:

maximize
ln(x),v,z,e

vbiomass

subject to Sv = 0

0 < vr ≤ zrubr, ∀r ∈ R

zrK −K + ∆rG
′ < 0, ∀r ∈ R

∆rG
′o +RT

∑
i

sirln(xi) + σrer = ∆rG
′

ln(10−6) ≤ ln(xi) ≤ ln(10−1), ∀i ∈M

− σm ≤ er ≤ σm ∀r ∈ R

(3.3)

where R and M are the sets of all reactions and metabolites, respectively. As discussed in

detail elsewhere [83], the first equation in the constraint set ensures that intracellular metabolite

concentrations are at steady-state, and are simply mass balance constraints for each metabolite.

The second equation sets the bound on individual reaction fluxes, where the maximum flux through

reaction r is ubr. Note that when zr = 0, the flux through reaction r is constrained to 0. The third

equation sets ensures that zr = 1 if and only if ∆rG
′ < 0, and zr = 0 otherwise. Note that K is

a large number (K > maxr{∆rG
′}) ensuring that this constraint is not violated with zr = 0. The

fourth equation is the free energy of each reaction as a function of log-metabolite concentrations.

Note that we also add slack variables, er, to account for the possible error in the estimating standard

molar reaction free energies for each reaction (where σr is the standard error for each reaction r),



64

which are bounded by a global error tolerance σm = 2 (set in equation 6). Lastly, equation 5

simply constrains the log-metabolite concentrations to be bounded between 1µM and 100 mM.

After each simulation, we performed a secondary optimization to find the minimal set of reactions

that achieve the optimal growth rate by minimizing the l1-norm of the flux distribution subject to

the constraint that vbiomass = v∗biomass

Numerical simulations were formed using the COBRA toolbox and the Gurobi optimizer (Ver-

sion 7.0.1). All source code is provided in the following github repository: http://www.

github.com/jgoldford/protometabolic_modeling.

Calculation of coenzyme and sequence-level features within enzymes

To determine which reactions were associated with specific coenzymes (for results presented in Fig.

3.6B,D) we downloaded information for each Enzyme Commission number (E.C.) in the KEGG

ENZYME database (http://www.genome.jp/kegg/annotation/enzyme.html). We

downloaded each page and parsed the ”comment” field for each E.C. and performed a text-based

search to identify coenzymes associated with each E.C. number. We searched for text indicating

that the enzyme mechanisms used one of the following coenzymes, cofactors and iron sulfur clus-

ters: biotin, heme, PLP, TPP, pterin, molybdopterin, flavin, Fe, Co, Ni, Cu, Mn, W, Zn, Mo, Mg,

FeS, FeFe, Fe2S2, Fe3S4 and Fe4S4, respectively. We also searched E.C. numbers indicating that

the reaction mechanisms are non-enzymatic.

For results presented in 3.6B, we computed the fraction of reaction E.C. numbers that were

associated with one of the following coenzymes: Fe, Co, Ni, Cu, Mn, W, Zn, Mo, Mg, FeS, FeFe,

Fe2S2, Fe3S4 and Fe4S4, or was marked as non-enzymatic. For results presented in 3.6D, we

computed the fraction of reaction E.C. numbers that were associated with one of the following

coenzymes: biotin, heme, PLP, TPP, pterin, molybdopterin, and flavin.

For results presented in Fig. 3.6E, we obtained a database of known enzyme active site residues

[162]. We first mapped the network reactions to E.C. numbers listed in KEGG, then identified ac-

tive sites corresponding to E.C. numbers within the the expanded network. We next computed

the fraction of active site residues containing nitrogenous side-chains, derived from the following

http://www.github.com/jgoldford/protometabolic_modeling
http://www.github.com/jgoldford/protometabolic_modeling
http://www.genome.jp/kegg/annotation/enzyme.html
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amino acids: Arginine (R), Lysine (K), Glutamine (Q), Asparagine (N), Histidine (H), and Trypto-

phan (W).

Network enzymes retain features of nitrogen-free catalysts

In order for the expanded networks presented in the main text to have operated in prebiotic condi-

tions, reactions would have been catalyzed non-enzymatically by inorganic or simple organic cata-

lysts available in prebiotic environments. Prior work has suggested that reactions in metabolic net-

works that proceed spontaneously or depend on enzymes with inorganic coenzymes, such as iron-

sulfur or transition metal cofactors, may have operated in prebiotic conditions [179, 135, 188, 178].

We identified reactions in KEGG that could proceed spontaneously or are dependent on one of sev-

eral inorganic coenzymes (Methods), and defined this set of reactions as plausibly pre-enzymatic,

or “PPE”-reactions (Fig. 3.6A). For each proposed prebiotic scenario that lead to expansion of

at-least 100 metabolites (n = 144, Fig 3.6A), we partitioned reactions added to the network before

the inclusion of ammonia into the seed set (herein called pre-ammonia reactions) and reactions

added to the network after ammonia was added to the seed set (or post-ammonia reactions). We

then computed the fraction pre- and post-ammonia reactions that were classified as PPE reactions,

and found that pre-ammonia reactions contained a higher proportion of PPE-reactions relative to

post-ammonia reactions (one-tailed Wilcoxon sign-rank test: P < 10−19), suggesting that the

pre-ammonia reactions may have been more readily catalyzed by simple inorganic catalysts in pre-

biotic environments. We next hypothesized that if these enzymes evolved from a thioester-driven

proto-metabolism without nitrogen, then enzymes in these networks should be depleted in enzyme-

bound nitrogen-containing coenzymes. We thusly computed the fraction of pre- and post-ammonia

reactions dependent on enzymes containing TPP, PLP, heme, biotin, flavin, pterin, and cobalamin

(Fig. 3.6C, Methods). We found that the proportion of pre-ammonia reactions associated with

these coenzymes were significantly less than the proportion of post-ammonia reactions dependent

on these coenzymes (Fig. 3.6D, one-tailed Wilcoxon sign-rank test: P < 10−24), which is primar-

ily due to the large number of PLP-dependent reactions added to the network after the inclusion of

ammonia.
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Since only a minority of reactions in this network were categorized as PPE, simple organic or

organosulfur catalysts may have been necessary in order for this network to function in prebiotic

environments. Christian de Duve suggested that thioester-based polymers may have provided the

necessary catalytic components of ancient metabolism in addition to inorganic catalysts [40]. In

modern living systems, monomers of keto acids are converted into amino acids, which are then

polymerized into polypeptides either with or without the aid of the ribosome and mRNA. If pre-

biotic environments were severely nitrogen limited, keto acids may have been reduced to hydroxy

acids, and polymerized into polyesters using thioesters as a condensing agent. Notably, in such a

scenario only the polymer backbone is altered, leaving the side chains (R-groups) within today’s

amino acids intact. Recent work has demonstrated that polyesters may aid in the polymerization of

amino acids during dry-wet cycles [53], and that the peptidyl-transferase domain on the ribosome

can polymerize hydroxyacylated tRNAs to form polyesters [51, 143], suggesting that ester bond

formation may have proceeded amide bond formation in living systems.

It has been proposed that enzymes retain features of early catalysts before the emergence of the

genetic code and protein translation systems, and that enzyme active sites may bear resemblance

to ancient catalysts. Thus, if this network represents a relic of an ancient metabolism before the

biological incorporation of nitrogen, then the active sites of enzymes catalyzing reactions within

the network should be depleted in amino acids with side chains containing nitrogen (Fig. 3.6E). To

see if the catalytic residues of the enzymes in the pre-ammonia network were depleted in amino

acids with nitrogenous side chains, we first obtained a database of catalytic site residues inferred

from protein structures [162]. After removing entries with interactions mediated by the peptide

backbone, this dataset consisted of 18,721 entries, 1,304 of which were associated with active sites

of enzymes in the nitrogen-free network in a representative network. For each putative prebiotic

scenario resulting in an expansion with more than 100 metabolites, we computed the fraction of

active site residues that contained nitrogen in enzymes associated with both pre- and post-ammonia

reactions (Fig. 3.6E). We found that the proportion of nitrogenous catalytic residues associated

with pre-ammonia reactions was significantly lower than the proportion of nitrogenous catalytic

residues associated with post-ammonia reactions (Fig. 3.6F, Wilcoxon sign-rank test: P < 10−24).
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One potential alternative explanation for these biases in amino acid composition within the

active sites of extant enzymes may be the outcome of evolutionary selection: nitrogen limitation

in the environment may have favored mutations that lead to less nitrogen within these enzymes.

However, evidence for selection for less nitrogen usage would manifest within the entire protein

sequence, rather than just the active sites. Thus, we computed the fraction of amino acids with ni-

trogenous side chains across the entire coding sequences, rather than specifically the active sites, for

enzymes associated with pre- and post-ammonia reactions (see Methods). We found no evidence

that enzymes in the pre-ammonia network had a decreased usage of amino acids with nitrogenous

side chains side chains relative to enzymes added to the network after ammonia was included in the

seed set (one-tailed Wilcoxon sign rank test: P = 1) , suggesting that the biases within the active

sites are not merely a consequence evolutionary selection (see Fig. 3.9).
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Figure 3.6: Enzymes in thioester-driven protometabolism are depleted in nitrogenous com-
pounds (A) We classified reactions in KEGG as being plausibly pre-enzymatic (PPE) reactions if
they could (a) proceed spontaneously, (b) were associated with enzymes that contain at-least one
iron-sulfur cluster or (c) were associated with an enzyme that relied on at-least one metal (Ni, Co,
Cu, Mg, Mn, Mo, Zn, Fe, W) cofactor. (B) For all scenarios resulting in expansion of > 100
metabolites (n = 144, Fig. 3.6A) we computed the fraction of PPE-reactions amongst the pre-
ammonia reactions (x axis) and post-ammonia reactions (y-axis). The frequency of PPE-reactions
in the pre-ammonia reaction set was on average higher than the frequency of PPE-reactions in
the post-ammonia reaction set (one-tailed Wilcoxon sign-rank test: P < 10−19). (C) We iden-
tified KEGG reactions that were dependent on at-least one of the following nitrogen-containing
coenzymes: flavin, biotin, thiamine pyrophosphate (TPP) pyridoxal phosphate (PLP), heme, pterin
or cobalamin. (D) We compute the fraction of pre- and post- ammonia reactions associated with
nitrogen containing coenzymes in the KEGG database, and found that a much higher proportion
of post-ammonia reactions were dependent on these coenzymes relative to pre-ammonia reactions
(one-tailed Wilcoxon sign-rank test: P < 10−24). (E) We parsed the catalytic active site database
[162] to find entries associated with pre and post-ammonia reactions, and compute the fraction
of entries associated with amino acids with nitrogen-containing side chains (Q,N,W,H,K,R). (F)
For each scenario, the fraction of active sites with nitrogen-containing amino acids was signifi-
cantly higher for post-ammonia reactions relative to pre-ammonia reactions (one-tailed Wilcoxon
sign-rank test: P < 10−24).
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acid, is producible only if thiols and reductant below 400 mV is provided in the seed set.



70

B

A

Precursors
OH

O

O

R1

Ketoacids (KA)

OH

O

H2N

R1

Amino acid (AA)

R3

N
H

OH

O

O

R2

H
N

O

H2N

R1

Polypeptides

NH4
+

e-

Precursors

R3

O
OH

O

O

R2

O

O

HO

R1

OH

O

HO

R1

OH

O

O

R1

Ketoacids (KA) Hydroxyacids (HA) Polyesters

e-

coupled to phosphodiester & thioester bond breaking

coupled to thioester bond breaking

Figure 3.8: Putative ancient catalysts. (A) In extant biochemistry, keto acid are converted to
amino acids using transamination or reductive amination reaction mechanisms, which are then
polymerized using a phosphate or thioster coupled mechanism to make polypeptides. (B) If prebi-
otic environments did not have a source of fixed nitrogen, then keto acids could have been reduced
to α-hydroxy acids, which could then be polymerized into polyesters either with [40] or without
[53] thioester bond breaking.

0.2 0.202 0.204 0.206
0.2

0.202

0.204

0.206

0.208

pre-ammonia enzyme

residue fraction 

p
o

s
t-

a
m

m
o

n
ia

 e
n

z
y
m

e

 r
e

s
id

u
e

 f
ra

c
ti
o

n
 

P = 1

Figure 3.9: Enzymes catalyzing reactions before the addition of ammonia are not depleted
in nitrogen containing amino acids relative to enzymes added after ammonia To see if the
amino acid biases in active sites of enzymes catalyzing reactions added to the network without
ammonia (see Fig. 3.6E-F) is confounded due to evolutionary selection for reduced nitrogen in
these enzymes, we computed the fraction of nitrogen side chains in enzymes in pre-ammonia re-
actions (x−axis) and in enzymes in post-ammonia reactions y-axis. We found that enzymes in
the pre-ammonia networks did not have significantly less nitrogen usage compared to enzymes in
post-ammonia reactions (one-tailed Wilxocon sign-rank test: P = 1).
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& Sanchez, A. Emergent simplicity in microbial community assembly. (preprint on bioRxiv [63];

Science, in press) (*Equal contributions)

The majority of experiments were performed for this paper by Nanxi Lu, Djordje Bajic and Sylvie

Estrela. My contributions were the design of experiment, pilot ecological experiments, bioinfor-

matic analysis, development of theory, and numerical implementations of models. I performed

all data analysis and made all figures presented in this thesis, and wrote the paper with Alvaro

Sanchez.

Abstract

Microbes assemble into complex, dynamic, and species-rich communities that play critical roles

in human health and in the environment. The complexity of natural environments and the large

number of niches present in most habitats are often invoked to explain the maintenance of microbial

diversity in the presence of competitive exclusion. Here we show that soil and plant-associated

microbiota, cultivated ex situ in minimal synthetic environments with a single supplied source

of carbon, universally re-assemble into large and dynamically stable communities with strikingly
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predictable coarse-grained taxonomic and functional compositions. We find that generic, non-

specific metabolic cross-feeding leads to the assembly of dense facilitation networks that enable

the coexistence of multiple competitors for the supplied carbon source. The inclusion of universal

and non-specific cross-feeding in ecological consumer-resource models is sufficient to explain our

observations, and predicts a simple determinism in community structure, a property reflected in our

experiments.

Introduction

Microbial communities play critical roles in a wide range of natural processes, from animal de-

velopment and host health to biogeochemical cycles [145, 183, 85]. Recent advances in DNA

sequencing have allowed us to map the composition of these communities with an unprecedenteda

high resolution. This has motivated a surge of interest in understanding the ecological mecha-

nisms that govern microbial community assembly and function [34]. A quantitative, predictive

understanding of microbiome ecology is required in order to to design effective strategies to ra-

tionally manipulate microbial communities communities and steer them away from undesirable or

unhealthy states towards beneficial ones.

Surveys studies of microbiome composition across a wide range of ecological settings, from

the oceans to the human body [183, 85], have revealed intriguing empirical patterns in microbiome

organization. These widely observed properties include: high microbial diversity; the coexistence

of multiple closely related species within the same functional group; functional stability despite

large species turnover; and different degrees of determinism in the association between nutrient

availability and taxonomic composition at different phylogenetic levels [85, 187, 112, 111, 125, 25,

39]. These observations have led to the proposed existence of common organizational principles in

microbial community assembly [112, 111]. However, the lack of a theory of microbiome assembly

is hindering progress towards explaining and interpreting these empirical findings, and it remains

unknown which of the functional and structural features exhibited by microbiomes reflect specific

local adaptations at the host or microbiome level [39], and which are generic properties of complex,
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self-assembled microbial communities.

Efforts to connect theory and experiments for understanding microbiome assembly have typi-

cally relied on manipulative bottom-up experiments with a small number of species [56, 190, 81].

While this highly controlled approach is useful to reveal insights into specific mechanisms of in-

teractions, it is unclear to what extent findings from these studies scale up to predict the generic

properties of large microbial communities or and even the interactions therein. Of note is the on-

going debate about the relative contributions of competition and facilitation [54, 35] and the poorly

understood role that high-order interactions play in microbial community assembly [56, 109, 7].

To move beyond empirical observations and connect statistical patterns of microbiome assembly

with ecological theory, it is necessary to study the assembly of large numbers of large multi-species

microbiomes in simple environments need to be studied, under highly controlled conditions that

allow proper comparison between theory and experiment.

Results

Assembly of large microbial communities on a single limiting resource

To meet this challenge, we have followed a high-throughput ex situ cultivation protocol to mon-

itor the spontaneous assembly of ecologically stable microbial communities derived from natural

habitats in well-controlled environments – using synthetic (M9) minimal media containing a single

externally-supplied source of carbon, (Methods) as well as single sources of all of the necessary

salts and chemical elements required for microbial life (Fig. 4.2A). Intact microbiota suspensions

were extracted from diverse natural ecosystems, such as various soils and plant leaf surfaces (Meth-

ods). Suspensions of microbiota from these environments were highly diverse and taxonomically

rich (Fig. 4.1), ranging between 110 and 1290 exact sequence variants (ESV). We first inoculated

12 of these suspensions of microbiota into fresh minimal media with glucose as the only added car-

bon source, and allowed the cultures to grow at 30 ◦C in static broth. We then passaged the mixed

cultures in fresh media every 48 hours with a fixed dilution factor of for a total of 12 transfers

(around 84 generations). At the end of each growth cycle, we assayed the community composition
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Figure 4.1: Characterization and diversity of microbiomes isolated from plant and soil sam-
ples. (A) 16S sequencing results for 11/12 initial inocula (labeled 1-10, 12 on the x-axis). Stacked
bar-plots show the community composition at the Order taxonomic level. B) Rarefaction curves for
each inoculum community; the average of 100 random samples of a fixed sampling size (x-axis)
was plotted against the number of unique exact sequence variants (ESV) (y-axis). The number
of unique 16S sequences spanned an order of magnitude, ranging from 110-1290 exact sequence
variants. Note that we were unable to generate amplicon libraries for inoculum 11

using 16S rRNA amplicon sequencing (Fig.4.2A, Methods). High resolution sequence denoising

allowed us to identify ESVs, which revealed community structure at single nucleotide resolution

[26].

Most communities stabilized after 60 generations, reaching stable population equilibria in

nearly all cases (Fig. 4.2B, 4.3). For all of the 12 initial ecosystems, we observed large multi-

species communities after stabilization that ranged from 4 to 17 ESVs at a sequencing depth of

10,000 reads; further analysis indicates that this is a conservative estimate of the total richness in

our communities (Fig. 4.4 - 4.5, see Methods). We confirmed the taxonomic assignments generated

from amplicon sequencing by culture-dependent methods, including the isolation and phenotypic

characterization of all dominant genera within a representative community (Fig. 4.6).

Convergence of bacterial community structure at the family taxonomic level

High-throughput isolation and stabilization of microbial consortia allowed us to explore the rules

governing the assembly of bacterial communities in well-controlled synthetic environments. At
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Figure 4.2: Top down assembly of bacterial consortia. (A) Experimental scheme: large ensem-
bles of taxa were obtained from 12 leaf and soil samples, and used as inocula in passaged-batch
cultures containing synthetic media supplemented with glucose as the sole carbon source. After
each transfer, 16S rRNA amplicon sequencing was used to assay bacterial community structure.
(B) The community structure of a representative community (from inoculum 2) after every dilution
cycle (about 7 generations), revealing a 5-member consortia from the Enterobacter, Raoultella,
Citrobacter, Pseudomonas and Stenotrophomonas genera. The community composition after 84
generations is shown at the exact sequence variant (ESV) level (C) or the family taxonomic level,
converging to characteristic fractions of Enterobacteriaceae and Pseudomonadaceae (D). (E) Sim-
plex representation of family-level taxonomy before (t = 0) and after (t = 84) passaging exper-
iment. (F-G) Experiments were repeated with 8 replicates from a single source (inocula 2), and
communities converged to very similar family level distributions (G), but displayed characteristic
variability at the genus and species level (F).
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Figure 4.3: Dynamics of ex-situ community composition over 84 generations in glucose-
supplemented media. Communities were transferred into fresh media every 48 hours, allowing
approximately seven growth generations per transfer. After each transfer, we determined the com-
munity composition using 16S rRNA amplicon sequencing (see methods). The relative abundance
of each taxon was plotted as a function of time (generations). All inocula appear to reach stable
community structures by the 60th generation
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Figure 4.4: Presence of sparse rare taxa in ex situ assembled microbial communities. (A) Rar-
efaction curves were produced by subsampling a fixed number of reads and computing the number
of unique exact sequence variants (ESVs). The plot shows the average over 100 samples at each
fixed sampling depth (x-axis) for each of the 12 inocula. (B) For each stabilized community, we
aimed to estimate the prevalence of rare taxa on our stabilized communities by measuring the num-
ber of additional ESVs detected at sampling depths above 10,000 reads. We plotted the number
additional reads above 10,000 (x-axis) vs the number of additional ESVs detected at sampling
depths above 10,000 reds (y-axis). Although there appears to be a positive correlation between ad-
ditional sampling depth and additional reads, at-most 2 additional ESVs were detected at sampling
depths of nearly 60,000 reads. (C) To further quantify the presence of rare taxa in our samples,
we took eight communities stabilized on M9+citrate and passaged them on M9+glutamine for an
additional 7 transfers, and sequenced at an average depth of 25,000 reads. The number of ESVs
detected in the communities passaged on M9+citrate are plotted as blue bars, and the additional
ESVs detected in the communities passaged on M9+glutamine are plotted as orange bars, where
between 0-3 additional ESVs were detected when passaged on glutamine.
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Figure 4.5: Low levels of bacterial growth with no externally supplied carbon source. (A) We
repeated passaging experiments without an externally supplied carbon source, and observed that
widespread and diverse communities survive over the course of 84 generations. Communities were
similar in structure to glucose supplemented communities (B), but with higher diversity. C)To de-
termine the richness of communities surviving primarily on the externally supplied resource, we
plated the communities after 84 generations and counted colony forming units (CFU). We plotted
the CFU/mL in replicates of four for each inoculum passaged either on M9 with 0.2% glucose
(blue) or on M9 with no supplemented carbon source (yellow). In all cases, populations sizes were
orders of magnitude lower when no carbon source was provided compared to population sizes of
communities grown on glucose. D) hemocytometer cell counting was performed to verify that
CFU accurately recapitulated cell densities. For 12 samples, hemocytometer counting was per-
formed and compared to CFU counts, exhibiting strong positive correlation (Pearson’s correlation,
ρ = 0.98). E) Measurements of absolute population sizes allowed us to define relative abundance
cutoffs for communities grown on glucose, ensuring that growth of taxa above the relative abun-
dance cutoff was primarily a consequence of the externally supplied glucose.
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Figure 4.6: Four strains from a representative community coexist in reconstituted commu-
nities. 12 isolates were picked from a representative community from inoculum 2 with 4 distinct
morphologies. (A-B) Isolates were grown in phenol red broth with the addition of one of 16 car-
bon sources. Optical density (OD) was measured at 450 nm and 551 nm after 19 hours to track
the degree of acidification from fermentation. (C) The O.D. profiles were hierarchically clustered,
revealing 4 clusters of isolates with distinct fermentation profiles, corroborating morphology and
sequencing results. These results indicate that the 12 isolates belong to one of four taxa, (D) To see
if these four taxa could coexist without the presence of other community members, we inoculated
M9+0.2% glucose with equal proportions of each taxa, passaged them for seven dilution cycles and
plated the final populations. We counted the colony forming units (CFUs) and distinguished each
taxa based on morphology. (E) The relative abundance of three replicates at transfers show that all
four taxa coexist after seven transfers.
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the species (ESV) level of taxonomic resolution, the 12 natural communities assembled into highly

variable compositions (Fig. 4.2C). However, when we grouped ESVs by higher taxonomic ranks

we found that all 12 stabilized communities, with very diverse environmental origins, converged

into similar family-level community structures dominated by Enterobacteriaceae and Pseudomon-

adaceae (Fig. 4.2D). In other words, a similar family-level composition arose in all communities

despite their very different starting points. This is further illustrated in Fig.4.7, where we show

that the temporal variability (quantified by the β-diversity) in family level composition is compa-

rable with the variability across independent replicates. The same is not true when we compare

taxonomic structure at the sub-family level (i.e. genus).

To better understand the origin of the taxonomic variability observed below the family-level,

eight replicate communities were started from each one of the 12 starting microbiome suspensions

(inocula), and propagated in minimal media with glucose as in the previous experiment. Given

that the replicate communities were assembled in identical habitats and were inoculated from the

same pool of species, any observed variability in community composition across replicates would

suggest that random colonization from the regional pool and microbe-microbe interactions are suf-

ficient to generate alternative species-level community assembly. Indeed, for most of the inocula

(nine out of twelve), replicate communities assembled into alternative stable ESV-level compo-

sitions, while still converging to the same family-level attractor described in Fig. 4.2E (see also

Fig. 4.7). One representative example is shown in Fig. 4.2F-G; all eight replicates from the same

starting inoculum assemble into strongly similar family-level structures, which are quantitatively

consistent with those found before (Fig. 4.2D). However, different replicates contain alternative

Pseudomonadaceae ESVs, and the Enterobacteriaceae fraction is constituted by either an ESV from

the Klebsiella genus, or a guild consisting of variable subcompositions of Enterobacter, Raoultella,

and/or Citrobacter as the dominant taxa. The remaining (three out of twelve) inocula converge to

similar community compositions and all replicates exhibit strongly similar population dynamics

and population structures at all levels of taxonomic resolution (Fig.4.8). The reproducibility in

population dynamics between replicate communities indicates that experimental error is not the

main source of variability in community composition. Indeed, the population bottlenecks intro-
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duced by the serial dilutions into fresh media have only a modest effect on the observed variability

in population dynamics (Fig.4.9).

Despite the observed species level variation in community structure, the existence of family-

level attractors suggests the existence of fundamental rules governing community assembly. Recent

work on natural communities has consistently found that environmental filtering selects for con-

vergent function across similar habitats, while at the same time allowing for taxonomic variability

within each functional class [111, 187, 113]. In our assembled communities in glucose media, fixed

proportions of Enterobacteriaceae and Pseudomonadaceae may have emerged due to a competitive

advantage, given the well-known glucose uptake capabilities of the phosphotransferase system in

Enterobacteriaceae and ABC transporters in Pseudomonadaceae [67]. This suggests that the ob-

served family-level attractor may change if we assemble communities adding a different carbon

source to our synthetic media.

To determine the effect of the externally provided carbon source on environmental filtering, we

repeated the community assembly experiments with eight replicates of all 12 natural communities,

using two alternative single-carbon sources, citrate or leucine, instead of glucose. Consistent with

previous experiments on glucose minimal media, communities assembled in citrate or leucine con-

tained large numbers of species: communities stabilized on leucine contained 6-22 ESVs, while

communities stabilized on citrate contained 4-22 ESVs at a sequencing depth of 10,000 reads. As

was the case for glucose, replicate communities assembled on citrate and leucine also differed

widely in their ESV-level compositions, while converging to carbon source-specific family-level

attractors (Fig. 4.10A, 4.11, and 4.12).

Family-level community similarity (Renkonen similarity) was on average higher between com-

munities passaged on the same carbon source (median: 0.88) than between communities pas-

saged from the same environmental sample (median 0.77, one-tailed Kolmogorov-Smirnov test,

P < 10−5; Fig. S11). Communities stabilized in citrate media were composed of a significantly

lower fraction of Enterobacteriaceae (MannWhitney U test, P < 10−5), and displayed an en-

richment of Flavobacteriaceae relative to communities grown on glucose (MannWhitney U test,

P < 10−5), while communities stabilized in leucine media had no growth of Enterobacteriaceae
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Figure 4.7: The community structure from the same inocula can be highly variable and the
genus level, but similar at the family level. Passaging experiments of microbial communities
on M9 + 0.2 % glucose were repeated with up to 8 replicates per inoculum. (A) Each subplot is
the relative abundance of the exact sequence variants (ESVs) for all replicates originating from the
same inoculum. Note that for each inoculum, fixed points range from multiple (e.g inoculum 2) to a
single attractor (e.g. inoculum 6). (B) The distribution of richness (see Fig.4.5) estimates across all
communities formed in (A) showed that all large-scale competitive experiments retained at-least 2
sequence variants, and the majority (48/92) retained more than four sequence variants. (C) To char-
acterize the variability of community structure across different starting replicates at various levels
of taxonomic resolution, we computed the Renkonen similarity (at both genus and family-levels)
between replicate communities from inocula 2 after 12 transfers. As a comparison, we computed
the Renkonen similarity between samples obtained at the end of the last three transfers (transfer
10-12) within the same replicate. The boxplots are distributions of Renkonen similarities between
both within replicates (blue) and between replicates (red) at the genus (left) and family (right)
taxonomic levels. Communities are significantly less similar at the genus level when comparing
between replicates vs. within replicates (Mann-Whitney U-test: P < 10−4), while communities
are of comparable similarity at the family level when comparing samples from different replicates
vs. samples from the same replicate (Mann-Whitney U-test: P = 0.06)
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Figure 4.8: Inoculum 6 exhibits strongly deterministic population dynamics. We performed
replicate passaging experiments starting with inoculum 6 and found nearly reproducible population
dynamics. Each subplot shows the relative abundance of sequence variants (y-axis) during the
course of the passaging experiment (x-axis). Notably, in 7/8 replicates, a bloom of a Pantoea
sequence variant occurred at the 42nd generation.
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D = 8 x 10-3

D = 8 x 10-4

D = 8 x 10-2

Figure 4.9: Day-to-day sampling likely does not induce substantial variation in community
structure. We calculate the probability of extinction by stochastic sampling as a function of the
size of the population for a given species, for the dilution factor we apply in our experiments (D =
0.008; purple line) as well as for 10-fold larger (red) and 10-fold smaller (green) dilution factors.
We note that all of the ESVs that we detect in our community 16S sequencing have population
sizes of at least 10,000.

and an enrichment for Comamonadaceae relative to communities grown on glucose (MannWhitney

U test, P < 10−5) or citrate (MannWhitney U test, P < 10−5).

These results suggest that the supplied source of carbon governs community assembly. To

quantify this effect, we used a machine learning approach and trained a support vector machine

(SVM) to predict the identity of the supplied carbon source from the family-level community com-

position. We obtained a cross-validation accuracy of 97.3% (Fig. 4.10B; Methods). Importantly,

we found that considering the tails of the family-level distribution (as opposed to just the two

dominant taxa) increases the predictive accuracy (Fig. 4.10B), which indicates that carbon source-

mediated determinism in community assembly extends to the entire family-level distribution, in-

cluding the more rarefied members.

Rather than selecting for the most fit single species, our environments select complex commu-

nities that contain fixed fractions of multiple coexisting families whose identity is determined by

the carbon source in a strong and predictable manner (Fig. 4.14). We hypothesized that taxonomic

convergence might reflect selection by functions that are conserved at the family level. Consistent

with this idea, we find that the imputed community metagenomes assembled on each type of carbon
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Figure 4.10: Family-level and metagenomic attractors are associated with different carbon
sources. (A) Family-level community compositions are shown for all replicates across 12 inocula
grown on either glucose, citrate or leucine as the limiting carbon source. (b) A support vector
machine (see Methods) was trained to classify the carbon source from the family-level community
structure. Low abundant taxa were filtered using a predefined cutoff (x-axis) before training and
performing 10-fold cross validation (averaged 10 times). Classification accuracy with only Enter-
obacteriaceae and Pseudomonadaceae resulted in a model with 93% accuracy (right bar), while
retaining low abundant taxa (relative abundance cutoff of 10−4) yielded a classification accuracy
of 97% (left most bar). (C) Metagenomes were inferred using PICRUSt [104], and dimension-
ally reduced using tSNE, revealing that carbon sources are strongly associated with the predicted
functional capacity of each community



86

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6

0 0.5 1

1
2
3
4
5
6

Klebsiella
Enterobacter
Raoultella
Pantoea
Raoultella
Serratia
Salmonella
Enterobacter
NA
Pseudomonas
Pseudomonas
Pseudomonas
Pseudomonas
Pseudomonas
Pseudomonas
Pseudomonas
Pseudomonas
Pseudomonas
Bordetella
Ochrobactrum
Enterococcus
Elizabethkingia
Chryseobacterium
Chryseobacterium
Sphingobacterium
Stenotrophomonas
Stenotrophomonas
Stenotrophomonas
Other

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6
7
8

0 0.5 1

1
2
3
4
5
6

0 0.5 1

1
2
3
4
5
6

Enterobacteriaceae
Pseudomonadaceae
Alcaligenaceae
Brucellaceae
Enterococcaceae
Flavobacteriaceae

Sphingobacteriaceae
Xanthomonadaceae

Other

ESV-level community structure Family-level community structure

Inoculum 1 Inoculum 2Inoculum 1 Inoculum 2 Inoculum 3 Inoculum 3

Inoculum 4 Inoculum 5 Inoculum 6

Inoculum 7 Inoculum 8 Inoculum 9

relative abundance

re
p

lic
a

te

Inoculum 4 Inoculum 5 Inoculum 6

Inoculum 7 Inoculum 8 Inoculum 9

Inoculum 10 Inoculum 11 Inoculum 12Inoculum 10 Inoculum 11 Inoculum 12

relative abundance

Figure 4.11: Community structure at ESV and family level on citrate. Passaging experiments
of microbial communities on M9 + 0.07 C-mole/L citrate were performed with up to 8 replicates
per inoculum, as in the case with glucose.
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Figure 4.12: Community structure at ESV and family level on leucine. Passaging experiments
of microbial communities on M9 + 0.07 C-mole/L leucine were performed with up to 8 replicates
per inoculum.



88

Principal Component 1 [49.0%]
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
ri

n
c
ip

a
l C

o
m

p
o

n
e

n
t 

2
 [
9

.2
 %

]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Alcaligenaceae

Enterobacteriaceae

Flavobacteriaceae

Enterococcaceae

Porphyromonadaceae
Sphingomonadaceae

Xanthomonadaceae
Brucellaceae

Comamonadaceae

Rhizobiaceae

A B

feature importance score
0 1 2

Cellulomonadaceae
Porphyromonadaceae

Bradyrhizobiaceae
Chitinophagaceae

Hyphomicrobiaceae
Sphingobacteriaceae

Nocardiaceae
Aeromonadaceae

Sphingomonadaceae
Alcaligenaceae
Moraxellaceae

Oxalobacteraceae
Brucellaceae

Rhizobiaceae
Xanthomonadaceae

Flavobacteriaceae
Enterococcaceae

Comamonadaceae
Pseudomonadaceae
Enterobacteriaceae

Random forest feature

importance score

Glucose

Citrate

Leucine

Figure 4.13: Family-level features associated the carbon source. (A) The family-level com-
munity composition was log-transformed and dimensionally reduced using principal component
analysis. Like in Fig 4.10A, family-level community structure was strongly associated with the
carbon source in the media. A biplot was used to show which taxa were correlated with the first
two principal components. (B) A random forest classifier was trained to predict carbon source from
the family-level community structure, and out-of-bag feature importance scores are reported, con-
firming that the abundance of Enterobacteriaceae and Pseudomonadaceae are important predictors
of carbon source.

source exhibit substantial clustering by the supplied carbon source (Fig. 4.10C), and are enriched

in pathways for its metabolism (Fig. 4.14). When we spread the stabilized communities on agarose

plates, we routinely found multiple identifiable colony morphologies per plate, evidencing that

multiple taxa within each community are able to grow independently on (and thus compete for) the

single supplied carbon source. This suggests that the genes and pathways that confer each commu-

nity with the ability to metabolize the single supplied resource are distributed among multiple taxa

in the community, rather than being present only in the best competitor species.

Widespread metabolic facilitation stabilizes competition and promotes coexistence

Classic consumer-resource models indicate that when multiple species compete for a single exter-

nally supplied growth-limiting resource, the only possible outcome is competitive exclusion unless

specific circumstances apply [115, 182, 186, 164, 98, 68]. However, this situation does not ad-
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Figure 4.14: Family-level composition is a strong taxonomic predictor of the externally-
supplied carbon source. (A) The distributions of Renkonen similarities between family-level
compositions between samples either grown on the same carbon source (light blue, N = 12558) or
between samples from the same inocula (grey N = 3056) are plotted, revealing that the commu-
nities grown on the same carbon source are more similar than communities grown from the same
inocula (one-tailed Kolmogorov-Smirnov test; P < 10−5). (B) A support vector machine (SVM)
classifier was used to train a model to predict the carbon source (glucose, citrate or leucine) from
the clr-transformed community structure at the ESV or family level. Models were trained using
different coarse-graining descriptions of community structure based on taxonomy (x-axis) and the
10-fold cross-validation accuracy (repeated 10 times) for each model is reported on the y-axis.
(C) An SVM was retrained using families above a pre-defined threshold (x-axis), and the misclas-
sification rate (1-accuracy) is reported on the y-axis, revealing that low-abundant families aid in
model performance. (D) Metagenome compositions were imputed using PICRUSt [104] and em-
bedded in a two-dimensional space using t-distributed stochastic neighbor embedding (tSNE). (E)
The summed abundance of genes belonging to the leucine degradation KEGG module (M00036)
are plotted for all samples using a boxplot, where samples are grouped by the limiting carbon
source (x-axis). Leucine degradation genes are enriched in communities grown on leucine relative
to communities grown on citrate (Mann Whitney U-test: P < 10−14) or glucose (Mann Whitney
U-test: P < 10−24).
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equately reflect microbes, whose ability to engineer their own environments is well documented

both in the lab [15, 146, 165, 74] and in nature [12, 37]. Thus, we hypothesized that the observed

coexistence of competitor species in our experiments may be attributed to the generic tendency of

microbes to secrete metabolic byproducts into the environment, which could then be used by other

community members.

To determine the plausibility of niche creation mediated by metabolic byproducts, we analyzed

one representative glucose community in more depth. We isolated members of the four most abun-

dant genera in this community (Pseudomonas, Rauoultella, Citrobacter and Enterobacter), which

together represented 97% of the total population in that community (Fig. 4.15A). These isolates

had different colony morphologies and were also phenotypically distinct (Fig. 4.6). All isolates

were able to form colonies in glucose agarose plates and all grew independently in glucose as the

only carbon source, which indicates that each isolate can compete for the single supplied resource.

All four species were able to stably coexist with one another when the community was recon-

stituted from the bottom up by mixing the isolates together from isolates (Fig. 4.6). To test the

potential for cross-feeding interactions in this community, we grew monocultures of the four iso-

lates for 48 hours in synthetic M9 media containing glucose as the only carbon source (Fig. 4.15B).

At the end of the growth period the glucose concentration was too low to be detected, indicating

that all of the supplied carbon had been consumed and any carbon present in the media originated

from metabolic byproducts previously secreted by the cells. To test whether these secretions were

enough to support growth of the other species in that community, we filtered the leftover media to

remove cells, and added it to fresh M9 media as the only source of carbon (Fig. 4.15B). We found

that all isolates were able to grow on every other isolates secretions (e.g. Fig. 4.15C), forming a

fully connected facilitation network (Fig. 4.15D). Growth on the secretions of other community

members was strong, often including multiple diauxic shifts, and the amount of growth on secre-

tions was comparable to that on glucose, suggesting the pool of secreted byproducts are diverse

and abundant in this representative community.

To find out if growth on metabolic byproducts is frequent among our communities, we thawed

95 glucose-stabilized communities (7-8 replicates from 12 initial environmental habitats) and grew
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them again on glucose as the only carbon source for an extra 48 hour cycle. In all 95 communities

glucose was completely exhausted after 24 hours of growth (Fig. 4.15E); yet, most communities

continued growing after glucose had been depleted (Fig. 4.15E), showing that growth on previously

secreted byproducts is widespread. Moreover, community growth on the secreted byproducts is

strong: on average, communities produce approximately 25% as much biomass on the secretions

alone as they did over the first 24 hours when glucose was present (Fig. 4.15F). Both propidium

iodide (PI) staining and phase contrast imaging of communities at the single-cell level identified

low numbers of permeabilized or obviously lysed cells. This supports the hypothesis that metabolic

byproduct secretion (rather than cell lysis) is the dominant source of the observed cross-feeding.

However, we note that lytic events that leave no trace behind would not have been detected in our

micrographs, so a contribution from cell death to our results cannot be entirely ruled out. Other

mechanisms may also operate together with facilitation in specific communities to support high

levels of biodiversity [109, 98, 155, 31, 108] In experiments where the environment was well

mixed by vigorous shaking, we also found communities containing multiple taxa, indicating that

spatial structure is not required for coexistence (Fig. 4.16). In addition we did not observe effects

from temporal competitive niches in our experiments (Fig. 4.17).

Recent work has suggested that alteration of the pH by bacterial metabolism may also have

important effects on limiting growth [36, 157, 158], and can be a driver of microbial commu-

nity assembly. Our results suggest that although individual isolates can substantially acidify their

environment when grown in glucose as monocultures (e.g. the pH drops to 4.85 in Citrobacter

and to 5.55 in Enterobacter monocultures after 48 hours), our stabilized communities exhibit only

modest changes in pH as they grow in glucose minimal media, dropping by less than 1 unit in

most communities, and stabilizing to pH 6.5 in all cases after 48 hours of growth. In other carbon

sources, such as leucine, the pH is even more stable than in glucose. Altogether, our results suggest

that acidification by fermentation may be ”buffered” by the community relative to the effect seen

by monocultures. Although beyond the scope of this work, efforts to elucidate the roles of other

mechanisms that may stabilize competition, like phage predation [164] or non-transitive competi-

tion networks [109], will more fully characterize the landscape of interactions in these microcosms.
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Figure 4.15: Non-specific metabolic facilitation stabilizes competition for the supplied re-
source. (A) The major taxa in a representative community from inoculum 2 were isolated, grown
under conditions with minimal media (M9) and glucose, and the metabolic byproducts were used
as the sole carbon source in growth media for other isolates. (B) Experimental set-up: isolates were
grown in minimal media with glucose for 48 hours, and cells were filtered out from the suspension.
The suspension of byproducts was mixed 1:1 with 2X M9 media and used as the growth media for
other isolates (see also Methods). (C) An example growth curve for Citrobacter growing either with
M9 supplemented with 0.2 % glucose (grey line) or the metabolic byproducts from Enterobacter
(black line). (D) All isolates were grown on every other isolates metabolic byproducts, and logistic
models were used to fit growth curves. We plotted the fitted growth parameters (carrying capac-
ity) as edges on a directed graph, where the edges encode the carrying capacity of the target node
isolate when grown using the secreted byproducts from the source node isolate. Edges from the
top node encodes the carrying capacity on 0.2 % glucose, which is comparable in edge width/color
to several of the other interactions. (E-F) All communities stabilized on glucose were grown in
glucose-supplemented M9 media, and optical densities at 620 nm were measured, showing that
after glucose was depleted ( 24 hours), communities on average grew an additional 25%.
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Figure 4.16: Non-specific metabolic facilitation stabilizes competition for the supplied re-
source. Spatial structure in our 96-well plate format could also allow for coexistence of microbial
species [31]. Thus, experiments were repeated for three separate inocula passaged on media with
M9+0.2% glucose, but while vigorously shaking cultures at 200 RPM. In all cases, no single strain
outcompeted all other strains, suggesting that coexistence is stable even without potential spatial
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Monod parameters to simulate a batch culture passaging experiment (B), and found that Raoultella
competitively excludes all other species in silico. If the outlier observed at low growth rates is
retained, Raoultella still competitively excludes all other species. Together, these results indicate
that there is no supporting evidence of resource abundance-dependent fitness effects that lead to
coexistence amongst these strains.
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A generic consumer resource model recapitulates experimental observations

Our experiments indicate that competition for a single limiting nutrient may be stabilized by non-

specific metabolic facilitation, leading to coexistence. To test whether this feature alone promotes

coexistence, we simulated a community assembly process on a single supplied carbon source using

a version of the classic MacArthur consumer resource model (CRM) [114], which was modified

to include non-specific cross-feeding interactions. Cross-feeding was modeled through a stoichio-

metric matrix that encodes the proportion of a consumed resource that is secreted back into the

environment as a metabolic byproduct (Supporting Information). Setting this matrix to zero results

in no byproducts being secreted, and recovers the classic results for the CRM in a minimal environ-

ment with one resource: the species with highest consumption rate of the limiting nutrient compet-

itively excludes all others (Fig. 4.18A, inset). However, when we drew the stoichiometric matrix

from a uniform distribution (while ensuring energy conservation), and initialized simulations with

hundreds of species (each defined by randomly generated rates of uptake of each resource) coex-

istence was routinely observed (Fig. 4.18A). All of the coexisting species in this simulation were

generalists, capable of growing independently on the single supplied resource as well as on each

other species secretions.

Our experiments have shown that the family-level community composition is strongly influ-

enced by the nature of the limiting nutrient, which may be attributed to the metabolic capabilities

associated with each family. We modeled this scenario by developing a procedure that sampled

consumer coefficients from four metabolic families, ensuring that consumers from the same family

were metabolically similar (see Fig.4.19). We randomly sampled a set of 100 consumer vectors

(or species) from four families, then simulated growth on 20 random subsets of 50 species on one

of three resources (labeled here as A, B or C). As in our experimental data (Fig. 4.10A), sim-

ulated communities converged to similar family-level structures (Fig.4.18C), despite displaying

variation at the species level (Fig. 4.18B). We confirmed the correspondence between family-level

convergence and functional convergence by computing the community-wide metabolic capacity

per simulation, resulting in a predicted community-wide resource uptake rate for each resource.



96

Communities grown on the same resource converged to similar uptake capacities with an enhanced

ability to consume the limiting nutrient (Fig. 4.18D). Importantly, this functional convergence is

exhibited even when consumers are drawn from uniform distributions, with no enforced family-

level consumer structure, suggesting that the emergence of functional structure at the community

level is a universal feature of consumer resource models (Fig. 4.20).

We frequently observed that several species belonging to the same metabolic family could co-

exist at equilibrium. These guilds of coexisting consumers from the same family were capable of

supporting the stable growth of rare (¡1% relative abundance) taxa, rather than a single represen-

tative from each family (Fig. 4.18E), similar to our experimental data (Fig. 4.2C,E). Our model

suggests that species are stabilized by a dense facilitation network (Fig. 4.18F), consistent with

observations of widespread metabolic facilitation in experiments (Fig.4.15D).

Thus, we find that simulations of community dynamics with randomly generated metabolisms

and resource uptake capabilities capture a wide range of qualitative observations found in our

experiments, and recapitulate previous empirical observations in natural communities [85, 39].

Discussion

In the absence of a theory of microbiome assembly, it is often difficult to determine whether em-

pirically observed features of natural microbiomes are the result of system-specific determinants,

such as the evolutionary history and past selective pressures at the host level [39], or whether they

are simply emergent generic properties of large self-assembled communities. Our results show

that the generic statistical properties of large consumer-resource ecosystems include large taxo-

nomic diversity even in simple environments, a stable community-level function in spite of species

turnover, and a mixture of predictability and variability at different taxonomic depths in how nu-

trients determine community composition. All of these features are not only observed in our ex-

periments, but they have been also been reported in systems as diverse as the human gut [85, 39],

plant foliages [111] or the oceans [183, 124]. Our theoretical results thus explain the ubiquity of

these empirical findings, and suggest that they may reflect universal and generic properties of large
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Figure 4.18: A simple extension of classic ecological models recapitulates several experimental
observations. MacArthurs consumer resource model was extended to include 10 byproduct secre-
tions along with consumption of a single primary limiting nutrient (see Supporting information),
controlled by a global stoichiometric matrix Dβ,α, which encodes the proportion of the consumed
resource α that is transformed to resource β and secreted back into the environment. Consumer
coefficients were sampled from 4 characteristic prior distributions, representing four families of
similar consumption vectors. (A) Simulations using a randomly sampled global stoichiometric
matrix generically resulted in coexistence of multiple competitors, while setting this matrix zero
eliminated coexistence (A, inset). Random ecosystems often converged to very similar family-
level structures (C), despite variation in the species-level structure (B). The family-level attractor
changed when providing a different resource to the same community (B-C, subplots). (D) Total
resource uptake capacity of the community was computed (Supporting Information), analogous to
the inferred metagenome (see Fig. 4.10D), and is, like the family-level structure, highly associated
with the supplied resource. (E) Communities that formed did not simply consist of single represen-
tatives from each family, but often consisted of guilds of several species within each family, similar
to experimental data. (F) The topology of the flux distribution shows that surviving communities
all compete for the primary nutrient and competition is stabilized by differential consumption of
secreted byproducts. The darkness of the arrows corresponds to the magnitude of flux.
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Figure 4.19: Generation of families of consumers in consumer resource models. (A) A flow
diagram describing the processes of generating families of consumers in consumer resource mod-
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showing the uptake coefficients (consumption rates,) for each sampled consumer and resource. Al-
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coefficient for resource A.
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by randomly sampling consumer and stoichiometric matrices from uniform distributions, then sup-
plying one of three resources in the environment (denoted as A, B and C here), and the commu-
nities capacity to consume each resource was computed (Supplemental information). t-distributed
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resource in the environment. (B) The distribution of community-wide uptake capacity for resource
C when grown on three different resources (x-axis). Note that even in the presence of stabilizing
mechanisms like cross-feeding, the dominant signal is the capacity to uptake the primary nutrient.
(C) predictions from the model are compared to experiment, where we performed dimensionality
reduction on inferred metagenomes. We then computed the relative abundance of genes used for
leucine degradation (D), showing that communities grown in leucine are enriched genes involved in
leucine degradation relative to communities grown in citrate (Mann Whitney U-test: P < 10−14)
or glucose (Mann Whitney U-test: P < 10−24). Note that in (A) and (C), SVMs were trained to
predict the carbon source from either the community-wide uptake rates (in A) or the metagenome
(in C), and the leave-one out cross-validation accuracy is reported in the lower right corner.
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self-sustained microbial communities rather than specific adaptations. In spite of their simplicity,

consumer resource models may not only capture many of the generic qualitative features observed

in the experiments, but also can recapitulate more subtle aspects of the experiments including the

existence of temporal blooms in species that eventually go extinct and family level similarity of

communities (Fig. 4.18A,C). However, the models lack biochemical detail and thus do not have

the resolution to explain other experimental results such as pH changes, diauxic shifts, or the fact

that glucose and citrate communities are more similar to each other than they are to those stabilized

in leucine (Fig. 4.10A).

The theory and simple experimental set-up described above also allowed us to identify widespread

mechanisms that lead to the assembly of large, stable communities. We find evidence that densely-

connected cross-feeding networks may stabilize competition within guilds of highly related species

that are all strong competitors for the supplied carbon source. Such cross-feeding networks natu-

rally lead to collective rather than pairwise interactions, supporting the hypothesis that higher-order

interactions play a critical stabilizing role in complex microbiomes [109, 7]. Whether these findings

are generic in more complex environments with a larger number of externally supplied resources,

or for microbial communities highly evolved in a static environment remains to be elucidated. For

instance, the experiments and theory presented in this work indicate that the isolated microbial

communities consist of metabolic generalists, rather than metabolic specialists [185], capable of

consuming both the supplied resource as well as metabolic byproducts. It is unclear whether these

findings are generalizable to highly evolved microbial communities in static environments where

metabolic specialization may confer fitness advantages [185]. We propose that high-throughput

top-down approaches to community assembly that are amenable to direct mathematical modeling

represent an underutilized but highly promising avenue to reveal the existence of generic mecha-

nisms and statistical rules of microbiome assembly, as well as a stepping stone towards developing

a quantitative theory of the microbiome.
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Experimental methods

Isolating microbial communities from natural ecosystems

Leaf or soil samples (1 g) were collected from natural environments using sterile tweezers and

placed in 15 mL falcon tubes. In the lab, 10 mL of 5 % NaCl buffer was added to each sample and

allowed to incubate for 48 hours at room temperature. 40% glycerol stock solutions were prepared

from aqueous sample suspensions and frozen at -80 ◦C for storage.

Preparation of 96-well media plates

All media contained 0.07 C-mole/L of carbon source (glucose, citrate or leucine) and was sterile-

filtered with a 0.22 µm filter (Millipore). Stock solutions of carbon sources were stored at 4◦C

for no more than 1 month. M9 media was prepared from concentrated stocks of M9 salts (without

MgSO4 or CaCl2) and stock solutions of MgSO4 and CaCl2. 500 µL cultures containing 450

µL of sample and 50 µL stock carbon source were grown in 96 deep-well plates (VWR). For the

first two cell passages, cycloheximide was added to the media at a concentration of 200 µg/mL to

inhibit eukaryotic growth.

Passaging microbial populations

Starting inocula were obtained directly from the initial buffered solution of microbiota by inoculat-

ing 4 µL into 500 µL culture media. For each sample, 4 µL of the culture medium was dispensed

into all 60 wells of the fresh media plate. Cultures were allowed to grow for 48 hours at 30 ◦C in

static broth, then each culture was triturated 10 times to ensure communities were homogenized

before passaging. Passaging was performed by taking 4 µL from each culture to use as inocula in

500 µL of fresh media, and cells were allowed to grow again. Cultures were passaged 12 times

( 84 generations). Optical density (OD620) was used to measure biomass in cultures after the

48-hour growth cycle. Samples to be sequenced were collected and stored by spinning down in a

micro-centrifuge for 10 min at 14,000 RPM at room temperature. Cell pellets were stored at -20◦C.
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DNA extraction, library preparation and sequencing

Cell pellets were re-suspended and incubated at 37 ◦C for 30 min in enzymatic lysis buffer (20 mM

Tris-HCl, 2mM sodium EDTA, 1.2% Triton X-100) and 20 mg/mL of lysozyme from chicken egg

white (Sigma-Aldrich) to lyse the cell walls of Gram-positive bacteria. Following cell lysis, the

DNA extractions were performed following the DNeasy 96 protocol for animal tissues (Qiagen).

The clean DNA was eluted in 100 µL elution buffer of 10 mM Tris-HCl, 0.5 mM EDTA at pH 9.0.

DNA concentration was quantified using Quan-iT PicoGreen dsDNA Assay Kit (Molecular Probes,

Inc.) and normalized to 5 ng/µL for subsequent 16S rRNA sequencing. 16S rRNA amplicon

library preparation was conducted using a dual-index paired-end approach developed by Kozich

et al. (53). Briefly, PCR-amplified libraries were prepared using dual-index primers (F515/R806)

to generate amplicons spanning the V4 region of the 16S rRNA gene, then pooled and sequenced

using the Illumina MiSeq platform. For each sample, a 30-cycle PCR was performed in duplicate

in 20 µL reaction volumes using 5 ng of DNA, dual index primers, and AccuPrime Pfx SuperMix

(Invitrogen). Thermocycling conditions consisted of a 2-min initial denaturation step at 95 ◦C,

followed by 30 cycles of the following PCR scheme: (a) 20-second denaturation at 95 ◦C, (b) 15-

second annealing at 55 ◦C, and (c) 5-min extension at 72 ◦C. PCR was terminated after a 10-min

extension step at 72 ◦C. After pooling amplicons from duplicate reactions, the PCR products were

purified and normalized using the SequalPrep PCR cleanup and normalization kit (Invitrogen).

Libraries were then pooled and sequenced using Illumina MiSeq v2 reagent kit, which generated

2x250 base pair paired-end reads at the Yale Center for Genome Analysis (YCGA). For shaking

control experiments (Fig. 4.16), library preparation and sequencing was performed at SeqMatic

(Fremont, CA). Sequencing and library preparation were identical when compared to the procedure

described above, except primers targeted the V3-V4 region of 16S rRNA gene.

16S rRNA sequencing analysis

QIIME 1.9.0 [27] was used to demultiplex and remove barcodes, indexes and primers from raw

files, producing FASTQ files with for both the forward and reverse reads for each sample. Dada2
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version 1.1.6 was used to infer exact sequence variants (ESVs) from each sample [26]. Briefly,

forward and reverse reads were trimmed to 220 and 160 nucleotides, respectively. All other param-

eters were det to default values. Sequences below 230 or above 242 nucleotides were discarded

(indicative or poor merging of paired reads). Bimeras were removed using the “tableMethod” pa-

rameter set to “consensus.” A naive Bayes classifier was used to assign taxonomy to ESVs using

the SILVA version 123 database [154]. Metagenome inference was performed using PICRUSt

[104]. Denoised ESVs were assigned to OTUs using the greengenes database version 13.5 using

the QIIME function pick closed reference otus.py, with a 97 % similarity cutoff. Communities

were normalized using the normalize otus.py function in PICRUSt, and the metagenomes were

estimated using the estimate metagenome.py routine.

Fermentation assays and isolation of strains

Four bacterial strains from a representative community stabilized in glucose were isolated and

identified taxonomically. The community was plated onto 0.5% agarose Petri-dishes containing M9

supplemented with 0.2% glucose and were allowed to grow for 48 hours at 30◦C. Single colonies

were then picked from these plates according to their colony morphologies, re-streaked on fresh

agarose plates and grown for another 48 hours at 30◦C. Single colonies from each isolate grown

for 48 hours at 30◦C in liquid M9 supplemented with 0.2% glucose were finally stored at -80 ◦C

in 40% glycerol. Isolates were also identified according to their differential ability to ferment the

following 16 carbohydrates: adonitol, arabinose, cellobiose, dextrose, dulcitol, fructose, inositol,

lactose, mannitol, mannose, melibiose, raffinose, rhamnose, salicin, sucrose, and xylose (Fig 4.6A-

B). Fermentation ability was assessed using a phenol red broth base with an added carbohydrate

at a final concentration of 1% w/v, except for cellobiose (0.25%) due to its low solubility. Each

isolate was grown on an agarose plate, and a single colony was picked and re-suspended into 100

µL 1x PBS. 2 µL of each isolate was inoculated into 50 µL of Phenol red broth + carbon source (in

a 384 well-plate, Corning). Spectrophotometric measurements of phenol red (OD450 and OD551)

were measured after 0h, 12, 16, and 19 hours of incubation. Clustering of O.D. profiles after 19

hours revealed 4 distinct phenotypic profiles, consistent with morphologies (Fig. 4.6C). Taxonomic
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assignments of isolates were verified using full-length 16S rRNA sequencing of DNA extracted

from single colonies grown on agarose plates (GENEWIZ), using the online RDP classifier [194].

Reconstitution of isolates from a representative community

To test whether the dominant species isolated from the glucose stabilized communities are able to

coexist, we constructed a four-strain community with four strains isolated from one representative

community (C2R4). The four isolates belong to four different genera (Raoultella, Enterobacter,

Pseudomonas, and Citrobacter) and were chosen because they are the most dominant species in

the community and display distinctive morphologies, facilitating plate counting. To ensure that the

starting densities were similar for all four isolates, single colonies were picked, resuspended into

PBS 1x, and the optical densities were normalized to a OD620 of 0.15. The initial inoculum was

prepared by mixing the four isolates in 1:1:1:1 ratio. 4 µL of the initial inoculum was transferred to

500 µL fresh media M9 with 0.2% Glucose (3 replicate communities) and cultures were incubated

at 30 ◦C (Fig. 4.6D) . Every 48 hours, 4 µL from each replicate community was transferred to

500µL of fresh growth media for a total of 7 transfers (14 days). OD620nm measurements were

conducted every 48 hours and the four isolates were enumerated by colony counts on M9+ 0.2%

glucose agar plates on Transfer 5 (day 10) and Transfer 7 (day 14). We found that the four isolates

were able to stably coexist after 7 transfers (14 days). Raoultella was the most abundant strain,

followed by Enterobacter, and then Pseudomonas, and Citrobacter (see Fig 4.6E).

Metabolic facilitation assay and measurement of glucose depletion

To determine whether microbial cross-feeding is a potential mechanism that enables coexistence,

four isolates from a single representative community were inoculated in 5 mL of M9 media with

0.2% glucose, then incubated for 48 hours at 30 ◦C (Fig. 4.15A). Cells were then separated from

the spent media (SM) using the following procedure: cells were centrifuged at 3000 rpm for 10 min,

and SM was filter-sterilized and stored at 4 ◦C. Cells were re-suspended in the same volume of PBS,

and washed two times times by centrifugation (3000rpm, 10min). Cells were diluted to an OD620

of 0.24 prior to inoculation. There was no detectable glucose remaining in any SM as measured
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using the Glucose GO Assay Kit (Sigma), with the exception of the SM from Pseudomonas, which

was adequately controlled for (see main text). SM was then mixed 1:1 with fresh 2X M9 media

with no carbon source. Each isolate was inoculated in each isolates SM-based M9 in triplicate at

1% v/v in a 384 well plate (Corning). The plate was incubated in a standard plate reader (Thermo

498 Scientific), and OD620 was measured every 10 min at 30 ◦C.

We sought to determine whether glucose-stabilized communities were able to grow after glu-

cose depletion, which would suggest that biomass accumulation is attributed to consumption of

metabolic byproducts. For this, 95 glucose-stabilized communities were inoculated in a 96 deep-

well plate from frozen stock in 500 µL of M9 0.2% glucose. Two initial transfers with 48 hours

incubation were performed as previously described (30 ◦C no shaking). The third transfer was

performed in duplicate and with final volume 600 µL. From these two plates, 100 µL samples were

taken at 24, 36, 48 and 56 hours. OD620 was measured, followed by the measurement of glu-

cose using the Glucose GO Assay Kit (Sigma). Glucose concentrations were inferred using linear

regression from the standard curve, although no sample at any time point showed detectable levels.

Low abundant growth with no supplied carbon source

Passaging experiments were performed using M9 synthetic media with no additional carbon sources,

which resulted in the stabilization of very low abundant microbial communities (Fig. 4.5). Growth

was often several orders of magnitude lower than growth on either the primary nutrient (fig. 4.5C)

or secreted byproducts (fig. 4.15E-F), suggesting that metabolic consumption of secreted byprod-

ucts is more likely to contribute to stabilizing competition than consumption of low levels of latent

resources in the deionized water. To determine community richness resulting from growth on the

provided resource, we estimated the abundance of 16S amplicon reads deriving from contamination

either by cross-well contamination or microbial growth on the low levels of total organic carbon

in deionized water (Fig. 4.5A-B). For each of the 12 initial points, communities propagated for 84

generations with either with M9 and 0.2% glucose, or M9 and no additional carbon source. We

plated communities on 0.5% agarose plates containing M9 minimal media and 0.2% D-glucose to

determine the colony forming units (CFU) per ml (Fig. 4.5C). CFU/ml was used as a proxy for total
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cell number in the community because of the strong correlation with cell counting using a hemo-

cytometer (Fig. 4.5D). The relative contribution of CFU for growth on water alone compared to

growth on D-glucose was then used as a relative frequency cutoff for each of the 12 initial commu-

nities, respectively (Fig. 4.5E). These values allowed us to estimate lower bounds for community

diversity derived from the supplied the carbon source (Fig. 4.7B).

Statistical and computational methods

Statistical tests for Beta diversity differences

The co-variates explored in this study are the regional pool of species (initial inocula) and the

carbon source supplied in the media. Between samples, we used Renkonen similarity at the family

taxonomic level as a measure of beta diversity between communities, which is defined as:

D(x, y) = 1− 1

2
×
∑
i

|xi − yi| (4.1)

where xi and yi are the abundance of taxon i in sample X and sample Y , respectively. We com-

puted the family-level Renkonen similarities between all samples and grouped pairwise similarities

if pairs were passaged on the same carbon source, or if pairs of samples originated from the same

inocula. We used the one-tailed Kolmogorov-Smirnov test (MATLAB function kstest2) to deter-

mine if the pairwise similarities grouped by carbon source were on average higher than pairwise

similarities grouped by initial inocula (see Fig. 4.14).

Test of temporal variation and replicate variation

We estimated the variability in commmuntiy composition from different replicates from inoculum 2

(see Fig 4.2F) and compared this to the variability in community composition between the last three

transfers in our passaging experiment. To calculate the variability across replicates, we computed

the Renkonen Similarity between each pair of replicates after the last transfer (transfer 12). To

calculate the temporal variation within a single replicate, we calculated the Renkonen Similarity
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within a replicate at transfers 10,11,12. We used only the final three transfers to ensure that the

community composition has had enough transfers to stabilize and to ensure that the number of

similarity scores used to assess the temporal variation was similar to the number similarity scores

used to the assess the replicate variation (N = 24 within time-series, and N = 28 between time-

series). We then assessed if replicate variations at the genus and family level were larger than

the temporal variations at the same taxonomical resolution using a standard non-parametric test

(in this case the Mann-Whitney U test). The statistical test showed that the replicate variation is

significantly larger than the temporal variation at the genus level (P = 1.1 × 10−5) while at the

family level this was not the case (P = 0.0624).

Prediction of media carbon source from community structure

To access the predictive quality of the community structure and inferred metagenomes, we trained

and evaluated multi-class support vector machine (SVM) models. SVMs were constructed using

the MATLAB function fitecoc and evaluated using 10-fold cross validation in fig. 2b or leave one

out cross-validation in Fig. 4.20. Features used in the in the SVM were either the clr-transformed

relative abundances at the family taxonomic level in Fig. 4.10B or the clr-transformed inferred

metagenome composition in Fig. 4.20.

Theoretical methods

Microbial Consumer Resource Model

Dynamical equations

The model presented in the paper is a modification of Robert MacArthur’s consumer resource

model [116, 30, 31], which models the per-capita growth of species as a function of resource

consumption rate. We begin by first re-stating the dynamics of individual species, followed by

a modified form of resource dynamics that include environmental modification during bacterial

growth.

Let us denote the set of all possible resources by Rα where α = 1 . . .M . Furthermore, let us
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denote the set of all species by Ni where i = 1 . . . N . Each species is characterized by a resource

utilization matrix Ciα that measures the rate at which the species uptakes resource α. Furthermore,

there is a resource quality function ∆wiα which tells us the growth rate of species i on resource α.

Assuming that there is a minimum maintenance energy required for growth, this gives us

1

Ni

dNi

dt
= bi

(∑
α

∆wiαCiαRα −mi

)
(4.2)

This assumes populations die if they cannot achieve minimum growth rate to survivemi. The prin-

ciple modification to the MacArthur’s consumer resource model is the addition of a stoichiometric

matrix that encodes the proportion of consumed resources that are transformed into new resources

and secreted back into the environment. A wide variety of bacterial heterotrophs are capable of

excreting a large fraction of the carbon input through overflow metabolism even under aerobic

conditions [146, 15].

To model the bacterial secretion of metabolic byproducts, let the matrix Di
βα be a stoichiomet-

ric matrix for species i that encodes the rate at which resource β is produced if species i is utilizing

resource α. In particular, the rate of production of resource β by species i is proportional to the

rate that a species takes up resource α times this matrix:

∑
α,i

Di
βαCiαRαNi (4.3)

giving rise to the full dynamical equation for the abundance of resource β:

dRβ
dt

=
Kβ −Rβ

τβ
−
∑
i

CiβRβNi +
∑
α,i

Di
βαCiαRαNi (4.4)

where Kβ is the initial resource abundance supplied in fresh media, and τβ is the replenishing

(i.e. transfer) rate during batch culture passaging. Note that we parametrize the growth rate with a

function ∆wiα = wα −
∑

β D
i
βαwβ , which ensures energy is balanced in our model.
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Ensuring energy conservation

For heterotrophic, aerobic bacteria, energy and carbon sources are often coupled within reduced

organic substrates [67]. Following the laws of thermodynamics, the total energy (or free energy)

available from resources supplied in the environment constrains the total energy secreted back into

the environment. However, energy (or free energy) is not well defined in our far from equilibrium

dynamical equations. This quantity is indirectly associated with the resource quality, w, which is

a phenomenological parameter that represents the relative gain in a limiting factor (e.g. carbon or

energy) per consumed resource. Our model assumes that the limiting factor is linear in the growth

rate, which is expected if species are catabolically-limited, and wα is the ATP yield for a resource

α. To ensure energy is not created during the metabolism of a resource, we ensure that the secretion

matrix, Di
βα is constrained by the following relation:

∑
β

wβD
i
βα < wα (4.5)

Sampling consumer matrices from metabolic ”families”

To simulate the scenario where consumers are non-randomly distributed and taxonomically related,

we sampled consumer coefficients from a prior distribution where “families” of consumers share

similar consumption coefficients. In this formulation, consumer coefficients are drawn from dirich-

let distributions, and the dirichlet concentration parameter encodes the family-level consumption

preferences and variability. In our model, sampling from a dirichlet distribution results in stochas-

tically partitioning a fixed amount of cellular resources dedicated for nutrient uptake (e.g. trans-

porters) into groups, and the concentration parameter fixes the average across these samples.

The family-level consumption properties are represented by two parameters, θα,f and Ωf ,

where θα,f is the concentration parameter for resource α in family f , and Ωf is the magnitude

of the all concentration parameters, such that:
∑

α θα,f = Ωf . For family f , we wish to construct a

family of consumers with a tunable degree of preference for resource α = f . Thus we first sample
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aα=f using the following relation:

θα=f (µ, σ) ∼ Normal(µ, σ2) (4.6)

Note that in all simulations µ and σ are chosen to be bounded between 0 and 1. For other concen-

tration parameters we first sample them from a uniform distribution, θ′α 6=f ∼ Uniform(0, 1). The

concentration parameters are then normalized using the following formula:

θα 6=f = (1− θα=f )
θ′α 6=f∑
α 6=f θ

′
α 6=f

(4.7)

Resulting in a set of concentration parameters θα,f , which can be represented in vector notation as

θf . Note that the parameters µ and σ control how “specialist” a family of consumers will be. For

all simulations we choose µ = 0.4 and σ = 0.01.

Let the c′i,α represent the relative specific uptake rate of resource α for species i. We next draw

a set of relative uptake rates for species i for all M resources simultaneously from the following

Dirichlet distribution:

(
c′i,1, c

′
i,2, . . . , c

′
i,M

)
∼ Dirichlet (Ωfθ1,f ,Ωfθ2,f , . . . ,ΩfθM,f ) (4.8)

where Ωf controls the total variability with each family. A high Ωf ensures that “species”

are very similar, where a low Ωf results in “species” that are variable. For our simulations, we

chose Ωf = 100 for all families. For each species i, we then sampled a total resource capacity

Ti ∼ Normal(1, 0.01), to ensure we didn’t obtain an ecosystem with infinite coexistence and solely

neutral interactions [153]. Consumer coefficients were then computed using the following function:

ci,α = Tic
′
i,α (4.9)
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Numerical Simulations

For all simulations, we set the number of species to be N = 100 and the number of resources to

be M = 10. The resource qualities, the resource replenishment rates, the maintenance and the

growth rate multipliers were set to unity, such that: wiα = τα = mi = bi = 1 for all species

i and resources α. We initialized simulations to model dynamics on a single externally supplied

resource γ by setting Kα = 106 if α = γ and 0 otherwise. For all simulations, we assumed that

the stoichiometric matrix is species-independent, such that Di
βα = D

βα
. Stoichiometric matrices

were drawn from uniform distributions, such that:

Dβα ∼ uniform(0, 1
M ) (4.10)

Note that by setting the upper bound of Dβα < 1
M and wiα = 1, we ensure that energetic con-

straints are not violated. For Fig. 4.20, we sampled consumer coefficients from the following

uniform distribution: Ciα ∼ uniform(0, 1).

In Fig 4.18, consumer matrices were drawn from Dirichlet distributions (see previous section),

while in Fig. 4.20, consumer matrices were drawn from uniform distributions. Simulations were

performed in MATLAB 2015a using ODE solver ode15s. Simulations were performed for at-

least 104 timesteps, where the vast majority of simulations resulting in reaching stable equilibria

in roughly 500 timesteps. Code is available on the following GitHub repository: https://

github.com/jgoldford/mcrm.

Metagenomic analysis and comparison with experiment

Based on our experimental results, we expected that the collection of genes in the community

(the metagenome) would associate with the externally-supplied resource (e.g. glucose, citrate, or

leucine). To compare to the model, we implicitly assume that the metagenome is associated with

the community-wide uptake capability of externally supplied resources. This assumption requires

that gene dosage is positively associated with the activity of transporters [80]. From experimental

https://github.com/jgoldford/mcrm
https://github.com/jgoldford/mcrm
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data, we estimated the metagenome from 16S rRNA amplicon sequencing data using PICRUSt

[104]. The gene abundance profiles were normalized to sum to unity, and were transformed using

the centered log-ratio transform [2]. Formally, for a composition x, we define the the centered

log-ratio transform (clr) as:

clr(x) = z =

[
ln
(
x1
g(x)

)
, . . . , ln

(
xD
g(x)

)]
(4.11)

where g(x) = D
√∏

i xi
1. We then construct a matrix, Z, where zi,j represents the clr-transformed

abundances for gene i in sample k. We then used tSNE to reduce the dimensionality of the clr-

transfomed metagenome matrix Z, as seen in Figure 2c and in the main text. In Figure 4.20, the

fraction of the metagenome that was dedicated the Leucine degradation (KEGG Module M00036)

was computed for each sample, then grouped by the externally-supplied resource (x-axis), revealing

a strong concordance between the presence of a specific limiting nutrient and the community-wide

metabolism for that limiting nutrient.

To compare experiments to the model, we first simulated the population dynamics and found

the steady state abundance for each species i, N∗i . We then computed the total uptake of resource

α (Yα) using the following equation:

Yα =
∑
i

CiαN
∗
i (4.12)

For each simulation k on a resource γ, we constructed a matrix of community wide uptake

rates with matrix elements equal to Ykγ . The total uptake capacity per simulation was normalized

to sum to unity, and was transformed using the clr transform, just like in the case with inferred

metagenomic data. Dimensionality reduction was then performed on this matrix using tSNE, and

plotted in the Fig. 4.20.
1For all metagenome samples, a small value, ε = 10−20 was added to each xi to prevent g(x) from becoming zero.
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Monod model

Microbes in a community can coexist in an environment with a single limiting resource if strains

have a peak fitness at some intermediate concentration of the limiting resource [182]. We investi-

gated whether this mechanism may be responsible for coexistence by isolating the dominant taxa

from a representative community, and measuring the growth rates at various concentrations to es-

timate parameters used in a Monod growth model. First, isolates were obtained via plating, then

grown in minimal M9 salts media supplemented with glucose at concentrations ranging from 0.01

- 0.2 %. For each strain i on glucose concentration S, we fit a curve to the following logistic

equation:

1

Ni

dNi

dt
= ri(S)

(
1− Ni

Ki(S)

)
(4.13)

where ri(S) is the maximum per capita growth rate, and Ki(S) is the carrying capacity of

strain i on a carbon source with abundance S. Monod parameters for each species (µi and κi),

were then fitted using the following function:

ri(S|µi, κi) =
µiS

κi + S
(4.14)

These parameters where then used in the following dynamic growth and substrate equations:

1

Ni

dNi

dt
=

µiS

κi + S
−mi

dS

dt
=
αs − S
τ

−
∑
i

Ni

Yi

µiS

κi + S

(4.15)

where Yi is the yield coefficient for growth on glucose, αs = 0.2% is the supply added every

time step τ = 48 hours. We set Yi = 42 (in units of O.D. per percent glucose) for each species

2. We also assume that the maintenance energy is 7.6 mmol ATP gCDW−1 hour−1, which corre-
2A yield coefficient of 0.5 g/ g glucose was used for each species (BNID 105318). Assuming that gCDW/cell is

roughly 150 fg (BNID: 103894), and 1 O.D. per mL is 8 × 108 cells (BNID: 100985), then 0.5 gCDW
1 g glucose × 0.01

g glucose
mL

% glucose ×
1cell

150×10−15gCDW × 1O.D.
8×108 cells

mL
= 42 O.D.

% glucose
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sponds to a growth rate of approximately 0.02 hour−1 3. Simulations were performed in MATLAB

2015a, using the ode45 solver, and all fitting to experimental data was done using the fit function in

MATLAB. Fitted Monod curves are plotted in 4.17A, and the outcome of a representative simula-

tion are plotted in 4.17B. Note that in 4.17B, initial conditions were chosen to match experimental

relative abundances after the passaging experiment (generation 84). In all simulations, Raoultella

out-competed all other strains leading to competitive exclusion.

3The value of maintenace energy was estimated used E. coli measurements on glucose minimal media during expo-
nential growth (BNID:111285). This value was converted into the estimtaed minimum per capita growth rate per hour us-
ing the following dimensional analysis: 7.6×10−3mol ATP

gCDW h × 1mol glucose
36mol ATP × 1% glucose

0.01g glucose×
0.00012 gCDW

OD600
× 42 OD600

% glucose = 0.0181h−1



Chapter 5

Discussion and perspective

In this thesis, we explored various problems in the origin of life and microbial ecology from a

metabolic perspective at the ”ecosystem-scale.” This work highlights that metabolism, rather than

simply being a mechanism for energy transduction and biosynthesis at the organismal-scale, may

be a natural variable for the study of complex living systems across space and time. What follows

in this section is a discussion on potential follow-up research, building off the results presented in

this thesis, that may enable capturing a more comprehensive and detailed picture of both ancient

and modern-day ecosystem-level metabolism.

Metabolism and the origin of life

Use of network-based approaches to model the emergence of metabolism nearly 4 billion years ago

offers a ”generative” approach to simulate the relationship between proposed ancient geochemical

environments and the structures of ancient metabolic pathways. More deeply, our approach may not

merely provide an algorithmic way to map geochemical constraints to early metabolic structures,

but may in fact give insight on how life itself evolved [77]. Our interpretation of this hypothesis

assumes that, over the course of geological time, biochemical reactions that emerge in the biosphere

are, at first-approximation, not lost throughout the course of evolution. This feature is uniquely

a function of ecosystem-scale metabolism, where biochemistry is distributed across species and

robust to extinction events of individual lineages [191, 60]. Thus, our approach suggests that the

evolution of metabolism across large time and spatial scales should be viewed as a process of

time-evolution, in the dynamical systems sense, rather than solely Darwinian. Future theoretical

studies could integrate population genetic models with genome-scale models of metabolism to
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concretely address the question how metabolic networks evolve at the ecosystem-level on long

time-scales. Such theoretical studies could address the plausibility of our key assumption that

metabolic networks represent a historical record of life’s history.

In Chapter 3, we used this approach to develop a minimal metabolism that may have fueled

ancient living systems before an RNA-based genetic code. However, we explicitly do not address

whether such a metabolism could have operated in parallel to information storage mechanisms sim-

ilar to modern genetic systems. As discussed in the introduction of this thesis, several researchers

in the origin of life have suggested that reproduction and evolution may have proceeded the emer-

gence of a genetic system [45, 90, 6, 40, 78, 170, 175]. Future computational studies could look at

whether our metabolic model contains autocatalytic cycles [176, 168] capable of amplification and

exponential growth [173].

Importantly, there are several short-comings of the presented method that could be improved

upon in the future work. First, the network expansion algorithm presented in Chapter 2-3 relies

on a database of enzyme-catalyzed reactions, which may or may not reflect important chemical

transformations for early living systems. For instance, there could be enzyme-catalyzed reactions

that have no non-enzymatic analogue, or non-enzymatic analogues may have not been accessible

in ancient living systems. Future studies revealing which portions of enzyme-catalyzed metabolic

biochemistry that can be catalyzed non-enzymatically [96, 97, 127, 94, 135, 189] will enable a

more accurate reconstructions of ancient metabolic networks. Second, the network expansion al-

gorithm does not explore the inclusion of chemical reactions that have no enzymatic analogue, but

may have been important in ancient biochemistry. Third, it is unclear whether non-enzymatic ana-

logues of enzyme-catalyzed reactions would have been kinetically inhibited. Lastly, our current

approach does not take into consideration biochemical reactions with no free energy estimate. Fu-

ture work may leverage emerging quantum chemistry methods [87], which may increase the scope

of reactions with estimated free energies relative to component contribution methods [52, 138].

We hope that the model presented in this thesis offers a useful starting point for design-

ing complex chemical networks that resemble plausible ancient metabolic systems. The proto-

cellular metabolic model developed in this thesis represents a simple model for an autotrophic,
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self-replicating chemical system. Heavily inspired by Christian de Duve’s ”thioester world” model

[40], our results support the hypothesis that disulfides may have been the first coenzyme system in

living systems, providing both redox and energy transduction capabilities. Furthermore, the model

also predicts that polymers of hydroxy acids (derived from keto acids that are normally precursors

to amino acids), along with inorganic metals and minerals, may have been life’s first catalysts.

However, determining whether these components are capable of catalyzing proto-metabolic reac-

tion at sufficiently high rates [45] remains an open question.

Metabolism and microbial ecology

In the second part of the thesis, we discuss a new method to re-assemble natural microbial consortia

in synthetic environments, revealing patterns commonly observed in various microbial ecosystems.

We now discuss interesting applications of the experimental system that can reveal the relationship

between metabolism and microbial community structure in more detail.

While our results show that the limiting carbon source is associated with microbial community

structure at the family-level (see Fig.4.10), it is unclear why communities grown on glucose are

more similar to communities grown on citrate than communities grown on leucine. This result in-

dicates that communities stabilized on limiting-nutrients metabolized by similar metabolic routes

may result in similar community structure at the functional level. Indeed, preliminary studies of

communities grown on a panel of more than 40 carbon sources consisting of sugars, sugar-alcohols,

carboxylic acids and short chain fatty acids suggest that the functional structure (or family-level

compositions) of each community cluster by whether the carbon source was consumed via glycol-

ysis (e.g. glucose, fructose, glycerol) or not (e.g. citrate, succinate).

Our experiments indicated that microbes from a representative community, when grown in iso-

lation, secrete several byproducts that can support the growth of every other community member

(see Fig. 4.15). However, it is unclear what the structure of the cross-feeding network is when

community members are grown together, rather than being inferred based on monoculture studies.

We now discuss several computational and experimental techniques that can be used to elucidate

the structure of the microbial cross-feeding network in situ. Genome-scale metabolic modeling
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of microbial metabolism enables the prediction of secreted byproducts resulting from microbial

growth [144]. Due to the small size and ease of cultivation of these communities, shotgun metage-

nomics can be used to generate draft genomes of community members, which can be used to

construct metabolic models of individual taxa in the communities. Indeed, we have begun to gen-

erate shotgun metagenomic sequencing data from a set of these microbial communities. We have

reconstructed draft genomes for all isolated taxa from a representative community (see Fig. 4.15A),

and constructed metabolic models of core metabolism using Kbase [5, 49]. Preliminary results of

metabolic modeling suggest that each taxa in our representative community secrets organic acids

(e.g. lactate, formate, and acetate) that can support the growth the other community members, sim-

ilar to what was found in Fig. 4.15C-D. Future work will attempt to construct metabolic models

directly from metagenomic sequencing data. More generally, we expect that this system will serve

as a convenient experimental platform for the assembly of microbial communities amenable for

flux balance modeling.

With precise knowledge of the media supporting the stable growth of microbial communities

generated in this work, these experimental systems are also highly amenable to more quantita-

tive experimental studies of microbial community nutrient exchange. For instance, with draft

genomes available for each community member, new high throughput techniques in transcrip-

tomics and proteomics can help elucidate mechanisms for coexistence at the biochemical level.

To determine the topology of cross-feeding networks of these microbial communities, one can

extend prior experimental and computational approaches to model and measure the extent of nu-

trient exchange in these microbial microcosms. Computational predictions of nutrient exchange

can be performed using dynamic flux balance analysis [75] or steady-state flux-balance model-

ing of microbial communities [50]. Models can be improved by integrating high-throughput esti-

mates of protein abundances from ribosome profiling into genome-scale metabolic models [110].

Predicted cross-feeding interactions can be validated using peptide-based metabolic flux analy-

sis [58, 62, 118, 3]. In this assay, isotope-labeling patterns from peptides serve as barcodes for

the metabolic states of individual species in a complex community, enabling the identification

of metabolic exchanges between community members. Application of these high-throughput ap-
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proaches to infer cross-feeding networks in microbial communities will aid in developing a theory

of microbial community ecology for large ecosystems.

Metabolism as the unifying language bridging scales in the biosphere

As suggested by previous researchers [175, 60], there may be a deep connection between the funda-

mental rules that led to life’s emergence over 4 billion years ago and what shapes microbial ecosys-

tems today. We argue that this deep connection likely resides in ecosystem-scale metabolism. Our

work in microbial ecology suggests that the functional composition of microbial communities,

which is analogous to ecosystem-level metabolism, is the stable feature of microbial commu-

nity assembly in a fixed environment even in short time-scale experiments. This suggests that

ecosystem-level metabolism should be considered a natural variable when asking questions about

the long-term evolution of the biosphere. We hope that the work presented in this thesis high-

lights how an ecosystems-level metabolic perspective may aid in our understanding of both the

emergence and maintenance of the biosphere.
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