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ABSTRACT

We identify three structures that lie in the parameter plane of the rational map

F (z) = zn + λ/zd, for which z is a complex number, λ a complex parameter, n ≥ 4

is even, and d ≥ 3 is odd.

There exists a Sierpindelbrot arc, an infinite sequence of pairs of Mandelbrot sets

and Sierpinski holes, that limits to the parameter at the end of the arc.

There exists as well a qualitatively different Sierpindelbrot arc, an infinite sequence

of pairs of Mandelbrot sets and Sierpinski holes, that limits to the parameter at the

center of the arc.

Furthermore, there exist infinitely many arcs of each type. A parameter can

travel along a continuous path from the Cantor set locus, along infinitely many arcs

of the first type in a successively smaller region of the parameter plane, while passing

through an arc of the second type, to the parameter at the center of the latter arc.

This infinite sequence of Sierpindelbrot arcs is a Sierpinski Mandelbrot spiral.
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Chapter 1

Introduction

1.1 Singularly Perturbed Rational Maps

It is known that there are several intriguing geometric structures surrounding the

negative real axis in the parameter plane for rational maps of the form Fλ(z) =

zn + λ/zd. In the case where n and d are even, it has been shown in (Devaney, 2004)

that there is a “Cantor necklace” that lies along the negative real axis in the parameter

plane and a principal Mandelbrot set along the positive axis. A Cantor necklace is

a set that is a continous image of the Cantor middle-thirds set to which is adjoined

countably many open disks in the plane in place of the removed open intervals along

the real line. For parameters inside these open disks (which we call Sierpinski holes),

the Julia set of Fλ is known to be a Sierpinski curve (i.e., is homeomorphic to the

Sierpinski carpet fractal), and the different dynamical behaviors on these Julia sets

is completely understood (Moreno Rocha, 2013). In the case where n is odd and d is

even, there is no such Cantor necklace; rather there are now two principal Mandelbrot

sets, one along the positive real axis and the other along the negative real axis. As a

consequence, the dynamical behavior for these parameters is very different from the

behavior when n and d are both even. Thus the remaining case is when n is even and

d is odd; we look at a specific instance of this.

As when d is even, we again have a principal Mandelbrot set straddling the positive

real axis. But the structure on and around the negative real axis is very different.
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When n ≥ 2 is even and d ≥ 3 is odd, there exists a “Mandelpinski maze” (MS maze)

in a neighborhood of the negative real axis in the parameter plane. (Devaney, 2016)

proves the existence of a “Sierpindelbrot arc” (SM arc), which is the building block

of a MS maze.

This paper shows that, by restricting n to be at least 4, one can expand on the

construction and find infinitely many SM arcs in the parameter plane. Each SM arc

is an infinite sequence of pairs of Sierpinski holes and Mandelbrot sets of increasingly

higher escape time or base period. By considering the λ at the center of each Sierpinski

hole, there exists a corresponding sequence of λ values. Each SM arc, as a sequence

of parameter values λ, tends to a limit λ such that, in dynamical space, some iterate

of the critical value is a fixed point.

Furthermore, the expanded construction allows for the proof of the existence of

a second type of SM arc different from the first. This leads to the existence of a

spiral of infinitely many SM arcs of the first type that pass through a single SM arc

of the second type. The spiral is an infinite sequence of SM arcs (i.e. a sequence

of sequences) with limit λ corresponding to increasingly more iterations before the

critical value lands on a fixed point. The spiral, as a sequence of SM arcs, tends to a

limit SM arc that itself tends to a λ such that, in dynamical space, the critical value

is a fixed point. In the parameter plane, each SM arc in the sequence exists in a

successively smaller region as the SM arcs tend to the aforementioned limit λ in a

spiraling pattern, thus the name “Sierpinski Mandelbrot spiral” (SM spiral).

We first prove the existence of a spiral for the case n = 4 and d = 3. We then

find analogues of the arguments to prove the existence of a spiral for the general

case n ≥ 4 is even and d ≥ 3 is odd, with a specific set of exceptions for which the

analogues do not hold. We finally adjust the argument to find exceptional spirals for

almost every exception.
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1.2 The Escape Trichotomy

We consider

Fλ(z) = zn +
λ

zd

where z ∈ C, λ ∈ C is nonzero, n ≥ 4 is even and d ≥ 3 is odd.

When |z| is large, we have that |Fλ(z)| > |z|, so the point at ∞ is an attracting

fixed point in the Riemann sphere. We denote the immediate basin of attraction of∞

by Bλ. There is also a pole at the origin for this map, and so there is a neighborhood

of the origin that is mapped into Bλ. If the preimage of Bλ surrounding the origin is

disjoint from Bλ, we call this region the trap door and denote it by Tλ.

The Julia set of Fλ, J(Fλ), has several equivalent definitions. J(Fλ) is the set of

all points at which the family of iterates of Fλ fails to be a normal family in the sense

of Montel. Equivalently, J(Fλ) is the closure of the set of repelling periodic points of

Fλ, and it is also the boundary of the set of all points whose orbits tend to ∞ under

iteration of Fλ, not just those in the boundary of Bλ. See (Milnor, 2006).

One checks that there are n+ d critical points that are given by

cλ =

(
dλ

n

) 1
n+d

with the corresponding critical values given by

vλ =
(d+ n)λ

n
n+d

d
d

n+dn
n

n+d

.

There are also n+ d prepoles given by

pλ = (−λ)
1

n+d .
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We denote the critical point that lies in R− when λ ∈ R− by cλ0 . The other critical

points are denoted by by cλj where −n+d−1
2
≤ j ≤ n+d−1

2
and the cj are arranged in

clockwise order as j increases. We denote by vλj the critical value that is the image

of cλj .

We denote the prepole that lies in R+ when λ ∈ R− by pλn+d−1
2

. The other prepoles

are denoted by pλj where again −n+d−1
2
≤ j ≤ n+d−1

2
and the pj are arranged in

clockwise order as j increases.

The straight ray extending from the origin to ∞ and passing through a critical

point cλ is called a critical point ray. These rays are mapped two-to-one onto the

portion of the straight ray from the origin to ∞ that starts at the critical value

Fλ(c
λ) and extends to ∞ beyond this critical value. A similar straight line extending

from 0 to ∞ and passing through a prepole pλ is a prepole ray, and these rays are

mapped one-to-one onto the entire straight line passing through both the origin and

the point (−λ)
n

n+d .

Let ω be an (n + d)th root of unity. Then we have Fλ(ωz) = ωnFλ(z), and so

it follows that the dynamical plane is symmetric under the rotation z 7→ ωz. In

particular, all of the critical orbits have similar fates. If one critical orbit tends to∞,

then all must do so. If one critical orbit tends to an attracting cycle of some period,

then all other critical orbits also tend to an attracting cycle, though these other

cycles may have different periods. Nonetheless, the points on these attracting cycles

are all symmetrically located with respect to the rotation by ω. As a consequence,

each of Bλ, Tλ, and J(Fλ) are symmetric under rotation by ω. Similarly, one checks

easily that the parameter plane is symmetric under the rotation λ 7→ νλ where ν is

an (n − 1)th root of unity. The parameter plane is also symmetric under complex

conjugation λ 7→ λ.

The Escape Trichotomy (Devaney et al., 2005) holds for this rational map. The

4



first scenario in this trichotomy occurs when one and hence, by symmetry, all of the

critical values lie in Bλ. In this case it is known that J(Fλ) is a Cantor set. The

corresponding set of λ in the parameter plane is denoted by C and called the Cantor

set locus. The second scenario is that the critical values all lie in Tλ (which we assume

is disjoint from Bλ). In this case the Julia set is a Cantor set of simple closed curves

surrounding the origin. This can only happen when n, d ≥ 2 but not both equal to

2 (McMullen, 1988). We call the region E1 in the parameter plane where this occurs

the “McMullen domain”; it is known that E1 is an open disk surrounding the origin

(Devaney, 2005). The third scenario is that the orbit of a critical point enters Tλ at

iteration 2 or higher. Then, by the above symmetry, all such critical orbits do the

same. In this case, it is known that the Julia set is a Sierpinski curve (Devaney and

Look, 2006), i.e., a set that is homeomorphic to the well known Sierpinski carpet

fractal. The regions in the parameter plane for which this happens are the open disks

that we call Sierpinski holes (Roesch, 2006). If the critical orbits do not escape to∞,

then it is known (Devaney and Russell, 2013) that the Julia set is a connected set.

Thus we call the set of parameters for which the critical orbits either do not escape

or else enter the trap door at iteration 2 or higher the connectedness locus. This is

the complement of C ∪ E1.

In (Devaney, 2006) it has been shown that there are n − 1 principal Mandelbrot

sets in the parameter plane for these maps. These are symmetrically located by the

rotation νz around the origin and extend from the Cantor set locus down to the

McMullen domain.

For more details about the dynamical properties of these maps and the structure

of the parameter plane, see (Devaney, 2013).

5



Chapter 2

The Case n = 4 and d = 3

2.1 Overview

As in (Devaney, 2016), we construct sets in dynamical space, the union of which is

called the “bowtie.” We then prove that certain properties about the bowtie hold in a

sector of an annulus in the parameter plane. Those properties are used to construct a

dynamical arc that proves the existence of a corresponding parameter arc of Sierpinski

holes and Mandelbrot sets in that subset of the parameter plane.

Beyond (Devaney, 2016), we see that the bowtie can be used to construct a qualita-

tively different dynamical arc that proves the existence of corresponding qualitatively

different parameter arc. Furthermore, there are infinitely many copies of each arc,

and some of those infinitely many arcs spiral toward a fixed point in the dynamical

space.

In particular, we construct the 0 TL arc in the dynamical plane and use it to

prove the existence of the 0 SM arc in the parameter plane. We then construct the 1

TL arc, and show that the two types of arcs together comprise the 1 TL spiral. Next,

we find the spiral’s preimage, the 01 TL spiral, and use it to prove the existence of

the 01 SM spiral in the parameter plane. Finally, we use symmetry to establish the

existence of infinitely many spirals.

We narrow our focus to the specific case

6



Fλ(z) = z4 +
λ

z3

where z ∈ C, λ ∈ C is nonzero.

There are three symmetrically located Mandelbrot sets in the parameter plane.

Figure 2·1 depicts the Mandelbrot sets and the rest of the connectedness locus, the

McMullen domain, the Cantor set locus. Because of the λ 7→ νλ symmetry in the

parameter plane, we need only be concerned with 2π
3
≤ Arg λ ≤ 4π

3
.

Figure 2·1: Parameter plane for z4 + λ/z3

One checks that there are seven critical points with corresponding critical values

and seven prepoles, denoted as in section 1.2. In particular, cλ0 lies on R− when

λ ∈ R− and varies analytically with λ.

The critical values of Fλ are given by vλ = κλ4/7 where κ is the constant 7
44/733/7

.

One computes that κ ≈ 1.98. When λ ∈ R−, the critical point cλ0 lies between the

two prepole rays passing through pλ0 and pλ−1.

7



2.2 Phase One: The Bowtie Construction

Let O be the annulus in the parameter plane given by 10−10 ≤ |λ| ≤ 2. Also, let A

be the annulus in the dynamical plane given by κ10−4 ≤ |z| ≤ κ44/7.

Proposition 2.2.1.

1. For any λ ∈ O, all points on the outer circular boundary of A lie in Bλ, while

all points on the inner circular boundary of A lie in Tλ. Moreover, Fλ maps each of

these boundaries strictly outside the boundary of A.

2. If λ lies on the inner circular boundary of O, then vλ lies on the inner circular

boundary of A and so λ lies in the McMullen domain.

3. If λ lies on the outer circular boundary of O, then vλ lies on the outer circular

boundary of A and so λ lies in the Cantor set locus in the parameter plane.

Proof. First, if |z| = τκ44/7 for any τ ≥ 1, we have for each λ ∈ O:

|Fλ(z)| ≥ |τ 4κ4416/7| − λ

τ 3κ3412/7

≥ τ 41.94416/7 −
∣∣∣∣ 2

τ 3κ3412/7

∣∣∣∣
≥ 300τ 4 − 1

35τ 3

> 299τ

> τκ44/7 = |z|

So all points outside the circle |z| = κ44/7 lie in Bλ when λ ∈ O.

Similarly, if |z| = κ10−4, then we have

|Fλ(z)| ≥ |λ|
κ310−12

− κ410−16 ≥ 10−10

κ310−12
− κ410−16 ≥ 100/κ2 − ε

where ε ≈ 16(10−16). So this inner boundary is mapped into Bλ, and so are all smaller

circles around the origin. Hence this circle lies in Tλ (when λ lies in the connectedness

locus).

Now if λ lies on the inner circular boundary of O, then |λ| = 10−10 so that

|vλ| = κ10−40/7. Hence, for these λ-values, vλ ∈ Tλ and λ therefore lies in the

McMullen domain. If λ lies on the outer circular boundary of O, then |λ| = 2 so

8



that |vλ| = κ44/7 and thus this boundary circle lies in the Cantor set locus in the

parameter plane.

Due to the threefold symmetry resulting from n = 4, we need only look at λ in

S4 given by 2π
3
≤ Arg λ ≤ 4π

3
. Altogether, we restrict attention to the region S4

⋂
O.

We now describe the bowtie: four sets in the dynamical plane consisting of the

left wedge, right wedge, upper right wedge, and knot. For any parameter in S4
⋂
O:

Let the left wedge, Lλ, be the closed portion of the wedge in the annulus A in

dynamical space that is bounded by the two prepole rays through p0 and p−1. When

λ ∈ R−, Lλ is thus bounded by the rays extending from 0 and passing through

exp(2πi(6/14)) and exp(2πi(8/14)). So the critical point c0 lies in the interior of Lλ.

Next, let the right wedge, Rλ
0 , be the closed portion of the wedge in A that is

bounded by the critical point rays passing through c3 and c−3. When λ ∈ R−, this

wedge is bounded by the critical point rays extending from 0 and passing through

exp(±(2πi(1/14)). It is also bounded by the inner and outer portions of ∂A between

exp(±(2πi(1/14)). Note that Rλ
0 is the symmetric image of Lλ under z 7→ −z.

Let the upper right wedge, Rλ
1 , be the closed portion of the wedge in A that is

bounded by the critical point rays passing through c2 and c3. When λ ∈ R−, this

wedge is bounded by the critical point rays extending from 0 and passing through

exp(2πi(1/14)) and exp(2πi(3/14)).

Let the knot, TA, be the open portion of the trap door bounded by the annulus,

|z| < κ10−4. Note that the inner boundary circle of the annulus lies inside Tλ.

Figure 2·2 conveys why Lλ ∪TA ∪Rλ
0 ∪Rλ

1 is called the bowtie. Figure 2·2a shows

the prepole and critical point rays. Note that the boundaries of J (F ) are distinct

from the annulus which makes up the inner and outer boundaries of the wedges, as

seen in figure 2·2b.

9



(a) A stylized depiction of the wedge con-
struction

(b) The stylized construction in dynamical
space

Figure 2·2: The bowtie construction

Proposition 2.2.2. For each λ ∈ S4
⋂
O

1. Fλ maps Rλ
0 in one-to-one fashion onto a region that contains the interior of

Rλ
0 ∪Rλ

1 ∪ Lλ ∪ TA;

2. Fλ maps Rλ
1 in one-to-one fashion onto a region that contains the interior of

Rλ
0 ∪Rλ

1 ∪ Lλ ∪ TA;

3. Fλ maps Lλ two-to-one over a region that contains the interior of Rλ
0 ;

4. As λ winds once around the boundary of S4
⋂
O, the critical value Fλ(c

λ
0) winds

once around the boundary of Rλ
0 , (i.e., the winding index of the vector connecting this

critical value to the prepole pλ3 lying in the interior of Rλ
0 is one).

Proof. For the first case, note that the straightline boundaries of Rλ
0 are mapped two-

to-one onto the critical point rays passing through vλ3 and vλ−3. When 2π/3 < Arg λ ≤
4π/3, these rays are disjoint from all of Lλ, Rλ

0 , Rλ
1 , and TA. When λ rotates clockwise

to Arg λ = 2π/3, the sectors Lλ, Rλ
0 , Rλ

1 , and TA rotate clockwise 2π(1/42) radians.

The critical value ray vλ3 rotates clockwise 2π(4/42) radians, and lies on the cλ2 critical

ray upper boundary of Rλ
1 at exp(2πi(8/42)). When λ rotates counter-clockwise to

Arg λ = 4π/3, the sectors Lλ, Rλ
0 , Rλ

1 , and TA rotate counter-clockwise 2π(1/42)

10



radians. The critical value ray vλ−3 rotates counter-clockwise 2π(4/42) radians, and

still lies below the cλ−3 critical ray boundary of Rλ
0 . By the previous Proposition,

the outer boundary curve of Rλ
0 is mapped to an arc that lies in Bλ and also lies

outside the circular boundaries of Lλ, Rλ
0 , Rλ

1 , and TA. This image arc connects the

two critical value rays in Bλ, and lies to the right of these rays in Bλ. The inner

boundary is mapped to a similar arc connecting these rays but now lying to the left.

Consequently, the image of Rλ
0 properly contains the interiors of Lλ, Rλ

0 , Rλ
1 , and TA.

For the second case, note that the straightline boundaries of Rλ
1 are mapped

two-to-one onto the critical point rays passing through vλ3 and vλ2 . When 2π/3 <

Arg λ < 4π/3, these rays are disjoint from all of Lλ, Rλ
0 , Rλ

1 , and TA. As above,

when λ rotates clockwise to Arg λ = 2π/3, the sectors Lλ, Rλ
0 , Rλ

1 , and TA rotate

clockwise 2π(1/42) radians. The critical value ray vλ3 has already been covered in

the first case, as the lower boundary of Rλ
1 and the upper boundary of Rλ

0 are the

same. When λ rotates counter-clockwise to Arg λ = 4π/3, the sectors Lλ, Rλ
0 , Rλ

1 ,

and TA rotate counter-clockwise 2π(1/42) radians. The critical value ray vλ2 rotates

counter-clockwise 2π(4/42) radians, and lies on the cλ−3 critical ray lower boundary

of Rλ
1 at exp(2πi(−2/42)). By the previous Proposition, the outer boundary curve of

Rλ
1 is mapped to an arc that lies in Bλ and also lies outside the circular boundaries

of Lλ, Rλ
0 , Rλ

1 , and TA. This image arc connects the two critical value rays in Bλ,

and lies to the left of these rays in Bλ. The inner boundary is mapped to a similar

arc connecting these rays but now lying to the right. Consequently, the image of Rλ
1

properly contains the interiors of Lλ, Rλ
0 , Rλ

1 , and TA.

For the third case, we have that the straightline boundaries of Lλ contain the

prepoles pλ0 and pλ−1, which are both mapped to straight lines passing through the

origin. In the case of pλ0 , this straight line passes through exp(2πi(4/14)) when λ ∈
R−. Then as Arg λ increases or decreases by at most π/3, the argument of this image

line rotates by at most one-seventh of π/3 in the corresponding direction. Hence this

line lies strictly outside Rλ
0 . Note that the argument cannot be applied to Rλ

1 , as the

pλ1 prepole ray and the cλ2 critical point ray (the upper boundary of Rλ
1) both intersect

exp(2πi(3/14)) at λ ∈ R−. Similar arguments to the pλ0 prepole ray work for the image

of the pλ−1 prepole ray. For the circular boundaries of Lλ, by the previous Proposition,

they are both mapped to curves in Bλ that lie outside the outer boundary of A, but

now these curves are arcs that connect the image of the prepole rays passing to the

right of these lines. Hence the image of Lλ covers Rλ
0 two-to-one.

For the fourth case, when Arg λ = 2π/3, the image of cλ0 lies on the ray passing
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through exp(2πi(−4/42)), and when Arg λ = 4π/3, the critical value lies on the

complex conjugate ray. So, for these parameters, the critical value lies on the line

that includes the straight line boundary of Rλ
0 . For the circular boundaries of S4

⋂
O,

the previous Proposition shows that the critical value now rotates around the corre-

sponding circular boundary of Rλ
0 . So the critical value does indeed wind once around

Rλ
0 .

2.3 Phase Two: The 0 Arc

Part one of Proposition 2.2.2 states that Rλ
0 contains a preimage of itself, and so

there must be a fixed point in Rλ
0 . One checks easily that this fixed point is on the

Julia set accessible from Bλ. We can now prove the existence of an arc of infinitely

many preimages of Lλ and TA, with the initial pair of Lλ and TA located near Tλ,

and successive preimages extending to that fixed point. Inside Rλ
0 there is a preimage

of the region that contains the interior of Lλ ∪ TA ∪Rλ
0 . The prepole pλ3 is inside the

preimage of TA, so that we have the preimages of Lλ ∪ TA ∪Rλ
0 in order of increasing

|z|, i.e. Lλ, TA, then Rλ
0 , which compactly contains the preimages of Lλ, TA, and Rλ

0

(see figure 2·3b). Increasing |z| is correct when λ lies on the real axis in the parameter

plane, but not necessarily so for λ with imaginary component. It is more precise to

say that the preimages are arranged in order along the arc extending from Tλ to Bλ.
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(a) The construction Lλ, TA,
and Rλ0

(b) 0Lλ, 0TA, and 0Rλ0 inside
Rλ0

(c) 02L
λ, 02TA, and 02R

λ
0 in-

side 0Rλ0

Figure 2·3: Preimages of the right wedge

Continuing, inside the preimage of Rλ
0 there is another preimage of the region that

contains the interior of Lλ ∪ TA ∪ Rλ
0 in order along the arc. Inside the preimage of

the preimage of Rλ
0 there is another preimage of the region that contains the interior

of Lλ ∪ TA ∪Rλ
0 in order along the arc. And so on . . .

It is useful to to refer to the preimages by their itineraries. In other words, inside

Rλ
0 is 0Lλ, 0TA, and 0Rλ

0 . A point in 0Lλ is in Rλ
0 , and after one iteration is in Lλ.

Similarly, a point in 0TA is in Rλ
0 , and after one iteration is in TA. And a point in 0Rλ

0

is in Rλ
0 , and after one iteration is still in Rλ

0 . Inside 0Rλ
0 is 00Lλ, 00TA, and 00Rλ

0 . A

point inside these preimages is in Rλ
0 , then Rλ

0 , then Lλ, TA, or still Rλ
0 respectively.

We will use the notation 0k to represent a sequence of k 0’s (i.e., 00Lλ = 02L
λ).

Continuing, inside 00Rλ
0 , or 02R

λ
0 , is 03L

λ, 03TA, and 03R
λ
0 .

This process continues iteratively as successive preimages of the region that con-

tains the interior of Lλ, TA, and Rλ
0 accumulate at the fixed point inside Rλ

0 . As this

arc consists of preimages named with only 0’s that accumulate at the fixed point

corresponding to the set with itinerary 000 . . . , it is called the “0 TL arc.” This arc

in dynamical space consists of TA as well as infinitely many alternating preimages of
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Lλ and TA and bounded by Bλ on the right:

TA < 0Lλ < 0TA < 02L
λ < 02TA < 03L

λ < 03TA < · · · < f.p. in Rλ
0 < Bλ

Each TL arc is an infinite sequence of pairs of preimages of TA and Lλ of increas-

ingly higher iterations before z lands in Lλ or TA. By considering the z at the center

of each preimage of TA, there exists a corresponding sequence of z values. Each TL

arc, as a sequence of z, tends to the fixed point in Rλ
0 or to one of its preimages.

The 0 TL arc in dynamical space quickly becomes hard to see due to the difference

in scale of each successive preimage. It is helpful to visualize this construction not

to scale. Figure 2·4 is a stylized depiction of the 0 TL arc in dynamical space. The

arrow points to the fixed point in Rλ
0 , so each successive preimage is a pair of smaller

copies of Lλ and TA, and these preimages accumulate on the fixed point accessible

from Bλ. Note that the compact containment as proved in Proposition 2.2.2 is not

represented for the sake of avoiding visual clutter.

Figure 2·4: The 0 TL arc
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Before we can use the existence of the 0 TL arc in Rλ
0 to show the existence of a

SM arc in the parameter plane, we recall the concept of a polynomial-like map. Let

Gµ be a family of holomorphic maps that depends analytically on the parameter µ

lying in some open disk D. Suppose each Gµ : Uµ → Vµ where both Uµ and Vµ are

open disks that also depend analytically on µ. Gµ is then said to be polynomial-like

of degree two if, for each µ:

• Gµ maps Uµ two-to-one onto Vµ and so there is a unique critical point in Uµ;

• Vµ contains Uµ;

• As µ winds once around the boundary of D, the critical value winds once arond

Uµ in the region Vµ − Uµ.

As shown in (Douady and Hubbard, 1985), for such a family of polynomial-like

maps, there is a homeomorphic copy of the Mandelbrot set in the disk D. Moreover,

for µ-values in this Mandelbrot set, Gµ|Uµ is conjugate to the corresponding quadratic

map given by this homeomorphism.

We have an arc of infinitely many alternating preimages of Lλ and TA in the

dynamical space. We show that the center of each preimage of TA is the critical value

for a specific λ that is the center of a Sierpinski hole. Then we use the machinery of

polynomial-like maps on some open sets to prove that each preimage of Lλ corresponds

to a Mandelbrot set. Thus, the existence of a dynamical TL arc proves the existence

of a corresponding parameter arc of infinitely many Sierpinski holes and Mandelbrot

sets.

Theorem 2.3.1. There exists the 0 SM arc along the negative real axis in the pa-

rameter plane that consists of infinitely many Mandelbrot sets Mk with k ≥ 2 and

infinitely many Sierpinski holes Ek with k ≥ 1. Here k denotes the base period of Mk
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and the escape time of Ek. These sets are arranged along the negative real axis in this

manner:

Cantor set locus < · · · <M4 < E3 <M3 < E2 <M2 < E1.

Proof. We will first prove that each preimage of TA in dynamical space corresponds

to a Sierpinski hole in the parameter plane (the trap door itself corresponds to the

McMullen domain). By construction, for each λ ∈ S4
⋂
O, there is a unique prepole

pλ3 in the interior of Rλ
0 . Since Fλ maps Rλ

0 one-to-one over itself, there is a unique

preimage of this prepole, zλ3 , in Rλ
0 , so F 2

λ (zλ3 ) = 0. Continuing, for each λ ∈ S4
⋂
O,

there is a unique point zλk in Rλ
0 for which we have Fλ(z

λ
k ) = zλk−1 and so F k−1

λ (zλk ) = 0.

This holds true for the (k + 1)st case as well.

The points zλk vary analytically with λ and are strictly contained in the interior of

Rλ
0 . So we may consider the function Hk(λ) defined on S4

⋂
O by Hk(λ) = vλ0 − zλk

where vλ0 = Fλ(c
λ
0). When λ rotates once around the boundary of S4

⋂
O, vλ0 rotates

once around the boundary of Rλ
0 while zλk remains in the interior of Rλ

0 . Hence Hk(λ)

has winding number one around the boundary of S4
⋂
O and so there must be a

unique zero in S4
⋂
O for each Hk. This λ is then the parameter that lies at the

center of the escape time region Ek. Using the technique from (Roesch, 2006), it then

follows that Ek is an open disk in the parameter plane.

The λ in the parameter plane such that vλ0 = pλ3 (with pλ3 being the center of 0T

in dynamical space) is the center of E2, so 2 is equivalently the escape time of cλ0 for

λ ∈ E2 and the length of the sequence 0T .

The λ in the parameter plane such that vλ0 = zλ3 (with zλ3 being the center of 00T

in dynamical space) is the center of E3, so 3 is equivalently the escape time of cλ0 for

λ ∈ E3 and the length of the sequence 00T .

Continuing in this fashion, the λ in the parameter plane such that vλ0 = zλk (with zλk
being the center of 0k−1T in dynamical space) is the center of Ek, so k is equivalently

the escape time of cλ0 for λ ∈ Ek and the length of the sequence 0k−1T .

Note that, as λ decreases along R−, both vλ0 and zλk increase along R+. It follows

that the portion of Ek+1 in R− lies to the left of Ek in the parameter plane.

To prove the existence of the Mandelbrot sets Mk, recall that the orbit of the

point zλk under Fλ remains in Rλ
0 before entering TA and landing at 0 at iteration

k − 1 (here zλ2 = pλ3). For each k ≥ 2, let Ek
λ be the open set surrounding zλk in Rλ

0

that is mapped onto TA by F k−1
λ . Let Dk

λ be the set in Rλ
0 consisting of points whose
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first k−2 iterations lie in Rλ
0 but whose (k−1)st iterate lies in the interior of Lλ. Since

Fλ is univalent on Rλ
0 , each Dk

λ is an open disk. Furthermore, the boundary of Dk
λ

meets a portion of the boundaries of both Ek−1
λ and Ek

λ (where E1
λ = TA). Since F k−1

λ

maps Dk
λ one-to-one over the interior of Lλ and then Fλ maps Lλ two-to-one over

a region that contains Rλ
0 , we have that F k

λ maps Dk
λ two-to-one over a region that

completely contains Rλ
0 . Moreover, the critical value for F k

λ is just vλ0 , which, by the

preceding Proposition, winds once around the exterior of Rλ
0 as λ winds once around

the boundary of S4
⋂
O. Hence, F k

λ is a polynomial–like map of degree two on Dk
λ

and this proves the existence of a baby Mandelbrot set Mk lying in S4
⋂
O for each

k ≥ 2. When λ is real and negative, we have that the centers of the escape regions Ek

lie along R− and, since the real line is invariant under Fλ when λ ∈ R−, both cλ0 and

vλ0 also lie on the real axis. Then, by the λ 7→ λ symmetry in the parameter plane,

the spines of those Mandelbrot sets also lie in R−. By the spine of the Mandelbrot set

we mean the analogue of the portion of the real axis lying in the usual Mandelbrot

set associated with the quadratic family z2 + c.

Next, since the Ek
λ and Dk

λ are arranged along the TL arc from TA out to the fixed

point in the following fashion:

TA = E1
λ < D2

λ < E2
λ < D3

λ < E3
λ < . . .

we have that the Ek andMk are arranged along the negative real axis in the parameter

plane in the opposite manner:

· · · <M4 < E3 <M3 < E2 <M2 < E1

with the parameter passing alternately through the centers of infinitely many Sier-

pinski holes and along the spines of the same number of baby Mandelbrot sets.

Finally, when λ ∈ R−, there is a non-empty interval lying between each adjacent

Mk and E j (where j = k or k−1). This interval contains parameters for which F k
λ (cλ0)

lies in Lλ, but then F k+1
λ (cλ0) is back in Rλ

0 and close to ∂Bλ. As a consequence, it

takes more than k additional iterations for this critical orbit to reach TA or return to

Lλ.

Figure 2·5 shows the 0 SM arc. From right to left, we see the McMullen Domain,

E2, E3, E4, and E5. M2 is visible between the McMullen domain and E2, but no other
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Mk on the 0 SM arc can be seen at this scale. Between E5 and the Cantor set locus

are infinitely more Sierpinski holes and Mandelbrot sets on the arc.

Figure 2·5: The 0 SM arc

Note that there are other Sierpinski holes and Mandelbrot sets along the arc that

are not accounted for by the arc. Also, the arc contains infinitely many sets but is

of finite length. One can find a Mandelbrot set or Sierpinski hole of arbitrarily high

base period or escape time, but does so by zooming in as opposed to increasing |λ|.

2.4 Phase Three: The 1 TL Arc

Theorem 2.3.1 proves the existence of alternating Mandelbrot sets and Sierpinski

holes along the negative real axis in the parameter plane by using the existence of

alternating open sets Ek
λ and open disks Dk

λ, which correspond to the alternating

preimages of TA and Lλ along the positive real axis in the dynamical plane. This

theorem also applies to the family zn + λ/zd for n ≥ 2 and even, and d ≥ 3 and odd,

and is detailed in (Devaney, 2016).

Recall that F (Rλ
0) ⊃ Rλ

0 (i.e. there is a preimage of Rλ
0 inside Rλ

0), and so there

is a fixed point inside Rλ
0 accessible from Bλ. This preimage together with this fixed
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point imply that successive preimages of the region that contains the interiors of

Lλ, Tλ, and Rλ
0 accumulate at the fixed point in Rλ

0 . Recall that Proposition 2.2.2

refers to two right wedges, and according to that Proposition, there is a preimage of

Rλ
1 inside Rλ

1 . Note that, since F (Rλ
1) ⊃ Rλ

1 , there exists a unique fixed point in Rλ
1

as well. However, this fixed point is “buried,” i.e. not accessible from either Bλ or

Tλ. One checks easily that this fixed point lies in the interior of Rλ
1 .

This begs the question: is there an arc in Rλ
1 analogous to the arc in Rλ

0? Is there

a “1 TL arc” of alternating preimages of Lλ and TA that accumulate at the fixed

point in Rλ
1?

In the proof of part 2 of Proposition 2.2.2, the outer boundary curve of Rλ
1 is

mapped to an arc to the left of the critical value rays in Bλ, while the inner boundary

curve of Rλ
1 is mapped to an arc to the right of the critical value rays. So the preimage

of Lλ inside Rλ
1 must be closer to Bλ while the preimages of Rλ

0 and Rλ
1 inside Rλ

1 must

be closer to Tλ. This is because the image of cλ2 is pλ−3, and as z travels clockwise

around the boundary of Rλ
1 from cλ−3, Fλ(z) travels clockwise around A from pλ−3.

Thus the orientation remains the same for preimages of Rλ
1 , and the set of preimages

is rotated inside Rλ
1 . This applies to all preimages for any number of iterations back.

Thus, inside Rλ
1 , each set of preimages that contains the interior of Rλ

0 ∪ Rλ
1 ∪ Lλ is

rotated in their corresponding preimage of Rλ
1 .

In other words, the preimages in Rλ
0 are arranged nicely in a straight line while

the preimages in Rλ
1 are arranged in a rotating pattern. Compare figures 2·6a and

2·6b.
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(a) The preimages in Rλ0 (b) The preimages in Rλ1

Figure 2·6: Preimages inside Rλ
0 vs Rλ

1

The 0 TL arc “grows” from Tλ and accumulates at the fixed point in Rλ
0 accessible

from Bλ. We use Proposition 2.2.2 to prove the existence of the 1 TL arc that “grows”

from both Bλ and Tλ and accumulates at the buried fixed point in Rλ
1 .

Inside Rλ
1 there is a preimage of the region that contains the interior of Lλ ∪ TA ∪

Rλ
1 . The prepole pλ2 is inside the preimage of TA, so that we have the preimages of

Rλ
1 ∪TA∪Lλ in order along the arc, i.e. Rλ

1 (which compactly contains the preimages

of Lλ, TA, and Rλ
1), TA, then Lλ.

Using the itinerary naming scheme, there is Tλ, R
λ
1 compactly containing 1Rλ

1 , 1TA, 1L
λ,

then Bλ in order along the arc. Looking at the preimages inside 1Rλ
1 , we have Tλ,

Rλ
1 (compactly containing 1Rλ

1 (compactly containing 12L
λ, 12TA, 12R

λ
1)), 1TA, 1L

λ ,

then Bλ. See figure 2·7.
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(a) The construction Lλ, TA,
Rλ0 , and R

λ
1

(b) 1Lλ, 1TA, 1R
λ
0 , and 1Rλ1

inside Rλ1

(c) 12L
λ, 12TA, 12R

λ
0 , and

12R
λ
1 inside 1Rλ1

Figure 2·7: Preimages of the upper right wedge

This process continues iteratively as successive preimages of the region that con-

tains the interiors of Lλ, TA, and Rλ
1 meet in the middle, i.e., accumulate at the fixed

point in the interior of Rλ
1 . The preimages with an odd number of 1′s in their name

(i.e., even escape time or base period) are closer to Bλ, and the preimages with an

even number of 1′s in their name (i.e., odd escape time or base period) are closer to

Tλ. As this arc consists of preimages named with only 1’s that accumulate at the

fixed point corresponding to the set with itinerary 111 . . . , it is called the “1 TL arc.”

This arc in dynamical space consists of infinitely many alternating preimages of Lλ

and TA between Tλ and Bλ:

Tλ, 12TA, 12L
λ, 14TA, 14L

λ, . . . , f.p. in Rλ
1 , . . . , 13TA, 13L

λ, 1TA, 1L
λ, Bλ

Figure 2·8 is a depiction of the 1 TL arc in a style similar to the 0 TL arc. The

X represents the fixed point in the interior of Rλ
1 , so each successive preimage is a

pair of smaller copies of Lλ and TA on alternating sides of the X, and these preimages

accumulate on the fixed point. Note that the fixed point is not accessible from Bλ or

Tλ. Again, the compact containment is not represented.
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Figure 2·8: The 1 TL arc

2.5 Phase Four: The 1 TL Spiral

Up to this point, we have used Proposition 2.2.2 to find preimages of Rλ
0 inside Rλ

0 ,

and preimages of Rλ
1 inside Rλ

1 . In actuality, there is a preimage of the interiors of

Lλ∪TA∪Rλ
0 ∪Rλ

1 in Rλ
0 , and a (rotated) preimage of the interiors of Lλ∪TA∪Rλ

0 ∪Rλ
1

in Rλ
1 . This means that the 0 TL arc, contained entirely inside Rλ

0 , has a preimage

contained entirely inside Rλ
1 .

Consider the preimage of the 0 TL arc in Rλ
1 : the 10 TL arc. The 0 TL arc is

arranged TA, 0L
λ, 0TA, 02L

λ, 02TA, . . . in order along the arc, or in order of increasing

|z|. Therefore, it’s preimage is arranged 1TA, 10Lλ, 10TA, 102L
λ, 102TA, . . . in order

along the arc. But the arc is rotated inside Rλ
1 , so the sets are arranged in order of

decreasing |z|.

The 10 TL arc accumulates at the preimage of the fixed point. The fixed point

is accessible from Bλ, therefore the preimage of the fixed point is accessible from Tλ.

Due to the rotation of preimages inside Rλ
1 , this preimage of the fixed point is above
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the 1 TL arc, and so the entire 10 TL arc is above the 1 TL arc.

Next, consider the preimage in Rλ
1 of the 10 TL arc. This is the 120 TL arc,

consisting of 12TA, 120L
λ, 120TA, 1202L

λ, 1202TA, . . . in order along the arc. But the

arc is rotated inside a rotated arc, i.e. the sets are arranged in order of increasing

|z|. The 120 TL arc accumulates at the preimage of the preimage of the fixed point.

If the preimage of the fixed point is accessible from Tλ, the preimage of the preimage

of the fixed point must not be accessible from either Bλ or Tλ. Due to the rotation

of preimages inside Rλ
1 , this preimage of the preimage of the fixed point is below the

1 TL arc, and so the entire 120 TL arc exists below the 1 TL arc.

This process continues iteratively as successive preimages of the 0 TL arc, lying

alternatingly above and below the 1 TL arc, limit to the preimage of the 0 TL arc

such that the limit preimage arc and the 1 TL arc accumulate at the same fixed point

in Rλ
1 .

Figure 2·9 depicts the 1 TL spiral in dynamical space. A complex number z travels

a continuous path that begins at the limit of the 10 TL arc, along the 10 TL to 1TA,

along the 120 TL arc to 12TA, along the 130 TL arc to 13TA, and so on, passing

through every preimage of TA in the 1 TL arc and limiting to the fixed point in Rλ
1 .

Note that z travels backward along each 1k0 TL arc, or away from the limit z.
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Figure 2·9: The 1 TL spiral

We have found a dynamical structure consisting of the 10 TL arc and infinitely

many of its preimages. Each sucessive preimage arc exists in a smaller and smaller

region as the arcs tend to the limit arc in a spiral pattern. As this spiral passes

through every TA in the 1 TL arc, it is called the “1 TL spiral.” This spiral is

an infinite sequence of arcs where each arc is itself an infinite sequence of pairs of

preimages of Lλ and TA.

2.6 Phase Five: The 01 SM Spiral

The 1 TL spiral in dynamical space consists of preimages of Lλ and TA. As each

preimage of Lλ in dynamical space proves the existence of a Mandelbrot set in the

parameter plane, and each preimage of TA in dynamical space proves the existence of

a Sierpinski hole in the parameter plane, the dynamical spiral suggests the existence
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of a parameter spiral of Mandelbrot sets and Sierpinski holes. However, for all π/3 <

Arg λ < 2π/3, the critical value lies in Rλ
0 . As a consequence, there are no such

Mandelbrot sets or Sierpinski holes in the parameter plane that correspond to the

preimages of TA and Lλ in Rλ
1 .

However, the 1 TL spiral is in Rλ
1 , and there exists a preimage of Rλ

1 inside Rλ
0 .

Therefore, we consider the 01 TL spiral in dynamical space, and use that to prove

the existence of the 01 SM spiral in the parameter plane.

Theorem 2.6.1. There exists a 01 SM arc below the negative real axis in the param-

eter plane that consists of infinitely many Mandelbrot sets Mk and infinitely many

Sierpinski holes Ek both with k ≥ 3. As before, k denotes the base period of Mk and

the escape time of Ek. These sets are arranged in from the Cantor set locus to the

McMullen domain in this manner:

Cantor set locus, M3, E3,M5, E5,M7, E7, . . . , E8,M8, E6,M6, E4,M4, E1.

Note that the Cantor set locus and the McMullen domain are not included in the

01 arc.

Furthermore, there exists the 01 SM spiral below the negative real axis in the

parameter plane that spirals from the Cantor set locus along the 0 arc to the Sierpinski

hole with itinerary 0T , along the 010 arc to the Sierpinski hole with itinerary 01T ,

along the 0120 arc to the Sierpinski hole with itinerary 012T , along each 01k0 arc to

the Sierpinski hole with itinerary 01kT , passing through each Sierpinski hole in the 01

SM arc and limiting to the SM arc that accumulates at the parameter such that the

critical value is the buried fixed point in Rλ
1 .

Proof. We will again prove that each preimage of TA in dynamical space corresponds

to a Sierpinski hole in the parameter plane. By construction, for each λ ∈ S4
⋂
O,

there is a unique prepole pλ2 in the interior of Rλ
1 . Since Fλ maps Rλ

0 one-to-one onto

a region containing the interior of Rλ
1 , there is a unique preimage of this prepole, wλ4 ,

in Rλ
1 , so F 3

λ (wλ4 ) = 0. Continuing, for each λ ∈ S4
⋂
O, there is a unique point wλk in

Rλ
0 for which we have Fλ(w

λ
k) = wλk−1 and so F k−1

λ (wλk) = 0. This holds true for the

(k + 1)st case as well.

The points wλk vary analytically with λ and are strictly contained in the interior

of Rλ
0 . So we may consider the function Hk(λ) defined on S4

⋂
O by Hk(λ) = vλ0 −wλk

25



where vλ0 = Fλ(c
λ
0). When λ rotates once around the boundary of S4

⋂
O, vλ0 rotates

once around the boundary of Rλ
0 while wλk remains in the interior of Rλ

0 . Hence Hk(λ)

has winding number one around the boundary of S4
⋂
O and so there must be a

unique zero in S4
⋂
O for each Hk. This λ is then the parameter that lies at the

center of the escape time region Ek. Ek is an open disk in the parameter plane.

The λ in the parameter plane such that vλ0 = wλ3 (with wλ3 being the center of

01T in dynamical space) is the center of E3, so 3 is equivalently the escape time

of vλ0 for λ ∈ E3 and the length of the sequence 01TA. Under iteration by Fλ,

cλ0 ∈ Lλ → wλ3 ∈ Rλ
0 → pλ2 ∈ Rλ

1 → 0 ∈ TA.

The λ in the parameter plane such that vλ0 = wλ4 (with wλ4 being the center of

012T in dynamical space) is the center of E4, so 4 is equivalently the escape time

of vλ0 for λ ∈ E4 and the length of the sequence 012TA. Under iteration by Fλ,

cλ0 ∈ Lλ → wλ4 ∈ Rλ
0 → wλ3 ∈ Rλ

0 → pλ2 ∈ Rλ
1 → 0 ∈ TA.

Continuing in this fashion, the λ in the parameter plane such that vλ0 = wλk
(with wλk being the center of 01k−2TA in dynamical space) is the center of Ek, so k is

equivalently the escape time of vλ0 for λ ∈ Ek and the length of the sequence 01k−2TA.

Note that, as k increases from an odd value to an even value, |λ| decreases, while

both |vλ0 | and |wλk | increase. As k increases from an even value to an odd value, |λ|
increases, while both |vλ0 | and |wλk | decrease. Successively higher odd values of k have

lower |λ| in the parameter plane and higher |vλ0 | and |wλk | in dynamical space, while

successively higher even values of k have higher |λ| in the parameter plane and lower

|vλ0 | and |wλk | in dynamical space.

It follows that, in the parameter plane, in order of decreasing |λ|, the sets are

arranged Ek, Ek+1 for k odd, Ek+1, Ek for k even, with all odd escape time Sierpinski

holes having higher center |λ| than all even escape time Sierpinski holes.

To prove the existence of the Mandelbrot setsMk, recall that the point wλk ∈ Rλ
0 ,

has an orbit under Fλ in Rλ
1 for iterates 1 through k − 2, and enters Tλ at iteration

k − 1 (here wλ2 = pλ2). For each k ≥ 3, let Ek
λ be the open set surrounding wλk in Rλ

0

that is mapped onto Tλ by F k−1
λ . Let Dk

λ be the set in Rλ
0 consisting of points whose

first k− 2 iterates lie in Rλ
1 but whose (k− 1)st iterate lies in the interior of Lλ. Since

Fλ is univalent on Rλ
0 and Rλ

1 , each Dk
λ is an open disk. Furthermore, the boundary

of Dk
λ meets a portion of the boundaries of both Ek−2

λ and Ek
λ. Since F k−1

λ maps

Dk
λ one-to-one over the interior of Lλ and then Fλ maps Lλ two-to-one over a region

that contains Rλ
0 , we have that F k

λ maps Dk
λ two-to-one over a region that completely

contains Rλ
0 . Moreover, the critical value for F k

λ is just vλ0 , which, by Proposition
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2.2.2, winds once around the exterior of Rλ
0 as λ winds once around the boundary of

S4
⋂
O. Hence, F k

λ is a polynomial-like map of degree two on Dλ
k and this proves the

existence of a baby Mandelbrot set Mk lying in S4
⋂
O for each k ≥ 3.

As in the above proof, the center of each Sierpinski hole in the 01 SM spiral

can be calculated by solving F k(vλ) = pλ2 , where pλ2 is the prepole in Rλ
1 and k

corresponds to the escape time of the Sierpinski hole Ek. They can also be verified

by selecting λ in that Sierpinski hole and observing the itinerary of the critical value.

A straightforward computation shows that the 01TA region corresponds to the 01

Sierpinski hole E3 located below the negative real axis in the parameter plane. The

λ parameter value at the center of the 01 Sierpinski hole results in the map F λ such

that cλ0 maps to vλ0 inside 01TA, which maps to 1TA, which maps to exactly the center

of the trap door (the origin). Similarly, the 012TA region, which is the preimage of

the 01TA region, corresponds to the 012 Sierpinski hole E4. We adopt the convention

of referring to the 012 Sierpinski hole as the “preimage” of the 01 Sierpinski hole

because their corresponding regions in dynamical space have that relationship. We

use the same convention for “preimage” SM arcs overall because their corresponding

TL arcs have that relationship. For example, the 120 TL arc is the preimage of the

10 TL arc, so we refer to the 120 SM arc as a “preimage” of the 10 SM arc.
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Figure 2·10: The 01 SM spiral

Figure 2·10 shows the 01 SM spiral as λ enters the connectedness locus from the

Cantor set locus, travels along the 0 SM arc into the 0 Sierpinski hole, then along the

010 arc into the 01 Sierpinski hole, then along the 0120 arc into the 012 Sierpinski

hole, and so on. The 013 Sierpinski hole is a speck at this scale. Note that the arrows

point to the accumulation points of the arcs (outward), while λ spirals inward.

2.7 Infinitely Many SM Spirals

In dynamical space, we have used Proposition 2.2.2 to find the preimage of the 1

spiral: the 01 spiral in Rλ
0 . This 01 spiral has its preimage in Rλ

0 , the 021 spiral, and
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its preimage in Rλ
1 , the 101 spiral. As expected, the 021 spiral passes through every

preimage of TA in the 021 arc, and the similar statement can be made about the 101

spiral. The 021 spiral has its preimages the 031 arc and the 1021 spiral.

As for the 101 spiral, its preimage in Rλ
1 must pass through every preimage of TA

in the 1201 arc, is connected to 120TA, which is part of the 120 arc, which is part of

the path of the 1 spiral. Its preimage in Rλ
1 is connected to 010TA which is part of

the 010 arc.

It suffices to find the successive preimages in Rλ
1 of the 01 spiral to show that there

are infinitely SM many spirals in the parameter plane of the form 0k1. In dynamical

space, we also find their preimages in Rλ
1 , spirals of the form 10k1, without difficulty.

If we take figure 2·9 and include the next three levels of preimages, we get figure

2·11. The preimages of the 1 TL spiral are itself and the 01 TL spiral. The preimages

of the 01 TL spiral are the 021 and 101 TL spirals. The preimages of the 021 TL

spiral are the 031 and 1021 TL spirals.
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Figure 2·11: Infinitely many TL spirals

In parameter space, all SM spirals of the form 0k1 can be found and verified as

well. A more complete version of figure 2·10 including some of these infinitely many
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spirals in the parameter plane would look like:

Figure 2·12: Infinitely many SM spirals

Figure 2·12 depicts the 01 SM spiral as in figure 2·10, as well as its preimage the

021 SM spiral, and the 021 SM spiral’s preimage the 031 SM spiral. Whereas the 01

SM spiral passes through the 0 SM arc to the 0 Sierpinski hole and then the 010 SM

arc, the 021 SM spiral passes through the 0 SM arc to the 02 Sierpinski hole and then

the 021 SM arc.

We have shown that infinitely many SM spirals exist in the π ≤ Arg λ ≤ 4π/3

region of the parameter plane. However, the choice of Rλ
1 being above Rλ

0 was arbi-

trary. If we had chosen the other right wedge to be below Rλ
0 - “the Rλ

−1 wedge” - we
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would have the symmetric “−1” TL spiral in dynamical space and the corresponding

counterclockwise “0(−1)” SM spiral in the parameter plane, along with their infinitely

many preimages.

Furthermore, by the threefold symmetry of the parameter plane, symmetric copies

of these infinitely many spirals also exist in the 0 ≤ Arg λ ≤ 2π/3 and 4π/3 ≤

Arg λ ≤ 2π regions of the parameter plane. Together with the lower wedge argument,

for each spiral in the π ≤ Arg λ ≤ 4π/3 region of the parameter plane, there are

actually six spirals in the parameter plane, as in figure 2·13. The collection of all of

the SM spirals in the parameter plane is called the “SM hydra” because bouquet is

taken, and because it sounds cool.

Figure 2·13: Here Are Infinite spiraLs comprising the SM Hydra
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Chapter 3

The General Case

3.1 Overview

We extend the construction of the bowtie beyond z4+λ/z3 to more general zn+λ/zd.

We then prove that the same properties about this analogous bowtie hold in an

analogous sector of the parameter plane for almost all pairs of (n, d). The proof of

Proposition 2.2.2 involved the specific angles of the dynamical rays, but there is a

more elegant method for proving compact containment in the general case.

Given that a general Proposition 2.2.2 still holds for a general bowtie, the existence

of general parameter structures follows. We then consider the pairs of (n, d) for which

we can not prove a general Proposition 2.2.2, and find alternatives to the upper right

wedge for almost all of the exceptional cases. This results in alternative or exceptional

bowties, out of which we construct corresponding TL arcs, which prove the existence

of corresponding SM arcs and spirals.

We widen our focus to the general case

Fλ(z) = zn +
λ

zd

where z ∈ C, λ ∈ C is nonzero, and (n, d) ∈ D. D is defined to be the set of integer

pairs (n, d) such that n ≥ 4 is even and d ≥ 3 is odd. Please don’t confuse this D

with the open disk in the context of polynomial-like maps.

There is (n− 1)fold symmetry in the parameter plane for these maps, and n− 1
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principal Mandelbrot sets in the parameter plane whose spines lie along the rays that

pass through the (n− 1)th roots of unity. As n increases, we need only be concerned

with smaller sectors of the parameter plane. Figure 3·3a shows the parameter plane

for z10 + λ/z7 with ninefold symmetry.

As in section 1.2, there are n + d critical points, critical values, and prepoles. In

the (10, 7) case, the 17fold symmetry is apparent in figure 3·3b.

(a) The parameter plane for z10 + λ/z7 (b) The dynamical space for z10+λ/z7 with
λ in a Sierpinski hole

Figure 3·1: Parameter and dynamical planes for z10 + λ/z7

3.2 The General Bowtie Construction

We require a general Proposition 2.2.1. As in section 2.3, we may find constants

α < 1 and β > 1 such that, for λ ∈ Sn and |λ| = α, then λ lies in the McMullen

domain, whereas if |λ| = β, then λ lies in the Cantor set locus. Furthermore, we may

construct an annulus A in the dynamical plane that encircles the origin and has the

property that, if |λ| = α, then vλ0 lies on the inner circular boundary of A, whereas

if |λ| = β, then vλ0 lies on the outer circular boundary of A. Just as in Proposition
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2.2.1, we may arrange that, if α < |λ| < β, then Fλ maps both the inner and outer

boundary of A strictly outside A. We then define the region O in the parameter

plane to be the set of λ that satisfy α ≤ |λ| ≤ β.

Due to the (n−1)fold symmetry, we need only look at λ in Sn given by n−2
2(n−1)2π ≤

Argλ ≤ n
2(n−1)2π. Altogether, we restrict attention to the region Sn

⋂
O.

We now define the general sectors Lλ, Rλ
0 , Rλ

1 , and TA in dynamical space when

λ ∈ Sn
⋂
O. First, when λ ∈ R−, Lλ is the region contained in the annulus A and

bounded by the two prepole rays given by

Arg z

2π
=

1

2
± 1

2(n+ d)
.

Rλ
0 is contained in A and is bounded by the two critical point rays given by

Arg z

2π
= ± 1

2(n+ d)
.

Rλ
1 is contained in A and is bounded by the two critical point rays given by

Arg z

2π
=

2

2(n+ d)
± 1

2(n+ d)
.

TA is the open portion of the trap door bounded by A.

As λ rotates through Sn
⋂
O in the clockwise direction by 1

2(n−1) of a turn, the

critical points and prepoles on the straightline boundaries of these sectors each rotate

by 1
2(n−1)(n+d) of a turn in the clockwise direction. The images of the critical point

rays rotate by n
2(n−1)(n+d) of a turn in the clockwise direction. The statement still

holds if we replace clockwise with counter-clockwise. In effect, higher n results in the

critical value rays rotating relatively more compared to the critical point or prepole

rays. This is balanced by the fact that we need only consider λ in a smaller Sn.

Proposition 3.2.1. For zn + λ/zd where (n, d) ∈ D, when rotating λ by 1
2(n−1) of
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a turn, so long as a critical value ray does not land inside or on the boundary of a

wedge for λ ∈ R−, that critical value ray can catch up to - but not pass - the critical

point boundary of the wedge.

Proof. If a ray does not land inside or on the boundary of a wedge, then the difference

in their arguments is at least
(

1
2(n+d)

)
2π. After rotating 1

n−1 of a turn (i.e. 1
n−1π), the

critical point ray has rotated 1
n−1

(
1

2(n+d)

)
2π, while the critical value ray has rotated

n
n−1

(
1

2(n+d)

)
2π.

They rotate with the same orientation, so the critical value ray is(
n

n− 1
− 1

n− 1

)(
1

2(n+ d)

)
2π =

(
n− 1

(n− 1)(2)(n+ d)

)
2π =

(
1

(2)(n+ d)

)
2π

closer to the critical point ray in argument. Therefore, a critical value ray that is not

already inside or on the boundary of a wedge can at most be on the critical point

boundary of a wedge.

The critical value rays from Rλ
0 never land inside or on the boundary of a wedge.

This is established in (Devaney, 2016) for the left and right wedges. We must also

check that the rays do not land in Rλ
1 . The lower boundary critical point ray of Rλ

1

is the same as the upper boundary critical point ray of Rλ
0 , so that has been covered.

It remains to verify that the image of the upper boundary critical point ray of Rλ
1

satisfies the hypothesis of 3.2.1. However, this ray can cause problems.

Proposition 3.2.2. For zn + λ/zd where (n, d) ∈ D,

1. The images of the critical point rays bounding Rλ
0 never land inside or on the

boundary of Lλ or Rλ
0 ;

2. The image of the upper boundary critical point ray of Rλ
0 does not land inside or

on the boundary of Lλ or Rλ
0 except for (n, d) such that:

i. n = 2d;

ii. n = 2(d+ 1);

iii. n = d+1
2

;

iv. n = d−1
2

.
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Proof. For the first part, the lower critical point ray bounding Rλ
0 at Arg z = −1

2(n+d)
2π

is sent to −n
2(n+d)

2π = 2(n+d)−n
2(n+d)

2π.

1

2
+

1

2(n+ d)
=
n+ d+ 1

2(n+ d)
<

2(n+ d)− n
2(n+ d)

=
n+ 2d

2(n+ d)
<

−1

2(n+ d)
=

2n+ 2d− 1

2(n+ d)

for (n, d) ∈ D, i.e., the lower critical value ray always lands between Lλ and Rλ
0 .

The upper critical point ray bounding Rλ
0 at Arg z = 1

2(n+d)
2π is sent to n

2(n+d)
2π.

3

2(n+ d)
<

n

2(n+ d)
<

1

2
− 1

2(n+ d)
=
n+ d− 1

2(n+ d)

for (n, d) ∈ D, i.e., the lower critical value ray always has argument between Rλ
1 and

Lλ.

For the second part, the upper critical point ray bounding Rλ
1 does not behave as

nicely under iteration by Fλ. As n is even, the critical value ray can only land inside

Rλ
0 or Rλ

1 , or on the boundary of Lλ. This critical value ray has Arg z = 3n
2(n+d)

2π ∈
(0, 4π). We consider all ways the ray can land such that the hypothesis of Proposition

3.2.1 is not satisfied:

i. Inside Rλ
0 =⇒ 3n− 2(n+ d) = 0 =⇒ n = 2d.

ii. Inside Rλ
1 =⇒ 3n− 2(n+ d) = 2 =⇒ n = 2d+ 2.

iii. Upper boundary of Lλ =⇒ 3n = n+ d− 1 =⇒ 2n = d− 1.

iv. Lower boundary of Lλ =⇒ 3n = n+ d+ 1 =⇒ 2n = d+ 1.

We denote the set of (n, d) ∈ D for which Proposition 3.2.1 does not apply by C.

Please note that this is distinct from the Cantor set locus in the parameter plane.

C = {(n, d) ∈ D such that n = 2d, n = 2(d+ 1), or 2n = d± 1}

3.3 General Arcs and Spirals

For (n, d) ∈ D\C, we have a general Proposition 2.2.1 and a general bowtie for which

a general Proposition 2.2.2 applies in a general subset Sn
⋂
O of the parameter plane.

Then the process of constructing the 0 TL arc, the 1 TL arc, the 1 TL spiral, the 01
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TL spiral, and the 01 SM spiral goes over essentially without change for this general

case.

3.4 Alternative Wedges and Exceptional Spirals

There are four possible cases in which the image of the upper boundary critical point

ray of Rλ
1 can break the bowtie construction. For each case, we present an alternative

upper right wedge Rλ
k such that the compact containment of Proposition 2.2.2 holds.

3.4.1 n = 2d

z6 + λ/z3 is the first pair of (n, d) ∈ D such that n = 2d. The image of the critical

point ray at Arg z = 3
18

2π has Arg z = 0 and is in Rλ
0 , so Rλ

1 does not compactly

contain the bowtie. The next upper right wedge, Rλ
2 , shares the problematic critical

point boundary ray with Rλ
1 , so it does not compactly contain Lλ ∪ TA ∪ Rλ

0 ∪ Rλ
2 .

The next upper right wedge, Rλ
3 , with critical point boundary rays at Arg z = 5

18
2π

and 7
18

2π, has farther critical value ray at Arg z = 6
(

7
18

2π
)
≡ 6

18
2π, which is inside

Rλ
3 , so it does not compactly contain Lλ ∪ TA ∪Rλ

0 ∪Rλ
3 , as seen in figure 3·2. There

are no more possibilities as Rλ
4 would overlap with Lλ, and the lower wedges behave

symmetrically.
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Figure 3·2: No workable alternative upper right wedge

z10 + λ/z5 is the next pair in C such that the image of Rλ
1 lands in Rλ

0 . The

alternative upper right wedge Rλ
3 has critical value rays at Arg z = 10

(
5
30

2π
)
≡ 20

30
2π

and Arg z = 10
(

7
30

2π
)
≡ 10

30
2π. This bowtie consisting of Lλ ∪ TA ∪Rλ

0 ∪Rλ
3 (instead

of Rλ
0) satisfies an analogous Proposition 2.2.2.

The alternative upper right wedge Rλ
3 has closer critical value ray at Arg z =

n
(

5
2(n+d)

2π
)

= 10d
6d

2π ≡ 4d
6d

2π. As d ≥ 5, this critical value ray at Arg z
2π

= 4d
6d

is

between the lower Lλ ray at 3d+1
6d

and the lower Rλ
0 ray 6d−1

6d
.

The wedge has farther critical value ray at Arg z = n
(

7
2(n+d)

2π
)

= 14d
6d

2π ≡ 2d
6d

2π.

As d ≥ 5, this critical value ray at Arg z
2π

= 2d
6d

is between the farther Rλ
3 ray at 7

6d

and the upper Lλ ray 3d−1
6d

. Figure 3·3 illustrates how the critical value rays do not

move while the wedges themselves decrease in size.
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(a) The Rλ3 bowtie for z10 + λ/z5 (b) The Rλ3 bowtie for z98 + λ/z49

Figure 3·3: The exceptional Rλ
3 bowtie construction

For all (n, d) such that n = 2d except for (6, 3), this exceptional bowtie leads to

the 0 TL arc and the exceptional3 TL arc. Together, those arcs comprise the excep-

tional 3 TL spiral, its preimage the exceptional 03 TL spiral, and its corresponding

exceptional “03 SM spiral” in the parameter plane.

3.4.2 n = 2(d+ 1)

For n = 2(d + 1), the bowtie consisting of Lλ, TA, R
λ
0 , and alternative upper right

wedge Rλ
7 satisfies an analogous Proposition 2.2.2 for all cases but (8, 3). Rλ

7 has

critical point rays at Arg z = 13
2(n+d)

2π and 15
2(n+d)

2π, and it is relatively simple to

check that these rays satisfy Proposition 3.2.1. From there the process of constructing

the exceptional 07 SM spiral goes over essentially without change.

For (8, 3), the particular choice of Rλ
8 suffices to construct the exceptional 08 SM

spiral. Note that this choice is less broadly applicable compared to Rλ
7 .
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3.4.3 2n = d− 1

For 2n = d−1, the bowtie consisting of Lλ, TA, R
λ
0 , and alternative upper right wedge

Rλ
5 satisfies an analogous Proposition 2.2.2 for all cases but (4, 7). Rλ

5 has critical point

rays at Arg z = 9
2(n+d)

2π and 11
2(n+d)

2π, and it is relatively simple to check that these

rays satisfy Proposition 3.2.1. From there the process of constructing the exceptional

05 SM spiral goes over essentially without change.

For (4, 7), there is no possible choice of upper right wedge that satisfies Proposition

3.2.1.

3.4.4 2n = d+ 1

For 2n = d+1, the bowtie consisting of Lλ, TA, R
λ
0 , and alternative upper right wedge

Rλ
3 again satisfies an analogous Proposition 2.2.2, for all cases but (4, 9).

For (4, 9), the particular choice of Rλ
4 suffices to construct the exceptional 04 SM

spiral. Note that this choice is less broadly applicable compared to Rλ
3 .

We have shown that a 01 SM spiral exists for the family of rational maps zn+λ/zd

for all (n, d) ∈ D \ C. We have found exceptional - 03, 04, 05, 07, 08 - SM spirals

for all (n, d) ∈ C except for the two cases (6, 3) and (4, 7). In fact, the search for

alternative upper right wedges led to the discovery that more than one type of spiral

can exist for a given (n, d).

3.5 The 2 TL and SM arcs

It should be noted that all of the exceptional spirals mentioned up to this point are

spirals only in the sense that they are analogues of the 01 spiral. These exceptions

motivated the construction of alternative wedges and the consequent arc and spirals,

but are not a requirement. zn + λ/zd with (n, d) such that the 01 SM spiral provably
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exists can have alternative spirals as well. To get a sense of their structure, we

consider z4 + λ/z5, noting that Rλ
2 satisfies 3.2.1, and therefore both the 1 TL arc

and alternative 2 TL arc exist in dynamical space.

Figure 3·4 depicts a typical dynamical space and the Rλ
2 bowtie, its preimage, and

the preimage of its preimage.

(a) The dynamical space for z4 +−0.88/z5 (b) The preimage of the preimage of the Rλ2
bowtie

Figure 3·4: The 2 TL arc

Figure 3·5 depicts the parameter plane and shows the 02, 022, and 023 Sierpinski

holes connected by line segments that are part of the 02 SM arc.
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(a) The parameter plane for z4 + λ/z5 (b) The three Sierpinski holes in the 02 SM
arc with lowest escape time

Figure 3·5: The 02 SM arc

3.6 Infinitely Many SM Spirals of Different Type

As n+d increases, there are more and more choices for alternative upper right wedges.

As previously stated, in the (4, 5) case, both Rλ
1 and Rλ

2 satisfy Proposition 3.2.1. In

the (10, 7) case, Rλ
1 , R

λ
4 , R

λ
5 , and Rλ

6 all satisfy Proposition 3.2.1. In addition, for each

spiral, there exist infinitely many preimages of that spiral in the parameter plane, as

shown in figure 3·6. Note that a portion of the 02 SM arc is depicted, as opposed to

the 02 SM spiral, because we do not know what it looks like. Also, the spirals are not

drawn to be smooth, but that is purely an aesthetic choice - there is no requirement

on the path a parameter λ takes through a Sierpinski hole.

The arbitrary choice of upper versus lower wedge together with (n− 1)fold sym-

metry means that there are 2(n− 1) as many spirals for each spiral we have shown to

exist in the parameter plane. For (4, 5), the SM hydra consists of the 01 SM spiral and

its infinitely many preimages the 0k1 SM spirals, the 02 SM spiral and its infinitely
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many preimages the 0k2 SM spirals, their reflections across the negative real axis, and

their rotations in the other two sectors of the parameter plane.

Figure 3·6: One sixth part of the SM hydra for z4 + λ/z5
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