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ABSTRACT 

High-throughput sequencing is a powerful tool to study diverse aspects of biology 

and applies to genome, transcriptome, and small RNA profiling. Ever increasing 

sequencing throughput and more specialized sequencing assays demand more 

sophisticated bioinformatics approaches. In this thesis, I present 4 studies for which I 

developed computational methods to handle high-throughput sequencing data to gain 

insights into biology.  

The first study describes the genome of High Five (Hi5) cells, originally derived 

from Trichoplusia ni eggs. The chromosome-level assembly (scaffold N50 = 14.2 Mb) 

contains 14,037 predicted protein-coding genes. Examination and curation of multiple 

gene families, pathways, and small RNA-producing loci reveal species- and order-

specific features. The availability of the genome sequence, together with genome editing 

and single-cell cloning protocols, enables Hi5 cells as a new tool for studying small 

RNAs. 
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The second study focuses on just one type of piRNAs that are produced at the 

pachytene stage of mammalian spermatogenesis. Despite their abundance, pachytene 

piRNAs are poorly understood. I find that pachytene piRNAs cleave transcripts of 

protein-coding genes and further target transcripts from other pachytene piRNA loci. 

Subsequently, systematic investigation of piRNA targeting by integrating different types 

of sequencing data uncovers the piRNA targeting rule. 

The third study describes computational procedures to map splicing branchpoints 

using high-throughput sequencing data. Screening >1.2 trillion RNA-seq reads 

determines >140,000 BPs for both human and mouse. Such branchpoints are compiled 

into BPDB (BranchPoint DataBase) to provide a comprehensive branchpoint catalog.  

The final study combines novel experimental and computational procedures to 

handle PCR duplicates that are prevalent in high-throughput sequencing data. 

Incorporation of unique molecular identifiers (UMIs) to tag each read enables 

unambiguous identification of PCR duplicates. Both simulated and experimental datasets 

demonstrate that UMI incorporation increases the reproducibility of RNA-seq and small 

RNA-seq. Surveying 7 common variables in high-throughput sequencing reveals that the 

amount of starting material and sequencing depth, but not the number of PCR cycles, 

determine the PCR duplicate frequency. Finally, I show that removing PCR duplicates 

without UMIs leads to substantial bias into data analysis. 
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Chapter 1. General Introduction 

1.1 Genome Assembly 

Since the conception of the human genome project (International Human Genome 

Sequencing Consortium, 2001; Venter et al., 2001), genome sequences have become 

available for many species, such as mouse (Chinwalla et al., 2002) and fruit fly (Adams 

et al., 2000). Genome sequences are critical to analyses of high-throughput sequencing 

data, such as RNA-seq (Z. Wang, Gerstein, & Snyder, 2009), small RNA-seq (Lau, Lim, 

Weinstein, & Bartel, 2001), ChIP-seq (Park, 2009), and DNA-seq (Loman et al., 2012). 

Without them, none of the downstream analyses—such as transcript quantification, small 

RNA quantification, histone modification profiling, and SNP calling—would have been 

possible. 

Previously the privilege of large genome consortia, DNA-seq has made its way 

into many labs. Advances in sequencing technologies and computation have made it 

much less costly to assemble large genomes. Genome assembly typically employs two 

approaches: overlap-layout-consensus (OLC), and de Bruijn Graph (DBG). Under the 

OLC paradigm, the assembly process begins by identifying read pairs that overlap well, 

and then stores the information into a graph where reads are represented by nodes, and 

overlapped read pairs by edges. OLC methods are useful for assembling long and 

accurate reads (e.g. sanger sequencing reads) to reconstruct the genome sequence. The 

DBG method starts by chopping reads into all possible substrings of length k (k-mers) 

and then stores such k-mers into a DBG, where each node is a k-mer and each edge 

represents two k-mers having an overlap of exactly length k-1. Subsequently, the genome 
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sequence can be constructed by traversing this graph. However, this process is highly 

dependent on sequencing error rates, as errors introduce wrong edges to the graph. It also 

depends on repeat structures in the genome: it cannot resolve repeat structures that are 

longer than k, since k-mers from the repeats with the same sequence collapse into the 

same set of nodes and edges. The advantage of DBG is that it avoids identifying overlaps 

among millions of reads and thus are more memory-efficient than OLC. DBG is more 

often used for short reads since it is typical to generate hundreds of millions of reads in 

one sequencing run.  

1.2 Small silencing RNAs 

1.2.1 miRNAs 

microRNAs (miRNAs) are ~22 nucleotide (nt) RNAs that can be loaded into Ago 

proteins and identify mRNA targets via sequence complementarity. In animals, most 

miRNAs cause mRNA destabilization and translational repression (Ambros, 2004). 

miRNA genes are usually transcribed by RNA polymerase II (Pol II) to produce primary 

miRNA transcripts (pri-miRNA), which are capped at 5′ ends and polyadenylated at 3′ 

ends (He & Hannon, 2004). Subsequently, they are cleaved by Drosha into ~70 nt 

precursor miRNAs (pre-miRNAs) that typically have hairpin structures (Y. Lee et al., 

2003). After pre-miRNAs are exported to the cytoplasm by Exportin-5, Dicer cleaves 

them into double-stranded RNAs (dsRNAs) with 2 nt overhang at 3′ ends (Hutvágner et 

al., 2001). Then one strand is loaded into RNA-induced silencing complex (RISC) and 

direct target repression. 
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Positions 2–7 are the most important regions (seeds) for miRNA targets (Lewis, 

Burge, & Bartel, 2005), so they are usually the most conserved region in miRNAs. In 

more recent literature, many other features—such as compensatory 3′ pairing (Friedman, 

Farh, Burge, & Bartel, 2008), centered pairing (Shin et al., 2010)—were found to 

contribute to the miRNA targeting specificity. miRNA target genes are often under the 

selective pressure to maintain the target sites, making conservation another feature to 

evaluate if a site can be targeted by a miRNA (Bartel, 2009). 

1.2.2 siRNAs 

Similar to miRNAs, siRNAs also derive from dsRNAs. dsRNAs are cleaved by 

Dcr-2 and loaded into Argonaute 2 (Ago2) to form an active RISC. Mature siRNAs are 

2′-O-methylated at the 3′ ends by Hen1 in the RISC (Horwich et al., 2007, p. 1). siRNAs 

can be grouped into endogenous siRNAs (endo-siRNAs) and exogenous siRNAs (exo-

siRNAs). In flies, endogenous siRNAs have at least 3 sources: transposon transcripts, cis-

natural transcripts (cis-NATs), and hairpin RNAs (hpRNAs). Transposable elements 

(TEs), when active, can disrupt genes and other regulatory elements in the genome. TE-

derived siRNAs can silence transposons (Ghildiyal et al., 2008). Another abundant source 

of siRNAs is the hairpin pathway (Katsutomo Okamura et al., 2008). Some genes 

produce hpRNAs that can be processed into ~21 nt siRNAs. Many of the siRNAs have 

confirmed targets (Katsutomo Okamura et al., 2008) and are under the selective pressure 

to coevolve with the targets in Drosophilids. A third source of siRNAs is cis-NATs. Such 

endogenous siRNAs come from mRNAs and are enriched in regions with overlapping 

mRNAs (e.g. two genes with convergent transcription with 3′ overlapping). These 
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endogenous siRNAs may be able to broadly regulate transcription (Katsutomo Okamura 

& Lai, 2008). siRNAs can also originate from exogenous RNAs, such as viruses, to 

protect the host (Tan & Yin, 2004). dsRNA intermediates produced by viruses can be fed 

into the siRNA biogenesis pathway to produce siRNAs, which guide Argonaute proteins 

to suppress viral transcription.  

1.2.3 piRNAs 

PIWI-interacting RNAs (piRNAs) are the most recently discovered type of small 

silencing RNAs. They are typically 23–31 nt, slightly longer than siRNAs and miRNAs. 

Even though piRNA sequences are not conserved, its presence in germline and its 

biogenesis pathway have been found conserved in a broad range of species, e.g., fly 

(Brennecke et al., 2007), mouse (A. A. Aravin, Hannon, & Brennecke, 2007), human (Ha 

et al., 2014), mosquito (Miesen, Girardi, & van Rij, 2015), zebrafish (Houwing et al., 

2007), C. elegans (H.-C. Lee et al., 2012) and even hydra (Juliano et al., 2014). Critical to 

the piRNA pathway are Argonaute proteins, which can be divided into two clades: AGO 

and PIWI clades. Proteins from the former clades can load miRNAs and siRNAs, and 

proteins from the latter can load piRNAs. In fly germline, abundant piRNAs are derived 

from transposons and are loaded into PIWI clade proteins (Brennecke et al., 2007). 

Mutation of piRNA pathway components causes transposon derepression and genome 

instability. Thus, piRNAs suppress transposon activities by cleaving transposon 

transcripts the germline. This is critical, as transposon insertions in the germline likely 

pass deleterious mutations to the next generation. In fly, Rhino-Cutoff-Deadlock 

complexes are responsible for the transcription of piRNA clusters and suppress splicing 
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of these piRNA precursor transcripts (Mohn, Sienski, Handler, & Brennecke, 2014; Z. 

Zhang et al., 2014). However, orthologs of these genes only exist in a few Drosophilids 

that are closely related to Drosophila melanogaster, so it is likely that other species have 

different piRNA biogenesis pathways. Thus, it is important to examine a wider range of 

animals to better understand piRNA biogenesis. Three PIWI proteins—Piwi, Aubergine 

(Aub), and Argonaute 3 (Ago3)—can be found in the Drosophila germline and can load 

piRNAs. They are localized to different cellular components (Piwi almost exclusively 

localizes to the nucleus and other two to cytoplasm (Brennecke et al., 2007)). piRNAs in 

mammals have different behaviors. piRNAs in mouse testis can be categorized into 

prepachytene piRNAs, hybrid piRNAs and pachytene piRNAs, according to the stage of 

spermatogenesis (X. Z. Li et al., 2013). Most of these piRNA precursor transcripts are 

produced from non-coding genes. Pachytene piRNAs are particularly interesting to study: 

unlike fly piRNAs, most pachytene piRNAs can be uniquely mapped to the non-

transposon portion of the genome. Thus, it is unclear if they cleavage non-transposon 

targets. 

1.3 Transposons 

Transposons are DNAs that are able to move in the genome. Such genomic 

“parasites” can insert into coding regions or regulatory elements, deleterious to the 

genome. In genomes of many species, they take up a considerable portion (e.g. 

approximately half of the human and mouse genomes, approximately one-third of the fly 

genome), reflecting their transposition history during evolution. The ability of 

transposons to change also make them a source of new genes. They are also of 



	

	

6 

therapeutic importance, as harnessing them may help alter genomic sequences to cure 

diseases caused by aberrant genomic sequences. For example, the piggyBac transposon, 

originally discovered in Trichoplusia ni, has been widely used for genetic manipulation 

(Bonin & Mann, 2004; Yusa, 2015). Transposons can be divided into two classes: 

retrotransposons and DNA transposon. Retrotransposons encode a reverse transcriptase 

and move via a “copy-and-paste” mechanism. Retrotransposons are transcribed from the 

genome to produce mRNA. With reverse transcriptase, the mRNA can be turned into 

DNAs and inserted into the genome. Retrotransposons can be further divided into 

transposons with long terminal repeats (LTR), long interspersed nuclear elements (LINEs) 

and short interspersed nuclear elements (SINEs). DNA transposons move via a “cut-and-

paste”. They encode transposases that can recognize certain genomic sites and cut out a 

transposon (or, sometimes, non-specifically, a piece of DNA) from the genome and insert 

it back to the genome. Because transposons are usually deleterious, organisms have 

evolved mechanisms to suppress their activities, transcriptionally or epigenetically. More 

than half of fly piRNAs derive from transposons and other repetitive elements to suppress 

transposons via cleaving transposon mRNAs (Brennecke et al., 2007). Epigenetically, 

transposons can be suppressed by DNA methylation (Alexei A. Aravin et al., 2008). In 

animals that do not possess the ability to methylate DNAs, histone modifications, such as 

H3K9me3, are used to shut down transposon transcription. Cells can also sense their 

suboptimal splicing and produce siRNAs against transposon transcripts (Dumesic et al., 

2013).  
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Chapter. 2 The genome of the Hi5 germ cell line from Trichoplusia ni, an 

agricultural pest and novel model for small RNA biology 

2.1 Introduction 

Lepidoptera (moths and butterflies), one of the most species-rich orders of insects, 

comprises more than 170,000 known species, including many agricultural pests. One of 

the largest lepidopteran families, the Noctuidae diverged over 100 million years ago (mya) 

from the Bombycidae—best-known for the silkworm, Bombyx mori (Rainford, Hofreiter, 

Nicholson, & Mayhew, 2014). The Noctuidae family member cabbage looper 

(Trichoplusia ni) is a widely distributed generalist pest that feeds on cruciferous crops 

such as broccoli, cabbage, and cauliflower (Capinera, 2001). T. ni has evolved resistance 

to the chemical insecticide Dichlorodiphenyltrichloroethane (DDT; (McEwen & Hervey, 

1956) and the biological insecticide Bacillus thuringiensis toxin (Janmaat & Myers, 

2003), rendering pest control increasingly difficult. A molecular understanding of 

insecticide resistance requires a high-quality T. ni genome and transcriptome. 

Hi5 cells derive from T. ni ovarian germ cells (Granados, Guoxun, Derksen, & 

McKenna, 1994). Hi5 cells are a mainstay of recombinant protein production using 

baculoviral vectors (Wickham, Davis, Granados, Shuler, & Wood, 1992) and hold 

promise for the commercial-scale production of recombinant adeno-associated virus for 

human gene therapy (Kotin, 2011). Hi5 cells produce abundant microRNAs (miRNAs) 

miRNAs, small interfering RNAs (siRNAs), and PIWI-interacting RNAs (S. Kawaoka et 

al., 2009) (piRNAs), making them one of just a few cell lines suitable for the study of all 

three types of animal small RNAs. The most diverse class of small RNAs, piRNAs 
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protect the genome of animal reproductive cells by silencing transposons (A. A. Aravin et 

al., 2007; Brennecke et al., 2007; Houwing et al., 2007; Shinpei Kawaoka et al., 2008; 

Vagin et al., 2006). The piRNA pathway has been extensively studied in the dipteran 

insect Drosophila melanogaster (fruit fly), but no piRNA-producing, cultured cell lines 

exist for dipteran germline cells. T. ni Hi5 cells grow rapidly without added hemolymph 

(Hink, 1970), are readily transfected, and—unlike B. mori BmN4 cells (Iwanaga et al., 

2014), which also express germline piRNAs—remain homogeneously undifferentiated 

even after prolonged culture. In contrast to B. mori, no T. ni genome sequence is 

available, limiting the utility of Hi5 cells. 

2.2 Methods 

2.2.1 Genome assembly and annotation 

Canu v1.3 (Koren et al., 2017) was used to assemble PacBio long reads into 

contigs, followed by two rounds of polishing using Quiver 

(https://github.com/PacificBiosciences/GenomicConsensus) and Pilon (Walker et al., 

2014) to correct errors in the genome. The contigs were then assembled into 

chromosome-length scaffolds using Hi-C reads and LACHESIS (Burton et al., 2013). 

The mitochondrial genome was assembled separately using MITObim (six iterations, D. 

melanogaster mitochondrial genome as bait) (Hahn, Bachmann, & Chevreux, 2013). 

The quality of the genome assembly was evaluated using BUSCO v3 (Simão, 

Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015) with the arthropod profile and 

default parameters to identify universal single-copy orthologs. The genome quality was 

further evaluated using conserved gene sets: oxidative phosphorylation (OXPHOS) and 
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cytoplasmic ribosomal protein (CRP) genes. B. mori and D. melanogaster OXPHOS and 

CRP protein sequences were retrieved (Marygold	et	al.,	2007;	Porcelli,	Barsanti,	Pesole,	

&	Caggese,	2007) and BLASTp was used to search for their T. ni homologs, which were 

further validated using InterPro (P. Jones et al., 2014; Mitchell et al., 2015). The T. ni 

genomes from male and female animals were also assembled separately using 

SOAPdenovo2 (kmer size 69) (Luo et al., 2012). These animal genome assemblies were 

compared to the T. ni genome assembled from Hi5 cells using QUAST (-m 

500)(Gurevich, Saveliev, Vyahhi, & Tesler, 2013) and the nucmer and mummerplot (--

layout --filter) functions from MUMmer 3.23 (Kurtz et al., 2004, p. 201). The 

genomic variants were determined using HaplotypeCaller from GATK (McKenna et al., 

2010, 2011; Van der Auwera et al., 2002) (-ploidy 4 -genotyping_mode 

DISCOVERY’).  

Annotation of the T. ni genome was performed in two steps: first masking 

repetitive sequences and then integrating multiple lines of evidence to predict gene 

models. RepeatModeler was used to produce repeat consensus sequences for the newly 

assembled genome. RepeatMasker (-s -e ncbi) was used to mask repetitive regions. 

8S, 18S, 28S rRNA genes were predicted using RNAmmer (Lagesen et al., 2007), and 

5.8S rRNA genes were predicted using Barrnap. Augustus v3.2.2 (Stanke, Tzvetkova, & 

Morgenstern, 2006) and SNAP (Korf, 2004) were used to computationally predicted gene 

models. Predicted gene models were compiled by running six iterations of MAKER 

(Campbell, Holt, Moore, & Yandell, 2014), aided with homology evidence of well 

annotated genes (UniProtKB/Swiss-Prot and Ensembl) and of transcripts from related 
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species, such as B. mori (Suetsugu et al., 2013) and D. melanogaster (Attrill et al., 2016). 

BLAST2GO (Conesa et al., 2005) was used to integrate results from BLAST, and 

InterPro (Mitchell et al., 2015) to assign GO terms to each gene. MITOS (Bernt et al., 

2013) web server was used to predict mitochondrial genes. Genes of interest, such as 

small RNA pathway genes were manually curated in webApollo (E. Lee et al., 2013). 

Telomeres were searched by matching multiple variants of typical telomere sequences 

found in other species, such as (TTAGG)200 (Robertson & Gordon, 2006) to the T. ni 

genome using BLASTn with the option ‘-dust no’ and hits longer than 100 nt were 

kept. The genomic coordinates of these hits were extended by 10 kb to obtain the 

subtelomeric region. 

2.2.2 Orthology 

The predicted proteomes from 21 species (Appendix A) were compared to place 

genes into ortholog groups, using OrthoMCL (L. Li, Stoeckert, & Roos, 2003) with 

default parameters. MUSCLE v3.8.31 (Edgar, 2004) was used for strict 1:1:1 orthologs (n 

= 381) to produce sequence alignments. Conserved blocks (66,044 amino acids in total) 

of these alignments were extracted using Gblocks v0.91b (Castresana, 2000) with default 

parameters, and fed into PhyML 3.0 (Guindon et al., 2010) (maximum likelihood, 

bootstrap value set to 1000) to calculate a phylogenetic tree. The human and mouse 

predicted proteomes were used as an outgroup to root the tree. The tree was viewed using 

FigTree (http://tree.bio.ed.ac.uk/software/figtree/) and iTOL (Letunic & Bork, 2016). 
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2.2.3 An expectation-maximization algorithm to determine reads mapping to multiple loci 

piRNA reads often map to repetitive regions in the genome, making it difficult to 

assign them to a genomic position. The same applies to other sequencing reads when they 

are not sufficiently long or originate from a repetitive region. To tackle this problem, I 

designed and implemented an expectation-maximization algorithm to determine the 

genomic sources of reads mapped to multiple loci (multimappers). Small RNA reads 

were first mapped to the genome as described (Han, Wang, Zamore, & Weng, 2014). 

Then piRNA abundance was calculated in each 5 kb genomic windows. For each window, 

uniquely mapped reads and multimappers are quantified by assigning reads using an 

expectation-maximization algorithm. Briefly, each window had the same initial weight. 

The weight was used to linearly apportion multimappers. During the expectation (E) step, 

uniquely mapped reads were unambiguously assigned to genomic windows; 

multimappers were apportioned to the genomic windows they mapped to, according to 

the weights of these windows. At the maximization (M) step, window weights were 

updated to reflect the number of reads (uniquely mapped reads plus multimappers) each 

window contained from the E step. The E and M steps were run iteratively until the 

Manhattan distance between two consecutive iterations was smaller than 0.1% of the total 

number of reads. Although this algorithm was used at 5 kb resolution, it can readily be 

generalized to determine the mapping positions at single nucleotide resolution. 

2.2.4 Sex determination and sex chromosomes 

Since it was not known if T. ni females had ZW or only Z, whole genomes of T. 

ni males and females were separately sequenced. DNA-seq reads were mapped to the 
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genome assembly. Reads with poor mapping qualities (MAPQ <20) were removed to 

avoid the ambiguity. Then reads for each contig were quantified and further normalized 

by median coverage. The cutoff for coverage ratios (male:female ratios, M:F ratios) was 

empirically determined: M:F ratio >1.5 for Z-linked contigs and M:F ratio < 0.5 for W-

linked contigs. Lepidopteran masc genes were obtained from Lepbase (Challis, Kumar, 

Dasmahapatra, Jiggins, & Blaxter, 2016). Z/AA ratio was calculated according to (Gu, 

Walters, & Knipple, 2017). Briefly, direct comparisons of gene expressions from 

different chromosomes are not statically reliable. To address this issue and provide a 

confidence interval, I used a bootstrap method. Certain number of genes were sampled 

from autosomes, Z-linked and W-linked contigs and the median ratios of expression 

levels were calculated. To produce confidence intervals for each ratio, this procedure was 

performed 10,000 times.  

2.2.4 Gene families for detoxification and chemoreception 

Multiple methods were used to curate genes related to detoxification and 

chemoreception. Seed alignments from Pfam (Finn et al., 2016) were obtained and 

hmmbuild was used to build HMM profiles of cytochrome P450 (P450), amino- and 

carboxy-termini of glutathione-S-transferase (GST), carboxylesterase (COE), ATP-

binding cassette transporter (ABCs), olfactory receptor (OR), gustatory receptor (GR), 

ionotropic receptor (IR), and odorant binding (OBP) proteins (see (Y. Fu, Yang, et al., 

2018)). These HMM profiles were then used to search for gene models in the T. ni 

genome and predicted proteome (hmmsearch, e-value cutoff: 1 × 10−5). Reference 

sequences of P450, GST, COE, ABC, OR, GR, IR, OBP, and juvenile hormone pathway 
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genes were retrieved from the literature (Ai et al., 2011; Benton, Vannice, Gomez-Diaz, 

& Vosshall, 2009; Croset et al., 2010; Dermauw & Van Leeuwen, 2014; Gong, Zhang, 

Zhao, Xia, & Xiang, 2009; Goodman & Granger, 2005; Hekmat-Scafe, Scafe, McKinney, 

& Tanouye, 2002; Liu et al., 2011; van Schooten, Jiggins, Briscoe, & Papa, 2016; 

Wanner & Robertson, 2008; Xavier Bellés, David Martín, & Piulachs, 2005; Q. Yu et al., 

2008; Q.-Y. Yu, Lu, Li, Xiang, & Zhang, 2009), and were aligned to the T. ni genome 

using tBLASTx (Altschul, Gish, Miller, Myers, & Lipman, 1990) and Exonerate (Slater 

& Birney, 2005) to search for potential homologs. Hits were manually inspected to 

ensure compatibility with RNA-seq data, predicted gene models, known protein domains 

using CDD (Marchler-Bauer et al., 2015) and homologs from other species. P450 genes 

were submitted to Dr. David Nelson (Nelson, 2009) for nomenclature and classification. 

To determine the phylogeny of these gene families, the putative protein sequences 

from T. ni and B. mori genomes were aligned using MUSCLE (Edgar, 2004). The 

multiple sequence alignments were subsequently trimmed using TrimAl (Capella-

Gutiérrez, Silla-Martínez, & Gabaldón, 2009) (with the option -automated1). 

Phylogenetic analysis was performed using PhyML 3.0 (Guindon et al., 2010) (with 

parameters: -q --datatype aa --run_id 0 --no_memory_check -b -2). 

Phylogenetic trees were visualized using FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). 

To curate opsin genes, opsin mRNA and peptide sequences from other species 

(Feuda, Marlétaz, Bentley, & Holland, 2016; Futahashi et al., 2015) were used as 

homology evidence to search for counterparts in the T. ni genome. To discriminate opsin 
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genes from other G-protein-coupled receptors, it is required that the top hit in the NCBI 

non-redundant database and UniProt were opsins. 

2.2.5 miRNA and siRNA analysis 

mirDeep2 (Friedländer et al., 2008; Friedländer, Mackowiak, Li, Chen, & 

Rajewsky, 2012) was used to predict miRNA genes. Predicted miRNA hairpins were 

required to have homology (exact seed matches and BLASTn e-value < 1 × 10−5) to 

known miRNAs or miRDeep2 scores ≥10. miRNAs were named according to exact seed 

matches and high sequence identities with known miRNA hairpins. To determine the 

conservation status of T. ni miRNAs, putative T. ni miRNAs were compared with 

annotated miRNAs from A. aegypti, A. mellifera, B. mori, D. melanogaster, H. sapiens, 

M. musculus, M. sexta, P. xylostella, and T. castaneum. Conserved miRNAs were 

required to have homologous miRNAs beyond Lepidoptera; Lepidoptera-specific 

miRNAs were required to be conserved in lepidopterans; T. ni-species miRNAs are those 

without homologs in other species. 

To compare siRNA abundance in oxidized and unoxidized small RNA-seq 

libraries, siRNA read counts were normalized to piRNA cluster-mapping reads (piRNA 

cluster read counts had >0.98 Pearson correlation coefficients between oxidized and 

unoxidized libraries in all cases.) piRNA degradation products can be 20–22 nt long, so 

potential siRNA species that were prefixes of piRNAs (23–35 nt) were removed. 

To detect viral transcripts in T. ni, viral protein sequences were retrieved from 

NCBI (http://www.ncbi.nlm.nih.gov/genome/viruses/) and used to perform tBLASTn to 

map to the T. ni genome and to the transcriptomes of Hi5 cells and five T. ni tissues. Hits 
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were filtered requiring percent identity ≥ 0.80, e-val ≤ 1 × 10−20, and alignment length 

≥100. To identify virus-mapping small RNAs, all small RNA-seq reads were mapped to 

the identified viral transcripts. Candidate genomic hairpins were defined according to 

(Katsutomo Okamura et al., 2008). And Candidate cis-NATs were defined according to 

(Ghildiyal et al., 2008). 

2.2.6 piRNA analysis 

To quantify piRNAs from each piRNA locus, the ppm and rpkm values were used 

(normalized to the total number of uniquely mapped reads). For analyses involving all 

mapped reads (uniquely mapped reads and multimappers), reads were apportioned by the 

number of times that they were mapped to the genome (i.e. if one read maps to two 

genomic positions, each position gets half a read). To make piRNA loci comparable 

across tissues, piRNA loci from ovary, testis, female and male thorax, and Hi5 cells were 

merged. For the comparison between female and male thoraces, the cluster on 

tig00001980 was removed as this contig is likely to be a mis-assembly. As for defining 

sex-linked contigs, M:F ratios were calculated and the same thresholds were used to 

determine whether a piRNA cluster was sex-linked. A piRNA locus was considered to be 

differentially expressed if the ratio between the two tissues was >2 or <0.5 and FDR <0.1 

(after t-test). Splice sites were deemed to be supported by RNA-seq data when supported 

by at least one data set. AUGUSTUS (Stanke et al., 2006) was used with the model 

trained for T. ni genome-wide gene prediction, to predict gene models and their splice 

sites in T. ni piRNA clusters. 
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2.3 Results 

2.3.1 Genome assembly and quality assessment 

To assemble the T. ni genome, we used a strategy integrating long and short reads 

(Figure 2.1). We first utilized the PacBio long reads (46.4× coverage with reads longer 

than 5 kb) to obtain a high-quality contig set (1,976 contigs; contig N50 = 621.9 kb). The 

assembly was further polished by the same set of long reads and additional short reads. 

This assembly is already more contiguous than many published insect genome assemblies 

(e.g. contig N50 = 50.7 kb for the monarch butterfly (Zhan, Merlin, Boore, & Reppert, 

2011), contig N50 = 10.0 kb for the diamondback moth (You et al., 2013)). However, 

since many transposons and piRNAs map to repetitive regions in the genome, a 

chromosome-level assembly is desired. Thus, Hi-C reads were used to further join the 

contigs into 1,031 scaffolds (N50 = 14.2 Mb). We found that more than 90% of the bases 

were assigned to one of the 28 major scaffolds. Meanwhile, karyotyping of Hi5 cells 

indicated 28 chromosomes, corresponding well to the results in our karyotyping 

experiments. Thus, we conclude that T. ni has 28 chromosomes and that we have a 

chromosome-level genome assembly.  
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Figure 2.1. The genome assembly workflow. Each rounded rectangle indicates one step during the assembly, 
with the tools indicated in the parentheses. Genome coverage of sequencing data is indicated on the right.  

Next, to evaluate the completeness of this genome assembly, we first used the 

Benchmark of Universal Single-Copy Orthologs (BUSCO v3; Arthropoda data set as the 

reference) (Simão et al., 2015) on multiple assemblies (T.ni, B. mori, D. plexippus, P. 

xylostella, D. melanogaster, T. castaneum, and A. mellifera). Our T. ni genome assembly 

captures 97.5% of the orthologs defined by BUSCO, better than the silkworm (95.5%) 

and monarch butterfly (97.0%) (Table 2.1). As a further test of the assembly quality, we 

searched for highly conserved genes encoding ribosomal proteins and genes belonging to 
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the nuclear oxidative phosphorylation pathway. Orthologs of all these genes can be 

identified, indicating that this genome assembly is highly complete. 

Species Complete Fragmented Missing 
T. ni (cabbage looper) 97.5% 0.4% 2.2% 

B. mori (silkworm) 95.5% 2.1% 2.5% 
D. plexippus (monarch butterfly) 97.0% 1.9% 1.1% 

P. xylostella (diamondback moth) 87.8% 2.7% 9.5% 

D. melanogaster (fruit fly) 99.7% 0.2% 0.1% 

T. castaneum (red flour beetle) 99.3% 0.5% 0.2% 
A. mellifera (western honney bee) 97.8% 1.3% 0.9% 

Table 2.1. BUSCOs found in genome assemblies of multiple species, including T. ni. The total number of BUSCO 
groups is 1,658. 

2.3.2 Genome annotation 

Knowing the genome sequence is the first step towards establishing Hi5 cells as a model 

for small RNA studies. Next, we de novo identified repeat consensus sequences for this 

genome using RepeatModeler and revealed 458 repeat families, including 44 DNA, 84 

LINE, 14 LTR, 25 RC, and 26 SINE transposons. We then used RepeatMasker to identify 

and mask the genome. (This is a critical step before gene annotation, because without 

masking genomic repeats, automated gene annotation pipeline will produce inaccurate 

results, marking transposons as genes.) In total, 20.5% of the genome was masked as 

repetitive. Next, we annotated the T. ni genome using MAKER (Cantarel et al., 2008). To 

aid the identification of gene models, we used multiple sources of evidence (Figure 2.2): 

T. ni transcriptomes (assembled from RNA-seq data from multiple tissues using Trinity 

(Haas et al., 2013)), protein sequences from UniProtKB/Swiss-Prot, transcripts from 

related species (Drosophila melanogaster, and Bombyx mori). In total, 14,034 protein-
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coding genes were annotated in the genome, similar to many other lepidopteran genomes 

(Challis et al., 2016).  

 

Figure 2.2. Genome annotation workflow. 

 

Next, the homology of the predicted T. ni genes was determined by orthology 

analysis with 20 other species: Acyrthosiphon pisum, Aedes aegypti, Anopheles gambiae, 

Apis mellifera, Atta cephalotes, Bombyx mori, Danaus plexippus, Drosophila 

melanogaster, Drosophila pseudobscura, Harpegnathos saltator, Homo sapiens, 

Linepithema humile, Mus musculus, Nasonia vitripennis, Pediculus humanus humanus, 

Plutella xylostella, Pogonomyrmex barbatus, Tetranychus urticae, Tribolium castaneum, 

Dendroctonus ponderosae (see Appendix A for details). These species include common 

insect orders (Lepidoptera, Diptera, Coleoptera, and Hymenoptera). Proteomes of non-

insect arthropods, and two mammals were also incorporated to serve as outgroups. 

OrthoMCL(L. Li et al., 2003) was used to assigned orthology groups. Using the numbers 

of genes and species in each orthology groups, orthology groups can be categorized. 

Genes in the 1:1:1 group are present in all species as just one copy (one absence or one 
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duplication in one species was allowed to alleviate the bias caused by unannotated genes). 

N:N:N orthologs are present in all species and have variable copy numbers (absence in 

one genome or two genomes was allowed). Lepidoptera-specific genes are those 

annotated in three or more lepidopteran genomes examined; Hymenoptera-specific genes 

are those in one or more wasp or bee genomes and one or more ant genomes. Coleoptera-

specific genes are required to be present in both coleopteran genomes; Diptera-specific 

genes are those annotated in at least one fly genome and one mosquito genome. Insect-

specific genes indicates other genes in insects, but their orthologs are not found in human 

and mouse. Mammal-specific genes are present in both mammalian genomes. ‘Patchy’ 

genes refer to those that are present in both arthropods and mammals but many species 

have lost them. SSD refers to those multi-copy genes that do not have orthologs in other 

species. SSS refers to those single-copy genes that do not have orthologs in other species. 

The orthology assignment is shown in Figure 2.3.  

 

Figure 2.3. Orthology groups and phylogenetic tree of 21 species. 

OrthoMCL defines 30,448 orthology groups using proteomes from these 21 

species. There are 2,287 Lepidoptera-specific orthology groups, whereas Diptera, 
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Coleoptera, and Hymenoptera only has 404, 371, and 1,344, respectively, suggesting 

lepidopterans acquired new genes to adapt to their unique lifestyle. The T. ni genome 

further contains ~3,000 orphan genes (and, by definition, they do not have orthologs in 

other 20 species). About 450 of these orphan genes exist as two or more copies, likely 

due to recent gene duplication events. Some of these orphan genes might be false 

positives from gene predictors, as manual inspection revealed poor RNA-seq signals for 

them.  

2.3.3 Genomic features 

Basic genomic features, including transposons, centromeres, telomeres, and GC contents, 

are unique to each species and can hint at the quality of a genome assembly and other 

interesting genomic features. Approximately 20.5% of the T. ni genome assembly is 

repeats. A comparison with other assembled lepidopteran genomes shows that it fits well 

with the trend of repeat content vs genome size (Figure 2.4). One of the most notable 

transposons is a DNA transposon called piggyBac, for at least two reasons: it was 

originally discovered in a T. ni cell line due to its high level of activity (Fraser, Smith, & 

Summers, 1983); it has the potential to be a gene therapy vector due to its ability to 

transpose effectively in multiple species (Bonin & Mann, 2004; Lobo, Li, & Fraser, 1999; 

W. Wang et al., 2008; Yusa, 2015). In total, 262 copies of piggyBac transposons exist in 

the T. ni genome assembly, with a very low family divergence rate (0.17%; see Methods), 

substantially lower than other transposon families. Interestingly, 27% of these piggyBac 

copies exist only in the Hi5 cells, and these have even lower divergence rate than the 
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remaining piggyBac copies (0.22% vs 0.04%), indicating recent incorporation of 

piggyBac transposons into the T. ni genome and their highly effective transposition.  

 

Figure 2.4. Repeat contents vs genome assembly size in lepidopteran genomes. Data for species other than T. ni 
were retrieved from Lepbase. 

Next, I characterized telomeres and centromeres in the T. ni genome. Different 

species have different telomeric structures: human telomeres have (TTAGGG)n repeats 

(Morin, 1989); the fruit fly genome uses three telomere-specific retrotransposons (HeT-A, 

TART and Tahre) (Adams et al., 2000); the silkworm genome has (TTAGG)n repeats 

and retrotransposons (TRAS and SART) (Fujiwara, Osanai, Matsumoto, & Kojima, 

2005). To determine the telomeric repeats in T. ni, I used Tandem Repeats Finder 
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(Benson, 1999) to search for simple repeats longer than 100 nt, and found 40 such repeats 

matching the pentanucleotide repeats (TTAGG)n, all of which are at or near the contig 

boundaries, indicating that the T. ni genome assembly captures sequences of many 

telomeres (See Figure 2.5 for an example). More than half of the sequences flanking 

(TTAGG)n repeats are transposons and approximately half of these transposons are 

homologous to TRAS and SART transposons in the silkworm genome (Figure 2.5), 

indicating that T. ni has a B. mori-like telomeres and subtelomeres (Fujiwara et al., 2005). 

Unlike telomeres, which have identifiable repeats or transposons, centromeres have 

different sequences even in closely related species, such as 14 yeast species (Varoquaux 

et al., 2015). Thus, instead of searching for the centromeric sequences, we searched for a 

gene related to centromeres: the centromeric histone H3 variant (CenH3). CenH3 was 

proposed to associate with monocentricity of chromosomes (a single centromere for the 

entire chromosome) and its loss in some species during evolution results in holocentricity 

(lack of coherent centromere) (Drinnenberg, deYoung, Henikoff, & Malik, 2014, p. 3). 

Searching for homologs of CenH3 reveals no CenH3 counterpart in T. ni. Thus, similar to 

other lepidopterans, T. ni chromosomes are holocentric.  
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Figure 2.5. T. ni telomeres. (A) An example of T. ni telomeres on a contig (tig00001543). Three tracks show 
positions of the last gene on this contig, (TTAGG)n and identified transposons, respectively. (B) A schematic of 
T. ni telomere. 

The GC content of the T. ni genome is then characterized. The T. ni genome has a 

GC content of 35.6%, close to that of B. mori. The observed/expected CpG ratios among 

these species can be categorized into three groups: honeybee shows high CpG ratios in 

the protein-coding genes and a bimodal distribution in the genome; fly shows low CpG 

ratios; other species, including T. ni, have similar CpG ratio distribution (Figure 2.6). 

This corresponds to the presence of DNMTs: the honeybee genome has two DNMTs 

(DNMT1 and DNMT3) whereas the fruit fly genome has neither. In contrast, other 

genomes inspected all have one DNMT (DNMT 1). 
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Figure 2.6. Observed/expected CpG ratios in genes and genomic windows in 7 species: T. ni, T. castaneum, P. 
xylostella, D. melanogaster, D. plexippus, B. mori, and A. mellifera. 
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2.3.4 Sex determination 

Understanding the T. ni sex-determination pathway holds promise for engineering sterile 

animals for pest management. ZW and ZO chromosome systems determine sex in 

lepidopterans: males are ZZ and females are either ZW or ZO (Traut, Sahara, & Marec, 

2008). To determine which system T. ni uses and to identify which contigs belong to the 

sex chromosomes, we sequenced genomic DNA from male and female pupae and 

calculated the male:female coverage ratio for each contig. We found that 175 presumably 

Z-linked contigs (20.0 Mb) had approximately twice the coverage in male compared to 

female DNA (median male:female ratio = 1.92; Figure 2.7A). Another 276 contigs (11.1 

Mb) had low coverage in males (median male:female ratio = 0.111), suggesting they are 

W-linked. We conclude that sex is determined in T. ni by a ZW system in which males 

are homogametic (ZZ) and females are heterogametic (ZW). 

For some lepidopteran species, dosage compensation has been reported to 

equalize Z-linked transcript abundance between ZW females and ZZ males in the soma, 

while other species show higher expression of Z-linked genes in males (Gu et al., 2017; 

Walters & Hardcastle, 2011). In the soma, T. ni compensates for Z chromosome dosage: 

transcripts from Z-linked genes are approximately equal in male and female thoraces (Z ≈ 

ZZ, Figure 2.7B). In theory, somatic dosage compensation could reflect increased 

transcription of the single female Z chromosome, reduced transcription of both male Z 

chromosomes, or silencing of one of the two male Z chromosomes. 

To distinguish among these possibilities, we compared the abundance of Z-linked 

and autosomal transcripts (Z/AA in female and ZZ/AA in male). Z-linked transcripts in 
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the male thorax are expressed at lower levels than autosomal transcripts, but not as low as 

half (ZZ ≈ 70% AA). These data support a dosage compensation mechanism that 

decreases transcription from each Z chromosome in the T. ni male soma, but does not 

fully equalize Z-linked transcript levels between the sexes (Z ≈ ZZ ≈ 70% AA). In 

contrast, T. ni lacks germline dosage compensation: in the ovary, Z-linked transcript 

abundance is half that of autosomal transcripts (Z ≈ 50% AA), whereas in testis, Z-linked 

and autosomal transcripts have equal abundance (ZZ ≈ AA). We conclude that T. ni, like 

B. mori (Walters & Hardcastle, 2011), Cydia pomonella (Gu et al., 2017), and Heliconius 

butterflies (Walters & Hardcastle, 2011), compensates for Z chromosome dosage in the 

soma by reducing gene expression in males, but does not decrease Z-linked gene 

expression in germline tissues. 

Little is known about lepidopteran W chromosomes. The W chromosome is not 

included in the genome assembly of Manduca sexta (Kanost et al., 2016) or B. mori (The 

International Silkworm Genome, 2008), and earlier efforts to assemble the silkworm W 

resulted in fragmented sequences containing transposons (Abe et al., 2005, 2008; Shinpei 

Kawaoka et al., 2011). The monarch genome scaffold continuity (N50 = 0.207 Mb versus 

N50 = 14.2 Mb for T. ni; (Zhan et al., 2011)) is insufficient to permit assembly of a W 

chromosome. Our genome assembly includes the 2.92 Mb T. ni W chromosome 

comprising 32 contigs (contig N50=101 kb). In T. ni, W-linked contigs have higher 

repeat content, lower gene density, and lower transcriptional activity than autosomal or 

Z-linked contigs (Figure 2.7B). Other lepidopteran W chromosomes are similarly 
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enriched in repeats and depleted of genes (Abe et al., 2005; Fuková, Nguyen, & Marec, 

2005; Traut et al., 2008). 

A search for T. ni genes that are homologous to insect sex determination pathway 

genes detected doublesex (dsx), masculinizer (masc), vitellogenin, transformer 2, intersex, 

sex lethal, ovarian tumor, ovo, and sans fille. T. ni males produce a four-exon isoform of 

dsx, while females generate a six-exon dsx isoform. The Lepidoptera-specific gene masc 

encodes a CCCH zinc finger protein. masc is associated with the expression of the sex-

specific isoforms of dsx in lepidopterans, including silkworm (Katsuma, Sugano, Kiuchi, 

& Shimada, 2015). As in B. mori, T. ni masc lies next to the scap gene, supporting our 

annotation of T. ni masc. Lepidopteran masc genes are rapidly diverging and have low 

sequence identity with one another (30.1%). Figure 2.7C shows the multiple sequence 

alignment of the CCCH zinc finger domain of Masc proteins from several lepidopteran 

species. 
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Figure 2.7. T. ni sex determination. (A) Normalized contig coverage in males and females. (B) Relative repeat 
content, gene density, transcript abundance (female and male thoraces), and piRNA density of autosomal, Z-
linked, and W-linked contigs (ovary). (C) Multiple sequence alignment of the conserved region of the sex-
determining gene masc among the lepidopteran species. 

2.3.4 Multigene families 

Genes are often grouped into multi-gene families according to their sequence homology. 

Genes belong to the same gene family often have similar biochemical functions, thus 

such grouping facilitates studies of their functions. Genes in the same biological pathway 
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are also often discussed together to better understand biological processes. To make T. ni 

genome a more useful resource, we computationally predicted and manually curated 

genes in notable families and pathways: opsin, cytochrome P450, glutathione S-

transferase, carboxylesterase, ABC transporter, and chemoreception families (olfactory 

receptors, gustatory receptors, and ionotropic receptors), and genes in the juvenile 

hormone pathway. 

Opsins are crucial for survival of insects because opsins enable the response to 

light cues (Terakita, 2005; Shichida & Matsuyama, 2009; Feuda et al., 2016). The T. ni 

genome contains opsins that mediate ultraviolet, blue and long-wavelength vision, 

suggesting that T. ni, albeit a nocturnal species, has color vision. In addition to the 

vision-related opsins, the T. ni genome also has orthologs of Rh7 opsin (Futahashi et al., 

2015; Initiative, 2014) and pterosin (vertebrate-like opsin) (Velarde, Sauer, O. Walden, 

Fahrbach, & Robertson, 2005). 

  

Ultra-

violet Blue 

Long-

wavelength Rh7 Pteropsin 

Apis mellifera 1 1 2 0 1 

Nasonia vitripennis 1 1 2 0 0 

Tribolium castaneum 1 0 1 0 1 

Aedes aegypti 1 1 6 1 1 

Anopheles gambiae 1 1 7 1 2 

Drosophila mojavensis 2 1 2 1 0 

Drosophila melanogaster 2 1 3 1 0 

Trichoplusia ni 1 1 2 1 1 

Bombyx mori 1 1 2 1 1 

Manduca sexta 1 1 1 1 1 
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Danaus plexippus 1 1 1 1 1 

Heliconius melpomene 2 1 1 1 1 

Pediculus humanus 1 0 1 1 0 

Acyrthosiphon pisum 2 0 1 5 1 
Table 2.2. Numbers of genes in 5 subfamilies of opsins in 14 species.  

T. ni is a generalist herbivore and feeds on diverse plants; thus, it is constantly 

challenged by a variety of plant allelochemicals and synthetic insecticides. It is 

anticipated that T. ni maintains a battery of genes for detoxification. We surveyed four 

gene families known to play important roles in xenobiotic resistance: cytochrome P450s 

(P450s), glutathione-S-transferases (GSTs), carboxylesterases (COEs), and ATP-binding 

cassette (ABC) transporters (Figure 2.7) (Labbé, Caveney, & Donly, 2011; X. Li, Schuler, 

& Berenbaum, 2007).  
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Figure 2.8. Counts of genes in 4 detoxification-related gene families in 5 species. 

Cytochrome P450 (CYP) is a large family of enzymes that can metabolize natural 
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example, CYP6G1 confers DDT resistance in Drosophila (Daborn et al., 2002); CYP6D1 

and CYP6Z1 confers pyrethroid resistance in Musca domestica (Kasai & Scott, 2000) 

and Anopheles gambiae (Nikou, Ranson, & Hemingway, 2003), respectively; CYP6A1 

confers organophosphate resistance in house flies (Andersen, Utermohlen, & Feyereisen, 

1994). Thus, we speculate some of the additional T. ni P450s might aid its quick 

adaptation to hostile environments.  

CYP2 and mitochondrial P450s predominantly show 1-to-1 relationships between 

T. ni and B. mori (Figure 2.9), including P450s for ecdysteroid biosynthesis and 

inactivation (CYP307A2, CYP306A1, CYP18A1, CYP302A1, CYP315A1, CYP314A1) 

(Iga & Kataoka, 2012), circadian rhythm (CYP49A1) (Sathyanarayanan et al., 2008), 

cuticle formation (CYP301A1) (Sztal et al., 2012), and juvenile hormone biosynthesis 

(CYP15C1) (Iga & Kataoka, 2012).  
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Figure 2.9. Phylogenetic tree of CYP genes in T. ni and B. mori. Black labels indicate B. mori genes and red 
labels indicate T. ni genes. Mito. clade: mitochondrial clade. 
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Omega, Sigma, Theta, and Zeta, with Delta and Epsilon being the two largest insect-
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manual review yielded 34 GSTs in T. ni (~90% are full length). In comparison, silkworm 

has 23 GSTs (Q. Yu et al., 2008). Phylogeny-based classification assigned 9, 14, 4, 2, 1, 

and 2 T. ni GSTs into the Delta, Epsilon, Omega, Sigma, Theta, and Zeta classes, 

respectively, among which Delta and Epsilon showed expansions in T. ni (Figure 2.10). 

Interestingly, many new GST genes formed clusters, suggesting that they are the result of 

recent gene duplication events, which may play important roles in facilitating the 

adaptation of T. ni to its ecological niches. 

 

Figure 2.10. Phylogenetic tree of GST genes in T. ni and B. mori. Black labels indicate B. mori genes and red 
labels indicate T. ni genes. GST genes in Delta, Epsilon and Omega classes are marked. 
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Carboxylesterases (COEs) are a large protein family known to play important 

roles in metabolism of xenobiotics and pheromones (Ranson et al., 2002). Analysis of 

COEs may help understand how insects quickly become resistant to insecticides. We 

annotated 87 COE genes in the T. ni genome, more than the 76 putative COEs in the 

silkworm genome (Q.-Y. Yu et al., 2009). COEs are divided into 14 clades and 3 classes 

(intracellular catalytic, secreted catalytic, and neurodevelopmental classes) (A and B 

clades shown in Figure 2.10). T. ni COEs are distributed in 11 clades known to exist in 

Lepidoptera (Q.-Y. Yu et al., 2009). 

In most clades, T. ni COEs have approximately one-to-one correspondence with 

their B. mori homologs. For example, Neuroligin and Neurotactin show perfect one-to-

one orthologous relationships. Interestingly, even though the total numbers of α-esterases 

are roughly equal between T. ni and B. mori, subsets of the α-esterases form 

monophyletic groups in T. ni, suggesting these expanded independently after the two 

species diverged. The α-esterases in T. ni have an average amino acid identity of 33.3%. 

In contrast, both expansions in T. ni (Figure 2.11) are tightly clustered in the genome (11 

COEs and 5 COEs in 280 Kb and 85 Kb, respectively) and have high sequence identity 

(62.4% and 65.3%), likely reflecting recent gene duplication events.  
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Figure 2.11. Phylogenetic tree of COE genes (A and B clades) in T. ni and B. mori. Black labels indicate B. mori 
genes and red labels indicate T. ni genes.  
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and manually annotated 54 ABC transporters in the T. ni genome. Previously, 5 ABC 

transporters (3 and 2 from the subfamilies ABCB and ABCC, respectively) were reported 

in T. ni (Labbé et al., 2011), all of which are consistent with our annotation. We 

annotated additional 49 members in the ABC transporter family, forming a total of 54 

ABC transporters in the T. ni genome (Figure 2.12), which is within the range of ABC 

transporters in arthropods (Dermauw & Van Leeuwen, 2014). Notably, we annotated 

ABCC2, which is associated with Bt toxin resistance in T. ni (Baxter et al., 2011; X. 

Zhang, Tiewsiri, Kain, Huang, & Wang, 2012). We conclude that T. ni possess a unique 

repertoire of ABC transporters that provide insecticide resistance. 
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Figure 2.12. Phylogenetic tree of ABC genes in T. ni and B. mori. Black labels indicate B. mori genes and red 
labels indicate T. ni genes.  
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sexual communication, detecting plant odors and long-range migration (Franklin, Ritland, 

& Myers, 2011). Interestingly, we found a paraphyletic group of 3 T. ni ORs (TnOR11, 

15, and 18) that are close homologs to BmOR3, which recognizes sex hormones 

(Nakagawa, Sakurai, Nishioka, & Touhara, 2005). Thus, we hypothesize that this group 

may be involved in species-specific responses to sex hormones. We found another of T. 

ni-specific OR expansion of 3 genes (TnOR31, 33 and 40), the closest drosophila 

homologs of which can detect food odors (Laissue & Vosshall, 2008).  

 

Figure 2.13. Phylogenetic tree of OR genes in T. ni and B. mori. Black labels indicate B. mori genes and red 
labels indicate T. ni genes.  
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Many insects rely on contact chemosensation to find host plants and to avoid 

toxic chemicals. Understanding gustatory receptors may help prevent agricultural pests, 

such as T. ni. We annotated 34 GR candidate genes (Figure 2.14), compared to 65 and 60 

in B. mori and D. melanogaster (Montell, 2009; Wanner & Robertson, 2008). Despite the 

low number of GRs identified in T. ni, phylogenetic analysis indicated that 3 and 9 T. ni 

GRs cluster with their B. mori counterparts, respectively, forming putative carbon dioxide, 

sugar receptor branches (W. D. Jones, Cayirlioglu, Grunwald Kadow, & Vosshall, 2007; 

Slone, Daniels, & Amrein, 2007). Notably, both lepidopterans encode DmGR43a 

orthologs, which have been implicated in fructose perception in fruit fly (Sato, Tanaka, & 

Touhara, 2011). Additional 22 T. ni GRs form putative bitter receptors that have been 

proposed in other lepidopterans to be involved in detection of species-specific 

recognition of host plants (Wanner & Robertson, 2008; Zhan et al., 2011). 
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Figure 2.14. Phylogenetic tree of GR genes in T. ni (red) and B. mori (black).  
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20 Kb genomic window. IR60 in D. melanogaster was shown to express in antenna and 

was designated “antennal IRs.” 

 

Figure 2.15. Phylogenetic tree of GR genes in T. ni (red), B. mori (black), and D. melanogaster (green).  
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T. ni possessed the entire repertoire of genes in this pathway (Figure 2.16). Notably, we 

found six copies of Isopentenyl pyrophosphate isomerases (IPPI 1-6) and five copies of 

farnesyl pyrophosphate synthases (FPPS 1-5), representing an expansion compared to 

one copy of IPPI and three copies of FPPS in silkworm (The International Silkworm 

Genome, 2008) Although the functions of the additional copies of the genes are unclear, 

we speculate that they may contribute to the production of Lepidoptera-specific and even 

T. ni-specific juvenile hormones. 

 

Figure 2.16. Genes in the juvenile hormone biogenesis and degradation pathways. Numbers after “x” indicates 
gene copy numbers. Gray gene names denote genes that have been proposed to reside in this pathway but their 
genomic loci are not known in any species.  
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may target genes in metamorphosis, reproduction, and other pathways of insect 

physiology and development (Lucas & Raikhel, 2013). Then, homology evidence and 

RNA-seq signals were used to determine miRNA pathway genes in the T. ni genome. 

Orthologs of all known miRNA pathway genes (including dcr-1, pasha, drosha, and ago2) 

can be found in this genome, suggesting that T. ni possess the ability to perform regulate 

genes via miRNAs. mirDeep2 was then used in conjunction with known miRNAs in 

other species and small RNA-seq data from T. ni ovary, testis, thorax and Hi5 samples to 

computationally predict miRNAs. In total, 295 miRNA genes (Figure 2.17, 

Supplementary file 3A and Supplementary file 4) were identified, including 77 conserved, 

31 Lepidoptera-specific, and 187 T. ni-specific miRNAs (see (Y. Fu, Yang, et al., 2018)). 

Then the miRNA expressions were compared in female and male thoraces (Figure 

2.17). The majority of the expressed miRNAs (~82.2%) were not differentially expressed, 

indicating that normalization of miRNA counts is feasible. Forty-eight miRNAs are 

significantly differentially expressed between female and male thoraces (>2-fold change 

and FDR<0.1). Interestingly, miR-1—the highest expressed miRNA in both female and 

male thoraces—is differentially expressed: it was 2.2-fold more abundant in males. The 

function of miR-1 in T. ni is not known, but its homologs should provide some insights 

into its potential function in T. ni. miR-1 was previously characterized in fruit flies and 

has been shown to regulate muscle development (Sokol & Ambros, 2005). Thus, it is 

speculated that miR-1 is involved in sex-specific muscle development in female and male 

T. ni. An extremely conserved miRNA, let-7, was more abundant in males than female. T. 

ni let-7 has identical mature miRNA sequence with its homologs in many species, 
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including human, C. elegans. Since let-7 was previously characterized to play important 

roles in metamorphosis, the differentially expressed let-7 in T. ni might regulate sex-

specific metamorphosis.  

It is hypothesized that during miRNA evolution, newly formed miRNAs are first 

tested in limited tissues at low expression levels so that harmful miRNAs are selected 

against and useful ones are kept and increase their expression levels over time. These T. 

ni miRNAs provide an opportunity to test this idea. Indeed, more conserved miRNAs 

tend to have high expressions: the median expression is 320 ppm for conserved, 160 ppm 

for Lepidoptera-specific, and only 4.2 ppm for T. ni-specific miRNAs. It is worth noting 

that there are some newly involved miRNAs are highly expressed. For example, mir-

novel1, mir-novel4 and mir-novel11 were highly expressed in both female and male 

thoraces. 

 

Figure 2.17. Expression of T. ni miRNAs in female and male thoraces. Colors indicate the level of conservation; 
solid dots indicate miRNAs that are significantly expressed. 
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Genes in miRNA/siRNA pathways Gene ID in T. ni T. ni gene name 
CCR4-NOT transcription complex subunit 1 (not1, CNOT1) TNI013924 CNOT1 
CCR4-NOT transcription complex subunit 3 (not3, CNOT3) TNI000261 CNOT3 
CCR4-NOT transcription complex subunit 6-like (twin, 
CCR4, CNO6L) 

TNI007086 * CNO6L 

CCR4-NOT transcription complex subunit 11 (not11, 
CNOT11) 

TNI001169 CNOT11 

hen1 TNI005148 hen1 
ago1 TNI012430 ago1 
ago2 TNI007888 ago2 
microprocessor complex subunit DGCR8 (pasha) TNI013094 DGCR8 
Ribonuclease 3 (drosha, RNC) TNI006564 RNC 
exportin-5 (Ranbp21, exp5) TNI002090 XPO5 
GTP-binding nuclear protein Ran (ran) TNI002740 RAN 
endoribonuclease dcr-1 TNI002422 dcr-1 
endoribonuclease dcr-2 TNI008774 dcr-2 
RISC-loading complex subunit / Interferon-inducible double 
stranded RNA-dependent protein kinase activator A-A (loqs, 
PRKRA) 

TNI009568 PRKRA 

gawky (gw) TNI003091 gawky 
   

Table 2.3. T. ni genes in miRNA and siRNA pathways. Note that TNI007086 and TNI007087 were 
merged. The 3' UTR was curated to match RNA-seq signals. 

2.3.6 siRNA characterization 

siRNAs are another type of small silencing RNAs. They are typically 20–22 nt long and 

regulate gene expression, defend against viruses and suppress transposons (Agrawal et al., 

2003; Chung, Okamura, Martin, & Lai, 2008; Chung et al., 2008; Czech et al., 2008; 

Ghildiyal et al., 2008; K. Okamura, Ladewig, Zhou, & Lai, 2013; Tam et al., 2008). 

siRNAs are processed from double-stranded RNAs into short double-stranded fragments 

with 2 nt overhang at 3′ ends. Unlike miRNAs, they require extensive sequence match 

between the guides and targets to facilitate target cleavage. 

 There are at least three sources of endogenous siRNAs (endo-siRNAs): 

transposon transcripts, cis-natural antisense transcripts (cis-NATs), and long hairpin 
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RNAs (hpRNAs) (Chung et al., 2008; Czech et al., 2008; Ghildiyal et al., 2008; 

Kawamura et al., 2008; K. Okamura et al., 2013; Katsutomo Okamura et al., 2008; 

Katsutomo Okamura & Lai, 2008; Watanabe et al., 2008). siRNAs from all three sources 

could be readily detected in T. ni tissues and Hi5 cells (Table 2.4), suggesting T. ni 

possess a functional siRNA pathway. 
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Species 
Tissue/cell type Endogenous 

siRN
As 

Transposon siRN
As 

N
on-transposon siRN

As 

Total 
%

 total 
siRN

As 
Hairpin 
siRN

As 
Total 

%
 total 

siRN
As 

Hairpin 
siRN

As 
%

 of non-
transposon siRN

A 
cis-N

AT 
siRN

As 
%

 non-
transposon siRN

A 

Trichoplusia 
ni 

Hi5 
912841 

310761 
34.0%

 
23692.7 

602080 
66.0%

 
25750 

4.28%
 

147905 
24.6%

 

O
vary 

313121 
163940 

52.4%
 

4085.26 
149181 

47.6%
 

1852.34 
1.24%

 
17597.2 

11.8%
 

Testis 
340933 

145081 
42.6%

 
14648.3 

195852 
57.4%

 
9037.56 

4.61%
 

29663.4 
15.1%

 

Fem
ale thorax 

563333 
125809 

22.3%
 

12724.2 
437524 

77.7%
 

3412.53 
0.78%

 
138044 

31.6%
 

M
ale thorax 

736512 
152746 

20.7%
 

12393.1 
583766 

79.3%
 

6186.64 
1.06%

 
94731.5 

16.2%
 

Fruit fly 
Fly heads * 

247377 
129777 

52.5%
 

18809 
117600 

47.5%
 

50104.5 
42.6%

 
65683.6 

55.9%
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Table 2.4. Mapping statistics of T. ni siRNAs. 

Next, exogenous siRNAs (exo-siRNAs) were characterized. Since one main 

function of exo-siRNAs is viral defense, a comprehensive search for viral transcripts was 

performed. No viral transcripts could be detected in T. ni tissues. However, highly 

abundant viral transcripts (FPKM of RNA1 and RNA2 of TNCL >5,000) could be 

detected in Hi5 cells, consistent with previous findings that Hi5 cells are latently infected 

with a positive-sense, bipartite virus (Tn5 Cell Line virus TNCL) (T.-C. Li, Scotti, 

Miyamura, & Takeda, 2007; Miller & Ball, 2012). Transcriptome assembly revealed that 

the detected viral transcripts had high sequence identity with previously characterized 

TNCL, further evidence of the existence of TNCL virus. Then all small RNAs that could 

not be mapped to the genome were mapped to the viral transcripts. Such virus-mapping 

small RNAs have the typical length distribution of siRNAs (median length = 21 nt, 

Figure 2.18A), suggesting Hi5 cells utilize siRNAs to defense against this virus. As a 

further test if they are bona fide siRNAs, we checked if these small RNAs bear 2 nt 

overhang at 3′ ends, by examining the distance from 5′ ends to 3′ ends on different 

strands. Such analysis revealed that such small RNAs tend to have 2 overhanging 

nucleotides at the 3′ ends (Figure 2.18B), hallmark of siRNAs. Next, another property of 

siRNAs is examined: siRNAs are typically produced in a processive manner. The 

distances from siRNA 3′ ends to 5′ ends are frequently zero (p < 5.82 × 10-5), and the 

length of a typical siRNA (20 nt), indicating that such small RNAs are made one after 

another. In summary, Hi5 cells use siRNAs for viral defense.  
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Figure 2.18. siRNA characterization. A. Length distribution of virus-mapping siRNAs. B. Distribution of 3′ to 5′ 
distances on opposite strands. C. Distribution of 3′ to 5′ distances on the same strand. 

siRNAs and piRNAs, but not miRNAs, in fruit fly are 2′-O methylated, leading to 

the idea that siRNAs and piRNAs are 2′-O methylated in other insects. However, during 

the analysis of TNCL-mapping siRNAs, I noticed that siRNAs were almost depleted in 

oxidized small RNA-seq libraries (oxidization eliminated small RNAs without 2′-O 

methylation), suggesting that siRNAs are not 2′-O methylated in Hi5 cells. Length 

profiles of small RNAs sequenced from T. ni tissues and Hi5 cells indicated that 20-22 nt 

RNAs were abundant in unoxidized small RNA-seq libraries but depleted in oxidized 

small RNA-seq libraries. Thus, I conclude that siRNAs are not 2′-O methylated in T. ni. 

 Then, another question comes up naturally: are siRNAs unmethylated in other 

lepidopteran species? To check this, I collected data from oxidized and unoxidized small 

RNA-seq libraries, and determined abundance ratios (ox/unox ratios) of siRNA species 

that exist in both versions of libraries. For fruit fly siRNAs, ox/unox should be close to 1 

as such siRNAs are 2′-O methylated. If a species has unmethylated siRNAs, then ox/unox 

should be smaller than 1. Indeed, fruit fly siRNAs have ox/unox ratios close to 1, whereas 

siRNAs from other lepidopteran species have ox/unox ratios <0.23, much smaller than 1, 

indicating that siRNAs from these 3 lepidopterans are not methylated. Since T. ni and P. 

xylostella diverged more than 170 million years ago, this observation suggests that many 

other lepidopterans—and possibly all lepidopterans—lack the ability to 2′-O methylate 

siRNAs. This further raised the question of the purpose of siRNA methylation: if 

lepidopterans can survive without siRNA methylation, why do other species maintain 
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siRNA methylation? Profiling siRNAs from more species, especially basal species, can 

answer this question.  

 

 

2.3.7 piRNAs 

piRNAs, 23–32 nt long, exist in many animals to protect the germline genome by 

suppressing transposon activities (A. A. Aravin et al., 2007; Brennecke et al., 2007; 

Girard, Sachidanandam, Hannon, & Carmell, 2006; Lau et al., 2006; Vagin et al., 2006). 

In D. melanogaster, transposon-rich genomic loci (piRNA clusters) are transcribed to 

produce piRNA precursor transcripts, which are subsequently processed into piRNA and 

loaded into PIWI proteins (Piwi, Aubergine and Argonaute3). Piwi, when loaded with 

piRNAs, can direct installation of histone H3 lysine 9 tri-methylation (Brown et al., 2014; 

Le Thomas et al., 2014; Sienski, Dönertas, & Brennecke, 2012). In D. melanogaster 

cytoplasm, piRNAs guide Aub to find and cleave transposon mRNAs via sequence 

complementarity. The cleavage products can then be processed and loaded into Ago3 as 

sense piRNAs. Ago3, loaded with sense piRNAs can then cleave piRNA precursor 

transcripts from piRNA clusters, generating more piRNAs that can be loaded into Aub. 

This forms a feed-forward loop that efficiently amplify piRNAs and repress transposon 

activity (Brennecke et al., 2007).Ago3 cleavage can also initiate Piwi-bound piRNAs that 

effectively diversity piRNA pool, enhancing transposon suppression (Han, Wang, Li, 

Weng, & Zamore, 2015; Mohn, Handler, & Brennecke, 2015).   

2.7.1 piRNA characterization 
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Most of the genes in the piRNA pathway are correctly predicted by computational 

methods. However, a few short genes and some UTR annotations were missing. Thus, D. 

melanogaster and B. mori piRNA pathway genes were used as references to detect 

piRNA pathway genes. Then all lines of evidence, such as RNA-seq coverage, BLAST 

results were loaded into WebApollo Figure 2.19. Then I manually ensured the 

compatibility of all evidence by modifying gene models. Such gene curation revealed that 

the T. ni genome contains a full repertoire of piRNA pathway genes (Appendix B). Many 

genes were expressed in both germline and somatic tissues, though the germline 

expression tend to be higher than that in the soma (median ratios: ovary/thorax = 14, 

testis/thorax = 3, and Hi5/thorax = 5, Figure 2.20). The expression of piRNA pathway 

components in both the germline and Hi5 cells suggests that Hi5 cells have the intact 

piRNA pathway. 

 

Figure 2.19. Screenshot of Apollo showing the ciwi gene. 
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Figure 2.20. Expression of piRNA pathway genes in 4 T. ni tissues and Hi5 cells.  

 In terms of orthology, most genes in the T. ni piRNA pathway have one-to-one 

correspondence with D. melanogaster orthologs. However, T. ni genome encodes only 

two PIWI proteins, TnPiwi and TnAgo3 instead of 3 in D. melanogaster. (I originally 

named TnPiwi as Ciwi [cabbage looper piwi] to follow the naming convention of Siwi 

[silkworm Piwi] in B. mori, but later, due to the potential scalability issues pointed out by 

reviewers, TnPiwi replaced Ciwi.) Without further experiments, it is unknown if TnPiwi 

functions more like Aub or Piwi in D. melanogaster. Another noticeable difference is that 

D. melanogaster genome encodes Rhino, Cutoff and Deadlock to mark piRNA clusters 

but T. ni genome encodes none. Furthermore, the trio of genes is known to be poorly 

conserved, indicating that how fruit fly marks piRNA clusters is highly unlikely to be a 

universal mechanism and that T. ni is possibly a better representation of how insects mark 

piRNA clusters.  
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2.3.8 Characterization of piRNA clusters 

In D. melanogaster, piRNAs are produced in the germline but not in the soma. T. 

ni, however, produces piRNAs from discrete genomic loci in both the germline and the 

soma. piRNAs are short and thus are often map to multiple genomic loci, making it 

difficult to resolve these multimappers. To solve this, I designed an expectation-

maximization algorithm that resolves such multimappers and applied this method to 

datasets from different tissues and Hi5 cells. In total, piRNA-producing loci comprise 

10.7 Mb in ovary, 3.1 Mb in testis, 3.0 Mb in Hi5 cells and 2.4 Mb in thorax (Figure 

2.21). For each tissue or cell type, these clusters can explain >70% of uniquely mapped 

piRNAs and all piRNAs when using expectation-maximization mapping. Interestingly, 

1.5 Mb of piRNA clusters are active in both the germline and the soma, suggesting that 

these are required for T. ni development. 

 

Figure 2.21. Expression of piRNA pathway genes in 4 T. ni tissues and Hi5 cells.  
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T. ni piRNA cluster have substantially different sizes. In T. ni ovary, more than 

half of the bases in piRNA clusters are in 67 piRNA clusters (median length = 53 kb). 

The largest five piRNA clusters are longer than 200 kb and the smallest one is 38 kb. 

Some T. ni piRNA clusters produce abundant piRNAs. For example, the cluster on 

chromosome 13 produce the most piRNAs among all piRNA clusters and can explain 7.8% 

uniquely mapped piRNAs (~50,000 piRNA species) (Figure 2.22). piRNAs originate 

from limited genomic loci. The top 20 piRNA clusters in T. ni ovary can explain >50% 

uniquely mapped piRNAs. 

 

Figure 2.22. Small RNA signals along the most productive piRNA cluster on chromosome 13. 
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Much of the knowledge on piRNAs were obtained from studying fly piRNAs. In 

the fly ovary germline, most piRNA clusters generated piRNAs from both strands. Such 

piRNAs can fuel the “Ping-Pong” amplification cycle and robustly promote piRNA 

production (Brennecke et al., 2007). Some piRNA clusters, such as flamenco piRNA 

cluster (Brennecke et al., 2007; Malone et al., 2009), produce piRNAs from one strand 

only, without Ping-Pong amplification. Such uni-strand piRNA clusters are the only 

sources of piRNAs in the somatic follicle cells in the fly ovary. 

The T. ni genome contains both types of piRNA clusters. In ovary, about 20% of 

piRNA clusters are dual-strand. And they collectively produce 35.9% of uniquely 

mapped piRNAs (and 22.8% of all piRNAs). piRNAs from dual-strand clusters are 

mostly antisense to transposons (71.6%). The remaining 286 piRNA clusters are uni-

strand and can explain 54.8% of uniquely mapped piRNAs and 36.7% of all piRNAs. 

Similar to piRNAs mapped to dual-starnd clusters, piRNAs from uni-strand clusters are 

also mostly antisense to transposons (74.8%), which reflects that piRNAs suppress 

transposon transcripts. The antisense bias of piRNAs from uni-strand piRNA clusters is 

likely to originate from positive selection for antisense insertions. Collectively for uni-

strand clusters, 57.1% of transposons insertions are opposite to the direction of piRNA 

precursor transcriptions. Dual-strand clusters, on the other hand, lack such bias: 49.5% of 

transposon insertions in dual-strand clusters are in the antisense direction.  
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Figure 2.23. Transposon insertion bias in dual- and uni-strand piRNA clusters 

2.3.9 The entire W chromosome as a major source of piRNAs 

The W chromosome was not well understood due to the difficulty to assemble it. 

The availability of the T. ni W chromosome allows the first opportunity to globally 

characterize it. The largest piRNA cluster is a 462 kb region on the W chromosome, 

consistent with the observation that W chromosome produces a substantial portion of 

piRNAs. This is likely to be a underestimation of this piRNA clusters due to the 

mappability problem. (70.8% of the bases in the flanking regions are not uniquely 

mappable.) As a matter of fact, 85.1% of the bases between W-linked piRNA clusters are 

not uniquely mappable. Thus, these gaps between piRNA clusters are likely due to the 

limitation of mappability, and we propose that those piRNA clusters are likely just one 

giant piRNA cluster. 

 To further test if the W chromosome is a major source of piRNAs, we calculated 

piRNA abundance (normalized to contig length) using piRNA reads that could be 

uniquely mapped to the all contigs. W-linked contigs produced much more piRNAs than 

Z-linked and autosomal contigs, consistent with our notion that W is a major source of 
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piRNAs. In T. ni, 27.2% of uniquely mapped piRNAs in the ovary derived from W-

linked contigs, even though these contigs compose only 2.8% of the genome (Figure 

2.24). The W chromosome is likely to produce much more piRNAs, due to the 

unassemblable part of the W chromosome.  

 

Figure 2.24. piRNA that could be uniquely mapped to the genome (first 5 bars) and the proportions of the 
genome that are autosomal (black), Z-linked (blue) and W-linked (red). 

The reviewers of this paper raised the question if every base of the W-linked 

regions produces piRNAs, since rigorously speaking, it could be that some W-linked 

regions do not produce any piRNAs. To determine this, I search for W-linked regions that 

are not covered by any piRNAs and found that 11.0% of the W-linked bases do not 

produce any piRNAs. The reviewers also asked if the predicted miRNAs and coding 

genes on the W produce piRNAs. Since it is possible that some of these predictions were 

wrong, I manually curated all annotations on the W chromosome. All 9 predicted 

miRNAs produce small RNAs showing the Ping-Pong signature, suggesting that these are 
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likely misannotated as miRNAs and are instead piRNA-producing loci. All 74 predicted 

protein-coding genes on the W chromosome were further categorized into 4 groups: 

orphan genes (no homologs found), transposons (good homology to transposons), 

uncharacterized/hypothetical proteins, and potential protein-coding genes with homology. 

Those with transposon homology tend to produce more piRNAs (median = 44.9 ppm), 

with uncharacterized/hypothetical proteins and potential protein-coding genes produce 

fewer piRNAs (Figure 2.25). Those orphan genes produce the fewest piRNAs, with some 

putative genes produce no piRNAs at all. We thus conclude that though some W-linked 

loci are devoid of piRNAs, nearly the entire W chromosome is devoted to piRNA 

production.  

 

Figure 2.25. piRNA abundance for W-linked genes (categorized according to their homology to existing 
annotations. 

2.3.10 piRNA cluster expression 

In the T. ni germline, different piRNA cluster produce wildly different piRNAs, 

but the top 5 piRNA clusters consistently produce the most piRNAs, indicating that these 
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constitutive piRNA clusters are the master loci for piRNA production and transposon 

silencing. Many of the other piRNA clusters show tissue-specific expression. One 

observation is that the W chromosome produces plurality of piRNAs in ovary, but not in 

Hi5 cells (Figure 2.26A), which could be due to a) Hi5 cells reduced the ability to 

produce W-linked piRNAs, or b) Hi5 cells was derived from one type of germline cells, 

and such cells are under-represented in the ovary. A comparison between female and 

male thorax reveals that some Z-linked clusters produce more piRNAs in male (Figure 

2.25B).  

 

Figure 2.26. Comparisons of piRNA abundance (A) among ovary, testis and Hi5, and (B) between female and 
male thorax. 

  

Forty clusters produce piRNAs in Hi5 cells, but not in ovary, which raises the 

question if these clusters were newly gained by Hi5 cells during immortalization. To test 

this, I looked for new transposon insertions in these Hi5-specific clusters by integrating 

WGS data from male and female individuals. Of these 40 clusters, 12 contain 74 Hi5-

specific transposon insertions, suggesting that the insertions of these transposons 

transformed the inserted regions into piRNA clusters. To test if such transposons 
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evolutionarily young, I calculated sequence divergence rates and found that, compared to 

the transposons shared by ovary and Hi5, these 74 Hi5-specific transposons have lower 

sequencing divergence rate (Figure 2.27). The conclusion is that the Hi5-specific piRNA 

producing loci were likely caused by transposon insertions after the derivation of Hi5 

cells, suggesting that T. ni and other animals can readily evolve new piRNA clusters to 

protect their genomes against transposon insertions.  

 

Figure 2.27. Sequence divergence rate for Hi5-specific transposons and transposons shared between ovary and 
Hi5 

Next, somatic piRNA clusters in T. ni were examined. In fruit fly, somatic 

piRNAs are much less abundant than other types of small RNAs, suggesting that fly does 

not utilize the piRNA machinery in somatic tissues. Surprisingly, T. ni somatic tissues 

produce abundant piRNAs, suggesting that somatic piRNAs may play important roles for 

transposon suppression and gene regulation. In female and male thorax, piRNA clusters 

compose only ~0.57% of the genome and can explain the majority of uniquely mapped 

piRNAs (86.8% and 89.5 for females and males, respectively). These somatic piRNA 
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clusters are mostly the same with germline piRNA clusters (>90% of bases in somatic 

clusters in germline clusters), supporting the notion that some piRNA clusters are always 

active during development. A comparison of piRNA clusters between female and male 

thorax reveals that, in addition to most piRNA clusters with comparable expression levels, 

12 clusters are differentially expressed. Nine of these 12 clusters are W-linked produce 

significantly more piRNAs in female than in male thorax (Figure 2.26B).  

2.3.11 The lack of splicing of piRNA precursor transcripts 

In fruit fly, splicing of piRNA precursor transcribed from dual-strand piRNA 

clusters is suppressed by Rhino, Cutoff and Deadlock (Mohn et al., 2014; Z. Zhang et al., 

2014). Uni-strand piRNA clusters, on the hand, behave like canonical PolII transcribed 

genes (Brennecke et al., 2007). A search for the three genes reveals no hit, which 

seemingly would predict the presence of piRNA precursor splicing. To answer this 

question, I identified splicing events using RNA-seq data, by looking for reads that map 

across exon-exon junctions, requiring that read counts ≥10 to ensure enough coverage 

and splicing entropy ≥2 to exclude PCR duplicates (Graveley et al., 2011). Even though 

there are >100 piRNA clusters, only 27 splice sites could be detected from all tissues 

(Figure 2.28). Of these 27, 19 reside in uni-strand piRNA clusters. We conclude that 

transcripts from T. ni dual-strand piRNA clusters are rarely splices and that transcripts 

from uni-strand clusters undergo infrequent splicing.  
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Figure 2.28. Splice sites in piRNA clusters and protein-coding genes. The first bar is derived from gene 
prediction. The remaining bars show the splice sites supported by RNA-seq. The boxplot shows the number of 
introns supported by RNA-seq.  

The lack of splicing could be due to an active suppression mechanism, or lack of 

splice sites. To distinguish these two possibilities, I computationally predicted gene 

models (requiring peptide length >200 amino acids) in piRNA clusters using the same 

parameters trained for genome-wide gene prediction. This round of gene prediction was 

done without masking the genome as the majority of the bases in clusters fall into 

repetitive regions. This method predicted a total of 1,332 gene models containing 2,544 

introns with good splicing signals. Notably, ~90% of these gene models had high 

sequence homology with transposons, indicating that many transposons in piRNA 

clusters have intact splice sites. Splicing efficiency was then measured by the ratio of 

spliced to unspliced reads for each of the splice sites supported by RNA-seq. Compared 

to the control set of introns (i.e. introns from protein-coding genes), splicing efficiency in 

piRNA clusters was lower (9.67-fold lower in ovary, 2.41-fold lower in testis, 3.23-fold 

lower in thorax, and 17.0-fold lower in Hi5 cells) (Figure 2.29), indicating that piRNA 

precursor transcripts in T. ni are inefficiently spliced. To test if the splicing efficiency is 
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different in dual- and uni-strand piRNA cluster transcripts, I compared the splice sites 

supported by RNA-seq and found that dual-strand cluster transcripts had lower splicing 

efficiency compared to uni-strand cluster transcripts (Figure 2.29). In conclusion, piRNA 

clusters transcripts are rarely and inefficiently spliced and dual-strand cluster transcripts 

have lower splicing efficiency. 

 

Figure 2.29. Splicing efficiencies in T. ni tissues and Hi5 cells.  

2.4 Discussion  

T. ni is a common and destructive pest that feeds on many plants, such as cabbage 

and broccoli. Using Hi5 cells, we sequenced and assembled the T. ni genome. 

Computational prediction followed by manual curation reveals the expansions of 

detoxification-related gene families. Further characterization of these genes may provide 

insights into pesticide development. In addition, T. ni is a pest found worldwide, so the 
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availability of its genome enables the research on its genetic diversity and population 

structure. Furthermore, much research was done in Diptera such as D. melanogaster and 

having the T. ni genome sequence would facilitate studies that could be applicable to 

more species.  

Two vital steps for this genome assembly are contig construction using PacBio 

long reads and scaffolding using Hi-C reads. The PacBio reads make it possible to obtain 

highly contiguous contigs, which serve as a foundation for scaffolding. Hi-C reads can 

often connect two loci that are far apart (e.g. 10 kb, 100 kb, or even >1 Mb), and such 

information is critical for the scaffolding process and can produce a chromosome-level 

assembly. The genome assembly strategy should be readily applicable for other species 

and enable quick and cost-efficient genome assemblies of other species. 

Previously assembled lepidopteran genomes usually do not contain W 

chromosomes, or have very fragmented W-linked sequenced, due to its repetitiveness. 

For example, the silkworm genome project only included males (ZZ) (Biology analysis 

group, 2004; The International Silkworm Genome, 2008). The monarch butterfly genome 

project included both males and females, but the genome assembly is fragmented (Zhan 

et al., 2011), hindering the characterization of the W chromosome. In contrast, our T. ni 

genome assembly not only captured many W-linked sequences, but also assembled them 

into highly contiguous chromosome-length scaffolds, which, to our knowledge, is the 

first chromosome-level assembled of a lepidopteran W chromosome. The availability of 

the W chromosome, together with the Z chromosome and autosomes, provides a unique 

opportunity to look into sex determination and dosage compensation.  
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Hi5 cells produce siRNAs from the RNA genome of an alphanodavirus and such 

siRNAs are produced in a one-after-another (i.e. processive) manner, consistent with 

previous characterization of fruit fly siRNAs. However, unlike siRNAs in fruit fly, T. ni 

siRNAs are not 2′-O-methylated at 3′ ends. We currently do not understand the 

implications of the lack of methylation. The commonalities and difference between T. ni 

and widely studies D. melanogaster should enable molecular dissection of the deeply 

conserved and rapidly evolving components of small RNA pathways.  

One motivation of the genome assembly project is to establish a cell culture 

model and provide a counterpoint for studying small RNAs. The genome assembly and 

the gene-editing procedures (see (Y. Fu, Yang, et al., 2018)) can enable the use of Hi5 

cells to study small RNA biogenesis. A systematic search of piRNA pathway genes 

reveals all known piRNA pathway genes (except those Drosophilid-specific ones). The 

piRNA clusters in Hi5 cells, ovary, testis, thorax should facilitate the next steps (e.g. 

genome-wide screen of potential piRNA pathway genes). The fact that the same set of 5 

most productive piRNA clusters is present in ovary, testis, and Hi5 cells also suggests 

that Hi5 cells can recapitulate the piRNA pathway. Additionally, Hi5 cells evolved to 

gain extra piRNA clusters that are not present in T. ni, suggesting that one could 

potentially create new piRNA clusters in Hi5 cells and study such clusters from an 

evolutionary prospective.   

Despite the lack of the trio (rhino, cutoff and deadlock) responsible for splicing 

suppression of piRNA cluster transcripts, T. ni piRNA cluster transcripts are rarely and 

inefficiently spliced, suggesting that T. ni has other mechanisms to perform this task. 
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Since this trio is not found outside Drosophilids, Hi5 cells are likely a better and more 

general model for studying piRNAs. Notably, almost the entire W chromosome is 

devoted to piRNA production. As more genomes are assembled, we shall be able to tell if 

this is a general feature of lepidopteran W chromosomes and even other animals. 

Procedures for genome editing and single-cell cloning are also established to 

facilitate further studies, making the Hi5 cell line a powerful tool to study small RNAs. 

(Procedures can be found in (Y. Fu, Yang, et al., 2018).) In principle, the genome-editing 

procedures can be readily applied to the cabbage looper embryos or eggs to generate 

genetically modified T. ni strains, or to implement pest management to contain this 

agricultural pest.
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Chapter 3. Characterization of pachytene piRNAs during mouse spermatogenesis 

3.1 Introduction 

piRNAs are 23–35 nt small RNAs that are abundant during germline development. 

Drosophila piRNAs often map to transposons and can protect the germline genome by 

suppressing transposons. Mouse piRNAs are abundant in testis and mutating important 

piRNA pathway genes often causes male sterility. Mouse piRNAs can be divided into 

two waves: prepachytene and pachytene piRNAs (X. Z. Li et al., 2013). Dedicated loci in 

the mouse genome give rise to pachytene piRNA precursors, which are subsequently 

processed into mature piRNAs. Most of these piRNA-producing loci are depleted of 

transposons and piRNAs often map to non-transposon regions in the genome, suggesting 

that they may have functions other than transposon suppression. Previously, studies of 

such piRNAs have come to different and sometimes contradictory conclusions (Goh et al., 

2015; Gou et al., 2014; Vourekas, Alexiou, Vrettos, Maragkakis, & Mourelatos, 2016). 

Some conclude that these piRNAs find their targets in a sequence-specific manner, 

requiring certain level of complementarity while others conclude that piRNA sequences 

are not important. To better understand the function of pachytene piRNAs, the 5 most 

productive piRNA clusters were knocked down using CRISPR. Removing piRNAs may 

reveal a phenotype that provides a clue as to their function. 
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3.2 Methods 

3.2.1 Experiment design 

To determine targets of pachytene piRNAs, three types of high-throughput 

sequencing data were extensively used: degradome-seq, small RNA-seq and RNA-seq. 

Presumably, piRNAs—like other types of small silencing RNAs, such as miRNAs and 

siRNAs—can cleave the target mRNAs and leave cleavage products with 5′-

monophosphate. Such degraded RNAs can be enriched and sequenced using degradome-

seq, which provides crucial clues to identify potential targets. Small RNA-seq provides 

the identity of pachytene piRNAs, important clues for figuring out the guides. RNA-seq 

profiles stable expression levels of RNA and can be used to detect differentially 

expressed genes. These three types of data, obtained for mutant and wildtype mouse testis, 

were then integrated to predict targets of piRNAs. 

	

3.2.2 Definition of seed and non-seed regions of piRNAs 

	
miRNA targeting rules are well studied (Agarwal, Bell, Nam, & Bartel, 2015; 

Bartel, 2004; Friedman et al., 2008; Garcia et al., 2011; Grimson et al., 2007, 2008, 2008; 

Lewis et al., 2003). Currently, multiple metrics were used to score miRNA:target 

relationships, with the most important one being seed matching. Seed matching 

requirements for miRNAs vary but positions 2–7 of miRNAs almost always require full 

complementarity. Since miRNAs and piRNAs are both bound Ago-clade proteins with 
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similar structures (Matsumoto et al., n.d.), it is reasonable to assume that piRNAs also 

require positions 2–7 to be fully complementary to targets.  

Previous biochemistry experiments surveying the pairing requirements of piRNAs 

provide some clues as to the non-seed region (Reuter et al., 2011). piRNA positions 2–21 

are critical for targeting, as a mismatch in these positions causes piRNAs to abolish the 

cleavage activity, whereas mutations in positions beyond 21 have little effect on piRNA 

targeting. Thus, in this study, positions 8–21 are defined as the non-seed region. 

3.2.3 Determination of piRNA targets 

First, all potential targets were extracted from degradome-seq data. Degradome-

seq reads were mapped to the genome using parameters previously described (Han et al., 

2014). Only 5′ ends of degradome-seq reads were aggregated for each genomic position 

and were considered as potential cleavage sites (required >1 RPM). Such potential 

cleavage sites were extended by 50 nt upstream and downstream to serve as the 

sequences that piRNAs may map to. Next, all potential guide piRNAs were determined 

by obtaining abundant piRNA species from small RNA-seq (RPM >1).  

Guide:target pairs were then determined by requiring perfect seed matches and 

reporting the number of matches in the non-seed region. Importantly, the offset of 10 nt 

was not required (i.e. Ping-Pong signature is not required) to provide the background for 

calculating Ping-Pong Z-scores. The targets were further stratified by the features of 

interest, e.g. the number of GU wobbles, folding energy, and the number of perfect 

matches. To validate these guide:target pairs using independent datasets, transcript 

abundance was quantified using RNA-seq data. Specifically, genes that contain good 
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piRNA target sites were grouped to compare with genes with poor or no piRNA target 

sites. 

 

Figure 3.1. Schematics of piRNA target discovery  

3.3 Results 

3.3.1 piRNA loci and piRNAs are depleted of repeats 

Fly piRNA loci are mostly transposons and other repeats. To check if it holds for 

mouse piRNA loci, repeat levels of piRNA loci were checked. Compared to the genome 

background, piRNA loci are depleted of repeats (Figure 3.2), suggesting that the main 

function of these piRNAs is not transposons suppression. However, it is still possible that 

piRNAs produced from the repetitive regions in these loci are enriched. To determine if 

piRNAs frequently map to repeats, the proportions of piRNAs mappable to repeats were 

calculated for each piRNA loci, which demonstrate that piRNAs often map to non-

repetitive regions (Figure 3.2). Both lines of evidence suggest that pachytene piRNAs 

have functions other than transposon suppression. 
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Figure 3.2. Repeat levels for piRNA-producing loci (left) and proportions of piRNAs mapping to repeats (right). 

3.3.2 trans-Ping Pong analysis of pachytene piRNAs 

To determine if cleavage products can be identified, all predicted targets with ≥10 

matches in the non-seed region (i.e. perfect matches of the seed [position 2–7] and ≥10 

matches in non-seed [position 8–21]) were obtained to calculate the Ping Pong signal. 

The idea is simple: if the predicted targets are truly piRNA targets, then one should 

observe more targets when the 5′ ends of degradome-seq reads were used; on the contrary, 

when the 5′ ends of degradome-seq reads were shifted, then one should observe a 

depletion of targets. Figure 3.3 indicates strong signals when 5′ degradome-seq reads 

were used (Z = 32.4, p < 6 × 10-255). In conclusion, degradome-seq reads are enriched for 

piRNA targets and provide important clues as to the exact cleavage position of piRNAs. 
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Figure 3.3. trans-Ping Pong signals for targets with good matched in the non-seed region. Enrichment at x = 0 
indicates that piRNA targets are enriched at the 5′ ends of degradome-seq reads.  

The trans-Ping Pong analysis also provides an opportunity to determine the false 

positive rates: !"#!
!"

. Grouping targets by the number of non-seed matches reveals false 

positive rates for different stringencies: 56.1% for 9 or more non-seed matches, 25.1% for 

10 or more non-seed matches, 8.46% for 11 or more non-seed matches. This reflects the 

trade-off between stringencies and number of targets: more strict cutoffs are more likely 

to reveal highly confident targets, but reveal fewer piRNA targets. To further test the 

existence of trans-Ping Pong, degradome-seq and small RNA-seq data from rat testis 

were used to perform similar analysis. This analysis revealed the similarly significant 

trans-Ping Pong signals (Z = 28.5, p < 6 × 10179), indicating that piRNAs can cleave 

targets via trans-Ping Pong in both mouse and rat. 
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3.3.3 More non-seed matches lead to better cleavage 

To evaluate the piRNA cleavage, changes of cleave products were examined. A 

bona fide piRNA cleavage product should decrease or disappear in a piRNA gene mutant. 

To check this, each potential cleavage targets was evaluated by ratios of degradome-seq 

signals in mutant over in wildtype. Predicted piRNA target sites tend to have lower 

degradome signals in Miwi mutant compared to wildtype (Figure 3.4). Interestingly, 

when targets are grouped by their complementarity with guide piRNAs (i.e. number of 

non-seed matches), targets with better complementarity (e.g. 13 or 14 non-seed matches) 

show more “shifts” than targets with less complementarity (e.g. 10 or 11 non-seed 

matches). This further confirms the previous biochemistry experiment showing that 

piRNAs require extensive complementarity in the positions 2–21 (Reuter et al., 2011). 
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Figure 3.4. piRNA target sites have lower degradome-seq signals in the Miwi mutant. X-axis indicates the 
log2(fold change) of reads from predicted target sites (mutant / heterozygous).  

GU wobbles are known to enhance miRNA targeting. To check if the same 

applies to piRNA targeting, we grouped targets according to the number of GU wobbles 

(0, 1, 2) while keeping constant the number of matches (10) (Figure 3.5). Indeed, target 

sites with more GU wobbles have better degradome-seq response, indicating that GU 

wobbles—compared to mismatches—enhance piRNA targeting, similar to miRNA 

targeting. To further check if GU wobbles are equally effective with matches, we 

grouped targets according to the number of GU wobbles (0, 1, 2) while keep constant the 

total number of matches and GU wobbles (11) (Figure 3.5). When matches are replaced 

by GU wobbles, the cleavage efficiency go downs. In summary, we conclude that GU 

wobbles are better than mismatches and worse than matches. 

	
	

Figure 3.5. GU wobbles are better than mismatches for piRNA targets. X-axis indicates the log2(fold change) of 
reads from predicted target sites (mutant / heterozygous).  
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3.4 Discussion 

By integrating degradome-seq and small RNA-seq data, we found that pachytene 

piRNAs can cleave their targets when there exists extensive complementarity. Better 

complementarity leads to better cleavage, suggesting that extensive complementary 

promotes target cleavage. Pairing at position 1 is not required, but if the first nucleotide is 

U, it enhances cleavage. We also found that GU wobbles are better than mismatches, 

though they are not as good as perfect matches. Although we do not have the 

experimental evidence, but we speculate that in the case of less extensive 

complementarity, piRNAs may still bind the targets but not cleave the targets. In 

summary, pachytene piRNAs can regulate genes during mouse spermatogenesis. 
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Chapter 4. Genome-wide identification and characterization of branch points in 

human and mouse 

4.1 Introduction 

The majority of genes in higher vertebrates contain introns. When genes are 

transcribed to produce transcripts, introns are removed in a process called splicing and 

exons are joined to form the mature mRNAs to direct protein synthesis. Introns and exons 

are well annotated by both automated processes and manual curation, thanks to gene 

prediction algorithms and massive numbers of RNA-seq datasets. During the early steps 

of splicing, spliceosome ligates each of 5′ introns to a branchpoint via trans-esterification 

to form a circular structure called a lariat. The spliceosome can subsequently recognize 

the downstream 3′ splice site and excise the intron lariat via another trans-esterification 

process. Branchpoints are important signals for splicing and mutations at branchpoint can 

often cause disease (Khan et al., 2004; M. Li, Kuivenhoven, Ayyobi, & Pritchard, 1998; 

Padgett, 2012), so mapping branchpoints is a critical step to better understand genes. 

However, in contrast to exons and introns, branchpoints are poorly annotated. This is 

partially because of the difficulty to computationally predict the branchpoints, which 

have high sequence degeneracy.  

Previously, efforts have been made to annotated branchpoints by exploiting the 

rare reads that traverse 5PRME splice site/branchpoint junction (Taggart et al., 2017; 

Taggart, DeSimone, Shih, Filloux, & Fairbrother, 2012), but these did not make use of all 

RNA-seq data available, limiting the completeness of branchpoint annotation. 

Experimental methods, such as CaptureSeq (Mercer et al., 2015), to enrich such rare 
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reads are highly efficient in terms of producing branchpoint-supporting reads but these 

were done in limited tissues/cell types, and cannot map branchpoints of genes with little 

or no expression in the surveyed tissue/cell type. 

 To comprehensively annotated branchpoints, I screened >1.2 trillion RNA-seq 

reads from ENCODE and NCBI SRA and determined the genomic positions of ~150k 

branchpoints for both human and mouse, forming the largest catalog of branchpoints to 

date. To facilitate queries and visualization of these branchpoint, I built a database and a 

website that can quickly return informative results. 

4.2 Methods 

4.2.1 The branchpoint discovery pipeline 

The first step is to filter out mappable reads, since the vast majority of RNA-seq 

reads do not derive from the 5′ splice site/branchpoint junctions. STAR was used with the 

following parameters: --runMode alignReads --runThreadN $CPU --

outFilterScoreMin 0 --outFilterScoreMinOverLread 0.89 --

outFilterMatchNmin 0 --outFilterMatchNminOverLread 0.89 --

outFilterMultimapScoreRange 1 --outFilterMultimapNmax -1 --

outFilterMismatchNmax 10 --outFilterMismatchNoverLmax 0.05 

--alignIntronMax 0 --alignIntronMin 21 --

outFilterIntronMotifs None --genomeLoad NoSharedMemory --

outSAMunmapped None --outReadsUnmapped Fastx --

outSJfilterReads Unique --seedSearchStartLmax 20 --

seedSearchStartLmaxOverLread 1.0 --chimSegmentMin 20. The 
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unmapped reads were kept for next steps. Since many submitters do not include strand 

specificity of their RNA-seq datasets, strand specificity was determined by first mapping 

100,000 reads of each fastq file to the genome and then calculating the ratio of reads 

mapping to the sense vs the antisense strands. If the ratio is ≥2, the RNA-seq reads are 

considered to have derived from the transcripts; if the ratio is ≤0.5, the RNA-seq reads 

are considered to have derived from antisense strands of RNAs; if the ratio is between 0.5 

and 2, then the RNA-seq dataset is not strand-specific.  

In the second step, unmapped reads were screened to obtain those that traverse the 

5′ splice site/branchpoint. Unmapped reads were mapped to the 5′ introns using bowtie2 

with parameters: --local --score-min L,45,0 -D 20 -R 2 -N 0 -L 20 

-i L,1,0, which ensures the sensitivity by trying all possible seeds for sequence 

alignment. Next, portions of reads mappable to 5′ introns are clipped and the remaining 

portions are mapped to the genome. Then the alignments were further filtered by 

requiring that both portions map to the same intron in Gencode annotation. The overview 

of this pipeline is visualized in Figure 4.1. 
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Figure 4.1. Workflow of the branchpoint discovery pipeline.  

Since a read seemingly support a branchpoint may come from a regular RNA-seq 

reads with a few mutations, extra efforts were made to exclude such bogus reads. 

According to the branchpoint and corresponding 5′ splice sites from the previous step, the 

potential lariat sequences were constructed and then mapped to the genome. If a potential 

lariat can be mapped to the genome within certain edit distances, it is removed.  

4.2.2 Alternative splicing analysis 

Alternative splicing events were extracted using an R package “SplicingGraphs”. 

Exon skipping, alternative acceptor, alternative donor and intron retention events were 

extracted using '0,1-2^', '1-,2-', '1^,2^', '0,1^2-'. To quantify the strength of splice sites, 

their seqlogos and k-mer were compared.  
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4.2.3 Database schema 

 SQLite was used to store all branchpoint-related information. A total of 7 tables 

were used: bp (basic branchpoint information, such as coordinates and flanking 

sequences), intron (including intron coordinate, intron ID, parent transcript ID and parent 

gene ID), exon (including exon coordinate, exon ID, parent transcript ID and parent gene 

ID), gene (gene coordinate, gene names, species, etc.), transcript (transcript coordinate, 

transcript ID, and gene ID), species (describing species names and IDs), and bp_src 

(describing the source datasets of branchpoints). Specifically, the bp table was built first 

as three smaller tables, each of which holds the branchpoint ID. These three tables were 

later joined to produce the final bp table. For the SQLite script to create the database, see 

Appendix C. 

 

4.2.4 Website 

The website was built using the Python package Flask, a micro web framework. 

The front-end framework is Bootstrap with customized styles. User queries were parsed 

by Python scripts and results were return in the JSON format. The tables were 

implemented using Bootstrap Table. Data visualization was performed using D3.js on the 

client end.  

4.3 Results 

4.3.1 Branchpoint annotation and characterization 

By screening for reads traversing 5′ splice site/branchpoint junctions, 153,303 

human and 148,282 mouse branchpoints. Examination of these branchpoint revealed the 



	

	

84 

TnA motif and polypyrimidine tract (PPT) (Figure 4.2), consistent with previous 

characterization of branchpoints (Gao, Masuda, Matsuura, & Ohno, 2008).  

 

Figure 4.2. Overview of branchpoints. A. Schematic of a lariat-supporting read mapped to the genome. The blue 
dot indicates the position of the branchpoint. B. SeqLogo showing the motifs at and around branchpoints.  

 To determine the frequency of lariat-supporting reads, the ENCODE RNA-seq 

datasets were used, since these data have better metadata (e.g. tissue, strand-specificity, 

and cellular compartment) that facilitate the analysis. To quantify the frequency, we 

calculated the number of unique branch points per billion reads (BPB), for each library. 

Human RNA-seq datasets generated a median of 607 BPB whereas mouse RNA-seq 

datasets generated a median of 365 BPB, indicating that lariat-supporting reads are rare 

and that a massive number of reads are required to obtain a comprehensive branchpoint 

annotation.  

To quantify which set of libraries are the most informative in terms of mapping 

branchpoints, ENCODE RNA-seq data were grouped by biosample type and were 
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quantified using the BPB measure. In total, there are 1,474 categorized as “immortalized 

cell line”, 40 categorized as “in vitro differentiated cells”, 12 categorized as “induced 

pluripotent stem cell line”, 413 categorized as “primary cell”, 57 categorized as “stem 

cell”, and 138 categorized as tissue. Stem cell RNA-seq data were the most informative 

group whereas the immortalized cell RNA-seq data were the least informative group 

(Figure 4.3A). Stem cells are more likely to actively produce nascent transcripts, and thus 

have more lariats accumulate in cells. The ENCODE RNA-seq data can be further 

grouped by cellular compartment. RNA extracted from nucleus are more likely to support 

lariats and branchpoints, compared to RNA from cytosol (Figure 4.3B). 

 

 

Figure 4.3. Number of unique branch points per billion reads (BPB) grouped by (A) biosample and (B) cellular 
fraction. 

It is known that branchpoints are often proximal to the 3′ splice sites. The large 

number of branchpoints in this study provides an opportunity to examine the distribution 

of the distance. The median distance from a branchpoint to the closest downstream exon 
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is 26 nt, with 87.9% of branchpoints are within 50 nt upstream of the downstream exon 

introns and 91.1% of branchpoints are within 100 nt of the downstream exon, indicating 

that the majority of branchpoints are close to 3′ splice sites. Some branchpoints overlap 

with the 3′ splice sites (x = 1 in Figure 4.4), likely reflecting circular RNAs formed by 5′ 

introns directly ligated to 3′ introns.  

 

Figure 4.4. Distance from a branchpoint to the first downstream exon (i.e. distance from a branchpoint to the 
closest 3′ splice sites + 1) 

 Grouping branchpoints by the 5′ splice site sequence, we found that the most 

common 4 types of 5′ splice sites are GT, GC, AT, and GA. Branchpoints with GC, AT, 

or GA as the 5′ splice sites tend to stay closer to the next exon, which likely reflects that, 

compare to GT as the 5′ splice sites, these three types of 5′ splice sites are not as effective, 

and thus need to be closer to the 3′ splice site to allow splicing.  
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Figure 4.5. Distance from a branchpoint to the closest downstream exon, grouped by the 5′ splice site sequence.  

 Although AT rarely serves as the 5′ splice sites when all introns are taken into 

consideration, AT often is the 5′ splice for a group of introns (U12 introns) that uses the 

minor spliceosome for splicing. Thus, a set of known U12 introns were retrieved from 

U12DB (Alioto, 2007), and lifted over to the genome assemblies used in this study. 

Comparing to other introns, branchpoints of U12 introns are much closer to the next exon 

(Figure 4.6), suggesting that U12 introns have lower splicing efficiency and evolve their 

branchpoints to lie closer to 3′ splice sites. 
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Figure 4.6. Distance from a branchpoint to the closest downstream exon, grouped by intron type (U2 and U12). 
U12 introns were further grouped into those with AT and GT as 5′ splice sites. 

4.3.2 Branchpoints and alternative splicing 

Four most common types of alternative splicing involve alternative donor sites, 

alternative acceptor sites, exon skipping and intron retention. We speculate that 

branchpoints may play a role in alternative splicing. To determine the relationship 

between alternative splicing and branchpoints, we extracted and compared branchpoints 

involved in the aforementioned 4 types of alternative splicing events.  

 At least 3 branchpoints (ES.12, ES.14 and ES.34) are used for exon skipping 

(Figure 4.7). To make the branchpoints comparable, we only consider exon skipping 

events where the trios of branchpoints were determined (complete cases). In total, 368 

ES.12, 356 ES.14, and 463 ES.34 events were found. In term of distance to the closest 
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downstream exons, these 3 types of branchpoints have very similar distributions, 

suggesting that the distance to the closest downstream exon does not play a role in 

determining alternative splicing. However, in terms of splicing signals, these 3 types of 

branchpoints are different (Figure 4.7): branchpoints in ES.14 introns show the strongest 

TnA and PPT signals. The likely explanation is that the ES.14 intron—the longest intron 

in exon skipping—requires stronger signals at and downstream of branchpoints to 

compensate for the length of the intron. A further comparison of branchpoint strengths 

(measured as the frequency of the canonical TnA motif) for 3 groups of introns revealed 

that E14 does possess stronger branchpoints, compared to all branchpoints.  



	

	

90 

 

Figure 4.7. Comparison of branchpoints involved in exon skipping event. (A) A schematic of exon skipping. (B) 
Distance from branchpoints to the closest downstream exon, grouped by three types of introns in exon skipping. 
(C) Comparison of the branchpoint motif. (D) Comparison of 3-mer frequencies at and upstream of 
branchpoints in 3 types of branchpoints.  

 We then examined branchpoints in introns with alternative donor sites. Introns 

with alternative donor sites use at least two branchpoints (for AD.2 and AD.3 type introns, 

see figure 4.8). In total, we were able to determine 675 AD.2 type branchpoints and 737 

AD.3 type branchpoints. Branchpoints in these two types of introns share similar distance 

distribution (Figure 4.8). However, the branchpoint signals for AD.2 is significantly 
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stronger than those for AD.3 (p < 0.0001), suggesting that longer introns (AD.2) requires 

stronger branchpoint signals to compete with AD.3 introns. 

 

Figure 4.8. Comparison of branchpoints in introns with alternative donor sites. (A) A schematic of introns with 
alternative donor sites (AD.2 and AD.3). (B) Distance from branchpoints to the closest downstream exon, 
grouped by intron type (AD.2 and AD.3). (C) Comparison of 3-mer frequencies at and upstream of branchpoints 
in AD.2 and AD.3 types of branchpoints.  

Next, we examined branchpoints in introns with alternative acceptor sites. Introns 

using alternative acceptor sites involve at least two branchpoints. Similar to the exon 

skipping analysis, only complete cases were examined. In total, 198 AC.2 and 211 AC.3 

branchpoints were found. Branchpoints in AC.2 and AC.3 introns share similar 

distributions of distances to the closest downstream exons (Figure 4.9). Comparison of 

branchpoints in these types of introns versus all branchpoints revealed that shorter introns 

(i.e. AC.2 introns) possess stronger branchpoints. We currently do not understand how to 

explain this counterintuitive result. 
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Figure 4.9. Comparison of branchpoints in introns with alternative acceptor sites. (A) A schematic of introns 
with alternative acceptor sites (AC.2 and AC.3). (B) Distance from branchpoints to the closest downstream exon, 
grouped by two types of introns (AC.2 and AC.3). (C) Comparison of 3-mer frequencies at and upstream of 
branchpoints in AC.2 and AC.3 types of branchpoints.  

 Some introns can be retained in mature mRNAs. Each of such alternative splicing 

event only involve one optionally retained intron. We then compared branchpoints in 

retained introns versus all introns, which revealed that branchpoints in retained introns 
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have significantly weaker signals (p < 0.0001). We speculate that the reason of these 

introns being retained is that weaker splicing signals result in inefficient splicing.  

4.3.3 The website 

To facilitate queries and visualization, we built a web application with user-

friendly interface. There are some considerations for this web application: a) the database 

backend should be lightweight and portable, allowing easy manipulation in the future; b) 

the frontend should present an intuitive and responsive interface; c) graphs should be 

rendered on the client-side to enable instant response and reduce the burden on the server. 

To meeting these, I built a SQLite database as the backend, used Flask 

(http://flask.pocoo.org/) to serve webpages using Bootstrap (https://getbootstrap.com/). 

For data visualization, I used D3.js, which provides easy-to-use and high customization 

function for plotting. The web app was developed and tested locally, and then deployed 

into a Docker container on a Weng Lab server.  

 The main functions include a dynamic table that, upon a users’ query, returns 

branchpoint information, including the chromosome, coordinate, strand, base at the 

branchpoint, splicing donor site coordinate, and distance to the closest downstream 

acceptor site (Figure 4.10). Columns are customizable: branchpoint ID, distance to the 

splice donor site, downstream and upstream sequences, gene ID, transcript ID and intron 

ID. This table can be downloaded as JSON, CSV, XML, TXT, and EXCEL formats, 

allowing users to perform downstream analysis. The information panel on the right 

dynamically show detailed information about the one branchpoint clicked by the user. 

Currently, BPDB provides two graphs: nucleotide frequencies of bases at and flanking 
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branchpoints and distribution of distances from branchpoints to closest downstream 3′ 

splice sites. These two graphs are immediately updated once the selection of branchpoints 

has any changes (e.g. when the user queries branchpoints for a particular gene, or 

deselect a branchpoint in the table). In some cases, the user might not be interests in the 

graphs and information panel, so I added switches for these, which can provide a clean 

interface just containing the table. A user may be interested in just one particular gene, so 

I added search box to allow searches using partial and full matches of gene names.  

	
Figure 4.10. A screenshot of BPDB.  

4.4 Discussion 

Branchpoints are critical for RNA splicing, yet they are difficult to predict due to 

the high sequence degeneracy. Here, we mapped ~150,000 branchpoints for both human 
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and mouse genomes, which, our knowledge, is the most comprehensive catalog of 

branchpoints in human and mouse. We have built a highly efficient computational 

pipeline that screened >1.2 trillion reads from more than 40,000 RNA-seq datasets. 

Examination of these branchpoint reveals multiple branchpoint features, such as the 

proximity to their splice acceptor sites and canonical TnA motif. The large number of 

branchpoints also enable investigation of relationships between branchpoints and 

alternative splicing. In summary, longer introns in alternative splicing events require 

stronger branchpoint signals, whereas shorter introns and retained introns possess weaker 

branchpoint signals. To allowing easy queries and data visualization, I built the BPDB to 

provide a comprehensive branchpoint catalog. This resource should be valuable to 

biologists who need to manipulate introns by determining or mutating the branchpoints. 

Also, abnormal splicing can cause human disease (Singh & Cooper, 2012), including 

cancer (Yoshida et al., 2011). Mapping branchpoints is the first step towards a better 

understanding of these diseases. 
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Chapter 5. Elimination of PCR duplicates in RNA-seq and small RNA-seq using 

unique molecular identifiers 

5.1 Introduction 

High-throughput sequencing of RNA provides a quantitative measure of RNA 

abundance. However, library construction of RNA-seq and small RNA-seq can introduce 

bias at multiple steps, such as fragmentation of long RNAs, adapter ligation, PCR, and 

sequencing. Starting material is usually scarce, so PCR amplification is required during 

library construction to increase the number of cDNA molecules to an amount sufficient 

for sequencing. However, PCR randomly introduces errors that can propagate to later 

cycles (Cha & Thilly, 1993; Dohm, Lottaz, Borodina, & Himmelbauer, 2008). PCR also 

over- and under-amplifies certain molecules (Cha & Thilly, 1993). PCR duplicates are 

defined as reads made from the same original cDNA molecule via PCR. 

A common method of PCR duplicate elimination is to remove all but one read of 

identical sequences, assuming that such identical reads have been created from the same 

cDNA molecule by PCR (e.g. samtools (H. Li et al., 2009)). This assumption may be 

flawed, especially with higher sequencing throughput, which increases the chance of 

observing reads with identical sequences originating from different cDNA molecules. 

The situation is even worse for small genomes (in which the genome coverage is 

substantially high) and for techniques that interrogate a subspace of the genome (e.g. 

small RNA-seq selects small RNAs, which are produced from very limited genomic loci 

(Brennecke et al., 2007; X. Z. Li et al., 2013)). The assumption is also systematically 

biased: in RNA-seq, shorter genes are more likely to produce identical reads than longer 
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genes with the same expression level, simply because the “genomic space” for RNA 

fragmentation is more limited for shorter genes. Finally, PCR duplicate identification also 

relies on mapping coordinates. (reads mapping to the exact same genomic location are 

considered to have identical sequences.) However, small RNAs from different loci (e.g. 

genomic repeats) can produce the same sequence; thus, strategies using genome 

coordinates to identify PCR duplicates result in biases for repeat-derived reads. 

There are many variables for high-throughput library construction. Some are 

preset, e.g. PCR and sequencing error rates, but others are variable and depend on the 

parameters such as the amount of starting RNA used to generate a library, the number of 

reads sequenced (i.e., sequencing depth), and the PCR cycle number. While it is tempting 

to believe that more PCR cycles lead to more duplicate reads in high-throughput 

sequencing data, high PCR cycle numbers are often associated with scarce starting 

materials, which is another potential cause for PCR duplicate reads. Thus, PCR cycle 

numbers may be confounded with starting materials and sequence depth.  

Unique molecular identifiers (UMIs) are often used to unambiguously and 

accurately detect PCR duplicates and improve transcript abundance quantification 

(Collins et al., 2015; G. K. Fu, Xu, et al., 2014; G. K. Fu, Hu, Wang, & Fodor, 2011; G. 

K. Fu, Wilhelmy, Stern, Fan, & Fodor, 2014; Islam et al., 2014; Kivioja et al., 2012; 

Shiroguchi, Jia, Sims, & Xie, 2012; T. Smith, Heger, & Sudbery, 2017). The idea is 

simple: if each molecule before PCR is tagged with a UMI, i.e., all molecules are unique 

(those molecules with identical sequences are ligated to different UMIs), then reads with 

the same sequence and the same UMI must be PCR duplicates.  
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One way to incorporate UMIs into reads is to introduce pre-defined sequences 

into the adapters. This avoids UMIs with suboptimal GC content and minimize 

complementarity between or within UMI sequences (Shiroguchi et al., 2012). Because 

UMI sequences are preset (and different UMIs have large edit distances), erroneous 

UMIs can be easily corrected to the pre-defined one by calculating edit distance. 

However, the drawback is that such pre-defined UMIs require a large number of costly, 

custom-synthesized oligonucleotides, perhaps prohibitive for many labs. 

Another strategy uses adapters with random nucleotides at certain positions in the 

adapters. The length of random nucleotides leads to an exponential number of UMI 

combinations at almost no extra cost, because incorporating a random nucleotide costs 

the same as incorporating a specific nucleotide during DNA synthesis. UMIs bearing 

either 5 (45 = 1,024 unique UMIs) or 10 random nucleotides (410 = 1,048,576 UMIs) 

were implemented cost-effectively and shown to improve PCR duplicate removal (Islam 

et al., 2014; Kivioja et al., 2012). A higher number of unique combinations can be 

achieved simply by increasing the length of random nucleotides. The number of UMI 

combinations must be sufficiently large because the chance that two cDNA molecules 

with identical sequences in the starting pool are tagged with the same UMI combination 

needs to be infinitesimally small.  

Here, we describe novel experimental protocols and computational methods to 

unambiguously identify PCR duplicates in RNA-seq and small RNA-seq data. We show 

that removing PCR duplicates using UMIs is accurate, whereas removing PCR duplicates 

without UMIs is overly aggressive, eliminating many biologically meaningful reads, 
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worsening quantification. Finally, both the amount of starting materials and sequencing 

depth determine the level of PCR duplicates, but PCR amplification does not. 

5.2 Methods 

5.2.1 Simulation 

Simulation procedure was performed similarly to (T. Smith et al., 2017). Briefly, 

7 parameters were simulated: PCR and sequencing error rates, PCR amplification 

probability, UMI length, number of initial molecules, number of sequenced molecules, 

and number of PCR cycles, by varying one parameter and keeping other parameters 

constant. For each combination of the 7 parameters, 10,000 replicates were performed. 

UMI error correction for RNA-seq was implemented as described in (T. Smith et al., 

2017). For small RNA-seq, we used read sequences instead of genomic coordinates when 

determining PCR duplicates. We used NetworkX (https://networkx.github.io/) for graph-

related algorithms, and pysam (https://github.com/pysam-developers/pysam) for handling 

SAM/BAM files. Reads were mapped to the mouse mm10 genome as described in (Han 

et al., 2014). When reads were analyzed without UMIs, PCR duplicates were identified 

using Picard (https://github.com/broadinstitute/picard). 

5.2.2 Availability 

The tools developed for handling UMIs in our RNA-seq and small RNA-seq data 

can be found at https://github.com/weng-lab/umitools, and via PyPI (package: umitools). 

RNA-seq and small RNA-seq data have been deposited in the NCBI SRA under the 
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accession number PRJNA416930. For experimental procedures, see (Y. Fu, Wu, Beane, 

Zamore, & Weng, 2018). 

5.3 Results 

5.3.1 Adapting standard RNA-seq procedures to incorporate UMIs 

We modified a published RNA-seq protocol in order to incorporate UMIs into 

strand-specific RNA-seq library construction protocol (Z. Zhang, Theurkauf, Weng, & 

Zamore, 2012). The original method has widely used for multiple species in multiple labs 

(X. Z. Li et al., 2013; Mohn et al., 2014; Z. Zhang et al., 2014). The standard protocol 

uses a single Y-shaped DNA adapter containing two partially complementary 

oligonucleotides and an unpaired 3′ thymidine that pairs with the single adenine tail 

added to both ends of the double-stranded cDNA fragments. We modified the adapters by 

inserting a five-nucleotide random UMI (Figure 5.1). Consequently, each cDNA 

fragment is ligated to an adapter with a UMI at each end, randomly choosing one out of 

1,048,576 (45 × 45) possible combinations provided by two UMIs.  
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Figure 5.1. UMI incorporation into RNA-seq. (A) Overall workflow. Schematic of a read produced from RNA-
seq with UMIs (B) and of UMI locators (C). 

Our UMI RNA-seq adapters were designed so that the sequencing reaction begins 

at the very first nucleotide of the 5′ UMI (Figure 5.1), which guarantees the sequence 

diversity in the first five sequencing cycles. This is critical for commonly used Illumina 

sequencing platforms, such as HiSeq, MiSeq, and NextSeq, to accurately call bases 

(Mitra, Skrzypczak, Ginalski, & Rowicka, 2015). To avoid rare insertions or deletions 
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within or flanking a UMI from changing the UMI identity, we further designed a “UMI 

locator”, a pre-defined trinucleotide 3′ to the UMI (e.g. 5′–NNNNNATC–3′). The three 

nucleotides serve as an anchor to allow unambiguous location of each UMI (Figure 5.1). 

Taking the properties of commonly used sequencing instrument into consideration, the 3 

nt UMI locator sequence and the mandatory thymidine required for ligation that 

immediately follows (Figure 5.1) corresponded to the sequencing cycles 6–9, after the 

first five critical cycles required by the instrument for template generation. After we 

sequenced one lane of data using NextSeq, we found that NextSeq still considered these 

four invariant positions as low-complexity regions and reported N’s or low qualities for 

these bases. Previously, this was solved by mixing the library with other samples or 

spike-in), or increasing the initial sequence diversity in the library (Mitra et al., 2015). In 

order to not comprise the sequencing depth, three UMI locator sequences were 

incorporated (Figure 5.1) and, by mixing 3 adapters with these sequences at equimolar 

amounts, the library complexity increases and the problem was solved. With this 

approach, we successfully generated RNA-seq libraries from total RNAs of multiple 

tissues. The libraries were comparable to libraries generated using the original protocol 

without UMIs, in terms of read depths, coverage, and qualities comparable to (see (Y. Fu, 

Wu, et al., 2018)). Thus, incorporating UMIs and UMI locators does not compromise 

library qualities and sequencing output.  

5.3.2 Adapting standard small RNA-seq protocol to incorporate UMIs 

Previously, the Zamore Lab has established a robust small RNA-seq protocol by 

modifying a published method (Lau et al., 2001). Compared to aforementioned RNA-seq 
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with UMI, UMI incorporation into the small RNA-seq requires some extra considerations. 

First, the number of distinct UMI combinations needs to be greater than that for RNA-seq, 

as some highly abundant small RNA species often have huge numbers of reads. For 

example, one single piRNA species (also the most abundant one) in this study produces 

42,281 reads in one of our libraries. The situation is further exacerbated in the soma: the 

most abundant miRNA can take more than 40% of the total sequencing reads (tens of 

millions of reads in a typical sequencing run producing hundreds of millions of reads). 

That many reads have identical sequences but originate from different starting molecules 

demands a great number of UMI combinations to capture all distinct sequences. Second, 

the lengths of small RNAs (< 50 nt) plus a longer UMI (20 or even 30 nt) is still well 

within the limits of common sequencing instruments. Third, the length of a small RNA is 

a defining feature of its identity and thus, insertions or deletions could lead to 

misclassification of small RNAs. The latter two considerations also indicate that small 

RNA-seq is an ideal opportunity to test a large combination of UMIs.  

UMIs containing 10 consecutive random nucleotides were first tested. Although 

both the 3′ and 5′ adapters containing 10 nt UMIs ligated to small RNAs with nearly the 

same efficiency as the original adapters without UMIs, the resulting small RNA-seq 

libraries yielded unexpectedly short, variable-length reads that contained truncated insert 

and adapter sequences (data not shown). We speculate that long stretches of random 

nucleotides interfere with oligonucleotide annealing, a critical step in cDNA synthesis, 

PCR, and sequencing, by increasing the chance that a ′r anneals to a UMI instead of its 
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target sequences. Inter- and intramolecular annealing of 10 nt UMIs may also contribute 

to truncated reads. 

To avoid a long stretch of random nucleotides, we used the UMI locator strategy 

described above to space out several short stretches of random nucleotides. For each 

adapter, we designed three trinucleotide UMI sequences, each separated from another by 

a trinucleotide UMI locator (e.g., 5′–NNN-CGA-NNN-TAC-NNN–3′; Figure 5.2). Two 

adapters with such UMIs can produce a trillion combinations, which should suffice all 

deep-sequencing applications. Similar to our RNA-seq strategy, we designed adapters 

with two different sets of UMI locator sequences at equimolar to increase the sequence 

complexity in the early sequencing cycles. This strategy allowed us to successfully 

generate and sequence the UMI small RNA-seq libraries, unambiguously locate UMIs, 

and computationally remove reads containing insertions or deletions in UMIs due to 

reverse transcription, PCR, and sequencing errors (Figure 5.2). We tested our method 

using total RNAs extracted from mouse testes isolated 17.5 days after birth. To assess the 

impact of the amount of starting materials on PCR duplicates, we prepared small RNA-

seq libraries using a range of 39–5,000 ng RNAs made from serial dilution. To test the 

effect of PCR cycles, we gradually increased the PCR cycles for each library with a two-

cycle increment. The resulting UMI small RNA-seq libraries yielded high-quality 

sequencing data, comparable to those generated with the original non-UMI protocol. 
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Figure 5.2. UMI incorporation into small RNA-seq. (A) Overall workflow. The method uses a 3′ adapter 
composed of DNA, except for a single, 5′ ribonucleotide (rA); the 5′ adapter is entirely RNA. A standard index 
barcode allows multiplexing. (B) Schematic of a read produced from small RNA-seq with UMIs. 

5.2.3 Diverse UMIs capture all read species in RNA-seq and small RNA-seq 

As mentioned above, to accurately identify PCR duplicates using UMIs, it is 

critical that the number of distinct UMIs far exceeds the maximal number of starting 
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molecules with identical sequences, such that these molecules have an infinitesimal 

probability of being ligated to adapters with the same UMI. Previous UMI methods were 

designed for sequencing single cells or an organism with a less complex transcriptome 

than mammals (G. K. Fu, Wilhelmy, et al., 2014; Shiroguchi et al., 2012). In particular, 

testis has a higher-complexity transcriptome than many other tissues such as muscle, liver, 

and even brain (Soumillon et al., 2013), demanding a large number of UMI combinations. 

Our UMI RNA-seq protocol theoretically provides ~1 million (410) distinct combinations. 

We then tested whether this diversity far exceeded the maximal number of reads with 

identical sequences in our libraries. Indeed, the transcripts derived from the 299-bp 7S 

RNA 1 gene produce 19,271 identical reads mapping to the same genomic coordinate, all 

of which are attached to distinct UMI sequences, indicating that all of these reads were 

from different starting RNA molecules. In conclusion, our UMI RNA-seq protocol is 

more than sufficient to disambiguate biologically identical reads from PCR duplicates. 

Our UMI small RNA-seq provides an even higher number of possible combinations with 

18 nt UMIs—68.7 billion (418)—much larger than the number of reads currently 

produced by a sequencing run. In terms of small RNA-seq, the most abundant small RNA 

species in our datasets is a piRNA with 42,281 reads, far fewer than the number of UMI 

combinations our protocol provides. We conclude that the UMI lengths used in the RNA-

seq and small RNA-seq protocols contain a sufficient UMI diversity for current and, most 

likely, future sequencing experiments. 
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5.2.4 Error-correction for UMIs only slightly improves PCR duplicate identification 

To test whether UMIs could help us accurately identify PCR duplicates, we first 

evaluated their performance using simulated data, where we know the ground truth. 

Assuming a library has sufficiently diverse UMI sequences, the simplest way to 

determine biologically identical reads is to look for reads with the same sequence but are 

tagged by different UMIs. This approach assumes that there is no error in the replication 

or reading of the UMI sequences, since such errors could render identical UMI sequences 

different and vice versa, causing misidentification of PCR duplicates. UMI errors could 

occur during PCR sequencing, and computationally correcting these errors has been 

shown to improve identification of PCR duplicates (Bose et al., 2015; Islam et al., 2014; 

Macosko et al., 2015; T. Smith et al., 2017, 2017; Yaari & Kleinstein, 2015).  

We designed a strategy for correcting UMI errors by exploting the following 

assumptions. First, UMI errors are rare, with rates stipulated by the chemistry of PCR and 

sequencing (~10-5 and ~10-3 errors per position respectively) (Flaman et al., 1994; 

Lundberg et al., 1991; Schirmer et al., 2016). Second, when two sufficiently long UMIs 

(for example, 10 and 18 nt in this study) that differ by just one base are connected to two 

reads with identical sequences, the probability that these are PCR duplicates of the same 

UMI with an error, albeit low (p < 10-3) is still much higher than the probability that these 

are two distinct UMIs (p = 4-10 for RNA-seq and 4-18 for small RNA-seq in this study). 

Adopting an error-correction method previously developed for RNA-seq (T. Smith et al., 

2017), we built a UMI graph for each group of reads (Figure. 5.3). For RNA-seq, the 

reads that map to the same genomic position form a group. This approach does not work 
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for small RNAs, because they often originate from multiple genomic loci. Thus, we 

simply defined a group of small RNA reads as those with identical sequences. In both the 

RNA-seq and small RNA-seq UMI graphs, a node denotes a unique UMI and further 

holds the number of reads with that UMI (Figure 5.3). For each pair of UMIs (say, UMI a 

and UMI b) that differ by just one base (one edit distance apart), we connect their nodes 

if na ≥ 2 × nb − 1, where na and nb represent read counts for the two UMIs. We require a 

twofold difference between na and nb, because as described above, the error rates for PCR 

and sequencing are low, and the twofold differences corresponds to the most extreme 

case whereby an error occurred during the first PCR cycle. However, a twofold 

difference is too stringent for pairs of UMIs with low read counts (e.g., 1 versus 2), for 

which the error predominantly arose from sequencing. We therefore added “−1” to ensure 

that these UMIs could be connected. All connected UMIs are then assumed to originate 

from the most abundant UMIs in the graph. This scheme allows correction of two or 

more errors in UMIs, provided that the intermediate UMIs are observed (for example, the 

intermediate UMI with one error and UMI with two errors in Figure 5.3A–B). One could 

relax the stringency of this method by adding direct connections between two nodes that 

differ in two or more positions. 
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Figure 5.3. Identifying PCR duplicates. (A) Strategy for correcting errors in UMIs. (B) Illustration of how 
correcting errors in UMIs increases accuracy of PCR duplicate elimination. 

The need for error-correction might depend on the experimental conditions, 

including the PCR amplification probability, PCR and sequencing error rates, UMI length, 

number of initial molecules, number of sequenced molecules, and number of PCR cycles. 

We performed computer simulations to investigate the effects of these seven 

experimental conditions on UMI error correction by systematically varying one variable 
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at a time while holding the other six constant. Each round of simulation produced a 

known number of PCR duplicates and therefore, unlike experimental data, the true 

fraction of all reads corresponding to PCR duplicates can be determined in the simulated 

data. To assess the accuracy of PCR duplicate identification using UMIs, we calculated 

the difference between the number of reads after PCR duplicate removal (“estimate”) and 

the true value (“truth”) relative to the true value: (estimate − truth) / truth. This metric 

reflects the extent to which UMIs over- or underestimate the truth as a fraction of the true 

value. We started the simulation with 100 initial molecules. We then performed PCR by 

randomly assigning a probability to each molecule (tagged with an 18 nt UMI) to be 

duplicated in each PCR cycle. The probability follows a uniform distribution between m 

and 1, where m denotes minimum amplification probability (it can be any value between 

0 and 1 and is set to 0.8 in the baseline condition). Minimum amplification probability 

can be interpreted as PCR efficiency, because the efficiency (average probability) that a 

molecule is doubled during each PCR cycle is (1-m)/2. Ten cycles of PCR (PCR error 

rate set to 3×10-5) (Flaman et al., 1994; Lundberg et al., 1991) generated a pool of 61,000 

± 1,000 (mean ± S.D.) molecules. To test the effect of sequencing depth, we randomly 

drew 100 molecules from the pool for sequencing (sequencing error rate set to 10-3) 

(Schirmer et al., 2016) (Figure 5.4 and Figure. 5.5). We call this set of parameters 

“baseline condition”, and it forms the base line from which we systematically varied each 

parameter. For each condition, we performed 10,000 trials. 

We first assumed that there was no error in UMIs (Figure 5.3) and found that on 

average, (estimate – truth) / truth = 2.10% across 10,000 trials under the baseline 
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condition. Thus, without performing UMI error correction, we slightly overestimated the 

total number of biological molecules as an error in a UMI would artificially create an 

extra UMI, and in turn, we slightly underestimated the fraction of PCR duplicates (red vs 

gray lines in Figure 5.5 and Figure 5.6). Next, we used the UMI graph approach 

described above (Figure 5.3A, B) for correcting errors in UMIs, and the new average of 

(estimate – truth) / truth = 0.0388%. Even though correcting UMI errors consistently 

gives better (estimate – truth) / truth than not correcting the errors, the absolute difference 

in the fractions of PCR duplicates between the two approaches is small (Figure 5.4; 

Figure 5.5). For example, under the baseline condition, the true fraction of duplicates was 

37.8 ± 3.2%; without correcting UMI errors yielded 36.5 ± 3.3%, and correcting UMI 

errors gave 37.8 ± 3.2%.  

 

Figure 5.4. Simulation of PCR duplicate removal with or without error correction for UMIs. One parameter 
(PCR cycle number, starting material, or sequencing depth) was varied with the other parameters kept constant. 
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Upper plots show the fraction of duplicates, while lower plots show the accuracy of duplicate detection. Each 
dotted line indicates the value for this parameter used in other simulations. 
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Figure 5.5. Accuracy and fraction of duplicates for simulated data varying (A) sequencing error rate, (B) UMI 
length, (C) PCR error rate, or (D) minimum amplification probability. Each dotted line indicates the value for 
this parameter used in other simulations. 

Under some extreme conditions, correcting UMI errors yields substantially better 

results. For example, if we modify PCR error rate in the baseline condition from the 

default 3×10-5 to 10-3, correcting UMI errors still yields a fraction of duplicates (37.2 ± 

3.2%) very close to the truth (37.2 ± 3.1%), while not correcting the errors 

underestimates the fraction of duplicates (32.1 ± 3.5%). In conclusion, error-correction 

for UMIs consistently, albeit slightly, improves PCR duplicate identification. Therefore, 

we performed error correction for all following analyses. 

5.2.5 Removing PCR duplicates without using UMIs is fundamentally flawed 

Does the common practice of removing PCR duplicates without UMIs improve 

the quantification of both long and short transcripts and in particular, of small RNAs such 

as microRNAs or piRNAs, which collectively originate from a small portion of the 

genome? We compared PCR duplicate identification using UMIs together with mapping 

coordinates of the reads to the conventional approach of using coordinates alone. 

When only mapping coordinates were used (RNA-seq data from eight mouse tissues) (see 

(Y. Fu, Wu, et al., 2018)), 16.4%–44.5% RNA-seq reads were determined to be PCR 

duplicates, whereas using UMI information in conjunction with coordinates identified 

only 1.89%–10.67% as duplicates. That is, the majority of reads mapping to identical 

coordinates were in fact not PCR duplicates but rather from distinct starting molecules 

that should be counted for transcript abundance. The situation is even worse for small 

RNA-seq data, when only small RNA sequences were used, the majority (56.0%–76.8%) 
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of reads were flagged as PCR duplicates and therefore excluded from analysis. In contrast, 

when UMI information was used together with the sequences of reads, just 1.05%–13.6% 

of reads were determined to be duplicates. Thus, most of the identical reads in RNA-seq 

and small RNA-seq are biologically real and not PCR duplicates, consistent with the view 

that small RNAs, which tend to come from precisely the same small genomic regions, 

can easily be mistaken for PCR duplicates when UMI information is not used. Moreover, 

the assumption that common mapping coordinates indicate PCR duplicates becomes 

increasingly problematic as sequencing depth increases, because the chance of observing 

two identical reads that legitimately derive from different molecules before PCR also 

increases. 

We further tested whether PCR duplicate removal using only mapping 

coordinates is appropriate for transcript quantification (Figure 5.6A). The conventional 

method underestimated the abundance of 119 transcripts by 1.25 fold or more: removing 

PCR duplicates based only on coordinates is too aggressive. These 119 transcripts are 

significantly shorter (median length = 602 nt) and more highly expressed (median 

abundance = 200 FPKM) than the other transcripts (median length = 1,620 nt; median 

abundance = 13.2 FPKM; Wilcoxon rank sum test p values = 2.22 × 10-44 and 1.80 × 10-

59, respectively) (Figure 6B). Thus, overestimation of PCR duplicates without UMIs 

reflects (1) a higher tendency of short transcripts to produce identical fragments due to 

more limited possibilities in fragmentation, and (2) a higher tendency of highly expressed 

genes to produce identical fragments. We conclude that removing PCR duplicates solely 
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by mapping coordinates introduces substantial bias and that UMIs allow more accurate 

quantification of PCR duplicates and transcript abundance. 

 

Figure 5.6. (A) Transcript abundance (FPKM) calculated by removing PCR duplicates using only mapping 
coordinates compared to using mapping coordinates and UMIs. (B) Using only mapping coordinates 
significantly biases against abundant and short genes. Outliers omitted. Wilcoxon rank sum test; n, number of 
genes in each group. (C) Relationship between cumulative coefficient of variation and transcript abundance. 
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5.2.6 UMIs improve data reproducibility 

One metric for evaluating the quality of experimental data is the reproducibility 

between technical replicates. We evaluated how UMIs affect the reproducibility of 

transcript quantification using five libraries generated using the same sample of total 

mouse testis RNA, but with gradually decreasing amounts of starting RNA and 

correspondingly increasing numbers of PCR cycles: 4 µg (8 PCR cycles), 2 µg (9 PCR 

cycles), 1 µg (10 PCR cycles), 500 ng (11 PCR cycles), 125 ng (13 PCR cycles) 

(Supplemental Table S1A). We then analyzed the data sets treating PCR duplicates using 

one of three approaches: (1) no PCR duplicates were removed; (2) PCR duplicates were 

removed using the conventional approach of identical genomic locations; and (3) PCR 

duplicates were removed using UMIs together with mapping coordinates. We compared 

the three approaches by calculating coefficients of variation (CV = S.D. / mean) for 

transcript abundance across the five RNA-seq libraries. Compared to removing no 

duplicates, removing duplicates according to their mapping coordinates decreased the 

total CV by 5.80% (from 4,210 to 3,960), while using UMIs with mapping coordinates 

decreased the total CV by 6.67% (from 4,210 to 3,930) (Figure 5.6C). For example, when 

two RNA-seq libraries (125 ng with 12 PCR cycles and 1 µg with 10 PCR cycles) were 

compared, the number of transcripts whose abundance differed by ≥25% decreased when 

duplicates were removed (1,880 without duplicate removal, 1,503 removing duplicates by 

genomic coordinates, and 1,415 removing duplicates using UMIs). We conclude that 

removing PCR duplicates, using mapping coordinates alone or together with UMIs, 

improves the precision of transcript quantification. 
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Next, we evaluated the performance of these three approaches for a series of small 

RNA-seq libraries (starting material 39–5,000 ng). Compared to removing no duplicates, 

using UMIs to remove duplicates decreased the total CV by 8.72% (Figure 5.6C). 

Surprisingly, removing duplicates according to their mapping coordinates alone increased 

CV by 79.1% (from 6,490 to 11,620) (Figure 5.6C). For example, between two small 

RNA-seq libraries in this series, one generated from 150 ng and the other from 1 µg of 

the same total RNA sample, genomic loci (piRNA genes and GENCODE-annotated 

genes) whose small RNA abundance differed by ≥25% decreased 8.30% when duplicates 

were removed using UMIs (from 2,613 to 2,396 genes). In contrast, when duplicates 

were removed using solely mapping coordinates, the number of such irreproducible genes 

increased by 159% (6,762 genes). These results show that removing PCR duplicates with 

UMIs leads to more consistent quantification across libraries, whereas removing 

duplicates without UMIs is overly aggressive and decreases the reproducibility of small 

RNA-seq experiments.  

5.2.7 PCR cycles alone do not determine the frequency of PCR duplicates 

It is widely accepted that the number of PCR cycles used to amplify the initial 

cDNA is the major cause of PCR duplicates in sequencing libraries (Andrews, Good, 

Miller, Luikart, & Hohenlohe, 2016). We sought to test this assumption and to identify 

other experimental contributing factors. As described above, we performed computer 

simulations to test the impact of UMI error correction on PCR duplicate detection. We 

considered seven parameters that could impact the level of PCR duplicates during an 

RNA-seq or small RNA-seq experiment. Assuming that we have performed UMI error 
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correction, we now examine in detail these seven parameters for their impact on the level 

of PCR duplicates. 

Four of the parameters—PCR amplification efficiency, PCR error rate, sequencing error 

rate, and UMI length—are specified by the experimental reagents and sequencing 

platform and typically not adjusted from experiment to experiment. Our simulation 

results indicate that varying the sequencing error rate, the PCR error rate, or the UMI 

length around their default values in the baseline condition (i.e., within the ranges 

stipulated by experimental settings) did not have a significant effect on the faction of 

PCR duplicates (the blue line is flat around the dashed vertical line in Figure 5.5A–C, top 

panels). In comparison, PCR efficiency had a measurable effect (the blue line in the top 

panel of Figure S1D reveals a negative correlation with PCR efficiency). This is because 

that at lower PCR efficiency, some molecules are less likely to be amplified and become 

underrepresented, causing a decrease in library complexity and correspondingly higher 

fractions of PCR duplicates. 

The other three parameters—the number of initial molecules, the number of 

molecules sequenced (i.e., sequencing depth), and the number of PCR cycles—are often 

adjusted to meet specific experimental conditions. Our simulations revealed that a change 

in PCR cycle number alone only minimally affected the fraction of PCR duplicates (the 

blue line in the top-left panel of Figure 5.4 is nearly flat around the dashed vertical line), 

because the starting molecules of the original pool are proportionally propagated to the 

final library (Head et al., 2014). In contrast, decreasing the number of initial molecules or 
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increasing the number of molecules sequenced sharply raised the frequency of PCR 

duplicates (Figure 5.4, two top-right panels). 

We further tested these findings using experimental datasets. We first analyzed a 

set of five UMI RNA-seq libraries made with gradually decreasing amounts of starting 

RNA and correspondingly increasing numbers of PCR cycles: 4 µg (8 cycles), 2 µg (9 

cycles), 1 µg (10 cycles), 500 ng (11 cycles), 125 ng (13 cycles). We observed that less 

starting RNA and correspondingly more PCR amplification resulted in higher fractions of 

PCR duplicates (Figure 5.7A). For example, the 125 ng, 13-cycle library yielded 10.7% 

(median over 43,432 genes) PCR duplicates, while the 4 µg, 8-cycle library made by the 

same procedure contained only 1.79% PCR duplicates. Similarly, analysis of UMI small 

RNA-seq libraries generated from 39 ng (30 cycles) to 5 µg (16 cycles) total RNA 

revealed that starting with less RNA caused higher fractions of PCR duplicates (Figure 

5.7A). 
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Figure 5.7. Fraction of PCR duplicates across genes for (A) a series of UMI RNA-seq and small RNA-seq 
libraries made with different amount of starting materials, and (B) a series of UMI small RNA-seq libraries all 
made with 5µg of total mouse testis RNA and with an increasing number of PCR cycles. 

Simulations argue that the increase in PCR duplicates is not a consequence of 

greater PCR amplification but rather is caused by the use of lower starting material. To 

test this idea, we analyzed a second set of nine UMI small RNA-seq libraries, all 

generated from 5 µg total RNA from the same mouse testis, but amplified using 14 to 30 

PCR cycles. Consistent with the simulations, these libraries did not show a discernable 

trend between fraction of PCR duplicates and the number of PCR cycles (Figure 5.7B). 

Thus, the higher fraction of PCR duplicates observed in libraries made from low amounts 

of RNA followed by high PCR cycle numbers more likely reflects the reduced 

complexity of the starting pool, rather than the increased number of PCR cycles. 

Together, our simulated and experimental data demonstrate that less starting RNA or 

higher sequencing depth, but not more PCR cycles per se, accounts for the frequency of 

PCR duplicates. 

5.4 Discussion 

We have described experimental protocols and computational methods that, by 

incorporating UMIs into standard procedures, allow accurate PCR duplicate removal 

from RNA-seq and small RNA-seq data. Our approach increases reproducibility and 

decreases noise in sequencing libraries generated using a broad range of starting RNA 

amount and number of PCR cycles, enabling accurate quantification of the abundance of 

both long and short RNAs. We tested the importance of a key aspect of data processing—

error correction for UMIs—and showed that under typical experimental conditions for 

bulk sequencing (represented by dotted lines in Figure 5.4; Figure 5.5), correcting or not 
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correcting errors in the UMI sequences has little absolute effect on PCR duplicate 

quantification. However, sequencing libraries made from a small number of cells, amount 

of tissue, or amount of RNA, have become increasingly common (Stegle, Teichmann, & 

Marioni, 2015), and they are more severely affected by PCR duplicates. Single-cell 

sequencing poses three specific challenges for PCR duplicate removal. First, it uses a 

limited amount of starting RNA, causing too low library complexity. Second, the ongoing 

discovery of new species of non-coding RNAs, many poorly understood, increases the 

number of species being measured, requiring longer UMIs. Finally, the increasingly high 

sequencing depth provided by advances in technology increases both the number of 

species that can be detected and the background noise. Together, these three factors make 

PCR duplicate measurement without UMI error correction especially problematic for 

single-cell sequencing. Our UMI approach should be directly applicable to single-cell 

RNA-seq. Error correction for UMIs mitigates these challenges by improving PCR 

duplicate identification. 

The two most widely used computational tools for PCR duplicate removal, Picard 

MarkDuplicates (http://broadinstitute.github.io/picard/) and SAMtools rmdup (H. Li et al., 

2009) rely only on the mapping coordinates of sequencing reads. Our data suggest that 

most identical reads reflect biological reality. Thus, removing PCR duplicate reads using 

only mapping coordinates erroneously eliminates many usable reads, particularly those 

produced from short transcripts and small RNAs. 

The eight mouse tissues we analyzed span a range of transcriptome complexity: 

previous analyses showed that the mouse testis transcriptome contains ~18,700 
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autosomal protein-coding transcripts, ~8,600 non-coding RNAs, and ~31.7 Mb of 

intergenic RNA, while the liver transcriptome contains only ~15,500 autosomal protein-

coding transcripts, ~1,000 non-coding RNAs, and ~7.2 Mb of intergenic RNA 

(Soumillon et al., 2013). Among the eight mouse tissues we tested, removing duplicate 

reads based on only mapping coordinates eliminates many biologically meaningful reads 

even when the libraries were made using ample starting RNA and optimal experimental 

conditions. Given the anti-correlation between RNA complexity and PCR duplicate 

occurrence, UMIs will improve the accuracy of comparing long or small RNA abundance 

across different tissues or cell types. Short RNAs, such as miRNAs and piRNAs, as well 

as highly abundant transcripts are particularly susceptible to underestimation by the 

conventional mapping coordinate method of PCR duplicate removal. 

Our UMI approach builds on well-established protocols, requiring few changes in 

the procedures and little additional cost. We expect UMI analysis to be particularly useful 

when sequencing RNAs derived from a limited number of genomic loci, such as 

CaptureSeq (Mercer et al., 2014) and CAGE-seq (Carninci et al., 2006). Our approach 

can theoretically be adapted to any sequencing technique using synthetic oligonucleotide 

adapters. For example, sequencing immunoprecipitated chromatin (ChIP-seq) and the 

alternative CUT&RUN survey the genomic regions bound by proteins of interest (Park, 

2009; Skene & Henikoff, 2017). The CUT&RUN method uses a nuclease to achieve 

more precise chromatin cleavage than the conventional ChIP-seq procedure, which 

utilizes sonication to randomly shear the DNA. Therefore, the likelihood of yielding 

identical reads also increases for CUT&RUN. By nature, protein-bound fragments also 
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map to a smaller portion of genomic positions than RNA-seq reads. UMIs can improve 

discovery of protein binding sites by minimizing noise. Similarly, degradome sequencing 

profiles the 5′ ends of 3′ cleaved RNA products (Addo-Quaye, Eshoo, Bartel, & Axtell, 

2008); incorporating UMIs will enable precise quantification of cleaved RNA abundance. 

 

Chapter 6. Conclusions, Prospective, and Future Work 

	
The first study presented in this thesis provides the most comprehensive analysis 

of the T. ni genome to date, which lays the foundation for further characterizing the 

genome. The availability of its genome and annotation allows researchers to perform 

comparative studies, e.g. for detoxification genes, which would provide insights into the 

insecticide resistance of T. ni, a common and destructive agricultural pest. Since T. ni has 

been found in different environmental niches worldwide, the genome sequence is the first 

step to understand its genetic diversity and populations. The assembly strategy used in 

this study can be readily applied to other species, allowing rapid and low-cost genome 

assemblies.  

 The highly complete T. ni genome also offers a unique opportunity to examine 

some interesting features. Previously, efforts have been made to assemble Lepidopteran 

W chromosomes, but none achieved chromosome-level assemblies, likely due to the 

technical limitations of read lengths. Here, the T. ni genome contains the first 

chromosome-level assembly of the W chromosome in Lepidoptera. Examination of the 

W chromosome reveals that it is highly repetitive and is a major source of piRNAs.  
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 Characterization of Hi5 cells also reveals that they are latently infected with an 

alphanodavirus and that Hi5 cells use RNAi to defend against this virus. Further 

investigation of such siRNAs revealed their phasing pattern, indicating that such siRNAs 

are produced in a one-after-another manner, consistent with Dicer processivity. Hi5 cells 

hold promises for recombinant proteins for therapeutics, and understanding the virus and 

the RNAi is the first step towards eliminating this virus to produce virus-free Hi5 cells. 

Unexpectedly, siRNAs in T. ni does not possess 2′-O-methylation at 3′ ends, unlike 

drosophilids and mammals. Furthermore, other lepidopterans similarly do not 2′-O-

methylated their siRNAs. We currently do not understand why lepidopterans lack 2′-O-

methylation in siRNAs.  

 One of the motivations to assembly this genome is that Hi5 cells have the active 

piRNA pathway, and can serve as a germline cell line to accelerate studies of small RNA 

pathways. We have annotated miRNAs and piRNA loci, allowing others to study them. 

Hi5 cells share the largest piRNA clusters with ovary and test, suggesting that it can 

recapitulate piRNA biogenesis. Additionally, Hi5 cells gained new piRNA clusters after 

its derivation of T. ni cells, suggesting that it can serve as a model to study piRNA 

evolution. T. ni lacks rhino, cutoff and deadlock, which are responsible for splicing 

suppression of piRNA cluster transcripts in multiple drosophilids. However, piRNA 

cluster transcripts are still rarely and inefficiently spliced, suggesting that T. ni—and 

likely many other insect species—has alternative mechanisms to suppress the splicing of 

piRNA cluster transcripts. Notably, almost the entirety of the T. ni W chromosome 
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produces piRNAs in ovary, which, to our knowledge, is the first example of a 

chromosome devoted to piRNA production.   

 The second study in this thesis investigates pachytene piRNAs during mouse 

spermatogenesis. These piRNAs, albeit abundant, are poorly understood. They are loaded 

into PIWI proteins and presumably can cleave mRNA targets. To test this, we integrated 

degradome-seq and small RNA data to obtain potential cleavage sites, which reveals that 

pachytene piRNAs can cleave RNAs when there is extensive complementarity. 

Interestingly, GU wobbles—compared to mismatches, such as A vs C and C vs T—

promotes the target cleavage, suggesting that thermodynamically stable pairing leads to 

target cleavage. Further characterization is required to explain why some piRNA gene 

mutants do not have detectable phenotypes.  

 The third study presents the most comprehensive branchpoint annotation to date. 

The computational pipeline I developed for branchpoint discovery is highly efficient, and 

can be applied to more RNA-seq datasets, should more datasets become available. Such 

branchpoints are important resources to study splicing in human and mouse. The web 

application provides an easy-to-use interface that should facilitate future studies into 

RNA splicing.  

 The fourth study presents two new protocols with unique molecular identifiers 

(UMIs). Together with the companion Python package, UMIs are easy to implement and 

process both experimentally and computationally, rendering it very helpful for 

identifying PCR duplicates and improving transcript quantification. We also looked into 

what factors cause higher fraction of PCR duplicates in high-throughput sequencing 
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experiments, and found that scare starting material and high sequencing depth—but not 

the number of PCR cycles—cause the high duplicate fraction. This conclusion is 

profound in that experimentalists should focus on extracting more starting material in 

order to reduce the fraction of duplicates. Sequencing depth usually cannot be tweaked 

due to the number of reads required for quantification and other purposes; PCR cycle 

number often depends on the starting material, because sequencing machine requires 

certain abundant DNA to perform its function. Thus, to decrease the fraction of PCR 

duplicates, the only way is to increase the amount of starting material. When this is not 

possible—for example, in cases of single-cell sequencing or limitation of the material—

UMIs should be used to accurately eliminate PCR duplicates. 

 For future work, some steps of genome assemblies lack specialized bioinformatics 

tools. For example, one could design and develop a package for analyzing sex 

determination and dosage compensation by generalizing the procedures I developed for 

this genome. Such a tool, when applied to a variety of species, will deepen the 

understanding of sex determination. Another important step during genome assembly is 

the estimation of the genome size. Developing a model to estimate the genome size based 

on some Illumina sequencing data—which can be easily acquired by using existing high-

quality genome assemblies—would be very useful and potentially highly cited. Knowing 

the strategy for de novo assembling genomes, I am now working on assembling the 

genome of Western corn rootworm (Diabrotica virgifera virgifera), which causes $1 

billion in lost revenue every year, and—according to flow cytometry—has a 2.58 Gb 

genome. All the analyses should be readily applicable to this genome and it is particularly 
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interesting to investigate its gene repertoire to understand its insecticide resistance. With 

the huge number of branchpoints made available, the next step would be to develop a 

machine learning model to help us unravel some previously unknown important features. 

These features, when aided by experimental validation, would be a critical step towards a 

better understanding of RNA splicing. The UMI approach presented in the last study will 

be useful for low starting material cases, such as single-cell sequencing. Future work may 

involve processing such datasets to improve quantification of single-cell sequencing. In 

summary, high-throughput sequencing has now made it trivial to answer some questions 

that were once unfathomable, but at the same time brings new problems that require 

sophisticated bioinformatics approaches.
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Appendix A 

Genomes used in the orthology analysis 

Species Name Version Reference 

Acyrthosiphon pisum Pea aphid OGS 2.0 (T. I. A. G. Consortium, 2010) 

Aedes aegypti Yellow fever mosquito AaegL3 (Nene et al., 2007) 

Anopheles gambiae African malaria mosquito AgamP4.3 (Holt et al., 2002) 

Apis mellifera Western honey bee OGSv3.2 (Leadership et al., 2006) 

Atta cephalotes Leafcutter ant OGS1.2 (Suen et al., 2011) 

Bombyx mori Silk moth v2.0 (The International Silkworm Genome, 2008) 

Danaus plexippus Monarch butterfly OGS 2.0 (Zhan et al., 2011) 

Drosophila melanogaster Fruit fly r6.12 (Adams et al., 2000) 

Drosophila pseudobscura Fruit fly r3.04 (Richards et al., 2005) 

Harpegnathos saltator Jerdon's jumping ant OGS v3.3 (Bonasio et al., 2010) 

Homo sapiens Human GRCh37.62 (I. H. G. S. Consortium, 2004) 

Linepithema humile Argentine ant OGS1.2 (C. D. Smith et al., 2011) 

Mus musculus House mouse NCBIM37.62 (Mouse Genome Sequencing Consortium et al., 2002) 

Nasonia vitripennis Jewel wasp OGS1.2 (Werren et al., 2010) 

Pediculus humanus humanus Body louse PhumU2.1 (Kirkness et al., 2010) 

Plutella xylostella diamondback moth v1.1 (You et al., 2013) 

Pogonomyrmex barbatus Red harvester ant OGS1.2 (C. R. Smith et al., 2011) 

Tetranychus urticae Two-spotted spider mite ASM23943v1 (Grbić et al., 2011) 

Tribolium castaneum Red flour beetle v3.0 (Richards et al., 2008) 

Dendroctonus ponderosae Mountain pine beetle v1.0 (Keeling et al., 2013) 
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Appendix B 

piRNA pathway genes by sequence orthology 

T. ni gene 

name T. ni gene ID T. ni scaffold 

D. melanogaster 

gene 

Mouse 

gene B. mori gene 

TnAgo3 TNI000234 group0 ago3 - bmAgo3 

TnPiwi TNI008009 group8 aub Mili siwi 

armi TNI007690 gropu7 armi Mov10l1 armi 

tdrd12 TNI013819 NA boYb Tdrd12 tdrd12 

capsuleen TNI003589 group3 capsuleen Prmt5 capsuleen 

gtsf1 -* group2 dmGtsf-1 (arx) Gtsf1 gtsf1 

eggless TNI012914 group16 eggless Setdb1 eggless 

gasz (asz1) TNI001897 group1 gasz (asz1) Gasz gasz 

hen1 TNI005148 group4 hen1 Hen1 hen1 

hsp83 TNI006421  group6 hsp83 Hsp83 hsp83 

krimper TNI003105 group2 krimper - krimper 

mael TNI014445 group19 maelstrom Maelstrom maelstrom 

papi TNI016458 tig00003674 papi 

Tdrd2 

(Tdrdh) papi 

qin TNI011883 group14 qin Rnf17 Qin 

shutdown TNI011578 group14 shutdown Fkbp6 shutdown-1 

shutdown-like TNI002558 group2 - - shutdown-2 

spn-E TNI009030 group10 spn-E Tdrd9 spn-E 

tejas TNI015432 group24 tejas Tdrd5 tejas 

tudor TNI008782 group9 tudor Tdrd6 tudor 

uap56 TNI000513 group0 uap56 Uap56 usp56 

valois TNI014546 group21 valois Mep50 valois 

vasa TNI000568 group0 vasa Mvh vasa 

vreteno TNI007276 group7 vreteno Tdrd1 vreteno 

zuc -** group4 zucchini MitoPLD zucchini 

- - - piwi - - 

- - - cutoff - - 
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- - - deadlock - - 

- - - oskar - - 

- - - rhino - - 

- - - soyb - - 

- - - squash - - 

- - - yb - - 

- - - panx - - 

- - - - Miwi - 

- - - - A-Myb - 

      

      

* Genome coordinate: group2:19662468-

19666842    

** Genome coordinate: group4:12497170-12499557   
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Appendix C 

----------------------------------------------------------------------- 
-- BP Table 
----------------------------------------------------------------------- 
-- Drop the table if it already exists 
DROP TABLE IF EXISTS bp_part1; 
DROP TABLE IF EXISTS bp_part2; 
DROP TABLE IF EXISTS bp_part3; 
DROP TABLE IF EXISTS bp; 
-- BP Part 1 
create table bp_part1 (bpid text PRIMARY KEY, chr text, coor int, 
strand text, dschr text, dscoor int, d2ds int, d2asest int); 
.import ../Tables/BP.main_info.table bp_part1 
-- BP Part 2 (some seq info) 
CREATE TABLE bp_part2 (bpid text PRIMARY KEY, base text, up100 text, 
down100 text, dsseq text); 
.import ../Tables/BP.seq_info.table bp_part2 
-- BP Part 3 (conservation info) 
CREATE TABLE bp_part3 (bpid text PRIMARY KEY, phylop101 text); 
.import ../Tables/BP.cons_info.table bp_part3 
 
.print "Sanity check: do numbers of rows match?" 
.print "Number of rows in Table bp_part1:" 
select count(*) from bp_part1; 
.print "Number of rows in Table bp_part2:" 
select count(*) from bp_part2; 
.print "Number of rows in Table bp_part3:" 
select count(*) from bp_part3; 
-- Join these tables to get the BP table 
-- number of rows in the resulting table: 
.print "Number of rows in bp_part1 JOIN bp_part2 JOIN bp_part3:" 
SELECT COUNT(*) FROM bp_part1 JOIN bp_part2 on bp_part1.bpid = 
bp_part2.bpid JOIN bp_part3 on bp_part1.bpid = bp_part3.bpid;         
-- Now actually create the table 
-- Specifying the columns I need. Otherwise, bpid will appear twice... 
CREATE TABLE bp AS SELECT bp_part1.bpid as bpid, chr, coor, strand, 
dschr, dscoor, d2ds, d2asest, base, up100, down100, dsseq 
FROM bp_part1 JOIN bp_part2 ON bp_part1.bpid = bp_part2.bpid 
JOIN bp_part3 ON bp_part1.bpid = bp_part3.bpid; 
.print "Number of rows in Table BP" 
SELECT COUNT(*) FROM bp; 
---- Create index on bpid, which is unique 
-- CREATE UNIQUE INDEX idx_bp_bpid ON bp (bpid); 
---- Create some indices to speed things up 
-- This is the most useful one for joining bp and intron tables 
CREATE INDEX idx_bp_chr_strand_coor ON bp (chr, strand, coor); 
CREATE INDEX idx_bp_coor ON bp (coor); 
CREATE INDEX idx_bp_strand ON bp (strand); 
CREATE INDEX idx_bp_dschr ON bp (dschr); 
CREATE INDEX idx_bp_dscoor ON bp (dscoor); 
CREATE INDEX idx_bp_bpid ON bp (bpid); 
-- Drop the temporary tables: 
DROP TABLE IF EXISTS bp_part1; 
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DROP TABLE IF EXISTS bp_part2; 
DROP TABLE IF EXISTS bp_part3; 
-- SELECT * FROM BP LIMIT 5; 
.print "Done creating table: bp." 
 
----------------------------------------------------------------------- 
-- Other tables 
----------------------------------------------------------------------- 
--Species table 
DROP TABLE IF EXISTS species; 
CREATE TABLE species (speciesid text PRIMARY KEY, speciesname text, 
genus text); 
.import ../Tables/no_header/Species.table.no_header species 
CREATE UNIQUE INDEX idx_species_speciesid ON species (speciesid); 
CREATE INDEX idx_species_speciesname ON species (speciesname); 
CREATE INDEX idx_species_genus ON species (genus); 
.print "Species table: Number of rows imported:" 
select count(*) from species; 
 
-- Gene table 
DROP TABLE IF EXISTS gene; 
CREATE TABLE gene (gid text PRIMARY KEY, speciesid text, assembly text, 
genename text, genetype text, havanaid text, chr text, start integer, 
end integer, strand text, FOREIGN KEY(speciesid) REFERENCES 
species(speciesid)); 
.import ../Tables/no_header/Gene.table.no_header gene 
CREATE UNIQUE INDEX idx_gene_gid ON gene (gid); 
CREATE INDEX idx_gene_assembly ON gene (assembly); 
CREATE INDEX idx_gene_genename ON gene (genename); 
CREATE INDEX idx_gene_chr ON gene (chr); 
CREATE INDEX idx_gene_start ON gene (start); 
CREATE INDEX idx_gene_end ON gene (end); 
CREATE INDEX idx_gene_strand ON gene (strand); 
.print "Table gene: Number of rows imported:" 
select count(*) from gene; 
 
--Transcript table 
DROP TABLE IF EXISTS transcript; 
CREATE TABLE transcript (tid text PRIMARY KEY, gid text, tname text, 
chr text, start int, end int, strand text, FOREIGN KEY(gid) REFERENCES 
gene(gid)); 
.import ../Tables/no_header/Transcript.table.no_header transcript 
CREATE UNIQUE INDEX id_transcript_tid ON transcript (tid); 
CREATE INDEX idx_transcript_gid ON transcript (gid); 
CREATE INDEX idx_transcript_tname ON transcript (tname); 
CREATE INDEX idx_transcript_chr ON transcript (chr); 
CREATE INDEX idx_transcript_start ON transcript (start); 
CREATE INDEX idx_transcript_end ON transcript (end); 
CREATE INDEX idx_transcript_strand ON transcript (strand); 

 
.print "Table transcript: Number of rows imported:" 
select count(*) from transcript; 
 
-- Intron table 
DROP TABLE IF EXISTS intron; 
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CREATE TABLE intron (intronid text PRIMARY KEY, gid text, tid text, 
intronnum int, chr text, start integer, end integer, strand text, 
FOREIGN KEY(gid) REFERENCES gene(gid), FOREIGN KEY(tid) REFERENCES 
transcript(tid)); 
.import ../Tables/no_header/Intron.table.no_header intron 
CREATE INDEX idx_intron_chr_strand_start_end ON intron (chr, strand, 
start, end); 
CREATE UNIQUE INDEX idx_intron_intronid ON intron (intronid); 
CREATE INDEX idx_intron_chr ON intron (chr); 
CREATE INDEX idx_intron_start ON intron (start); 
CREATE INDEX idx_intron_end ON intron (end); 
CREATE INDEX idx_intron_strand ON intron (strand); 
CREATE INDEX idx_intron_gid ON intron (gid); 
.print "Table intron: Number of rows imported:" 
select count(*) from intron; 

 
-- Exon table 
-- Note that the GENCODE exonid cannot be used as the primary key 
-- GENCODE reuses the same exon id for different transcripts if the two 
-- transcripts have that same exon 
DROP TABLE IF EXISTS exon; 
CREATE TABLE exon (exonid text, gid text, tid text, exonnum int, chr 
text, start integer, end integer, strand text, FOREIGN KEY(gid) 
REFERENCES gene(gid), FOREIGN KEY(tid) REFERENCES transcript(tid)); 
.import ../Tables/no_header/Exon.table.no_header exon 
-- Note that exon id's are used and these are not guaranteed to be 
unique: two transcripts may have the same exon. 
CREATE INDEX idx_exon_exonid ON exon (exonid); 
CREATE INDEX idx_exon_gid ON exon (gid); 
CREATE INDEX idx_exon_chr ON exon (chr); 
CREATE INDEX idx_exon_start ON exon (start); 
CREATE INDEX idx_exon_end ON exon (end); 
CREATE INDEX idx_exon_strand ON exon (strand); 

 
.print "Table exon: Number of rows imported:" 
select count(*) from exon; 

 
--Table of BP source 
DROP TABLE IF EXISTS bp_src; 
CREATE TABLE bp_src (bpid text, accession text, readnum int, speciesnum 
int, FOREIGN KEY(bpid) REFERENCES bp(bpid)); 
.import ../Tables/bp_src.table bp_src 

 
CREATE INDEX idx_bp_src_bpid ON bp_src (bpid); 
CREATE INDEX idx_bp_src_accession ON bp_src (accession); 

 
.print "bp_src table: Number of rows imported:" 
select count(*) from bp_src; 
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