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ABSTRACT

Terrestrial ecosystems are essential to human well-being, but their future remains

highly uncertain, as evidenced by the huge disparities in model projections of the

land carbon sink. The existence of these disparities despite the recent explosion of

novel data streams, including the TRY plant traits database, the Landsat archive,

and global eddy covariance tower networks, suggests that these data streams are not

being utilized to their full potential by the terrestrial ecosystem modeling community.

Therefore, the overarching objective of my dissertation is to identify how these various

data streams can be used to improve the precision of model predictions by constraining

model parameters.

In chapter 1, I use a hierarchical multivariate meta-analysis of the TRY database

to assess the dependence of trait correlations on ecological scale and evaluate the

utility of these correlations for constraining ecosystem model parameters. I find that

global trait correlations are generally consistent within plant functional types, and

leveraging the multivariate trait space is an effective way to constrain trait estimates

for data-limited traits and plant functional types. My next two chapters assess the

ability to measure traits using remote sensing by exploring the links between leaf
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traits and reflectance spectra. In chapter 2, I introduce a method for estimating

traits from spectra via radiative transfer model inversion. I then use this approach

to show that although the precise location, width, and quantity of spectral bands

significantly affects trait retrieval accuracy, a wide range of sensor configurations are

capable of providing trait information. In chapter 3, I apply this approach to a large

database of leaf spectra to show that traits vary as much within as across species,

and much more across species within a functional type than across functional types.

Finally, in chapter 4, I synthesize the findings of the previous chapters to calibrate

a vegetation model’s representation of canopy radiative transfer against observed

remotely-sensed surface reflectance. Although the calibration successfully constrained

canopy structural parameters, I identify issues with model representations of wood

and soil reflectance that inhibit its ability to accurately reproduce remote sensing

observations.
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1

Chapter 1

Does the leaf economic spectrum hold

within plant functional types? A Bayesian

multivariate trait meta-analysis

1.1 Introduction

The diversity and dimensionality of the terrestrial biosphere is vast and complex, and

therefore there has been a recurring debate in ecology about the utility of reductionist

approaches for capturing this variability. In particular, the use of functional groups

with common characteristics has been widely applied in biodiversity studies (Naeem

and Wright, 2003) and is essential to the structure of many ecosystem models (Lavorel

et al., 1997; Wullschleger et al., 2014). However, ecologists have long recognized the

importance of individual variability and stochasticity in shaping ecosystems(Gleason,

1926; Bolnick et al., 2011; Rosindell et al., 2011; Clark, 2016), and the benefits

of more finely-resolved representation of functional diversity for predictive ecology

are supported by an increasing body of trait ecology literature(Mayfield et al., 2006;

McMahon et al., 2011; Van Bodegom et al., 2012; Reichstein et al., 2014; Violle et al.,

2014; Medlyn et al., 2015; Moran et al., 2016).

Plant functional traits can be used to link directly measurable features of individ-

uals to their fitness within an ecosystem and, by extension, ecosystem performance as

a whole (Violle et al., 2007). Recent syntheses of global trait databases have revealed

that although the functional diversity across plant species is immense, this diversity
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is constrained by allometries and trade-offs between plant strategies (Wright et al.,

2004; Kattge et al., 2011; Kleyer and Minden, 2015; Dı́az et al., 2016). One axis of

trait covariation currently receiving attention is the ‘leaf economic spectrum’, which

defines a trade-off between plant investment in productive but short-lived leaves ver-

sus less productive but sturdy and long-lived leaves (Wright et al., 2004; Shipley

et al., 2006; Reich, 2014; Dı́az et al., 2016) Leaf economic traits are well-correlated

with individual plant productivity (Shipley et al., 2005; Niinemets, 2016a; Wu et al.,

2016b), litter decomposition rates (Bakker et al., 2011; Hobbie, 2015), community

composition (Burns, 2004; Cavender-Bares et al., 2004), and ecosystem function (Diaz

et al., 2004; Musavi et al., 2015). The relative position of plant species along the

leaf economic spectrum has been shown to be influenced by climate and soil condi-

tions(Wright et al., 2004; Wright et al., 2005b; Cornwell and Ackerly, 2009; Ordoñez

et al., 2009; Wigley et al., 2016). As a result, relationships between leaf economic

traits and climate have been incorporated into ecosystem models to allow for con-

tinuous variation in plant function and environmental responses(Sakschewski et al.,

2015; Verheijen et al., 2015b).

However, the use of among-trait and trait-environment correlations at the global

scale, for both ecological inference and land surface modeling, has several important

caveats. First, observed correlations at the global scale do not always hold at smaller

scales (such as sites, species, and individuals). For example, some studies suggested

consistent correlations across scales(Wright et al., 2004; Albert et al., 2010a; Asner

et al., 2014) whereas others showed no or even opposite correlations(Albert et al.,

2010b; Messier et al., 2010; Wright and Sutton-Grier, 2012; Feng and Dietze, 2013;

Grubb et al., 2015; Wigley et al., 2016; Messier et al., 2017; Kichenin et al., 2013).

Many mechanisms have been suggested for deviation from global trait relationships

at smaller scales. Trade-offs between strategies may only be applicable when mul-
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tiple competing strategies co-occur, and in cases where strong environmental filters

allow only a narrow range of strategies, alternative processes can drive community

assembly(Rosado and de Mattos, 2010; Rosado and de Mattos, 2017; Grime and

Pierce, 2012). Different selective pressures dominate at different scales, particularly

within versus across species(Albert et al., 2010b; Messier et al., 2010; Kichenin et al.,

2013), and the large heterogeneity in the variance structures of traits suggests that

different traits have contrasting sensitivity to these different pressures (Messier et al.,

2016). Experimental evidence shows that species can alter different aspects of their

leaf economy in a relatively uncoordinated fashion, even when the direction of uni-

variate trait responses to environmental change is consistent (Wright and Sutton-

Grier, 2012). Meanwhile, across different plant functional types, resource allocation

patterns, for instance of nutrients to photosynthesis versus structure and defense, dif-

fer substantially, suggesting different investment strategies and varying relationships

among traits (Ghimire et al., 2017). Second, among-trait correlations at any scale

do not provide causal evidence for functional trade-offs or even similarity in response

to external stimuli (Messier et al., 2016). Therefore, ascribing too much leverage to

trait correlations can lead to an underestimation of plant functional diversity (Grubb,

2015). Third, plants maintain their fitness in a given environment through multiple

independent strategies (corresponding to multiple mutually orthogonal axes of trait

variability). As a consequence, changes in key leaf economic traits such as leaf nitro-

gen content and specific leaf area area may not affect other aspects of plant function,

such as hydraulics (Li et al., 2015), overall plant carbon budget (Edwards et al., 2014),

and dispersal (Westoby et al., 2002). Finally, modeling ecosystem function based on

trait correlations is sampling from the hypothetical space of potential species and

communities that could have evolved, rather than constraining models to forecast the

actual vegetation we have today as the result of spatial separation and constraints on
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convergent evolution. Among other problems, this approach fails to account for the

timescales required for adaptation as well as actual limitations of the physiology of

different species and community assembly.

An alternative approach is to preserve existing PFT classifications(though poten-

tially with finer taxonomic, functional, or spatial resolution, e.g. Boulangeat et al.,

2012) while using statistical analyses to account for uncertainty and variability in the

aggregated trait values. For example, the Predictive Ecosystem Analyzer (PEcAn,

pecanproject.org), an ecosystem model-data informatics system, parameterizes PFTs

using trait probability distributions from a Bayesian meta-analysis of plant trait data

across many studies (Dietze et al., 2013; LeBauer et al., 2013). This approach ex-

plicitly separates the processes driving PFT-level differentiation from processes that

drive finer-scale functional variability, and is useful for guiding future data collection

and model refinement (Dietze et al., 2014). However, a univariate meta-analysis, like

the one currently in PEcAn, is limited by its failure to account for trait correlations,

therefore neglecting useful knowledge about relationships across PFTs and between

traits. At the other extreme, existing regional and global scale analyses (e.g. Van

Bodegom et al., 2012; Sakschewski et al., 2015) ignore variability within PFTs, often

resulting in macroecological, evolutionary, and competitive trade-offs across PFTs

being used to drive both acclimation and instantaneous responses within PFTs.

While the leaf economic spectrum has been investigated at the global scale, where

it is robust, and at the site or plot scale, where deviations from it are common, it has

received less attention at the intermediate scale of PFTs. Thus, this paper seeks to

answer the following questions: First, to what extent does the leaf economic spectrum

hold within vs. across plant functional types? Second, to what extent can the leaf

economic spectrum and other patterns of trait covariance be leveraged to constrain

trait estimates, particularly under data limitation? The answer to these question
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has implications for both functional ecology and ecosystem modelling. To evaluate

these questions, we develop a hierarchical multivariate Bayesian model that explicitly

accounts for across- and within-PFT variability in trait correlations. We then fit this

model to a global database of foliar traits to estimate mean trait values and variance-

covariance matrices for PFTs as defined in a major earth system model (Community

Land Model, CLM, Oleson et al., 2013). We evaluate the ability of this model to re-

duce uncertainties in trait estimates and reproduce observed patterns of global trait

variation compared to non-hierarchical multivariate and univariate models. Finally,

we assess the generality and scale dependence of trait trade-offs by comparing covari-

ance estimates globally and within each PFT.

1.2 Materials and methods

1.2.1 Trait data

Foliar trait data for this analysis comes from the TRY global traits database (Kattge

et al. 2011). We focused our research on seven foliar traits: Leaf longevity (months),

specific leaf area (SLA, m2 kg−1), leaf nitrogen content (Nmass, mg N g−1 or Narea, g

N m−2), leaf phosphorus content (Pmass, mg P g−1 or Parea, g P m−2), leaf dark respi-

ration at 25 ◦C (Rd,mass, µmol g−1 s−1, or Rd,area, µmol m−2 s−1), maximum Rubisco

carboxylation rate at 25 ◦C (Vc,max,mass, µmol g−1 s−1, or Vc,max,area, µmol m−2 s−1),

and maximum electron transport rate at 25 ◦C (Jmax,mass, µmol g−1 s−1, or Jmax,area,

µmol m−2 s−1. For Vc,max, we only used values already reported in TRY as being at

25 ◦C. For Rd, we normalized the values to 25 ◦C based on reported leaf temperature

values following the same methods as Atkin et al. (2015). For Jmax, we normalized

the values to 25 ◦C based on reported leaf temperature values using the temperature

response function described in Kattge & Knorr (2007, Equation 1 therein). To avoid

potential artifacts caused by different trait normalization, we performed analyses sep-
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arately for both mass- and area-normalized traits (Osnas et al., 2013; Lloyd et al.,

2013). We restricted our analysis to TRY data that have been quality-controlled and

for which adequate species information was provided for functional type classification

(see Kattge et al. 2011).

Although the light- and CO2-saturated photosynthetic rate (Amax) was an impor-

tant trait in previous studies, we did not include it in our study for two reasons. First

of all, data on raw photosynthetic rates are highly sensitive to measurement method-

ology and environmental conditions, which were generally inconsistent or unavailable

in TRY. Second, Amax is not a good measure of photosynthetic capacity because it

integrates over variability in many physiologically independent traits such as Vc,max,

Jmax, and stomatal conductance, and is therefore not used in vegetation models as a

photosynthetic parameter (Ali et al., 2015).

Following past studies (Wright et al., 2004; Wright et al., 2005a; Onoda et al.,

2011; Dı́az et al., 2016), we log-transformed all trait values to correct for their strong

right-skewness.

1.2.2 Plant functional types

Table 1.1: Names, labels, and species counts for plant functional types
(PFTs) used in this analysis.

Label PFT Number of species

BlETr Broadleaf Evergreen Tropical 1229
BlETe Broadleaf Evergreen Temperate 363
BlDTr Broadleaf Deciduous Tropical 286
BlDTe Broadleaf Deciduous Temperate 345
BlDBo Broadleaf Deciduous Boreal 62
NlETe Needleleaf Evergreen Temperate 130
NlEBo Needleleaf Evergreen Boreal 30

NlD Needleleaf Deciduous 19
ShE Shrub Evergreen 1120

ShDTe Shrub Deciduous Temperate 330
ShDBo Shrub Deciduous Boreal 94
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Label PFT Number of species

C3GAr C3 Grass Arctic 157
C3GTe C3 Grass Temperate 624
C4G C4 Grass 255

We assigned each species to a unique plant functional type (PFT) following the scheme

in the Community Land Model (CLM4.5, Oleson et al., 2013); Table 1.1, Fig. 1·1.

We obtained categorical data on growth form, leaf type, phenology, and photosyn-

thetic pathway from the TRY database. Where species attributes disagreed between

datasets (e.g., categorized as a shrub in one dataset but a tree in another), we as-

signed the attribute that was observed most frequently between the datasets (e.g., if

five datasets say “shrub” but only one says “tree”, we would classify it as a shrub).

Where species lacked data on certain attributes, we assigned those attributes based on

higher order phylogeny where appropriate (e.g., *Poaceae* family are usually grasses,

*Larix spp.* are deciduous needleleaved trees) or otherwise omitted the species from

our analyses. For biome specification, we collected all latitude and longitude data

for each species, matched these data to 30 second (∼ 1 km2) mean annual tempera-

ture (AMT , averaged 1970–2000) data from WorldClim-2 (Fick and Hijmans, 2017),

calculated the mean AMT for all sites at which that species was observed, and then

binned these species based on the following cutoffs: boreal/arctic (AMT ≤ 5◦C),

temperate (AMT ≤ 20◦C), and tropical (AMT > 20◦C).

1.2.3 Multivariate analysis

Basic model description

In this study, we compared three different models representing different levels of

complexity.

The simplest model was the ‘univariate’ model, in which each trait was modeled

independently. For an observation xi,t of trait t and sample i:
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xi,t ∼ N(µt, σt)

where N is the univariate normal (Gaussian) distribution with mean µt and stan-

dard deviation σt for trait t.

The second-simplest model was the ‘multivariate’ model, in which traits were

modeled as samples from a multivariate distribution with a single mean vector and

covariance matrix. For the observed vector of traits xi for sample i:

xi ∼ mvN(µ,Σ)

where mvN is the multivariate normal (Gaussian) distribution with mean vector

µ and variance-covariance matrix Σ. We ran both of these models independently for

each PFT as well as for the entire dataset (as if every observation belonged to the

same PFT).

The most complex model was the ‘hierarchical’ model, in which observed trait

values were drawn from a PFT-specific multivariate normal distribution describing

within-PFT variation and whose parameters were themselves sampled from a global

multivariate distribution describing the variation across PFTs. For the observed

vector of traits xi,p for sample i belonging to PFT p:

xi,p ∼ mvN(µp,Σp)

µp ∼ mvN(µg,Σg)

where µp and Σp are the mean vector and variance-covariance matrix describing

variation within PFT p, and µg and Σg are the mean vector and variance-covariance

matrix describing across-PFT (global) variation.
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Model implementation

We fit the above models using a Gibbs sampling algorithm that leveraged known

conjugate prior relationships for efficient exploration of the sampling space. For priors

on all multivariate mean vectors (µ), we used normal distributions:

P (µ) ∼ mvN(µ0,Σ0)

This gives rise to the following expression for the posterior:

P (µ | x,Σ, µ0,Σ0) ∼ mvN(µ∗,Σ∗)

Σ∗ = (Σ−1
0 + nΣ−1)

−1

µ∗ = µ0Σ
−1
0 + x̄nΣ−1

where x̄ are the sample means of the data and n is the number of rows in the

data.

For priors on all multivariate variance-covariance matrices, we used the Wishart

distribution (W ):

P (Σ) ∼ W (ν0,S0)

This gives rise to the following expression for the posterior:

P (Σ | x, µ, ν0,Σ0) ∼ (W (ν∗, S∗))−1

ν∗ = 1 + ν0 + n+m

x∗ = x− µ̄



11

SS = x∗Tx∗

S∗ = (S0 + SS)−1

where n is the number of rows and m is the number of columns in data matrix

x (full derivation in Gelman et al., 2003).

The fundamentally multivariate nature of the sampling procedure described above

makes it incapable of accommodating partially missing observations. Therefore, our

algorithm also included imputation of partially missing data, which proceeded as fol-

lows: For a block of data x containing missing observations in columns m and present

observations in columns p, the missing values x[m] are drawn randomly from a con-

ditional multivariate normal distribution at each iteration of the sampling algorithm:

x′[m|p] ∼ mvN(µ′,Σ′)

µ′ = (x′[p]− µ′[p])(Σ[p, p]−1Σ[p,m])

Σ′ = Σ[m,m]−Σ[m, p](Σ[p, p]−1Σ[p,m])

For each model fit, we ran five parallel MCMC chains, continuing the sampling

until the final result achieved convergence as determined by a Gelman-Rubin potential

scale reduction statistic less than 1.1 (Gelman and Rubin, 1992). We implemented

this sampling algorithm in an open source, publicly available R (version 3.4.3, R Core

Team, 2017) package (http://github.com/ashiklom/mvtraits).

Analysis of results

To assess the impact of multivariate and hierarchical constraint on trait estimates,

we compared the mean and 95% confidence intervals of trait estimates for each PFT

from each model (Fig. 1·2). For reference, we also added the default parameter values
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of CLM 4.5 (Table 8.1 in Oleson et al., 2013) for SLA, Nmass, Narea, Vc,max,mass, and

Vc,max,area to Fig. 1·2. To convert CLM’s reported C:N ratio to Nmass, we assumed a

uniform leaf C fraction of 0.46. We then divided this calculated Nmass by the reported

SLA to obtain Narea. We calculated Vc,max,mass by multiplying the reported Vc,max,area

by the reported SLA.

To test the hypothesis that the multivariate and hierarchical models offer more

value in terms of uncertainty constraint at smaller sample sizes, we calculated the

relative uncertainty (α) as a function of the mean (µ) and upper (q0.975) and lower

(q0.025) confidence limits of trait estimates.

α =
q0.975 − q0.025

µ

We then fit a generalized linear model relating relative uncertainty to sample size

(n) for each of the model types (univariate, multivariate, and hierarchical; Fig. 1·3).

logα = b0 + b1 log n

If all three models performed equally well at all sample sizes, their respective slope

and intercept coefficients would be statistically indistinguishable. On the other hand,

models that perform better should have lower intercept (b0) coefficients, indicating

generally lower uncertainty, and lower slope (b1) coefficients, indicating a reduced

sensitivity of uncertainty (α) to sample size (n).

To assess the consistency of within- and across-PFT trait trade-offs, we looked at

covariance estimates for each trait pair and, where these values were significantly dif-

ferent from zero (p < 0.05), we calculated the eigenvalues from the pairwise variance-

covariance matrix for that trait pair and plotted the corresponding dominant eigen-

vectors centered on the mean estimates (Fig. 1·4). This figure provides a visual

representation of relative positions of PFTs in trait space and both the direction and
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extent of within-PFT trait covariance, and is directly analogous to conceptual figures

describing hierarchical trait variability across environmental gradients as presented

in, for instance, (Cornwell and Ackerly, 2009) and (Albert et al., 2010b). Due to the

small number of points used to estimate across-PFT covariance in the hierarchical

model, none of the across-PFT covariances estimated in the hierarchical model were

significantly different from zero (p < 0.05). For this reason, we compared within-PFT

covariances as estimated by the hierarchical model with the covariances estimated by

fitting a multivariate model to all of the data.

Besides the consistency in the direction of trait covariance globally and between

different PFTs, we also investigated the strength and predictive power of these co-

variances, which is represented by correlation coefficients (i.e. the pairwise covariance

normalized to the variances of the component variables). To do this, we plotted the

mean and 95% confidence interval of the pairwise trait correlation coefficients for the

global estimate from the pooled multivariate model and PFT-level estimates from the

hierarchical model (Fig. 1·5).

The R code and ancillary data for running these analyses is publicly available

online via the Open Science Framework (OSF) at https://osf.io/w8y73/. The

TRY data used for this analysis can be requested at http://try-db.org.

1.3 Results

1.3.1 Estimates of PFT-level means

In general, leaf trait estimates from the univariate, multivariate, and hierarchical

models were similar (Fig. 1·2). Where we observed differences between models, the

largest were between the univariate and multivariate models, while the additional

constraint from the hierarchical model tended to have a minimal effect on trait esti-

mates. Significant differences in trait estimates between univariate and multivariate
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models occurred even for traits with relatively large sample sizes, such as leaf nitrogen

content.

Evergreen PFTs had by far the largest leaf lifespan, with the longest lifespan

observed for temperate and boreal needleleaf evergreen species. Meanwhile, all of

deciduous species had lifespans shorter than 7 months. Among deciduous species,

lifespan was generally longer in warmer biomes than colder ones.

Across-PFT patterns in SLA and Nmass, Pmass, and Rd,mass were similar. Temper-

ate broadleaved deciduous trees and shrubs generally had among the highest values

of these traits, while temperate evergreen trees and shrubs had generally among the

lowest. However, none of these patterns were universal to all four traits. For exam-

ple, tropical evergreen trees had relatively high Nmass and mean SLA and Rd,mass, but

among the lowest Pmass. Similarly, temperate and boreal shrubs had higher Nmass and

Pmass than any of the grasses, but comparable SLA.

Across-PFT patterns in Narea, Parea, and Rd,area were different from their mass-

normalized counterparts. For example, tropical broadleaved evergreen and needleleaf

evergreen trees had among the lowest Nmass and Pmass basis but among the high-

est Narea and Parea, while the opposite was true of deciduous temperate trees and

shrubs. Species with N contents near the middle of the observed range did not shift

as dramatically depending on type of normalization.

C3 grasses had both the highest Vc,max,mass and Vc,max,area. Compared to broadleaved

trees, temperate needleleaved evergreen trees had lower Vc,max,mass but higher Vc,max,area.

Among broadleaved trees, deciduous trees had higher Vc,max,mass and slightly higher

Vc,max,area than evergreen trees. Between the deciduous and evergreen tree PFTs, we

observed no significant trend by climate zone.

C3 grasses and temperate needleleaved evergreen trees had the highest Jmax,area,

but temperate broadleaved deciduous trees had the highest Jmax,mass. All of the
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shrub PFTs had the lowest Jmax,mass but average or above-average Jmax,area, while

the opposite was true of broadleaved tropical PFTs. Of the tree PFTs, needleleaved

evergreen trees had the highest Jmax,area but the lowest Jmax,mass.

A key application of this study was to provide data-driven parameter estimates

for Earth System Models. To this end, we compared our mean parameter estimates

with corresponding default parameters in CLM 4.5 (Oleson et al., 2013) (Fig. 1·2).

Our mean estimates of SLA agreed with CLM’s defaults (Oleson et al., 2013, Table

8.1 in) only for tropical broadleaved evergreen trees, and for all other PFTs, our

estimates are significantly lower. For Nmass, our estimates agreed reasonably well

with CLM for evergreen temperate trees, needleleaved trees, and C3 arctic grasses,

and were substantially different for all other PFTs. Our Nmass estimates also varied

much more across PFTs than CLM’s parameters. For Narea, our estimates were

significantly higher than CLM’s for all PFTs, likely due to CLM’s overestimates of

SLA. Our estimates of Vc,maxmass were lower across all PFTs, with particularly large

differences for tropical and temeprate broadleaf deciduous trees and evergreen shrubs,

and temperate C3 grasses. Our estimates of Vc,max,area showed better agreement,

though our values were still significantly lower for many PFTs. Like us, Kattge et

al. (2009) also found that Vc,max,area was overestimated by Earth System models, but

their estimates of Vc,max,area and Narea are generally slightly higher than ours.

We observed clear differences in the relative uncertainties of mean estimates with

respect to sample size. All of the high-latitude PFTs consistently had among the

largest error bars around their mean estimates relative to other PFTs, while the traits

with the largest uncertainties were dark respiration, Vc,max, and Jmax. For many of

these trait-PFT combinations, the additional constraint from trait covariance pro-

vided by the multivariate and hierarchical models substantially reduced error bars,

making it possible to compare estimates against those of other PFTs. Our analysis
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Figure 1·3: Relative uncertainty in PFT-level trait estimates as a
function of sample size for each model type. Lines represent linear
models (log(y) = b0 + b1 log(x)) fit independently for each model type.
In general, differences in estimate uncertainty between the univariate
and multivariate models were minimal at large sample sizes but increas-
ingly important at low sample sizes. However, differences in estimate
uncertainty between the multivariate and hierarchical models were con-
sistently negligible.



18

of the relationship between model type, sample size, and estimate relative uncer-

tainty found that this covariance-based constraint from the multivariate model both

reduced uncertainty overall (lower intercept) and reduced the sensitivity of estimate

uncertainty to sample size (lower slope) compared to the univariate model (Fig. 1·3).

However, this analysis revealed no consistent significant benefit from the hierarchical

model.

1.3.2 Trait correlation patterns across- and within-PFTs

For all traits except leaf lifespan, pairwise trait correlations were generally consistent

in direction both globally and within each PFT (Fig. 1·4). In particular, mass- and

area-normalized traits were all positively correlated with each other and, respectively,

positively and negatively correlated with SLA, both globally and within each PFT.

The same was generally true of correlations of mass-based traits with leaf lifespan,

but correlations of leaf lifespan with area-normalized traits were more variable. The

correlation between Narea and leaf lifespan was positive globally and for evergreen

shrubs, tropical broadleaved deciduous trees, temperate needleleaved evergreen trees

but negative for temperate and boreal broadleaved deciduous trees and not significant

for any other PFTs. Similarly, the correlation between Parea and leaf lifespan was

positive globally but negative for evergreen shrubs and not significant for any other

PFTs. The correlation between leaf lifespan and Rd,area was significant and negative

globally, but was not significant within any PFTs. The only significant correlations

of leaf lifespan with Vc,max,area and Jmax,area were negative for temperate broadleaved

deciduous trees.

A large number of pairwise trait correlations were not significant. In some cases,

this was driven by sample size (Fig. 1·1). For instance, needleleaved deciduous trees,

the most undersampled PFT in our analysis, were often the only PFT for which a

correlation was not statistically significant. In other cases, though, PFTs with smaller
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Figure 1·4: Pairwise trait mean and covariance estimates for all data
pooled globally (black) and for each PFT (colored). Covariance esti-
mates not significantly different from zero (p < 0.05) are indicated by x
symbols at the mean estimate. x and y axes vary on a log scale, reflect-
ing the fact that the model was fit using the base 10 log of all traits.
With the exception of leaf lifespan, pairwise covariances are consistent
in direction but vary somewhat in magnitude between PFTs, and when
comparing PFT-level and global estimates. However, many pairwise co-
variances are not statistically significant, particularly (but not always)
for undersampled traits and PFTs.
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sample sizes had significant pairwise correlations while PFTs with much larger sam-

ple sizes had none. For example, tropical broadleaved evergreen trees were relatively

well-sampled for all traits, but none of their area-normalized traits were significantly

correlated with leaf lifespan. In general, we observed fewer significant trait correla-

tions among area-normalized traits than mass-normalized traits.

The strength of pairwise trait correlations varied substantially depending on scale,

PFT, and trait (Fig. 1·5). The two pairwise trait correlations that exhibited the most

consistent strength globally and within each PFT were the correlation between SLA

and Narea, and between Nmass and Pmass. Correlation strength was often, but not al-

ways, related to sample size, with well-sampled PFTs exhibiting stronger correlations

and undersampled PFTs exhibiting weaker correlations.

1.4 Discussion

1.4.1 Scale dependence of the leaf economic spectrum

The canonical leaf economic spectrum is defined by a negative correlation of be-

tween SLA and leaf lifespan, and a positive correlation of SLA with Nmass, Pmass,

and photosynthesis and respiration rates (Wright et al., 2004). The first objective

of this paper was to investigate the extent to which these relationships hold within

and across PFTs. Our results indicate that the leaf economic spectrum generally still

holds within PFTs, at least at the functional and phylogenetic scale of the current

generation of Earth System Models. Within PFTs, correlations between SLA, Nmass,

and Pmass were consistently positive, and correlations of these traits with leaf lifespan

were generally negative (though, for many PFTs, correlations were not significantly

different from zero). Although we did not include maximum photosynthesis rate

(Amax), Vc,max,mass and Jmax,mass generally exhibited the expected positive correlations

with SLA and negative correlations with leaf lifespan, as did Rd,mass, though many
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Figure 1·5: Mean and 95% CI on estimates of pairwise correlation
coefficients for all data pooled globally (dark grey) and for each PFT
(colored). For most PFT-trait pairs, correlations are mutually consis-
tent in magnitude but vary in strength.
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correlations were not significant, primarily due to sample size.

While the direction of relationships we observed was largely consistent across

different PFTs, the strength of these correlations was more variable. For example,

the correlations of SLA with Nmass and Pmass were generally weaker in needleleaved

PFTs than in broadleaved PFTs. On the other hand, relationships of SLA and Narea

were strongly negative for all PFTs (except the data-limited needleleaved deciduous

trees), and temperate needleleaved species in particular had among the strongest SLA-

Narea and SLA-Parea correlations of any PFT. Taken together with the finding that

evergreen conifers are relatively unique in their consistently proportional allocation

of N to cell walls and Rubisco (Onoda et al., 2017), our results support the idea that

needleleaved species primarily adapt to environmental changes through structural

changes (i.e. increasing or decreasing SLA) rather than through modulating foliar

biochemistry (Robakowski et al., 2004).

We also found that the strength of the correlations of N with photosynthetic

parameters Vc,max and Jmax–often used in ecosystem modeling to parameterize pho-

tosynthesis (Oleson et al., 2013; Rogers et al., 2017)–varied by plant functional type,

whether the traits were normalized by mass or area. Although trait correlations are

not necessarily indicative of allocation strategies, this result generally supports the

findings of Ghimire et al. (2017) that N allocation strategies to photosynthesis vary

widely by plant functional type. In particular, the correlations of Nmass with traits re-

lated to photosynthesis and respiration (Rd,mass, Vc,max,mass, and Jmax,mass) were weaker

for tropical evergreen broadleaved trees than for most other PFTs, but the correlation

of these traits with Pmass was comparable or even slightly higher. This suggests that

the productivity of tropical species is generally P-limited (Reich and Oleksyn, 2004;

Ghimire et al., 2017), that N allocation strategies are more variable under N-poor

than N-rich conditions (Ghimire et al., 2017), or more generally that photosynthetic
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parameters are affected more strongly by environmental covariates than leaf nitrogen

contents (Ali et al., 2015). Meanwhile, our result that the Narea—Vc,max,area correla-

tion is generally weaker for needleleaved than broadleaved species was also found by

Kattge et al. (2009), and supports the lower allocation of N to photosynthesis found

by Ghimire et al. (2017). In light of this fact and considering that boreal forests,

largely populated by needleleaf species, have the largest influence on global climate

of any biome (Snyder et al., 2004; Bonan, 2008), we suggest that parameterization of

needleleaf tree productivity based on foliar nitrogen content in Earth System Models

be treated with caution.

Correlations of all traits with leaf lifespan were weaker (often to the point of

becoming insignificant) within most PFTs than globally. This suggests that leaf

economic relationships related to leaf lifespan are dominated by the fundamental dif-

ferences between deciduous and evergreen PFTs, while the factors driving variability

in leaf lifespan within PFTs are more complex and idiosyncratic (Reich et al., 2014;

Wu et al., 2016a). That being said, much of this within-PFT variability is known

to be driven by variations in shade responses, and a key limitation of our study is

that we have no information about the relative canopy positions at which traits were

collected (Lusk et al., 2008; Keenan and Niinemets, 2016a).

Across PFTs, the interaction between growth form and biome in PFT definitions

(Table 1) confounds the interpretation of our results with respect to well established

ecological and biogeographic patterns. For example, Poorter et al. (2009) found vari-

ation in SLA by growth form was, from highest to lowest, grasses, deciduous woody

plants, evergreen woody plants, and succulents, while the pattern by biome was,

again from highest to lowest, grassland, tundra, tropical forest, temperate forest,

woodland, shrubland, and desert. We observed as expected that arctic grasses had

lower mean SLA than temperate grasses, and that evergreen trees had lower SLA
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than their deciduous counterparts. However, we observed by far the highest mean

SLA values in temperate deciduous broadleaf trees, rather than in grass PFTs as ex-

pected. Similarly to Onoda et al. (2011), we found no consistent patterns in SLA with

temperature: Among broadleaved evergreen PFTs, temperate species had lower SLA

than tropical, but among broadleaved deciduous PFTs, temperate species had higher

SLA than both tropical and boreal species. With respect to the expected decline in

foliar N:P ratios with latitude (Reich and Oleksyn, 2004), we found that Nmass was

generally higher in PFTs associated with colder biomes compared to warmer ones,

but observed biome-related differences in Pmass only among deciduous broadleaved

and needleleaved evergreen PFTs. Contrary to Atkin et al. (2015) , our results for

both Rd,mass and Rd,area failed to show a trend with respect to biome. However, this

comparison may not be entirely fair because our study design inherently averages over

the extensive climatic variability within PFTs.

Finally, there has been some debate in the trait ecology community about the use

of mass- or area-normalized traits in analyses of the leaf economic spectrum. Two

studies (Osnas et al., 2013; Lloyd et al., 2013) independently concluded that leaf

economic relationships among mass-based traits emerge inevitably out of variation in

SLA and are therefore not ecologically meaningful. Responses to these criticisms have

suggested that both mass- and area-based normalization have merit, as mass-based

traits have a natural interpretation in terms of investment costs and allocation while

area-based traits are important due to the fundamentally area-based nature of energy

and gas fluxes through leaf surfaces (Westoby et al., 2013; Poorter et al., 2013). Our

study suggests the latter, that investigation of trait correlations on both a mass- and

area-basis can yield biologically and ecologically meaningful conclusions. For one, our

discussion of differences in ecological strategies between broadleaved and needleaved

species fundamentally depends on comparative analysis of mass- and area-normalized
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nutrient contents. Meanwhile, our discussion of tropical tree productivity with respect

to foliar nutrient contents is generally supported by both mass- and area-normalized

traits (i.e. the correlation between P and Vc,max is stronger than the correlation of N

and Vc,max for tropical species whether we use the mass- or area-normalized versions

of these traits).

1.4.2 Covariance as constraint

The second objective of this paper was to investigate the ability of trait covariance

to provide additional information that could be used to reduce uncertainties in trait

estimates. In agreement with our expectations, our results show that accounting for

trait covariance constrained the uncertainty around PFT-level trait means, particu-

larly for trait-PFT combinations with low sample sizes (Fig. 1·2 and 1·3). Moreover,

accounting for trait covariance occasionally also changed the position of trait mean

estimates, even for PFT-trait combinations with relatively large sample sizes (e.g.

Nmass for temperate broadleaved deciduous trees, Fig. 1·2). This result echoes Diaz

et al. (2016) in demonstrating the importance of studying the multivariate trait space

rather than individual traits. Such shifts suggest that the sampling of these traits in

the TRY database is not representative, which is evident from looking at the relative

sample sizes of different traits (Fig. 1·1; see also Kattge et al. 2011). These shifts

also indicate that parameter estimates based on univariate trait data (e.g., LeBauer

et al., 2013; Dietze et al., 2014; Butler et al., 2017) may not only be overestimating

uncertainty, but may also be systematically biased. Although our results clearly show

that many time- and labor-intensive traits, such as Rd, Vc,max, and Jmax, still lack the

observations to estimate covariance with other traits for certain PFTs, our results

also show that the effective sample size of all traits is enhanced when covariance

is taken into account. For example, field and remote sensing studies that estimate

only certain traits like SLA and Nmass but not others (such as Pmass and Rd,mass) can
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leverage trait correlations to provide indirect constraint (Serbin et al., 2014; Singh

et al., 2015; Musavi et al., 2015; Lepine et al., 2016). We therefore suggest that

future observational campaigns consider trait covariance when deciding which traits

to measure.

The additional benefit of hierarchical multivariate modeling in our study was lim-

ited, largely due to the relatively low number of points used to estimate that across-

PFT covariance structure. Therefore, for parameterizing the current generation of

ecosystem models using well-sampled traits, we suggest that simple multivariate mod-

els fit independently to each PFT are sufficient and that the additional conceptual

challenges and computational overhead of hierarchical modeling are not required.

However, for modeling work that requires larger numbers of PFTs (Boulangeat et al.,

2012), and especially for models that are parameterized on the basis of individual

species (e.g. Linkages, Post and Pastor, 2013), the benefits of hierarchical modeling

may accumulate (Clark, 2016; Dietze et al., 2008; Cressie et al., 2009; Webb et al.,

2010).

More generally, we foresee tremendous potential of multivariate and hierarchical

modeling approaches to elucidating the role of functional traits in organismal and

ecosystem function. Besides the many important foliar traits that we did not in-

clude (e.g. pigment contents, leaf hydraulic traits), our approach could readily be

applied to other plant traits whose relationship to the leaf economic spectrum is

less clear. One example is hydraulic traits: While stem and leaf hydraulic traits

are correlated (Bartlett et al., 2016), a potential scaling between hydraulic and leaf

economic traits is poorly understood (Reich, 2014; Li et al., 2015). Similarly, reex-

amining the relationships defining wood (Chave et al., 2009; Baraloto et al., 2010;

Fortunel et al., 2012) and root (Kramer-Walter et al., 2016; Valverde-Barrantes and

Blackwood, 2016) economic spectra, as well as their relationship to the foliar traits,
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would provide useful information on possible scale-dependence of plant growth and

allocation strategies. We emphasize that the relative difficulty of measuring hydraulic

and other non-foliar traits (e.g. Jansen et al., 2015) further increases the value of any

technique that can fully leverage the information they provide. More generally, multi-

variate and hierarchical modeling has the potential to reveal functional trade-offs that

are mutually confounding at different scales, thereby enhancing our understanding of

processes driving functional diversity.

1.4.3 Conclusions

The tremendous functional diversity of plants continues to be a major challenge for

functional ecology and ecosystem modeling. Functional diversity research fundamen-

tally depends on dimensionality reduction through a search for meaningful pattern

that can be exploited to take reasonable guesses at average behavior. The trait trade-

offs comprising the leaf economic spectrum are one such pattern. In this paper, we

reaffirm the existence of the leaf economic spectrum both globally and, with some

caveats, within plant functional types typically used in the current generation of Earth

System Models. We also highlight how the strength of leaf economic relationships can

be influenced by biotic and abiotic factors specific to certain PFTs. Finally, we show

how patterns of trait covariance like the leaf economic spectrum can be leveraged to

inform trait estimates, particularly at small sample sizes.
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Chapter 2

Quantifying the influences of spectral

resolution on uncertainty in leaf trait

estimates through a Bayeian approach to

RTM inversion

2.1 Introduction

The terrestrial biosphere is fundamentally dependent on the interactions between

plants and solar radiation through photosynthesis. Consequently, we can learn a lot

about the structure and functioning of ecosystems by studying these interactions in

detail, and over the last several decades our capability do so has expanded dramat-

ically. Specifically, global scale remote sensing observations from satellites such as

Landsat, MODIS, and AVHRR have been used to map and monitor vegetation pro-

ductivity, distribution, and abundance at high temporal frequency (Loveland et al.,

2000; Friedl et al., 2002; Hansen et al., 2010; Houborg et al., 2015). At the landscape

scale, satellite and sub-orbital (airborne) platforms with high spatial (e.g. World-

View, < 1 m) and/or spectral (e.g. AVIRIS Classic, 10 nm) resolution sensors have

been able to quantify the spatial distribution of canopy structure, nutrient status,

and species composition (Asner et al., 2015; Banskota et al., 2015; Singh et al.,

2015). In addition, field spectrometers with the highest available spectral resolution

have provided a fast and relatively simple method for characterizing and monitoring

leaf physiology, biochemistry, and morphology (Serbin, 2012; Couture et al., 2013;
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Sullivan et al., 2013; Serbin et al., 2014; Zhao et al., 2014).

An important caveat of using spectral information to study vegetation is that the

optical properties being measured are often not of primary interest. Rather, we are

interested in physiologically or ecologically meaningful variables such as total biomass,

photosynthetic efficiency, species composition, biomass, or biochemistry that drive

observed spectral signatures of vegetation and which can be inferred from the optical

properties. This connection is usually made empirically, either by simple regression

with spectral vegetation indices (SVIs) (Fassnacht et al., 2015; Haboudane et al., 2002;

Huete et al., 2002) or through more advanced statistical methods such as partial least

squares regression (PLSR) (Couture et al., 2013; Serbin, 2012; Serbin et al., 2014;

Singh et al., 2015) and wavelet transforms (Banskota et al., 2013; Blackburn and

Ferwerda, 2008; Cheng et al., 2010). However, these approaches can have important

limitations depending on the application. First, the empirical nature of these methods

can result in sensor, site, and/or vegetation specific relationships, as evidenced by the

substantial variability in coefficients and choice of wavelengths across studies (Croft

et al., 2014; Huete et al., 2002; Knyazikhin et al., 1998; Leprieur et al., 1994; Liu

et al., 2012; Myneni et al., 2002; Wessels et al., 2012). Second, empirical approaches

are not a direct mechanistic relationship between spectra and plant properties and

therefore do not provide the true connections between optical properties and variables

of interest (Knyazikhin et al., 2012). As a result, extrapolating empirical approaches

and relationships to larger regions or new locations can be challenging. Moreover,

the indirect, derived data products that arise from such analyses may have a limited

capacity to inform ecosystem models (Quaife et al., 2008), as they often introduce

assumptions that conflict with the internal logic of the processes represented in these

models.

In contrast, radiative transfer models (RTMs), which provide a more mechanistic
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link between plant traits and spectral signatures, can be a useful alternative to em-

pirical approaches. A variety of standalone RTMs exist from the leaf (Dawson et al.,

1998; Feret et al., 2008; Ganapol et al., 1998) to canopy scales (Jacquemoud et al.,

2009; Kuusk, 2001; Verhoef, 1984; Wang and Li, 2013). In addition, RTMs are often

an important component of dynamic vegetation models, where they are used to calcu-

late surface energy balance and light availability for photosynthesis (Medvigy et al.,

2009a; Ni-Meister et al., 2010; Kobayashi et al., 2012). In this study, we focus on

the leaf-level PROSPECT model (Jacquemoud and Baret, 1990; Feret et al., 2008),

which has been extensively used in forward (simulation) mode to develop and test new

remote sensing techniques (Croft et al., 2014; Féret et al., 2011; le Maire et al., 2004;

Zarco-Tejada et al., 2013) as well as to estimate leaf traits from spectral observations

via inversion (Atzberger and Richter, 2012; Feret et al., 2008; Jacquemoud et al.,

1995; Jacquemoud et al., 2009; Li and Wang, 2013; Li and Wang, 2011; Zarco-Tejada

et al., 2004). However, the commonly used approaches for RTM inversion—such as

least-squares minimization and look-up tables—fail to directly quantify the uncer-

tainties and account for the correlations among the resulting parameter estimates.

The characterization of uncertainty is a fundamental requirement for drawing mean-

ingful scientific conclusions from results and for assimilating results into statistical or

mechanistic models (Cressie et al., 2009; Quaife et al., 2008).

Applying Bayesian statistics to RTM inversion activities provides a direct means

to quantify the uncertainty and covariance of parameter estimates while combining

multiple sources of information. The use of independent prior information has been a

critical component of RTM inversion as a way to solve the otherwise underdetermined

problem of estimating a large number of RTM parameters from a small number of

observations(Combal et al., 2003; Lauvernet et al., 2008; Yao et al., 2008; Pinty et al.,

2011; Laurent et al., 2014; Mousivand et al., 2015). While these studies either neglect
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parameter uncertainty or estimate it using computationally-efficient approximations

(e.g. Gaussian posterior distributions), recent work has demonstrated the efficacy of

fully-Bayesian Markov Chain Monte Carlo (MCMC) approaches for inversion of the

PROSAIL canopy RTM using MODIS (and “MODIS-like”) data(Zhang et al., 2005;

Zhang et al., 2006; Zhang et al., 2009). However, to the authors’ knowledge, such

approaches have yet to be applied to hyperspectral data, neither at the canopy nor

the leaf scales. A recent study by Lepine et al. (2016) further demonstrated that

PLSR estimates of canopy nitrogen are less sensitive to spectral resolution than spa-

tial resolution and sensor fidelity, but no comparable analyses has been attempted for

other foliar constituents, nor, for that matter, using a physically-based RTM rather

than an empirical regression. In this study, we examine the effects of measurement

spectral characteristics on accuracy, uncertainty, and covariance of leaf traits esti-

mated from spectral inversion of a leaf RTM. First, we demonstrate the applicability

of a fully Bayesian approach to leaf RTM inversion and validate this approach using

data from the NASA Forest Functional Types (FFT) database of field spectra (Serbin

et al., 2014; Singh et al., 2015). Second, we simulate reflectance observations using

the spectral response functions of ten common remote sensing platforms and test the

accuracy and precision with which our inversion algorithm can retrieve parameters

from these observations. Although such an experiment is highly idealized, it does

provide insight on the absolute theoretical limits of RTM inversion by different re-

mote sensing platforms and illustrates how subtle changes in spectral measurement

characteristics can affect inversion results. More broadly, this work reiterates the

power of a Bayesian framework for fully utilizing the vast archive of remote sensing

and field spectral observations to enhance our understanding of ecosystem processes.
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Table 2.1: Summary of PROSPECT 5 parameters. Ranges for Car,
Cw, and Cm are based on the datasets used for their calibration
(ANGERS for Cab and Car, LOPEX for Cw and Cm) as reported
in Feret et al. (2008). The ranges for N and Cab are calculated from
the LOPEX and ANGERS databases, respectively. Units for Cw and
Cm are adjusted for readability (original units are g cm−2).

Parameter Description Unit Range

N Structural parameter; effective number of mesophyll layers Unitless 1.09 to 3.00
Cab Total chlorophyll (a and b) density µg cm−2 0.78 to 106.72
Car Total carotenoid density µg cm−2 0 to 25.3
Cw Equivalent water thickness g cm−2 43 to 439
Cm Leaf dry matter content per unit area g cm−2 17 to 152

2.2 Methods

2.2.1 Inversion procedure

The PROSPECT 5 model simulates the full spectral reflectance and transmittance of

a leaf over the 400–2500 nm range using five key parameters related to leaf structure

and biochemistry (Feret et al., 2008). In the PROSPECT model, a leaf is treated as a

set of N partially transparent flat plates, each with wavelength-dependent transmissiv-

ity kλ. Transmissivity kλ is based on the linear combination of empirically calibrated

specific absorption spectra for total chlorophyll (a and b), total carotenoids, water,

and dry matter (e.g. cellulose, lignin, protein) multiplied by their respective quantities

(given by the parameter values: Cab, Car, Cw, Cm) (Table 2.1).

The objective of RTM spectral inversion is to estimate the physical RTM parame-

ters from the observed spectral information. This is accomplished through a statistical

inversion, wherein we seek the set of parameters that minimizes the residual error be-

tween PROSPECT-modeled and measured reflectance. Our approach to the inversion

of PROSPECT is distinct from previous studies (Combal et al., 2003; Feret et al.,

2008; Féret et al., 2011; Li and Wang, 2011; Li and Wang, 2013) in two important

ways. First, whereas many past studies use both reflectance and transmittance to

estimate parameters, we use only reflectance. Reflectance is generally easier to mea-
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sure than transmittance, which requires special instrumentation such as integrating

spheres that often have inadequate designs and yield poor signal-to-noise ratios, es-

pecially in the longer wavelengths (i.e. > 2µm). As well, inversion on reflectance data

alone allows transmittance measurements as optional data for independent valida-

tion. Second, unlike past leaf-level PROSPECT inversion studies that only provide

point estimates of parameters, we performed our analysis within a Bayesian frame-

work that provides the joint probability distribution of the PROSPECT 5 parameters,

θ = N,Cab, Car, Cw,Cm, and the residual standard deviation, σ, as the output. The

general mathematical statement of this posterior distribution is given as follows:

P (θ, σ | X) ∼ P (X | θ, σ)P (θ)P (σ)

P (X | θ, σ) ∼ Normal(PROSPECT5(θ) | X, σ)

where PROSPECT5(θ) is the modeled reflectance given θ, and X is a vector of

observed reflectance values. The residual error is assumed to be normally distributed

with a mean of 0 and standard deviation of σ.

We set the prior distribution for N to a lognormal distribution shifted to have a

minimum of 1, and parameterized based on a review of literature using the PROSPECT

model (le Maire et al., 2004; Ferreira et al., 2013; Croft et al., 2014).We assigned the

remaining parameters log-normal priors based on summary statistics and histograms

from the LOPEX, ANGERS, HAWAII, and CALMIT spectral databases as reported

by Feret et al. (2008) .The residual standard deviation σ was assigned an uninfor-

mative inverse gamma prior, which is conjugate with the normal distribution and

therefore allows for computationally efficient Gibbs sampling.

We sampled the joint posterior distribution of the PROSPECT 5 parameters us-

ing the Metropolis-Hastings (MH) algorithm with adaptive block sampling (Haario

et al., 2001). For this, we initialized each inversion using parameter values drawn at
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random from the prior distributions. For each inversion, we ran the algorithm five

times (i.e. five independent chains) for 100,000 iterations each. At each iteration,

the algorithm proposes a parameter vector, calculates the vector’s likelihood based

on the observations and the prior, and accepts or rejects the vector based on this

likelihood. The proposal step performs a random draw from a multivariate normal

distribution centered on the last accepted parameter vector. The covariance matrix

for the multivariate normal proposal distribution was re-computed every 100 itera-

tions as follows: (1) the univariate standard deviation of each parameter and the

Pearson product-moment correlation matrix were computed; (2) the standard devia-

tion vector was multiplied by the ratio of the acceptance rate in the last 100 samples

to the target acceptance rate (set to 0.234, as per Haario et al. 2001); (3) the result-

ing standard deviation vector was converted to a diagonal matrix and multiplied to

both sides of the correlation matrix to give a re-scaled covariance matrix. For each

inversion, we determined MCMC convergence based on a value of the Gelman-Rubin

multivariate potential scale reduction factor of less than 1.1 (Gelman & Rubin 1992,

as implemented in the R coda package v.0.18–1 by Plummer et al.). For runs that

did not converge, we repeated this process with a 20% smaller target acceptance rate

for the adaptation step, which increases the size of the sampling space for each chain

and therefore reduces the likelihood of getting trapped in local minima. Across the

>10,000 inversions performed in this study, only five failed to converge (after five in-

version attempts)—all for simulated CHRIS-Proba spectra (see Section 2.3)—and we

excluded these data points from our analysis. We visually examined a random subset

of the resulting trace plots and autocorrelograms and determined that a common

burn-in period of 80,000 samples and a thinning interval of 20 was sufficient for an

accurate and representative sample of the joint posterior distribution. After applying

the burn-in and thinning filter, we calculated the mean, standard deviation, and 95%
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confidence intervals of the sampled parameter values.

With chains running in parallel, the inversion of one leaf spectrum with our speci-

fications takes approximately 4 minutes (on one Intel Xeon X5570 CPU @ 2.93GHz),

and running the entire set of over 10,000 inversions required for this paper took several

days (running up to 16 inversions simultaneously on a high performance computing

cluster). That being said, we anticipate that recoding of the algorithm from R to a

compiled language will dramatically increase (>50x) the computational efficiency of

our approach.

The inversion algorithm described above is available as an open-source, publicly-

available R (R Core Team, 2017) package housed within the PEcAn ecoinformat-

ics toolbox github.com/pecanproject/pecan/tree/master/modules/rtm (Dietze

et al., 2013; LeBauer et al., 2013). This package allows users to simulate spectra

using the PROSPECT family of radiative transfer models and apply our inversion

algorithm to their own models and data. For more information, refer to the package

vignette on the PEcAn tutorials page pecanproject.github.io/tutorials.html.

2.2.2 Validation

Data

We tested the ability of our inversion to accurately estimate leaf traits using data

collected as part of the NASA Forest Functional Types (FFT) campaign (Deel et al.,

2012; Serbin et al., 2014; Singh et al., 2015). This dataset consists of leaves col-

lected from various positions within the canopy for 52 species from 13 sites across

the Northeast and Midwest USA. An Analytical Spectral Devices (ASD) FieldSpec

3 Full Range (350 to 2500 nm) Spectroradiometer was used together with a leaf clip

and internal calibrated light source to measure reflectance on the adaxial surface of

1348 unique leaves. For a subset of 765 of these leaves, the same instrument was

used with an ASD integrating sphere setup to measure transmittance through the
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leaf adaxial surface. Our database included both broadleaf and conifer species. For

conifer measurements, we constructed edge-to-edge mats of needles larger than the

spot size of the light source (Serbin, 2012; Singh et al., 2015). As detailed in Serbin

(2012), we found minimal changes in reflectance/transmittance measurement up to

a threshold of differing gaps between needles. These observations are henceforth re-

ferred to as “FFT measured reflectance and transmittance”, respectively. In addition

to spectral measurements, laboratory measurements of leaf dry mass per unit area

(LMA) and equivalent water thickness (EWT) were available for 950 leaves. For

further information on the sampling methodology, see Serbin et al. (2014).

During exploratory analysis, we observed that inversion results by leaf habit dis-

played some distinct differences and conifer species were consistently less accurate

than results for broadleaved species, reflecting ecological differences in leaf structure

that are not well represented by the PROSPECT model. Therefore, to better con-

textualize our results, we performed both validation steps for the entire data set

and separately for broadleaved and conifer species. However, even within the conifer

functional type, we found certain species and foliar morphologies showed much larger

errors than others. These differences could be ecological in nature or an artifact

related to the challenges of measuring full-range reflectance and transmittance of

different types of conifer needles. To investigate whether these errors aligned with

established ecological classifications, we grouped species based on their approximate

succession (“early”, “mid”, or “late”), following the general classification scheme of

Dietze & Moorcroft (2011), except that we grouped the “Northern” and “Southern

Pine” functional types as “early conifer.” Classification based on succession is useful

for this study because it is indicative of plant shade tolerance (Dietze and Moorcroft,

2011), which is closely linked to leaf structure and biochemistry (Poorter et al., 2009).

We applied our inversion algorithm individually to each of the FFT measured
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reflectance spectra (n = 1348), resulting in an estimate of the joint probability distri-

bution of the PROSPECT 5 parameters for each leaf. We then generated a dataset of

synthetic reflectance spectra (“FFT simulated reflectance”) by using the middle 90%

of these parameter estimates (n = 1040) as inputs to the PROSPECT 5 model. These

synthetic reflectance spectra were used as data in the sensor simulation experiment

(Section 2.3). We used real parameter estimates rather than random draws from a

distribution to preserve their ecological ranges and covariances resulting from within-

and between-species tradeoffs in traits such as those described for the leaf economics

spectrum (Wright et al., 2004).

We then performed two different tests to evaluate the accuracy of these parameter

estimates: (1) We compared the FFT simulated reflectance and transmittance to

measured reflectance and transmittance, and (2) we directly compared the inversion

estimates of PROSPECT 5 parameters Cw and Cm to measured values of EWT and

LMA, respectively.

Reflectance and transmittance

A common way to validate model inversion is to run the model in forward mode using

the estimated parameters as inputs and compare the output to the original data. For

our study, we used the inversion estimates of the PROSPECT parameters as inputs

to the PROSPECT model to predict reflectance and transmittance spectra, which

we then compared to the observed reflectance and transmittance. Errors in spectral

inversion can originate from multiple sources, including measurement error (both

trait and spectra), failure of the PROSPECT model to fully capture leaf spectral

features (i.e. model formulation error), and parameter identifiability issues in the

inversion algorithm. To isolate algorithmic error, we first performed the validation on

a set of synthetic reflectance and transmittance spectra (n = 1348). To investigate

the remaining sources of error, we performed the same validation on FFT measured
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reflectance (n = 1348) and transmittance (n = 765) spectra. For both reflectance

and transmittance, we calculated the mean and 90% and 95% confidence intervals

on the absolute error (simulated − measured) at each wavelength. The overlap of

the 95% confidence interval with 0 was used to judge statistical significance. To

facilitate comparison with other RTM inversion studies (Feret et al., 2008; Di Vittorio,

2009a), we also computed the root mean square error (RMSE), bias (BIAS), and

bias-corrected RMSE (SEPC) averaged across the visible (VIS, 400–800 nm) and

near-infrared (NIR, 801–2500 nm) regions of the spectrum:

RMSE =

√∑
(xi − x0)2

n

BIAS =

∑
xi − x0

n

SEPC =

∑
(xi − x0 −BIAS)2

n

where xi is the simulated value (reflectance or transmittance), x0 is the observed

value, and n is the number of spectra considered.

Leaf water content and mass per area

For leaves that had paired measurements of reflectance and EWT and LMA (n = 950),

we compared the mean inversion estimates for PROSPECT parameters Cw and Cm

to measured values of EWT and LMA, respectively. For each, we compared the mean

inversion estimate to the measured value via the RMSE, BIAS, and SEPC as above

(with inversion estimate x and measurement xo) as well as relative RMSE (RMS%E)

and the relative bias-corrected RMSE (CV):

RMS%E =

√√√√∑(
xi−x0
x0

)2

n
× 100%
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Table 2.2: Spectral, spatial, and temporal characteristics of remote
sensing platforms and instruments considered in the sensor simulation
experiment. Note that AVIRIS spatial resolution is dependent on air-
craft altitude and instrument field of view.

Sensor Number of Bands Spectral range (nm) Bandwidth (nm) Spatial resolution (m) Revisit time (days)

AVIRIS NG 416 380 to 2510 5 0.3 to 4.0 On-demand
AVIRIS Classic 216 400 to 2500 10 < 10 to 20 On-demand
CHRIS-Proba 62 410 to 1050 1.5 to 12 36 7 to 8

Hyperion 225 350 to 2500 10 30 16
Landsat 5 (TM) 6 450 to 2350 60 to 270 30 16

Landsat 7 (ETM+) 6 440 to 2350 60 to 280 30 16
Landsat 8 (OLI) 8 435 to 2295 20 to 185 30 16

MODIS 7 459 to 2155 20 to 50 250 to 500 1 to 2
VIIRS 10 402 to 2275 15 to 60 750 1 to 2

AVHRR 3 580 to 1640 100 to 275 1090 1

CV =
SEPC

x0

× 100%

2.2.3 Sensor simulation experiment

Recent work has shown that PLSR estimates of foliar nitrogen content are less sensi-

tive to spectral resolution than to other factors such as spatial resolution and sensor

fidelity (Lepine et al., 2016). However, the PLSR approach implemented in that study

was unable to quantify the uncertainty around the nitrogen estimates. We hypothesize

that the spectral characteristics of most common remote sensing platforms are suffi-

cient to accurately estimate the leaf biophysical parameters modeled by PROSPECT,

but that the uncertainties in these parameters will increase with declining spectral

resolution. To test this hypothesis, we transformed the FFT simulated reflectance

spectra using the relative spectral response functions of 11 common remote sensing

platforms (Table 2.2), and used our Bayesian inversion of PROSPECT 5 to retrieve

the starting parameters from the transformed spectra. For input parameters, we used

the inversion results from measured spectra, thereby capturing a large range of eco-

logically realistic values and preserving inherent covariances between parameters. To

account for observation error, we simulated Gaussian random noise (with mean 0 and

standard deviation 2.5× 10−4) smoothed with a Gaussian filter (kernel width 11) to

account for inherent autocorrelation in hyperspectral measurements.
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We then examined how two characteristics of the inversions varied between sensors:

Relative bias (α) indicates how closely the mean parameter estimate (µ) matched the

true value (p) and is a useful measure for describing the accuracy of the estimate’s

central tendency.

α =
µ− p
p

Uncertainty (π) describes the width of the 95% confidence interval of the estimate

(s) relative to the mean value, and is useful for ascertaining the precision with which

the inversion is able to estimate a parameter.

π =
s

µ

We note that both statistics are normalized to facilitate inter-parameter compar-

ison. Both metrics were computed for each parameter for each inversion and then

averaged over all simulated spectra.

We recognize that this experiment does not fully capture all of the variability

associated with inversion of real observations from these sensor systems given its

failure to account for canopy structure, atmospheric effects, sun-sensor geometry, and

sensor radiometric resolution. However, this experiment is capable of illustrating the

ability to characterize uncertainty in inversion results and improves the confidence

with which we can extract information from lower quality data sources. Moreover,

this experiment sets a theoretical limit on the accuracy and precision of leaf trait

retrieval from spectral RTM inversion, thereby contextualizing past RTM inversion

results (Zhang et al., 2005; Zhang et al., 2006; Zhang et al., 2009; Zhang et al., 2012)

and guiding future research in the field.

The entire workflow for this paper is summarized in Figure 2·1. The data and R

source code for performing all analyses in this study have been made publicly available
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Figure 2·1: Workflow illustrating the steps in this study as well as
the figures to which they correspond.

at github.com/ashiklom/sensor-manuscript.

2.3 Results

2.3.1 Validation

Reflectance and transmittance

For the inversion of synthetic spectra, we found no statistically significant (p < 0.05)

spectral bias at any wavelength (not shown).As well, the observed differences be-

tween input and simulated output were one to two orders of magnitude smaller than

corresponding errors in the inversion of measured spectra (Figure 2·2).These results
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collectively illustrate that our algorithm is unbiased and contributes minimally to

errors in the inversion of measured spectra.

For the inversion of measured spectra, we observed substantial variability in the

spectral bias across all analyzed leaves, resulting in statistically significant (p < 0.05)

bias in only a few specific wavelength regions (Figure 2·2). For both broadleaf and

needle-leaf conifer species, reflectance was typically overestimated between 1600 and

1900 nm and underestimated between 1000 and 1300 nm and between 2000 and 2500

nm. The errors in the 1600 to 1900 nm and 2000 to 2500 nm ranges covered more

wavelengths and had larger magnitude for conifer species than broadleaved species.

Broadleaved species also had a statistically significant reflectance overestimate in the

400 to 500 nm range and an underestimate at 1300 nm, while conifer species had a

significant reflectance overestimate at 1300 nm.

For both measured and synthetic spectra, transmittance bias (BIAS = −0.0133)

was, on average, greater in magnitude than reflectance bias (BIAS = 0.0018), with

a mean positive bias for broadleaved species (BIAS = 0.0012) and a mean nega-

tive bias for conifer species (BIAS = −0.0346) (Figure 2·2, Table 2.3). However,

the between-leaf variability in bias was also large and resulted in statistically signif-

icant bias in only a small number of specific spectral regions. For both broadleaved

and conifer species, we observed a significant underestimate in transmittance in the

chlorophyll a absorption 400 and 500 nm. Specifically for conifer species, we also

observed underestimates in transmittance at the vegetation “red edge” around 700

nm and at a water absorption feature around 1900 nm.

Leaf water content and mass per area

Similar to the results of the spectral validation, the inversion estimates of Cw and

Cm (compared to measured values of EWT and LMA, respectively) displayed higher

accuracy for broadleaf (CVCw = 18.8%, CVCm = 24.5%) versus conifer species
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Figure 2·2: Bias in FFT simulated reflectance (top) and transmittance
(bottom) spectra compared to measurements over all leaves (left) and
only hardwood (middle) and conifer (right) species. For a given wave-
length, the solid black line is the mean bias, the dark grey bounded
by the dotted line is the 90% confidence interval, the light grey region
bounded by the dashed line is the 95% confidence interval, the red
line highlights a bias of 0, and the red shaded regions highlight bias
significant at the 95% confidence level.
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Table 2.3: Reflectance (Refl.) and transmittance (Tran.) spectral
validation error statistics aggregated across the visible (400–800 nm)
and infrared (801–2500 nm) regions. Values from other studies are
included for comparison.

Visible Infrared
RMSE BIAS SEPC RMSE BIAS SEPC

Refl.

FFT All 0.0083 0.0018 0.0071 0.0098 -0.0020 0.0061
— Broadleaf 0.0063 0.0023 0.0042 0.0064 -0.0009 0.0034
— Conifer 0.0101 0.0011 0.0090 0.0127 -0.0035 0.0064
Feret et al. (2008): CALMIT 0.032 0.010 0.028 — — —
— ANGERS 0.019 0.001 0.019 0.016 0.003 0.014
— HAWAII 0.021 -0.008 0.020 0.036 -0.031
Di Vittorio (2009) 0.0255 0.005 — — — —

Trans.

FFT All 0.0404 -0.0133 0.0336 0.0551 0.0040 0.0537
— Broadleaf 0.0248 0.0012 0.0167 0.0450 0.0266 0.0336
— Conifer 0.0553 -0.0346 0.0389 0.0661 -0.0293 0.0566
Feret et al. (2008): CALMIT 0.029 -0.005 0.025 — — —
— ANGERS 0.018 -0.005 0.017 0.016 0.001 0.015
— HAWAII 0.022 0.003 0.020 0.020 -0.003 0.017
Di Vittorio (2009) 0.0422 0.0294 — — — —

Table 2.4: Error statistics for the comparison of inversion estimates
of PROSPECT parameters Cw and Cm and measured values of equiv-
alent water thickness (EWT) and leaf dry mass per unit area (LMA),
respectively. Values from other inversion studies are included for com-
parison.

RMSE BIAS SEPC CV RMS%E

Cw / EWT
(g m−2)

FFT Broadleaf 17 5 16 18.8 21.64
— Conifer 187 90 164 52.3 67.29
Feret et al. (2008): LOPEX 17 -3 17 15.2 —
— ANGERS 20 -1 20 17.1 —
Feret et al. (2011): #3 27 — — — —
Li & Wang (2011) 12 5 — 20.10 —

Cm / LMA
(g m−2)

FFT Broadleaf 20 -18 9 24.5 43.75
— Conifer 121 35 116 61.6 65.51
Feret et al. (2008): LOPEX 34 21 27 51.0 —
— ANGERS 26 1 26 49.8 —
Feret et al. (2011): #3 31 — — — —
Li & Wang (2011) 8 -7 — 13.75 —
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Figure 2·3: Modeled and observed equivalent water thickness (g m−2)
for both conifers and hardwoods (top), just hardwoods (bottom left),
and just conifers (bottom right). Point colors indicate plant type (top)
or successional stage (bottom). The dashed line represents a 1:1 fit.

(CVCw = 52.3%, CVCm = 63.3%) (Table 2.4). For the broadleaved species, our

parameter estimates were within the range observed previously (Table 2.4). While

the inversion estimates for conifer species show a lower performance compared to

broadleaf trees, the error inversion results were primarily driven by a single plant

functional type—early successional conifers, which consisted entirely of pine species

(Pinus family). Notably, a few estimates for mid-successional conifer species displayed

significant divergence with observations, but in general fell along the 1:1 relationship

(Figures 2·3 and 2·4).
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Figure 2·4: Modeled and observed leaf dry mass per unit area (g m−2)
for both conifers and hardwoods (top), just hardwoods (bottom left),
and just conifers (bottom right). Point colors indicate plant type (top)
or successional stage (bottom). The dashed line represents a 1:1 fit.

Table 2.5: Uncertainty and relative bias in parameter estimates from
inversion of simulated spectra filtered through relative spectral response
curves of different sensors.

Uncertainty (π) Relative bias (α)
Sensor N Cab Car Cw Cm N Cab Car Cw Cm

ASD Field Spec 0.20 0.54 2.91 0.26 1.33 -0.001 0.05 0.08 0.01 -0.05
AVIRIS NG 0.87 2.36 12.78 1.12 5.81 -0.004 0.05 -0.03 0.004 -0.03

AVIRIS Classic 1.62 4.61 26.06 2.13 11.02 -0.04 0.06 -0.44 -0.01 -0.08
Hyperion 1.69 4.81 27.35 2.23 11.44 -0.04 0.05 -0.49 -0.02 -0.06

CHRIS-Proba 21.93 20.77 53.86 106.5 173.8 -0.71 -0.50 -2.52 2.41 87.84
Landsat 5 8.90 17.14 114.8 13.32 66.43 -1.53 -0.64 -5.16 -0.76 -0.89
Landsat 7 8.84 21.90 134.2 12.94 66.07 -1.52 0.55 -9.17 -0.77 -0.91
Landsat 8 4.31 12.23 118.5 11.05 27.99 -0.33 0.28 -3.02 -0.32 -0.005
MODIS 10.29 15.99 220.5 16.65 86.00 -1.20 0.07 -29.14 -1.88 5.43
VIIRS 2.49 13.24 174.4 4.75 18.23 -0.09 1.57 -18.06 -0.09 0.004

AVHRR 25.47 114.2 263.3 74.58 179.1 -0.26 -7.47 -39.04 -8.04 77.21
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Figure 2·5: Mean uncertainty (a) and relative bias (b) (as defined in
section 2.3) of inversion estimates for each parameter and simulated
sensor. Sensors are arranged along the x-axis in approximate order of
increasing spectral resolution.
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2.3.2 Sensor simulation experiment

Parameter error

Across all of the selected sensors, the highest PROSPECT 5 parameter inversion un-

certainty and bias were observed for Car (Figure 2·5, Table 2.5). This can readily

be explained by the Car specific absorption feature, which is both extremely narrow

and overlaps substantially with that of Cab (not shown). On the other extreme, the

most accurate and least uncertain retrieved parameter was N, which is related to the

reflectivity of the leaf across the entire spectrum (Figure 2·5, Table 2.5). Despite rel-

atively narrow absorption features, most simulated sensors were able to retrieve Cab

with reasonably good accuracy, which is not surprising given the long history of mon-

itoring vegetation pigmentation using various platforms. Similarly, all sensors except

CHRIS-Proba and AVHRR retrieved Cw with low uncertainty and bias, reflecting the

wide and strong absorption features of water in the NIR and SWIR (Figure 2·5, Ta-

ble 2.5). The failure of CHRIS-Proba to retrieve Cw can be attributed to its inability

to measure in this spectral range. The retrieval accuracy for Cm was much more sen-

sor dependent, with good performance among the simulated hyperspectral sensors,

VIIRS, and Landsat 8, followed by lower performance for simulated Landsat 5 and

7 and MODIS, and a poor result for the simulated Chris-PROBA and AVHRR data

(Figure 2·5, Table 2·5). Although the specific absorption feature for Cm is very wide,

the sensitivity of reflectance to Cm values is much lower than for other parameters

and almost the entire feature can be masked or confounded by Cw (Figure S1). This

suggests that Cm is very dependent on precise locations of certain bands and there-

fore explains the differences in the estimate accuracy of apparently similar sensors

like Landsat 5, 7, and 8 (Table 2.2). More generally, the importance of precise band

widths and locations is evidenced by the noticeably better performance of Landsat 8

compared to Landsat 5 and 7 for certain parameters (Figure 2·5, Table 2·5) despite
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Figure 2·6: Example joint probability distribution for parameter in-
version estimates of simulated spectra using the full spectra (red; top
panels) and the relative spectral response functions of AVIRIS NG
(cyan), Landsat 8 (dark blue), and MODIS (orange). Dotted lines
indicate true parameter values. Note that the axis range of the top
panels is substantially smaller than that of the bottom panels.

the subtle differences in the sensors’ respective bandwidths (Table 2.2).

Parameter uncertainty and covariance

Figure 2·6 shows an example of processed inversion output based on the high spectral

resolution field spectrometer data and the spectral response functions of AVIRIS NG,

Landsat 8, and MODIS. All four plots are simulated from a single set of parameters,

so differences in results are caused only by variations in spectral measurement char-

acteristics.Out of these four sensors, the uncertainties increase with approximately
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decreasing spectral resolution, with lowest uncertainties in the full spectra, second-

lowest for AVIRIS NG, second highest for Landsat 8, and highest for MODIS. The

shapes of parameter covariances are distinctly different between these sensors, re-

flecting differences in the ability of the inversion to distinguish between parameters

based on the available information. Across all four sensors, we observe strong pos-

itive covariance between N and Cm, since these parameters influence wide regions

of the reflectance spectrum in opposite ways. Similarly, we also observe a positive

covariance between N and Cab, although the strength of this covariance is not equal

across sensors. The remaining covariances are mostly specific to MODIS, whose band

configuration increases the overlap between the associated parameters.

We find that inversion estimates for the field spectra are occasionally falsely over-

confident. For instance, the true value of N and Cw is outside the 95% confidence

limit of their estimated joint probability distribution at full, field spectrometer res-

olution. That being said, this is less of an issue for the other sensors, where the

joint probability distribution encompasses the true value. This suggests that spectral

resolution below 5 nm may not provide additional information content, particularly

for the broad absorption features within leaves, because of the strong autocorrelation

between adjacent wavelengths. More importantly, although the joint posterior proba-

bility distributions from Landsat 8 and MODIS appear wide, the resulting parameter

values are constrained by an order of magnitude or more compared to the priors.

2.4 Discussion

In this manuscript, we reiterate the power of the Bayesian RTM inversion framework

for using spectral data to characterize vegetation and monitor ecosystem dynam-

ics. The use of a physically-based model to describe the interaction of light with

different vegetation structural and biochemical components improves the extent to
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which such an approach can be generalized across vegetation types and sub-orbital

and spaceborne platforms compared to more empirical approaches. Moreover, this

physically-based approach enables estimation of vegetation properties from sensors of

varying spectral resolution, and our ability to quantify uncertainty in our estimates

provides the versatility to assess the performance of various sensors for a range of

applications.

Our inversion results are comparable to other studies (Feret et al., 2008; Féret

et al., 2011; Li and Wang, 2011; Di Vittorio, 2009a). The results outperformed those

of Feret et al. (2011) despite the fact that we performed the inversion on measured

spectra and inverted all five PROSPECT parameters, whereas Feret et al. (2011) per-

formed inversions on synthetic spectra and did not attempt to estimate the structure

parameter N. As such, we suggest that our approach does not come at the cost of

model performance, and, importantly, enables the use of a much wider range of spec-

tral data to explore vegetation dynamics. Our method contrasts with some previous

methods (e.g., Feret et al., 2008; Féret et al., 2011) that utilize both reflectance and

transmittance observations to invert leaf models such as PROSPECT. These require

the use of additional, expensive instruments, such as an integrating sphere, that typ-

ically introduce significant noise and potential errors in the measurements given their

inadequate design across a range of leaf habits. In addition, our approach suggests

the possibility to instead use leaf reflectance observations alone to scale canopy-scale

RTMs by coupling measured reflectance with simulated transmittance.

Placed in the context of past inversion studies, our work reveals some continuing

challenges in the use of PROSPECT to model leaf optical properties and provides

some guidance for future RTM development. For instance, we noted issues with us-

ing PROSPECT to model reflectance and transmittance in the 400 to 500 nm range

(Figure 2·2) that have also been reported in previous studies. Feret et al. (2008)
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observed a consistently negative transmittance bias and occasionally a positive or

negative reflectance bias. Similarly, Croft et al. (2013) report systematic underes-

timates of reflectance in this part of the spectrum. One possible source of bias is

PROSPECT’s simplified description of leaf structure (Jacquemoud and Baret, 1990)

and failure to account for specular reflectance off the leaf surface (Grant, 1987). An-

other possible source of error is imprecise calibration of the leaf refractive index,

which has a relatively strong wavelength dependence in the region of interest (400–

500 nm) (Feret et al., 2008). Alternatively, this bias could be the result of the failure

of the PROSPECT 5 model to properly represent the spectral properties of chloro-

phyll in leaves, potentially requiring additional calibration across a broader range of

species and environments. The common specific absorption feature for chlorophyll a

and b (kCab(λ)) in PROSPECT 5 used in this study is empirically calibrated to a

single data set (ANGERS; Feret et al., 2008), and many studies have shown that

this feature may need to be re-calibrated to the data at hand to obtain accurate

inversion estimates, particularly for species dissimilar to those in the ANGERS data

set (Malenovský et al., 2006; Moorthy et al., 2008; Zhang et al., 2008; Li and Wang,

2013). As well, PROSPECT 5 fails to distinguish between chlorophyll a and b, which

have overlapping but distinctly different absorption signatures and whose ratios have

been shown to be affected by environmental conditions (Blackburn, 2006; Di Vittorio

and Biging, 2009; Di Vittorio, 2009a). Fortunately, it has been shown that not only

can chlorophyll a and b be distinguished using imaging spectroscopy (Di Vittorio,

2009b), but that these differences can be incorporated into a RTM to improve its

performance (Di Vittorio, 2009a).

Reflectance in the SWIR region (>1500 nm)—where we observed significant re-

flectance bias (Figure 2·2)—is influenced by three PROSPECT parameters: N, Cw,

and Cm. All three parameters modulate reflectance in this spectral region monotoni-
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cally: Reflectance increases with higher values of N and decreases with higher values

of Cw and Cm. This means that it is unlikely that incorrect parameter trade-off

within the algorithm (e.g. preferentially selecting Cw over Cm) could contribute to

this error. Feret et al. (2008) also reported similar reflectance bias patterns for the

ANGERS data set despite using a different inversion methodology. We hypothesize

this bias is the result of PROSPECT’s insufficient characterization of the specific ab-

sorption spectrum of leaf dry matter (kCm(λ)), since the absorption characteristics

of water (kCw(λ)) are well known and N is not dependent on an absorption feature.

This would also help explain the negative bias we observed between spectral inver-

sion estimates of Cm and direct measurements of LMA (Figure 2·4, Table2.4). Other

studies have also reported a bias but the direction of this bias has not been consistent,

with some studies showing negative bias across all their data (Li and Wang, 2011;

Cheng et al., 2014) and others reporting a bias whose magnitude and direction is

data-dependent (Feret et al., 2008). This may partially be explained by the simple

treatment of non-pigment compounds in the current PROSPECT model, wherein

protein, cellulose, hemicellulose, sugar, starch, and lignin are aggregated into a single

parameter (Cm) (Fourty et al., 1996). As with chlorophyll, the absorption feature for

Cm is empirically derived (Feret et al., 2008) and fails to represent variability in the

relative abundance of the different components (Poorter et al., 2009). Fortunately,

Wang et al. (2015) demonstrated that, with proper calibration, it is possible to use

PROSPECT inversion to determine leaf protein as well as combined cellulose and

lignin content. Furthermore, measurements of LMA are an aggregate of a number of

constituents including chlorophyll, carotenoids, lipids, organic acids, phenolics, and

vascular tissue (Poorter et al., 2009), which would positively bias the measurement

compared to the spectral estimate. Finally, it is possible that strong positive co-

variance between N and Cm (Figure 2·6) caused by their significant spectral overlap
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interferes with accurate estimation of Cm. However, based on our finding that inver-

sions of simulated spectra did not display this problem (Field spectra in Figure 2·5),

we conclude the error is in fact driven more by model formulation than by parameter

identifiability. We are aware of only one other study that attempted to estimate all

five PROSPECT parameters (including the structure parameter, N) simultaneously:

Li & Wang (2011) presented a novel algorithm for PROSPECT inversion that assigns

a separate merit function to each parameter (rather than a single common merit

function for all parameters) and demonstrated its improved performance over tradi-

tional approaches. However, although their new algorithm reduced error and bias in

the LMA estimates, a negative bias comparable to the one we report still remained

across all of their data sets.

Based on these results, we suggest that future PROSPECT development should

aim for finer distinction in leaf chemical components. That being said, the intro-

duction of additional parameters into a model must be approached with caution, as

parameter precision and identifiability tend to decrease with model complexity. The

ability of our Bayesian inversion to quantify parameter uncertainty and covariance

makes it useful for nested model selection. An alternative approach to addressing the

issue of empirically-calibrated absorption coefficients is to explicitly account for their

uncertainty and covariance structures. Within our Bayesian framework, such uncer-

tainties could be treated as observation errors and propagated to the uncertainty in

parameter estimates. In subsequent work, we will explore such a calibration using

coupled spectral-trait data from multiple available datasets.

The relatively large magnitude in our observed transmittance bias (compared to

reflectance) is likely the result of using only reflectance as input in our inversion. A

combined approach using measured reflectance and transmittance observations, col-

lected on the same leaf samples, may have shown the variability distributed more
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evenly because the minimization of the residuals would have been more balanced

between the two vectors of data. Ultimately, higher uncertainties in transmittance

estimates compared to reflectance are a consequence of the inherent challenges in

using integrating spheres to measure transmittance, especially the substantial noise

in the SWIR regions. This is supported by the absence of significant systematic bias

between measured and modeled transmittance across the overwhelming majority of

the spectrum (Figure 2·2). Moreover, although the confidence intervals on transmit-

tance bias are as high as 25% at some wavelengths, averaging over all spectra and

aggregating across the visible (400 to 800 nm) and infrared (801 to 2500 nm) regions

leads to results similar to those reported in other field spectra inversion studies, even

though these studies used both reflectance and transmittance as input. Although

our overall transmittance RMSE values were two to three times higher than those

reported by Feret et al. (2008), these errors are inflated by the inclusion of conifer

species, for which reflectance is harder to measure reliably and the assumptions of

the PROSPECT model are not satisfied (Jacquemoud and Baret, 1990; Di Vittorio,

2009a; Allen et al., 1969). As well, measurements of needle-leaf transmittance often

result in considerable noise in longer wavelengths (SWIR, >2000 nm) given the phys-

ical challenges of making these measurements on needle-leaf species (and other leaf

types), generally poor lamp performance as compared to other methods, and the much

smaller transmission of light in these wavelengths (often resulting in signals below the

precision of the instrument). As such we would expect higher reported error com-

pared to other leaf morphologies. For example, in examining our broadleaf samples

we observed that the statistics for transmittance are much closer to those reported

by Feret et al. (2008), despite not including measured transmittance in the inversion.

Our transmittance error statistics are also similar to those reported for conifers by

Di Vittorio (2009a) who used transmittance information and a re-calibrated version
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of the LIBERTY leaf RTM (Table 3). Moreover, our reflectance statistics show error

comparable to or lower than those reported in similar studies (Feret et al., 2008; Di

Vittorio, 2009a).

Through our sensor experiment, we explicitly demonstrate the tradeoffs between

spectral information content and parameter uncertainty and identifiability. With

increasingly coarse spectral resolution, we observed not only wider parameter con-

fidence intervals indicating higher uncertainty but also tighter covariance structures

indicating a reduced ability to distinguish between parameters (Figure 2·6). This

comparison approach can be used to guide future enhancements of radiative transfer

models by quantitatively showing whether a model of a given complexity is warranted

given data of a particular quality. For example, in our simulation experiment, all the

full-range hyperspectral sensors were capable of accurately estimating chlorophyll and

carotenoids, but the ability of multispectral sensors to do so was dramatically lower

(Figure 2·5, Table 2.5). We therefore can conclude that the use of PROSPECT 5

is warranted when performing inversion of hyperspectral data, but PROSPECT 4

(which does not distinguish between pigments) may be preferable for multispectral

data. A similar framework can be used to determine the utility of increasingly com-

plex future versions of PROSPECT that further differentiate leaf biochemical and

structural components.

Importantly, the results of our sensor simulation experiment are highly idealized

due to their failure to consider canopy structure, atmospheric effects, sun-sensor geom-

etry, and sensor radiometric and spatial characteristics. However, a similar Bayesian

inversion framework has been shown to work on MODIS data for the related coupled

leaf-canopy RTM PROSAIL (Zhang et al., 2005; Zhang et al., 2006; Zhang et al.,

2009; Zhang et al., 2012) and we believe the framework can be readily applied to

other RTMs that address many of the limitations of our study. In future work, we
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will explore Bayesian spectral inversion of the coupled leaf-canopy RTM responsible

for energy balance calculations in the ED2 ecosystem model (Medvigy et al., 2009a)

on atmospherically corrected and orthorectified AVIRIS imagery, which will be an

important milestone in bringing together the remote sensing and ecological modeling

communities. In the long run, our framework could also be extended to the inver-

sion of coupled canopy-atmosphere models using a combination of meteorological and

spectral data from Earth Observation satellites, leveraging the relative advantages of

each platform to generate unified time series of ecologically meaningful parameters

with unprecedented spatial and temporal resolution.

2.5 Conclusions

This study introduces a novel application of Bayesian spectral inversion to the PROSPECT

5 leaf RTM that explicitly takes into account uncertainty and correlation in param-

eter estimates. Validation of our algorithm on a coupled leaf spectral-trait database

revealed accuracy comparable to previous inversion algorithms despite only using

reflectance observations and the default PROSPECT model (i.e. no additional refine-

ment of the specific absorption features). By simulating reflectance measurements

with the spectral characteristics of different remote sensing platforms, we were able

to quantify the relationship between spectral resolution and parameter uncertainty.

Although our simulated observations are highly idealized, we believe the resulting

patterns in retrieved parameter accuracy and precision are representative of the ad-

vantages and limitations of the spectral configurations of different sensors for remote

sensing of vegetation. Our work reinforces the notion that Bayesian spectral inversion

provides a powerful and versatile framework for future RTM development and single-

and multi-instrumental remote sensing of vegetation, and we encourage members of

the remote sensing community to apply and build upon the tools we have developed.
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Chapter 3

Leaf optical properties shed light on foliar

trait variability at individual to global

scales

3.1 Introduction

A key objective of present-day ecosystem ecology is to develop a predictive under-

standing of how terrestrial ecosystems will respond to rapid and widespread envi-

romental changes defining the Anthropocene. Plant functional traits serve as bell-

wethers of many aspects of plant ecophysiology, and understanding how traits respond

to biotic and abiotic forcings has become a top priority in terrestrial ecology. As I

discussed in Chapter 1, global trait databases are useful for evaluating theories about

plant ecological strategies and can be used to constrain parameters of dynamic vege-

tation models.

However, there are fundamental limits on the ecological questions that can be

answered using static trait databases. For one, such databases are spatially and phy-

logenetically incomplete, often in domains most critical to the global climate system

such as boreal and tropical forests (Jetz et al., 2016). More importantly, because

these databases generally do not contain observations collected on the same individ-

uals through time, they are limited in their ability to inform us about direct dynamic

responses of plant function to environmental changes. These changes are perhaps

most pronounced in deciduous plants, whose leaves within a single season undergo
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a full life cycle accompanied by dramatic changes in pigment concentrations (Yang

et al., 2016), morphology (Poorter et al., 2009), and productivity (Parent et al., 2010).

Such intra-specific and intra-individual changes also occur in evergreen plants. For

instance, in tropical evergreen broadleaf trees, leaf biochemistry and productivity

varies significantly with leaf and plant age (Kitajima et al., 1997; Kitajima et al.,

2013; Chavana-Bryant et al., 2016; Wu et al., 2016a). Similarly, conifer needles un-

dergo morphological and biochemical changes over the course of their lifetime that

reflect shifting priorities in terms of ecological strategy (Kuusk et al., 2017). Besides

these developmental changes, plant traits also respond to biotic and abiotic stres-

sors, including drought (Sun et al., 2018; Buchner et al., 2017; Bayat et al., 2016),

heat (Chapin and Shaver, 1996; Serbin, 2012), elevated CO2 (Medlyn et al., 2015;

Lindroth, 2010), insect infestation (Di Vittorio and Biging, 2009; Marti et al., 2012),

and pathogens (Horst et al., 2009).

Understanding the contributions of these many different drivers of plant trait vari-

ability necessarily requires large sample sizes over a wide range of conditions. Mean-

while, observing responses directly requires measurements through time. Traditional

methods for assessing traits are ill-suited to this task because they are generally labor

intensive and often require destructive sampling. As I discussed in Chapter 2, spec-

tral measurements of plant tissues are capable of providing a fast and non-destructive

assessment of plant traits. Leaf reflectance spectra have been widely used to study

plant functional traits, both to elucidate patterns of natural variability (Cavender-

Bares et al., 2017; Asner et al., 2015) and for assessing trait responses to stress (Serbin

et al., 2014; Bayat et al., 2016; Sun et al., 2018). Furthermore, by clarifying the re-

lationships between plant optical properties and traits, studies using leaf spectra are

essential to the remote mapping and monitoring of traits (Schneider et al., 2017;

Schimel et al., 2013; Schimel et al., 2015; Jetz et al., 2016).
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Although, a variety of traits have been estimated empirically from spectra, the

contribution of those traits to actual reflectance is not always clear. Some of the traits

estimated empirically, such as Vc,max and Jc,max, are not actually properties of plants

but rather model parameters inferred from measurements of plant activity, so they

by definition cannot influence plant reflectance. Similarly, elemental concentrations

and ratios (particularly leaf N) are among the most common targets of spectroscopy,

but these elements are present in plants primarily in larger molecules. However, the

fact that these “invisible” traits can be accurately estimated from spectra indicates

that they are often correlated related to other actually “visible” traits, but the exact

nature of these correlations is still not well understood. In this study, I focus on

six foliar traits (hereafter known as “optical” traits) that do contribute directly to

leaf reflectance, and which are themselves relevant to plant function (Figure 3·1): (1)

Leaf mesophyll structure, expressed as the effective number of leaf mesophyll layers,

provides a physical mechanism for leaf adaptation to light independent of biochemical

changes in photosynthetic machinery (Ivanov et al., 2016; Schollert et al., 2017). (2)

Leaf chlorophyll content (the sum of chlorophyll a and b) drives the amount of pho-

tosynthetically active radiation absorbed by leaves and is therefore closely related to

plant photosynthesis (Croft et al., 2017). Chlorophyll absorbs strongly in the visible

range, particularly in the blue and red regions, where absorbance is >90%. (3) Leaf

carotenoid pigments are related to the xanthophyll cycle, a key mechanism for pre-

venting plant photooxidiative stress under drought, heat stress, and high light (Ruban

et al., 2007). Carotenoid pigments absorb light most strongly in blue, to a lesser ex-

tent, green wavelengths. (4) Leaf anthocyanin pigments have a somewhat poorly

understood role in plant physiology, but generally seem to enhance leaf tolerance to

a wide range of stressors including drought, ultraviolet radiation, heavy metals, and

photooxidation (Gould, 2004). Anthocyanins absorb most strongly in green and, to a
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lesser extent, blue wavelengths. (5) Leaf water content is closely related to leaf health

and productivity, and is useful as an indicator of overall plant water status (Peñuelas

et al., 1994; Kramer and Boyer, 1995; Cheng et al., 2011; Chavana-Bryant et al.,

2016). Water is the mean factor driving leaf absorbance in shortwave infrared wave-

lengths (>1300 nm), and has particularly deep absorption features around 1450, 1950,

and 2500 nm. (6) Finally, leaf dry mass per area is indicative of a wide variety of plant

functional characteristics (Poorter et al., 2009) and is a key parameter in determining

plant ecological strategy (Wright et al., 2004; Reich, 2014). Although exact molec-

ular composition varies substantially across species and individuals, leaf dry mass is

generally dominated by minerals, organic acids, structural and nonstructural carbo-

hydrates, phenolics, proteins, lignin, and lipids (Poorter et al., 2009). Collectively,

these molecules have an absorption peak in very blue wavelengths, negligible absorp-

tion in the visible and near-infrared, and gradually increasing absorption across the

shortwave infrared region.

The six traits described above are used by the PROSPECT leaf radiative transfer

model to simulate leaf reflectance and transmittance (Jacquemoud and Baret, 1990;

Feret et al., 2008; Féret et al., 2017). PROSPECT has been used extensively for the

simulation of leaf and, (combined with canopy models) canopy reflectance, as well as

for estimation of leaf spectral characteristics through spectral inversion (Chapter 2,

Jacquemoud et al., 2009). Unlike empirical approaches for estimating leaf properties

from spectra, including spectral indices (le Maire et al., 2004; Féret et al., 2011) and

partial least squares regression (PLSR) (Serbin et al., 2011), PROSPECT aims to

provide a causal understanding of leaf optical properties. This means that, by de-

sign, PROSPECT intends to be generic across all species and conditions, and, more

importantly, makes it a useful tool for applications where the links between leaf prop-

erties and spectra are important, such as modeling leaf absorbance for photosynthesis
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Figure 3·1: (Top) Example reflectance spectra of Acer rubrum leaves.
(Bottom) Normalized absorption coefficients for optical traits in this
study.
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and for improving representations of energy balance in terrestrial biosphere models.

However, the extent of PROSPECT’s generality has not been well tested, with most

PROSPECT studies focusing on a relatively small set of species that are fairly similar

to those used for PROSPECT’s original calibration (Feret et al., 2008; Féret et al.,

2011; Féret et al., 2017; Li and Wang, 2011; Wang et al., 2015a).

The above discussion culminates in the following three questions: First, how well

can leaf optical traits be estimated from PROSPECT inversion over a wide range

of species and experimental designs? Second, how do leaf optical traits vary across

a variety of environmental conditions and species? Specifically, how is intraspecific

variability in optical traits related to various growing conditions including local cli-

mate, canopy light environment, and exposure to pathogens? As well, how well can

interspecific variability in traits be explained by species attributes frequently used

for grouping species into functional types (e.g. plant growth form, photosynthetic

pathway, phenological habit)? Third, how are leaf optical traits related to other leaf

traits not directly estimable from PROSPECT inversion? To address these questions,

I applied my PROSPECT inversion methodology (Chapter 2) to a large database of

leaf spectra and traits collected in a variety of natural and experimental settings.

3.2 Methods

3.2.1 Data

Data from this project were assembled from 22 projects on leaf spectra and related

foliar traits (Table 3.1). Most of these datasets are available in the ECOSIS spectral

library (https://ecosis.org/), with the following exceptions: Data from Barnes

et al. (2017) are hosted in a publicly-available Open Science Framework repository

described in the manuscript. Data for Di Vittorio (2009), Wu et al. (2016), and Yang

et al. (2016) were provided directly by the authors. Finally, data from both NGEE
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Table 3.1: Project information

Short name Long name Samples Species Sites

ACCP Accelerated Canopy Chemistry Program (ACCP) 850 46 5
ANGERS Angers, France spectra from INRA 274 37 1
Barnes 2017 Barnes et al. 2017. Beyond greenness: Detecting

temporal changes in photosynthetic capacity with
hyperspectral reflectance data. PLoS ONE.

86 1 1

Cali. Eco. Traits Fresh Leaf Spectra to Estimate Leaf Traits for California

Ecosystems

261 16 34

Cedar Creek Biodiv. 2014 Cedar Creek ESR Grassland Biodiversity

Experiment: Leaf-level Contact Data: Trait Predictions

780 17 1

Corn var. Spectral Characterization of Multiple Corn Varieties:

West Madison Agricultural Station 2014

288 1 1

Di Vittorio 2009 Di Vittorio 2009 504 2 3
Hawaii 2000 Hawaii 2000 vegetation species spectra 588 56 48
LOPEX Leaf Optical Properties Experiment (1993) 66 45 1
Milkweed stress Common Milkweed Leaf Responses to Water Stress and

Elevated Temperature

735 1 1

Missoula TS Missoula Montana lodgepole pine & big sagebrush time

series

100 2 4

NASA FFT NASA Forest Functional Types (FFT) 1369 66 130
NASA HyspIRI NASA HyspIRI field campaign 1704 38 12
NGEE Arctic Next Generation Ecosystem Experiment (NGEE) -

Arctic
614 13 3

NGEE Tropics Next Generation Ecosystem Experiment (NGEE) -
Tropics

706 28 1

Pepper K/N Fresh and Dry Pepper Leaf Spectra with Associated

Potassium and Nitrogen Measurements

119 1 1

PVY solanum Varietal Discrimination and Detection of PVY in
Solanum tuberosum: Hawaii 2014

761 1 1

Santa Monica Mtns. Santa Monica Mountains vegetation species spectra 353 24 1
Soybean aphid Productivity and Characterization of Soybean Foliar

Traits Under Aphid Pressure

1131 1 1

Spectral variation Spectral Variation Between Leaf-level and Canopy-level
Measurements

16 1 1

Wu 2016 Wu et al. 2016 New Phytologist canopy traits study 160 17 1
Yang 2016 Yang et al. 2016 Remote Sensing of Environment 497 3 2

projets and the HyspIRI campaign were provided by Shawn Serbin. Collectively,

these data are comprised of nearly 12,000 observations from 346 species, and span a

wide geographic (Figure 3·2) and climatic range (Figure 3·3).

3.2.2 Trait estimation via PROSPECT inversion

The PROSPECT leaf radiative transfer model (Jacquemoud and Baret, 1990; Jacque-

moud et al., 2009; Feret et al., 2008; Féret et al., 2017) simulates leaf reflectance and

transmittance for 400 to 2500 nm wavelengths at 1 nm increments as a function of

leaf morphological and biochemical characteristics. In this chapter, I compared the
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performance of four different versions of PROSPECT, each of which uses a differ-

ent combination of leaf traits: PROSPECT 4 uses total chlorophyll content per area

(µg cm−2), leaf water content per area (g m−2), and leaf dry matter content per area

(g m−2) (Feret et al., 2008). PROSPECT 5 extends PROSPECT 4 with a parameter

for total carotenoid content per area (µg cm−2) (Feret et al., 2008). PROSPECT

5B adds an additional parameter for total “senescent brown pigment” content (arbi-

trary units) (Jacquemoud et al., 2009). Finally, PROSPECT D adds an additional

parameter for total anthocynanin content per area (µg cm−2) (Féret et al., 2017).

The absorption coefficients for PROSPECT-D aligned with example leaf reflectance

spectra are shown in Figure 3·1.

To estimate traits from leaf spectra, I generally followed the Bayesian RTM in-

version approach of (Shiklomanov et al., 2016), except that I replaced the Metropolis-

Hastings algorithm with a more efficient Differential Evolution algorithm with “snooker”

update as implemented in the BayesianTools R package (Hartig et al., 2017). For-

ward simulations and Bayesian inversion of PROSPECT are implemented in the R

package PEcAnRTM (Shiklomanov et al., 2016), which is open source and freely avail-

able at https://github.com/pecanproject/pecan/modules/rtm. Where leaf spec-

tra extended beyond the 400 to 2500 nm wavelength range of the PROSPECT model,

I used only the observations from 400 to 2500 nm. Where leaf spectra were sampled

at a spectral resolution coarser than 1 nm or did not include all wavelengths simu-

lated by PROSPECT, I subset the PROSPECT output in the likelihood function to

match the observations. Where leaf spectra were sampled at a finer spectral resolution

than 1 nm, or where wavelengths did not align at 1 nm intervals, I used cubic spline

interpolation (default method in the base R function spline) to align the spectra

with PROSPECT output. Where leaf spectra were provided as “pseudo-absorbance”

(1− log10(R)), I added the corresponding transformation to the PROSPECT output
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in the likelihood calculation.

3.2.3 Analysis

To validate PROSPECT inversions, I compared trait estimates from PROSPECT

inversion with direct measurements of the corresponding traits, where these traits

were available. To explore project- and plant functional type-specific biases in the

inversion, I fit robust linear regressions (via iterated re-weighted least squares, as

implemented in the rlm function in the MASS R package) to investigate the ability of

trait estimates from spectra to predict the measured traits (Figure 3·4).

To investigate the effects of experimental treatments and environmental condi-

tions, I fit a linear fixed effects model for each optical trait and each treatment, with

an additional fixed effect for species if multiple species were present in that treat-

ment. To investigate the role of intraspecific variability in climate, I subset the data

to species that were present at least 10 different sites and fit a fixed-effects model

to each optical trait as a function of species, annual mean temperature, and annual

precipitation. I then present the direction of each fixed effect coefficient and whether

the coefficient was significant (Figure 3·9).

One study in this dataset—Yang et al. (2016)—explicitly looked at the seasonal

trajectories of leaf reflectance, allowing me the chance to investigate the phenology

of leaf optical traits (Figure 3·10).

To investigate the correlations among leaf optical traits, I performed a principal

components analysis on the pairwise correlation matrix of all inversion estimates

(Figure 3·11). To investigate the correlations between optical traits and other traits

measured directly, I calculated the pairwise non-missing correlations (R function cor

with option use = pairwise.complete.obs) and plotted the resulting correlation

coefficients using the corrplot package. I performed this analysis for both individual

observations and species means, where a trait was observed for at least 3 individuals
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or species, respectively.

I performed all analyses using R version 3.5 (R Core Team, 2017). The data and

code for performing these analyses are open source and freely available at

https://github.com/ashiklom/rspecan.

3.3 Results

3.3.1 Estimating traits via PROSPECT inversion

Across most projects and traits, the four different PROSPECT versions performed

similarly in terms of their ability to retrieve traits (Figure 3·4). For all versions of

PROSPECT, leaf water content was consistently the most accurate trait retrieved,

while retrievals of other traits were highly project-specific. For several projects span-

ning a large range of species (Cali. Eco. Traits, NASA FFT, and NASA HyspIRI),

moving from chlorophyll as the only pigment (PROSPECT 4) to chlorophyll and

carotenoids (PROSPECT 5/5B) drastically reduced inversion accuracy of dry mat-

ter contents, but this accuracy was restored by the further addition of anthocyanins

and modification of the refractive index in PROSPECT D (Figure 3·4). Because

PROSPECT-D also retrieves anthocyanin content and generally performed as well or

better than other versions, it was the version selected for subsequent analyses.

Inversion accuracy varied significantly by project and growth form (Figures 3·4, 3·5,

and 3·6). In terms of regression R2, inversion accuracy was highest for broadleaved

trees, lower for herbs and needleleaved trees, and lowest for grasses. However, there

was substantial project-specific variability in accuracy between these groups. For ex-

ample, both water and LMA retrievals from the California Ecosystem Traits dataset

were consistently much worse than for other datasets for both broadleaved and needle-

leaved trees, while the LOPEX and ANGERS datasets (against which PROSPECT is

calibrated) performed very well for all traits for broadleaved trees, herbs, and grasses.
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The full pairs plot (Figure 3·5) reveals that regression R2 is insufficient for capturing

all of the patterns in the validation. In several cases (e.g. water and LMA retrieval for

conifers from the NASA FFT dataset, or carotenoid retrievals from the soybean aphid

dataset), there is a saturation effect, whereby accuracy is good at lower trait values

but declines as trait values increase. In other cases, there is a significant additive

and/or multiplicative bias in retrievals — for instance, in the retrieval of chlorophyll

and carotenoid contents from herbs.

3.3.2 Drivers of variability in leaf optical traits

Across all optical traits, roughly half of variability was explained by species identity

(Figure 3·7). The variance across species means was largely idiosyncratic to species,

with only up to 25% of variance explainable by species attributes (Figure 3·8). The

most important explanatory attribute was leaf phenology (deciduous vs. evergreen),

with occasional significant effects for leaf type (broad vs. needle), growth form (woody

vs. herbaceous), and mycorrhizal association (arbuscular or non-arbuscular).

Leaf optical traits responded significantly to a range of natural and experimental

stressors (Figure 3·9). Across the entire dataset, intraspecific variability in opti-

cal traits was weakly but, in some cases, significantly related to climate, with the

strongest effects being declines in mesophyll structure and dry matter content with

increasing temperature. Canopy light environment (i.e. whether a leaf was sunlit or

shaded) also had a significant effect on most traits, at least for species on which a

comparison was possible. Specifically, shaded leaves showed higher chlorophyll and

anthocyanin concentrations and reduced mesophyll structure and water and dry mat-

ter contents.

Based on leaf reflectance measurements of Populus deltoides (eastern cottonwood)

at the University of Arizona by Barnes et al. (2017), seasonal variations in vapor

pressure deficit—but not leaf temperature—had significant negative effects on all
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traits, with the strongest effects on chlorophyll and anthocyanin contents. Similarly,

warming and drought experiments on Asclepias syriaca (common milkweed) had

strong and significant effects on almost all optical traits, with both treatments leading

to significant decreases in leaf water content and effective number of mesophyll layers

and increases in pigments and dry matter content concentrations (Couture, 2015).

Leaf optical traits also responded significantly to chemical and biotic stressors. Based

on data from Di Vittorio (2009) , needles of Pinus ponderosa and Pinus jeffreyi from

the northern Sierra Nevada mountains experienced reductions in all traits, but most

strongly in pigment and dry matter contents, when afflicted with winter fleck (patchy

mortality of needle epidermal cells, usually triggered by exposure to harsh winter

weather), sucking and scale insect, and especially ozone damage. As well, spectral

inversion revealed small but statistically significant declines across all optical traits

except anthocyanins in Solanum tuberosum (potato) plants infected with potato virus

Y (Couture, 2014). On the other hand, treatment of Glycine max (soybean) with

aphids resulted in a small but significant increase in pigment concentrations, with the

strongest effect observed at medium-level treatment (Singh, 2013).

Where such measurements were available, leaf optical traits exhibited a strong

phenological signal (Figure 3·10). All optical traits showed a peak in late July / early

August, followed by a decline into the fall, with the sharpest declines for pigments and

water content and less precipitous declines for dry matter and mesophyll structure.

Furthermore, the effective number of leaf mesophyll layers, and to a lesser extent,

leaf dry matter content in shade leaves, appeared to increase in the late fall. With

the exception of anthocyanin content, all traits for shaded leaves were higher and

experienced a greater seasonal variability than sunlit leaves.
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Figure 3·10: Optical trait estimates through a season for Quercus
rubra (red oak) at Martha’s Vineyard, MA by Yang et al. (2016). Colors
indicate sunlit vs. shaded leaves. Line is a LOESS best fit with shaded
standard error.
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principal component. (Center, Right) Principal component scores and
vectors for each optical trait for components 1 and 2 (center) and 2 and
3 (right).

3.3.3 Trait correlations

Optical traits estimated by PROSPECT are not mutually independent, but rather

have some structure to their covariance (Figure 3·11). The first principal component,

which explains roughly 50% of the variability, is defined by increases in all leaf traits

and can be interpreted as overall leaf size and tissue density. The second principal

component, which explains an additional 20% of the variability, is characterized by an

approximate trade-off between structural traits (mesophyll structure and dry matter

content) and physiological traits (chlorophyll, carotenoid, and water contents). The

third principal component, which explains a further 15% of the variability, is domi-

nated by a trade-off in water and anthocyanin concentrations.

Covariance of optical traits with six area-normalized traits—leaf nitrogen, carbon,

cellulose, and lignin contents, Vc,max, and Jmax—was strongly species specific, but, in



80

# meso Chl. Car. Anth. Water Dry matter

N

C

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

SANEN
SAPU15
THOC2
OLRIR
CECU
SCSC

LIAS
DACA7

SALE
PAVI2

DAPU5
MOFI

SONU2
LECA8
LUPE3
ASSY
QUAG

AMCA6
ACMI2
ANGE
KOMA

DAVI
QURU

ARFU2
UMCA
QUDO
CAAQ
POPR

BEAL2
ARGL
HEAR
ACRU
ASTU
PIST

PEFR5
TSCA
CADE
ABBA
CESP
QULO

ARLA2
POTR5

PIMA
PIBA2
QUAL
BAPI

ERAN6
PIRE

ACSA3
CAOV2
GLMA4

TIAM
FRAM2

OSVI

SANEN
SAPU15
THOC2
OLRIR
SCSC

LIAS
DACA7

PAVI2
DAPU5

MOFI
SONU2
LECA8
LUPE3
ASSY

AMCA6
ACMI2
ANGE
KOMA

DAVI
QURU

ARFU2
CAAQ
POPR

BEAL2
ACRU
ASTU
PIST

PEFR5
TSCA
ABBA

ARLA2
POTR5

PIMA
PIBA2
QUAL

ERAN6
PIRE

ACSA3
CAOV2
GLMA4

TIAM
FRAM2

OSVI

Correlation coefficient

# meso Chl. Car. Anth. Water Dry matter

cellulose

lignin

Vcmax

Jmax

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

OLRIR
CECU
SCSC

LIAS
DACA7

SALE
PAVI2

DAPU5
MOFI

SONU2
LECA8
LUPE3
QUAG

AMCA6
ACMI2
ANGE
KOMA

DAVI
UMCA
QUDO
POPR
ARGL
HEAR
ASTU
CADE
CESP
QULO
BAPI

GLMA4

OLRIR
CECU
SCSC

LIAS
DACA7

SALE
PAVI2

DAPU5
MOFI

SONU2
LECA8
LUPE3
ASSY
QUAG

AMCA6
ACMI2
ANGE
KOMA

DAVI
QURU
UMCA
QUDO
POPR
ARGL
HEAR
ACRU
ASTU
PIST

TSCA
CADE
ABBA
CESP
QULO
PIMA

PIBA2
QUAL
BAPI
PIRE

ACSA3
CAOV2
GLMA4

ASSY
PODE3

PODE3

Correlation coefficient

Functional type broadleaf conifer grass herb
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many cases, significant (Figure 3·12). In general, for any given species, most of the es-

timated optical traits exhibited similar correlations with the directly measured trait.

For instance, for Glycine (Glycine max, GLMA4), all optical traits were positively

correlated with leaf N, C, cellulose, and lignin, whereas for milkweed (Asclepias syr-

iaca, ASSY), all of these correlations were negligible. Leaf nitrogen correlated best

for the largest number of species with leaf chlorophyll and, to a slightly lesser extent,

with dry matter content. Leaf carbon and lignin were most consistently correlated

with leaf dry matter content, while correlations with cellulose were more idiosyn-

cratic. Vc,max and Jmax were strongly positively correlated with all traits for Populus

deltoides (PODE3), but completely uncorrelated for milkweed (ASSY). Correlations

between optical and other traits were generally strongest for broadleaf trees, some-

what weaker for needleleaved trees, and weakest for herbs and grasses. Although this

was also the general pattern in the validation, exploratory analyses (not shown) do

not find any consistent relationship between trait retrieval accuracy (represented by

validation R2) and intraspecific correlation.

Among species means, almost all area-based traits were at least weakly posi-

tively correlated with each other (Figure 3·13). Among optical traits, the strongest

correlations were among the three pigments, and of leaf water and dry matter con-

tents. Spectrally-estimated leaf mesophyll structure and dry matter content corre-

lated strongly with traits related to structure, namely C, cellulose, and lignin con-

tents. Leaf N was most strongly correlated with dry matter and water contents and

leaf mesophyll structure, and only weakly correlated with chlorophyll and carotenoid

contents.
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3.4 Discussion

3.4.1 Estimating traits through PROSPECT inversion

Establishing general, species- and site-independent relationships between leaf func-

tional traits and optical properties is challenging. My results suggest that Bayesian

PROSPECT inversion is a promising technique for achieving this objective. Aver-

aged across the entire dataset, spectral estimates of traits were able to capture 50

to 75% of the variability in the true values of the traits (Figure 3·4). In addition,

spectral trait estimates were able to not only identify but also ascribe a physiologi-

cal mechanism to intra-specific variability associated with long-term acclimation and

acute stress responses in both natural and experimental settings (Figure 3·9). By

comparing retrieval accuracy across different versions, my results also reaffirm the

value of recent improvements to PROSPECT. In particular, the successive additions

of carotenoid (Feret et al., 2008) and anthocyanin (Féret et al., 2017) pigments sig-

nificantly increased accuracy of chlorophyll retrievals in the phenological dataset of

Yang et al. (2016) (Figures 3·5 and 3·4), which points to the importance of modeling

non-photosynthetic pigments in leaves sampled early or late in the growing season.

That being said, the large scale validation demonstrated here reveals enduring

challenges and development opportunities for modeling leaf optical properties and re-

trieving leaf traits from spectra. The particularly poor inversion accuracy for grasses

(Figures 3·5 and 3·6) suggests that the biochemistry and morphology of grasses do

not fit the assumptions of PROSPECT. Perhaps lower-hanging fruit is investigation

of places where inversion estimates did well at capturing variability in traits, but

were additively or multiplicatively biased. For example, estimates of chlorophyll and

carotenoid content in herbs from two dramatically different environments and species

(greenhouse-grown soybean and tundra vegetation) showed virtually the same mul-

tiplicative bias and accuracy (Figure 3·5). One possible culprit for this bias is the
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chlorophyll a–b ratio, which varies within and across species (Kura-Hotta et al., 1987;

Kitajima and Hogan, 2003) but is fixed in the current version of PROSPECT. Fortu-

nately, a recently released update to PROSPECT succeeded in modeling chlorophyll a

and b independently (Zhang et al., 2017). This advance continues an ongoing positive

trend in improving the detail with which PROSPECT models leaf optical properties.

One conclusion of Chapter 2 was that the use of physically-based absorption coef-

ficients, such as that for leaf water content, is important for accurate trait retrievals

using physically-based radiative transfer models. Results from the wider range of

species and projects in this chapter challenge this notion. Retrievals of leaf water

content and total chlorophyll concentration had comparable overall R2 values (Fig-

ure 3·4). However, leaf water content retrievals exhibited clear and significant project-

specific biases, especially at high values (Figure 3·5) Meanwhile, chlorophyll content

retrieval was more consistently accurate across its entire range, even for needleleaved

species (in the Di Vittorio dataset) (Figure 3·5) that poorly fit the parallel-plane

assumptions of the PROSPECT model (Allen et al., 1969; Jacquemoud and Baret,

1990) and, more importantly, despite the fact that the chlorophyll absorption coeffi-

cients for PROSPECT are calibrated only against the ANGERS dataset, which does

not have any conifers (Feret et al., 2008; Féret et al., 2017). Project-specific cali-

bration has been shown to further improve the results of PROSPECT inversion (Li

and Wang, 2013), which suggests that re-calibration of PROSPECT absorption coef-

ficients against a wider range of species and environmental conditions (such as those

used here) could lead to significant improvements in PROSPECT performance. On-

going efforts to curate and make publicly available spectral observations, such as the

ECOSIS project (ecosis.org), significantly aid such efforts.



85

3.4.2 Variation in optical traits

Optical traits showed substantial variability both within and across species. The ex-

tent of intra-specific variability in optical traits was substantial—from 30% for leaf

structure and dry matter content to nearly 50% for pigment concentrations (Fig-

ure 3·7)—and fell comfortably in the range of intraspecific trait variability reported

in other studies for similar traits (Messier et al., 2010; Albert et al., 2010a). Follow-

ing the definition of McGill et al. (2006) that a useful “trait” is one that varies more

across than within species, all six of the traits examined in this study technically

qualify as “traits”, but pigment concentrations only barely. In addition, the inter-

specific variability is poorly explained by species attributes typically used to define

plant functional types (e.g. for dynamic vegetation models)—taken together, species-

specific attributes were able to explain at most around 30% of interspecific variability

(Figure 3·8). This result adds to the emerging body of literature on the limited ability

of discrete plant functional types with fixed traits to effectively capture variability

in plant and ecosystem function (Bodegom et al., 2011; van Bodegom et al., 2014;

Verheijen et al., 2015a; Clark, 2016).

Some of the intraspecific variability in optical traits was not random, but rather

suggested a systematic plastic response to biotic and abiotic stressors (Figures 3·9

and 3·10). For example, the observed increase in leaf dry matter content with de-

creasing temperature and increasing precipitation both agree with the meta-analysis

of leaf mass per area by Poorter et al. (2009). On the other hand, the absence of

significant trends in pigment and water contents with respect to site temperature are

likely because these traits respond more rapidly to environmental conditions, which is

supported by their relatively higher fraction of intra-specific variability (Figure 3·7).

This idea is further supported by the fact that pigment concentrations, but not leaf

structure or dry matter content, responded significantly to within-season tempera-
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ture fluctuations in the Barnes et al. (2017) dataset and to aphid pressure in the

soybean aphid dataset (Figure 3·9). This positive response of chlorophyll concentra-

tion to aphid pressure is surprising. Alves et al. (2015) found significant effects of

aphid infestation on soybean near-infrared reflectance and NDVI but no effect of on

chlorophyll content. Meanwhile, Luo et al. (2012) found that wheat aphid infestation

increased wheat leaf reflectance across the visible and near-infrared range, consistent

with reduced pigment concentrations. This result is unlikely to be caused by inaccu-

rate PROSPECT estimates of pigment concentrations because inversion accuracy of

both chlorophyll and carotenoids for this dataset was among the highest in this study

(Figures 3·4 and 3·5).

I observed statistically significant differences in leaf morphology and biochemistry

between sunlit and shaded leaves. Chlorophyll content was significantly higher in

shade leaves compared to sun leaves, which supports established theory that allocation

of resources to light absorption relative to other photosynthetic functions (e.g. carbon

fixation) increases with decreasing irradiance (Hikosaka and Terashima, 1995). At

the same time, the reduced leaf dry matter content and mesophyll structure in shade

leaves agrees with established understanding of the relationship between leaf mass per

area and irradiance (Poorter et al., 2009). However, the lack of a significant shade

effect on carotenoid content and the positive effect on anthocyanins are surprising,

given the current understanding of the photoprotective role of these pigments (Young,

1991; Steyn et al., 2002). One explanation for the lack of a shade effect on carotenoids

is that the response is non-linear, as has been shown in treatments with more finely

varied light levels (Sonobe et al., 2017). An alternative, simpler explanation may be

inaccuracy in retrievals related to the relative coarseness with which pigments are

currently treated by PROSPECT (as discussed above).

Another source of intraspecific variability in optical traits explored in this study
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was phenology (Figure 3·10). PROSPECT inversion was able to successfully capture

the phenological progression of chlorophyll and carotenoid contents as they increase

early in the growing season and decline in the fall (Yang et al., 2014; Yang et al., 2016).

However, the results for leaf mass per area disagreed with the direct measurements

in several important ways. First, contrary to direct observations at this site (Yang

et al., 2016) and to expectations based on literature survey (Poorter et al., 2009), my

estimates for leaf mass per area were consistently lower in sunlit than shaded leaves.

Second, while direct observations show that leaf mass per area generally increases

early in the growing season up to leaf maturity and then remains effectively constant

until leaf abscission in the fall (Yang et al., 2014; Yang et al., 2016), my results show

a decline in leaf mass per area in the late growing season for all leaves followed by

a slight increase at the end of the growing season for sunlit leaves. The most likely

explanation for this is inaccuracy in trait estimation, as evidenced by the extremely

poor validation results for leaf mass per area for the phenological dataset (Figures 3·4

and 3·5).

Finally, optical traits revealed signatures of acute stress from insects, pathogens,

and extreme environmental conditions. In many cases, these effects agreed well with

physiological expectations. For instance, the significant negative effects of winter

fleck, sucking and scale insects, and especially ozone damage on pine needles re-

ported here match the earlier results of Di Vittorio (2009) for this dataset as well as

the broader literature consensus on the damaging effects of ozone on plant physiol-

ogy (Lindroth, 2010). The same can be said for the adverse effects of Potato Virus Y

on potato plants (Scholthof et al., 2011). However, in several cases, the direction of

these effects was counterintuitive. Milkweed plants grown under elevated temperature

and periodic drought stress (Couture, 2015) showed the expected decline in leaf wa-

ter content (Peñuelas et al., 1994; Kramer and Boyer, 1995; Cheng et al., 2011), but
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showed a significant increase in pigment concentrations. The higher concentrations

of carotenoids under drought stress and anthocyanins under elevated temperature

could reasonably be explained as photoprotective adaptations (Young, 1991; Steyn

et al., 2002; Gould, 2004). The increased chlorophyll content is harder to explain, but

similar increases in chlorophyll in drought stressed plants have been reported (Vil-

fan et al., 2016). One possibility is that, because the chlorophyll is estimated on a

leaf area basis, a reduction in leaf size and structure associated with declining wa-

ter content could lead to an increase in apparent chlorophyll concentration, even if

the mass-based concentration was constant or even slightly declined. Regardless, the

demonstrated ability of this study to not only detect but to analyze the physiological

mechanisms of stress reinforces the value of leaf spectroscopy in both natural and

agronomic settings.

3.4.3 Patterns of trait correlation

Optical traits vary non-randomly not only in response to environmental conditions

and stress, but also with each other and with other “invisible” traits. In Chapter 1,

I found that the leaf economic spectrum—broadly, a multidimensional axis of trait

variability defining a trade-off between productivity and resilience—generally held

within plant functional types as well. The findings in this chapter suggest that the

leaf economic spectrum applies to variability among optical traits as well, as the

second principal component of optical trait variability was characterized by a trade-

off between productivity-related traits (pigments and water content) and structural

traits (dry matter and mesophyll structure) (Figure 3·11). Both the explanatory

power of the first two principal components (around 70%) and their interpretation

correspond remarkably well to a global analysis of species means from TRY (Dı́az

et al., 2016). Meanwhile, the third principal component of optical trait variability

can be interpreted as an axis of stress, which can lead to reductions in leaf water
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content (Peñuelas et al., 1994; Kramer and Boyer, 1995; Cheng et al., 2011) and can

promote higher investment in anthocyanins for their protective properties (Gould,

2004). This is partially supported by my analysis of experimental treatments, water

and anthocyanin contents did exhibit opposite responses to shade and warming (and

to potato virus, though not significantly for anthocyanins) (Figure 3·9).

The signature of the leaf economic spectrum was less clear among species means.

An economic trade-off between investment in pigments and structural molecules would

imply negative correlations between these groups of traits, but my results show that

at the species level, pigments are weakly positively correlated with structural traits

(Figure 3·13). Meanwhile, optical traits related to structure, as well as leaf wa-

ter content, were strongly positively correlated with leaf C, cellulose, and lignin.

One explanation for these differences in correlations between pigments and structural

molecules is that the former show relatively more plasticity whereas the latter are

more phylogenetically conserved. This is supported by the analysis of variance per-

formed in this study (Figure 3·7), as well as broader literature review of variability in

leaf structure (Poorter et al., 2009; Onoda et al., 2017). In addition, the modest pos-

itive interspecific correlation of leaf N with both structural molecules and pigments

agrees with the large interspecific variability in leaf N allocation to structural and

photosynthetic molecules (Onoda et al., 2017).

Another key objective of this study was to investigate the ability of optical traits

to predict other physiologically relevant traits that cannot be observed directly from

spectra. In many cases, multiple optical traits were significantly positively correlated

with area-based leaf N, C, cellulose, lignin, Vc,max, and Jmax, which is not surprising

given the extensive literature on empirical estimation of these traits from field and

airborne spectroscopy (Serbin et al., 2011; Serbin et al., 2014; Asner et al., 2015;

Cavender-Bares et al., 2017) as well as the coordination between these traits in plant
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physiology and ecological strategy (Kitajima and Hogan, 2003; Onoda et al., 2017;

Croft et al., 2017). However, these correlations varied significantly between species,

including for species within the same functional type (Figure 3·12). In part, this

may be due to the unbalanced sampling in this analysis; specifically, some species

were sampled across a much wider range of conditions than others (particularly those

grown under different experimental treatments), and correlations are likely to be more

consistent where plants experience extreme conditions that lead to overall declines

in leaf condition. Patterns of trait covariance are also modulated by a number of

environmental factors, such as dominant sources of limitation (e.g. light, water, or

nutrients) (Borgy et al., 2017) or strength of competitive effects (Kunstler et al., 2015)

(see discussion in Chapter 1), which vary substantially across this dataset. As such,

identifying more precisely the drivers of variability in intraspecific trait correlations

is an important future direction for this research.

3.5 Conclusions

This study is, to my knowledge, the first of its kind in synthesizing reflectance mea-

surements from a wide collection of species and measurement conditions under a

single common methodology. For one, it provides a valuable contribution to remote

sensing methodology by demonstrating the capabilities and limitations of trait re-

trieval via inversion of various versions of PROSPECT. It is particularly novel in

revealing that PROSPECT is able to detect and ascribe physiological meaning to

plant responses to environmental conditions and acute stressors. More generally, this

study contributes to the growing body of literature evaluating the drivers of variabil-

ity in plant functional traits and reinforces the importance of intraspecific variability

in plant function. Ultimately, this study showcases the value of leaf spectroscopy for

ecology and agriculture.
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Chapter 4

Cutting out the middle man: Calibrating

and validating a dynamic vegetation

model using remotely sensed surface

reflectance

4.1 Introduction

My previous chapters have shown that models have much to gain, both in terms of

direct parameter constraint from trait observations and from new process represen-

tations that emerge from trait ecology more broadly. However, there are limits on

the extent to which traits alone can improve models. For one, even after examining

a broad range of inter- and intraspecific factors, large fractions of variability in plant

function remain unexplained. Moreover, vegetation models are simplified abstractions

of reality, with many processes omitted or represented by simplistic empirical equa-

tions with little-to-no physical basis and therefore no directly measurable trait that

can serve as a parameter constraint. In these cases, models can only be calibrated

via their emergent predictions of state variables.

Many previous efforts have used various data streams calibrate or constrain dy-

namic vegetation model parameters and states. Among these data streams, remote

sensing is particularly promising due to its consistent measurement methodology and

largely uninterrupted global coverage. Data products derived from remote sensing

observations have been effectively used to constrain, among others, phenology (Knorr
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et al., 2010; Viskari et al., 2015), absorbed photosynthetically-active radiation (Peylin

et al., 2016; Schürmann et al., 2016), and primary productivity (MacBean et al.,

2018).

However, there are issues with using derived remote sensing products to calibrate

ecosystem models. Relationships of surface reflectance variables (such as vegetation

indices) with characteristics of vegetation structure and function estimated by models

are complex. For example, the assumption of a simple linear relationship between the

normalized difference vegetation index and absorbed photosynthetically-active radi-

ation (e.g. Peylin et al. 2016) has long been shown to be sensitive to variability in

soil and leaf optical properties (Myneni and Williams, 1994), and is known to vary

across spatial scales and sensor configurations (Fensholt et al., 2004). A related issue

is that subtle but significant differences in the ways vegetation variables are defined,

by both models and data products, can significantly affect the interpretation of re-

motely sensed data (Carlson and Ripley, 1997). Furthermore, uncertainties in derived

remote sensing data products are often poorly quantified but known to be significant,

to the extent that some studies advise against working with individual pixel values in

favor of averaging across adjacent pixels (thereby dramatically reducing the spatial

resolution) to achieve reasonable accuracy (Yang et al., 2006; Wang et al., 2004).

Although these issues could be partially alleviated by robust, pixel-level uncertainty

estimates for remote sensing data products, such estimates are generally not widely

available for most data products. Collectively, these issues, combined with differ-

ences in sensor configuration and design, result in large differences in estimates of

surface characteristics across different remote sensing instruments that lead directly

to different estimates of carbon storage and flux (Liu et al., 2018).

One way to overcome the limitations of derived remote sensing data products while

still leveraging the capabilities of remote sensing is to work directly with the observed
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surface reflectance. In the context of dynamic vegetation modeling, this can be ac-

complished by coupling these models with leaf and canopy radiative transfer models

that simulate surface reflectance as a function of known surface characteristics (Quaife

et al., 2008). Such an approach takes advantage of the fact that surface reflectance

contains valuable information about vegetation structure and function without rely-

ing on the independent retrieval of these characteristics from reflectance data alone,

which is often an ill-posed problem (Combal et al., 2003; Lewis and Disney, 2007).

Moreover, besides enabling assimilation of remotely sensed data, training models to

accurately simulate surface reflectance is essential to properly quantifying and testing

hypotheses related to vegetation-climate interactions and feedbacks. For instance, the

net climate effect of ongoing changes in Arctic vegetation composition depends on the

balance of opposing radiative (lower albedo) and latent (increased transpiration) en-

ergy feedbacks (Swann et al., 2010), so forecasting this effect requires accurate models

of canopy energy transfer. More fundamentally, light availability is a key control of

photosynthesis and therefore has immediate, direct consequences for individual plant

function (Hikosaka and Terashima, 1995; Robakowski et al., 2004; Niinemets, 2016b;

Keenan and Niinemets, 2016b) as well as longer-term, indirect consequences for com-

petition and ecological succession (Niinemets and Valladares, 2006; Kitajima et al.,

2013; Falster et al., 2017).

Recognition of the importance of these processes has led to the development of

vegetation models with explicit representations of canopy radiative transfer. The

most accurate canopy radiative transfer models capture both vertical and horizontal

heterogeneity with very high spatial resolution (Widlowski et al., 2007). However,

such models are usually too computationally intensive for dynamic vegetation mod-

els, which employ various approximations based on simplifying assumptions to make

the problem more tractable (Fisher et al., 2017). One common approach is the “two-
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stream approximation”, which simplifies the problem of directional scattering within

a medium by modeling the hemispherical integral of fluxes rather than individual,

directional components. In the context of radiative transfer in plant canopies, many

different two-stream formulations have been developed, of which I highlight two: One

formulation was developed by Kubelka and Munk (1931) and later adapted to vege-

tation canopies by Allen, Gayle, and Richardson (1970) and further refined by Suits

(1971), Verhoef (1985), and others. This theory forms the foundation of the SAIL

canopy radiative transfer model (Verhoef, 1984) and its derivatives (e.g. 4SAIL Ver-

hoef et al., 2007), which have been used extensively in the remote sensing community

for modeling and retrieving vegetation characteristics from spectral data (Jacque-

moud et al., 2009). Another was developed by Meador and Weaver (1980) for atmo-

spheric radiative transfer, and was subsequently adapted to canopy radiative transfer

by Dickinson (1983) and refined by Sellers (1985). Due to its theoretical simplicity

and low computational demand, this is the approach commonly used to represent ra-

diative transfer in ecosystem models, including the Community Land Model (CLM,

Oleson et al., 2013) and the Ecosystem Demography model (ED, Moorcroft et al.,

2001; Medvigy et al., 2009b). The version of this scheme used in ED2 (and deriva-

tive models) is fairly unique in its explicit representation of multiple canopy layers,

which allows ED2 to simulate competition for light, a key component of modeling

vegetation demographics (Fisher et al., 2017). However, compared to physiological

processes, the structure and parameterization of canopy radiative transfer schemes in

demographic models has received relatively little attention. When canopy radiative

transfer has been considered, it was shown to be important to a wide range of physi-

ological and demographic processes. For example, using a modified version of the ED

model, Fisher et al. (2010) showed that excessive light absorption by the top cohort

resulted in unrealistically excessive growth of canopy trees at the expense of under-
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story trees. Similarly, an analysis by Viskari et al. (in revision) demonstrated that the

Ecosystem Demography (ED2) model’s predictions of ecosystem energy budget, pro-

ductivity, and composition are highly sensitive to the parameterization of the model’s

representation of canopy radiative transfer. Understanding and improving represen-

tations of canopy radiative transfer in dynamic vegetation models is therefore critical

to accurate projections of the fate of the terrestrial biosphere.

Building on the work of Viskari et al., the objective of this chapter is to develop

and demonstrate the calibration and validation of the ED2 model using remotely

sensed surface reflectance. First, I link the canopy radiative transfer model in ED2

with the PROSPECT leaf radiative transfer model to allow ED to predict full-range,

hyperspectral surface reflectance at each time step. Second, I calibrate this coupled

leaf-canopy radiative transfer model at a number of sites in the US Midwest and

Northeast where coincident plot vegetation survey data and observations of the NASA

Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) are available.

4.2 Methods

4.2.1 Model description

The Ecosystem Demography version 2 (ED2) model simulates plot-level vegetation

dynamics and biogeochemistry (Moorcroft et al., 2001; Medvigy et al., 2009b). By

grouping individuals of similar size, structure, and composition together into cohorts,

ED2 is capable of modeling patch-level competition in a computationally efficient

manner.

Relevant to this work, ED2 includes a multi-layer canopy radiative transfer model

that is a generalization of the two-stream solution of Sellers (1985). In its default

configuration, the ED2 radiative transfer model solves for the overall hemispherical

(i.e. diffuse) canopy albedo in two spectral “bands”—visible and near-infrared—as



96

a function of each cohort’s leaf area index and PFT-specific parameters for leaf and

wood reflectance and transmittance, canopy clumping factor, and leaf orientation fac-

tor. The equations used are mostly adapted from the Community Land Model(Oleson

et al., 2013), but a summary of key features is as follows:

The direct radiation flux is modeled as an exponential attenuation curve through

the canopy based on each layer’s transmissivity (τr), which in turn is a function of

the total area index (TAI) of the canopy layer and the inverse optical depth (µr):

τr = e−
TAI
µr (4.1)

The total area index (TAI) is the sum of the wood area index (WAI) and the

effective leaf area index, with the latter calculated as the product of the true leaf area

index (LAI) and the clumping factor (c, defined on the interval (0, 1) where 0 is a

“black hole”—all leaf mass concentrated in a single point—and 1 is a homogenous

closed canopy):

TAI = cLAI +WAI (4.2)

The true leaf area index for each PFT is calcluated in two stages: First, the total

leaf biomass is calculated from the diameter at breast height via an exponential allo-

metric equation parameterized for each PFT. Second, the leaf biomass is converted

to leaf area index through the PFT-specific specific leaf area (SLA).

The optical depth is calculated based on the projected area (p) and the solar

zenith angle (θ):

µr =
cos θ

p
(4.3)

The projected area (p) is a function of the leaf orientation factor (f):
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φ1 = 0.5− f(0.633 + 0.33f) (4.4)

φ2 = 0.877(1− 2φ1) (4.5)

p = φ1 + φ2 cos θ (4.6)

The diffuse radiation flux is more complicated because light is scattered internally

within canopy layers. Unlike the Community Land Model, which solves only for sunlit

and shaded leaves, ED2 calculates the full canopy radiation profile by parameterizing

the two-stream equations for each layer (as well as soil and atmosphere boundary

conditions) and then using a linear system solver to solve for the radiation profile.

For each layer, leaf and wood forward scattering (ω+) are just the sums of their

respective reflectance (r) and transmittance (t) values:

ω+ = r + t (4.7)

Leaf and wood backscatter (ω−) are a function of their respective reflectance and

transmittance values as well as the leaf orientation factor (f):

ω− =
r + t+ 0.25(r − t)(1 + f)2

2(r + t)
(4.8)

Overall scatter (ι) and backscatter (β) of all elements in a canopy layer is modeled

as the average of leaf and wood scatter, weighted by their respective area indices:

wl =
LAI

LAI +WAI
(4.9)
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ww =
WAI

LAI +WAI
(4.10)

ι = wlω+,l + wwω+,w (4.11)

β = wlω−,l + wwω−,w (4.12)

The inverse optical depth for diffuse radiation (µf ) is calculated from the coeffi-

cients φ1 and φ2 (see equations 4.4 and 4.5):

µf =
1− φ1 ln (1 + φ2

φ1φ2
)

φ2

(4.13)

Note that µf simplifies to 1 when orientation factor is 0 (random, spherical distri-

bution of leaf angles). Collectively, these coefficients are used to calculate the optical

depth for diffuse radiation (τf ):

ε = 1− 2β (4.14)

λ =

√
(1− ει)(1− ι)

µf
(4.15)

τf = eλTAI (4.16)

The remaining coefficients are described in the Community Land Model man-

ual (Oleson et al., 2013).

By default, ED takes as parameters PFT-specific leaf and wood reflectance and

transmittance values with one value each for the visible and near-infrared spectral

regions. For this analysis, I first modified ED to take an arbitrary number of leaf and
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wood reflectance transmittance values. From there on, I simulated leaf reflectance

and transmittance using the PROSPECT 5 leaf RTM (see Chapters 2 and 3). For

soil and wood reflectance, I used means of the corresponding spectra from Asner

(1998), resampled to 1 nm resolution. The final coupled PROSPECT-ED canopy

radiative transfer model (hereafter known as “EDR”) has 10 parameters for each

PFT: 5 parameters for PROSPECT (number of mesophyll layers, and area-based

chlorophyll, carotenoid, water, and dry matter contents), specific leaf area, base and

exponent for the leaf allometry, and clumping and orientation factors.

4.2.2 Sensitivity analysis

To provide a basis for understanding the behavior of EDR, I performed a one-at-a-

time sensitivity analysis to explore how its reflectance predictions vary with each leaf

optical and canopy structural parameter. To assess the mathematical foundation of

the EDR canopy model (i.e. the Sellers two-stream scheme) without the confounding

influence of multiple cohorts, I first performed this sensitivity analysis on a simulated

plot containing only a single mature tree cohort. For comparison, I also included

simulations using the 4SAIL canopy radiative transfer model. The 4SAIL model

simulates four reflectance “streams”—diffuse (hemispherical) and direct (directional)

reflectance for both diffuse and direct incident radiation— but because EDR only

simulates diffuse reflectance and its input is dominated by direct radiation (at least on

sunny days, which are necessary for satellite and high-altitude airborne data), I used

the “directional-hemispherical” output for all comparisons. For its representation of

leaf angle distribution, 4SAIL uses an ellipsoidal model that takes as input the mean

leaf inclination angle (θ), which is related to EDR’s leaf orientation factor (f) by:

cos θ =
1 + f

2
(4.17)
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Unlike EDR, 4SAIL does not account for canopy clumping. (4SAIL does have

a “hot spot” parameter to account for strong bi-directional reflectance effects from

structurally heterogeneous canopies, but this parameter only affects the bi-directional

reflectance, which was not used in this analysis).

To investigate the way EDR models interactions between canopy layers, I also per-

formed a similar sensitivity analysis on a simulated plot with two cohorts—a dominant

early successional cohort and a sub-dominant mid-successional cohort. I examined

the sensitivity of total canopy reflectance to the optical properties of both the dom-

inant and sub-dominant cohort, and looked at how this sensitivity was affected by

clumping in the upper cohort.

4.2.3 Model calibration

For model calibration, I selected 47 sites from the NASA Forest Functional Types

(FFT) field campaign that contained plot-level inventory data (stem density, species

identity, and DBH) coincident with observations of the NASA Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS). These sites are mostly located in the United States

Upper Midwest with several sites also in upstate New York and western Maryland,

and include stands dominated by either evergreen or deciduous trees and spanning

a wide range of structures, from dense groups of saplings (bottom right) to sparse

groups of large trees (top left) (Figure 4·1). Based on ED’s PFT definitions, these

sites contained a total of five different temperate plant functional types: Early succes-

sional hardwood, northern mid-successional hardwood, late successional hardwood,

northern pine, and late successional conifer.

I calibrated EDR using the same general Bayesian inversion as in Chapter 3.

The inversion fit all sites simultaneously, such that at every MCMC iteration, the

algorithm proposed a set of all parameter values for each PFT and simulated spectra

for each site based on its observed composition and structure. Because of unrealistic
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Figure 4·1: Sites selected for analysis, in “stand structure” (main
figure) and geographic (inset) space. Colors indicate the fraction of
the stand that is made up of evergreen PFTs.
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values in the shortwave infrared spectral region in the AVIRIS observations, likely

caused by faulty atmospheric correction, I only calibrated the model with observations

from 400 to 1300 nm. In addition, I changed the fixed variance model used in Chapters

2 and 3 to a two-parameter heteroskedastic variance model (σ = a+ bX) to account

for the fact that both model and observation errors are typically proportional to

reflectance values. To generate the initial history state files required by EDR, I

ran ED2 itself for one day in midsummer (July 1), starting from vegetation initial

conditions based on observed composition and structure.

For priors on the five PROSPECT parameters and specific leaf area, I performed

a hierarchical multivariate analysis (see Chapter 1) on PROSPECT parameters es-

timated from chapter 3 and, where available, direct measurements of specific leaf

area. For priors on the leaf biomass allometry parameters, I fit a multivariate nor-

mal distribution to allometry coefficients from Jenkins et al. (2003, 2004) using the

PEcAn.allometry package. For the clumping factor, I used a uniform prior across

its full range (0 to 1), and for the leaf orientation factor, I used a weakly informative

re-scaled beta distribution centered on 0.5.

To alleviate issues with strong collinearity between the two allometry coefficients

and the specific leaf area, I decided to remove the allometry exponent coefficient

(but not the intercept) from the calibration by fixing it at its prior mean for each

plant functional type. Doing so dramatically improved the stability of the inversion

algorithm and the accuracy of the results.

I evaluated the performance of the calibrated model by comparing the posterior

credible intervals of modeled spectra against the AVIRIS observations at each site. To

assess the role of model structure in predictive error, I also included predictions using

the 4SAIL model parameterized with the posterior means from the EDR calibration

(except for clumping factor, which is absent from 4SAIL). In addition, I compared
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Figure 4·2: Sensitivity of EDR and 4SAIL predicted canopy re-
flectance to leaf optical traits. For all figures, leaf area index is fixed
at 4.88. EDR simulations are for a single-cohort canopy (Early Hard-
wood) with clumping factor 0.09 and orientation factor 0.06. 4SAIL
predictions are for directional-hemispherical reflectance.

model predictions of leaf area index (which depend on parameters calibrated in the

model) against field observations.

4.3 Results

4.3.1 Sensitivity analysis

The general character of the sensitivities of EDR and 4SAIL to leaf optical properties

is similar, but the magnitudes of these sensitivites are different (Figure 4·2). EDR

consistently shows significantly higher reflectance across most of the spectrum than
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4SAIL. Sensitivity to leaf mesophyll structure is lower in EDR than 4SAIL, while sen-

sitivity for chlorophyll and water contents is comparable. Sensitivity to leaf dry mass

per area is comparable for both models in the shortwave infrared, but significantly

higher for 4SAIL in the near infrared.

EDR and 4SAIL show different responses to leaf area index (Figure 4·3). Although

both models predict declines in reflectance with increasing leaf area in the visible and

shortwave infrared range, 4SAIL also predicts a decline in the near infrared while

EDR predicts an increase. Furthermore, 4SAIL predicts more reflectance sensitivity

at low leaf area indices and saturation of reflectance around 4, while EDR shows

a more gradual decline in sensitivity, particularly in the near-infrared range. An

important caveat to these results is that, particularly at low leaf area index, they

are strongly dependent on the value of the background soil reflectance. To match

the EDR default (see Methods), 4SAIL was configured with a relatively bright soil

reflectance (i.e. a fairly dry soil), which explains the decline in near-infrared reflectance

as leaf area increases. When the soil background is dark, SAIL shows increasing near-

infrared reflectance with increasing leaf area (but saturating to the same value as the

contribution of the soil background becomes negligible at high leaf area).

Similarly to leaf area, EDR and 4SAIL agree on the directionality leaf orientation

effects on reflectance (declining reflectance with increasingly vertical leaves), but differ

in their sensitivities, with EDR having a much lower sensitivity to changing leaf angles.

Finally, sensitivity of EDR to canopy clumping is nearly identical to that of leaf area

index, which makes sense given the interaction between these terms in defining canopy

transmissivity (Equations 4.1 and 4.2).

Compared to 4SAIL, EDR consistently overpredicts canopy reflectance across the

entire spectrum (Figures 4·2, 4·3, and 4·4). A significant part of this bias can be

explained by the inclusion of wood reflectance in EDR, but a persistent positive
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bias remains across most of the spectrum even after setting wood reflectance to zero

(Figure 4·4).

EDR canopy reflectance is highly sensitive to the properties of the tallest cohort,

and shows virtually no sensitivity to the optical properties of lower cohorts (Fig-

ure 4·5). Clumping (or reduced LAI) allow more light to penetrate the canopy and

therefore increases the sensitivity of canopy reflectance to the properties of lower

layers, but this sensitivity is effect is still significantly muted compared to the top

canopy.

4.3.2 Model calibration

Model calibration substantially improved the precision of almost all parameter esti-

mates, even when prior distributions were strongly informative (Figure 4·6). In most

cases, the posterior distribution fell within the prior, but there were a few notable

exceptions. Specifically, northern pines had significantly higher calibration estimates

of chlorophyll content and leaf mass per area and significantly lower estimates of the

orientation factor (though the prior on the latter was not based on data). Late hard-

woods also had orientation factor estimates much lower than the prior, and also had

significantly lower estimates of leaf mesophyll structure.

The ability of EDR to reproduce observed spectra at every site was strongly

site-dependent (Figure 4·7). At a majority of the sites, EDR systematically over-

predicted reflectance in the visible range (Figure 4·8), while errors in the near-infrared

region were more variable. As shown in the sensitivity analysis, this consistent over-

prediction of visible reflectance is likely driven by wood reflectance (Figure 4·4).

4SAIL also showed a lot of site-to-site variability in its performance, but generally

performed better in the visible range than EDR.

The ability of EDR to reproduce observed leaf area index was also strongly site-

dependent, with some of the accuracy explained by the functional type of the tallest
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nm) spectral region.
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cohort (Figure 4·9). In general, EDR tended to over-predict leaf area index for conifer-

dominated stands and under-predict for hardwood-dominated stands. For mid- and

late-hardwood-dominated stands in particular, EDR predicted substantial variability

in leaf area index that was not present in the observations.

Mismatch between EDR predictions and AVIRIS reflectance were likely caused by

a number of factors related to site composition and structure (Figures 4·8 and 4·10).

In some sites, the mismatch was most likely due to a mismatch in leaf area index,

such as BI02, BI03, and MN06. Notably, at BI02 and BI03 (and several other sites),

EDR and 4SAIL show opposite biases—EDR over-predicts visible reflectance but

successfully captures the near-infrared reflectance, while 4SAIL does the opposite

(Figure 4·7). This can be linked to the two models’ different responses to leaf area

index revealed in the sensitivity analysis (Figure 4·3).

Where late hardwood trees were relatively abundant near the top of the canopy

(Figure 4·10), EDR often over-predicted reflectance in the red (sites BH03, BH05,

BH10, and BI01; Figure 4·8) even though the LAI retrieval was reasonably accu-

rate. This was likely related to the low inversion estimate of late hardwood clumping

factor (Figure 4·6), which tends to emphasize the much redder wood and soil back-

ground (Figure 4·3). However, some other late hardwood-dominated sites showed

good performance for both spectra and leaf area index, such as NC17, NC22, and

OF04 (Figure 4·7). Similarly, the high clumping factor estimate for late conifer trees

(Figure 4·6) was compensated over-predicted leaf area index (driven by increases in

the leaf biomass allometry coefficient; Figure 4·9), as in sites OF01, SF01, and SF04.

More generally, EDR tended to perform best in mature stands comfortably dominated

by early or mid hardwoods or northern pines.
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4.4 Discussion

The accurate simulation of canopy radiative transfer is key to a number of ecosystem

processes, including photosynthesis, soil respiration, and hydrology. For its represen-

tation of radiative transfer, ED2 uses a modified version of the two-stream model of

Sellers (1983) as implemented in the Community Land Model (Oleson et al., 2013)

but adapted for multiple canopies. My comparison of this model against 4SAIL, a

two-stream model with a long history of use in the remote sensing community (Jacque-

moud et al., 2009), reveals some important differences in behavior, even independent

of its multi-cohort nature. One key limitation is the representation of wood re-

flectance. In EDR, as in the Community Land Model, the backscatter of a layer is

the average of leaf and wood reflectance weighted by their respective area indices.

Although wood is an important scattering element at low LAI, it has widely been

shown to have negligible contributions to canopy reflectance in mature dense stands,

and where its contribution is significant, it is typically in the near infrared rather

than the visible spectral range (Asner, 1998; Malenovsky et al., 2008; Verrelst et al.,

2010). Therefore, the strong sensitivity of EDR to wood reflectance for a closed

canopy (Figure 4·4) is unrealistic, and was likely a major reason for its persistent vis-

ible bias compared to both 4SAIL-predicted and AVIRIS-observed canopy reflectance

even after calibration (Figure 4·8). I suggest that a more accurate but still concep-

tually simple (and computationally light) approach to capturing wood reflectance is

to model it as part of the background soil layer rather than the scattering leaf layer.

I did not examine the ability of EDR to reproduce observed canopy reflectance in

the absence of wood reflectance, though this is a logical next step. However, based

on the fact that 4SAIL generally did well at predicting visible reflectance (Figure 4·8)

and that EDR predicted significantly brighter canopies than 4SAIL even after the

wood reflectance correction (Figure 4·4), there seem to be additional structural er-
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rors in EDR that lead to overestimates of canopy reflectance. The similar patterns

but different magnitudes of EDR and 4SAIL sensitivity to leaf optical properties and

orientation suggest that other aspects of canopy structure are driving differences be-

tween these models (and, presumably, differences with observations as well). Part

of the mismatch between EDR predictions and observations (Figures 4·7 and 4·8)

is the result of the soil background, which was set to a constant, relatively bright

value across all sites, but is known to vary significantly with soil moisture, understory

vegetation, and litter cover. Future work could better leverage existing models of soil

reflectance (e.g. Hapke, 1981; Hapke and Wells, 1981) to better capture differences

in soil background across sites and measurement conditions. That being said, the ef-

fects of different soil background are generally most pronounced at sites with low leaf

area and/or high clumping, and should become less important as leaf area increases.

The fact that EDR continues to monotonically increase its canopy brightness with in-

creasing leaf area despite starting from a relatively bright soil background (Figure 4·3;

note that 4SAIL does not show this behavior) points to potential issues with the way

EDR handles its boundary conditions. Fortunately, alternative efficient representa-

tions are available in the literature. For example, Pinty et al. (2004, 2006) define a

one-dimensional, turbid-medium radiation scheme that calculates the contribution of

soil reflectance separately for direct and diffuse radiation, and which has a more so-

phisticated treatment of bi-directional reflectance effects, which are currently lacking

in EDR. Similarly, 4SAIL also offers a more sophisticated treatment of bi-directional

reflectance effects.

A key feature of EDR design is its representation of multiple co-existing plant co-

horts competing for light within a single patch. As mentioned in the introduction, a

previously-identified limitation of representing multiple canopy layers in a two-stream

scheme is that the top cohort absorbs a disproportionate fraction of the light at the
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expense of marginally lower cohorts (Fisher et al., 2010). This effect was present

in my results as well. In a closed canopy (high clumping factor), major changes in

the leaf optical properties of lower cohorts had a minimal effect on overall canopy

reflectance, and the effect was still muted in a highly clumped canopy (low clumping

factor; Figure 4·5). This problem may be further exacerbated by the over-prediction

of total canopy reflectance discussed above, as this further reduces the absorbed radia-

tion available to all canopies (but especially understory ones) for photosynthesis. One

solution to this is the use of a finite crown area model (Dietze et al., 2008); unlike the

implementation of canopy clumping discussed in this work, which effectively “thins”

a layer but still does not provide the understory with any direct radiation, a finite

crown area model introduces true gaps into the canopy, which can significantly stim-

ulate understory growth. An example implementation of this concept is the “perfect

plasticity approach” (Weng et al., 2015) where trees above a certain height threshold

share direct sunlight and compete for a fixed amount of horizontal space within the

overstory. A useful avenue for development and parameterization of these models

is comparison to more sophisticated and realistic three-dimensional representations

of radiative transfer (e.g. Widlowski et al., 2007), which are themselves too compu-

tationally demanding to be coupled to ecosystem models, but from which empirical

distributions and response functions could be derived and against which the behavior

of simpler models could be evaluated.

A significant body of remote sensing literature argues that the inversion of cou-

pled leaf-canopy radiative transfer models is ill-posed because of the collinearity of

structure and biochemistry effects on canopy reflectance (e.g. Combal et al., 2003;

Lewis and Disney, 2007). Even with tight prior constraint on leaf optical properties

from a large meta-analysis, I saw evidence of significant trade-offs between parame-

ters. In particular, in this analysis, three parameters influenced canopy reflectance in
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virtually identical ways through modulating the (effective) leaf area index: specific

leaf area, leaf biomass allometry, and clumping factor. This collinearity resulted in

frequent mismatches between observed and modeled leaf area index despite high accu-

racy in modeled reflectance spectra (Figures 4·10 and 4·7). Additional measurements

of poorly constrained but highly influential structural parameters should help allevi-

ate this problem. Fortunately, these structural metrics are often effectively retrieved

from LiDAR observations from terrestrial (Eitel et al., 2016), airborne (Antonarakis

et al., 2014), and satellite platforms (Coyle et al., 2015).

Finally, despite many challenges related to canopy radiative transfer modeling,

surface reflectance is nevertheless a promising approach for benchmarking and per-

forming data assimilation on ecosystem model outputs. Remote sensing observations

are unrivaled in their spatial completeness and extent, notably extending to regions

like the tropics and high latitudes that are relatively undersampled but have a dis-

proportionate impact on the global climate system (Schimel et al., 2015) and/or

global biodiversity (Jetz et al., 2016). At the same time, satellite time series provide

multi-decadal records with relatively high temporal frequency, which have tremen-

dous utility for calibrating model projections of past ecological dynamics (Kennedy

et al., 2014; Pasquarella et al., 2016). Used in combination with other emerging data

sources, including global trait databases and eddy covariance measurements, remote

sensing can be a transformative force in ecosystem ecology.

4.5 Conclusions

The objective of this study was to calibrate the canopy radiative transfer scheme inside

the ED2 dynamic vegetation model by comparing its predictions of surface reflectance

against airborne imaging spectroscopy data. The calibration successfully constrained

the posterior distributions of model parameters related to canopy structure (leaf angle,
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canopy clumping, and leaf area index) for five plant functional types characteristic

of temperate forests of the northeastern United States. However, comparisons of

predicted spectra post-calibration against observations reveal widespread biases. This

suggests that there are structural issues with the ED2 radiative transfer model that

inhibit its ability to accurately predict surface optical properties. Sensitivity analyses,

along with comparison against an alternative canopy radiative transfer model more

commonly used by the remote sensing community (4SAIL), shed additional light on

the problem and provides avenues for future exploration and model improvement. One

issue was unrealistically high sensitivity to wood reflectance, which could be addressed

by calibration of parameters related to wood area index (such as wood allometries)

or, if that fails, alternative representations of the contribution of wood reflectance

to canopy reflectance. That being said, wood reflectance alone was insufficient to

explain bias in predicted spectra. We suggest that this error is likely related to soil

reflectance, but additional sensitivity analyses (for instance, by varying soil reflectance

in simulations with dense, closed canopies) are required to confirm this. Ultimately,

this work demonstrates the utility of using surface reflectance predictions to evaluate

model representations of canopy radiative transfer, and thus contributes to the rapidly

expanding body of literature on applications of remote sensing to dynamic vegetation

modeling.



120

Chapter 5

Conclusions

The value of terrestrial ecosystems to human well-being, both direct and indirect, is

difficult to overestimate. The same can be said about the complexity of terrestrial

ecosystems, which has been a major obstacle to forecasting ecosystem responses to

human and natural pressures. Fortunately, our ability to observe terrestrial ecosys-

tems, and to perform sophisticated analyses and simulations using these observations,

has never been greater, and only continue to improve thanks to both technological

improvements and changing attitudes about data sharing. The overarching objec-

tive of my dissertation was to explore novel ways that observations could be used

in the context of simulation modeling of the terrestrial biosphere. In particular, my

work focused on improving data constraint on model parameters, especially through

near-surface, airborne, and satellite remote sensing. The results of this work provide

many opportunities for data-driven model improvement, both direct (through better

parameterizations of leaf and canopy processes) and indirect (through insights about

scales and drivers of ecological variability).

My first chapter focused on covariance patterns among leaf traits related to leaf

morphology and photosynthetic metabolism through a multivariate meta-analysis of

a global traits database. Previous work has shown that, at the global scale, variability

in these traits was constrained by a trade-off between faster growth rates and higher

recalcitrance (a.k.a. the “leaf economic spectrum”) (Wright et al., 2004; Dı́az et al.,

2016), but that these trade-offs were often absent within species and communities (Al-
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bert et al., 2010b; Messier et al., 2010; Wright and Sutton-Grier, 2012). My work

investigated whether the leaf economic spectrum scale was present between these two

extremes, at the scale of plant functional types used by the current generation of

dynamic global vegetation models. My key result was that, in general, leaf economic

relationships were present within plant functional types, though the strength of these

relationships varied. Moreover, as a result of the strong correlation patterns among

traits, I was able to generate much more precise estimates of plant functional type

means (which can be used as vegetation model parameters) than using standard mul-

tivariate methods, particularly for data-limited trait-functional type combinations.

Future work should extend this meta-analysis to additional traits—particularly root

traits, which are highly consequential to plant function but are generally much more

data limited—and to alternative (and optionally larger) plant functional type defini-

tions.

The idea that that additional measurements of readily observable traits can be

used to inform traits that are much harder to observe is an exciting prospect for

remote sensing, which has the capability to provide huge volumes of trait data at

relatively low cost and effort. This was the motivation behind my second chapter,

which aimed to develop a consistent, physically-based methodology for estimating leaf

traits from proximal or remote measurements of optical properties. In this study, I

introduced an approach for estimating leaf traits and their uncertainties via Bayesian

inversion of a leaf radiative transfer model. I then applied this approach to simulated

spectra to explore the relationship between the spectral bands of remote sensing in-

struments and the accuracy and precision with which those instruments could retrieve

known leaf traits. I found that while trait estimates from hyperspectral instruments

were consistently and significantly more precise instruments than estimates from mul-

tispectral instruments, all sensor configurations were able to estimate at least some of
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the traits with greater precision than an uninformative prior distribution. Notably,

coarser resolution instruments struggled to distinguish traits with overlapping spec-

tral features (such as chlorophylls and carotenoids), but the Bayesian methodology

was able to accommodate this through the joint posterior distributions, which were

significantly constrained even when the marginal distributions were not. This work

comes with several important caveats, all of which could be readily addressed in fu-

ture analyses. First of all, I only considered spectral resolution, and did not consider

other critical aspects of sensor and mission design, such as radiometric resolution,

signal-to-noise ratio, spatial resolution, revisit frequency, and directional sampling.

Second, I only evaluated the ability of these instruments to retrieve leaf traits from

leaf spectra, whereas real retrievals are significantly complicated by canopy structure

(see Chapter 4), atmospheric contamination, and sun-sensor geometry, among others.

That being said, the value of this computational “sensor experiment” is to emphasize

the importance of careful band selection, as I show that even small changes to band

width and location can have significant consequences for retrieval of vegetation prop-

erties. More generally, this study demonstrates how modeling the observed remote

sensing signal as a function of vegetation features allows information from multiple

different platforms to be used synergistically.

Whereas chapter 2 was focused on sensor design and remote sensing methodology,

chapter 3 delved into the ecophysiology of leaf spectra. First, this study investigated

how well a state-of-the-art leaf radiative transfer model (PROSPECT) was able to

related leaf traits and spectra across a wide range of species and measurement condi-

tions. In general, leaf radiative transfer model inversion successfully captured 50 to

75% of the variability in leaf traits, though retrieval accuracy varied significantly by

plant functional type and project due to a combination of highly variable measurement

techniques and physiological or morphological differences between plant functional
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types. Second, this study quantified the drivers of variability in leaf traits estimated

from leaf spectra. I found that traits varied approximately equally within and across

species, with morphological and structural traits showing less plasticity compared to

traits related to photosynthesis and hydraulics. Species also defied characterization

into plant functional types—attempting to do so captured at most roughly one-third

of interspecific variability. Finally, this study assessed the extent of correlation be-

tween leaf traits directly estimable from leaf spectra and other traits that, so far,

can only be measured directly. I found evidence of the leaf economic spectrum (see

Chapter 1) in leaf optical traits as well, both within and across species, but many

intraspecific trait correlations were strongly species-dependent. Future work could

expand on this study in several ways. For one, the causes of the substantial vari-

ability in leaf trait retrieval accuracy need to be investigated in more detail, paying

special attention paid to details about the measurement methodology (such as the use

of leaf clips vs. integrating spheres, contact vs. proximal measurements). In addition,

important questions remain about the sources of intraspecific variability in leaf traits.

Namely, how much of this variability is between individuals of the same species as

opposed to between leaves on the same tree? How do traits on the same leaf vary over

the course of a season, or even of a single day? Similarly, how quickly and how much

do leaf traits change in response to acute or prolonged stress? Fortunately, because

leaf spectra are rapid and non-destructive, they are particularly well equipped to ex-

plore these and related questions, and future studies of plant ecophysiology would

benefit significantly from adding leaf spectra to their measurement protocols.

My fourth and final research chapter advances beyond the leaf scale to the canopy

scale. Canopy radiative transfer modeling has long been an essential tool for inter-

preting remote sensing signals (Verhoef, 1984; Jacquemoud et al., 2009). At the same

time, canopy radiative transfer models (albeit of a different lineage) have been an es-
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sential component of dynamic vegetation models, where they are needed to determine

light absorption for photosynthesis and to model surface energy balance (Dickinson,

1983; Sellers, 1985; Oleson et al., 2013). This chapter sought to unify these two schools

of thought by first training a vegetation model’s (Ecosystem Demography model, or

ED2) own canopy radiative transfer scheme to predict full-range hyperspectral surface

reflectance, and consequently calibrating and validating the model against airborne

imaging spectroscopy measurements. Applying the same general Bayesian inversion

approach used in chapters 2 and 3 to the canopy radiative transfer model, I was able

to significantly constrain model parameters related to canopy structure compared to

their uninformative priors. However, the resulting predicted spectra often departed

significantly from both observations and predictions using a radiative transfer model

commonly used in the remote sensing community. These analyses suggest that, at

the very least, the calibration omitted important parameters related to wood and soil

properties, and more likely that the canopy radiative transfer model has underlying

structural errors that inhibit its ability to accurately simulate remotely sensed canopy

reflectance. Additional work, primarily in the form of sensitivity analyses, is needed

to more precisely diagnose the sources of model error and provide a road map for

model improvement.

Overall, there are several major lessons to be learned from my dissertation re-

search. The first lesson is that, at least in terms of traits, plants are frustratingly

idiosyncratic, which poses problems for both vegetation modeling and remote sens-

ing. As chapter 3 showed, individuals from the same species are often just as, if

not more different from each other than from individuals of other species. Moreover,

both chapters 1 and 3 show that variability among species from the same functional

type can be greater than the variability between functional types. Models with fixed

parameters for plant functional types therefore average over a tremendous amount
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of variability, and cannot represent the types of functional responses to stress or

changing conditions observed in the various studies in chapter 3. The same can be

said of satellite remote sensing, which is forced to condense complex stands of highly

heterogeneous individuals into a single pixel with an average reflectance spectrum.

Given comparable inter- and intra-specific variability in optical traits (and therefore

spectra), it is hard not to be pessimistic about the ability of multispectral satellites

to detect any but the most severe of stresses in heterospecific stands.

Another challenge, long known to the remote sensing community and reaffirmed

in this dissertation, is the complexity of physically modeling vegetation optical prop-

erties, even when the traits are known. My second and third chapters show that we

have an incomplete understanding (or at least, incomplete models) of vegetation-light

interactions even at the leaf level, as evidenced by species-specific biases and large

fractions of unexplained variability in trait retrieval. Some of these issues are due to

differences in measurement approaches, and more work needs to be done to provide

concrete recommendations regarding techniques for accurately and consistently mea-

suring leaf spectra. However, systematic differences in trait estimation even within

the same dataset point to issues with model calibration and structure. The large

variability in both traits and trait correlations across species points to a need to

continue to push leaf radiative transfer models to explicitly distinguish between mul-

tiple classes of molecules (e.g. separate chlorophyll a and b; model lignin, cellulose,

and starch separately rather than collectively as “dry matter content”), and, in the

process, to depend less on empirically calibrated absorption coefficients. Although

increasing the level of detail in this way can lead to problems with equifinality, my

dissertation has consistently demonstrated that Bayesian methods are well-suited for

both acknowledging equifinality when it exists (through strong correlations in the

joint posterior distribution) and for resolving it when independent prior information
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is available. As my fourth chapter shows, radiative transfer modeling becomes even

more challenging at the canopy level, where the complexities of modeling individ-

ual leaves are compounded by leaf arrangement and orientation, contributions from

wood and soil, and strong directional effects of both incident and outgoing radia-

tion. Canopy radiative transfer models that do a reasonably good job of capturing

these effects while remaining computationally tractable exist in the remote sensing

literature (Verhoef, 1984; Pinty et al., 2006), and have been successfully coupled

with ecosystem models in the past (Quaife et al., 2008). However, my work suggests

that the canopy radiative transfer models popular in the ecosystem modeling com-

munity (Dickinson, 1983; Sellers, 1985) may be less well suited for modeling remote

sensing signals, likely due to their failure to account for the directionality of canopy

reflectance. Future work should dive more deeply into the structure underlying these

respective canopy radiative transfer models to find ways in which the latter can learn

from the former.

More generally, the final lesson of my dissertation is the importance of synergies

and synthesis to improving ecological forecasting. No single observation method is

capable of providing a picture of an ecosystem sufficiently complete to improve every

aspect of an ecological forecast. However, synergies between multiple observations—

each providing incremental constraint on a different component of the ecosystem—can

lead to much more important improvements. For example, my fourth dissertation

chapter applied the multivariate meta-analysis from chapter 1 to the results from

chapter 3 to generate strongly informative multivariate priors on leaf optical prop-

erties, without which the retrieval of canopy structural parameters would have been

hopelessly ill-posed. This example demonstrates not only the power of combining

similar observations at multiple scales (leaf traits estimated from leaf spectra and

airborne imaging spectroscopy, not to mention the survey data that provided the
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composition of each site), but also the utility of process-based models as scaffolds for

doing so. Significant progress in ecological forecasting will almost certainly require

the development of many more synergies like these, and has the necessary positive

externality of promoting collaboration across different disciplines.
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le Maire, G., François, C., and Dufrêne, E. (2004). Towards universal broad leaf
chlorophyll indices using PROSPECT simulated database and hyperspectral re-
flectance measurements. Remote Sensing of Environment, 89(1):1–28.

LeBauer, D. S., Wang, D., Richter, K. T., Davidson, C. C., and Dietze, M. C. (2013).
Facilitating feedbacks between field measurements and ecosystem models. Ecolog-
ical Monographs, 83(2):133–154.

Lepine, L. C., Ollinger, S. V., Ouimette, A. P., and Martin, M. E. (2016). Examining
spectral reflectance features related to foliar nitrogen in forests: Implications for
broad-scale nitrogen mapping. Remote Sensing of Environment, 173:174–186.

Leprieur, C., Verstraete, M. M., and Pinty, B. (1994). Evaluation of the performance
of various vegetation indices to retrieve vegetation cover from AVHRR data. Re-
mote Sensing Reviews, 10(4):265–284.

Lewis, P. and Disney, M. (2007). Spectral invariants and scattering across multiple
scales from within-leaf to canopy. Remote Sensing of Environment, 109(2):196–
206.

Li, L., McCormack, M. L., Ma, C., Kong, D., Zhang, Q., Chen, X., Zeng, H., Ni-
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