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ABSTRACT

Many observational studies assessing the effects of treatments or exposures are
limited to comparisons between treatment users and nonusers or exposed and un-
exposed participants at study entry. However, the underlying and etiologically
relevant exposure may gradually increase over time before reaching some plateau.
This amount of time required for this latent cumulative exposure to reach a max-
imum hazard will be referred to as the "lag", coming from the concept that the
association between exposure and outcome is lagged or delayed. Accounting for
the lag is essential when analyzing exposure-response associations adequately. My
challenge was to simultaneously estimate the lag-time and the exposure’s lagged-
association with the outcome at plateau.

In this dissertation, I draw an analogy with the pharmacokinetic one-compartment
model (OCM). OCM describes the accumulation of a medication in the body based
on an exponential cumulative density function whose rate of increase is defined by
a half-life parameter. Upon discontinuation, the OCM assumes that a medication
will eliminate at the same half-life rate. The decline, for my purposes, can be in-
terpreted as the time to return to a null effect of exposure, which occurs at roughly

4-5 half-lives.
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My methods model the association of a latent exposure and dichotomous out-
come using a half-life of effect, similar to the OCM, in longitudinal analyses of
single and repeated exposures. I derive profile likelihood-based algorithms to esti-
mate of the upper limit of association simultaneously with the rate of latent expo-
sure growth towards or away from plateau. Lastly, I extend this approach to allow
different half-life parameters for incline and decline.

Using simulations, I analyze the performance of my approach by comparing
bias and coverage of the estimates for the half-life and effect parameters. With
data from the Black Women’s Health Study Cohort (a prospective cohort of 59,000
women followed 1995-2015), I show that prolonged cigarette smoking is associated
with a maximum hazard of cardiovascular disease (CVD) at 2.5 times the hazard
of never smokers. Additionally, I estimate that it takes about 7 years of smoking

cessation for an individual’s hazard of CVD to decrease by 50%.
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CHAPTER 1

Introduction

Public health research has long been aware of the detrimental effects of smoking
on health, particularly the increased risk of cardiovascular diseases (CVD).(U.S.
Department of Health and Human Services, 1990; WHO, 2004) Cigarettes and to-
bacco cause plaque build-up in the arteries, leading to an increased risk of CVD
for individuals who smoke. Few would consider a heart attack occurring after
one week of smoking to be caused by use alone. Conversely amongst those who
smoke for an extended period of time, one would not expect the CVD hazard to
simply disappear following cessation. Thus, the question is how best to account
for transitioning individuals when analyzing risk in a population-level model?
Clinicians and health professionals agree on the benefits of smoking cessation
in terms of reducing risks, though literature has been mixed regarding the amount
of time required to return to "normal".(Kawachi et al., 1994; Rachet et al., 2003;
Rosenberg et al., 1990) Recommendations for smoking cessation are made, with the
intention of lowering the smoking-associated health risks. However, estimation of
the hazard is complicated by the fact that it takes time for the impact of a history of
smoking to go away completely. For the "on-again off-again" life-course of many
smokers, it is additionally challenging to minimize misclassification of exposure,
which can bias estimation of risk. That is, how does one appropriately classify the
exposure for someone who is not consistent in their cessation or habits of smoking?
The time-to-effect of an exposure on an outcome can be thought of in terms of
"lag" - i.e. a period of time that must elapse, following exposure, prior to seeing
a measurable change in risk. Lagged, or delayed, effects have been studied in a

breadth of examples, including the multiple conditions for which smoking cessa-



tion is considered to reduce risk over time.(U.S. Department of Health and Human
Services, 1990)

In particular, Rachet et al. (2003) explored the distribution of the lag in the as-
sociation between smoking cessation and heart attack, using data from the Fram-
ingham Heart Study. The method here was limited to individuals with successful
smoking cessation, yet, given that the average smoker may try to quit 30 times be-
fore success(Chaiton et al., 2016), there is a clear need for models that can account
for and handle more complex scenarios.

Another approach to deal with lagged exposure-response associations has been
to look at the cumulative dose, such as the total years smoked or pack-years, at the
time of event. The downside to this technique comes from its inability to account
for discontinued use, i.e. the latent exposure may subside, while a cumulative dose
is assumed to stay constant.

For this dissertation, the delay, or "lag", will be defined as the amount of time
between exposure initiation or discontinuation and the time to saturation or elim-
ination of the underlying hazard. This differs from the epidemiologic concept of a
"latency period", in that an event may occur during the lag-time of an effect, but is
not expected to occur within the former period of time specification. The overall
goal of this thesis will be to introduce novel statistical methods for estimating a
lagged effect, and the lag-time associated with that effect size.

The analogous structure of the novel models I introduce comes from the phar-
macokinetic one-compartment model (OCM) in that the effective amount of a sin-
gle or set of protracted exposures, over time, follows an exponential accumulation
or decay curve. The first-order elimination rate parameter in OCM has an intu-

itive "half-life" interpretation, which can be used to describe the amount of time



required for the risk to rise or fall half-way. In my implementation, the volume
and clearance parameters are factored out of the equations, leaving only the rel-
ative concentration, rate of growth/decay, and time parameters. Together, these
parameters model the shape of a latent risk curve, which looks similar to the OCM,
but reflects the increase or decrease in the effective level of exposure relative to a
maximum hazard.

Unlike the pharmacological effect in the OCM, the biologic effective exposure
value [that parallels the "concentration" in the OCM equation] may not be an easily
measurable quantity or readily available. To illustrate this, consider the effect of
prednisone or corticosteroids (CS) on the risk of fracture. The biologic mechanism
could be that CS leach calcium from the bones, which leads to an increased risk of
fracture.(Van Staa et al., 2000; Vestergaard et al., 2008) However, measuring bone
density as a marker can often be costly and inaccessible for study. Therefore, the
unobservable change in the risk of fracture due to CS use is what I am interested in
modeling. That is — how can I model the population-level hazard when the effect
of the exposure, which is assumed to have some lag, is also changing over time?

Another use of my method could be to evaluate the presence of spurious or
unexpected associations, specifically those that return an estimated lag-time that
is infeasible biologically. For example, an estimated time-to-null hazard of one
day [for CVD outcomes following smoking cessation] is highly improbable, and
could imply some confounding by indication in the analytic approach. Alternately,
should the estimated lag be infinite, one may need to reassess the biologic model
that assumes the CVD hazard associated with smoking could even return to the
level of never smokers. Such concepts and limitations are discussed in more detail

in Chapters 3 and 5.



In the remainder of Chapter 1, I introduce examples of lag effects and provide
some background on previous approaches used to account for lag-time in analy-
sis. To serve as inspiration for the novel methods developed here, I also provide
brief introductions to pharmacokinetic and longitudinal data models, and give an

overview on profile likelihood estimation.

1.1 LAG OF EFFECT

In the context of time-variant primary exposures, mixed effects and survival anal-
ysis models have been used to estimate the association between an exposure and
some time-to-event outcome of interest. However, when the underlying exposure
quantity is unknown, or the exposure may not have an immediate action mecha-
nism, researchers make assumptions to attempt to account for the delay. Therefore,
most clinical and analytic approaches only try to account for the delay in the esti-
mated effect but fail to estimate it.

Analysis of administrative and longitudinal data typically requires assump-
tions be made regarding the causal and temporal relationships between exposures
and outcomes. As long as a risk factor occurs with enough time prior to the event
of interest, the mechanism of effect can be estimated with certainty and minimal
bias.(Rothman, 1981) Difficulties may arise when one must allow an amount of
time for an exposure to fully turn "on".

The field of epidemiologic study is ripe with examples of delayed and lagged
effects, both in the realm of pharmaceutical interventions, as well as, with non-
therapeutic exposures such as environmental pollutants.(Langholz et al., 1999; Thomas,
1983) To narrow the focus of this methodology, I am specifically interested in

dichotomous events and outcomes whose risk due to protracted exposure is as-



sumed to plateau, or stabilize, given "enough" time exposed. That is, those who
have been exposed for an extended period of time are considered to be at a maxi-
mum hazard associated with the underlying exposure mechanism.

Additional complications arise when exposures are not consistent over time,
making classification decisions difficult during population-model building, and
can often lead to the exclusion of subjects in transition-states. These individuals
present a rich source of untapped information about the exposure. Restricted anal-
yses may not paint the full picture of the time-to-effect, and the results may only
be generalized to the populations represented by the restricted sample. For exam-
ple, the benefits of weight loss in overweight/obese individuals with regards to
reducing the risk of CVD and/or type 2 diabetes may not be applicable to weight-
cyclers, or "yo-yo dieters", as studies have found a majority of men and women are
unable to maintain their reduction in body weight.(Strohacker et al., 2009)

In an analysis of Nurses Health Study data, Giovannucci et al. (1995) found a
protective effect of regular aspirin use on the risk of colorectal cancer. While the
association was only statistically significant in a restricted sample of consecutive
reports [of aspirin use], the unrestricted analysis still indicated that consumption
of two or more aspirin tablets per week would lower the risk of colorectal cancer.
Similar results were seen in the Health Professionals Follow-Up Study, whereby
the Giovannucci et al. (1994) concluded that any extended period of aspirin use
was associated with a reduced risk of colorectal cancer and adenomas.

Other examples include the declining risk of cardiovascular events following
smoking cessation, the change in the likelihood of fracture due to corticosteroid in-
take or discontinuation, and clinical improvements in depression symptoms after

the initiation of treatment. In all of these examples, the true impact of the exposure



can only be properly estimated, if the amount of time-to-effect, or lag, is correctly

specified.

1.2 PREVIOUS WORK THAT CONSIDERS LAGGED EFFECTS

Rothman’s Induction and Latent Periods

Rothman (1981) explored the differences in terminology for time between various
states of the disease process, specifically causal mechanisms leading to disease on-
set and then disease detection. The take-away from the article follows the notion
that the events must happen in a particular order. Failing to take into account the
period lengths may result in non-differential misclassification and underestima-
tion of the effect of interest. The proposed solution is to look at models and anal-
yses under different assumptions of the empirical induction period, and to select
the corresponding lag that results in an effect estimate furthest from the null.
Rothman’s theory has been disputed(Salvan et al., 1995; Richardson et al., 2011),
and more recent work has focused on maximizing the likelihood / partial likelihood
function, or selecting a lag-adjusted model based on Akaike’s Information Crite-
rion(Akaike, 1974). The latter method allows for comparisons across non-nested
models by penalizing the likelihood for the number of parameters estimated. This
can be useful when trying to account for nuisance parameters or estimates of cor-

relation structure that may have problems with model overfitting.

Time windows of susceptibility

One methodology that relates back to Rothman’s work is the use of time windows
to mark individuals as "exposed" within particular intervals following exposure.

These have been referred to as the "time windows of susceptibility" or "sliding win-



dows". Applications of this method have been primarily focused on occupational
and environmental exposures, and the windows are selected by comparing the de-
viance statistics for models under different fixed intervals of exposure.(Finkelstein,
1991; Hauptmann et al., 2000a)

A particular drawback of this approach has been the need to select the windows
a priori, and the method does not account for protracted exposures or non-linear
latency functions over time. While Hauptmann et al. extended the approach to
look at both window width and position, the application was restricted to a case-
control study design which resulted in bias due to the retrospective assessment of

the exposure history.(Hauptmann et al., 2000a)

Splines and weighted cumulative exposures

One of the more common and published approaches for dealing with lagged ef-
fects relies on weighting past exposure events or integrating over the entire expo-
sure history in order calculate the "etiologically relevant" exposure metric. (Langholz
etal., 1999; Abrahamowicz et al., 1992, 1996, Hauptmann et al., 2000b; Rachet et al.,
2003; Sylvestre & Abrahamowicz, 2009) The particular usefulness of this method
comes from its ability to account for varying exposure intensities and durations,
as well as, estimating a clinically meaningful measure for the exposure-response
relationship.

The cubic splines model for cumulative exposure weighting of lagged effects
was described by Abrahamowicz et al. (1996) in an application to lupus nephritis.
Here, the exposure history is broken into segments based on a pre-selected number
of knots and a differentiable order of polynomial spline functions. One strength of

this approach is the ability to test for the type of exposure-hazard relationship,



since the lower order functions of the predictor are nested within the higher or-
der model. Similar to Rothman, the authors utilized AIC to assess the model’s fit
compared to conventional time-varying dose and duration models. Meanwhile,
the confidence bounds for the predictors were derived by maximizing the partial
likelihood. This is the method that Rachet et al. (2003) employed for estimating the
distribution of the lag-time associated with reduction in the hazard of heart attack

following smoking cessation.

Distributed lag linear and non-linear models

The distributed lag modeling framework is inspired by time-series regression in
economics and has been described in the context of generalized additive mod-
els(Zanobetti et al., 2000) and non-linear models (Gasparrini et al., 2010). The
frameworks allow for various lag-parameterized basis functions to define the ex-
posure’s effective amount over time. The idea of these models is to calculate multi-
ple parameters for each lag-period exposure, with a final coefficient summarizing

the overall effect of a unit change in the weighted average of exposure.

1.3 THE PHARMACOKINETIC ONE-COMPARTMENT MODEL

The one-compartment model (OCM) is a pharmacokinetic formulation that quan-
tifies the amount or concentration of a desired drug within the plasma, over time.
Given a known rate of elimination [of the drug from the system], one can compute
the effective amount of the agent in the compartment of choice.(Winter, 2004) For
an Intravenous (IV)-administered drug, it is possible to determine the amount of
time needed to reach a steady state level, as well as, the relative amount of steady

state concentration at any given time. This "concentration" model can be used as a



general framework for describing the behaviors of a latent exposure, dictated by a
rate of growth or decay towards or away from a steady state plateau, over time.
The formulas required to calculate the concentration at a given time are broken
down into three possible time-frames: 1) At the beginning of infusion, 2) During
steady state, and 3) After discontinuing infusion. The single generalized formula

that can be used to calculate concentration at time, ¢, follows(Wijnand, 1988):

Ko )
[1— et ift<D
ct = kV 1.1
: ko —keD] ,—ke(t—D) : ( )
kV[l_e 6]6 e ift > D

Where the infusion begins at time 0, D denotes the end-time, ¢t — D the time
elapsed since ending the infusion [for the second condition], ky and k. are the infu-
sion and elimination rates, and V represents the volume of the administered infu-
sion. The first condition is equivalent to the second by replacing D with ¢, when ¢
is less than or equal to D. By the definition of steady state, where the concentration
accumulates and eliminates at the same rate, the total concentration is equal to:

ko

G = bV

(1.2)

Thus, the relative concentration at time ¢ vs. the steady state (ss) level can be

described by:

Ct
C’fs = kk(‘)/ [1 — e_keD} s e Re(t=D) 5 k;—v = [1 — e_keD} s g he(t=D) (1.3)
P e 0

That is, at any given time point, the achieved proportion of the steady state
value can be modeled via an exponential curve with a known constant elimination

rate. For as long as the infusion continues, this function is monotonically increas-
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ing, and then monotonically decreasing once the infusion is stopped. Another
strength of this formulation is the ease of calculating the elimination rate, given
a known amount of time required to get to half of the steady state concentration.
Specifically, one can prove that the elimination rate is just a function of the half-life,
and conversely, that if the elimination rate is known, one can estimate the half-life
of the drug in the compartment of choice.

1 1 1
5= 1 — e hetn — 5= S (5) =In(l) —In(2)=—-In(2) = —kt, =

ke = — <t =
th "k

The OCM structure assumes that the curve will increase over time for approx-
imately 4-5 half-lives, before entering steady state, at which point, continuation of
the medication does not appreciably change the level of concentration in the sys-
tem. Once the medication is stopped, it should take approximately 5 half-lives to
return back to zero or "normal”, and starting another infusion or dose should result
in a concentration that is equivalent to the sum of the two curves.

These concepts can be stretched to a more abstract formulation, noting that
equation (1.3) defines the relative concentration in the plasma, over time, versus
the maximum concentration achievable at steady state. Let me define this concen-
tration ratio from as C, 4o

In equation (1.3) the assumption stands that time begins to increment at the
start of infusion, ¢ = 0. For a population or sample where the start times are not all
indexed by time=0, the formula is revised to three segments separated by the start
and stop times of the infusion. Prior to initialization, the relative concentration is

zero. Once the infusion is started, this ratio will begin to rise towards 1, and after
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discontinuation, the ratio is expected to decline back to zero. Both the increase and

decrease depend upon the rate of elimination. Functionally, this can be written as:

4

0 ift <b

Cratio = 1 — e~ ke(t=) ifb<t<f (1.4)

[1— e kel 0] s ket ifg > f

\

Note, that this set of equations (1.4) generalizes the drug exposure start time as
b, rather than 0. This shift is important, as well as the specifications that b < f, for
beT"and feT', where T is the range of surveillance times, for which data is available
and/or collected. The quantity, f — b, is equivalent to the total amount of time
exposed, or D from equation (1.3).

When multiple IV infusions are given, the rate of elimination does not change,
thus the total concentration, or effective dose, in the compartment becomes a sim-
ple sum of the individual concentrations.(Bourne, 2010) I will take advantage of

this mechanism in chapter 2.

1.4 LONGITUDINAL MODELS

The question of interest for this dissertation lies in the modeling of a lagged hazard,
or a risk over time conditional on surviving up to that time. There are several
regression approaches that work in this context, including, but not limited to, Cox
proportional hazards (CPH) and pooled logistic regression (PLR) models. Both
models have been shown to work for analyses of risk over time, with benefits and
costs to each approach.(Cupples et al., 1988; D’ Agostino et al., 1990; Ngwa et al.,
2016) I offer a brief overview of these methods, below, to prepare for their use

throughout the remainder of the dissertation.
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1.4.1 Cox Proportional Hazards Regression

Cox proportional hazards (CPH) regression models are one of the most common
forms of regression used in analyzing exposure-response associations in the con-
text of time-to-event outcomes.(Cox, 1972; Therneau & Grambsch, 2000; Hosmer
et al., 2008; Kleinbaum & Klein, 2011) Here, time is considered to be a part of the
outcome and the interest lies in determining differences in survival due to some
exposure by looking at the relative hazards over time. The linear model is fit for the
hazard at time ¢, h(t| X (¢)), given the data X (¢) and an unknown baseline hazard
function, hg(t).

h(t|X(t)) = ho(t) exp [l‘ljﬁl + ...+ l’qj/Bq]

The semi-parametric nature of the Cox model implies that the baseline haz-
ard does not need to be specified or estimated. The parameters for each of the
exposures in the model are assumed to be proportional across time. Using the
extension proposed by Andersen & Gill (1982), it is possible to update the values
for each subject’s time-dependent exposures, such that the conditional form of the
equation satisfies the proportional hazards assumption.

A typical maximum likelihood estimation approach first requires specification
of the likelihood and log-likelihood functions. For the CPH model, the likelihood
becomes a product of the unique event time hazards. To keep the derivations and
steps generalize-able, I consider the case where more than one event may occur at
a particular time. To handle these ties, I utilize the likelihood and log-likelihood
formulations proposed by Breslow (1974) throughout the dissertation. The nu-
merator represents the sum of exponential risk of event for all individuals with
an event at that time, while the denominator is the sum of the exponential risk of

event across all individuals that have survived up to that time multiplied by the
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number of events at that time.

5
E(X,B,Y>:H JeR(ty,Y;=1) -
h=1 [ > e:cp(XjB)]
j

jeR(ty)

K 5 %464
(X,3,Y) Z Z (Z xq]ﬂq> — myg In e
JeR(tx)

(1.5)

where ¢, is the kth unique event time index, with m,, equal to the total number
of events at time ¢, R(t;) represents the set of subjects at risk in time ¢;, and with
the likelihood function’s numerator taking the sum of exponential risk scores for
all subjects with events at time ¢;. Specifically, I define the risk score for subject 7, as

the sum of the product of the covariates and their respective predicted coefficients:
Ty = Z xquq = xligl i xquq
q

Due to the unique semi-discrete nature of the CPH estimation process, where
risks are summed and component likelihoods calculated by strata-time slices, tied
events are likely to occur and need to be handled appropriately. As already men-
tioned, Breslow’s approach will be used throughout the dissertation, which has
been shown to be less conservative than the approach proposed by Efron (1977).
However, the simplicity of Breslow’s formula, that treats each event in a given
time as equally-likely, allows for faster computations, a preferable quality for my

method.(Hertz-Picciotto & Rockhill, 1997)
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1.4.2 Pooled Logistic Regression

An alternative method to the CPH is the pooled logistic regression (PLR) model,
which has been shown to work for repeated measures study designs. Specifically,
interval-sliced data for subjects with time-varying covariates can be pooled to esti-
mate the conditional odds of an event.(Cupples et al., 1988; D’ Agostino et al., 1990)
The primary difference, here, is in the interpretation of the effect measures as the
conditional odds of event having survived up to that time. As long as the interval
considered for the repeated measures is small and the events are relatively rare,
the PLR models provide reasonably comparable odds ratio estimates to the CPH
hazard ratio of the effect and it’s standard error.(Green & Symons, 1983)

My methodology can handle both types of analytic models, though my main
focus remains on time-to-event outcomes. In chapter 2, I outline the equations that
relate to the pooled logistic analyses, and in chapter 3, I touch upon the differences
and, potential, limitations of my method applied to this modeling framework.

For completeness, below, I have shared the PLR likelihood and log-likelihood
functions that are maximized during the process of estimating the effect parame-

ters.

L(X,B,Y) HHpZ;t L —p) )

n T

UX,B,Y)=> > Yulnpi + (1 = Yi)In(1 — p)

i=1 t=1

exp(Bo + 2151 + ... + TgitBy)
1+ exp(Bo + x1itfr + ... + Tgit5y)

Dit = (1.7)

Let 7 denote the subject at time ¢, and the individual’s time-specific values are

defined as follows: p;; is the probability of event, X is the data for ¢ exposures,
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taking values 14, ..., T4, B, is the gth covariate’s true association coefficient, and

Y takes the value of 1 for an event and 0, otherwise, for subject ¢ at time ¢.

1.4.3 Profile Likelihood Estimation

The profile likelihood [also referred to as the profile log-likelihood method (PLL)]
approach can be thought of as the marginal likelihood of a model across levels of a
pre-specified parameter.(Cole et al., 2014; Venzon & Moolgavkar, 1988; Murphy &
Van Der Vaart, 2000; Sprott, 2000; Cox & Reid, 1992) In this estimation technique,
the parameter of interest is fixed, while the other parameters are estimated via tra-
ditional maximum likelihood and regression methods. Graphing the likelihood or
log-likelihood for the fully adjusted model against the fixed parameter, provides
a visual representation of the likelihood’s behavior attributable to the parameter
of interest. If the likelihood is unimodal and the log-likelihood looks like an in-
verted "U", then the resulting curve’s maximum should occur at the value of the
parameter that would be found using maximum likelihood estimation.

One reason to define this likelihood profile is to determine confidence bounds
for the parameter, by looking at which points of the curve cross the horizontal
line located at one chi-square’s distance below the maximum. Figure 1.1 illustrates
how this may look. The horizontal line indicates one chi-square distance from the
maxima, and the confidence interval for \’s estimate is defined by the values at
which the horizontal line intersects the profile curve.!

Since the log-likelihood can be used for purposes of maximization, rather than
the full likelihood, I utilize the form of the profile log-likelihood (PLL) for most of

the estimation algorithms proposed in this text.

1Image taken from: https://www.unc.edu/courses/2010fall/ecol/563/001/images/lectures/
lecture8/figdnew.png
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Figure 1.1: Profile Likelihood
1.5 DISSERTATION SECTIONS

In chapter 2, the properties of the OCM are described to serve as a structure for
lagged latent exposure profiles over time. The transition from OCM to effective
exposures models is fairly straightforward by recognizing the cumulative expo-
nential function can be parameterized using lag in terms of the elimination rate. I
further step away from the OCM by extending the exposure’s formulation from a
single parameter to two parameters, such that the exposure’s effect curve has sepa-
rate rates of incline and decline. With each of these defined exposures, I introduce a
profile likelihood-based algorithm for estimating the lag and hazard concurrently,
with corresponding estimates of uncertainty. I derive both the single- and two-
parameter approaches for CPH and PLR analytic models of the outcome.

Chapter 3 presents the results of Monte Carlo simulation studies in which the
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statistical performances of the single- and two-parameter approaches are explored
for the concurrent estimation under known inputs for the lag and effect size. The
simulation studies are based on a range of scenarios that correspond to real-life
clinical examples. In Chapter 4, I examine the lagged relationship between smok-
ing and CVD hazard amongst the Black Women’s Health Study (BWHS) cohort.
This applied chapter explores smoking as both a binary exposure and in terms
of packs per day over time, accounting for multiple time-varying potential con-
founders. I compare the effective exposure analyses to conventional exposure vari-
ables of smoking, such as current vs. past vs. never smoking, or cumulative years
smoked.

In Chapter 5, I summarize the results from chapters 2-4, discuss the strengths
and limitations of my proposed methods, and describe theoretical and applied

research perspectives.
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CHAPTER 2

Effective Exposure Derivation

The goal of this chapter is derive and describe a novel methodology for estimation
of lagged effects, both in terms of the latent period and overall effect size of a series
of exposures. I start by drawing the parallels between the pharmacokinetic one-
compartment model (OCM), described in the Introduction [Chapter 1], and the
effective exposure distribution, over time, as parameterized by the half-life of the
effect. In order to use this formulation, I describe the relevant assumptions needed
for estimating the hazard and lag parameters concurrently.

After stating the methodologies behind the single-parameter single-exposure
model, I further extend the algorithmic estimation approach to more complex ex-
posures — specifically, the two-parameter effective exposure model, and the pro-
tracted exposures models. The latter functions as an extension to either the one- or
two-lag parameter variants of effective exposure. For the purpose of this chapter I
only focus on the multiple dosing (protracted exposures) using a single lag.

This chapter is meant to be read as a full description of the methods developed
for the dissertation. In Chapter 3, I compare multiple models using simulations

and outline the relative strengths and weaknesses of the algorithms.

2.1 TRANSITION TO LONGITUDINAL OBSERVATIONAL DATA

As described in the introduction to OCM (section 1.3), given a known elimination
rate, k., one can calculate the relative exposure level, or concentration over time.
Recalling from (1.3), the volume and clearance parameters become irrelevant when
modeling the ratio curve as it plateaus to 1 (approaches steady state) over sufficient

time. The primary interest becomes the rate at which the curve inclines toward or
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declines from steady state, which is driven by the lag parameter, or the half-life.

In this model, it is assumed that after an extended period of time, the hazard, or
concentration of risk, due to an exposure should stabilize at some steady state-like
effect size. The attributed risk, in this context, does not require an assumption of
causality, but does depend on the existence of some underlying action mechanism
by which the likelihood of the outcome changes relative to a threshold of the cu-
mulative exposure over time. That means that one could model the underlying,
or latent, hazard of an exposure on some outcome, using a time-varying quantity
as a proxy for the weighted cumulative exposure. This latent quantity can be con-
sidered in terms of a measure that is relative to the maximum level of effect at any
given time.

Let me define the term "Effective Exposure" (EE), or E;;()), as the relative amount
of an exposure necessary to impose some effect, and for which the effect will eventually
reach plateau, or steady state. This could also be referred to as the point at which
the hazard ratio associated with the exposure attains maximum. It will be used to
represent the latent (unobserved) time-varying association of an event in relation
to the individual’s lifetime history of an exposure of interest.

The A is used as the lag parameter, implying that the underlying effective expo-
sure changes over time based on a decay rate!. As the pharmacokinetic elimination
rate is constant with respect to volume and dose, the assumption stands that the
lag parameter of an effect curve should not vary across individuals, time, or con-
centration of exposure.

This rate parameter can also be converted to a half-life, , by the properties of

the OCM, which lends more intuitively to interpretation. This also implies that

1Analogous to the elimination rate, k. from the OCM
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it may be possible to estimate A or h, given total exposure profiles over time for
individuals in a cohort. For example, one could estimate that the absolute cardio-
vascular disease (CVD) hazard associated with smoking would decrease 50% after
h (half-life) number of years following complete cessation. The change is relative
to a starting point [hazard], and thus should be considered in terms of the individ-
ual’s effective exposure and not in terms of the time required to reduce the hazard
ratio by 50%.

The term "dose" will be used to refer to the level at which steady state, or the
maximum hazard, occurs. The lag estimation always ties back to a single unit of
the dose being used in the model. This means that for each version of the exposure
used (binary vs. continuous), careful attention must be paid to the interpretation
of both the lag and effect size parameters. For example, Chapter 4 will refer to
current smokers vs. not, when estimating a general CVD hazard due to smoking.
It also explores the CVD hazard associated with packs per day smoked.

The latter assumes that the risk of CVD associated with 2 packs/day of smoking
plateaus at twice the effective exposure of a 1-pack/day smoker. Additionally, the
time needed for the 2 packs/day smoker’s hazard to return to the level of the 1
pack/day smoker would be equal to the half-life years for the 1 pack/day unit
risk. Discussion of the nuances behind these interpretations continues throughout
this text.

The last term to define before deriving the models is that of the risk "profile"
or "trajectory". The two words are used interchangeably to imply the history of
exposure for an individual. In the context of time-varying exposures, an interesting
trajectory might include that of the "on-again off-again" smoker, such that the CVD

hazard associated with smoking is not monotonic throughout their lifetime, but
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rather fluctuates based on the individual’s set of known smoking periods. Thus,
I refer to strictly increasing or decreasing effective exposure as a monotonic risk
profile, the former applying to individuals who smoke throughout the course of
a study and the latter illustrating the CVD hazard decreasing over time following

successful cessation of smoking.

2.2 ONE PARAMETER EFFECTIVE EXPOSURE

The first version of the Effective Exposure model will be called "One Parameter
Effective Exposure" (OPEE). It assumes the form closest to the OCM, such that it
depends on a single parameter to define the rates of the incline towards steady

state and decline back to zero.

2.2.1 Exposure Specification

Without loss of generalizability, the following derivation will be described in terms
of a binary (yes vs. no) exposure. Let D equal 1 for a single exposure event that
starts at time ¢ = b and ends at time ¢ = f for subject 7, and A denotes the rate
parameterization of the lag. I can represent subject i’s effective exposure E; (), at

time ¢ for a given lag, A, by the following:

Eqx\b f)=D(1—e ) xI(telb, f]) + D (1 — e M) e XDy [ (¢ > f)

— Dx [e—/\*max(o,t—f) . e—)\*max(O,t—b)] —D [e—/\ZQ o 6—)\2'1]

(2.1)
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where
§
t—> ift >b
z1 = max(0,t — b) =
0 otherwise
p (2.2)
t—f ift > f
29 = max(0,t — f) =
\0 otherwise

Figure 2.1 shows how the EE curve approaches steady state for different lags.
Specifically, the shortest lag, in terms of half-life in days, quickly rises to steady
state, versus the 900 days, which does not even reach half of the total steady state
height upon exposure discontinuation?.

Given a lag parameter and known start/stop times of exposure, E;;(\) rep-
resents the particular height or latent exposure level at any point in time for an
individual. By exploiting this specification, I developed an iterative algorithm to
calculate the effective exposure [for each subject at each measurement time] and
use the corresponding value as the primary exposure metric in either the Cox pro-
portional hazards (CPH) or pooled logistic regression (PLR) model framework.
The odds ratio estimated by the PLR model is conditional on a subject’s survival
up to that point in time, thereby it is an approximation of the hazard ratio under
appropriate conditions.(Ngwa et al., 2016; Cupples et al., 1988; D’ Agostino et al.,
1990) I will therefore refer to the maximum hazard as the effect size estimated by
the EE approach. Details regarding the algorithm can be found in section 2.2.3.

Parameterizing EE by the half-life instead of the lag parameter produces an

2The 90-day half-life is used as a base case for the simulations in Chapter 3, where an explanation
is provided for this selection. Meanwhile, 900 days represents the maximum follow-up time for the
base case scenario, thus considered the upper bound for estimate-able half-lives in this type of
study design.
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equation that looks like:

Ezt(h> —D (e—zg log2/h e log2/h) (23)

Half-Life (days)
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Figure 2.1: Effective exposure curves for different lag parameters,
using the half-life definition in days.

2.2.2 Estimating Equations
2.2.2.1 Cox Proportional Hazards

To estimate the lag-time of an effect, I use the log-likelihood equation for CPH from

equation (1.5) with Breslow’s handling of ties to calculate the partial log-likelihood.
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In a univariate model, I maximize the following with respect to A and §:

B NY) = sz > BE(N) —mpln | Y MW (2.4)
k=1 | jeR(ty,Y;=1) JeR(tr)

where j is the subject-time index for a particular risk set R. R(t;) denotes all
subjects at risk at event time t;, and R(t;,Y; = 1) further restricts the risk set to sum
across all my, individuals with events at time ¢;. E;()) is the calculated effective
exposure for individual j in the risk set at ¢;, as defined in chapter 1. E;;(\) and
E;(X\) can be used interchangeably depending on the indexing - in this case j is the
conditional index for individuals in the risk set R at time ¢;, which could also be

represented by the combined indices ity.

Some important notes about my use of Cox’s partial log-likelihood function:

1. The sum from k = 1 to K requires that risk sets be defined by both unique
stop-time and strata, when assuming the baseline hazard also differs across

strata.

2. The observed likelihood and log-likelihood in a multivariate model setting
can be calculated by substituting 5, (\) with an individual’s risk score from
the multivariate model with () total covariates and their corresponding esti-

mated parameters, i, ..., v,. — i.e. 7; = BE;(\) + F121 + ... + JyTq

3. Further, I will assume that all of Andersen and Gill’s conditions are met for
the use of the Cox model with time-dependent covariates.(Andersen & Gill,
1982) That is, I assume that all of the hazards for the parameters in the model

are proportional over time.

The predicted beta [and gamma parameters] in note 2 come from the CPH
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model that is fit after fixing the lag parameter. Setting A or h allows for the use
of standard maximum likelihood estimation techniques, which do not require full
explanation here. In summary, the model assumes the input effective exposure is

the true exposure measure for which an estimate of effect is needed.

2.2.2.2  Pooled Logistic Regression

The equations required for a PLR analysis differ primarily in the construction of
the likelihood and number of measurement intervals used. Here, the focus is on
the predicted probability of an event at time ¢, rather than the hazard. Recalling
(1.7), the univariate form of the logistic predicted probability of event for subject i

at time ¢ given a known lag of the effect A can be written as:

630+31 Eir(N)

(2.5)

Pie = 1 + ePo+B1Ew(X)

As described in the CPH paragraphs, by fixing the lag parameter, estimation of

{3 is conditional on the lag specification. Thus, standard methodologies for logistic

regression would apply to the effect size parameter estimation.

2.2.2.3 Confidence Intervals

In order to obtain a standard error for the lag estimate, I can take the second deriva-
tive of the partial log-likelihood with respect to the effect size and lag parameters,
to approximate the Fisher’s Information matrix.(Hastie et al., 2009) To do this, and
to be able to use the delta method, certain conditions and regularity assumptions

need to be stated.
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Regularity Conditions and Necessary Assumptions

1. The first derivative with respect to ) of the log of the E'F exists and is finite

2. Let E'E be expressed as a function of  and ), such that z is the measured set

of variables contributing to EE (x is the set {D, f,b,i,t}).

(@) f(x;A) has bounded support in  and bounds do not depend on A

(b) f(z;A) has infinite support and is continuously differentiable

3. Y, the binary outcome of interest is independent and identically distributed

across all subjects and risk sets.
4. FF is a smooth function.
5. The log-likelihood’s first and second derivatives exist
6. The lag is normally distributed in the population

7. The likelihood is unimodal

Condition 1 is necessary with either condition 2a or 2b. Since Ej;;(\) has been
defined as a function of exponentials, I am able to continue on the basis of con-
ditions 1 and 2b. Even though the graph in figure 2.1 of EE appears to be non-
differentiable at the point of discontinuation (i.e. change-point), the equation does
not assume continuity through the change-point, therefore regularity holds as long
as the piecewise elements are continuously differentiable.

The delta method allows me to use the inverse of Fisher’s Information to ap-
proximate the asymptotically normal standard errors for the 3 and A parameters.
Each component of the Information Matrix has been derived in full and is pre-

sented in Appendix D. The formulas presented, below, are the first and second
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derivatives of E;;(\) with respect to A, which are used for the first and second

derivative calculations of the log-likelihood with respect to .

aEg (A) — D I:Zle—)\zl . 226—)\22]
P EA 26)
e = D [zge_m — zfe_)‘zl}

Note that I can parameterize using the half-life, h, instead of A\, by imposing an
log 2 Ox  —log2
N

additional derivative: |\ =

o — s |:Z26—22 log2/h 216_21 log 2/h]
2 2
9, g?;lt?(h) _D (lzf 2) (2 log2/h _ 2—=1 log2/h) (2.7)

2D log 2
-

(226722 log2/h 216721 log2/h)

2.2.3 Estimation Algorithm

All of the formulas, functions, and algorithms have been programmed using R
version 3.2.3.(R Core Team, 2017) Package and function dependencies are outlined
in my program documentation, though not everything will be included in the ap-
pendices of the dissertation.

The optimization methods I developed mimics the profile likelihood method in
that a partial likelihood is computed by fixing a single parameter and maximizing
across the rest. I fit the data simultaneously across several values of A to itera-
tively search for the A that maximizes the log-likelihood. This "guess-and-check"
method may seem cumbersome, but it should be, theoretically, more efficient than
a full profile likelihood fitting procedure. This will be especially important when

considering a two-parameter space for the lag. Chapter 5 will cover more of the
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strength and limitations comparing these two methods.

Proper data preparation eases the computational burden of the estimation pro-
cess, by only requiring a single calculation to assign EE for each individual at
each time slice. Part of the programming developed with this dissertation includes
functions designed to create the necessary time and dosing vectors/variables (D,
z1, and zy) that inform the E;;()\) calculation. The documentation is available in the
Appendix B — for this particular function, please refer to "makeDVecs()".

Depending on the underlying event model, pooled vs. cox, the algorithm fits a
lag-dependent OPEE against the outcome, in a univariate or multivariate setting,
and returns the estimated effect 3 and model fit (log-likelihood and/or AIC). I
utilize the "survival" package (version 2.38) in R to estimate 3 and other model
coefficients.(Therneau, 2015)

The coxph() object outputs the predicted risk score (predicted probability of
survival) for the final model fit, which can then be used to calculate the compo-
nents of the Information Matrix — i.e. return estimates for the standard error in
the lag parameter, and an adjusted standard error for the beta parameter, as well.
For algorithms that employ the PLR models to estimate 3, I have chosen to utilize
the "speedglm" package, which is efficient for generalized linear models fit to large
data matrices.(Enea et al., 2015)

The equations presented in this section, so far, have only focused on the decay-

rate parameterization for the lag, A\. Given the relationship between X\ and h,

0E; (M) .. OEu(h)
T and half-life, o
have different values and magnitudes upon evaluation, due to differences in the

the derivatives with respect to lambda, , actually

measurement units’. To get estimates for the variability of the half-life parame-

log 2
o=,
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terized lag, I derived the respective formulae for substitution into the likelihood,
log-likelihood, Score and Information Matrix functions appropriately. These are
shown in Appendix D on page 181.

In the OPEE half-life searching algorithm, I track the number of iterations, the
difference in the log-likelihood values between iterations, and which values have
already been fit. For each step, if the difference between likelihoods falls below the
algorithm’s tolerance or the number of iterations exceeds the maximum iterations
threshold, the loop is broken and the last maximum point is returned. The detailed
steps are described by flowcharts in Appendix A. The overview flow for estimating
the OPEE lag parameter is shown in figure 2.2.

This algorithm, as well as, the one described for extension to the two-parameter
model, requires that the user/analyst provide an initial guess for the half-life or lag
parameter, h. The first set of models fit use the initial guess and additional guesses
by fixing the lower half-life to half of hy’s magnitude and the upper to twice the
initial h’s magnitude. Here, the magnitude refers to the value for the half-life that
resides in an ordered list of three points: H1 < H2 < H3.

The first step of the algorithm compares the likelihoods arranged in order of
the fixed half-life parameters, H1 = %, H2 = hy, H3 = 2hy, to determine which
direction to travel based on the half-life that maximizes the likelihood. For exam-
ple, if in the initial set of points, H, the maximum likelihood corresponds to H3,
then a new value is fit at twice the magnitude of the upper bound.

Once the maximum likelilhood has been centered, the upper bound side is
tightened to fit a model for the half-life value that is equidistant from the max-
imum as on the lower-bound side, i.e., a new model is fit for H3 = H1 + H2.

Following this step is a sequence of fits that narrows towards the maximum point
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in the center or between maximized points, until one of the threshold criteria are

Step 0.
INITIALIZE

met.

numiter=0

Max(log-like) YES

at center?

numiter+1
Step 1. NO Max(log-like) YES
CENTERING at center?

Y
Step 4.
NARROW
BETWEEN
MAXIMA

numiter+1

Step 3.
NARROW
TOWARDS
CENTER

numiter+1

numiter+1

NO Threshold
Criteria Met?

YES

Approximate RETURN FINAL
Standard "|  ESTIMATES
Errors

Figure 2.2: OPEE Algorithm Flowchart

Following determination of the half-life, the magnitude of association is es-
timated by fitting one last model, and the final AIC is adjusted to include one
extra parameter — i.e., use the log-likelihood to re-calculate the AIC based on 2-
parameters for a crude CPH model with estimated /3 and h. The final estimates for
effect size and lag combine with the individual’s predicted probabilities to approx-
imate the inverse of the negative Information matrix [Fisher’s approximation of
the covariance matrix]. The square root of the diagonals, or variances, reflects the

estimated standard errors and the 95% confidence intervals are constructed using
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the standard normal Z = 1.96. It is important to recalculate the 3 standard error as

the output from the model fitting procedures does not account for the dependence

of 3 on the lag.
Step 0 (Initialize) Step 1 (Center) Step 2 (Tighten)

e}

3 |

o}

eqa: Step 3 (Narrow at Center) Step 4 (Narrow Between) Step 5 (Narrow Between)
3

8o

o A

q

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Half-Life

Figure 2.3: Example of OPEE Algorithm Steps on BWHS Binary
Smoking Profile Log-Likelihood

A stepwise example of the OPEE algorithm can be seen in figure 2.3. The black
log-likelihood curve [backdrop in all six panels] comes from fitting the CPH model
of CVD due to the OPEE of dichotomous smoking on a restricted subset of the

Black Women’s Health Study (BWHS) sample. The x-axis represents fixed values
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for the OPEE half-life parameter ranging from 0.05 to 20 years, in increments of 0.05
years amounting to 400 total model fit points. The y-axis represents the profile log-
likelihood fit for the corresponding half-life, after adjustment for all the covariates
and confounders (described in Chapter 4). In this example, the values for the log-
likelihood have been omitted though the scale represents increasing log-likelihood
in the upward direction; i.e. the maximum pictured on the black curve is the true
profile log-likelihood maximum at a half-life of 4.5 years (as seen in the results
table D.2).

I start by initializing a single half-life value that comes from a clinically-relevant
range. Here, I start with 3 years, given the a priori belief that smoking’s risk on car-
diovascular disease should to return to normal between 2 and 5 years.(Rachet et al.,
2003; Rosenberg et al., 1990) The following steps describe the example of the OPEE
algorithm in Figure 2.3 moving along the top panels, left to right, and then left to
right across the bottom panels. H denotes the vector of half-life parameters con-
sidered and L the corresponding log-likelihood values that are being compared.
The index of each vector is denoted by the ordered value, while the superscript”
implies the iteration step. The notation matches what can be seen in the flowcharts

in appendix A.

e Step 0 - Initialize hy, create vector of starting points, and calculate the corre-

sponding maximum log-likelihoods:

HO = |H1© = % H2© = py,  H3O =2p,

Y

L(H)? = [L1© = ¢ (H19), L2© =¢(H2D), L3O =¢(H3)]

likel « L2
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e Step 1 - Center and expand in the direction of the maximum, calculate the

newest index likelihood, and determine the tolerance.
like2 = max (L(H)?) = L3, tol = |likel — like2|, likel < like2

7Y = 2@ go® = g3© g3l =230
L1W =120 120 = 130 130 = ¢ (H3W)

max (L(H)(l)) = 12 = 1.3® = 1ike1

e Step 2 - Maximum log-likelihood at center. Tighten upper-bound to equal

distance from center as lower-bound:
H1® = ;10 g2@ — g2 H3® — g1V 4 g2

019 =110 120 =120 3@ = ¢ (H3®)
like2 = L3?%, tol = |likel — like2)

max (L(H)®) = L2 = likel

e Step 3 - Maximum log-likelihood still at center. Narrow bounds towards

center by half the distance:

d® = g2@ _ g1@ = g3 _ go®)

(3) 3
1O — 9@ _ T o0 _ o g3® @ 4
2 ’ 2

L1® =¢(H1®), L[2® =120 [3®) =¢(H3W)
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like2 = max (L(H)®) = L3®, tol = |likel — like2|, likel < like2

e Step 4 - Maximum no longer at center (after step 3), transition to search be-

tween maximae:

H2®) 4+ H3(G)

H1W = g2 HoW —
’ 2

, H3W = H36)

like2 = max (L(H)W) = L2, tol = |likel — 1ike2|, likel ¢ like2

e Step 5 - Tolerance threshold not met, continue searching between maximae.

H2W 4+ H3®W

H3® = H3W
2 Y

H1®) = g2W  H26) =

L1 = 12® 128 = ¢ (H2®)), 130 = 13
max (L(H)(5)) = L1 = 12® = 1ike1

To avoid calculating a "zero" tolerance when the maximum remains the same
in these steps, set the comparison to be between the first and second maxi-

mum log-likelihood values.
like2 = second max (L(H)®) = L2®)  tol = [1ikel — like2)

Threshold for tolerance reached. Stop algorithm and compute standard error

approximations.
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2.3 TWO PARAMETER EFFECTIVE EXPOSURE

With certain exposures, it may not be appropriate to assume that the effective ex-
posure accumulates at the same rate as it goes away. For example, upon exposure
to lead, the exposure distributes to various compartments in the body, including in
the bones, where it accumulates and is stored as a source of "continual internal ex-
posure”.(Gulson et al., 1995; Flora et al., 2012) While this exposure can be measured
in the blood, the true quantity that persists (to affect us) as our bones demineralize
is unknown or requires high-level expensive technology to be measured.

One recommended approach to lowering the levels of lead in the body (i.e.
treating lead poisoining) is chelation therapy.(Centers for Disease Control and Pre-
vention, 2015) The chelating agent attaches to heavy metals like lead, flushing them
out of the system. In this particular situation, it may be possible to lower the im-
pact of lead through treatment, but I would not expect the time-to-reduction to be
the same as the rate associated with increasing disease hazards from initial lead
exposure. For this type of an exposure, I introduce a two-parameter effective ex-
posure (TPEE) model as an extension of the OPEE, where the lags differ for the
incline and decline of the EE curve.

Figure 2.4 illustrates what a curve with differing rates of accumulation and
decay, or incline and decline, may look like, compared to the single-lag effective
exposure. The blue solid line represents an EE curve with a single half-life pa-
rameter of 90 days, while the red dashed line represents the EE curve under the
same incline with a decline parameter half-life of 900 days. Both curves assume

continuous exposure for 180 days prior to discontinuation.
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Figure 2.4: Comparison of the effective exposure curves over time
for the one- and two-parameter approaches.

2.3.1 Exposure Specification

The OCM function is unique, in that it assumes a piecewise structure dependent on
change-points. This assumption also implies that after an infusion is discontinued
the accumulated total — from which the decay starts — is considered fixed.

Let A denote a set of two lag parameters, A\; and \,. Reverting back to the
original form of (1.4), since (f —b) = (t —b) — (t — f) = 21 — 29, the TPEE equation
follows:

By (A= (M, \p)) =D [1 — e nEm=)] gmho= (2.8)



37

Where the definitions of 21, 29, and D remain the same, but now J; is the para-
metric lag for the incline and ), stands in for the decline lag. Parameterizing by

the half-life parameter produces an equation that looks like:
Eit(hla hg) —D [1 . e—(z1—zg)log2/h1] e~ %2 log 2/hs (29)

2.3.2 Estimating Equations

In the OPEE framework, the likelihood and log-likelihood equations contain the
EE functions E;;(\) or E;()\). These can also be written as E£;;(A) and E;(A), which
I have denoted as the EE function of the lag parameters A\, and A, in equation (2.8).

The overall forms of the likelihood and log-likelihood equations (2.4) and (1.6)
do not change. This is because E;;(A) still represents the total Effective Exposure
at time ¢ for subject i. Substituting E;;(A) for E;;(\), however, does require the
calculation of new first and second derivatives with respect to both parameters
and their combination. Since the effective exposure is assumed to be a quantity
that is independent of the other model covariates, once the underlying equations
are appropriately adjusted, the calculation of the likelihood, with respect to the
other variables in the model, remains unchanged.

Full derivations of the Score and Information Matrix are provided in Appendix
D (starting on page 181) for both CPH and PLR likelihood functions. This includes
framework for the lag, A, and half-life, H, parameterizations. Again, medical re-
searchers may prefer the half-life parameterization’s estimate interpretation and

corresponding variability measure.
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2.3.3 Estimation Algorithm

The estimation algorithm for the TPEE approach relies on a grid search across com-
binations of the incline and decline parameters. Figure 2.5 shows the big picture
steps of the TPEE algorithm, which is similar to the one presented to the OPEE
algorithm.

In the first few steps the user specifies a single initialized value and the process
starts by halving and doubling this value for the first set of comparisons. This 3-
value vector is assumed to be the same for both incline and decline, leading to 9
total combinations corresponding to a set of incline and decline coordinates. The
full algorithm is described by flowcharts in Appendix A.

Step 0.
INITIALIZE

numiter=0

Step 2.
Max(log-like) TIGHTEN
at center? UPPER

Step 1.
CENTERING

BOUND

numiter+1

YES

Y

Approximate
Standard
Errors
A,
RETURN FINAL
ESTIMATES

numiter+1

Figure 2.5: TPEE Algorithm Flowchart

Depending on the pair of half-lives that produces the maximum log-likelihood
in the set, each parameter’s vector is expanded in the direction of the maximum by
halving or doubling — again, this is similar to the OPEE step 1 "centering". Upon

centering the maximum log-likelihood at the 5th index pair, the algorithm con-
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tracts both parameter upper bounds to be equidistant to the center (i.e. "tighten-
ing"). New CPH/PLR models are fit for the corresponding incline-decline EE for
which the likelihood has not yet been calculated.

The last sequence of steps iterates model fits for EE based on the first and sec-
ond maxima of each parameter, holding the other parameter constant (i.e. "nar-
rowing"). At this point, should the likelihood surface at a set of coordinates reach
aridge* the algorithm is stopped and the last maximum location is returned as the
final estimated pair of half-lives. While not explicitly described here, each step of
the algorithm also checks the tolerance and number of iterations, breaking the loop
and returning the last maximum likelihood coordinates when either threshold are
met.

Following the algorithmic search, I use the final pair of likelihood-maximizing
half-lives to estimate the maximum hazard parameter, and calculate the 95% confi-
dence intervals using the normally-approximated standard errors for the effect and
lag parameter estimates. The updated Score and Information Matrix equations for
approximating these standard errors can be found in the Appendix D.

Figure 2.6 provides a visual example of the steps in the TPEE algorithm using
data from the BWHS restricted sample binary smoking’s profile log-likelihood sur-
face. The colored background is meant to show the contour of the 3-dimensional
surface, with the lines representing the PLL’s joint 90, 95, and 99% confidence
bounds. The lighter shading indicates larger values of log-likelihood, such that
a peak occurs in the center of the contour bounds.

Step 0 starts with initial values of 1.5, 3, and 6 years for both half-life lag param-

eters. The top right quadrant of points are carried over to the left bottom quadrant

4This can be seen when two or more coordinates produce the exact same model fit.
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in step 1, and these points remain the same in step 2 as the upper bounds are tight-
ened. Step 3 searches for the true maximum log-likelihood somewhere in between
step 2’s top-right quadrant, and steps 4 and 5 narrow between maximae even fur-
ther.

Step 0 (Initialize) Step 1 (Center) Step 2 (Tighten)

15+

101

o
L

Step 3 (Narrow Between) Step 4 (Narrow Between) Step 5 (Narrow Between)

Decline Half-Life
o

104

10 15

(@]
Ul

0 5 10 15 0 5 10 15
Incline Half-Life

Figure 2.6: TPEE Algorithm Steps on BWHS Binary Smoking Profile
Log-Likelihood Contour
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24 MULTIPLE DOSING SCHEME

One of the main strengths of my proposed methodology is its ability to handle
changing exposures over time. This is slightly more nuanced than the simple pro-
tracted exposures approaches, as my method allows for subjects to discontinue
and/or start new regimens that may represent the same underlying action mecha-
nism.

The term regimen is used to describe the particular exposure [instance] for the
set of parameters that dictate start and stop times, and level of the dose. Let 25 and
25 denote the time since start of a second and third regimen, and 2, and zs denote
the time since stopping the second and third regimens, respectively.

Figure 2.7 illustrates the life-trajectory for changing regimens’ of the effective
exposure. Specifically, it demonstrates what the sum of all the effective exposure
curves looks like over time, where the declining effect due to regimen 1 still con-
tributes to an increased risk while the subject is on regimen 2 and has not, yet,
reached steady state. Since the maximization procedure assumes a single set of
parameters for the effect’s lag, the summation of the individual regimen’s effective
exposure curves are still differentiable.

The figure assumes a single parameter effective exposure model. As discussed
in the description for the TPEE formulation, since £;;()) is a function of the lag, the
algorithms can still be used. The multiple regimens are "simply " summed within
specification for a given subject’s exposure total at time ¢.

The solid lines in figure 2.7 represent a single set of dosing regimens for an
individual. In this example, I use an OPEE half-life of 5.85 years, so simplify inter-

pretation, assume that the doses represent the packs per day smoked. This subject

%as denoted by the vertical dashed lines
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Figure 2.7: Demonstration of the accumulation of protracted expo-
sures under OPEE model with a half-life of 5.85 years, a plateau haz-
ard ratio for 1-unit effective exposure of 2.63, and different steady
state dose levels.

smoked 2 packs per day from the start of follow-up for 20 years, and again from
60 years until the end of follow-up. From years 20 to 60, the subject reduced smok-
ing to 1 pack per day. The dashed blue line represents the hazard ratio compared
to a never smoker over time, with the black vertical dashed lines representing the
change-points in dosing levels. The figure represents a situation where there is a
single lag-parameter defined by a half-life of 5.85 years, and the CVD hazard from
smoking 1 pack per day, for an extended period of time, is 2.63 times the hazard of
never smokers.

The risk profile shown in figure 2.7 can be denoted by equation (2.10). Specifi-
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cally, E;;(\) becomes a sum function of the individual dosing exposures. From the
example in the figure, the subject is exposed from years 0 to 20 and 60 to 80 at a
dose level of 2, while being exposed at a dose level of 1 from time 20 to 60. For the

tigure’s example, the EE at time ¢ can be calculated as:

El(ttot)(A) — ‘D1 (1 . 6—(21—2’2))\) 6—22)\
+Dy (1 — e~ (am2a)d) gm2a) (2.10)

+ D3 (1 — 6_(Z5_Z6)’\) e~ 76

where
4 (
t ift >0 t—60 if t > 60
21 = 24 = 25 =
0 otherwise 0 otherwise
; :
t—20 if t > 20 t — 80 if t > 80
29 = 23 = 26 =
0 otherwise \ 0 otherwise

Using the piecewise notation, it becomes clear that the first and second deriva-
tives can be readily calculated for each individual exposure occurrence. Let E M),

(2

Ez(f '(A), Ez(f )(\) be the EE components for each of the exposure events/period.

—(zl—ZQ))\) —20\

—_
|
)

e

(
B (\) = Dy (1 — e (am2a2) =22
(2.11)
(

7(25726))\) e*ZGA

,_.
|
o

E{0N) =EP N+ EP N+ EP (N

As mentioned previously, the A can be interchanged with log2/h, and Eftt D (h)
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represents the longitudinal function of EE based on this parameterization. To tran-
sition from OPEE to TPEE, I can substitute the single parameter with (A1, A2) or
(h1, he) in equation (2.11), updating the piecewise component exposures that feed

into /"

2.4.1 Estimation and Algorithm Modifications

Assuming that the hazards are additive, and that the maximum hazard plateaus
at a single-unit of the EE, then the formulation for the likelihood functions and
estimation algorithms stay the same. Specifically, the likelihood depends on the
quantity of Ej;(A), that is computed for a given sequence of exposures under fixed
lag parameter(s). To account for the added components, I have developed a series
of functions that calculate the accumulated E;;(A) for each subject at each event
or interval time. The details are presented in Appendix B under the "Clfun.h()"

module.

2.5 INTERPRETATION PARADIGM

The remainder of this chapter provides insight on the semantics required for proper
and intelligent interpretation of the resulting estimates.

In figure 2.8 the solid lines represent the hazard over time for two women who
successfully quit smoking after 30 years of prior exposure. These are monotonic
trajectories reflecting the decline in CVD hazard from the 30-year 2 packs/day
and 1 pack/day smokers, i.e. women with different dosing levels of the EE. The
corresponding y-axis is the left-hand "Hazard Ratio" (HR), on which one can see
that the hazard changes 2-fold or by half at the 5.85-year half-life.

Meanwhile, the corresponding dashed lines are for the same individuals, con-
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sidering the Effective Exposures over time — as shown by the right-hand y-axis.
Here, the individual’s HR over time compared to unexposed is not parallel to the
EE curve, implying the rates are different for the two scales. One important note is

that the floor of the HR axis is at 1, while the EE bottoms-out at 0.

HR=6.5, time=0

— 1 pack/day
— 2 packs/day

i
>

(saur] paysep) a.;r)lsodxg[ QAT

HR=3.78, time=2.93

Hazard Ratio (solid lines)
=

i
N

HR=2.6, time=5.85

HR=1.78, time=4.13

0 5 10 15 20
Time (in years)

Figure 2.8: Comparisons of the rate of change in risk as measured on
the Hazard Ratio vs. Effective Exposure scales.

Given the desire to understand change in excess hazard, as estimated by my
models, I have added another function, specifically for calculating an individ-
ual’s predicted time-to-risk reduction. The "solve.time()" function (documentation

in Appendix B) allows the user input the model’s parameters, the individual’s
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amount of time exposed (i.e. the starting hazard), and the desired proportional
decrease on the excess hazard scale (i.e. HR-1).

The following example is taken out of context for the purposes of providing an
illustration of the interpretations that come out of these computations. The com-
plete analysis for these numbers and this corresponding paragraph can be found
in Chapter 4 (on page 113).

For a consistent 2 packs/day [dose of exposure] smoker of 30 years [time ex-
posed], after accounting for other risk factors of CVD [model-based estimates], the
CVD hazard associated with a woman’s smoking exposure is 6.5 times [HR at start]
that of her counterfactual never smoker. Using the same adjusted model, a woman
who smoked 1 pack/day for 30 years is at 2.6 times the never smoker’s hazard of
CVD. A 50% reduction [desired HR reduction] in excess hazard for these same 2-
and 1-pack/day smokers, would take 2.9 and 4.1 years [calculated] following com-
plete and successful cessation. The corresponding ending hazard ratios would be
3.8 and 1.8 [HR at end], respectively.

Alternatively, after 5.85 years [estimated half-life, table D.2] of complete and
successful quitting of smoking, the 2-pack/day smoker’s CVD hazard is expected
to reach the 1 pack/day smoker’s hazard, i.e., after the half-life number of years,
the risk is reduced by 50%. In terms of reduction in hazard ratio or excess hazard,
this implies that the hazard ratio of CVD for a 2 pack/day smoker compared to
a never smoker reaches the hazard ratio for the 30-year 1 pack/day smoker com-
pared to a never smoker, after 5.85 years of no smoking exposure.

All of the points described in the preceding paragraphs have been annotated in

tigure 2.8.
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CHAPTER 3

Simulation Study

The purpose of this chapter is to demonstrate the strengths and limitations of the
effective exposure estimation methods under known lag and effect size parame-
ters, by simulating data representative of real-world examples. I explore a wide
range of scenarios to identify the type of data that would lead to unbiased and
robust estimation of the parameters of interest.

In these simulation studies, I also compare several analytic methodologies in
terms of coverage probabilities and estimation bias. The aim of this chapter is to
show that the model performance improves with information content — i.e. the
more information, the better. In particular, the information necessary for estimat-
ing the half-life revolves around the proportion of subjects and subject-time spent
"in transition" between steady states. Meanwhile, information content for the haz-
ard ratio estimate comes from the proportion of subjects and subject-time spent at
"maximum risk" (or at the hazard’s plateau).

I will start by describing the types of scenarios considered, including one that is
based on real data from the Black Women’s Health Study (BWHS). I will then move
through the data generation processes and analytic approaches considered. The
"Results" section will focus on patterns and primary findings from the simulations
performed, with some concluding remarks regarding the strengths and limitations

of the simulation study.

3.1 SCENARIO SPECIFICATIONS

The initial setup for the 1-parameter simulation is loosely based on the association

between corticosteroids (CS) use and risk of fracture. CS use has been shown to
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leach calcium from the bones and with an increase in the risk of fracture within the
tirst 3 months of treatment.(Mitra, 2011) Those on oral CS over an extended period
of time are at roughly 1.5 times the risk of fracture as those not taking CS.(Van Staa
et al., 2000) Following discontinuation and after accounting for duration of use and
dose, excess risk decreases towards the baseline risk over the course of a year.(Van

Staa et al., 2000; Vestergaard et al., 2008)

3.1.1 Base Case: One-Parameter Effective Exposure

The base case simulation (BC1) represents an "optimal" study design in which one
would expect the proposed methods to work consistently well. For the sake of
simplicity, I have chosen to look at the one-parameter effective exposure (OPEE)
model with the half-life parameterization of the lag. Following the CS example, I
set the half-life to 3 months or 90 days. Recalling that the OCM and OPEE models
assume steady state is reached after 4-5 half-lives, a group of individuals starting
at maximum hazard would be expected to return to their baseline hazard around
360-450 days or roughly one year. Meanwhile, newly exposed individuals would
reach half of the prolonged exposure hazard after 90 days.

BC1 includes subjects with one of three possible exposure trajectories: those
who are never exposed serving as the controls ("ctr]l"), one group that initiates use
at baseline, and another that discontinues use at baseline after having been ex-
posed for at least two years'. The latter two are referred to as the "up” and "down"
groups, respectively.

The sample is large with 10,000 subjects in each group (N=30,000 total), and

subjects are followed for a period of 900 days. Equivalent to just under 3 years, the

!Exact time is set to 900 days to keep durations consistent
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900 days mark, or 10 half-lives, also implies that both transitioning populations, in
this sample, will achieve steady state within the follow-up time. This time-frame is
quite standard for administrative data studies in which event times may be known
to the day, but not hour, of occurrence.

I consider a simple binary or dichotomous exposure scheme, with an underly-
ing relative effect of a 50% increased hazard, or 1.5 times the hazard for lifetime-
exposed versus unexposed individuals. At 90 days, the up group 2 is considered to
have reached 50% of the maximum hazard, which translates to a 1.22-fold hazard
of event compared to never exposed individuals. Additionally, I set the study-
wide prevalence of the outcome to 10%, meaning that controls in the study are
also at risk for event.

Figure 3.1 shows four panels of simulation scenarios, of which the upper left-
hand corner is the BC1 set of trajectories. Similar to figure 2.8, the left-y-axis and
solid lines represent the EE curve, while the right-y-axis and dashed lines reflect
the hazard ratio over time. On day 90, both risk curves (EE and HR), for the up
and down, groups intersect. After 90 days, those in the up group surpass the down

group in EE.

3.1.1.1 Sample Sizes

In order to understand the effect of sample size on the estimation algorithm per-
formance, I consider the base case scenario with 1,000 (N1k), 10,000 (N10k) and
100,000 (N100k) total participants. Since the study design for these simulations re-
quires balanced groups, the single remaining individual, following the thirds split,

is put into the control group.

Zindividuals that became exposed at the start of follow-up
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For the smaller samples N1k and N10k, I would expect the estimation of both
lag and HR parameters to be more biased with additionally worse coverage for the
lag parameter(s), compared to the BC1 scenario. Meanwhile, the N100k scenarios
should improve in both performance metrics, versus to the BC1 scenario. The
latter set is, naturally, more computationally expensive, but corresponds to the
size of administrative data. None of these sample sizes is comparable to clinical
study data, but looking at the smaller sets may shed light onto the generalizability

of these methods to the standard prospective cohort study design.

3.1.1.2  Dosing levels

A natural question that arises from a dose-dependent scenario is whether the bi-
nary model will appropriately identify the lag. My initial hypothesis is that the
half-life may be underestimated, or negatively biased, when performing the OPEE
and TPEE algorithms with the binary exposure. In a balanced design the resulting
effect size estimate should be a weighted average of the different effect levels.

The set of simulations (DoseMods) that aims to account for differences in dos-
ing of exposures is considered as a variation on the base case. The three groups
remain the same, though half of the up and down groups are assigned a dose-level
of 2. Specifically, 5,000 of the up group subjects are assumed to plateau at twice
the risk level, while 5,000 of the down group subjects start the study at twice the
hazard. This translates to an hazard ratio of 2.25 compared to the controls, which

can be seen in the upper right corner panel of figure 3.1.
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3.1.1.3 Adding a Fourth Group at Steady State Risk

To be able to differentiate between those who remain exposed and those on the de-
cline, I also consider a set of simulations (FourG) with a fourth group that does not
discontinue exposure ("on"). The hypothesis here is that the increased amount of
information pertaining to continued exposure would allow for more accurate es-
timation of both parameters. Specifically, I hypothesize that the estimated hazard
plateau will be less biased.

Figure 3.1’s bottom left corner shows the same set of trajectories as the base

case (BC1, upper-left) with the addition of the constant on group.
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Figure 3.1: Plots for One-Parameter Base Case Simulation Scenarios
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3.1.1.4 No Initiators

The remaining panel (bottom right) in figure 3.1 demonstrates a set of monotonic
trajectories that does not include the up group (NoUp), but does have individuals
who remain exposed throughout follow-up (on group). When considering studies
that focus on discontinuation of exposure, such as quitting smoking or coming off
of oral CS, to control for confounding a sample may exclude subjects that initiate,
so as to focus the analyses on the benefits of cessation.

For example, in chapter 4, I discuss the "restricted" sample of BWHS partici-
pants, which is comprised of women who are smokers and non-smokers through-
out the study, in addition to a group of women who successfully stopped smoking
3. Part of the goal for this analysis is to mirror previous approaches that restrict the
sample, like Rachet et al. (2003). I hypothesize that in this case the estimated time
to reduction might be shorter (decline estimate negatively biased), and the incline
estimate will have large bias — due to the lack of information about the upwards
transition.

In addition to the breadth of applications this variation can generalize, it also
represents a situation where the TPEE algorithm should fail. This is due to the
fact that there is little information about the incline parameter — since no one is

transitioning upward in risk.

3.1.1.5 High Risk

Not much explanation is needed for the high-risk variation (HR5) of the base case.
Here the input hazard ratio is a 5-fold risk of event for those are steady state risk.

I hypothesize that this stronger effect size provides "more information" and allows

3 As determined by those with complete follow-up questionnaires absent of self-reports of smok-
ing after a minimum of 10-years of previous smoking reported at baseline
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for more precise estimation of the risk and associated effect half-life.

3.1.1.6  Null or Nearly Null Risk

To ensure that my model does not artificially induce an association when there is
none, I considered a scenario where there is no true relationship between the ex-
posure and outcome (HR1). The null EE curve is still generated with an imposed
half-life of 90 days, even though this underlying exposure measure is not mean-
ingful. This is because the probability of event due to the exposure is considered
null, which implies that there should not really be a lag associated with this effect.

I hypothesize that my estimation procedures may have difficulty discriminat-
ing between exposed and unexposed individuals, as the likelihood surface may be
flat. In the situation that either the OPEE or TPEE algorithms returns implausible
lags and/or effect size estimates, I also add some fixed half-life models into the
analyses to determine whether imposing any lag-of-effect biases the estimate of
effect size.

I further extend my simulations to the 10% and 20% increased risk scenarios,
or HR=1.1 and 1.2, respectively. The goal of this is to determine where the OPEE
model "breaks", to provide insight on the capabilities of my algorithms in detecting

nearly null associations that are lagged.
3.1.1.7 Variations on Half-Life

Shorter

Given that the parameter space for half-life is bounded by 0, I selected a half-life=1
day as a simulation variant (Halfl) to look at null lag in the base case set of tra-

jectories. Using a small half-life should result in similar effect size estimates as



a standard "current dose" model. Meanwhile, those exposed in the past (down
group) should not have events attributable to the lagged exposure, because the ef-
fect would subside almost immediately. This can be seen by looking at the upper
right corner of figure 3.2. The step-like function demonstrates how the down ex-

posure group returns to the level of the controls instantaneously, and the up group
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may as well be classified as exposed from the start.
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Figure 3.2: Plots for One-Parameter Half-Life Variations to the Base-

case Simulation Scenario

The close proximity of this half-life to the likelihood’s edge implies the nor-

mality of the likelihood may be violated, which should make estimation of the
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asymptotic standard errors difficult. Due to this, I also consider half-lives of 10
and 30 days (Half10, Half10.4G and Half30.4G) to determine the breaking point of
both estimation algorithms and associated standard error approximations. Note:
The Half10 scenario represents the base case risk profiles with a 10-day half-life,
while the Half10.4G represents the FourG scenario profiles with a single 10-day
half-life parameter. Meanwhile, the scenario using a single half-life of 30 days is

only considered for the four risk profiles extension.

Longer

In a situation where no one reaches steady state, I hypothesize that the true max-
imum hazard associated with the EE may not readily identifiable. My algorithms
may be better at estimating the steady state hazard than the conventional exposure
models, however, the minimal change in risk during the follow-up period (less
transitioning information) may bias the estimates for half-life (or lag parameter)
and the hazard ratio.

One particular branch off of the BC1 scenario that I consider is one with a half-
life of effect of 1,000 days (Half1k). In this case, the individuals in my study never
reach steady state, because the study period is shorter than a single half-life. Asno
one in the sample has reached the maximum hazard being estimated, the informa-
tion, or lack thereof, may hinder my ability to estimate the lag parameter.

The bottom left panel of figure 3.2 shows the linear-like curves for the EE and
HR over time. Keeping regimen timings (start and stop times of exposures) the
same as in the BC1 scenario, the down group has only been exposed for 900 days
prior to the study, meaning that these individuals have not even reached 50% in-

creased hazard. Meanwhile, the individuals that start exposure at the beginning
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of the study [up group] only cross the exposure level of the down group at roughly
550 days.

To account for the fact that the Halflk variation does not have anyone close to
plateau throughout the study, I added the fourth on group in a new set of simu-
lations (Half1k4G). The bottom right panel of the same figure 3.2 shows that the
on group, which starts the study at the same EE level as the down group, contin-
ues to climb towards steady state throughout the follow-up period. This fourth
group provides better information about the total obtainable risk associated with
exposure and the resulting estimates should be less biased for both half-life and
HR parameters than the 3-risk profiles variant (Half1k).

I also consider the single half-life of 450 days (Half450.4G) with four risk pro-
tiles (not pictured). This is to allow me to assess the algorithms” ability to detect
a lag that is half of the follow-up time. That is, within the study period, individ-
uals that are up or down should transition from null to 1.36 and from 1.36 to 1.08
times the hazard of the ctrl group, respectively. The fourth on group starts at the
same hazard as the down individuals, but continues towards the 1.5-fold plateau
throughout the study (ending at the hazard associated with an EE level after 4

half-lives of transition).

3.1.2 Two-Parameter Effective Exposures

All of the scenarios described so far have assumed the single half-life parameter
model for EE. Naturally, the reader would like to see variations that address the
two-parameter effective exposure (TPEE) models.

To simplify comparisons, I consider variants of the BC1 scenario, changing only

the decline parameter and keeping the incline half-life at 90 days. This way, I can
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look at a situation where the decline is either faster or slower than the half-life,
with appropriate control and comparison. The data generation schemes and other
parameters (sample size, HR, prevalence, risk profiles) are kept the same as the
base case. The base case scenario in terms of the TPEE structure could be though

of as having an incline=90 days and decline=90 days (i.e. [90,90]).
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Figure 3.3: Plots for Two-Parameter Simulation Scenarios

Figure 3.3 demonstrates the two-parameter scenarios compared to BC1. The
upper right corner shows a decline half-life of 10 days (Out10), while the two bot-
tom panels reflect a decline half-life of 1,000 days. The bottom right (Out1k4G)

differs from the bottom left (Outlk) in that a fourth on group is added to the simu-
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lations *.

Aside from assessing the TPEE algorithm’s performance in these scenarios, 1
also am interested in the OPEE algorithm’s ability to converge given the analytic
and underlying models do not match. I hypothesize that the TPEE algorithm may
have similar bounds in the estimation of short and long decline half-lives as with
the short and long OPEE half-life models.

To parallel the OPEE half-lives considered, I also simulate four risk profile sce-
narios for the 10-day decline (Out10.4G), and declines of 30- and 450-days (Out30.4G
and Out450.4G, respectively).

3.1.3 Multivariate Real Data

To, more closely, investigate the role of protracted exposures in a "real-world" set-
ting, I utilize multivariate time-varying data from the BWHS cohort.” In sum-
mary, this dataset includes women with monotonic and complex trajectories of
self-reported smoking patterns over time, along with time-varying information re-
garding potential confounders and risk factors of CVD. The goal is to use the real
predictors and exposure profiles for smoking and covariates, to simulate the event
of interest while controlling the half-life parameter and maximum hazard associ-
ated with prolonged smoking exposure.

Specifically, this dataset has real trajectories of dichotomous smoking exposure,
and only includes right-censoring for incident cancer diagnoses, loss to follow-up,
and death. Deaths are not further classified as CVD or non-CVD in this set, to

allow for random assignment of events across all individuals and their available

“Similar to the base case FourG and Half1k4G scenarios goal is to improve identifiability and
discrimination of the trajectories, thereby reducing bias in the estimation of the lag parameters.
>Outlined in more detail in Chapter 4.
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follow-up times. This is different from the samples used in Chapter 4, because the
true analytic samples censor cases of CVD following the event. Meanwhile, the set
of true CVD cases are allowed to continue through the study without censoring,
unless cancer, death, or loss to follow-up occur. This decision, to treat all partici-
pants the same, provides a dataset on which I can simulate CVD-like outcomes for
all available follow-up trajectories of smoking’s EE. Both scenarios described, be-
low, consider the OPEE of binary smoking as the underlying CVD hazard model.
Figure 3.4 shows a small sampling of participant trajectories classified by study-
wide (or lifetime in the study) exposure variation over time. The control group is
not included in the figure, but makes up a substantial portion ( 60%) of the true

cohort and scenario data.

3.1.3.1 Monotonic Trajectories

To disentangle the information-gain coming from covariate adjustment versus in-
formation gained by including more individuals in fluctuating [i.e. in states of
transition], I first consider a subset of participants with unidirectional smoking
profiles, similar to the "restricted" BWHS subset in Chapter 4. The scenario, here,
is referred to as the Multivariate with Monotonic Trajectories set of simulations
(MVmono).

The BWHS set is restricted to participants that either smoked throughout the
study (Smokers Throughout), never smoked prior to and throughout the study
(Nonsmokers Throughout), or smoked in the past and quit at some point during
or prior to the study with no return to smoking (Successful Cessators). Both the
smokers and quitters are further restricted to those with at least 10 years of smok-

ing exposure at entry to the study (1995). The top two panels of figure 3.4 (Smokers
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Figure 3.4: Example Trajectories from Black Women’s Health Study
Data Imposing a One-Parameter Half-Life of 3 years

and Quitters) show EE, or the annual probability of event, for several participants
under the imposed OPEE half-life of 3 years and corresponding 3-fold hazard of
CVD for extended exposure compared to never smokers.

As alluded to in the next paragraph, and as is consistent with the "NoUp" base
case variant, I hypothesize that the lack of information about smoking initiation
will make estimation more difficult when using the TPEE algorithm, particularly

with regards to the incline parameter.
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3.1.3.2 Multi-Trajectories

I call the final set of simulations the Multivariate Multi-trajectory scenario (MV-
multi). The hypothesis underlying this scenario is that the OPEE and TPEE al-
gorithms will have less bias and more coverage of the true lag and hazard ratio
parameters compared to the MVmono scenario. Returning to figure 3.4, the two
bottom panels represent the additional types of subjects and risk profiles that are

now included in this simulation scenario.

3.2 SIMULATION METHODOLOGY

3.2.1 Univariate Scenarios

For each simulation I start by specifying inputs for exposure trajectories ¢, [popu-
lation] hazard ratio for steady state, and a population prevalence. The base case
simulation scenario, its variants, and the two-parameter simulation studies all fol-
low the same data generation schema where population-based exposure profiles
are specified a priori. Specifically, the probability of event at time ¢ is calculated for
a given exposure profile on a daily basis. This allows me to control the granularity
of the data at roughly 1/100th of a half-life (recalling the base case half-life is 90
days, so technically 1/90th). These probabilities are assumed to apply to all indi-
viduals with the same risk profile, and events are assigned using a logistic model
of event at the daily discrete time points.

The discrepancy between the data generation model (odds) and the estimation
model (hazard) is not of concern, because the odds approximates the hazard when

the interval is short and the rate of events in the interval is sufficiently small.(Green

%.e. half-life parameter(s), time since start of exposure, time since discontinuation, and dosing
level
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& Symons, 1983). Thus, when the overall prevalence of event is divided evenly
across all study time-points, the daily prevalence is roughly 0.01% (recalling the
10% study-wide prevalence).

At each time point, the probability is compared to a random number drawn
from the Uniform(0,1) distribution, with events set to "True" when p is less than
the corresponding random number. This process is done per subject by iterating
through the ordered sequence of time points until the first event occurs for an
individual, or until the last time point (900 days). Subjects are then right-censored
at event, but no other censoring situations or missing data are assumed to occur.
All non-event times for each individual are retained until the full set is split into
one observation per subject per unique event-time (study-wide event times).

Using the half-life parameterization of lag, the true parameters are set to reflect
a 50% increase in hazard (or a HR of 1.5) for those at the steady state EE. The base
case underlying EE curve assumes that new users will reach approximately half of
the steady state’s hazard after 90 days of constant exposure. Meanwhile, those who
start at steady state and discontinue exposure, will fall to approximately half their
hazard after 90 days. The two-parameter scenarios are slightly more complicated
to interpret, so I keep all the inclines at 90 days implying that all the down subjects
start at the same hazard (at time=0) as they would in BC1.

The total number of events and subjects, simulation seed used, and computa-
tion times are collected. Additionally, for each model fit, I retain the log-likelihood
and AIC, the estimated HR, and an estimate for the lag parameter(s) with cor-
responding standard errors for all estimated parameters. This resulting data is

combined to assess the bias and coverage probabilities of the new techniques.
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3.2.2 Multivariate Scenarios

As described in the scenario specification, the multivariate scenarios are based on
real data from the BWHS cohort. Thus, the covariance structures across time and
potential confounders for each individual are preserved, assuming that this cohort
provides an adequate random sample of the population from which it arose.

Prior to simulating the outcomes on the full set, I fit a pooled logistic regres-
sion (PLR) model on the true analytic sample. To adjust the estimates for each
covariate’s relationship with CVD appropriately, I used the categorical smoking
specification (current vs. never and past vs. never) as the primary exposure in a
multivariate model with additional adjustment for age . The corresponding be-
tas for the intercept, age, and pre-specified covariates are saved for use (described
later). These estimates represent part of the log-linear model for the yearly proba-
bility of event.

Unlike the CPH model, the PLR model provides an estimate for the intercept
and age-parameter. By adjusting for age, I am able to account for the time-to-event,
while still being able to compute a predicted probability of event given a subject’s
covariate structure at each time point. To compute the predicted probability of
event due to a known half-life of effect, I assume the OPEE model and set the true
lag parameter to a 3-year half-life with a corresponding 3-fold odds of event for
those at steady state risk for CVD due to smoking.

The following formula describes this simulated probability:

odds;; = —9.34 4 1.099E;(h) 4 0.04Age,, + 0.02BMI;; + 0.25FamHxCVD;

’The models used in Chapter 4 are age-stratified Cox Proportional Hazards, thus, age is not
considered a covariate in those models and coefficients for the baseline hazard by age (or age and
intercept) are not available.
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— 0.07Statins;; + 0.16HighChol,, + 0.64T2D;; + 0.84HTNj,

Post,Age@meno<45 Post, Age@meno 45-49
+ 0.16Meno;® + 0.33Meno,, > 8" 1 0.12Meno,, " 87"

— 0.25Exercise; ™"k — (.39Exercise}, ™/ "k

— 0.09Alcohol;*™™ + 0.005Alcohol ;™

_ exp(oddsy)
1+ exp(oddsy)

it

Similar to the univariate scenario’s event-time specifications, each individual’s
probability of event is compared to a random univariate value, iteratively from the
tirst time point to the last, or until an event is deemed to occur. In this case, how-
ever, not all subjects have the same available amount of follow-up time, which is
reflected by the censoring structure already imposed on the data prior to simula-

tions.

3.3 ANALYTIC VARIATIONS

The analytic model predominately used in the analyses is the CPH regression.
As mentioned in Chapter 2, the "survival" package functions are used for fitting
the time-dependent variable models. For the "Interval-Based" analyses, described
later, I also use Pooled Logistic Regression via the "speedglm" package in R.

One major reason for doing these simulations has been to compare my method
to conventional approaches used in epidemiologic research in the presence of lagged
effects. Thus, I consider some conventional exposure metrics that are used in the
application in chapter 4. Additionally, I want to understand how well the OPEE
and TPEE algorithms estimate the correct lag and effect parameters in various sce-

narios.
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Standard time-varying classifications of smoking exposure may include a cat-
egorical status (current vs. past vs. never), current indicator (current vs. not cur-
rent), ever indicator (ever vs. never), and some combinations using a pack-years
variable. The latter has been accepted as a standard for incorporating dosing (in-
tensity) over time, however, the majority of my simulations are based on binary
exposures, so no comparable metric was created within my study. Therefore, only
the first three exposure measures are analyzed within each simulation scenario.

Of the three metric models, the current and ever models use a single parameter
while the categorical model includes two parameters, one for current and on for
past exposed individuals compared to the never exposed. The simple risk profiles
would assign up and on individuals as currently exposed, and the down group as
past exposed. All three risk profiles would contribute to the ever indicator.

These models are compared to the OPEE and TPEE by looking at Akaike’s In-
formation Criterion (AIC), which applies a penalty for an increasing number of
estimated parameters. One and two parameters need to be added to the over-
all number of model parameters in the AIC calculation for the OPEE and TPEE
models, respectively. My hypothesis is that the OPEE and TPEE methods will pro-
duce "better fit" results than the conventional exposure measures, as determined
by minimizing the AIC.

I consider the Monte Carlo estimate of the percent bias, proposed by Koehler
et al. (2009), as a way to compare the bias of the univariate and multivariate model

estimates.

D>

1 " —40
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To determine how well the variability approximations (i.e. standard errors)

cover the true parameter of interest, I considered the coverage probability (CP)



66

metric. This can be understood as the proportion of simulations whose nominal
95% confidence intervals contain the true half-life or 8 parameter. Ideally, the CP
should be around 95%. Koehler et al. (2009) presents a Monte Carlo estimate of CP
as:

R
1 . . R X
CP = R ;] [GT —1.96se(0,) <0 <0, + 1.9636(9r)]

In both metric formulas, 6 denotes true value for the particular parameter of
interest, while R is the number of simulations. The 6, refers to the estimated pa-
rameter for the  simulation, and se(6,) is the corresponding approximated stan-
dard error. All of my scenarios included 1,000 simulations, i.e. R=1,000. However,
for the tables presented in the text of this chapter, I have chosen to report the "non-
failed" CP and % bias (explained in section 3.3.1.2). This means that each scenario’s

R may vary in the tables, though the complete simulation results across all 1,000

runs can be found in appendix C.

3.3.1 Effective Exposure Algorithms

All simulation scenarios are analyzed using both the OPEE and TPEE algorithms,
regardless of the underlying data generation model. The goal is to compare the
performance of each algorithm’s estimation under varying truths. I hypothesize
that the OPEE approach will fail to identify the correct lag under scenarios with
two lag parameters, and that the TPEE algorithm will converge to similar estimates
for each lag parameter in an OPEE-simulated dataset.

For the purposes of assessing coverage in the new methods, the standard errors
used for the hazard in each model are re-calculated using the Information matrix-
derived variance. In this situation, the resulting standard errors are typically wider

than those from the original model fitting process, but this allows the variability to
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be adequately adjusted for the additional parameter(s).

As the algorithms require an input for the initial half-life "guess", all univariate
scenario algorithms are initialized with a starting half-life of 60 days, regardless of
the true half-life. When an algorithm fails (see below), the simulated data is sub-
jected to a second half-life search starting at a 100-day initialization. If the second-
initialized-algorithm fails to converge, no additional algorithms are applied and

the original initialized half-life results are kept for analysis.

3.3.1.1 Initialization

To account for potential bias from invalid initialization, I performed a small ex-
ploratory analysis of different initialization half-lives using the BC1 scenario sim-
ulations. These initial values considered are the half-life at 60-, 70-, 80-, 90-, 100-
and 110-days. As the first set of models compared during the initialization step in-
cludes the marginal likelihoods for half and twice the initial value, testing a wider
range of input values becomes irrelevant. This is because the first step expands
using a similar mechanism of halving (or multiplying by 2) to get into the approx-
imate range of the maximum likelihood. Thus, any variation in the results due to
initialization should depend on the location of the center when step 2 starts, i.e.
for a maximum occurring at 70 days (for a given simulated dataset), initializing
the half-life at 80 days may be problematic if the likelihood is not symmetric. I
hypothesize that a minor shift of the initial guess can move the profile likelihood
points for the algorithm around a problem ridge area, such that other initializa-

tions produce consistent estimates for the half-life and HR parameters.



68

3.3.1.2 Algorithmic Failure

When I refer to "failed" and "non-failed" simulations, I am specifically focusing on
the OPEE and TPEE algorithms that struggle to converge during the estimation
process. This is based on non-estimate-able values for the half-life standard error
and/or infinite beta parameter estimates. In some situations this occurs due to a
flattening of the likelihood surface or failure of normality near a bound, while other
failures could be considered to come from the random variations of the simulated
data.

To make the results comparable, I have chosen to display only the "non-failed"
simulation results in the tables here. Therefore, the corresponding "# Fail" column
is meant to orient the reader with regards to the total number of failures for a par-

ticular parameter estimate out of the 1,000 simulations performed in that scenario.

3.3.2 Interval-Based Analyses

To account for situations in which the specific event time is unknown and assump-
tions are made about timing of exposure, I consider the impact of interval slicing
on the estimation of the lag and risk parameters. Unlike the original analytic meth-
ods for the simulations, the interval-based analyses are expected to shed some light
on the effect of repeated measures data assumptions. What I mean is that a typical
cohort dataset, like the BWHS, will collect information at pre-specified intervals,
which are assumed to be the start and stop points for both exposures and out-
comes. For example, in Chapter 4, a limitation may be the fact that each outcome
is only reflected in the year of the event, despite variability in the timing of events
within that year. Therefore, the resulting estimate for the half-life is expected to be

biased, since an individual with the event in March, who may have been exposed
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for 3 months, is calculated as exposed for 12 months, since the outcome is set to
the year-end time.

Using the base case scenario’s simulated samples, I split each dataset into sec-
ondary sets with varying interval lengths (10, 50, 100, 300, 900). The interval sets
are then analyzed using both PLR and CPH. By comparing analytic model esti-
mates of the hazard ratio® and lag parameters for the various intervals, I may be
able to make recommendations about the granularity of data needed for optimal
performance of my methods.

There are two dataset structures that I consider — structure (1) which assumes
that information is collected at equally spaced intervals and that all events occur at
the end of the interval; structure (2) which assumes that information is collected at
equally spaced intervals, yet the cases” event times within the interval are known.

In Structure 1 the Cox Proportional Hazards models (cphl) assigns all events to
the same time in the interval, thereby the EE estimate for cases in an interval would
be biased. For example, subject A is coming down from exposure, and has an event
at 28 days. The true EE for A’s event time is 87%, but if A is assigned as an event at
the end of a 100-day interval then the corresponding EE will be 68%. Meanwhile,
the non-case B who follows the same trajectory as A will be compared using these
same EE levels, which reflect the interval-end EE. Similarly, the Pooled Logistic
Regression (plr1) will have true EE assigned to non-cases in the interval, while the
up group cases may be overestimated and down group cases underestimated at the
true time of the event in the interval. The results for cphl vs plrl should not differ
dramatically, as the time components in the CPH risk sets are identical to those

in each interval pool. As the interval length increases, the CPH and PLR ratio

8recalling that the odds ratio is an approximation of the hazard ratio here
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estimates should diverge °.

In Structure 2 the Cox model (cph2) risk sets are based on event timings, lead-
ing to correct EE assignment for cases, but biased EEs for non-cases in the risk
set. For example, when subject A and B are both coming down from exposure, A’s
EE at event time 28 is 87%, but a 100-day interval means that B’s EE at time 100
of 68% is used for non-case comparison. Realistically, the two individuals should
be compared using the same EE at day 28. Therefore, a 10-day interval (B at 30
days EE=86%) should result in smaller misclassification bias than the 100-day in-
tervals. The problem persists using the pooled logistic regression model (plr2), but
both of structure 2’s analytic models should out-perform structure 1’s models in

identifying the correct half-life parameter.

3.4 RESULTS

3.4.1 Conventional Exposure Metrics

The conventional measures model tables (tables 3.1, and C.2) have several short-
hand notations worth explaining. PvsN and CvsN come from the time-varying
categorical three-level model and represent the estimated HR for the Past or Cur-
rent group compared to the Never group. Current refers to the model where those
in the on or up groups are considered to be at risk, and Ever refers to the model
where those in all groups except ctrl are at risk — i.e. the down group is treated as
being at the same hazard as on and up. The estimates presented for the conven-
tional measures in the interval analyses in the Appendix (table C.10) reflect the

hazard ratio (HR) in the CPH and odds ratio (OR) in the PLR models.

based on the same concept that odds and risk can approximate one another as long as the
intervals remain short enough
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Table 3.1: Hazard Ratio Estimates for Conventional Metrics Across
All Simulations Of Selected Scenarios

Simulation Input CvsN Current Ever
Scenario HR Mean % Bias Mean % Bias Mean % Bias
BC1 15 1.42 -5.48 1.37 -8.58 124 -17.21
N1k 15 1.46 -2.48 1.40 -6.94 1.28 -14.79
N10k 1.5 1.42 -5.18 1.37 -8.36 124 -17.02
N100k 1.5 1.42 -5.56 1.37 -8.67 124 -17.23
FourG 15 1.46 -2.75 141 -5.94 133 -11.53
NoUp 15 1.50 0.16 1.45 -3.17 1.28 -14.42
DoseMods 1.5 1.71 14.28 1.38 -7.99 1.41 -6.08
Halfl0 1.5 1.49 -0.52 1.49 -0.91 125 -16.85
Half104G 15 1.50 -0.26 1.49 -0.65 133  -11.28
Halflk 1.5 111 -2599 103 -31.21 1.13 -24.58
Half1k4G 1.5 119 -2047 111 -26.08 118 -21.37
MVmono 3 2.96 -1.47 2.86 -4.82 151 -49.69
MVmulti 3 2.75 -8.18 259 -1352 163 -45.82
Outl0 1.5 1.42 -5.46 1.41 -5.82 121  -19.25
Outl104G 1.5 1.46 -2.73 1.45 -3.11 131  -12.90
Outlk 1.5 1.42 -5.48 120 -19.71  1.39 -7.47
Outlk4dG 1.5 1.46 -2.75 124 -1740 143 -4.99
Input HR: The hazard ratio used in data simulation for the effective exposure at
steady-state risk
CvsN: Estimated HR for Current Exposure compared to Never exposed in categor-
ical model

Current: Estimate HR for Current vs. Not Current exposed risk ratio
Ever: Estimate HR for Ever vs. Never exposed risk ratio

Table 3.1 shows a selection of the simulation scenarios performed and the re-
maining scenarios considered can be found in the Appendix table C.2. In all simu-
lation scenarios and models of the categorical (current vs. past vs. never) exposure,
the past users effect size estimate was lower than the simulated hazard ratio (data
not shown).

As expected, all the conventional metrics in the multivariate simulations showed
an underestimation of the true association measure. For the multivariate scenarios,
the conventional metrics for current exposure were the least biased in both cate-
gorical and dichotomous models, with slightly more distance from the truth (CvsN
% Bias -8.2 vs. -1.5, Current % Bias -13.5 vs. -4.8) in MVmulti than MVmono. This

was not the case for the "Ever" models, likely because more individuals were con-
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tributing to the "past” or "ever" exposure categories in the MVmulti than MVmono
scenarios.

Adding a fourth group to the scenario (FourG vs. BC1, Half10.4G vs. Half10,
Half1k4G vs. Halflk, Out10.4G vs. Outl0, Out1k4G vs. Outlk) reduced the bias
for all conventional measures. This is consistent with the information hypothesis
that having individuals who are on or exposed and close to steady state improves
the estimation of the hazard level. I discuss the variations observed in the OPEE
and TPEE algorithm performance between the 3- and 4-risk trajectory simulations

later (section 3.4.6).

3.4.2 Sample Size Variations

The conventional measure results for N10k and N100k sample sizes were identical
to the base case sample. It is interesting to note that all of these metrics were the
least biased for the smallest sample size scenario (N1k). Meanwhile, decreasing
sample size reduces coverage, increases bias, and is more likely to fail in conver-
gence, specifically for the half-life parameter.

Table 3.2 shows the OPEE performance of the HR and single-parameter half-
life estimates. The base case scenario corresponds to the 30,000 subject sample size
rOWS.

In this table, the "# Fail" column reflects convergence issues specific to the pa-
rameter — for the hazard ratio, failure is denoted by an infinite estimate or negative
variance component. Meanwhile, the half-life estimate’s failure comes from a neg-
ative approximated variance component. The latter two points are the same and
discussed in more detail later. As mentioned previously, the number in this column

reflect the failures out of the 1,000 total simulations performed for that particular
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Table 3.2: OPEE Performance by Sample Size

Parameter Sample Mean Median Covergge % Bias  # Fail
Size Probability
1,000 2.4e+66  1.66 95.3 1.6e+68 0
Hazard 10,000 1.52 1.52 95.2 1.63 1
Ratio 30,000 1.51 1.51 95.9 0.47 1
100,000  1.50 1.50 94 0.07 0
1,000  777.63  90.00 85.4 764.03 5
Half-Life 10,000  95.59 90.00 90.6 6.21 1
30,000 9222 90.00 92.9 2.47 1
100,000  91.30 90.00 94.9 1.44 0
scenario.

While samples size seems to affect the estimation performance with respect
to the half-life parameter, the coverage of the hazard ratio by the normally ap-
proximated 95% confidence intervals was consistently favorable regardless of the
number of subjects in the simulation sample. This implies that my method can
still deliver appropriate estimates of the hazard ratio, even when the sample size
may be too small to estimate the half-life of the effective exposure. Increasing the
sample size may improve performance, however, the 100,000 sample size required
3-fold more computational time to perform the OPEE and TPEE algorithms com-
pared to the base case scenario of 30,000 individuals.

Using the TPEE algorithm in the N1k and N10k scenarios led to large overesti-
mation of the HR, while the base case sample size also saw slight overestimation
of hazard from TPEE (in Appendix C table C.6). The TPEE analyses on the N100k
scenario only failed for 1 simulation, compared to 74 in the base case sample size,

and overall had minimally biased estimates of the hazard ratio.
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3.4.3 One-Parameter Half-Life Variations

In table 3.3 the half-life=1 day scenario appears to have consistently low bias in
the hazard ratio estimation with a 95% coverage probability in the 95% CI bounds.
Additionally, this short half-life had the best coverage probability for OPEE half-
life across all scenarios evaluated by the OPEE model.(Table C.7) Given that good
estimation of the half-life drives less biased estimation of the hazard ratio, these
results are not surprising. This is further confirmed by the large bias seen for both
large half-life (1,000 days, single half-life) scenarios, regardless of the number of
trajectory groups (table 3.8). The large half-life models tended to fail more often

than for other scenarios, in both OPEE and TPEE algorithms.

Table 3.3: Simulation Results by One-Parameter Half-Life in Three
Profile Simulations

True OPEE TPEE
Parameter Half-Life @ Mean CP % Bias #Fail Mean CP % Bias # Fail
1 day 1.51 95.2 0.35 0 1.52 92.2 1.59 129
Hazard 10 days 1.51 947 034 0 1.52 94.1 1.36 49

Ratio 90 days 1.51 959 047 1 1.60 97.4 6.44 22
1,000 days 1.5e+87 86.8 9.8e+88 60 3.1e+203 60.3 2.1e+205 456

1 day 377 984 277.08 4 6.56 100  555.84 139

Incline 10 days 11.85 86.1 18.53 2 1533 854  53.27 77
Half-Life 90 days 9222 929 247 1 123.38 905  37.09 42
1,000 days 4006.82 80.4 300.68 57  26270.03 58.7 2527 456

1 day 24.07 927 23067 767

Decline 10 days 28.02 945 180.2 561
Half-Life 90 days 98.43 889 9.4 71

1,000 days 275238 935 1752 507

CP: Coverage Probability

Table 3.4 demonstrates the single-parameter half-life variations for the four
risk-trajectories. The sweet spot for OPEE performance appears at the 90 days half-
life, where coverage of the hazard ratio and single lag parameter is the maximized
and percent bias minimized. The results for these same scenarios using the TPEE

algorithm (table C.6) also show the least % bias for all three parameter estimates
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in the 90 days simulation scenario, though coverage is slightly higher and failures
occur less often for a half-life of 450 days. This is understandable given that the
down group spends more time in transition under the 450-day half-life (than in the
90-day half-life), thus providing more information for the decline parameter.

Table 3.4: OPEE Performance by One-Parameter Half-Life in Four
Profile Simulations

Parameter H;i?—llfi fe Mean Median Pfgg:{)?ﬁfy % Bias # Fail
10 days 1.50 1.50 94.8 0.2 0
Hazard 30 days 1.50 1.50 95 0.2 0
Ratio 90 days 1.50 1.50 95.7 0.2 0
450 days 1.53 1.51 95.4 1.9 0
1,000 days 5.4e+20  1.50 88.2 3.6e+22 95
10 days 11.83 9.38 85.5 18.3 2
30 days 31.30 30 90.7 4.3 0
Half-Life 90 days 91.89 90 92.3 2.1 0
450 days  491.93 450 92.2 9.3 0
1,000 days 2838.39 900 86.1 183.8 95

3.4.4 Two Half-Life Parameters Variations

The OPEE algorithm applied to an underlying TPEE scenario with four risk tra-
jectories showed better coverage of the true Decline than Incline half-life when the
decline was shorter than the incline (Table 3.5). The 1,000 day decline scenario had
equally poor coverage of both parameters in the OPEE context (7-8%).

Generally, none of the TPEE scenarios failed the OPEE algorithm’s convergence
or normal approximation of standard errors, and all of the four group estimated
hazard ratios had small bias. The OPEE algorithm tended to underestimate the
longer half-life parameter and overestimate the shorter, as would be expected.

All longer decline simulation scenarios (Out450.4G, Outlk, and Out1k4G) cor-

rectly selected the minimum AIC model as the TPEE over 90% of the time vs.
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Table 3.5: OPEE Performance by Two-Parameter Effective Exposure
Four Group Simulations

Parameter DZiiie Mean Median P(iggjli?l%tey % Bias # Fail
10 days 1.49 1.49 93.5 -0.48 0
Hazard 30 days 1.50 1.50 95 -0.05 0
Ratio 90 days 1.50 1.50 95.7 0.20 0
450 days  1.48 1.48 93.5 -1.28 0
1,000 days  1.52 1.50 95.8 1.02 0
10days  45.02 4125 397 59.7 -50 3502 O
Incline 30days 5879 5625 579 775 -347 96 0
and 90days  91.89  90.00 92.3 2.1 0
Decline  450days 226.86 225.00 242 10.7 1521 -49.6 0
1,000 days 387.94 360.00 78 72 331.1 -61.2 0

The two values in the Coverage Probability and % Bias columns reflect the measure’s perfor-
mance in relation to the incline and decline true half-life parameters. The left-hand value for
each denotes the incline. The base case (90,90) scenario has only one unique value half-life,
thus only one value is reported in the table.

OPEE, Categorical, Current vs. Not-Current, and Ever vs. Never (data can be
found in appendix table C.4). The two-parameter scenarios with longer decline
(Half=(90,1000), Outlk and Out1k4G) had mean estimates bias for the past cate-
gory (PvN) in the categorical and ever models, closer to the true HR=1.5 than in
the base case scenario variations and the two-parameter scenarios with the shorter
decline lags (table 3.1).

Table 3.6 demonstrates the TPEE performance for the true underlying TPEE
simulations in the scenarios with four risk trajectories. As the decline parameter
increases, the rate of failure in estimating any parameter decreases. Similar to the
single half-life simulation 4-group scenarios, coverage and bias of the hazard ratio
were good (close to 95% and 0%, respectively) regardless of the underlying TPEE
model. Failure was more common for the decline parameter than for the incline

parameter.
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Table 3.6: TPEE Performance by Two-Parameter Effective Exposure
Four Group Simulations

Parameter DZiiie Mean Median P(iggzé?l%tey % Bias # Fail

10 days 1.51 1.51 93.9 0.66 15

Hazard 30 days 1.51 1.51 95.3 0.72 7
Ratio 90 days 1.51 1.51 96 0.62 4
450 days 1.51 1.51 95.5 0.39 2
1,000 days  1.50 1.50 95.2 0.32 0

10 days 88.93 86.25 88.4 -1.19 21

Incline 30 days 90.38 86.25 90.4 0.43 15
Half-Life 90 days 95.05 90 91.7 5.61 4
450 days  95.60 90 92.4 6.22 2
1,000 days  95.00 90 92.3 5.56 0

10 days 29.02 19.69 94.8 190.21 460

Decline 30 days 43.70 36.56 93.6 45.68 216
Half-Life 90 days 97.96 90 91.9 8.85 28
450 days  482.72 480 94 7.27 2
1,000 days 1221.44 990 91.3 22.14 0

Interestingly, the smaller decline parameter scenarios tended to have better es-
timation of the incline parameter based on the smaller bias, though the incline’s
coverage could be considered lower (I might call it "ball park" across all decline

variations, CP=88.4 for Out10.4G vs. CP=91.3 for FourG).

3.4.5 Hazard Ratio Variations

The hazard ratio estimates for conventional measures in the null scenario, shown
in Table 3.7, all produced an average null HR estimate for the effect of the exposure.
The 10% and 20% increased-risk scenarios also had minimally-biased'® results for
the current exposure compared to non- or never-exposed individuals risk, in the
dichotomous and categorical exposure models, respectively.

It stands to note that the HR1 and HR10p scenarios were unable to estimate

Wiowards-the-null
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Table 3.7: Conventional vs. Fixed Half-Life Models in Null and
Nearly Null HR Scenarios

Categorical Current Ever vs. Fixed Half-Life (days)
Scenario Statistic PvsN CvsN vs. Not Never 1 10 100 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

HR=1 %Bias 0.072 0.071  0.046 0.069 0.044 0.034 0.034 0.498
minAIC 586 0 0 17 62 161 174

Mean 1.02 1.09 1.08 1.05 1.08 108 110 1.13
HR=11 % Bias -7.7 -1.3 -2.05 -4.5 201 -168 018 2.8
minAIC 393 0 0 13 93 417 84

Mean 1.03 1.17 1.15 1.10 115 116 120 1.26

HR=12 % Bias -14.23 -2.52 -3.91 -839 385 -322 032 514
minAIC 200 0 0 9 105 674 12

HR: Hazard Ratio

PvsN: Estimate for Past Exposure compared to Never exposed in categorical model

CvsN: Estimate for Current Exposure compared to Never exposed in categorical model

minAIC: Number of times the model was selected by a minimum Akaike Information Criterion (AIC)
out of 1,000 simulations

the true HR in both EE algorithms (Table C.3), while the HR20p had low bias and
good coverage in the OPEE algorithm only. The median across OPEE and TPEE-
estimated hazard ratios of the 1,000 simulations lands on the true parameter, but
the mean hazard ratio estimates tend to explode for a true null or 1.1-fold hazard.
The 1.2 HR appears to be a threshold for the algorithm’s function of estimating the
magnitude of association.

The over-estimation of the hazard, across the null-scenario simulations, is not
an indicator for direction of the bias when using the OPEE or TPEE algorithms.
This estimation-issue comes from the bias imposed during selection of the incor-
rect half-life parameter(s) by the algorithm. Thus, I consider what would happen
if  imposed a half-life on my own, without the algorithm’s application.

Considering fixed half-lives of 1, 10, 100, and 1,000 days in the null risk (HR1)
scenario, the corresponding [ parameter estimate was 0.0 on average (i.e. HR=1),

across the 1,000 simulations. For this particular scenario (HR1), the categorical ex-
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posure analytic model produced the minimum AIC in 586 of the 1,000 simulations,
with the remaining "best fit" models selected equally across the fixed half-lives
considered. In fact, neither of the standard dichotomous metrics ("Current" and
"Ever") produced the minimum AIC statistic in any of the scenarios considered
(Appendix Table C.4).

With increasing magnitude of risk, the minimum AIC-producing model —across
conventional metrics and fixed half-lives — settles on the fixed half-life closest to the
true lag parameter. Looking at table 3.7, the fixed half-life estimated HRs are the
same, while the fixed half-life of 100 days is selected over the conventional mod-
els and other fixed half-lives 417 and 674 times out of 1,000 simulations, for the
HR10p and HR20p scenarios, respectively. The estimated hazard ratios using the
tixed (bounded) half-lives range from 1.08 to 1.13 and 1.15 to 1.26 for the true haz-
ard ratios of 1.1 and 1.2. Comparatively, the conventional model hazard ratios all

underestimate the relative effect of exposure.

3.4.6 Three vs. Four Risk Groups

Figure 3.5 shows a histogram of the true hazard ratio across the 3- and 4-group
scenarios for a single half-life of 1,000 days. I see that the 4-profiles scenario has
a narrower curve centered around 1.5. This implies that estimation of the true
hazard ratio should be less biased in the 4-group runs than the 3-group runs.
Looking at table 3.8, it appears that adding a fourth group to the single-parameter

half-life scenarios does not appreciably change the results using the OPEE algo-
rithm, unlike the information hypothesis presented earlier. In the previous results
(section 3.4.3) focused on the half-life parameter only, the largest single half-life of

1,000 days, produced infinite estimates of the hazard ratio. This is likely a result of
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Figure 3.5: Histograms of steady state risk for half-life=1,000 days
simulations, comparing the 3-group to 4-group designs.

the overestimation in the half-life parameter (failing 60 and 95 times for the 1,000
day 3 and 4 group scenarios, respectively). For this reason, the numbers presented
in the table reflect the estimates of performance for the non-failed simulations, to
circumvent the "Inf" cell-values. Looking at the non-failed scenarios only, the %
bias is 301% and 184% for the half-life parameters in the 1,000 day 3- and 4- group
scenarios, respectively. While removing the failed simulations does give estimates
for the mean and % bias — i.e. non-infinite values — the estimated biases for the
1,000-day scenario HR parameters remain largely overestimated.

For the underlying TPEE scenarios, adding a fourth group generally tends to
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Table 3.8: OPEE Performance by One-Parameter Half-Life Compar-
ing 3- and 4- group simulations

Parameter Hz;l;?—lfife g:;if}l; Mean Median Pfgggll;?ﬁfy % Bias # Fail
10 days 3 1.51 1.51 94.7 0.34 0
4 1.50 1.50 94.8 0.20 0
Hazard g4 3 151 151 95.9 0.47 1
Ratio y 4 1.50 1.50 95.7 0.20 0
1,000 days 3 15e+87 148 86.8 9.8¢+88 60
’ 4  54e420 150 88.2 3.6e+22 95
10 days 3 1185 938 86.1 18.53 2
4 11.83  9.38 85.5 18.28 2
. 3 92.22 90 92.9 247 1
Half-Life 90 days 4 91.89 90 92.3 2.10 0
3 40068 840 80.4 3007 57
1,000 days 28384 900 86.1 183.8 95

reduce the likelihood of failures and bias of all parameters estimated. The decline
of 1,000 days scenario coverage of the true hazard ratio was less than acceptable
in the OPEE framework, but adding the fourth on group appreciably changed this
(42% vs. 96%, appendix table C.7). Adding the fourth group minimally improved
coverage for the decline parameter in the TPEE fits (Table 3.9), while all the 3-risk
profile scenarios overestimated the incline parameter more than their 4-profiles

counterparts.

3.4.7 Multivariate Scenarios

On average, the percent bias of the single half-life parameter estimates, across the
1,000 simulations, was 2.5% for the base case (BC1) scenario using the OPEE algo-
rithm, while the MVmono and MVmulti estimates of percent bias were 1.19% and
0.26% for the same analytic approach, respectively. ! Moving to the TPEE algo-

rithm, the incline and decline percent biases were 37.1% and 9.4% in the base case.

Recall that the MVmono and MVmulti models include adjustment for covariates
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Table 3.9: TPEE Performance by Two-Parameter Half-Lives Compar-
ing 3- and 4- group simulations

Parameter qutllliie grﬁllfll:s Mean Median P(iggzli?lgi’cey % Bias # Fail
10 days 3 155 1.51 95.8 312 28

4 1.51 1.51 93.9 066 15

Hazard g, 3 1.60 1.52 97 4 644 2
Ratio y 4 1.51 1.51 96 0.62 4
3 152 151 96.7 11 1
1,000 days 4 1.50 1.50 95.2 0.3 0

10 days 3 100.46 75 815 116 46

4 88.93  86.25 89.3 12 21

Incline g\ 3 123.38 90 90.5 371 42
Half-Life y 4 95.05 90 91.7 5.6 4
3 101.71 90 91.7 13.0 1
1,000 days 95 90 92.3 5.6 0

10 days 3 37.09 2344 943 2709 458

4 29.02  19.69 94.8 190.2 460

Decline 90 davs 3 98.43 90 88.9 94 71
Half-Life y 4 97.96 90 91.9 8.9 28
3 123499 960 90 235 2
1,000 days 122144 990 91.3 2.1 0

The percent bias, upon addition of covariates (MVmono), was 13% for the incline

and 9.4% for the decline half-life parameters using the TPEE algorithm. The multi-

variate multi-trajectory (MVmulti) model simulations’ percent bias stayed smallest

(incline = 7.8% and decline = 6.4%).

The monotonic trajectories (MVmono) simulations had nearly the same perfor-

mance across OPEE and TPEE algorithms as the multi-trajectory (MVmulti) sam-

ple sims (Table 3.10). However, the multi-trajectory set of simulations was better

equipped (fewer failures, smaller bias) to inform the TPEE algorithms.

This was expected, since the monotonic trajectories sample had no individuals

transitioning upwards'?. By adding more information from the multi-trajectory in-

12Those smokers still climbing in risk would be expected to have almost reached the maximum
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dividuals, coverage of the OPEE half-life parameter estimate improved minimally
(93.8% in MVmono vs. 94.9% in MVmulti). The TPEE algorithm performance was
not as similar between these scenarios, with better coverage of Incline and Decline
parameters in the MVmulti simulations (Table 3.10), though the coverage of the

hazard ratio estimates remained nearly identical.

Table 3.10: OPEE and TPEE Performance by Trajectory Variations

OPEE TPEE
Scenario Parameter Mean CP 9% Bias # Fail Mean CP % Bias # Fail
Base HR 151 959 047 1 160 974 64 22
Incline 12338 905  37.1 42
Case Decline 222 929 25 1 9843 889 94 71
Four HR 150 957 02 0 151 96 0.62 Z
Incline 95.1 91.7 5.6 4
Groups . line 0189 923 21 0 9796 919 89 28
No HR 151 959 057 T 25e+130 99.1 1.7e+132 343
Incline 2518.6 100 26985 386
Up Decline /81 916 87 1 1089 93 21 386
MY HR 208 94 -0.83 0 298 944  -0.80 9
Incline 340 916 132 59
Mono b fine 304 938 119 1 328 826 94 60
MY HR 297 928 -0.90 0 297 936  -0.86 5
. Incline 324 926 7.8 20
Multi 5 gine 301 949 026 0 319 867 64 20

HR: Hazard Ratio; CP: Coverage Probability;

NoUp: Three trajectories of risk in base case scenario with "down", "ctrl", and "on" groups only

MYV Mono: Monotonic trajectories from "Restricted" sample of BWHS participants used to simulate a
3-fold maximum hazard with a one parameter 3-year half-life.

MYV Multi: Full sample of BWHS participants used to simulate a 3-fold maximum hazard with a one
parameter 3-year half-life.

3.4.8 No Incline Variation

Similar to the MVmono, the NoUp scenario has no upwards-transitioning risk in-
dividuals. Compared to the base case and four group scenarios, the OPEE model

in this scenario estimated a larger half-life, on average (97.8 vs. 92.2 vs. 91.9 days,

hazard plateau as inclusion in the sample at least 10-years of prior exposure at baseline
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Table 3.10). The TPEE algorithm, here, continues to grossly overestimate the in-
cline half-life even when restricting to non-failed simulations (Incline=2519 days).
This is not as much of an issue for the decline parameter, though most three-group
OPEE models and scenarios appeared to also have larger bias in the TPEE Incline

than the Decline half-life estimates.

3.4.9 Dosing Variation

Referring to table 3.11, it is clear that both binary and dose-based OPEE and TPEE
model algorithms lead to similar bias and slightly lower coverage probabilities
in estimation of the lag parameter. However, the major pitfall of the binary-dose
assumption for this scenario is the overestimation of the true hazard ratio with 0%
coverage. This failure to estimate the true effect comes from improperly-weighting
the risks associated with different levels of exposure, and is not a unique limitation

to my methodology.(Copeland et al., 1977)

Table 3.11: Mean (Coverage Probability) of the OPEE and TPEE
algorithm-estimated half-lives and risk ratios under Binary vs. Dose-
based models in the context of 1,000 simulations of the Dosing vari-
ation scenario.

Half-Life
Incline Decline Hazard Ratio
9120 1503
Dose COFEE (94.2%) (95.4%)
Based 10001 91.37 1515
TPEE  950%) (89.8%)  (97.2%)
9091 1.874
Binary OPEE (93.3%) (0%)
rppp 10399 9071 1911

(93.5%) (87.9%) (1.3%)
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3.4.10 Initialization

Table 3.12 shows the parameter estimates by EE algorithm. Coverage and bias of
both the hazard ratio and half-life estimates were nearly the same for all OPEE
algorithms, regardless of initialization half-life. Only one simulation of the 1,000
sets failed the OPEE (initialized at 60 days), but this would not have been reflected
in the final results for the BC1 simulations, because I ran all "failed" simulations
with a secondary initial value (100 days).

The results for the TPEE algorithm by initial value were not as consistent.
Roughly 20 simulations failed in terms of the hazard ratio estimation, but this was
tied back to failures from estimating the half-life parameters. In particular, remov-
ing the failed simulations resulted in a coverage probability of the HR of 97.3 for
both the 100 and 110 day initialized algorithms, and a % bias of the HR parameter
of 7.1 and 60.6 for these two initial half-lives, respectively.

In general, the initialized half-life appears to affect some aspects of the EE

model performance, though it was more egregious in the TPEE application.

3.4.11 Interval Analyses

Table 3.13 shows how both plrl and cphl tend to overestimate the half-life life in
OPEE, with increasing bias as interval length increases. Recall that this structure
miscalculates the true effective exposure for all individuals equally. Events are thus
assigned an EE level associated with longer survival, which naturally means that
the time-to-effect would appear longer. Meanwhile, structure 2 imposes different
biases on EE for cases and non-cases, which underestimates the true OPEE lag at
the 300 and 900 day intervals. More interval-analysis results can be found in the

Appendix tables (C.10 and C.9).
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Table 3.12: Base Case Algorithm Performance by Initialization

Initial OPEE TPEE
Parameter Guess' Mean CP % Bias #Fail Mean CP % Bias # Fail

60days 151 959 047 0 161 974 72 22

70days 151 96.1 045 0 167 972 111 24

Hazard  80days 151 96 045 0 1.63 973 89 19
Ratio 90days 151 96 046 0 160 975 69 21
100 days 151 959 044 0 161 973 71 24

110days 151 962 045 0 161 973 60.6 21

60 days 9222 929 247 1 12627 903 403 42

70days 92.02 932 225 0 12654 903 40.6 43

Incline  80days 9191 932 213 0 12757 90 4138 41
Half-Life 90days 9214 929 238 0 12541 903 394 40
100 days 91.87 929  2.08 0 12258 904 36.2 45

110 days 91.99 929 221 0 12955 90 44 41

60 days 9799 891 89 69

70 days 98.25 889 92 73

Decline 80 days 9830 894 9.2 69
Half-Life 90 days 9857 895 95 72
100 days 99.00 89.7 10 74

110 days 9842 893 94 71

! Single initialized half-life value at the start of the algorithm’s fitting process
OPEE: One-Parameter Effective Exposure Algorithm Results
TPEE: Two-Parameter Effective Exposure Algorithm Results
CP: Coverage Probability

The overestimation in structure 1 also occurred in plr1 estimates of the hazard
ratio, while cphl showed the best coverage of this estimate across all intervals and
OPEE analytic approaches (plr1 vs plr2 vs cphl vs cph2). The method showing
the best coverage of the OPEE half-life parameter was cph2, except for the 900-
day interval length, because the risks sets at each event time are compared to the
study-end EE for all non-cases. In this particular situation, where only baseline
and study-end data contribute to the analysis, or where there is little information
on time spent in transition, the both CPH models overestimate the hazard ratio.

Applying the TPEE algorithm to the interval datasets resulted in overestima-
tion of HR, regardless of interval length (Appendix Table C.9). It is possible that

this overestimation in the short interval lengths, specifically for cphl, plrl, and
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plr2, is related to the overestimated half-lives for both parameters. Despite appear-
ing to have low bias in estimating the hazard ratio for the 10-day interval length
(HR=1.49), the cph2 model failed in the TPEE algorithm for 425 of the thousand
simulated samples. Failures rates of the TPEE algorithm increased with increasing
interval length, except for the cphl models, though bias in estimation of both lag
parameters became worse for all models with larger intervals.

In Table C.10 the Current vs. Never group’s (categorical model) HR estimate
appears to have the best coverage of the true HR, compared to the other conven-
tional measures of exposure. The calculated EE in structure 1’s CPH models (cph1)
mirrors the behavior of the true EE estimates for coverage and bias in cph2. This
is because the calculation applied to structure 1 only changes the exposure-level
classification for the cases at their true event time in the interval. In fact, in the
last two columns of table C.10, the coverage and bias appear the same for the true
parameter fit (TrueEE) in both CPH models, until the interval length exceeds the

half-life, at which point the estimates diverge.

3.4.12 Failures in OPEE/TPEE Algorithms

Failure of the OPEE algorithm was seen more often in the smallest sample size
(N=1,000 participants failed 5 times in the OPEE algorithm), null hazard, and long
single half-life [1,000 days] scenarios. The null lag models, where the underly-
ing scenario had either a null HR for events or a half-life of one-day, "failed" in
the majority of TPEE algorithms. Since the Halfl did not see these same rates of
failure for the OPEE algorithms, it may be that the type of "failure" here comes
from problems in the normal approximation of the half-lives’ confidence bounds —

specifically when approximating the decline bounds (per coverage probability of
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21.6% across the 1,000 simulations, while the incline’s coverage was 86% for these
same simulations).

The large number of failures in the TPEE estimation of Out10 can be explained
by the failed normality of the likelihood surface when the half-life estimate for
the decline gets too small. By removing the [nearly half of the] simulations that
failed, coverage of the decline parameter changes from 51% to 94%, while the in-
cline half-life and ratio coverage probabilities improve by roughly 2% points. Ad-
ditionally, for both failed and non-failed simulations, the minimum AIC model
selection prefers the OPEE for the Out10 scenario (Table C.4).

It is possible that the underlying issue here (large failure rates in Out10) is ac-
tually due to the lack of information available from the short decline. Specifically,
the down group drops in risk almost immediately, meaning the proportion of time
spent in transition is 1/90th of the study period.

To resolve this, I could set the incline half-life to 1,000 days and the decline
to 90. This is roughly the same magnitude as 90,10, but I would be able to keep
the other parameter constant with the base case. Increasing both of the half-life
parameters, while maintaining a larger incline half-life, could also be considered
to try to have both half-lives within an estimate-able range for the study design.

Alternatively, I could stagger entry for the down group, to see if adding more
down individuals to the time-dependent risk sets could improve estimation perfor-
mance, regardless of the input incline and decline parameters. However, before
attempting to methodologically address this combination, it is more important to
understand the clinical parallel to this scenario. The biologic relationship, here,
assumes the EE rises at a slower rate than it falls. An example could be the use

of anti-psychotic medications that take a long time to activate symptom reduction,
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but for which relapse can happen immediately.(Agid et al., 2006)

3.5 CONCLUSIONS

The simulation study presented here accounts for multiple scenarios and situations
where the OPEE and TPEE algorithms may break. This includes multi-trajectory
scheme and multivariate models. My methods are bounded by reducing sample
size, decreasing the number of trajectories that contain information on rise and
fall, hazard ratios that approach null (specifically less than a 1.2 hazard ratio for
exposed), and when the half-life of the effect is nearly null or as long as the study
length. Additionally, the time-varying estimation suffers when wide measurement
intervals are imposed, especially when events are assigned a time-biased exposure
level (i.e. structure 1).

Under a null model, the algorithms typically fail in some way. Thus, in situa-
tions where the OPEE and TPEE "blow up", one can fit some fixed half-life models
and other conventional metrics for exposure with those results consistently point-
ing towards no association.

For reference, I have presented the results of exposure metrics that may be con-
sidered standard for a follow-up study of time-varying exposure and binary time-
dependent outcomes. The categorical model was the only conventional metric
model that was selected by AIC criteria across all the simulation scenarios (ta-
ble C.4). This mostly occurred for scenarios where the simulations failed TPEE
and/or OPEE. In the multivariate setting, adding "unstable" smokers (MVmulti)
to the group reduced bias in the hazard ratio estimate for past-exposed individu-
als compared to the multivariate monotonic trajectories scenario.

The overarching theme of this chapter has been that more information content
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improves estimation of both the lag and hazard ratio parameters. This is seen
through the addition of a "fourth" group to any of the scenarios, where the inclu-
sion of the on group', regardless of the other trajectories, improves estimation of
the steady state’s magnitude of association.

This "more info" concept is especially evident in the MVmulti scenario’s correct
AIC-selection of the OPEE model, even in the presence of OPEE and/or TPEE fail-
ure (all 1,000 simulations selected the OPEE model). The trajectories of "unstable"
smoking participants (MVMulti) additionally lowered the bias and increased cov-
erage of the half-life and HR estimates from the OPEE algorithm as compared to
the MVmono scenario. The improvements were also seen in the conventional ex-
posure analyses in the MVmulti vs. MVmono scenarios. This is because the time-
varying indicators for smoking status also account for the changing exposures in
each risk set that feeds into estimation of the latent EE trajectories.

While my dissertation does not focus on inference or hypothesis testing, I do
believe that the Multivariate Multi-Trajectory scenario could hold a key to per-
formance in that realm of statistics. Particularly, the increased complexity of this
dataset, specifically addition of "on-again off-again" life-course smokers to the
sample, should provide more robust estimation of the true lag and effect parame-
ters. Naturally, adding subjects improves power, but this also benefits the knowledge-
base of any exposure-response relationship in that the full cohort reflects a more
representative sampling of the entire population.

For the interval-based analyses, almost all the OPEE model types and interval
lengths had minimal bias in the estimation of the true HR. For the study-length

interval (900 days), which can be paralleled to a case-control study design, OPEE

Brecalling these individuals are assumed to be at or near steady state maximum risk
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and TPEE are not recommended. However, this may be circumvented by creating
pools or risk-sets artificially — presuming the EE information gets appropriately
assigned for non-cases in those imposed intervals. This, in turn, creates an analytic
dataset that looks like the original data, in which one observation is specific per
subject per unique event time in the study. Given the known start and stop times
for exposure, one can compute the EE at any time point even if it is not measured.
Thus, preprocessing the data allows for analysis in a semi-continuous form that
circumvents the problems associated with interval-based analyses. In particular,

the function behaves as a time-transform for each subject’s exposure history.

3.5.1 Limitations

As I did not explicitly model covariate relationships in this study, I am not able to
comment on the impact of correlation between potential confounders and the EE.
However, I could extend the study to look at this by using data from the multivari-
ate scenarios to restrict the set of confounders in the model during the estimation
process. This should provide insight regarding the ability of the model to estimate
the lagged association when missing important confounders, such as hypertension
and alcohol use.

Another limitation of this simulation study is that I did not explicitly inves-
tigate the effect of competing events. I tried to account for some of this in the
multivariate scenario, by using real data that included right-censored individuals
at loss to follow-up, death, or cancer.

Both TPEE and OPEE univariate models assume balanced study designs and
do not account for random variation in the start and stop times of regimens. The

random trajectories taken for the MVmulti scenario could be the contributor to the
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lower percent bias seen in the half-life estimates of both EE algorithms. The two
multivariate scenarios also present more of a population-based balance of subjects
in each risk group —i.e. where the base case and its variants primarily included
2/3 exposed vs. 1/3 unexposed individuals, the BWHS underlying sample had
proportionally far more non-smokers ( 3/4 and 3/5 for MVmono and MVmulti,
respectively).

While I did not expect the OPEE algorithm to perform well under a true TPEE
model scenario, the high failure rate of the TPEE algorithm applied to a true OPEE
model scenario was not expected. Improvements can be made to the TPEE algo-

rithm that would allow for better (more precise) estimation of a true OPEE model.

3.5.2 Strengths

By generating the data on a daily basis, I have already conditioned the time-to-
event on the survival up to that time point at a fine gradient of possible survival
times. Since time is relative to the half-life parameter, it would be just as feasible
to generate events that occur in monthly or yearly units, as long as the granular-
ity of the risk over time is preserved. To check the bounds on this conclusion, I
could investigate a large half-life within the range of the study period. It would be
good to know the threshold at which this estimation becomes problematic. For my
purposes, I used a study-length equivalent to at least ten half-lives.

Both sets of MV scenarios had TPEE estimates of the two-lag parameters con-
verging towards an OPEE model. A future step to consider would be the construc-
tion of a test to determine whether the TPEE or OPEE is more appropriate. The
AIC presents a potential method for model selection, however, this is not a formal

hypothesis test.
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CHAPTER 4

Application to Real Data
41 BACKGROUND

4.1.1 Cigarette Smoking and Cardiovascular Diseases

Cigarette smoking has been shown to cause build-up of plaque in the arteries, also
known as atherosclerosis, a precursor condition to more advanced forms of car-
diovascular disease (CVD). Over a three-year period, the ARIC study found that
disease progression of atherosclerosis, as measured by the intima-medial thickness
of the carotid artery, was 50% increased amongst current smokers compared to
non-smokers.(Howard et al., 1998) For one of the largely-studied CVDs, myocar-
dial infarction (MI), smoking accounts for 36% of the population-attributable risk
of a first MI.(Yusuf et al., 2004) Previous research has also shown that there is also
a dose-response relationship of smoking and CVD, in that increasing the number
of cigarettes smoked per day increases the risk of CVD.(Rosenberg et al., 1990; Tol-
strup et al., 2014; Rogot & Murray, 1980; Teo et al., 2006) Due to these established
relationships between CVD and smoking, clinicians and health policy have largely
focused efforts on promoting smoking cessation.

Time-to-reduction in CVD hazard due to smoking has become particularly in-
teresting for researchers. Rachet et al. (2003) explored this lagged association em-
ploying B-splines and the Cox proportional hazards (CPH) framework to estimate
the time-to-return to baseline hazard for Framingham Heart Study participants
who successfully quit. The investigators showed that the flexible modeling ap-
proach could estimate a distribution for the lag, assuming that lag of effect varied

by subject, that was consistent with prior epidemiologic findings of roughly 3.4
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years to reduction in risk of heart attack following complete cessation of smoking.
The authors’ technique was limited to individuals with successful smoking ces-
sation, implying that the method could only generalize to situations in which the
data is unidirectional. Additionally, Rachet et al. discussed the limitations of their

results in the context of not knowing the true timing of exposure.

4.1.2 Aims

The goal of this chapter is to demonstrate an application of the Effective Exposure
(EE) methodology to data from the Black Women’s Health Study, a longitudinal
cohort of approximately 59,000 African-American enrolled in 1995 and followed
biennially.(Rosenberg et al., 1995) I will show that the underlying EE for smoking
in relation to increased risk of CVD can be modeled using an exponential curve
that plateaus at a maximum hazard level once the individual has smoked for a
prolonged period of time.

In my analyses, I consider all events and exposures occurring between baseline
and follow-up in 2015. Specifically, I estimate the increased hazard due to smoking
exposure in the CPH analytic framework using time-to-first CVD event as my out-
come. The OPEE and TPEE algorithms are applied to smoking as a binary ("on" vs
"off") exposure, as well as, dosing based on the number of packs smoked per day.
By looking at the profile likelihood surface for a range of plausible lags, I am able
to evaluate the validity of my model assumptions and estimation performance.

To emphasize the usefulness of my approach, I compare my results to those of
conventional exposure variables for smoking exposure and their estimated HR for
CVD. By the end of the chapter, I hope to demonstrate the interpretability of the

EE results, and will reflect on the strengths and limitations of my findings, in terms
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of the method overall and by comparison to previous literature on the association

between smoking (cessation, particularly) and several cardiovascular outcomes.

42 METHODS

421 Study Design

The Black Women’s Health Study (BWHS) is a prospective cohort study comprised
of 59,000 African American women from across the US, ages 21-69, who responded
to a mailed 14-page questionnaire in 1995.(Rosenberg et al., 1995) As of 2013, bien-
nial questionnaires had been completed with an overall follow-up of 88%, provid-
ing information on health events and various exposures, with some ascertained
more frequently than others. The Institutional Review Board at Boston Univer-
sity granted approval for the BWHS and all subjects provided written informed

consent.

4.2.2 Cardiovascular Disease — Outcome Specification

For these analyses, I consider several CVD conditions as the outcomes of inter-
est, setting the first reported event of any one of these as the time-to-event. These
include self-reported MI, stroke, congestive heart failure, and coronary artery by-
pass and grafting procedures. Participants were asked about one or more of these
conditions at all questionnaires, along with the year of first diagnosis.

When the year of diagnosis is not known, the questionnaire cycle in which the
CVD event was reported is taken as the year of the event. Additionally, if a subject
was found to have died from an underlying CVD event, as depicted by an ICD10
"I" code on a death certificate, this is marked as a CVD death and considered an

outcome in the year of death.
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During the assignment of person-years of follow-up, the BWHS analyses typi-
cally assume all events to have occurred at the mid-point of the year. This accounts
for potential misclassification of exposure for events that do not have a correspond-
ing month of diagnosis, though it imposes some bias on those with a known exact
time of event. For the purposes of my analyses, I assume all events occur at the
end of the year of diagnosis. The implications of this assumption are discussed in
more detail in the conclusions.

The BWHS is currently abstracting reports of CVD conditions with the hopes
of creating a validated and confirmed case-set. Due to this ongoing process, my
dataset is made up of both non-confirmed and confirmed cases, however, I have
removed individual cases that have been disconfirmed. This is important to re-
member, as the clinical relevance of these results should be approached with cau-
tion. To quote D’Agostino et al. (1990), "the examples [here] are presented mainly
for comparison of the methods; the reader should not view them for definitive sub-

stantive interpretation”.

4.2.3 Smoking and Cigarettes/Day — Exposure Specifications

At baseline, in 1995, women were asked about smoking in terms of age at initia-
tion, number of cigarettes smoked per day (on average) for early and more recent
years of use, whether they quit and how long ago, and total duration of smoking
prior to enrollment. This set of questions provides information for classifying in-
dividuals as current vs. past vs. never smokers, with only 38 women missing data
on smoking at baseline !. During sensitivity analyses of past and current smok-

ers (see section 4.2.6), only those with at least 10 years of prior smoking history at

! Additional had implausible years of smoking duration or missing years since quitting, which
resulted in their exclusion from the analytic sample.
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baseline are included.

In follow-up cycles, smoking was asked about in terms of cigarettes/day for
every 2-year questionnaire, except in 2011. Smoking during pregnancy was asked
in 1997, 1999, 2001, and 2003, while use of menthol cigarettes questions appeared
in the 2003, 2005, 2007, 2009, and 2013 questionnaires.

The smoking data from the BWHS cohort has been cleaned for consistency of
responses across time, as well as, within cycle for reported menthol cigarette use.
Subjects with missing information during one or two follow-up periods, with con-
sistent bordering responses, are assumed to continue the pattern of smoking as
reported in the bounding cycles. For example, if a woman answered "non-smoker"
in 1999 and "non-smoker" on the 2003 questionnaire, her missing 2001 cycle was
set to non-smoker. Additionally, when cigarettes/day (frequency/intensity) was
not provided for a given cycle, information was carried forward or back-filled from
adjacent cycles 2.

For use in "conventional” analyses, the time-varying dataset includes variables
of smoking status category (current vs. past vs. never), history of smoking (ever
vs. never), current number of cigarettes or packs/day (continuous, on average
for the 2-year period), and cumulative number of years smoked. When a cycle’s
smoking status for an individual is not known, the subject is excluded from the
risk set for that particular year.

Women are classified into one of five risk trajectories, as defined by the time-
varying smoking status across all follow-up periods: smokers throughout, non-
smokers throughout, successful quitters, smoking initiators, and those with an un-

stable smoking status. The first two categories require a baseline report of never

2Provided the adjacent cycle include non-missing information on cigarettes smoked per day and
the same binary smoking status as the one with missing data.
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or current smoking, with no change to smoking or non-smoking status, respec-
tively, throughout the 20 years of follow-up. Missing cycles do not change the risk
profiles for these women, as transition from one status to missing and back is not
considered to be a change in the exposure trajectory. The risk trajectories and the
number of women, person-years, and cases that fall into each group are described

in more detail in the results section 4.3 of this chapter.

4.2.4 Additional Covariates and Confounders

All models are adjusted for the following time-varying covariates: body mass in-
dex (BMI in kg/m?, continuous); frequency of vigorous exercise (none vs. <1
hour/week vs. 1+ hours/week); current menopausal status (pre- vs. post- vs.
unknown) and age at menopause (<45 vs. 45-<50 vs. 50+ years old for post-
menopausal women only); alcohol consumption (current vs. past vs. never);
history of diabetes (ever vs. never); history of high cholesterol and cholesterol
medication/statins use (ever vs. never); and history of hypertension treated with
medication (ever vs. never). Additionally, family history of cardiovascular disease
(specifically, stroke and myocardial infarction), a fixed risk factor, is included in
the models for all participants. The majority of these confounders were collected
at each questionnaire cycle, though the carry-forward method is used to assign
values at time points where this information can not be updated.

Subjects that did not report a history of any of the confounding conditions are
assumed to be unaffected at baseline, and are set to "yes" at the first report of dia-
betes, high cholesterol, or hypertension with concurrent use of medications. Use of
statins was collected on some questionnaires explicitly and as write-in responses

on others. Once set to "at risk" for the condition/statin use, that history of "ever" is
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carried forward for the remainder of follow-up.

4.2.5 Data Preparation

The BWHS data was first converted into an Andersen-Gill(Andersen & Gill, 1982)
dataset in SAS 9.3(SAS Institute Inc., Cary, 2011), i.e. multiple rows per subject
with time-varying exposures updated at each available questionnaire cycle with
non-missing information. While each cycle included two years of follow-up, the
observations were split into annual risk sets, to preserve the interval-based com-
parisons of Effective Exposure for cases and non-cases.

Having an appropriately structured dataset is key in the OPEE and TPEE frame-
works, as well as, crucial for traditional time-varying covariate analyses in BWHS.
The only consequence to pre-preparing the data into multiple observations per
subject comes in the form of computational costs, as the results and precision
are not affected.(Therneau & Grambsch, 2000) If the time measure for the time-
to-event outcome is conditional on the interval, then this equates to the Cross-
Sectional Pooling with time-adjustment model.(Ngwa et al., 2016) This CSP method
is just a Cox proportional hazards model fit within annual intervals and strata of
current age, assuming separate baseline hazards for each strata-year, rather than a
single baseline hazard per individual (as might be used in a mixed effects model-
ing approach).

This same dataset structure can be used in a traditional Time-Dependent Co-
variate Model (TDCM), where the interval is not included as a stratification level,
but rather each observation’s start and stop times reflect the particular measures
contributing to the risk set at the stop-time-event. Ngwa et al. (2016) showed that

these two methods, time-adjusted CSP and TDCM are identical in performance
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and estimation of longitudinal exposures and time-to-event outcomes. Age is left
in the strata for all CPH models, to avoid issues with non-proportional hazards by
age.

To account for tied event times, the Breslow(Breslow, 1974) method is used in

all CPH model fits.

4.2.6 Restricted Sample Analyses

To understand the role of smoking cessation on risk of CVD, I considered a sim-
plified or restricted subset that could be useful in comparison to the single-dosing
simulation scenarios. This dataset also attempts to mimic the study-design used
by Rachet et al. (2003) in the estimation of the lag distribution.

In particular, I restricted the individuals for this set to one of three risk trajecto-
ries: Non-smokers throughout, smokers throughout, and successful smoking ces-
sators (quitters). The latter group included individuals who may have quit prior
to the study entry, or at some point within the study, as long as there was no report
of smoking for the remainder of the subject’s follow-up and a minimum of two
follow-up cycles as non-smokers. The successful cessation group, as well as, those
who were smokers throughout, were further restricted to women with at least 10
years of smoking exposure at the baseline interview. This restriction did not ac-
count for differences in the intensity of smoking, or number of packs smoked per
day’. By forcing all exposed individuals to have 10+ years of exposure at baseline,
if the true EE half-life were between 2 and 5 years, then the first component of the
multi-dosing EE should reflect a level where exposed individuals start within 2-5

half-lives of exposure.

3Though all subjects in both the restricted and full cohort datasets were required to not have
missing information on packs/day
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4.2.7 Conventional Analyses

The first set of exclusions applied to this full set removed missing or implausible
information on baseline smoking status (N = 360). Individuals with prevalent CVD
or prior reports of stroke, myocardial infarction, coronary bypass surgery or graft-
ing, congestive heart failure, and other cardiovascular procedures at baseline are
excluded from the analyses (N = 1,562). Additionally, subjects are excluded due
to missing information on any of the covariates of interest (N = 4,064), with the
exception of menopausal status. The total number of women excluded at baseline
due to prevalent cancer or incidence of cancer within the first follow-up cycle is N
=1,685.

Previous research within the BWHS cohort has utilized PROC PHREG in SAS
to conduct CPH regression with separate baseline hazards estimated for age and
period combinations. As described in chapter 2, my algorithms all make use of R
software, with several key packages loaded.R Core Team (2017) For the purposes
of this dissertation, a similar approach is constructed within R 3.2.5 using the "sur-
vival" package(Therneau, 2015) to be able to compare estimates of various smoking
exposure classifications on CVD hazard. These classifications include time-varying
definitions of current/past/never smoking status, ever vs. never smoked, number

of cigarettes or packs per day, and cumulative years of smoking.

4.2.8 Effective Exposure Approach

After performing analyses the "traditional” way, I apply the OPEE and TPEE mod-
els, using the profile likelihood (PLL) method and both of the lag-estimation algo-
rithms. The goal of the PLL method is to fit all possible combinations of incline

and decline parameters, to see the shape of the joint parameter likelihood sur-
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face, over which the algorithms search for a maximum. This approach can be very
computationally-intensive and expensive as it requires calculation of each subject’s
EE for a combination of incline and decline half-lives, followed by the fitting of the
CPH model:

h(t) = ho(t) exp [BE;(h1, ho) + T X]

Where X includes the fixed and time-varying covariates, and I" denotes the co-
efficients representing the excess hazard due to each covariate. The CPH model fits
include the log-likelihood, AIC, and effect estimates, corresponding to the maxi-
mum likelihood estimators conditional on the pair of lags. Each coordinate of
the half-life combination is then used to plot the overall surface of the profile log-
likelihoods.

I use the profile likelihood method to compare estimates of CVD hazard and
smoking across possible half-lives from two-weeks (~0.05 years) to 20 years, in
increments of 0.05 years. The maximum log-likelihoods and corresponding confi-
dence bounds for both 1- and 2-lag-parameter models are compared to my estima-

tion algorithm results.

4.2.8.1 Profile Likelihood

In the TPEE context, in order to ascertain the confidence bounds of a single param-
eter, I first subset all the likelihood fits by levels of a single parameter. The max-
imum likelihood from each fixed level is used to create the specific profile across
that parameter. The points of this profile that have a log-likelihood less than 3
units away from the maximum provide the range of values for the 95% confidence
interval, using the 2-degree of freedom Chi-Square (x?) statistic. I consider the 2-df

chi-square instead of the 1-df, because the half-life parameters are not independent
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and the joint distribution is more appropriate than the marginal.
As the fits across two parameters will contain the one parameter likelihoods,
where the incline and decline parameters are equal, the marginal distribution (1-

df) can be used to construct the OPEE confidence bounds.

4.2.8.2 Asymptotic Normality

I assume that the true lag of the EE smoking and CVD hazard is normally dis-
tributed, to calculate the 95% confidence intervals for the OPEE and TPEE lag
and effect parameters using the Information Matrix-derived standard errors and

a Z=1.96.

4.3 RESULTS

There were 323 cases that were censored due to loss to follow-up and 299 censored
due to cancer incidence prior to becoming a CVD case. The full analytic cohort in-
cludes a total of 2,786 cases over 786,139 person-years for 51,303 women. In the full
sample 3,705 subjects remained smokers throughout the study, 32,534 stayed non-
smokers, and 9,433 and 153 subjects quit smoking successfully or started smoking
(and did not quit) at some point during the study, respectively. The final group
consisted of 5,478 subjects who had an "unstable" smoking status throughout the
study, implying that they may have quit and returned to smoking, or one of several
multiple-change-points trajectories over the course of follow-up.

In the restricted subset of quitters, smokers and non-smokers throughout, there
were 2,396 total cases, of which all the non-smoking and smoker-throughout cases
stayed in the analysis. The number of cases per person-years for "smokers" and

"quitters" in the full analytic set is 749/148,836 and 352/47,665, respectively. For
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the restricted analyses, the corresponding cases/person-years is 707/138,159 and
332/41,888, for the "smokers" and "quitters", respectively. In both samples ana-
lyzed, the number of cases and person-years remained the same for those who
were never smokers throughout the study (1,301/512,257). The total number of

person-years for the restricted analysis decreased to 692,636.

4.3.1 Participant Characteristics

Table 4.1 shows the population characteristics at baseline (1995) by baseline smok-
ing status in terms of current vs. past vs. never smokers. All the numbers in the
table are age-adjusted to the sample’s age-distribution, and either represent the
mean (standard deviation) or row proportion. The baseline characteristics are also
presented for the restricted sample.

Smokers and past-smokers were more often drinkers (current or past), and
older than never smokers at baseline. Nearly a fifth of all participants had high
cholesterol at baseline, and just over a fifth were being treated for hypertension.
The restricted sample included 4,772 and 7,231 participants that smoke or used
to smoke at baseline, while the full sample included an additional 3,124 current
smokers and 2,482 past smokers at baseline. The reference group at baseline, of
never smokers, is based on 32,534 and 33,694 individuals for the restricted and full
samples, respectively. Of the smokers at baseline in the restricted sample, 1,534
stopped smoking during some point in follow-up and were deemed to be success-
ful at quitting (no return to smoking with at least 2 non-smoker follow-up cycles
of data following cessation). The difference in the number of never smokers at
baseline in the full and restricted samples comes from the 1,160 women who ini-

tiated smoking at some point during the study, of which 153 remained smokers
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Table 4.1: Age-Adjusted Baseline Characteristics by Smoking Status
in the Full and Restricted Black Women's Health Study Samples

Baseline Smoking Exposure
Full Sample Restricted Sample
Baseline Characteristic’ Current Past Never Current Past Never
N 7,896 9,713 33,694 4,772 7,231 32,534
Age (in years)? 40.2(9.3) 43.9(10.1) 36.3(10.1) | 41.9(8.6) 45.6(9.6) 36.4(10.1)
Body Mass Index (kg/m?) | 27.7(6.4) 28.6(7.1) 27.8(6.6) | 27.7(6.5) 28.4(6.9) 27.8(6.6)
Pack-Years of Exposure® 12.1(11.1) 8.0(10.5)  0.0(0.0) | 13.8(10.9) 8.0(10.5) 0.0(0.0)
Family History of CVD, %* 412 39.70 38.20 39.6 40.5 38.4
History of Comorbidities
High Cholesterol, % 18.10 19.7 19.10 17.8 20.2 19.40
Statins Use, % 0.8 0.8 0.7 0.8 0.7 0.7
Type 2 Diabetes, % 3.9 4.40 3.8 3.8 4.3 3.9
Treated Hypertension, % 23.1 22.2 22.5 23 22.7 22.8
Vigorous Activity Level
None, % 411 30.6 31.7 42 30.2 31.8
<1 hour/week, % 16.10 16.10 16.8 17.2 16 16.8
>1 hour/week, % 42.8 53.2 51.5 40.80 53.7 51.4
Menopausal Status
Premenopausal, % 76.7 78.10 78.7 76.10 77.60 78.10
Unknown or Dubious, % 6 6.2 6.2 6 6.4 6.3
Postmenopausal, % 17.3 15.7 15.1 17.90 16 15.6
Age at Menopause®
<45, % 8.30 6.7 6.2 8.70 6.7 6.3
45-<50, % 4.10 3.7 3.3 43 3.7 3.4
50+, % 3.2 3.5 3.8 33 3.6 3.9
Unknown, % 1.7 1.9 1.9 1.6 1.9 1.9
Alcohol Use
Non-Drinker, % 32.20 30.7 70.10 30.2 30.1 70.60
Current Drinker, % 474 394 17.3 45.8 38.5 16.8
Past Drinker, % 20.40 29.9 12.6 24 31.4 12.6
! Values are means(SD) or percentages and are standardized to the age distribution of the study
population.

2 Not age-adjusted.

% Cumulative Total of Packs per Day multiplied by Years of Smoking that quantity.

4 CVD: Cardiovascular Disease; First degree relatives with stroke or myocardial infarction.
5 Age at Menopause for Women classified as "Post-Menopausal” at Baseline.
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throughout the remaining follow-up period.

Table 4.2: Black Women’s Health Study Trajectories (1995-2015)

Smoker Non-Smoker Successful Smoking Unstable
Throughout Throughout Cessator Initiator Smoking
# Cases 352 1,301 749 8 376
# Women 3,705 32,534 9,433 153 5,478

4.3.2 Conventional Analyses

Table 4.3 shows the results from fitting multiple combinations of smoking variables
on the complete set of participants from the BWHS sample (1995-2015).

The metric producing the best-fit model, as determined by the largest log-
likelihood (-17516.91) and smallest AIC (35067.82), is the one that uses the time-
dependent indicator of current smoking and the pack-years of smoking exposure.
The estimated effect for a given current or past smoker requires a calculation us-
ing the linear combination of the coefficients for the current indicator and a one-
unit change pack-years. The current smoker indicator is set to 0 for past smokers,
though the effect of past smoking is thought to feed into the pack-years estimate.
Meanwhile, both of the combination models assume that never smokers have a
pack-years equivalent value of 0, which may violate the proportion hazards as-
sumption for this effect estimate.

The exposure metric whose model performed second best, and which provides
a more straight-forward interpretation, was the time-varying categorical model
(log-likelihood=-17523.97, AIC=35081.94). For any given time-period and age, af-
ter adjusting for the covariates, those who are current smokers are at 2.32 (95% CI:
2.1-2.6) times the hazard of developing CVD compared to never smokers, while

past smokers are at 1.23 (95% CI: 1.1-1.3) times the hazard compared to never
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smokers.

Table 4.3: Smoking exposure and risk of cardiovascular disease:
standard variable approaches comparison in full Black Women's
Health Study Dataset (1995-2015)

95% Confidence

Hazard Interval Log-
Smoking Exposure Model Ratio Lower Upper Likelihood
Smoking Current  2.32 2.10 2.56
Categories Past  1.23 1.12 1.34 1752397 33081.94
Ever vs. Never  1.54 1.43 1.67 -17588.86  35209.72
Current vs. Not ~ 2.15 1.96 2.36 -17533.85  35099.71
Cumulative Years Smoked  1.02 1.02 1.02 -17546.45 3512491
Current Smokers: Packs/Day  2.42 2.16 2.71 -17557.76 ~ 35147.52
Combination Current Smoker  1.86 1.67 2.06 1751691 3506782

AIC

Model 1! Pack-Years  1.01 1.01 1.01
Combination Ever Smoker 1.29 1.18 1.42
Model 22 Pack-Years 1.01 1.01 1.01 —I7oeells Sblleels

AIC: Akaike’s Information Criterion
12 Combination models 1 and 2 assume that never smokers have zero pack-years.

4.3.3 Effective Exposure Estimation

The maximum likelihood according to the profile log-likelihood surface is located
at an incline half-life of 9.3 years (95% PLL CI: 4.2-20.0) and decline of 7.00 year
(95% PLL CI: 4.2-11.7), with a corresponding hazard ratio of 2.8 (95% CI: 2.5-3.1)
(Table 4.4). Thus, the CVD hazard for a lifetime smoker is expected to plateau
at 2.8 times the never smoker’s hazard. The confidence bounds for the half-life
parameters in PLL were calculated using the 2-df chi-square distribution, and as
the combination of half-lives considered did not extend beyond 20 years, the in-
cline parameter’s upper 95% CI is bounded by 20. Naturally, these results raise
some questions — how could the detrimental effects of smoking take longer to ac-
cumulate than to dissipate? For now I will only focus on the decline parameter’s

interpretation.
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After adjusting for confounders and covariates, a woman’s CVD hazard asso-
ciated with smoking is expected to decrease 50% after 7 years of successful and
complete cessation. This is regardless of the starting risk. For a woman starting
near the maximum hazard ratio of 2.8 compared to her never-smoker counterpart,
her hazard ratio or excess hazard will reduce by 50% (to an HR = 1.89) after 4.8
years.

Using the packs/day classification, the incline and decline half-lives that max-
imize the likelihood were at 5.75 and 5.85 years, respectively (CI presented in ta-
ble). As the OPEE model’s packs/day maximum likelihood occurred at a single
half-life of 5.85 years, it would appear that the packs/day dosing favors a single
lag parameter. It is worth noting, however, that selecting to use the TPEE model
does not change the HR estimate for CVD in relation to an effective exposure of
smoking 1 pack/day.

The single-parameter lag where the profile is maximized for binary smoking
talls at 7.1 years (95% PLL CI: 4.6-10.8), with a corresponding relative hazard of
2.5 (95% CI: 2.25-2.77). Here, the single-lag is very close to the decline half-life of
the two-parameter profile. This demonstrates how the decline parameter is likely
reflecting the true half-life associated with CVD risk reduction following complete
cessation. Based on the AIC criteria, the 1-parameter (OPEE) framework is prefer-
able over the TPEE model, in both the binary and packs/day dosings for the EE of
smoking (35061.22 vs 35061.96 in binary and 35089.20 vs 35091.20 in packs/day).
Meanwhile, the minimum AIC for all of the full sample EE analyses (PLL and algo-
rithmic) selects the binary smoking OPEE model as the preferred metric for CVD
hazard by smoking EE.

The second half of table 4.4 shows the OPEE and TPEE algorithm results fol-
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lowing initialization at a half-life of 1 year. The half-life for the OPEE binary model
stopped at 6.75 years vs. 7.10 from the PLL approach. With very similar estimates
for the hazard ratio and it’s confidence bounds, the algorithmic approach is pri-
marily superior to PLL in the computational burden required (~2 minutes vs. ~2
hours, OPEE algorithm vs. PLL).%. Similarly, the OPEE packs/day model and PLL
1-parameter packs/day model are nearly identical in the results.

The confidence bounds presented for the lag parameters in PLL are wider than
those estimated asymptotically following the algorithmic half-life search. For both
2-parameter models (Binary and Packs/Day) and estimation approaches (PLL vs.
Algorithm), the decline parameter’s half-life confidence bounds are narrower than
for the incline parameter. Figures 4.1 and 4.2 show the profile likelihood contours
along the incline and decline parameters of the TPEE models using the binary and
packs-per-day dose exposures, respectively.

In both figures, the blue solid line represents the values of the decline parameter
that maximize the log-likelihood of the full model for a fixed incline parameter.
Conversely, the pink dashed line represents the incline value that maximizes the
log-likelihood for the full model fit when fixing the decline parameter. The red
triangle, where the two lines cross, is the point where the log-likelihood surface is
maximized. The contours represent the joint likelihood confidence bounds for the
log-likelihood surface °.

Notably, the contour plot for binary smoking reflects the uneven bounds of
the incline and decline parameters, as seen in table 4.4. The width of the incline

parameter’s 95% joint PLL confidence interval demonstrates the uncertainty sur-

#Since the 1-parameter PLL fits were performed within the 2-parameter PLL grid, the computa-
tional times presented in Table 4.4 for the PLL modeling approaches are not mutually exclusive

5The deviance values that represent the 2-df chi-square distance from the maximum are 2.3, 3.0,
and 4.6 for the 90th, 95th, and 99th percentiles, respectively.
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Joint Profile Log-Likelihood Contours
for Smoking Exposure By 2 Lag Parameters
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Figure 4.1: Overall Effective Exposure Contour for Log-Likelihoods
Across Combinations of Incline and Decline Lag Parameters
amongst the full set of BWHS participants.

rounding this parameter that is due to a small number of participants "on the rise".
Since smoking is "bad for you", the number of participants that initiate smoking
in the study is small, thus it is likely that participants enrolled in a health study
are cognizant of the negative effects of smoking, and might therefore be less likely
to initiate use during the study. This just implies that the results may not general-
ize well to new smokers, especially with regards to time-to-plateau of in the CVD
hazard after starting to smoke.

In the second contour plot for packs/day (figure 4.2), the individual parame-
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ter’s profiles are nearly identical for incline and decline half-lives less than 5.75
years. This is consistent with the determination that a single lag parameter may be
appropriate in the estimation of the association between smoking and CVD when
using a packs/day dosing. As the incline parameter’s half-life increases, however,

the corresponding decline parameter that maximizes the likelihood stays between

5 and 10 years.
Joint Profile Log-Likelihood Contours
for Packs/Day Exposure By 2 Lag Parameters
& 7 .
----- 1/ 99% CI — Incline PLL
---95% CI -~ Decline PLL
— 90% CI 4 Maximum LogL
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Figure 4.2: Packs Per Day Effective Exposure Contour for Log-
Likelihoods Across Combinations of Incline and Decline Lag Param-
eters amongst the full set of BWHS participants.

The interpretation of the packs/day model is offered in terms of the OPEE

framework, due to the points made above. For a consistent 2 packs/day smoker
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of 30 years, after accounting for other risk factors of CVD, the CVD hazard asso-
ciated with a woman’s smoking exposure is 6.5 times that of her counterfactual
never smoker, while a woman who smoked 1 pack/day for 30 years is at 2.6 times
the never smoker’s hazard of CVD. A 50% reduction in HR or excess hazard for
these same 2- and 1-pack/day smokers, would take 2.9 and 4.1 years following
complete and successful cessation. The corresponding hazard ratios would be 3.8
and 1.8, respectively. Alternatively, after 5.85 years of complete and successful
quitting of smoking, the 2-pack/day smoker’s CVD hazard is expected to reach
the 1 pack/day smoker’s hazard, i.e., after the half-life number of years, the risk is
reduced by 50%. In terms of reduction in hazard ratio, this implies that the hazard
ratio of CVD for a 2 pack/day smoker compared to a never smoker reaches the
hazard ratio for the 30-year 1 pack/day smoker compared to a never smoker, after

5.85 years of no smoking exposure.

4.3.4 Restricted Sample Results

The baseline characteristics of this restricted sample’s participants are shown in Ta-
ble 4.1. This subset’s current and former smokers are older than in the full sample,
while the non-smokers are nearly the same age. It could be possible that age and
smoking have some interactive effect, but this segmentation is more an artifact of
the restriction imposed at baseline to include only those who would already have
reached steady state hazard from smoking at baseline (by requiring 10+ years of
prior smoking exposure at baseline).

Using the restricted sample of participants, the two models with the largest log-
likelihood and smallest AIC, across the conventional measures of smoking, were

the same as the "best fit" models from the full sample analyses. The HR estimates
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in this subset were consistently larger for the current smokers and smaller for the
past and ever smoker measures, likely due to the large number of women that
would have contributed to these group being excluded from the varying trajec-
tories group (Table D.1 in Appendix D). The hazard ratios for cumulative years
smoked and pack-years did not differ in this analysis, and similarly to the full
sample analysis, both of these estimates require interpretation based on a single
unit increase in pack-years exposure.

In the restricted sample, the HR estimates are the same for current smokers in
terms of packs/day and current smokers in the categorical model. Here, current
smokers are at a 2.56-fold CVD hazard compared to never smokers, after adjusting
for time-varying factors. This effect size is in the same ballpark as the estimated
hazard ratio from the OPEE model in the full sample. It is understandable that
the estimated effect size is larger for this analysis, because those classified as cur-
rent smokers from the "unstable" group are not contributing person-time to the
restricted analysis.

As in the full sample, the OPEE PLL and algorithm estimates of lag were nearly
the same, with comparable effect sizes (hazard ratios) and lower AICs than each
smoking exposure’s TPEE model counterpart (28842.84 vs. 28843.36 for binary
OPEE vs. TPEE, 28862.56 vs. 28863.84 for packs/day OPEE vs. TPEE). The esti-
mated lag of effect for the binary exposure was 4.5 years with a corresponding 2.52
times the CVD hazard at steady state compared to never smokers. Interestingly,
the estimate for the packs/day dosing OPEE half-life was longer (6.9 years) with
the CVD hazard associated with a lifetime of smoking 1 pack/day of 2.7 compared

to never smokers®.

®after adjustment for covariates, confounders, and age-related baseline hazards
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Similar to the full sample results, the restricted set’s bounds using the PLL ap-
proach were wider than the normally-approximated bounds from the algorithmic
results. Also, the decline parameters in both exposure models were closer in mag-
nitude to the OPEE model’s single half-life. This is to be expected as this particular
set of individuals did not include any initiators or varying risk trajectories.

Contour plots corresponding to the restricted set of BWHS participants can
be found in the Appendix D. For this sample, I have chosen to focus on a 3-
dimensional visualization of the profile surface, to illustrate the behavior of the
log-likelihood. All three plots in figure 4.3 represent the same log-likelihood sur-
face for the BWHS Restricted Subset using the Packs/Day dosing in the TPEE
framework (i.e. for coordinates reflecting the fixed incline and decline half-lives).
The intersecting plane represents the 95% joint confidence bound for the two lag
parameters” profile log-likelihood surface. The maximum likelihood peak occurs
at the incline half-life of 8.15 years and decline half-life of 6.4 years.

The likelihood surface is steeper in the direction of the lower bounds for each
parameter, indicating that the true half-life of effect is less likely to be close to zero
than to be 10-years. This demonstrates that the CVD hazard for women who have
quit smoking 1 pack/day does not dissipate immediately, and that it takes at least

3.5 years for the risk to go down by 50%.

44 CONCLUSIONS

Compared to conventional smoking exposure measures, the analyses using Effec-
tive Exposure showed evidence of a lagged association between smoking and CVD
hazard that agrees with previous literature. The nearly three-fold risk of CVD

due to smoking, as seen in the restricted sample, has been demonstrated in other
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cohorts and analyses that address the lagged nature of the association between
smoking and CVD.(Kawachi et al., 1994; Rachet et al., 2003) However, the current
approach allows for researchers to estimate an effect without pre-specifying a lag-
time, and is flexible in that the entire sample of participants, regardless of their
exposure trajectory, can be included in the analysis.

In the restricted sample’s analysis, the half-life estimates for packs/day dosing
were longer than those for the binary exposure, which differed from the full sample

results.

4.4.1 Limitations

There are many known risk factors for CVD, overall. While I accounted for a ma-
jority of these potential confounders, my models did not adjust for oral contra-
ceptives or female hormone use, coffee, education, region of residence, angina,
and treatment of type II diabetes. Rosenberg et al. (1990) additionally adjusted for
a behavior score, and other literature has noted multiple psychosocial risk factors
for acute MI(Tofler, 2017), none of which were considered in this analysis. The lack
of adjustment for these variables may confound the results, though it would be in-
teresting to conduct a simulation study to determine the impact of such exclusions
on the estimation of the lag. Current literature suggests that there may actually be
an interaction between smoking and oral contraceptive use, and potentially other
forms of hormone therapy, which could result in different half-life estimates.

My methodology does not account for potential interactions between risk fac-
tors, neither between covariates nor with the EE measure. There is a clear need to
account for this, as well as, including additional risk factors that were not in these

analyses. For example, I would assume that exercise is more difficult for smokers,
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and therefore the effect of activity level on CVD hazard may differ by smoking sta-
tus and time since quitting. This does not even begin to address the possibility of
effect modification in the lags of smoking’s relationship with CVD due to another
risk factor — i.e. typically interaction implies effect modification in the measure
of association, though interaction could exist such that time-to-plateau differs by
another factor.

One of the major limitations of this applied analysis is the selection of cases.
The purpose of the analyses were to demonstrate the methodology for estimating
lagged effects in a "real" clinical application. The set of cases selected for the study
included various CVD conditions and non-confirmed cases. Currently, the BWHS
is performing record abstractions and quality control for CVD cases. Most of the
cases that have been self-reported are under review by trained epidemiologists
and physicians, meaning that there is a future opportunity to re-analyze the data
restricting the outcome to confirmed cases only. This will allow for cleaner infor-
mation regarding the type of cardiovascular event, as the pathophysiology of the
diseases may differ, as well as, the lagged-association between smoking’s effective
exposure and the hazard.

Smoking cessation is often concurrent with other lifestyle changes, therefore
there could be some confounding by indication. My model represents the condi-
tional lagged effect of smoking, based on fixed profiles for the covariates in the
model (i.e. adjusting for non-lagged trajectories of other exposures in the model).

The model assumes return to plateau of the never smoker risk of CVD. There-
fore, if the underlying biological mechanism is trauma and stiffening of the vascu-
lar wall, the model expects this damage to be reversible. However, the CVD hazard

could stay elevated for past smokers compared to never smokers, if the assump-
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tion of return to pre-smoking risk is incorrect. In this situation, I would expect the
estimated lag to appear longer than the true lag, because the lag-time should be
infinite with regards to returning to null. On the other hand, any reduction in the
hazard, following cessation, should be captured by the two-parameter model. A
longer estimated half-life for the decline parameter might account for the decay
towards a final exposure level that is greater than null.

The two-parameter model, amongst the entire sample, estimated a slightly
longer half-life for the incline lag than the decline lag. The fact that the incline rate
appeared slower (i.e. longer half-life) than the decline rate, and with wider con-
fidence intervals, is indicative of the information content available about partici-
pants in transition. As mentioned in the results, only 1,160 women began the study
as non-smokers and initiated smoking at some point during follow-up. Based on
my findings from the simulation study (chapter 3), having few or no individuals
on the rise tends to have positively biased estimates for both half-lives, with more
egregious overestimation in the incline half-life parameter. This lack of informa-
tion explains why the confidence interval width is larger for the incline parameter,

which intuitively represents the uncertainty in this parameter estimate.

4.4.2 Strengths
Epidemiologic Strengths

Part of the BWHS cohort’s strengths are the prospective data collection and nearly
complete information on smoking history that includes various trajectories with
interruptions in both smoking and quitting. Lack of control for recidivism, has
been a weakness in most other approaches that aimed to estimate the time-to-

reduction in the CVD hazard due to smoking.(Rachet et al., 2003; Rosenberg et al.,



121

1990) Where previous literature has investigated smoking cessation and CVD in
case-control study designs(Rosenberg et al., 1990), they may be unable to estimate
the true CVD hazard associated with smoking and are subject to observation bias.

Prior literature about smoking cessation and risk of CVD/MI may have mis-
classified menthol smokers as non-smokers, because of the "high" vs. "low" yield
cigarette distinctions, as discussed by Rosenberg et al. (1990). Delnevo et al. (2011)
found that smoking cessation rates are lower amongst menthol cigarette users
compared to non-menthol smokers. It is possible that studies of smoking cessa-
tion did not account for menthol cigarette use, which could bias the estimated
CVD hazard and the amount of time for the hazard to return to normal. Thus, a
strength of my analysis is it’s ability to account for menthol smoking, as a source

contributing to the effective exposure measure of smoking in relation to CVD haz-

ard.

Methodologic Strengths

My method provides a single estimate of the HR and does not require complicated
restrictions for using ex-smoker data.

Most epidemiologic studies prefer the use of pack-years or cigarette-years for
quantifying the dose-response relationship of smoking intensity and duration in
association with dichotomous outcomes. However, when Leffondré et al. (2002)
investigated various smoking metrics in relation to lung cancer, they demonstrated
that having separate measures for duration and intensity provided more inter-
pretable and better fitting model estimates than the combined variable. Addition-
ally, they discovered that using the pack-years variable with never smokers set to

0 tended to overestimate the hazard ratio for current- and past-smokers, compared
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to models without never smokers.

In the 2010 Surgeon General’s report of tobacco smoke and smoking-attributable
diseases, it was noted that the risk of coronary heart disease did not appear to be
linearly associated with the quantity smoked.(U.S. Department of Health and Hu-
man Services, 2010) In particular, Law & Wald (2003) found a plateauing of the risk
after the user reached 25 cigarettes per day, though this threshold was not perfectly
tlat. Therefore, it stands to reason that the packs/day analyses of the effective ex-
posure of smoking may not be the most appropriate, giving more weight to the
binary results. This is also consistent with my results that show a smaller AIC in
both samples (full and restricted) for the binary smoking EE than the packs/day
EE.
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CHAPTER 5

Conclusion

In longitudinal cohort studies, one will often assume a fixed amount of time must
pass prior to an exposure turning "on". This can be thought of as a delayed or
lagged association between an exposure and some risk of a time-to-event outcome.
In modeling the lagged exposure-response relationship with adjustment for other
time-varying factors, it may be more clinically relevant to consider the underlying
action mechanism of the exposure measure associated with the hazard. Thus, the
true association between exposure and response can be denoted by a latent quan-
tity (of exposure) that may be unobservable or difficult to measure/obtain in large
follow-up studies.

For example, when a lifetime smoker quits, the cardiovascular disease (CVD)
hazard may take some time to return to "normal", and most experts agree that the
impact of smoking should subside. A simple exposure metric would immediately
set this individual to "unexposed" creating misclassification in the population-
based estimate of the CVD hazard associated with smoking. The cumulative num-
ber of years smoked metric would also create misclassification, because this would
not account for the decline of the hazard when the individual quits.

In addition to lag, some exposure-response associations may not be entirely
linear, such that prolonged exposures do not appreciably change the hazard level.
For example, Law & Wald (2003) showed that smoking’s association with ischemic
heart disease is not linear and has some plateau of effect following 20 cigarettes
per day consumed. In particular, the CVD hazard associated with smoking 2 packs
per day may not be that different from the hazard associated with smoking 1 pack

per day, but both differ greatly from the CVD hazard associated with smoking 0.5
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packs per day.

To account for plateau in effect, delayed action mechanisms, and time-varying
exposure profiles, I have defined the "Effective Exposure" (EE) measure that can
be used to estimate exposure-response associations in observational time-to-event
data. This latent measure is constructed as a lag-parameterized weighted sum
of exposure sequences that plateaus at a maximum exposure level and returns to
normal based on the lag parameter(s) used. That is, the lag parameter reflects the
rate of accumulation and/or decay to/from the maximum EE level.

In addition to estimating the hazard ratio associated with the maximum EE, I
have developed a set of algorithms to estimate the lag parameter of the EE mea-
sure. Borrowing from pharmacokinetics, I have shown that the lag parameter can
also be defined as the half-life of effect, to allow for interpretation in terms of the

time-to-plateau or time-to-null of the effective exposure.

51 SUMMARY

In Chapter 2 I derived the equations for EE in the context of one- and two-lag pa-
rameters (OPEE and TPEE, respectively). The latter represents situations where
the time-to-plateau and time-to-null are not equivalent. Additionally, I showed
that both parametric forms could be applied to repeated exposures, which accom-
modates more types of exposure trajectories seen in "real world" data. For exam-
ple, individuals that start and stop smoking multiple times can still contribute to
population-models of CVD hazard, as their total time-varying EE is based on the
sum of EE for each interval of smoking history.

To concurrently estimate the hazard ratio and lag parameter(s), I derived algo-

rithms based on profile likelihood methodology. These fit Cox proportional haz-
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ards (CPH) or pooled logistic regression (PLR) models of EE versus time-to-event
outcome for iterations of fixed value lag(s). Both the OPEE and TPEE algorithms
perform a search/grid-search to identify the [combination of] lags that maximize
the log-likelihood.

Chapter 3 explored the estimation performance of my two algorithms for a
range of simulation scenarios. I demonstrated that the coverage probability of
the hazard ratio parameter was consistently close, if not more conservative, than
the nominal 95% confidence interval, for the majority of OPEE and TPEE lag-times
considered. Deviations from the 95% coverage occurred more often when the half-
life of effect exceeded the study follow-up period, and when the TPEE algorithm
was applied to an OPEE-generated simulation scenario.

The simulation study primarily showed that estimation of the half-life and haz-
ard depend on the information content in the data. Specifically, information per-
taining to number of subjects at plateau and the amount of time spent at this steady
state affected estimation bias and coverage of the hazard ratio parameter. This is
thought to be the driving force behind the low coverage of the HR in the OPEE half-
life=1,000 days scenario, because most individuals will not have reached steady
state EE by the end of follow-up.

The information content required for estimating the half-life or lag parameters
depends on the number of subjects transitioning in either direction and the amount
of time spent in transition. I showed that the estimation thresholds for the single
half-life parameter were at 30 and 450 days, which relates back to 1/30th and 1/2
of the follow-up time. For shorter half-lives, the problems with estimation were
primarily based on my inability to approximate a standard error for the estimate,

which reflects failure in the normality assumption for true values that are located
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close to the bound (0 days).

I used real exposure trajectories from participants in the Black Women’s Health
Study (BWHS) to show that adjustment for covariates and inclusion of multiple
time-varying exposure profiles improved half-life and hazard estimation. In par-
ticular, I demonstrated that restricting the BWHS set to quitters, smokers, and
never-smokers throughout the study imposed additional bias on estimation of the
true lag of effect (as compared to the full BWHS set of exposure profiles).

Following the simulation study, I applied my methods to examine the asso-
ciation between smoking and CVD hazard in the BWHS (chapter 4). As recom-
mended by Rothman (1981) and Abrahamowicz et al. (1996), I used Akaike’s In-
formation Criteria (Akaike, 1974) to compare conventional measures of smoking
exposure to my EE models. The AIC allowed me to account for model complexity
in these comparisons, by penalizing the OPEE and TPEE models for the one and
two extra half-life parameters estimated in the process. I showed that the difficult-
to-interpret metric combination of pack-years plus current smoking fit the best
out of all the conventional measures (AIC=35067.8), though both OPEE and TPEE
models produced lower /better AIC (35061.3 and 35062, respectively).

Part of the appeal behind my method is that I have estimated the prolonged
smoker’s hazard of CVD along with the time required to reduce the hazard by
50% for any individual. This hazard ratio estimate was consistent for both the
full and restricted samples, such that, after adjusting for confounders and CVD
risk factors, the lifetime smoker’s hazard of CVD is 2.5 times that of the never
smoking counterpart. This hazard ratio may appear to underestimate the excess
risk reported by previous literature(Kawachi et al., 1994; Rosenberg et al., 1990),

however, the point of these analyses was to demonstrate the methods and, to quote



127

Dr. Cupples et al. (1988), "[these illustrations] are not to be construed as providing

substantive medical conclusions."

5.2 PRIOR LITERATURE

In chapter 1, I discussed some of the previous approaches for dealing with expo-
sures that have a delayed action mechanism.

Similar to my conclusions, Abrahamowicz et al. (2006) showed that a cumu-
lative weighting metric provided better fitting models than traditional measures
of time-varying dose and exposure duration in an application to benzodiazepines
and risk of injuries from falling. While the authors borrowed weights from the
known pharmacokinetic half-life of each drug, the conclusions regarding time-to-
reduction in risk varied by the type of drug considered. This could be due to dif-
fering biologic mechanisms, as argued by the authors, while I would agree more
with the conclusion regarding lack of empirical evidence due to the small num-
ber of events by each benzodiazepine drug in the study. I also showed that the
conventional models performed better in the small sample size simulations.

The models described by Richardson (2009) assume protracted exposures de-
pend on interval start and end times for multiple exposure events. He defines
the cumulative effective exposure as the exposure accrual over a given period,
which differs from what I propose in the shape of the function over time. Specifi-
cally, Richardson’s models assume either a bilinear or log-normal latency function,
which do not account for a plateauing of the effect or return to null effect over time.

Langholz et al. (1999) explored several models including one close to my own,
with an exponential decay following exposure discontinuation. This "effective

dose" structure differs from the EE model as it assumes a linear rise in effect. Simi-
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lar to my conclusions, the authors noted the perks of the half-life interpretation for
the decline in risk and that precision in the latency parameter estimate depended
on having adequate variation in exposure profiles (i.e. information!). Richardson
et al. (2011) noted that a decreased variability within-subjects for the follow-up
period could result in a flattening of the likelihood with respect to the lag-times
considered. This, in turn, leads to biased estimation of the association measures,
and potentially narrow confidence intervals.

The more widely-accepted solution to dealing with lagged effects seems to
settle on the cubic B-splines approach.(Rachet et al., 2003; Abrahamowicz et al.,
2012) While this method is flexible and can be applied to various underlying para-
metric models, it is sensitive to the number of knots selected and their locations,
with instability in the tails. They also require a larger number of degrees of free-
dom than my method as the polynomial function, alone, takes 4 degrees of free-
dom.(Abrahamowicz et al., 2012)

Taking the binary OPEE model’s estimates of a half-life of 7.1 years and maxi-
mum hazard ratio of 2.5: for a 30-year smoker’s hazard ratio to decrease by one-
third would take roughly 2.9 years following cessation. Meanwhile, Rachet et al.
(2003) estimated that the ex-smoker’s hazard is 2.7 times the non-smoker with a
mean lag of 3.3 years (stdev=0.97).

My analysis of smoking and time-to-first CVD has several strengths over the
proposed method and application developed by Rachet et al. For starters, my
model included time-varying confounders while Rachet considered only baseline
covariates. Given that smoking habits tend to vary over time along with other
behavioral factors, such as alcohol use and exercise, my approach likely had better

adjustment for the correlation between smoking and other factors of CVD hazard.
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Additionally, Rachet included only smoking cessators in the analysis, while my
method allows for complex trajectories. This also means that conclusions made
using my method are more generalizable to situations where individuals may not

quit permanently, or where exposure trajectories are non-monotonic.

5.3 LIMITATIONS

One of the limitations of my approach is the fact that the lag-time may not fall
within a study period or window of follow-up that permits estimation. As de-
scribed in chapter 3 and above, the OPEE and TPEE algorithms depend on ade-
quate information regarding time in transition in order to have unbiased estima-
tion of the half-life of effect. Thus, for EE that decline slowly, it is possible that
individuals may die before reaching the level of no effect, which can make estima-
tion difficult. For these types of situations, I may be able to extend my approach
to account for competing events, such as death. In general, it would be useful to
understand the impact of competing events and other censoring mechanisms, as
these are relevant in most time-to-event analyses.

While I was able to account for the accumulated CVD hazard of smoking’s
exposure in my models, as well as, the time since quitting, I am limited by the
fact that I did not explicitly consider a pack-years equivalent in my simulations in
chapter 3. It would be useful to understand how this conventional measure com-
pares to the OPEE and TPEE algorithm estimates for the hazard ratio. Particularly,
as the OPEE and TPEE model remove the need for classifying individuals by cur-
rent status, it would be useful to determine whether the maximum hazard plateau
matches that of the combined hazard estimate for currently exposed individuals

who have been exposed for an extended amount of time.
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54 FUTURE WORK

5.4.1 Theoretical Next Steps

Floor of Effect

My methods, so far, have all assumed that the hazard will return to "normal" given
sufficient passage of time, as determined to be 4-5 half-lives following cessation.
In some cases, it may not be appropriate to assume that individuals will return
completely to the unexposed level. For example, while I discussed the slow decay
in EE of lead following treatment by chelation, a more appropriate model may
be one in which the effect of lead is irreversible. This would imply that the level
to which the individual can return is not 0 or null, and thus would require an

additional estimate for the location or hazard associated with the "floor".

Confounders

I briefly discussed the benefits of adding covariates to the models in chapter 3,
in support of my information hypothesis. I also discussed the need to account
for potential effect modification and unmeasured confounders in chapter 4. For
example, smoking has been shown to increase the risk of stroke for individuals
that use oral contraceptives. This type of effect modification could also extend to
the use of female hormones for menopause, such that the plateau of smoking’s EE
varies by hormone use.

Future work is needed to better understand the effect of unmeasured confound-
ing on the estimation of the hazard and lag parameters. This should also be ex-
tended to situations where the confounder or covariate may behave as an effect

modifier, which could be reflected either in the estimate of the plateau and/or in
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the estimated time required to achieve plateau (i.e. lag).

Multiple Lagged Exposures

The methods developed for this dissertation have all focused on estimating the
lag and hazard associated with a single exposure. In prospective cohort data, like
BWHS or the Framingham Heart Study, the most common approach is to treat
each questionnaire cycle as a mini follow-up study. When looking at multiple risk
factors for a time-to-event outcome, it is possible to impose a lag on all or some of
the variables, by simply using data from prior cycles.

My approach has shown that it is possible to avoid the a priori specification,
by estimating the lag associated with the effective exposure and the event of inter-
est. However, my methods do not yet allow for more than one lagged exposure.
Thus, a future direction might include development of an [even more complex]

algorithm that can iterate the lags of multiple effective exposures simultaneously.

Hypothesis Testing

The majority of this dissertation has focused on the estimation process with no al-
lusion to statistical inference. While my methods are able to estimate HR as low as
1.2, I have not provided a formal approach for testing that the effect is significant.
For now, it is possible to use the normally approximated lag-adjusted standard
errors to determine whether the hazard is non-zero.

Additionally, the normally approximated standard errors for the lag may pro-
vide some insight regarding the magnitude of the delay in effect. For example, if
the lag parameter’s confidence interval includes 0, then it is possible that using the

current metric for exposure may suffice. However, before applying this logic, it
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would be important to determine whether the normality assumption is correct, as
this tends to be violated near the lower values of the half-life.

Another interesting question that could be answered through hypothesis test-
ing is whether the incline and decline half-life are the same. One way to test this
would be to bootstrap the sample and fit both OPEE and TPEE algorithms. The
AICs could be compared for each bootstrap pair of results, with an empirical prob-
ability assigned to selecting one model over another. The alternative bootstrapping
approach would fit just TPEE algorithms to the samples to build a bootstrapped

confidence interval for the mean difference in the lag parameters.

5.4.2 Dissemination
Prior to Dissemination

Add a module for the TPEE model to start from the OPEE model’s estimate.
Standard errors based on asymptotic theory, though they could also be com-
puted through bootstrapping. The former is computationally efficient, while the
latter should work best in the presence of "strange" likelihood surfaces. Future
research should compare the estimated confidence intervals for bootstrapped vs.

information-derived estimates of both hazard and lag parameters.

Optimization of Functions

One of the primary drawbacks of my current method is the computational effi-
ciency of the iterative algorithmic fitting process. While the "survival" package
offers some variants for fitting the time-dependent covariates, the underlying com-
putations in that module utilize C, which is a faster and more efficient program-

ming language. Ideally, I would like to develop the fundamental modules for my
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calculations in C, as well.
I could also compare to and consider utilizing functions from the "optim" pack-
age in R. This could be particularly useful when I try to approximate the standard

errors under failed normality.

R Package Development

I plan to prepare an R package, such that other researchers may use the methods I
have developed for my dissertation. Some technical aspects of the programs have
been included in the text and appendices, though additional modifications and
revisions may be implemented at later points. In particular, I developed modules

for data processing that facilitate the use of my estimation algorithms.

Public Health Articles

I plan to summarize and write manuscripts corresponding to the methods and

results presented in chapters 3 and 4.

5.4.3 Applications to Public Health Questions
Smoking and CVD in the Million Veteran’s Project

One analysis that is in the works, though has not been included in this disserta-
tion, is to look at smoking and CVD using the Veteran’s Affairs Million Veteran
Project administrative data. The structure of this dataset poses some interesting
challenges, and the analytic results would serve as external validation to the anal-
ysis described in chapter 4.

In particular, for this analysis, there is no data on individuals who return to

smoking, however, there is a fine gradient of information available on covariates
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and event timing.

Statins and Risk of Fracture

An interesting clinical question is raised in the conflicting evidence of a protective
association between statin use and risk of fracture.(Toh & Hernandez-Diaz, 2007)
Researchers have indicated uncertainty in the mechanism of action explaining this
association.(Scranton et al., 2005) In this case, my methodology could provide in-
sight regarding the half-life of and whether there is a true association. Specifi-
cally, half-life values approaching zero or infinity would indicate that the biologic
mechanism behind the association may not be valid and other explanations, such
as confounding by indication, could be driving the statistically significant associa-

tions observed.

Obesity and Total Knee Replacement

As mentioned in chapter 1, there are many examples of lagged effects that could
be interesting to analyze using the proposed approach. For instance, I could look
at the trajectories of body mass index (BMI) over time and risk of total knee re-
placement. There is a known deleterious effect of increased weight on knee os-
teoarthritis progression, due to a number of hypothesized mechanisms, such as
loading and inflammation.(Coggon et al., 2001; Felson et al., 1988) Given recom-
mendations to lose weight, an individual may lower the impact of their weight.
However, it us unknown whether the damage over the earlier period of time is
reversible, and thus, whether there is an estimate-able lag related to the effective
exposure of weight. The TPEE model is particularly interesting to apply to this

type of data, as it would allow for the modeling of separate lag-times of obesity’s
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effect on knee osteoarthritis and later replacement surgery.

5.5 FINAL THOUGHTS

There are several points to consider before using my methodology. The first is that
the EE approach should not be the first model considered. There should be sub-
stantial rationale for implementing the structure I've described — Does the hazard
or risk plateau after sufficient time of exposure? Is there a reason to believe that the
effect of exposure is lagged? Can I reasonably identify a clinically-relevant range
of lag-times that might exist in my data?

The latter question is meant to focus on the probable biologic mechanisms that
are being modeled, i.e. what range of lags would make sense clinically? In ad-
dition to this question, the researcher should consider whether the hypothesized
lag-time falls within the study length. Particularly, I showed that it is not possible
to precisely estimate the lag, when the study is too short. This is especially impor-
tant when considering use of this method in clinical trials data, as these may be
too short to account for the lag in effect. Clinical trials, especially phase I and II,
tend to have small numbers of participants, which I showed (small sample size) to
be a potential limitation in chapter 3. Because of the small sample sizes and lack of
variability in exposure trajectories [point of the design is to control the exposure],
it may be best to avoid use of my method in clinical trials.

Secondly, when lagged effects exist, but the sample is small or the hazard ra-
tio is close to null, it is possible to revert back to the conventional measures of
exposure to approximate the hazard. These may be slightly biased, however, the
confidence intervals produced should have decent coverage of the true measure

of association. If the researcher still feels the need to account for lag when the
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conventional measure HR is smaller than 1.2, I would recommend starting with
several fixed lags. The AIC can then be compared across the fixed-lag models and
conventional measures to determine which model is most predictive of the true
exposure-response relationship.

Finally, when the conditions for use have been met (variation in exposure tra-
jectories, HR>1.2, lag-time<study length, large enough sample size), the OPEE and
TPEE algorithms can be applied to properly formatted /arranged data to estimate
the lag and hazard. I recommend that the analyst try more than one initialization
value, to ensure that the estimation does not get stuck on a likelihood ridge. If the
algorithms continue to produce inconclusive or inconsistent estimates for the lag
and HR parameters, for multiple initial guesses, then one could fit a grid of points
across all plausible combinations of incline and decline lag. This would be iden-
tify the full profile likelihood maximum and PLL confidence bounds. Alternately,
should the algorithms converge, but approximation of the standard errors "fail",
it is possible to use the PLL confidence bounds to inform the desired uncertainty

measure for the parameters estimated.



Effective Exposure:
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GLOSSARY OF TERMS

An underlying/latent curve reflecting the
etiologically-relevant exposure that has a lagged
association with a time-to-event outcome. The
curve increases like an exponential cumulative
density function with a lag parameter )\, and
decreases mono-exponentially from the level
that corresponds to the change-point amount. In
the OPEE context, the lag parameters for incline
and decline are assumed to be the same, while
for TPEE the incline and decline A values are
different. Can also be understood as the relative
proportion of the exposure that is "actively"

associated with the event of interest.



Dose:

A - Lag Parameter:

Start and Stop Times:

Steady State:
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The unit of effective exposure that corresponds to
the prolonged exposure’s hazard. In the binary
context, the Dose takes the value of 1 for exposed
and 0 for unexposed. For dosing-based effective
exposures, the lag parameters reflect the time-to-
plateau for a one unit dose. An example of the
latter is the effective exposure of smoking 1 pack-
/day in relation to risk of cardiovascular disease,
where the plateau of a 2 pack/day smoker is at
2-fold the hazard level of the never smoker.

The rate of growth/decay for an effect. May be
parameterized as the natural log of 2 divided by
the half-life of the effect.

The individual initialization and discontinuation
of the given dose for an individual. These times
may vary across subjects and are assigned rela-
tive to the overall study time period.

The amount of the drug entering and leaving the
body is in equilibrium, such that the concentra-
tion in the single compartment does not change

over time.



One-Compartment Model:

Event:

PEE:

Trajectory:

139

An equation, one compartment pharmacokinetic
model, for the concentration of a drug that de-
pends on input and output rates in a single lo-
cation, typically the plasma/blood. The intra-
venous (IV) model can be simplified to a time-
dependent risk curve that is parameterized by the
elimination rate of the specific component.

A binary outcome that follows Bernoulli(pgg)
The probability of an event, given the Effective
Exposure

The time-varying pattern of exposure for a spe-
cific individual. Monotonic trajectories imply
that an individual’s risk profile transition in
a single direction or is static, while a "Multi-
Trajectory” implies that the subject’s effective ex-
posure has multiple change-points within the

follow-up period.
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APPENDIX A

Algorithms

OPEE FLOWCHARTS

Figure A.1: Big Picture OPEE Flowchart
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Figure A.2: OPEE Flowchart Steps 0 and 1
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Figure A.3: OPEE Flowchart Steps 2 and 3
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Figure A.4: OPEE Flowchart Step 4
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TPEE FLOWCHARTS

Figure A.5: Big-Picture TPEE Flowchart
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Figure A.6: TPEE Flowchart Step 0
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UPPER
BOUNDS
numiter+1 NO numiter+1
Step 1. Threshold YES Approximate

CENTERING

Criteria Met? Standard Errors

numiter+1

Y

Step 3.
NAR-
ROWING

RETURN FINAL
ESTIMATES
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APPENDIX B

Selected Code Documentation

This appendix provides minimal necessary documentation for the functions de-
scribed in the Dissertation text. Full code and documentation can be found at

https:/ /github.com /hgerlovin/Lagest.

makeDVecs Split the multiple exposure periods into vectors of dose and

time since start and stop

Description

Reads in values for treatment regimen doses, start and stop times to create analysis-

friendly dataset.

Usage

makeDVecs (Cp.vec=c(l), ts.vec=c(0), tf.vec=c(900), intlen=1,

studyt=NULL, struct=0)

Arguments

Cp.vec Vector of doses for the regimens. Default assumes the binary ex-
posure plateau and that there is a single regimen of exposure. To
have multiple exposures, include the same number of vector com-
ponents in Cp.vec, ts.vec,and tf.vec.

ts.vec Vector of start times for the regimens. Default assumes the expo-

sure was started at time 0.


https://github.com/hgerlovin/Lagest
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tf.vec Vector of end times for the regimens. Default assumes the expo-
sure continues through time=900. When studyt is not specified,
the last specified end-time (last regimen) is used as the total study
time.

intlen Increment time to use. Defaultis 1 time unit.

studyt Total study follow-up time. Default is NULL and will pull the last
regimen stop time.

struct Structure indicator. If turned on (1), then additional regimen is
added for time following discontinuation. Default is off (0), as-
suming that the total number of regimens is fixed and does not

need additional follow-up.

Value

Outputs a dataframe with time incremented rows - columns: time, currD,

everD, and three columns per regimen for 1 to X total exposure events.

Dosel - Columns indicating the overall doses for each regimen.
DoseX Repeated throughout for computational ease.

tStartl - Columns indicating the time since starting the specific
tStartX regimen — depends on the point in the trajectory. i.e. Takes

a value of 0 for times prior to initiation and increments
parallel with time following initiation.
tEndl - Columns indicating the time since discontinuing the spe-
tEndX cific regimen — depends on the point in the trajectory. i.e.
Takes a value of 0 for times prior to start of regimen and
while regimen is "on". Increments parallel to time follow-

ing discontinuation.
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time Column for the study time at the observation.

currD Column with value for the current regimen dose for the
subject-time-specific observation.

everD Column indicating whether any exposure has occurred as
of (prior to and including) the subject-time-specific obser-

vation.

Requires functions

lapply, unlist, colSums

Clfn.h Calculate effective exposure for specific subject-time

Description

Calculates a relative Effective Exposure component for regimen X for a single time-
and subject-specific observation using the one-parameter half-life effective expo-

sure formulation.

Usage

Clfn.h(d, s, e, h)

Arguments
d dose/concentration value (DoseX)
s time since start (tStartX)

e time since end (tEndX)



152

h half-life parameter

Value

Returns a single computed value.

Clfun.h  Calculating total effective exposure for an entire dataset

Description

Combines all individual effective exposure components for a subject at each time
to calculate the full effective exposure. Used in simulations and analysis.

Usage

Clfun.h (thalf=NULL, dat)

Arguments

thalf  Single-parameter half-life to use in computation
dat dataframe with three columns per exposure event/regimen fol-
lowing the naming conventions for X total regimens: Dosel -

DoseX, tStartl - tStartX, tEndl - tEndX.

Value

Outputs a numeric vector of values for concentration that is equal in length to the

number of rows/observations in the dataframe dat.



153

Requires functions

lapply, Clfn.h, Reduce, replace

Notes

Data should be in long format with one observation per subject per time point -

which can be created from the function makeDVecs.

solve.time Time to reduction in excess hazard

Description

Calculates the time to % reduction in the excess hazard following discontinuation

of an exposure.

Usage

solve.time (beta, D, half.in, half.out, time.in, reduct)

Arguments
beta Effect size coefficient (beta) from the model fitting results.
D Exposure level prior to discontinuation.

half.in Incline half-life parameter if the resulting model selected was the
two-parameter effective exposure model. For the one-parameter
effective exposure model, use the same value for the half.inand

half.out inputs.
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half.outDecline half-life parameter if the resulting model selected was the
two-parameter effective exposure model. See half.in for how
to handle OPEE framework.

time.in Amount of time exposed prior to discontinuation. Value should
exceed 1.

reduct Desired excess hazard reduction. For example, to determine the
time to 50% reduction in the hazard ratio for a specific individual

use reduct=0.5.

Value

Returns values for the estimated starting (time=0 at discontinuation) hazard ratio
(HR), starting risk or log(HR), ending HR and log(HR), time required to return to
the reduced HR, and the relative proportion of reduction from start to end time on

both HR and log(HR) scales.

start.risk The starting log(HR) after t ime . in units-time of expo-
sure prior to discontinuation.

start.relrisk The starting HR after time.in units-time of exposure
prior to discontinuation.

time.needed  The calculated time needed to reduce the excess hazard to
reduct.

end.risk The ending log(HR) for the individual following the
time.needed units-time.

end.relrisk The ending HR for the individual following the
time.needed units-time.

relrisk.red  Proportion of reduction in excess hazard. Note that this

returns the input reduct value.
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risk.red Proportion of reduction in the log(HR) scale.

startEE Effective Exposure starting value based on the dosing
scale with maximum HR at the value of D input param-
eter.

endEE Effective Exposure ending value that corresponds to the
reduced excess hazard. Similarly, this is relative to the

value of D input parameter.

Code for Interpretation Paradigm In Chapter 2

Calculate the time to 50% reduction in the HR for a 2 packs/day smoker of 30-
years. Final model being used comes from results in Chapter 4 (OPEE Packs/Day
Dosing in Full BWHS Sample).
solve.time (beta=log(2.63), D=2, half.in=5.85, half.out=5.85,
time.in=30, reduct=0.5)

Calculate the time to 50% reduction in the HR for a 1 pack/day smoker of 30-
years. Final model being used comes from results in Chapter 4 (OPEE Packs/Day
Dosing in Full BWHS Sample).
solve.time (beta=log(2.63), D=1, half.in=5.85, half.out=5.85,

time.in=30, reduct=0.5)



BC1
N1k
N10k
N100k
FourG

NoUp

DoseMods

HR1

HR10p

HR20p

HR5
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APPENDIX C

Simulation Result Tables

Base case scenario

Base case scenario with 1,000 total subjects

Base case scenario with 10,000 total subjects

Base case scenario with 100,000 total subjects

Variation on the Base case scenario adding 10,000 subjects
with "on" binary exposure starting at the same time as the
"down" group (900 days prior to study start date), who re-
main "on" throughout the study follow-up or until censoring
at event.

Variation on the FourG/Base case scenario that removes the
"up" group. Remaining sample is 30,000 subjects split evenly
between controls, "down" and "on" groups.

Variation on the Base case scenario where half of the "down"
and "up" groups are assigned a 2-fold risk of event (or
dose=2).

Variation on the base case scenario where there is no change
in risk of event due to the exposure. The input half-life is still
90 days, even though this is not clinically relevant.

Variation on the base case scenario where there is a minimal
10% increase in risk of event due to the exposure.

Variation on the base case scenario where there is a minimal
20% increase in risk of event due to the exposure.

Variation on the base case scenario where the steady state haz-

ard due to exposure is 5-fold compared to unexposed.



Halfl

Half10

Half10.4G
Half30.4G

Half450.4G

Half1k

Half1k4G

MVmono

MVmulti

Out10

157

Variation on the base case scenario with the half-life set to 1
day.

Variation on the base case scenario with the half-life set to 10
days.

Variation on Half10 with the additional "on" group.

Variation on the FourG scenario with the half-life set to 30
days.

Variation on the FourG scenario where the half-life of the ef-
fect is set to 450 days, or half of the follow-up time.

Variation on the base case scenario with the half-life set to
1,000 days.

Variation on the FourG scenario where the half-life of the ef-
fect is set to 1,000 days. This analysis differs from the "half1k"
by the addition of the "on" group of subjects.

The multivariate monotonic trajectories set of simulations per-
formed on the restricted set of subjects in the Black Women's
Health Study data. Individuals included here were set to a
3-fold binary-smoking steady state effect with an assumed 3-
year single-half-life effective exposure.

Variation on the "MVmono" set of simulations that includes all
subjects and all smoking trajectories from the BWHS dataset.
Input half-life, risk ratio, and underlying models were the
same as in MVmono.

Two parameter scenario with incline = 90 days and decline =

10 days.
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Out10.4G Variation on the "Outl10" scenario with additional subjects in
the fourth group ("on" group)
Out30.4G Two parameter scenario with incline = 90 days and decline =
30 days, using the four risk profiles.
Out450.4G Two parameter scenario with incline = 90 days and decline =
450 days, using the four risk profiles.
Outlk Two-parameter scenario with incline = 90 days and decline =
1,000 days
Out1k4G Variation on the "Outlk" scenario with additional subjects in

the fourth group ("on" group)



Table C.2: Comparing Mean and Median Estimates of the Risk Ratio
across scenarios and standard metrics of exposure. Based on 1,000
simulated samples for each scenario.

Simulation Input PvsN CvsN Current Ever TrueEE
Scenario HR Mean Mean % Bias Mean % Bias Mean 9% Bias Mean

BC1 15 1.07 142 -548 137 -858 124 -17.21 1.50

Nik 15 110 146 -248 140 -694 128 -14.79 1.54

N10k 1.5 1.07 142 -518 137 -836 124 -17.02 1.51
N100k 1.5 1.07 142 556 137 867 124 -17.23 1.50
FourG 1.5 1.07 146 -275 141 -594 133 -11.53 1.50
NoUp 15 1.07  1.50 0.16 145 317 128 -14.42 1.50
DoseMods 1.5 1.11 1.71 1428 138 -7.99 1.41 -6.08 1.50
HR1 1 1.00  1.00 0.07 1.00 0.05 1.00 0.07 1.00
HR10p 1.1 1.02 109 -1.31 1.08 -2.05 1.05 451 1.10
HR20p 1.2 1.03 117 -252 115 -391 110 -8.39 1.20
HR5 5 1.39 410 -1810 343 -3132 268 -46.49 5.00

Halfl 15 1.00 1.50 0.06 1.50 0.01 125 -16.80 1.50
Half10 15 1.01 149 -052 149 -091 125 -16.85 1.50
Half10.4G 15 1.01 150 -026 149 -0.65 133 -11.28 1.50
Half304G 1.5 1.02 149 -0.89 147  -2.01 133 -11.34 1.50
Half450.4G 1.5 118 131 -1250 120 -19.87 127 -15.34 1.50
Halflk 1.5 115 111 -2599 1.03 -3121 113 -24.58 1.51
Halflk4aG 1.5 1.15 119 -2047 111 -26.08 118 -21.37 1.50
MVmono 3 111 29 -147 286 -482 151 -49.69 2.98
MVmulti 3 118 275 -818 259 -1352 1.63 -45.82 297
Outl0 1.5 1.01 142 -546 141 -5.82 121 -19.25 1.50
Out104G 1.5 1.01 146 -273 145 -3.11 1.31  -12.90 1.50
Out304G 1.5 1.02 146 -274 144 -384 131 -1255 1.50
Out4504G 1.5 125 146 -276 129 -13.67 139 -731 1.50
Outlk 15 136 142 -548 120 -1971 139 -747 1.50
Outlk4dG 1.5 136 146 -2.75 124 -1740 143 499 1.50

Input HR: The hazard ratio used in data simulation for the effective exposure at steady-state risk;

PvsN: Estimate for Past Exposure compared to Never exposed in categorical model; CvsN: Estimate
for Current Exposure compared to Never exposed in categorical model; Current: Estimate for Current
vs. Not Current exposed risk ratio; Ever: Estimate for Ever vs. Never exposed risk ratio; TrueEE: The
simulated exposure’s "true" risk ratio if it were measured
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Table C.4: Frequency of Minimum AIC Simulations per Scenario by
Estimation Method

# Amongst Non-Failed
OPEE TPEE Categorical Failed OPEE TPEE Categorical
BC1 801 195 4 75 753 170 2
N1k 565 37 398 555 294 7 144
N10k 754 189 57 293 550 122 35
N100k 838 162 0 1 837 162 0
FourG 823 174 3 29 811 158 2
NoUp 846 70 84 432 481 43 44
DoseMods 824 176 0 1 823 176 0
HR1 438 10 552 826 98 2 74
HR10p 622 54 324 550 313 21 116
HR20p 735 120 145 391 464 60 85
HR5 876 124 0 0 876 124 0
Halfl 379 52 569 770 106 21 103
Half10 714 102 184 563 334 58 45
Half10.4G 705 118 177 510 373 61 56
Half30.4G 790 167 43 245 628 101 26
Half450.4G 852 148 0 2 852 146 0
Halflk 768 30 202 511 389 19 81
Half1k4G 859 130 11 250 668 74 8
MVmono 997 0 3 61 937 0 2
MVmulti 1000 0 0 20 980 0 0
Outl0 526 435 39 458 349 180 13
Out104G 341 636 23 460 266 263 11
Out304G 569 425 6 217 514 265 4
Out4504G 58 939 3 2 58 938 2
Outlk 65 917 18 2 65 916 17

Out1k4G 1 990 9 0 1 990 9
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Table C.5: Summaries of Estimated Single Half-Life Parameter Using
One Parameter Effective Exposure Algorithm Across Scenarios

Simulation True # Amongst Non-Failed
Scenario Half Mean % Bias Median Failed Mean 9% Bias Median
BC1 90 92.13 24 90 1 92.22 2.5 90
Nik 90 773.8 760 90 5 777.6 764 90
N10k 90 95.5 6.1 90 1 95.6 6.2 90
N100k 20 91.3 1.4 90 0 91.3 14 90
FourG! 90 91.9 2.1 90 0 91.9 2.1 90
NoUp? 20 97.7 8.6 90 1 97.8 8.7 90
DoseMods 90 91.2 1.34 89.1 0 91.2 1.34 89.1
HR1 90 1.9e+9 2.1e+9 75 49 1259 1299 75
HR10p 90 796 785 93.8 11 804 793 93.8
HR20p 90 103.7 15.2 87.5 4 104.1 15.6 87.5
HR5 90 90.4 0.41 90 0 90.4 0.41 90
Halfl 1 3.76 275.8 1.41 4 3.77 277 1.41
Half10 10 11.8 18.3 9.38 2 11.85 185 9.38
Half10! 10 11.81 18.1 9.38 2 11.8 18.3 9.38
Half30" 30 31.3 4.3 30 0 31.3 4.3 30
Half450" 450 491.9 9.3 450 0 491.9 9.3 450
Half1k 1000 41e+9 4.14e+8 900 60 4007  300.7 840
Halflk! 1000 9.4e+9 9.45e+8 1020 95 2839 1834 900
MVmono 3 3.03 1.09 2.97 1 3.04 1.19 2.97
MVmulti 3 3.01 0.26 2.97 0 3.01 0.26 297
Outl0  (90,10) 40.7 -54.8 37.5 0 40.7 -54.8 37.5
Out10!  (90,10) 45 -50 41.3 0 45 -50 41.3
Out30! (90,30) 58.8 -34.7 56.3 0 58.8  -34.7 56.3
Out450' (90,450) 226.9 152 225 0 226.9 152 225
Outlk (90,1000) 500.5 456 465 0 500.5 456 465
Outlk4G (90,1000) 387.9 331 360 0 387.9 331 360

! Four risk trajectories in simulation scenario
2 Three risk trajectories included - down, on, ctrl
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Table C.7: OPEE Coverage Probabilities of the Incline, Decline, and
Hazard Ratio by Scenario. Amongst full set of 1,000 simulations and
Non-failed Algorithm Estimation Procedures

Incline Decline Hazz?rd # NE Nl.: NF Ha.zard
Ratio  Failed Incline Decline Ratio
BC1 928 95.8 1 92.9 95.9
N1k 85 95.3 5 85.4 95.3
N10k  90.5 95.1 1 90.6 95.2
N100k 949 94 0 94.9 94
FourG 923 95.7 0 92.3 95.7
NoUp 915 95.8 1 91.6 95.9
DoseMods  94.2 954 0 94.2 95.4
HR1 705 89 49 74.1 92.2
HR10p 80 96.4 11 80.9 96.7
HR20p 85.6 95.9 4 85.9 95.9
HR5 942 96.5 0 94.2 96.5
Half1 98 95.2 4 98.4 95.2
Halfl0 85.9 94.7 2 86.1 94.7
Half104G  85.3 94.8 2 85.5 94.8
Half30.4G  90.7 95 0 90.7 95
Half450.4G  92.2 95.4 0 92.2 95.4
Halflk 759 81.6 60 80.4 86.8
Half1k4G  77.9 79.8 95 86.1 88.2
MVmono  93.7 94 1 93.8 94
MVmulti 949 92.8 0 94.9 92.8
Outl0 355 67.3 89.3 0 35.5 67.3 89.3
Outl04G 39.7 59.7 93.5 0 39.7 59.7 93.5
Out304G 579 77.5 95 0 57.9 77.5 95
Out4504G 242 10.7 93.5 0 24.2 10.7 93.5
Outlk 1.2 14.3 42.4 0 1.2 14.3 42.4
Out1k4G 7.8 7.2 95.8 0 7.8 7.2 95.8

OPEE: One Parameter Effective Exposure
NF: Non-Failed Set of Simulations
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Table C.8: TPEE Coverage Probabilities of the Incline, Decline, and
Hazard Ratio by Scenario. Amongst full set of 1,000 simulations and
Non-failed Algorithm Estimation Procedures

Incline Decline Hazz?rd # NE Nl.: NF Ha.zard
Ratio  Failed Incline Decline Ratio
BC1 869 82.5 95.3 74 90.5 88.9 974
N1k 81 45.1 90.6 554 85.4 99.1 96.9
N10k 78.8 67.4 93 293 82.6 94.3 97.3
N100k 945 91.3 96.5 1 94.6 914 96.6
FourG 91.3 89.3 955 29 91.7 91.9 96
NoUp 614 57.1 65 432 100 93 99.1
DoseMods 95 89.8 97.2 1 95.1 89.8 97.3
HR1 52 17.7 65.5 824 76.1 100 85.2
HR10p 783 44 .4 93.9 547 81.9 97.8 97.4
HR20p 798 59.2 94.2 390 82.6 95.6 98.2
HR5 86.1 61.4 94.7 0 86.1 61.4 94.7
Half1 86 21.6 82.4 768 100 92.7 92.2
Halfl0 794 41.5 89.9 561 85.4 94.5 94.1
Half104G  81.6 47.2 91.7 510 86.5 96.1 94.5
Half304G  84.1 70.6 93.4 245 85.7 93.5 94.8
Half450.4G  92.8 94.4 95.6 2 92.8 94.5 95.7
Halflk  29.8 45.9 30.1 511 58.7 93.5 60.3
Half1k4G  62.8 65 64.3 250 82.3 86 84.7
MVmono  86.2 77.6 93.7 60 91.6 82.6 94.4
MVmulti  90.7 85 92.8 20 92.6 86.7 93.6
Outl0 799 51.1 93.5 458 81.5 94.3 95.8
Outl04G 884 51.2 93.5 460 89.3 94.8 93.9
Out304G  89.7 73.3 94.6 217 90.4 93.6 95.3
Out4504G 922 93.8 95.3 2 924 94 95.5
Outlk 91.6 89.8 96.6 2 91.7 90 96.7
OutlkdG 923 91.3 95.2 0 92.3 91.3 95.2

TPEE: Two Parameter Effective Exposure
NF: Non-Failed Set of Simulations
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APPENDIX D
BWHS Results

Joint Profile Log-Likelihood Contours
for Smoking Exposure By 2 Lag Parameters

o _
N I 99% CI —— Incline PLL
--- 95%ClI --- Decline PLL
90% CI 4 Maximum LogL
o |
—

Decline Parameter
(in half-life years)
10

o
o J
\ I I I \
0 5 10 15 20
Incline Parameter
(in half-life years)

Figure D.1: Overall Effective Exposure Contour for Log-Likelihoods
Across Combinations of Incline and Decline Lag Parameters
amongst the simple subset of BWHS participants.
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Joint Profile Log-Likelihood Contours
for Packs/Day Exposure By 2 Lag Parameters

o '
I 99%CI  — Incline PLL ;
--- 95%ClI - - Decline PLL !
— 90%CI 4 Maximum LogL !
......... 1-%418.52---4..‘___“
9 -

Decline Parameter
(in half-life years)
10
!

0 5 10 15 20
Incline Parameter
(in half-life years)

Figure D.2: Packs Per Day Effective Exposure Contour for Log-
Likelihoods Across Combinations of Incline and Decline Lag Param-
eters amongst the simple subset of BWHS participants.
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Table D.1: Smoking and risk of CVD: standard analyses amongst the
Restricted Subset of BWHS participants (1995-2015)

Hazard

95% Confidence

Interval

Log-

Smoking Exposure Model Ratio Lower Upper Likelihood AIC

Smoking Current  2.55 2.26 2.87

Categories Past 1.11 1.01 1.23 1440777 28849.53

Ever vs. Never 1.43 1.31 1.55 -14479.75  28991.49

Current vs. Not 2.46 2.19 2.75 -14409.98 28851.97

Cumulative Years Smoked 1.02 1.02 1.02 -14442.71  28917.42

Current Smokers: Packs/Day  2.55 2.23 2.90 -14437.65  28907.31
Combination Current Smoker 2.16 1.90 247

Model 11 Pack-Years 1.01 1.00 1.01 -14403.18  28840.36
Combination Ever Smoker 1.17 1.05 1.30

Model 22 Pack-Years 1.01 1.01 1.02 Az ALY

AIC: Akaike’s Information Criterion
12 Combination models 1 and 2 assume that never smokers have zero pack-years.
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REFERENCE EQUATIONS
INTRODUCTION

Likelihood and Log-Likelihood of Cox Proportional Hazards Regression across k&
distinct event times. The my;, and jeR(t)) represent the total number of events and

the index of subjects at risk at event time .

k2 exp(X;h)
L(X,8,Y) = H jeR(ty,Y;=1) -
k=1
> exp(X;P)
me ’ (D.1)
= 46
g(X>57Y) :Z Z <qujﬁq> —mkln e
k=1 |jeR(ty,Y;=1) \ q JeR(tr)
Cox Proportional Hazards.
h(t| X (t)) = ho(t)explr1; 01 + ... + 245, (D.2)

Risk Sum - Multivariate

7, = quiﬁq — xliﬁl + ...+ xqiﬁq (D3)
q
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Likelihood (£) and Log-Likelihood (¢) of the Logistic Regression Models

X Ba HHp@ pzt 1 —Yir)

i=1 t=1 (D4:)
(X, 8,Y ZZmnpﬁ — Yi)In(1 = pu)

=1 t=1

Probability of Event, p;;, for subject ¢ at time ¢ with ¢ time-varying risk factors in

the logistic multivariate model.

exp(Bo + 11 + ... + Tt By)

it = D.5
P Ty exp(Bo + 1B + .. + Tgiy) (D)
One-Compartment Model for Infusion
K1) _ oot ifr<D
= ’f;;V (D.6)
0 _ k(i .
G [1— e kPl e hel=D) jft > D

Where D is the end—time for the infusion, ¢t — D is the time elapsed since ending
the infusion, and where the first condition is equivalent to the second by replacing
D with ¢, when t is less than or equal to D. k, and k. are the infusion and elimi-
nation rates, and V' represents the volume of the administered infusion. At steady

state, the total concentration is equivalent to the first part of the equation:

(D.7)

Thus, the relative concentration at time ¢ vs. the steady state (ss) level can be de-

scribed by the current concentration, C’; relative to the steady state concentration,
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C;S:
Ct k k.V
p _ Ro —keD —ke(t—D) eV —keD — ke
= 1-— * X — =|1-— X e
C’;s kev [ € :| € kO [ € ]
Turning OCM into a generalized form of the relative ratio
Ct
Cratio = C_gs = [1 — e’keD] s ¢ he(t=D)
Condition of assumed curves
(
0 ift<b
Cratio =431-— €_ke(t_b) ifb<t < f
[1 _ e_ke(f_b)] % e ke(t=1)) ift> f
\

t—D)

(D.8)

(D.9)
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DERIVATION

Basic formulation of the Effective Exposure over time given a single lag parameter,
known exposure level, and known start and stop times. D can be assumed to take
the value of 1 for exposed and 0 for unexposed, which will be referred to as the

"Binary Dosing Scheme".

Eu\b f) =D (1—e M) xI(telb, f)) + D (1 — e ) e A=D1 (2 > f)

— D x [ef)\*max([),tff) . efA*InaX(O,tfb)} —D [67)\22 . 67)\21}

(D.10)
where
(
t—2> ift >b
2 = max(0,t —b) =
0 otherwise
) (D.11)
t—f ift > f
29 = max(0,t — f) =
k0 otherwise

and where b and f represent the times the exposure starts and stops or is dis-
continued, respectively, for a given subject. D, b, and [ are fixed values, i.e. not

time-varying.

Log-Likelihood of the Cox Proportional Hazards Model - Univariate for the Ef-

fective Exposure Measure.

K

UX,B,0Y) =) > BE;(A) —miln| ) 5% (D.12)

k=1 | jeR(tk,Y;=1) JeR(tk)
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Predicted probability of event for subject i at time ¢ based on the logistic regression

parameters. (Relevant for simulation development)

e@o-ﬁ-ﬁl Eit(;\)

pit = 1+ 630+31Eit(5\) (D13)

where Bg + B Elt(j\) — BO+BlEit(5\) + Y1214+ ...+ Y424 for the multivariate setting.
Fisher’s Information Matrix for the One Parameter Effective Exposure Models.
Variations in A and h simply require the appropriate substitution of the second

derivatives for either model’s (logistic or Cox PH) log-likelihood.

0%/ 0%
Y:P)

8= | 9, 950N (D.14)
dBON  ON?

Fisher’s Information Matrix for the Two Parameter Effective Exposure Models.
Variations in (A;, A\2) and (hy, hy) simply require the appropriate substitution of

the second derivatives for either model’s (logistic or Cox PH) log-likelihood.

[ 0% o4 9?0 7
o0p*  0BON  OBON
020 020 ¢
I(A1, A9, B) = — RERY N2 OO (D.15)
020 o4 ¢
L0BONy  OMONe O
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Effective Exposure Specification

Single Dosing, Single Lag Parameter equation (Main text equation (2.3)) and Single
Dosing, Two Lag Parameters equation (Main text equation (2.8)) where z; and 2z,

retain the same specifications as mentioned in condition (2.2).

Ey(\) =D (e”‘zz — e*)‘zl)

(D.16)
Ezt(h) =D (e*zz log2/h __ e~ log2/h)

Eit()\l’ )‘2) =D (1 — 6_)‘1(z1_32)) e 272
(D.17)

Eit(h’l’ h2) =D [1 - 67(Z1722)10g2/h1} e 22 log2/hs

First Derivative with respect to lag or half-life parameter for equation (2.3)
DE(\
a)f ) =D [216—)\21 _ 2’26_)\22]

(D.18)

OEy(h)  Dlog2
oh k2

[2’26_22 log2/h 216_21 log2/h}

Second Derivative with respect to lag or half-life parameter for equation (2.3)

P Ei(N) s Az
Co = D[ st ]
O2Ey(h) D (log?2)*
8}52( ) _ (Zf ) (de—zglogZ/h o 2%6—21 10g2/h) (D19)
. 2D lggQ (Zzefzz log2/h __ 216721 IOgZ/h)
h

First Derivative with respect to incline parameter for equation (2.8)

aEit<)\17 )\2)
O\
OEir(ha, ha) _ D (21— 2) log26—10g2[(21—22)/h1+Z2/h2]

Oy h?

=D (Zl _ 22) e*)\1(21*22)*)\222
(D.20)
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First Derivative with respect to decline parameter for equation (2.8)

aE’it(}\lu )\2) — —DZQ (1 _ e*Al(Z17Z2)) e*AQZQ

0o
(D.21)
aEit(hh hQ) _ DZQ 10g2 (1 o 67(21722)10g2/h1) e~ log2/hs
Ohsy h3
Second Derivative with respect to incline parameter for equation (2.8)
82Eit()\17 )\2) 2 —Ai(z1—22)— X2z
T = D (o - ) e
O?*Eyy(hy, hy) _D (21 —22)log2 (2 (21— 29)log2 o 10g2[(s1—22) /A +22/h]
Ohy” hi h h3
(D.22)
Second Derivative with respect to decline parameter for equation (2.8)
a2Eit(>‘17 >‘2) _ DZ2 (1 . 6—>\1(z1—Z2)) €—>\222
9 2 (D.23)
O?Ey(hy, ho) _ Dzlog2 (2 zlog2 (1 B 6_(z1—ZQ)1og2/h1) o—221082/hs '
8h22 hf% h? h’%

Second Derivative with respect to both incline and decline parameters for equation

(2.8)

82Eit<)\1 ) )\2)
OOy

= —Dzy (2 — 2z5) e M (F1722) " A2z

(D.24)
0?Ey(h1,hs) =Dz (21 — 25) (log 2)26flog2[(zlfz2)/h1+ZQ/h2]
Oh10hs h2h3
Multiple Dosing

When considering multiple dosings, or trajectories that may increase or decrease
more than once, the formulation of E;;(A) becomes a sum function of the individ-

ual dosing exposures. To illustrate, assume a subject is exposed from years 0 to 20
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and 60 to 80 at a dose level of 2, while being exposed at a dose level of 1 from time

20 to 60. The current effective exposure at time ¢ can be calculated as:

El(ttot)(A) — D1 (1 . 6—(Z1—z2)>\) 6—22>\
+D;y (1 — e (mam20d) gm=ad (D.25)

+D3 (1 _ 67(25726)/\) 672:6)\

where
( (
t ift >0 t — 60 if t > 60
21 = 2y = 25 =
0 otherwise 0 otherwise
: >
t — 20 if t > 20 t—80 if t > 80
Z9 = Z3 — 26 =
0 otherwise 0 otherwise
\ \

This could also be written in a piecewise fashion, which implies that the first and
second derivatives can be readily calculated for each individual exposure event.
Let Ei(tl)()\), Eff ) (A), and Ez(t?’ )()\), be the effective exposure components for each of

the exposure events.

EP(N) = Dy (1 — em(17228) 7222
Ei(Q)()\) = Dy (1 — e~ (m3720)A) o=z
' ( ) (D.26)
El-tg)()\) = D5 (1 - 6_(25_26))\) e~ 76N
E{ ) = BYO) + EP )+ B ()

As mentioned previously, the A can be interchanged with log2/h, and Ei(tt"t)(h)
represents the longitudinal function of EE based on this parameterization. To tran-

sition from OPEE to TPEE, I can substitute the single parameter with (A1, A2) or
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(h1, he) in equation (2.11), updating the piecewise component exposures that feed

into B,
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Cox Proportional Hazards Models

OPEE Log-Likelihood

OPEE Score Function

OPEE Fisher’s Information

e
o3
e
oN?
o2
DBON

TPEE Score Function

0B, A) =Y [Aa(te) — mylog (Ci(th))]
o K B (ty)
FER ,; {Am(tk) - cwk)}
by, K C2A(tk)
on " 2 [A”“’“) KOt }

3 m [Bi(tx))” — By (t)C1 (1)

; : Ca(t))?

K

Cs(t1)C1(t) — (Cor(tr))?

= As(ty) — my, 2
2 |Ast) (Ca(t)

i [An(te) _ B (ti)Ci(t) — Coaltn) Ba(te)
—~L b (Cu(ty))?

o T By (t

98~ kz:; -Aw(tk) o Clgtk;}

o T Culty)

M ; ulte) = om Cl(tk)]

| Cs(t)

e~ 2 e~ e

(D.27)

(D.28)

(D.29)

(D.30)
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TPEE Fisher’s Information

o0 K . [Bl(tk)]2 — Bos(ti)Ch(tr)
B> Z * (O ()]
>l KT _ Ge(te)Ch(te) — (Ca(t))?]
el [l e oY T
0 KT GOt — (Cs(t)’]
i ; _A7(tk) My Coltr)? |
A Cs(t1)Ch (t) — Caltr)Cs(tr)
NNy ; | Aslte) = (Cy(ty))? }
0%l _ i [Aaty) " Boy, () C1(tr) — 04(tk)Bl<tk)]
opox, = 5 (Cr(ti))”
0%l _ i [As(ty) - By, (te)Ci(tr) — Cs(tk)Bl(tk)]
opon, =5 ™ (Cr(t))’

Where we define the following compute-able quantities':

Aty) = > BE;(N) = > BEj (AL )

JER(tr,Y5=1) JeR(t,Y;=1)
AR R YO E SO NPY
JeR(tg,Y;=1) JER(t,Y;=1)
A5(fk)=aA1<tk>: > BM

o jrey,=y O

(D.31)

1 As these functions utilize the first and second derivatives of the effective exposure, one can
switch between the A and % by adjusting which internal formulas to use, maintaining consistency

once estimation has started.
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D2 Ay (ty) D?E; (A1, \o)
Ag(ty) = ———> = O Lj\ A A2)
o) 0N jeR(%;jzl)ﬁ 2%
02 A (ty) O?E; (A1, A2)
Ar(ty) = —F5— = 95\, A2)
7<tk‘) a)\% jeR(thy}zl) /8 a)\g
0% Ay(t 02E; (A1, A
Ay = PAG) g PE NN

aAla)\Q j6R(tk,Y3:1) 8)\18}\2

Bilty) = 30 E;(NePEN = ST Ei (A, Ay)ePEi122)

JeR(tr) JeR(tr,)
Bz,@(tk) _ 8B1(tk) _ Z (Ej()\))zeﬁEj()\) — Z ( ()\1 )\2)) ePE;(A1,22)
I jeri) JeRtx)
0B, (t OE;(\
Boa(t) = 5§ ) = 3 Aeﬂfsj(x) [1+ BE;(N)]
JER(tr)
OB (ty) OE; (M, A2) 45
B = = S e BE](AL)Q) 1 E
2)\1(tk) a)\l jd%(:tk) 8)\1 (& [ "—B j<)‘17)\2)]
0B (ty) OE; (M, N2) 45
B t.) = = 2D 72T LBE(MsA2) [ E (. \
o2 (k) s jg%k) Dy C (14 BE; (A1, A2)]

City) = 3 BN = 37 efEOLN)

JeR(tx) jeR(tr)
C3(ty) = % = j%(jtk)gemw) % 8 (5‘%A(A)>2]
Cu(ty) = a(g}ff’“) — je%kf%):/\?)emﬂjm,m



9*Cy(t
1
9?C (t
Cr(tr) = # =
2
_OChlty)
Cs(t) = Gaong

> BeﬁEj(/\h)\z)

JER(tk)

Z /BeﬂEj()\l)\Q)

JeR(tr)

> 5@5@()\19\2)

JeR(tr)
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N2

N2

[O?E; (A1, A2)

_82Ej(/\1,/\2) —|—ﬂ <8Ej()\1,)\2))2

—aQEj(Ah)\Q) 4 5 (an<)\1;)\2))2-

+ 5

oM

Oy

OX0Xy

Pooled Logistic Regression Models

Pooled Log-Likelihood

E(Ya p)

n T
=) Yaulnpi + (1 — Yi)In(1 — pir)

=1 t=1

DE; (M, \2) OE; (M1, Aa)
8>\1 a)\Q

(D.32)

where Y, takes the value of 1 for events and 0 otherwise, for subject i at time ¢. The

probability of event, p;;, under the logistic model is computed by (D.33):

[ exp(Bo + B1Ei(N))
for OPEE
1+ exp(Bo + L1 Ex(N))
Dit = (D.33)
exp(Bo + L1 Eit(A1, A2))
for TPEE
(1 + exp(Bo + BrEi(A, A2))
OPEE Score Function
Y; j
850 ; ; t — Dit
Eq(A i D.34
5’51 ; ; t —Di t) ( )
" 8Eit(/\)
Z Z 61 pzt a)\

=1 t=1
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OPEE Fisher’s Information

OFEi(\)

2
8502;51 T 121 ; g%f
ag(jéA == Z Z O

82€ - 3Ezt()\) 3p1t
9B1OA 2 2 (i) o PN
TPEE Score Function

Z Z Yie — pit

=1 t=1

ol
3 ZZ%M&

=1 t=1

ol
8_)\1 Z Z /31 pzt

i=1 t=1

—ZZM

i=1 t=1

350

pzt)

oM

ol

8_/\2 pzt

0o

aE’it()\la )\2)

aEit()\la )\2)

O
(D.35)

(D.36)
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TPEE Fisher’s Information

o
9533
e
ok
ot
N
ot
N

o
IBo05
o
IBoOM
0%l
OBoOA2

¢
OX102

¢
9b10M

¢
0510y

o apzt
o Z Z 950

= — Z Z (Eit(M, X2))?pie (1 — par)

i=1 t=1

L) PE; (A1, A
=S 6 (V- ) <#)

=1 t=1

82E¢t(>\1, >\2)
= Z Z 51 pzt <6—)\§

=1 t=1
_ apzt
- 2 Z b1
. apzt
o z; ; O
. apzt
- Z Z 0o

i=1 t=1

o 82Eit(>\17 >\2)
= Z Z 61 pzt <W

=1 t=1

n T
OEit (A1, A2) Opit
= Z Z (Yit - pit) (8—A1) - Ez’t()\l, )\2)8/\1

=1 t=1

5Eit(>\1, >\2) 8]%:
= Z Z pzt (3—)\2) - Eit(/\b /\2)8)\2

=1 t=1

)
)

)

aE’it(}\lv )\2>

Opi

O\
OEit(M1, A2)

)(

o\

Opi

)

OA2

aE’it()\17 )\2>

)(

Oz

Opit

)

oM

)(

OAs

)

(D.37)
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Derivatives of Probability Function

Opit
—p.(1—n,
8ﬁ0 plt( plt)

Opis Ey(N)pi(1 — pir) for OPEE
b Ei(A, Ao)pi(1 —pi)  for TPEE
D.38
Opir Bipu(1 — '>8Eit<>‘) (09
8)\ = P1Pit Dit a/\
Opit . OEi(A1, X2)
8)\1 - Blpzt(l - pzt) 8/\1
Opit . aEz‘t()\h)\Q)
3)\2 - ﬁlpzt(l pzt) 8/\2

Note: Moving from the OPEE to TPEE framework, E;()\) can be substituted as

Opit Opit
d

oA D

the derivatives with respect to both lag parameters. Additionally, » and (A4, h2)

Ei:(A1, A2), with corresponding substitutions made in to account for

should replace A and (A;, A2) in the denominator of the partial derivative functions
to obtain appropriate predicted probability estimates when calculating the Score

and Information values for a model fit using the half-life parameterization.
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DERIVATIONS: SINGLE DOSING, SINGLE LAG PARAMETER

Let D represent a specific steady state infusion dose that starts at ¢t = b and ends
att = f for the set of for subject i. We can represent subject i’s effective exposure,

E;1(\) at time ¢ by the following:

Eqy(\) =D (1 —e ) I (teb, f]) + D (1 — e M) XN (2 > f)

—D (G—AmaX(O,t—f) i e—Amax(O,t—b)) —D (6_)\22 . G—Az1)

where p
t—0b ift>b
z1 = max(0,t — b) =
0 otherwise
\
(
t—f ift> f
2o = max(0,t — f) =
0 otherwise
\

Let us recall that E;;(\) depends on the lag parameter, A:

OFE; () Cam e
2\ =D [zle — 29 }
P E(N) PV am
e D [z%e Az p2emA }

Choosing to parameterize using h instead of A requires slightly more complicated

equations for the first and second derivatives. The first component to identify is
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log 2 ON  —log2

the relationship betw A= o=
e relationship between h and A: A A —>8h 7

OFE#(N\) o\ —2910g 2 19D —2z1log 2
- "D 275~ D —c1Pe4
h 2on” P\ T g tagp el T
log 2 —291 | —2z1 1
_ 2 ho2g D exp (—Z2h0g2) A f;g2Dexp <—21h0g2)
_ lohg22D [226722 log2/h e log2/h}
log 2
aQEt<)\) ) ( th D [Zze—zg log2/h __ ze A log2/h])
on: oh
2
_ —222i0g 2 De-z2tor2/n {22 :)2%2} De—22los2/h
—221 log 2 log 2]°
. ( z}l}/gog D67Z110g2/h+ {Zl hOQg ‘| DezllOgZ/h>

Dlog?2 ([23log2 —z3log2/h zi log 2 —2z1log2/h
= h3 <|: n —2226 2708 —7—2216 1log2/
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POOLED LOGISTIC REGRESSION

Define the odds of an event for subject i at time t:

exp [By + B1Ei(N)] = exp [Bo + B1D (e — e )]

Define the probability of an event for subject i at time ¢:

exp[Bo+ BB\ exp[fo+ SiD (e —e )]
 1+exp[Bo+ BiEu(N)]  1+exp[Bo+ BiD (e — e 1))

it

Likelihood function of logistic regression:

n T

(B0, 5\ Y) = T T2 (1 - p)

i=1 t=1
Log-likelihood function for the logistic model:

n T
5(507 B, )\,Y) = Z ZYz‘t In py; + (1 - Yz‘t) In (1 - pit)

i=1 t=1

n T
= Z Z YitBo + Y1 Ew(N) —In (1 + exp [Bo + S1Eix(N)])

i=1 t=1
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Score and Information Matrix Derivations

The following quantities can be used to solve for the asymptotic distribution of
the lag parameter, in that the Score and Fisher’s Information can be used to nu-

merically estimate the lag, or for an approximate Hessian from which to pull an

estimate of standard error. In all locations where aEait)fA) is used, one may sub-
stitute 81}?5;5)\) appropriately to converge towards estimates in the half-life lag-
parameterization.
Opir __ exp [Bo+ BiEx(N)] ( exp [Bo + B1Eu(MN)] >2
OBy (1 +exp[fo+ BiEiu(N)]) (14 exp [Bo + B1Ei(N)])
= pit<1 - pit)
Ipir _ Eix(N\) exp [Bo + 1 Eit(N)] ( exp [Bo + B1Eit(\)] )2
0B " | (L4 exp [Bo + BiEu(N)]) \ L+ exp [Bo + BiEin(N)]
=D (efAZQ - 67/\21) Pit(1 — pit)
Ipit _ 3 OE;t(N) exp [Bo + B1Ei(N)] _ ( exp [Bo + B1Eiu(N)] )2
ox U on |[(T+exp[Bo+ BiEx(N])  \(1+exp[Bo+ BiEu(N)])
OF; (A
= 51%]%(1 - pit)

= 31D (217" — 2067 pir(1 — pir)



192

S __exp[Bo+ PiEu(N)]
860 21; * T explBo + BiEu(V)]

n T
:Zznt_pit

i=1 t=1

n T

_ Ey(N) exp [Bo + BiEu(N)]
;;Yn it( 1+ exp [Bo + B1Eiw(N)]

n T

- Z Z Ezt pzt

i=1 t=1

351

o 0E’t(A) OEu(A) _exp[fo + PiEa(N)]
ot _ }/it I3 . it 0 146t
B3 DD Yubh o T exp [Bo + B1Ei(N)]

i=1 t=1

a zt
—ZZﬁl E pzt)

i=1 t=1

= Z Z Br (Yie — pi) D (2107 — z0¢77%2)

i=1 t=1
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- o - = — ' Opit
o5~ ok 95, = ZZE”()\)E)BI

O\
- ZZ - a 61 = Dit) — Z (3%35)\)) Bipie (1 — par)

i=1 t=1 o

- ZZBI it pzt ([ ]2 —Az2 [zl]Qe—)\n)

i=1 t=1

N Z Z Blplt p’Lt [2167)"21 _ 2267/\22} 2

=1 t=1
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(o) EEv-m)

o4 _ I _ i=1t=1 it b apzt

05,061 0p 0B = 9By
n T

= — Z Z Eit(MN)pit (1 — pir)

=1 t=1

_ 1
0ByON O )

- Zzﬂl aEzt — Pit)

=1 t=1

n T
= - Z Z Bipi (1 — pi) D (2167)%1 - zge”\Z?)

=1 t=1

oo 55)  o(S KB B

_ oJ65) _ i=11=1
0p10A (9)\ O\
_ - OE;+()) 0Ei(N) Opit
-3 > w2
i=1 t=1
n T
OFE; (A
- Z Z at)f ) Yie — pie — B1Eax(N)pir (1 — pit)]

— Z [Kt — Dit — 51]7“ (1 — plt) D (67)\22 _ 6,)\21)}

x D (216_’\Z1 - 226_/\22)
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COX PROPORTIONAL HAZARDS

Likelihood Function with Breslow’s handling of tied event times:

K s s P50

£y = [ Rt

k=1 Z GIBEj(/\)
JER (k)

where my, is the total number of events at time &, R(¢;) is the set of subjects at risk
at time ¢;, and where the numerator for each unique event time, t;, is the product
of the exponential risk of event, ¢#ZiV, for all subjects with events at time #; as
noted by R(tx, Y;, = 1).

Thus, the log-likelihood function takes the form:

K
BAYY =31 Y BEN) —milog | S B
k=1 | jeR(tk,Yj=1) JER(tx)
K
= [A; (t) — my log (Cy(tx))]
k=1

Two important notes to remember about the Cox likelihood function:

1. The sum from k& = 1 to K imply a risk set be defined by unique stop-time
and strata, since the assumption is being made that the baseline hazard is

different across strata.

2. The form SE;()) is a stand-in for the risk score of an individual, and would,
more correctly, be written as SE;()\) + > I'X;,, in a multivariate model with

q=1,...,Q covariates.
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Score and Information Matrix Derivations

> E(Ne?B0)

o X JeR (1)
%:Z Z E;(N) —my S BB
k=1 | jeR(tg,Y;=1) JER ()
K
Bl(tk)]
= Aqg(t m
> |ttt ey
an(A) BE;()\)
o = OE;(N) jER(tk)B 2
DR LDV e ST
k=1 JER(tg,Y;=1) JeR(tx)
K
Cy(ty)
;{ o (te) mk(]l(tk)
K > B\t
jeR(tx)
EANECI DD > Ei(N) —my” BE; (X
o 2 AT eBE;(N)
o’ (6’6) _ B ja;(tk)
R Y: 90
. ( > Eju)zewﬂM)( > eﬂEﬂ”)
-y JeR(t) JeR(te)
= — mi 2
k=1 ( 3 eﬁEj(A)>
jeR(tk)
S B\ ePE;(N) E:(\)ePEi™)
K Rl J R (tr) ’
JER(tk Jertk
+ka 2
k=1
( Z eBE]’O‘))
jER(tk)

S
2 Ci(w)F
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9E; (M)

(A ]
92¢ k=1 FER(ty,Y;=1) oA ZjeR(tk) eBE;(N)
Nz 3y i
2
OE;(N) 8,0
- PE(N) | & ( 2 PN
= ﬁ Z J 4 Zm JER (g
, ON2 k PR
F IR k=1 <Zje7€(tk)6 i )
O?E;(N) OE;(\)\>
BePB) | 5=+ 8 ( ! ) S BB
d (jeR(tk) ON? O\ R
_ Z my, 2
- (Zjeﬂ(tw GBEJ(A))
K
- Z As(ty) — my, C(ti) Cate) — (02(tk))2]
k=1 (Cl(tk))Q
ul S B (M\)ePEY
0 E(N) — g, ZIR )
o’ <,§1 LR (t%fj:u i) k > ey €
OBON B\

K (jEZ 8%)(\)\)&&(/\) [1+BEJ-()\)]) < > eﬂ@(,\))

JeR(tr)

) 2
= (ij(tk) eﬁEj(/\)>
o OF; (A |
K (jeg(:t )ﬁ&%b\)%) (EjeR(tk) Ej()\)eﬂEj()\))
+ my k 2
= (ZjﬁR(tk) eﬁEj(A)>
_ f: [Au(tk) B0 (1) = Ca(1) By m
k=1 ﬁ (Cl (tk))2
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Where we define the following compute-able quantities?:

e Ai(ty) = > BE;(N)

JeR(tx,Y;=1)

0A(tr)

o Ass(ty) = N Byl
26(tk) op jeR(thjil) o
A (tr,) 0,(%)
o Aoy(ty) = - ’
ax(tk) o\ jeR(t%%G:l) oA
0° A, (1) TEQ)
o A3(ly) = —( 7y =
o(te) (0N)? jeR(tg/—Uﬁ o
e Bi(ty) = 5 E;(\)ePEN
JER(tr)
o Buglte) = 2B _ 5> pogesmm
aﬁ JeR(tr)
o DBoy(ty) = OB (ty) > %GﬂEj()\) 1+ BE;(N)]

o jeR()  OA

jER(tk)
_0C (k) IOE;(N) BE;(X)
_ 9PCi(t) _ s, | FEIN) OL )
o Gs(ty) = N —je%k)ﬁe W+B( OA )

2As these functions utilize the first and second derivatives of the effective exposure, one can
switch between the A and % by adjusting which internal formulas to use, maintaining consistency
once estimation has started.
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DERIVATIONS: SINGLE DOSING, TWO LAG PARAMETERS

Let D represent a specific steady state infusion dose that starts at ¢ = b and ends
att = f for the set of for subject i. We can represent subject i’s effective exposure,

Ei1(A1, \2) at time ¢ by the following:

Ey(M,A2) =D (1 —e M) [ (teb, f]) + D (1 — e MUY e 220D (¢ > f)
—D (1 . €—>\1(max(O,t—b)—maa:(O,t—f))) e—Az(mam(O,t—f))
—D (1 _ €—>\1(Z1—22)) e A272
where p
t—b ift>b
2z = max(0,t —b) =
0 otherwise
(
(
t—f ift > f
2o = max(0,t — f) =
0 otherwise
(

Let us recall that E;;(\;, \2) depends on the lag parameters, Ajand A,:

aEit()\h )\2)

3 = (2, — 29) De M=) g=hoz
1

aEit<>\17 )\2)

Dy = —2zD (1 — e”\l(zl’zr")) e A2%2

82Eit(>\17 )\2)
ox

2 N Ap(2g—za)
= — (21 — z)* De M1 2) g hoz



OFi(A1, A2)

ohy

OFEi (A1, \2)

9" Ea(M, do)

N2

G Ea(M, da)

Ohy

P Ei (M1, A2)

200

— ZSD (1 _ 6—)\1(31—22)) e—)\222

= — (Zl — zQ) Z2D€_>\l(zl_z2)e—)\222

OA10Ng
—log2 —(21—22) log2/h1 ,—z2log2/h
= (21 — 22) 5— De(F1772) 082/l g2z log 2/ h
1
log 2 —(z1—22)log2/h1 ,—22log2/h
= %9 2D(1—6 1—22)log 1)6 2log2/ha
ho

_ (Zl - ZZ) D lOg 26—(Z1—22)10g2/h16—zz log 2/hs (3

Oh10hy

ah12 h12
O?Ei (M1, A2) _ zDlog?2 (1 B
ah22 B h22
?Eiy( M, A
FEadda) _

hy

ha

2
(102g 2)2 De—(zl—zg) log 2/h1€—22 log2/h2
hi”ho

hy®

(21 — 29) log 2

hi®

e—(z1—z2)log2/h1) e~ %2 log 2/hs (3 _ Z9 log 2>

)
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POOLED LOGISTIC REGRESSION

Similar to the One-Parameter, we now substitute F;;(\) with E;;(A;, \y) to define

the odds of an event for subject i at time ¢:

exp [Bo + P1Ei(A1, \2)] = exp [Bo + 8D (1 _ e—/\1(21—22)) e—A2Z2j|

Where now the probability of an event for subject i at time ¢:

S [Bo + B1Eir(M, A2)]
T T4 exp [Bo + BuEin(A, M)
eXp [60 + 51D (1 — @*/\l(zlfzz)) 67)‘2'22]
T 1+ exp [Bo + 51D (1 — e~ M(z1—22)) g—Aez]

Likelihood function of logistic regression:

£ 22 Y) = [ Tw (0 = p)

Log-likelihood function for the logistic model:

n T
0B, M, 0,Y) = Z ZY;t Inp; + (1 —Yy)In (1 —py)

i=1 t=1

n T
= Z Z YitBo + YuB1Ei (A, A2) — In (1 + exp [Bo + B1Ei (A1, A2)))

i=1 t=1
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Opit _E
96, (A1, A2)pin (1 — pit)
Opit aEit(M, >\2)

N b O

_ o —A1(z1—22) ,— A2z
(21 2’2)51176 1z mz2) g 2pit(1_pit)

pit(1 — pit)

— (2 — —A1(z1—22)— A2z
(=1 Zz)ﬁlDe Hz1=22) 22 (1 — par)

apit aEt ()\1 )\ )
_ 7 y N2
P T o

- — D = A(z—2 —A2z
201D (1 — e MEm2)) ee22p, (1 — pyy)

pit(l - pit)

= _Z2BID (6—>\222 _ 6—)\1(z1—z2)_)\222)
Pit(1 — pit)
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Score and Information Matrix Derivations

T

o &
a_ﬁl = Z Z Eit()\h )\2) (}/Zt - plt)
=1 t=1

n T
L 3oy p 2B )

O\ I OA
n T
= Z Z (21 — 22) By De 720722 (v — gy
i=1 t=1

n T
00 5oy, 2B )y

Oy — = Oy
n T
= Z Z —2981 D (G_AQZQ - e_’\l(zl_”)_’\”Q) (Yie — pit)
i=1 t=1
826 n T

- Z Z Eit(A1; A2)?pir (1 — pir)

i=1 t=1

s}



204

o __Lli=ti=1
ON? O\ O\
n T
82Eit(/\1 /\2)) 8Ezt(/\l /\2> apit
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COX PROPORTIONAL HAZARDS

For the Cox Proportional Hazards model, the likelihood and log-likelihood func-

tions take the same general form as the one-parameter lag equations. Also, the

partial first and second derivatives of the log-likelihood with respect to 3, alone,

remain unchanged. The equations that follow complete the forms needed to de-

rive the Score and Hessian matrices for the two A parameters. We add definitions

for the following compute-able quantities:

Aol = agl)\fi) - jen(glé:l)@%)\z&)
aiey - Zo - 5 TEON
Aq(t;) 823—/1\2752) = jeR(g;/j:U 5%:\\%1’/\2)
R TR
Cs(t:) 821)\(2752) = je%i)ﬁweﬂ]%uh)\ﬁ

Ej(A1,22) 1+ BE;(A1, A2)]

BE;(A1,M2) [1 + 5EJ (/\17 )\2)]
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DERIVATIONS: MULTIPLE DOSING

TWO DOSES, SINGLE LAG

Let D, represent the first (in terms of when it occurred) exposure specific steady
state infusion dose that starts at ¢ = b; and ends at ¢ = f; for the subject . This
same individual was later exposed at another steady state dosing level, D, starting
att = by and ending att = f,. The full effective exposure, E;;()), for this individual,

1, at time, ¢, can be written as follows:

Eyx(A\) =D (1— e_k(t_bl)) I (te by, f1]) + Dy (1 — e_k(fl_bl)) e NI (> f)

+ D2 (1 - 67)\(t7b2)) I (tﬁ [bz, fg]) + D2 (1 - 67)\(f27b2)) eiA(tih)I (t > fg)

_ Dl (ef)\max(o,tffl) . e*/\maX(O,tfbl)) + D2 (efAmaX(O,tffg) . ef)\max(o,tfbg))

— Dl (e—)\zz o e—)le) + Z)2 (e—)\24 o e—/\zg)

where

t— by ift > by
z1 = max(0,t — by) =
0 otherwise

t—fi 1ft>f1
2o = max(0,t — f1) =

0 otherwise

t— bQ ift > bg
zg = max(0,t — by) =

0 otherwise
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t— f2 ift > f2
zg = max(0,t — fo) =

0 otherwise

Let us recall that E;;(\) depends on the lag parameter, A:

Eu(A) = Dy (72 — ™) + Dy (e — ™)

aEait/\()\) =D (zle_’\zl — 226_’\Z2) + D, (236_>\Z3 — Z46_)\Z4)
P E; (A
8;2( ) — D1 (Zg —Az2 22 —)\21) +D ( —Aza de—)\Z;),)

Choosing to parameterize the lag using & instead of A:

OEu(A)  log2

[D1 (226—22 log2/h _ ze log2/h) + D,y (Z4e—z4 log2/h P 10g2/h)}

Oh h?
O*Ey(\ Dylog?2 (z3log2 —ztes —zlog 2log2 2o 21 log
) - DUCER (SIDBZ e _ gt  SDRZ S gy

D l 2 2]_ 2 —Zz (o] —Zz O; l 2 —2Z O, —2Z O,
+ thg (24 Zg e 452 _ 2z4€ 4o Zg et + 2z3¢€ 4 gQ)
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TWO DOSES, TWO LAG PARAMETERS

For the same individual as described in the previous section, the effective exposure

using two lag parameters, E;;(\1, A\2), can be written as:

Ey(M,X) =Dy (1— 6_/\1(t_b1)) I (te b1, f1])
£ Dy (1— e MUt = Nal-10] (45 f)
+ Dy (1 — e 100 [ (te [by, fo])

+ Dy (1 _ 6—>\1(f2—b2)) €—>\2(t—f2)1 (t > f2)

=D (1 _ 6—)\1(max((],t—ln)—maX(O,t—fl))) e N2 max(0,t—f1)

+ D2 (1 . ef)q(maX(O,tsz)fmax(O,tffg))) 67)\2 max(0,t— f2)

— D] (1 — 6_/\1(21—22)) e_)\2Z2 + D2 (1 _ 6—)\1(Z3—Z4)) e—)\QZ4

Thus we derive the first and second derivatives of E;; (A1, A2) with respect to both

Aland >\22

OE(M, As)
By

OB (M, \a)
8)\2

02 B (M, M)
B3%

02 B (M, M)
N2

02 E (M, M)

0N 10N

= (z1 — 22) Dye M=) p=raze 4 (23 — 24) Doe M(z3=21) o= A2

= —29D, (1 — e_kl(zl_”)) e % _ 2D, (1 — e‘kl(%_“)) e A2*
_ (21 _ 22)2 Dlef)\l(zlfzz)e*/\ﬂz _ (2’3 _ 24)2 DQG*)\1(23*Z4)6*>\QZ4
— 222D1 (1 _ 6*>\1(21722)) e A222 + ZiDQ (1 _ e*>\1(23724)) e A2%4

= — (21 — 22) 2o Dje M (B1m22) Aoz (23 — 24) 24 Dye M (78771) o= A2z

Choosing to parameterize the lag using (h1, h) instead of (A1, \2):

OFi(M,A2) _ —(21— %) log2Dle—(z1—zz)log2/h1€—z2 log 2/h
ohy 2




aEZ‘t(Ala )‘2> _
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(Z3 - 24) IOg 2D267(z37z41) log 2/h1€724 log 2/hs

Ohs

aQEit<>\17 >\2)

ht
Z9 IOg 2D1 oz —
h% (1 —e (=1 22)10g2/h1) 672210g2/h2
z41log 2D
%%2 (1 _ e—(Z3—24)10g2/h1) e % log 2/hs

Ohy?

82Eit<)\17 )\2)

_ (Zl — 22) Dl log26—(z1—22)10g2/h16—22 log 2/hs (3 . (Zl B 22) 10g2>

h12 hl h12

+ (’23 - Z4> D, 1Og26—(,23—,24)log2/hle—Z4 log 2/hs (3 . (Z3 - Z4) 10g2)

hy? hy hy?

Ohy?

aQEit<)\17 )\2>

Oh10hs

hy? hy hi?

_ 29Dq log 2 (1 B 6_(Z1—ZQ)1ogz/h1) 22108 2/ho (3 2 log2)

n z4D5 log 2 (1 _ e—(zg—z4)log2/h1) o7 l0g2/ha <3 4 log 2)

ho? ho hy?

2
—2 (21 . 22) (10g 2) D167(21722) 10g2/h16722 log 2/h2

)2
S D2€—(23—Z4)10g2/h1€—24 log 2/ha
hi”hs
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