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ABSTRACT

Many observational studies assessing the effects of treatments or exposures are

limited to comparisons between treatment users and nonusers or exposed and un-

exposed participants at study entry. However, the underlying and etiologically

relevant exposure may gradually increase over time before reaching some plateau.

This amount of time required for this latent cumulative exposure to reach a max-

imum hazard will be referred to as the "lag", coming from the concept that the

association between exposure and outcome is lagged or delayed. Accounting for

the lag is essential when analyzing exposure-response associations adequately. My

challenge was to simultaneously estimate the lag-time and the exposure’s lagged-

association with the outcome at plateau.

In this dissertation, I draw an analogy with the pharmacokinetic one-compartment

model (OCM). OCM describes the accumulation of a medication in the body based

on an exponential cumulative density function whose rate of increase is defined by

a half-life parameter. Upon discontinuation, the OCM assumes that a medication

will eliminate at the same half-life rate. The decline, for my purposes, can be in-

terpreted as the time to return to a null effect of exposure, which occurs at roughly

4-5 half-lives.
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My methods model the association of a latent exposure and dichotomous out-

come using a half-life of effect, similar to the OCM, in longitudinal analyses of

single and repeated exposures. I derive profile likelihood-based algorithms to esti-

mate of the upper limit of association simultaneously with the rate of latent expo-

sure growth towards or away from plateau. Lastly, I extend this approach to allow

different half-life parameters for incline and decline.

Using simulations, I analyze the performance of my approach by comparing

bias and coverage of the estimates for the half-life and effect parameters. With

data from the Black Women’s Health Study Cohort (a prospective cohort of 59,000

women followed 1995-2015), I show that prolonged cigarette smoking is associated

with a maximum hazard of cardiovascular disease (CVD) at 2.5 times the hazard

of never smokers. Additionally, I estimate that it takes about 7 years of smoking

cessation for an individual’s hazard of CVD to decrease by 50%.
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1

CHAPTER 1

Introduction

Public health research has long been aware of the detrimental effects of smoking

on health, particularly the increased risk of cardiovascular diseases (CVD).(U.S.

Department of Health and Human Services, 1990; WHO, 2004) Cigarettes and to-

bacco cause plaque build-up in the arteries, leading to an increased risk of CVD

for individuals who smoke. Few would consider a heart attack occurring after

one week of smoking to be caused by use alone. Conversely amongst those who

smoke for an extended period of time, one would not expect the CVD hazard to

simply disappear following cessation. Thus, the question is how best to account

for transitioning individuals when analyzing risk in a population-level model?

Clinicians and health professionals agree on the benefits of smoking cessation

in terms of reducing risks, though literature has been mixed regarding the amount

of time required to return to "normal".(Kawachi et al., 1994; Rachet et al., 2003;

Rosenberg et al., 1990) Recommendations for smoking cessation are made, with the

intention of lowering the smoking-associated health risks. However, estimation of

the hazard is complicated by the fact that it takes time for the impact of a history of

smoking to go away completely. For the "on-again off-again" life-course of many

smokers, it is additionally challenging to minimize misclassification of exposure,

which can bias estimation of risk. That is, how does one appropriately classify the

exposure for someone who is not consistent in their cessation or habits of smoking?

The time-to-effect of an exposure on an outcome can be thought of in terms of

"lag" - i.e. a period of time that must elapse, following exposure, prior to seeing

a measurable change in risk. Lagged, or delayed, effects have been studied in a

breadth of examples, including the multiple conditions for which smoking cessa-
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tion is considered to reduce risk over time.(U.S. Department of Health and Human

Services, 1990)

In particular, Rachet et al. (2003) explored the distribution of the lag in the as-

sociation between smoking cessation and heart attack, using data from the Fram-

ingham Heart Study. The method here was limited to individuals with successful

smoking cessation, yet, given that the average smoker may try to quit 30 times be-

fore success(Chaiton et al., 2016), there is a clear need for models that can account

for and handle more complex scenarios.

Another approach to deal with lagged exposure-response associations has been

to look at the cumulative dose, such as the total years smoked or pack-years, at the

time of event. The downside to this technique comes from its inability to account

for discontinued use, i.e. the latent exposure may subside, while a cumulative dose

is assumed to stay constant.

For this dissertation, the delay, or "lag", will be defined as the amount of time

between exposure initiation or discontinuation and the time to saturation or elim-

ination of the underlying hazard. This differs from the epidemiologic concept of a

"latency period", in that an event may occur during the lag-time of an effect, but is

not expected to occur within the former period of time specification. The overall

goal of this thesis will be to introduce novel statistical methods for estimating a

lagged effect, and the lag-time associated with that effect size.

The analogous structure of the novel models I introduce comes from the phar-

macokinetic one-compartment model (OCM) in that the effective amount of a sin-

gle or set of protracted exposures, over time, follows an exponential accumulation

or decay curve. The first-order elimination rate parameter in OCM has an intu-

itive "half-life" interpretation, which can be used to describe the amount of time
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required for the risk to rise or fall half-way. In my implementation, the volume

and clearance parameters are factored out of the equations, leaving only the rel-

ative concentration, rate of growth/decay, and time parameters. Together, these

parameters model the shape of a latent risk curve, which looks similar to the OCM,

but reflects the increase or decrease in the effective level of exposure relative to a

maximum hazard.

Unlike the pharmacological effect in the OCM, the biologic effective exposure

value [that parallels the "concentration" in the OCM equation] may not be an easily

measurable quantity or readily available. To illustrate this, consider the effect of

prednisone or corticosteroids (CS) on the risk of fracture. The biologic mechanism

could be that CS leach calcium from the bones, which leads to an increased risk of

fracture.(Van Staa et al., 2000; Vestergaard et al., 2008) However, measuring bone

density as a marker can often be costly and inaccessible for study. Therefore, the

unobservable change in the risk of fracture due to CS use is what I am interested in

modeling. That is – how can I model the population-level hazard when the effect

of the exposure, which is assumed to have some lag, is also changing over time?

Another use of my method could be to evaluate the presence of spurious or

unexpected associations, specifically those that return an estimated lag-time that

is infeasible biologically. For example, an estimated time-to-null hazard of one

day [for CVD outcomes following smoking cessation] is highly improbable, and

could imply some confounding by indication in the analytic approach. Alternately,

should the estimated lag be infinite, one may need to reassess the biologic model

that assumes the CVD hazard associated with smoking could even return to the

level of never smokers. Such concepts and limitations are discussed in more detail

in Chapters 3 and 5.
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In the remainder of Chapter 1, I introduce examples of lag effects and provide

some background on previous approaches used to account for lag-time in analy-

sis. To serve as inspiration for the novel methods developed here, I also provide

brief introductions to pharmacokinetic and longitudinal data models, and give an

overview on profile likelihood estimation.

1.1 LAG OF EFFECT

In the context of time-variant primary exposures, mixed effects and survival anal-

ysis models have been used to estimate the association between an exposure and

some time-to-event outcome of interest. However, when the underlying exposure

quantity is unknown, or the exposure may not have an immediate action mecha-

nism, researchers make assumptions to attempt to account for the delay. Therefore,

most clinical and analytic approaches only try to account for the delay in the esti-

mated effect but fail to estimate it.

Analysis of administrative and longitudinal data typically requires assump-

tions be made regarding the causal and temporal relationships between exposures

and outcomes. As long as a risk factor occurs with enough time prior to the event

of interest, the mechanism of effect can be estimated with certainty and minimal

bias.(Rothman, 1981) Difficulties may arise when one must allow an amount of

time for an exposure to fully turn "on".

The field of epidemiologic study is ripe with examples of delayed and lagged

effects, both in the realm of pharmaceutical interventions, as well as, with non-

therapeutic exposures such as environmental pollutants.(Langholz et al., 1999; Thomas,

1983) To narrow the focus of this methodology, I am specifically interested in

dichotomous events and outcomes whose risk due to protracted exposure is as-
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sumed to plateau, or stabilize, given "enough" time exposed. That is, those who

have been exposed for an extended period of time are considered to be at a maxi-

mum hazard associated with the underlying exposure mechanism.

Additional complications arise when exposures are not consistent over time,

making classification decisions difficult during population-model building, and

can often lead to the exclusion of subjects in transition-states. These individuals

present a rich source of untapped information about the exposure. Restricted anal-

yses may not paint the full picture of the time-to-effect, and the results may only

be generalized to the populations represented by the restricted sample. For exam-

ple, the benefits of weight loss in overweight/obese individuals with regards to

reducing the risk of CVD and/or type 2 diabetes may not be applicable to weight-

cyclers, or "yo-yo dieters", as studies have found a majority of men and women are

unable to maintain their reduction in body weight.(Strohacker et al., 2009)

In an analysis of Nurses Health Study data, Giovannucci et al. (1995) found a

protective effect of regular aspirin use on the risk of colorectal cancer. While the

association was only statistically significant in a restricted sample of consecutive

reports [of aspirin use], the unrestricted analysis still indicated that consumption

of two or more aspirin tablets per week would lower the risk of colorectal cancer.

Similar results were seen in the Health Professionals Follow-Up Study, whereby

the Giovannucci et al. (1994) concluded that any extended period of aspirin use

was associated with a reduced risk of colorectal cancer and adenomas.

Other examples include the declining risk of cardiovascular events following

smoking cessation, the change in the likelihood of fracture due to corticosteroid in-

take or discontinuation, and clinical improvements in depression symptoms after

the initiation of treatment. In all of these examples, the true impact of the exposure
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can only be properly estimated, if the amount of time-to-effect, or lag, is correctly

specified.

1.2 PREVIOUS WORK THAT CONSIDERS LAGGED EFFECTS

Rothman’s Induction and Latent Periods

Rothman (1981) explored the differences in terminology for time between various

states of the disease process, specifically causal mechanisms leading to disease on-

set and then disease detection. The take-away from the article follows the notion

that the events must happen in a particular order. Failing to take into account the

period lengths may result in non-differential misclassification and underestima-

tion of the effect of interest. The proposed solution is to look at models and anal-

yses under different assumptions of the empirical induction period, and to select

the corresponding lag that results in an effect estimate furthest from the null.

Rothman’s theory has been disputed(Salvan et al., 1995; Richardson et al., 2011),

and more recent work has focused on maximizing the likelihood/partial likelihood

function, or selecting a lag-adjusted model based on Akaike’s Information Crite-

rion(Akaike, 1974). The latter method allows for comparisons across non-nested

models by penalizing the likelihood for the number of parameters estimated. This

can be useful when trying to account for nuisance parameters or estimates of cor-

relation structure that may have problems with model overfitting.

Time windows of susceptibility

One methodology that relates back to Rothman’s work is the use of time windows

to mark individuals as "exposed" within particular intervals following exposure.

These have been referred to as the "time windows of susceptibility" or "sliding win-
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dows". Applications of this method have been primarily focused on occupational

and environmental exposures, and the windows are selected by comparing the de-

viance statistics for models under different fixed intervals of exposure.(Finkelstein,

1991; Hauptmann et al., 2000a)

A particular drawback of this approach has been the need to select the windows

a priori, and the method does not account for protracted exposures or non-linear

latency functions over time. While Hauptmann et al. extended the approach to

look at both window width and position, the application was restricted to a case-

control study design which resulted in bias due to the retrospective assessment of

the exposure history.(Hauptmann et al., 2000a)

Splines and weighted cumulative exposures

One of the more common and published approaches for dealing with lagged ef-

fects relies on weighting past exposure events or integrating over the entire expo-

sure history in order calculate the "etiologically relevant" exposure metric. (Langholz

et al., 1999; Abrahamowicz et al., 1992, 1996; Hauptmann et al., 2000b; Rachet et al.,

2003; Sylvestre & Abrahamowicz, 2009) The particular usefulness of this method

comes from its ability to account for varying exposure intensities and durations,

as well as, estimating a clinically meaningful measure for the exposure-response

relationship.

The cubic splines model for cumulative exposure weighting of lagged effects

was described by Abrahamowicz et al. (1996) in an application to lupus nephritis.

Here, the exposure history is broken into segments based on a pre-selected number

of knots and a differentiable order of polynomial spline functions. One strength of

this approach is the ability to test for the type of exposure-hazard relationship,
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since the lower order functions of the predictor are nested within the higher or-

der model. Similar to Rothman, the authors utilized AIC to assess the model’s fit

compared to conventional time-varying dose and duration models. Meanwhile,

the confidence bounds for the predictors were derived by maximizing the partial

likelihood. This is the method that Rachet et al. (2003) employed for estimating the

distribution of the lag-time associated with reduction in the hazard of heart attack

following smoking cessation.

Distributed lag linear and non-linear models

The distributed lag modeling framework is inspired by time-series regression in

economics and has been described in the context of generalized additive mod-

els(Zanobetti et al., 2000) and non-linear models (Gasparrini et al., 2010). The

frameworks allow for various lag-parameterized basis functions to define the ex-

posure’s effective amount over time. The idea of these models is to calculate multi-

ple parameters for each lag-period exposure, with a final coefficient summarizing

the overall effect of a unit change in the weighted average of exposure.

1.3 THE PHARMACOKINETIC ONE-COMPARTMENT MODEL

The one-compartment model (OCM) is a pharmacokinetic formulation that quan-

tifies the amount or concentration of a desired drug within the plasma, over time.

Given a known rate of elimination [of the drug from the system], one can compute

the effective amount of the agent in the compartment of choice.(Winter, 2004) For

an Intravenous (IV)-administered drug, it is possible to determine the amount of

time needed to reach a steady state level, as well as, the relative amount of steady

state concentration at any given time. This "concentration" model can be used as a



9

general framework for describing the behaviors of a latent exposure, dictated by a

rate of growth or decay towards or away from a steady state plateau, over time.

The formulas required to calculate the concentration at a given time are broken

down into three possible time-frames: 1) At the beginning of infusion, 2) During

steady state, and 3) After discontinuing infusion. The single generalized formula

that can be used to calculate concentration at time, t, follows(Wijnand, 1988):

Ct
p =


k0
keV

[
1− e−ket

]
if t ≤ D

k0
keV

[
1− e−keD

]
e−ke(t−D) if t > D

(1.1)

Where the infusion begins at time 0, D denotes the end-time, t − D the time

elapsed since ending the infusion [for the second condition], k0 and ke are the infu-

sion and elimination rates, and V represents the volume of the administered infu-

sion. The first condition is equivalent to the second by replacing D with t, when t

is less than or equal to D. By the definition of steady state, where the concentration

accumulates and eliminates at the same rate, the total concentration is equal to:

Css
p =

k0
keV

(1.2)

Thus, the relative concentration at time t vs. the steady state (ss) level can be

described by:

Ct
p

Css
p

=
k0
keV

[
1− e−keD

]
∗ e−ke(t−D) × keV

k0
=
[
1− e−keD

]
∗ e−ke(t−D) (1.3)

That is, at any given time point, the achieved proportion of the steady state

value can be modeled via an exponential curve with a known constant elimination

rate. For as long as the infusion continues, this function is monotonically increas-
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ing, and then monotonically decreasing once the infusion is stopped. Another

strength of this formulation is the ease of calculating the elimination rate, given

a known amount of time required to get to half of the steady state concentration.

Specifically, one can prove that the elimination rate is just a function of the half-life,

and conversely, that if the elimination rate is known, one can estimate the half-life

of the drug in the compartment of choice.

1

2
= 1− e−keth −→ 1

2
= e−keth −→ ln (

1

2
) = ln (1)− ln (2) = − ln (2) = −keth =⇒

ke =
ln 2

th
⇐⇒ th =

ln 2

ke

The OCM structure assumes that the curve will increase over time for approx-

imately 4-5 half-lives, before entering steady state, at which point, continuation of

the medication does not appreciably change the level of concentration in the sys-

tem. Once the medication is stopped, it should take approximately 5 half-lives to

return back to zero or "normal", and starting another infusion or dose should result

in a concentration that is equivalent to the sum of the two curves.

These concepts can be stretched to a more abstract formulation, noting that

equation (1.3) defines the relative concentration in the plasma, over time, versus

the maximum concentration achievable at steady state. Let me define this concen-

tration ratio from as Cratio.

In equation (1.3) the assumption stands that time begins to increment at the

start of infusion, t = 0. For a population or sample where the start times are not all

indexed by time=0, the formula is revised to three segments separated by the start

and stop times of the infusion. Prior to initialization, the relative concentration is

zero. Once the infusion is started, this ratio will begin to rise towards 1, and after
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discontinuation, the ratio is expected to decline back to zero. Both the increase and

decrease depend upon the rate of elimination. Functionally, this can be written as:

Cratio =


0 if t ≤ b

1− e−ke(t−b) if b < t ≤ f[
1− e−ke(f−b)

]
∗ e−ke(t−f) if t > f

(1.4)

Note, that this set of equations (1.4) generalizes the drug exposure start time as

b, rather than 0. This shift is important, as well as the specifications that b < f , for

bϵT and fϵT , where T is the range of surveillance times, for which data is available

and/or collected. The quantity, f − b, is equivalent to the total amount of time

exposed, or D from equation (1.3).

When multiple IV infusions are given, the rate of elimination does not change,

thus the total concentration, or effective dose, in the compartment becomes a sim-

ple sum of the individual concentrations.(Bourne, 2010) I will take advantage of

this mechanism in chapter 2.

1.4 LONGITUDINAL MODELS

The question of interest for this dissertation lies in the modeling of a lagged hazard,

or a risk over time conditional on surviving up to that time. There are several

regression approaches that work in this context, including, but not limited to, Cox

proportional hazards (CPH) and pooled logistic regression (PLR) models. Both

models have been shown to work for analyses of risk over time, with benefits and

costs to each approach.(Cupples et al., 1988; D’Agostino et al., 1990; Ngwa et al.,

2016) I offer a brief overview of these methods, below, to prepare for their use

throughout the remainder of the dissertation.
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1.4.1 Cox Proportional Hazards Regression

Cox proportional hazards (CPH) regression models are one of the most common

forms of regression used in analyzing exposure-response associations in the con-

text of time-to-event outcomes.(Cox, 1972; Therneau & Grambsch, 2000; Hosmer

et al., 2008; Kleinbaum & Klein, 2011) Here, time is considered to be a part of the

outcome and the interest lies in determining differences in survival due to some

exposure by looking at the relative hazards over time. The linear model is fit for the

hazard at time t, h(t|X(t)), given the data X(t) and an unknown baseline hazard

function, h0(t).

h(t|X(t)) = h0(t) exp [x1jβ1 + ...+ xqjβq]

The semi-parametric nature of the Cox model implies that the baseline haz-

ard does not need to be specified or estimated. The parameters for each of the

exposures in the model are assumed to be proportional across time. Using the

extension proposed by Andersen & Gill (1982), it is possible to update the values

for each subject’s time-dependent exposures, such that the conditional form of the

equation satisfies the proportional hazards assumption.

A typical maximum likelihood estimation approach first requires specification

of the likelihood and log-likelihood functions. For the CPH model, the likelihood

becomes a product of the unique event time hazards. To keep the derivations and

steps generalize-able, I consider the case where more than one event may occur at

a particular time. To handle these ties, I utilize the likelihood and log-likelihood

formulations proposed by Breslow (1974) throughout the dissertation. The nu-

merator represents the sum of exponential risk of event for all individuals with

an event at that time, while the denominator is the sum of the exponential risk of

event across all individuals that have survived up to that time multiplied by the



13

number of events at that time.

L(X,β,Y ) =
K∏
k=1

∑
jϵR(tk,Yj=1)

exp(Xjβ)[ ∑
jϵR(tk)

exp(Xjβ)

]mk

ℓ(X,β,Y ) =
K∑
k=1

 ∑
jϵR(tk,Yj=1)

(∑
q

xqjβq

)
−mk ln

 ∑
jϵR(tk)

e

∑
q
xqjβq


(1.5)

where tk is the kth unique event time index, with mk equal to the total number

of events at time tk, R(tk) represents the set of subjects at risk in time tk, and with

the likelihood function’s numerator taking the sum of exponential risk scores for

all subjects with events at time tk. Specifically, I define the risk score for subject i, as

the sum of the product of the covariates and their respective predicted coefficients:

r̂i =
∑
q

xqiβ̂q = x1iβ̂1 + ...+ xqiβ̂q

Due to the unique semi-discrete nature of the CPH estimation process, where

risks are summed and component likelihoods calculated by strata-time slices, tied

events are likely to occur and need to be handled appropriately. As already men-

tioned, Breslow’s approach will be used throughout the dissertation, which has

been shown to be less conservative than the approach proposed by Efron (1977).

However, the simplicity of Breslow’s formula, that treats each event in a given

time as equally-likely, allows for faster computations, a preferable quality for my

method.(Hertz-Picciotto & Rockhill, 1997)
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1.4.2 Pooled Logistic Regression

An alternative method to the CPH is the pooled logistic regression (PLR) model,

which has been shown to work for repeated measures study designs. Specifically,

interval-sliced data for subjects with time-varying covariates can be pooled to esti-

mate the conditional odds of an event.(Cupples et al., 1988; D’Agostino et al., 1990)

The primary difference, here, is in the interpretation of the effect measures as the

conditional odds of event having survived up to that time. As long as the interval

considered for the repeated measures is small and the events are relatively rare,

the PLR models provide reasonably comparable odds ratio estimates to the CPH

hazard ratio of the effect and it’s standard error.(Green & Symons, 1983)

My methodology can handle both types of analytic models, though my main

focus remains on time-to-event outcomes. In chapter 2, I outline the equations that

relate to the pooled logistic analyses, and in chapter 3, I touch upon the differences

and, potential, limitations of my method applied to this modeling framework.

For completeness, below, I have shared the PLR likelihood and log-likelihood

functions that are maximized during the process of estimating the effect parame-

ters.

L(X,β,Y ) =
n∏

i=1

T∏
t=1

pYit
it (1− pit)

(1−Yit)

ℓ(X,β,Y ) =
n∑

i=1

T∑
t=1

Yitlnpit + (1− Yit)ln(1− pit)

(1.6)

pit =
exp(β0 + x1itβ1 + ...+ xqitβq)

1 + exp(β0 + x1itβ1 + ...+ xqitβq)
(1.7)

Let i denote the subject at time t, and the individual’s time-specific values are

defined as follows: pit is the probability of event, X is the data for q exposures,
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taking values x1it, ..., xqit, βq is the qth covariate’s true association coefficient, and

Yit takes the value of 1 for an event and 0, otherwise, for subject i at time t.

1.4.3 Profile Likelihood Estimation

The profile likelihood [also referred to as the profile log-likelihood method (PLL)]

approach can be thought of as the marginal likelihood of a model across levels of a

pre-specified parameter.(Cole et al., 2014; Venzon & Moolgavkar, 1988; Murphy &

Van Der Vaart, 2000; Sprott, 2000; Cox & Reid, 1992) In this estimation technique,

the parameter of interest is fixed, while the other parameters are estimated via tra-

ditional maximum likelihood and regression methods. Graphing the likelihood or

log-likelihood for the fully adjusted model against the fixed parameter, provides

a visual representation of the likelihood’s behavior attributable to the parameter

of interest. If the likelihood is unimodal and the log-likelihood looks like an in-

verted "U", then the resulting curve’s maximum should occur at the value of the

parameter that would be found using maximum likelihood estimation.

One reason to define this likelihood profile is to determine confidence bounds

for the parameter, by looking at which points of the curve cross the horizontal

line located at one chi-square’s distance below the maximum. Figure 1.1 illustrates

how this may look. The horizontal line indicates one chi-square distance from the

maxima, and the confidence interval for λ’s estimate is defined by the values at

which the horizontal line intersects the profile curve.1

Since the log-likelihood can be used for purposes of maximization, rather than

the full likelihood, I utilize the form of the profile log-likelihood (PLL) for most of

the estimation algorithms proposed in this text.

1Image taken from: https://www.unc.edu/courses/2010fall/ecol/563/001/images/lectures/
lecture8/fig4new.png
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Figure 1.1: Profile Likelihood

1.5 DISSERTATION SECTIONS

In chapter 2, the properties of the OCM are described to serve as a structure for

lagged latent exposure profiles over time. The transition from OCM to effective

exposures models is fairly straightforward by recognizing the cumulative expo-

nential function can be parameterized using lag in terms of the elimination rate. I

further step away from the OCM by extending the exposure’s formulation from a

single parameter to two parameters, such that the exposure’s effect curve has sepa-

rate rates of incline and decline. With each of these defined exposures, I introduce a

profile likelihood-based algorithm for estimating the lag and hazard concurrently,

with corresponding estimates of uncertainty. I derive both the single- and two-

parameter approaches for CPH and PLR analytic models of the outcome.

Chapter 3 presents the results of Monte Carlo simulation studies in which the
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statistical performances of the single- and two-parameter approaches are explored

for the concurrent estimation under known inputs for the lag and effect size. The

simulation studies are based on a range of scenarios that correspond to real-life

clinical examples. In Chapter 4, I examine the lagged relationship between smok-

ing and CVD hazard amongst the Black Women’s Health Study (BWHS) cohort.

This applied chapter explores smoking as both a binary exposure and in terms

of packs per day over time, accounting for multiple time-varying potential con-

founders. I compare the effective exposure analyses to conventional exposure vari-

ables of smoking, such as current vs. past vs. never smoking, or cumulative years

smoked.

In Chapter 5, I summarize the results from chapters 2-4, discuss the strengths

and limitations of my proposed methods, and describe theoretical and applied

research perspectives.
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CHAPTER 2

Effective Exposure Derivation

The goal of this chapter is derive and describe a novel methodology for estimation

of lagged effects, both in terms of the latent period and overall effect size of a series

of exposures. I start by drawing the parallels between the pharmacokinetic one-

compartment model (OCM), described in the Introduction [Chapter 1], and the

effective exposure distribution, over time, as parameterized by the half-life of the

effect. In order to use this formulation, I describe the relevant assumptions needed

for estimating the hazard and lag parameters concurrently.

After stating the methodologies behind the single-parameter single-exposure

model, I further extend the algorithmic estimation approach to more complex ex-

posures – specifically, the two-parameter effective exposure model, and the pro-

tracted exposures models. The latter functions as an extension to either the one- or

two-lag parameter variants of effective exposure. For the purpose of this chapter I

only focus on the multiple dosing (protracted exposures) using a single lag.

This chapter is meant to be read as a full description of the methods developed

for the dissertation. In Chapter 3, I compare multiple models using simulations

and outline the relative strengths and weaknesses of the algorithms.

2.1 TRANSITION TO LONGITUDINAL OBSERVATIONAL DATA

As described in the introduction to OCM (section 1.3), given a known elimination

rate, ke, one can calculate the relative exposure level, or concentration over time.

Recalling from (1.3), the volume and clearance parameters become irrelevant when

modeling the ratio curve as it plateaus to 1 (approaches steady state) over sufficient

time. The primary interest becomes the rate at which the curve inclines toward or
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declines from steady state, which is driven by the lag parameter, or the half-life.

In this model, it is assumed that after an extended period of time, the hazard, or

concentration of risk, due to an exposure should stabilize at some steady state-like

effect size. The attributed risk, in this context, does not require an assumption of

causality, but does depend on the existence of some underlying action mechanism

by which the likelihood of the outcome changes relative to a threshold of the cu-

mulative exposure over time. That means that one could model the underlying,

or latent, hazard of an exposure on some outcome, using a time-varying quantity

as a proxy for the weighted cumulative exposure. This latent quantity can be con-

sidered in terms of a measure that is relative to the maximum level of effect at any

given time.

Let me define the term "Effective Exposure" (EE), or Eit(λ), as the relative amount

of an exposure necessary to impose some effect, and for which the effect will eventually

reach plateau, or steady state. This could also be referred to as the point at which

the hazard ratio associated with the exposure attains maximum. It will be used to

represent the latent (unobserved) time-varying association of an event in relation

to the individual’s lifetime history of an exposure of interest.

The λ is used as the lag parameter, implying that the underlying effective expo-

sure changes over time based on a decay rate1. As the pharmacokinetic elimination

rate is constant with respect to volume and dose, the assumption stands that the

lag parameter of an effect curve should not vary across individuals, time, or con-

centration of exposure.

This rate parameter can also be converted to a half-life, h, by the properties of

the OCM, which lends more intuitively to interpretation. This also implies that

1Analogous to the elimination rate, ke from the OCM
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it may be possible to estimate λ or h, given total exposure profiles over time for

individuals in a cohort. For example, one could estimate that the absolute cardio-

vascular disease (CVD) hazard associated with smoking would decrease 50% after

h (half-life) number of years following complete cessation. The change is relative

to a starting point [hazard], and thus should be considered in terms of the individ-

ual’s effective exposure and not in terms of the time required to reduce the hazard

ratio by 50%.

The term "dose" will be used to refer to the level at which steady state, or the

maximum hazard, occurs. The lag estimation always ties back to a single unit of

the dose being used in the model. This means that for each version of the exposure

used (binary vs. continuous), careful attention must be paid to the interpretation

of both the lag and effect size parameters. For example, Chapter 4 will refer to

current smokers vs. not, when estimating a general CVD hazard due to smoking.

It also explores the CVD hazard associated with packs per day smoked.

The latter assumes that the risk of CVD associated with 2 packs/day of smoking

plateaus at twice the effective exposure of a 1-pack/day smoker. Additionally, the

time needed for the 2 packs/day smoker’s hazard to return to the level of the 1

pack/day smoker would be equal to the half-life years for the 1 pack/day unit

risk. Discussion of the nuances behind these interpretations continues throughout

this text.

The last term to define before deriving the models is that of the risk "profile"

or "trajectory". The two words are used interchangeably to imply the history of

exposure for an individual. In the context of time-varying exposures, an interesting

trajectory might include that of the "on-again off-again" smoker, such that the CVD

hazard associated with smoking is not monotonic throughout their lifetime, but
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rather fluctuates based on the individual’s set of known smoking periods. Thus,

I refer to strictly increasing or decreasing effective exposure as a monotonic risk

profile, the former applying to individuals who smoke throughout the course of

a study and the latter illustrating the CVD hazard decreasing over time following

successful cessation of smoking.

2.2 ONE PARAMETER EFFECTIVE EXPOSURE

The first version of the Effective Exposure model will be called "One Parameter

Effective Exposure" (OPEE). It assumes the form closest to the OCM, such that it

depends on a single parameter to define the rates of the incline towards steady

state and decline back to zero.

2.2.1 Exposure Specification

Without loss of generalizability, the following derivation will be described in terms

of a binary (yes vs. no) exposure. Let D equal 1 for a single exposure event that

starts at time t = b and ends at time t = f for subject i, and λ denotes the rate

parameterization of the lag. I can represent subject i’s effective exposure Eit(λ), at

time t for a given lag, λ, by the following:

Eit (λ, b, f) = D
(
1− e−λ(t−b)

)
∗ I (tϵ [b, f ]) +D

(
1− e−λ(f−b)

)
e−λ(t−f) ∗ I (t > f)

= D ∗
[
e−λ∗max(0,t−f) − e−λ∗max(0,t−b)

]
= D

[
e−λz2 − e−λz1

]
(2.1)
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where

z1 = max(0, t− b) =


t− b if t > b

0 otherwise

z2 = max(0, t− f) =


t− f if t > f

0 otherwise

(2.2)

Figure 2.1 shows how the EE curve approaches steady state for different lags.

Specifically, the shortest lag, in terms of half-life in days, quickly rises to steady

state, versus the 900 days, which does not even reach half of the total steady state

height upon exposure discontinuation2.

Given a lag parameter and known start/stop times of exposure, Eit(λ) rep-

resents the particular height or latent exposure level at any point in time for an

individual. By exploiting this specification, I developed an iterative algorithm to

calculate the effective exposure [for each subject at each measurement time] and

use the corresponding value as the primary exposure metric in either the Cox pro-

portional hazards (CPH) or pooled logistic regression (PLR) model framework.

The odds ratio estimated by the PLR model is conditional on a subject’s survival

up to that point in time, thereby it is an approximation of the hazard ratio under

appropriate conditions.(Ngwa et al., 2016; Cupples et al., 1988; D’Agostino et al.,

1990) I will therefore refer to the maximum hazard as the effect size estimated by

the EE approach. Details regarding the algorithm can be found in section 2.2.3.

Parameterizing EE by the half-life instead of the lag parameter produces an

2The 90-day half-life is used as a base case for the simulations in Chapter 3, where an explanation
is provided for this selection. Meanwhile, 900 days represents the maximum follow-up time for the
base case scenario, thus considered the upper bound for estimate-able half-lives in this type of
study design.
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equation that looks like:

Eit(h) = D
(
e−z2 log 2/h − e−z1 log 2/h

)
(2.3)
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Figure 2.1: Effective exposure curves for different lag parameters,
using the half-life definition in days.

2.2.2 Estimating Equations

2.2.2.1 Cox Proportional Hazards

To estimate the lag-time of an effect, I use the log-likelihood equation for CPH from

equation (1.5) with Breslow’s handling of ties to calculate the partial log-likelihood.
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In a univariate model, I maximize the following with respect to λ and β:

ℓ(β, λ, Y ) =
K∑
k=1

 ∑
jϵR(tk,Yj=1)

βEj(λ)−mk ln

 ∑
jϵR(tk)

eβEj(λ)

 (2.4)

where j is the subject-time index for a particular risk set R. R(tk) denotes all

subjects at risk at event time tk, and R(tk, Yj = 1) further restricts the risk set to sum

across all mk individuals with events at time tk. Ej(λ) is the calculated effective

exposure for individual j in the risk set at tk, as defined in chapter 1. Eit(λ) and

Ej(λ) can be used interchangeably depending on the indexing - in this case j is the

conditional index for individuals in the risk set R at time tk, which could also be

represented by the combined indices itk.

Some important notes about my use of Cox’s partial log-likelihood function:

1. The sum from k = 1 to K requires that risk sets be defined by both unique

stop-time and strata, when assuming the baseline hazard also differs across

strata.

2. The observed likelihood and log-likelihood in a multivariate model setting

can be calculated by substituting β̂Ej(λ̂) with an individual’s risk score from

the multivariate model with Q total covariates and their corresponding esti-

mated parameters, γ̂1, ..., γ̂q. – i.e. r̂j = β̂Ej(λ̂) + γ̂1x1 + ...+ γ̂qxq

3. Further, I will assume that all of Andersen and Gill’s conditions are met for

the use of the Cox model with time-dependent covariates.(Andersen & Gill,

1982) That is, I assume that all of the hazards for the parameters in the model

are proportional over time.

The predicted beta [and gamma parameters] in note 2 come from the CPH
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model that is fit after fixing the lag parameter. Setting λ or h allows for the use

of standard maximum likelihood estimation techniques, which do not require full

explanation here. In summary, the model assumes the input effective exposure is

the true exposure measure for which an estimate of effect is needed.

2.2.2.2 Pooled Logistic Regression

The equations required for a PLR analysis differ primarily in the construction of

the likelihood and number of measurement intervals used. Here, the focus is on

the predicted probability of an event at time t, rather than the hazard. Recalling

(1.7), the univariate form of the logistic predicted probability of event for subject i

at time t given a known lag of the effect λ can be written as:

p̂it =
eβ̂0+β̂1Eit(λ̂)

1 + eβ̂0+β̂1Eit(λ̂)
(2.5)

As described in the CPH paragraphs, by fixing the lag parameter, estimation of

β̂ is conditional on the lag specification. Thus, standard methodologies for logistic

regression would apply to the effect size parameter estimation.

2.2.2.3 Confidence Intervals

In order to obtain a standard error for the lag estimate, I can take the second deriva-

tive of the partial log-likelihood with respect to the effect size and lag parameters,

to approximate the Fisher’s Information matrix.(Hastie et al., 2009) To do this, and

to be able to use the delta method, certain conditions and regularity assumptions

need to be stated.
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Regularity Conditions and Necessary Assumptions

1. The first derivative with respect to λ of the log of the EE exists and is finite

2. Let EE be expressed as a function of x and λ, such that x is the measured set

of variables contributing to EE (x is the set {D, f, b, i, t}).

(a) f(x;λ) has bounded support in x and bounds do not depend on λ

(b) f(x;λ) has infinite support and is continuously differentiable

3. Y , the binary outcome of interest is independent and identically distributed

across all subjects and risk sets.

4. EE is a smooth function.

5. The log-likelihood’s first and second derivatives exist

6. The lag is normally distributed in the population

7. The likelihood is unimodal

Condition 1 is necessary with either condition 2a or 2b. Since Eit(λ) has been

defined as a function of exponentials, I am able to continue on the basis of con-

ditions 1 and 2b. Even though the graph in figure 2.1 of EE appears to be non-

differentiable at the point of discontinuation (i.e. change-point), the equation does

not assume continuity through the change-point, therefore regularity holds as long

as the piecewise elements are continuously differentiable.

The delta method allows me to use the inverse of Fisher’s Information to ap-

proximate the asymptotically normal standard errors for the β and λ parameters.

Each component of the Information Matrix has been derived in full and is pre-

sented in Appendix D. The formulas presented, below, are the first and second
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derivatives of Eit(λ) with respect to λ, which are used for the first and second

derivative calculations of the log-likelihood with respect to λ.

∂Eit(λ)

∂λ
= D

[
z1e

−λz1 − z2e
−λz2

]
∂2Eit(λ)

∂λ2
= D

[
z22e

−λz2 − z21e
−λz1

] (2.6)

Note that I can parameterize using the half-life, h, instead of λ, by imposing an

additional derivative:
[
λ =

log 2

h
−→ ∂λ

∂h
=
− log 2

h2

]

∂Eit(h)

∂h
=

D log 2

h2

[
z2e

−z2 log 2/h − z1e
−z1 log 2/h

]
∂2Eit(h)

∂h2
=

D (log 2)2

h4

(
z22e

−z2 log 2/h − z21e
−z1 log 2/h

)
− 2D log 2

h3

(
z2e

−z2 log 2/h − z1e
−z1 log 2/h

) (2.7)

2.2.3 Estimation Algorithm

All of the formulas, functions, and algorithms have been programmed using R

version 3.2.3.(R Core Team, 2017) Package and function dependencies are outlined

in my program documentation, though not everything will be included in the ap-

pendices of the dissertation.

The optimization methods I developed mimics the profile likelihood method in

that a partial likelihood is computed by fixing a single parameter and maximizing

across the rest. I fit the data simultaneously across several values of λ to itera-

tively search for the λ̂ that maximizes the log-likelihood. This "guess-and-check"

method may seem cumbersome, but it should be, theoretically, more efficient than

a full profile likelihood fitting procedure. This will be especially important when

considering a two-parameter space for the lag. Chapter 5 will cover more of the
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strength and limitations comparing these two methods.

Proper data preparation eases the computational burden of the estimation pro-

cess, by only requiring a single calculation to assign EE for each individual at

each time slice. Part of the programming developed with this dissertation includes

functions designed to create the necessary time and dosing vectors/variables (D,

z1, and z2) that inform the Eit(λ) calculation. The documentation is available in the

Appendix B – for this particular function, please refer to "makeDVecs()".

Depending on the underlying event model, pooled vs. cox, the algorithm fits a

lag-dependent OPEE against the outcome, in a univariate or multivariate setting,

and returns the estimated effect β̂ and model fit (log-likelihood and/or AIC). I

utilize the "survival" package (version 2.38) in R to estimate β̂ and other model

coefficients.(Therneau, 2015)

The coxph() object outputs the predicted risk score (predicted probability of

survival) for the final model fit, which can then be used to calculate the compo-

nents of the Information Matrix – i.e. return estimates for the standard error in

the lag parameter, and an adjusted standard error for the beta parameter, as well.

For algorithms that employ the PLR models to estimate β̂, I have chosen to utilize

the "speedglm" package, which is efficient for generalized linear models fit to large

data matrices.(Enea et al., 2015)

The equations presented in this section, so far, have only focused on the decay-

rate parameterization for the lag, λ. Given the relationship between λ and h,

the derivatives with respect to lambda,
∂Eit(λ)

∂λ
, and half-life,

∂Eit(h)

∂h
, actually

have different values and magnitudes upon evaluation, due to differences in the

measurement units3. To get estimates for the variability of the half-life parame-

3Eit(h) = Eit

(
log 2

λ

)
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terized lag, I derived the respective formulae for substitution into the likelihood,

log-likelihood, Score and Information Matrix functions appropriately. These are

shown in Appendix D on page 181.

In the OPEE half-life searching algorithm, I track the number of iterations, the

difference in the log-likelihood values between iterations, and which values have

already been fit. For each step, if the difference between likelihoods falls below the

algorithm’s tolerance or the number of iterations exceeds the maximum iterations

threshold, the loop is broken and the last maximum point is returned. The detailed

steps are described by flowcharts in Appendix A. The overview flow for estimating

the OPEE lag parameter is shown in figure 2.2.

This algorithm, as well as, the one described for extension to the two-parameter

model, requires that the user/analyst provide an initial guess for the half-life or lag

parameter, h0. The first set of models fit use the initial guess and additional guesses

by fixing the lower half-life to half of h0’s magnitude and the upper to twice the

initial h0’s magnitude. Here, the magnitude refers to the value for the half-life that

resides in an ordered list of three points: H1 < H2 < H3.

The first step of the algorithm compares the likelihoods arranged in order of

the fixed half-life parameters, H1 =
h0

2
, H2 = h0, H3 = 2h0, to determine which

direction to travel based on the half-life that maximizes the likelihood. For exam-

ple, if in the initial set of points, H , the maximum likelihood corresponds to H3,

then a new value is fit at twice the magnitude of the upper bound.

Once the maximum likelilhood has been centered, the upper bound side is

tightened to fit a model for the half-life value that is equidistant from the max-

imum as on the lower-bound side, i.e., a new model is fit for H3 = H1 + H2.

Following this step is a sequence of fits that narrows towards the maximum point
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in the center or between maximized points, until one of the threshold criteria are

met.

Step 0.
INITIALIZE

Max(log-like)
at center?

Step 2.
TIGHTEN
UPPER
BOUND

Step 1.
CENTERING

Max(log-like)
at center?
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NARROW
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Step 3.
NARROW
TOWARDS
CENTER

Threshold
Criteria Met?

Approximate
Standard

Errors

RETURN FINAL
ESTIMATES

numiter=0
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YES

numiter+1

YES

YES

numiter+1 numiter+1

NO

NO

numiter+1

Figure 2.2: OPEE Algorithm Flowchart

Following determination of the half-life, the magnitude of association is es-

timated by fitting one last model, and the final AIC is adjusted to include one

extra parameter – i.e., use the log-likelihood to re-calculate the AIC based on 2-

parameters for a crude CPH model with estimated β̂ and ĥ. The final estimates for

effect size and lag combine with the individual’s predicted probabilities to approx-

imate the inverse of the negative Information matrix [Fisher’s approximation of

the covariance matrix]. The square root of the diagonals, or variances, reflects the

estimated standard errors and the 95% confidence intervals are constructed using
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the standard normal Z = 1.96. It is important to recalculate the β̂ standard error as

the output from the model fitting procedures does not account for the dependence

of β̂ on the lag.
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Figure 2.3: Example of OPEE Algorithm Steps on BWHS Binary
Smoking Profile Log-Likelihood

A stepwise example of the OPEE algorithm can be seen in figure 2.3. The black

log-likelihood curve [backdrop in all six panels] comes from fitting the CPH model

of CVD due to the OPEE of dichotomous smoking on a restricted subset of the

Black Women’s Health Study (BWHS) sample. The x-axis represents fixed values
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for the OPEE half-life parameter ranging from 0.05 to 20 years, in increments of 0.05

years amounting to 400 total model fit points. The y-axis represents the profile log-

likelihood fit for the corresponding half-life, after adjustment for all the covariates

and confounders (described in Chapter 4). In this example, the values for the log-

likelihood have been omitted though the scale represents increasing log-likelihood

in the upward direction; i.e. the maximum pictured on the black curve is the true

profile log-likelihood maximum at a half-life of 4.5 years (as seen in the results

table D.2).

I start by initializing a single half-life value that comes from a clinically-relevant

range. Here, I start with 3 years, given the a priori belief that smoking’s risk on car-

diovascular disease should to return to normal between 2 and 5 years.(Rachet et al.,

2003; Rosenberg et al., 1990) The following steps describe the example of the OPEE

algorithm in Figure 2.3 moving along the top panels, left to right, and then left to

right across the bottom panels. H denotes the vector of half-life parameters con-

sidered and L the corresponding log-likelihood values that are being compared.

The index of each vector is denoted by the ordered value, while the superscript(i)

implies the iteration step. The notation matches what can be seen in the flowcharts

in appendix A.

• Step 0 - Initialize h0, create vector of starting points, and calculate the corre-

sponding maximum log-likelihoods:

H(0) =

[
H1(0) =

h0

2
, H2(0) = h0, H3(0) = 2h0

]

L(H)(0) =
[
L1(0) = ℓ

(
H1(0)

)
, L2(0) = ℓ

(
H2(0)

)
, L3(0) = ℓ

(
H3(0)

)]
like1← L2(0)
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• Step 1 - Center and expand in the direction of the maximum, calculate the

newest index likelihood, and determine the tolerance.

like2 = max
(
L(H)(0)

)
= L3(0), tol = |like1− like2|, like1← like2

H1(1) = H2(0), H2(1) = H3(0), H3(1) = 2H3(0)

L1(1) = L2(0), L2(1) = L3(0), L3(1) = ℓ
(
H3(1)

)
max

(
L(H)(1)

)
= L2(1) = L3(0) = like1

• Step 2 - Maximum log-likelihood at center. Tighten upper-bound to equal

distance from center as lower-bound:

H1(2) = H1(1), H2(2) = H2(1), H3(2) = H1(1) +H2(1)

L1(2) = L1(2), L2(2) = L2(1), L3(2) = ℓ
(
H3(2)

)
like2 = L3(2), tol = |like1− like2|

max
(
L(H)(2)

)
= L2(2) = like1

• Step 3 - Maximum log-likelihood still at center. Narrow bounds towards

center by half the distance:

d(3) = H2(2) −H1(2) = H3(2) −H2(2)

H1(3) = H2(2) − d(3)

2
, H2(3) = H2(2), H3(3) = H2(2) +

d(3)

2

L1(3) = ℓ
(
H1(3)

)
, L2(3) = L2(2), L3(3) = ℓ

(
H3(3)

)



34

like2 = max
(
L(H)(3)

)
= L3(3), tol = |like1− like2|, like1← like2

• Step 4 - Maximum no longer at center (after step 3), transition to search be-

tween maximae:

H1(4) = H2(3), H2(4) =
H2(3) +H3(3)

2
, H3(4) = H3(3)

L1(4) = L2(3), L2(4) = ℓ
(
H2(4)

)
, L3(4) = L3(3)

like2 = max
(
L(H)(4)

)
= L2(4), tol = |like1− like2|, like1← like2

• Step 5 - Tolerance threshold not met, continue searching between maximae.

H1(5) = H2(4), H2(5) =
H2(4) +H3(4)

2
, H3(5) = H3(4)

L1(5) = L2(4), L2(5) = ℓ
(
H2(5)

)
, L3(5) = L3(4)

max
(
L(H)(5)

)
= L1(5) = L2(4) = like1

To avoid calculating a "zero" tolerance when the maximum remains the same

in these steps, set the comparison to be between the first and second maxi-

mum log-likelihood values.

like2 = secondmax
(
L(H)(5)

)
= L2(5), tol = |like1− like2|

Threshold for tolerance reached. Stop algorithm and compute standard error

approximations.
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2.3 TWO PARAMETER EFFECTIVE EXPOSURE

With certain exposures, it may not be appropriate to assume that the effective ex-

posure accumulates at the same rate as it goes away. For example, upon exposure

to lead, the exposure distributes to various compartments in the body, including in

the bones, where it accumulates and is stored as a source of "continual internal ex-

posure".(Gulson et al., 1995; Flora et al., 2012) While this exposure can be measured

in the blood, the true quantity that persists (to affect us) as our bones demineralize

is unknown or requires high-level expensive technology to be measured.

One recommended approach to lowering the levels of lead in the body (i.e.

treating lead poisoining) is chelation therapy.(Centers for Disease Control and Pre-

vention, 2015) The chelating agent attaches to heavy metals like lead, flushing them

out of the system. In this particular situation, it may be possible to lower the im-

pact of lead through treatment, but I would not expect the time-to-reduction to be

the same as the rate associated with increasing disease hazards from initial lead

exposure. For this type of an exposure, I introduce a two-parameter effective ex-

posure (TPEE) model as an extension of the OPEE, where the lags differ for the

incline and decline of the EE curve.

Figure 2.4 illustrates what a curve with differing rates of accumulation and

decay, or incline and decline, may look like, compared to the single-lag effective

exposure. The blue solid line represents an EE curve with a single half-life pa-

rameter of 90 days, while the red dashed line represents the EE curve under the

same incline with a decline parameter half-life of 900 days. Both curves assume

continuous exposure for 180 days prior to discontinuation.
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Figure 2.4: Comparison of the effective exposure curves over time
for the one- and two-parameter approaches.

2.3.1 Exposure Specification

The OCM function is unique, in that it assumes a piecewise structure dependent on

change-points. This assumption also implies that after an infusion is discontinued

the accumulated total – from which the decay starts – is considered fixed.

Let Λ denote a set of two lag parameters, λ1 and λ2. Reverting back to the

original form of (1.4), since (f − b) = (t− b)− (t− f) = z1 − z2, the TPEE equation

follows:

Eit (Λ = (λ1, λ2)) = D
[
1− e−λ1(z1−z2)

]
e−λ2z2 (2.8)
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Where the definitions of z1, z2, and D remain the same, but now λ1 is the para-

metric lag for the incline and λ2 stands in for the decline lag. Parameterizing by

the half-life parameter produces an equation that looks like:

Eit(h1, h2) = D
[
1− e−(z1−z2) log 2/h1

]
e−z2 log 2/h2 (2.9)

2.3.2 Estimating Equations

In the OPEE framework, the likelihood and log-likelihood equations contain the

EE functions Eit(λ) or Ej(λ). These can also be written as Eit(Λ) and Ej(Λ), which

I have denoted as the EE function of the lag parameters λ1 and λ2 in equation (2.8).

The overall forms of the likelihood and log-likelihood equations (2.4) and (1.6)

do not change. This is because Eit(Λ) still represents the total Effective Exposure

at time t for subject i. Substituting Eit(Λ) for Eit(λ), however, does require the

calculation of new first and second derivatives with respect to both parameters

and their combination. Since the effective exposure is assumed to be a quantity

that is independent of the other model covariates, once the underlying equations

are appropriately adjusted, the calculation of the likelihood, with respect to the

other variables in the model, remains unchanged.

Full derivations of the Score and Information Matrix are provided in Appendix

D (starting on page 181) for both CPH and PLR likelihood functions. This includes

framework for the lag, Λ, and half-life, H , parameterizations. Again, medical re-

searchers may prefer the half-life parameterization’s estimate interpretation and

corresponding variability measure.
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2.3.3 Estimation Algorithm

The estimation algorithm for the TPEE approach relies on a grid search across com-

binations of the incline and decline parameters. Figure 2.5 shows the big picture

steps of the TPEE algorithm, which is similar to the one presented to the OPEE

algorithm.

In the first few steps the user specifies a single initialized value and the process

starts by halving and doubling this value for the first set of comparisons. This 3-

value vector is assumed to be the same for both incline and decline, leading to 9

total combinations corresponding to a set of incline and decline coordinates. The

full algorithm is described by flowcharts in Appendix A.

Step 0.
INITIALIZE

Max(log-like)
at center?

Step 2.
TIGHTEN
UPPER
BOUND

Step 1.
CENTERING

Threshold
Criteria Met?

Step 3.
NAR-

ROWING

Approximate
Standard

Errors

RETURN FINAL
ESTIMATES

numiter=0

NO

YES

YES

numiter+1 numiter+1

NO

numiter+1

Figure 2.5: TPEE Algorithm Flowchart

Depending on the pair of half-lives that produces the maximum log-likelihood

in the set, each parameter’s vector is expanded in the direction of the maximum by

halving or doubling – again, this is similar to the OPEE step 1 "centering". Upon

centering the maximum log-likelihood at the 5th index pair, the algorithm con-
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tracts both parameter upper bounds to be equidistant to the center (i.e. "tighten-

ing"). New CPH/PLR models are fit for the corresponding incline-decline EE for

which the likelihood has not yet been calculated.

The last sequence of steps iterates model fits for EE based on the first and sec-

ond maxima of each parameter, holding the other parameter constant (i.e. "nar-

rowing"). At this point, should the likelihood surface at a set of coordinates reach

a ridge4 the algorithm is stopped and the last maximum location is returned as the

final estimated pair of half-lives. While not explicitly described here, each step of

the algorithm also checks the tolerance and number of iterations, breaking the loop

and returning the last maximum likelihood coordinates when either threshold are

met.

Following the algorithmic search, I use the final pair of likelihood-maximizing

half-lives to estimate the maximum hazard parameter, and calculate the 95% confi-

dence intervals using the normally-approximated standard errors for the effect and

lag parameter estimates. The updated Score and Information Matrix equations for

approximating these standard errors can be found in the Appendix D.

Figure 2.6 provides a visual example of the steps in the TPEE algorithm using

data from the BWHS restricted sample binary smoking’s profile log-likelihood sur-

face. The colored background is meant to show the contour of the 3-dimensional

surface, with the lines representing the PLL’s joint 90, 95, and 99% confidence

bounds. The lighter shading indicates larger values of log-likelihood, such that

a peak occurs in the center of the contour bounds.

Step 0 starts with initial values of 1.5, 3, and 6 years for both half-life lag param-

eters. The top right quadrant of points are carried over to the left bottom quadrant

4This can be seen when two or more coordinates produce the exact same model fit.
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in step 1, and these points remain the same in step 2 as the upper bounds are tight-

ened. Step 3 searches for the true maximum log-likelihood somewhere in between

step 2’s top-right quadrant, and steps 4 and 5 narrow between maximae even fur-

ther.
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Figure 2.6: TPEE Algorithm Steps on BWHS Binary Smoking Profile
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2.4 MULTIPLE DOSING SCHEME

One of the main strengths of my proposed methodology is its ability to handle

changing exposures over time. This is slightly more nuanced than the simple pro-

tracted exposures approaches, as my method allows for subjects to discontinue

and/or start new regimens that may represent the same underlying action mecha-

nism.

The term regimen is used to describe the particular exposure [instance] for the

set of parameters that dictate start and stop times, and level of the dose. Let z3 and

z5 denote the time since start of a second and third regimen, and z4 and z6 denote

the time since stopping the second and third regimens, respectively.

Figure 2.7 illustrates the life-trajectory for changing regimens5 of the effective

exposure. Specifically, it demonstrates what the sum of all the effective exposure

curves looks like over time, where the declining effect due to regimen 1 still con-

tributes to an increased risk while the subject is on regimen 2 and has not, yet,

reached steady state. Since the maximization procedure assumes a single set of

parameters for the effect’s lag, the summation of the individual regimen’s effective

exposure curves are still differentiable.

The figure assumes a single parameter effective exposure model. As discussed

in the description for the TPEE formulation, since Eit(λ) is a function of the lag, the

algorithms can still be used. The multiple regimens are "simply " summed within

specification for a given subject’s exposure total at time t.

The solid lines in figure 2.7 represent a single set of dosing regimens for an

individual. In this example, I use an OPEE half-life of 5.85 years, so simplify inter-

pretation, assume that the doses represent the packs per day smoked. This subject

5as denoted by the vertical dashed lines
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Figure 2.7: Demonstration of the accumulation of protracted expo-
sures under OPEE model with a half-life of 5.85 years, a plateau haz-
ard ratio for 1-unit effective exposure of 2.63, and different steady
state dose levels.

smoked 2 packs per day from the start of follow-up for 20 years, and again from

60 years until the end of follow-up. From years 20 to 60, the subject reduced smok-

ing to 1 pack per day. The dashed blue line represents the hazard ratio compared

to a never smoker over time, with the black vertical dashed lines representing the

change-points in dosing levels. The figure represents a situation where there is a

single lag-parameter defined by a half-life of 5.85 years, and the CVD hazard from

smoking 1 pack per day, for an extended period of time, is 2.63 times the hazard of

never smokers.

The risk profile shown in figure 2.7 can be denoted by equation (2.10). Specifi-
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cally, Eit(λ) becomes a sum function of the individual dosing exposures. From the

example in the figure, the subject is exposed from years 0 to 20 and 60 to 80 at a

dose level of 2, while being exposed at a dose level of 1 from time 20 to 60. For the

figure’s example, the EE at time t can be calculated as:

E
(tot)
it (λ) = D1

(
1− e−(z1−z2)λ

)
e−z2λ

+D2

(
1− e−(z3−z4)λ

)
e−z4λ

+D3

(
1− e−(z5−z6)λ

)
e−z6λ

(2.10)

where

z1 =


t if t > 0

0 otherwise

z2 = z3 =


t− 20 if t > 20

0 otherwise

z4 = z5 =


t− 60 if t > 60

0 otherwise

z6 =


t− 80 if t > 80

0 otherwise

Using the piecewise notation, it becomes clear that the first and second deriva-

tives can be readily calculated for each individual exposure occurrence. Let E(1)
it (λ),

E
(2)
it (λ), E(3)

it (λ) be the EE components for each of the exposure events/period.

E
(1)
it (λ) = D1

(
1− e−(z1−z2)λ

)
e−z2λ

E
(2)
it (λ) = D2

(
1− e−(z3−z4)λ

)
e−z4λ

E
(3)
it (λ) = D3

(
1− e−(z5−z6)λ

)
e−z6λ

E
(tot)
it (λ) = E

(1)
it (λ) + E

(2)
it (λ) + E

(3)
it (λ)

(2.11)

As mentioned previously, the λ can be interchanged with log 2/h, and E
(tot)
it (h)
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represents the longitudinal function of EE based on this parameterization. To tran-

sition from OPEE to TPEE, I can substitute the single parameter with (λ1, λ2) or

(h1, h2) in equation (2.11), updating the piecewise component exposures that feed

into E
(tot)
it .

2.4.1 Estimation and Algorithm Modifications

Assuming that the hazards are additive, and that the maximum hazard plateaus

at a single-unit of the EE, then the formulation for the likelihood functions and

estimation algorithms stay the same. Specifically, the likelihood depends on the

quantity of Eit(Λ), that is computed for a given sequence of exposures under fixed

lag parameter(s). To account for the added components, I have developed a series

of functions that calculate the accumulated Eit(Λ) for each subject at each event

or interval time. The details are presented in Appendix B under the "C1fun.h()"

module.

2.5 INTERPRETATION PARADIGM

The remainder of this chapter provides insight on the semantics required for proper

and intelligent interpretation of the resulting estimates.

In figure 2.8 the solid lines represent the hazard over time for two women who

successfully quit smoking after 30 years of prior exposure. These are monotonic

trajectories reflecting the decline in CVD hazard from the 30-year 2 packs/day

and 1 pack/day smokers, i.e. women with different dosing levels of the EE. The

corresponding y-axis is the left-hand "Hazard Ratio" (HR), on which one can see

that the hazard changes 2-fold or by half at the 5.85-year half-life.

Meanwhile, the corresponding dashed lines are for the same individuals, con-
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sidering the Effective Exposures over time – as shown by the right-hand y-axis.

Here, the individual’s HR over time compared to unexposed is not parallel to the

EE curve, implying the rates are different for the two scales. One important note is

that the floor of the HR axis is at 1, while the EE bottoms-out at 0.

HR=6.5, time=0

HR=3.78, time=2.93
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Figure 2.8: Comparisons of the rate of change in risk as measured on
the Hazard Ratio vs. Effective Exposure scales.

Given the desire to understand change in excess hazard, as estimated by my

models, I have added another function, specifically for calculating an individ-

ual’s predicted time-to-risk reduction. The "solve.time()" function (documentation

in Appendix B) allows the user input the model’s parameters, the individual’s
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amount of time exposed (i.e. the starting hazard), and the desired proportional

decrease on the excess hazard scale (i.e. HR-1).

The following example is taken out of context for the purposes of providing an

illustration of the interpretations that come out of these computations. The com-

plete analysis for these numbers and this corresponding paragraph can be found

in Chapter 4 (on page 113).

For a consistent 2 packs/day [dose of exposure] smoker of 30 years [time ex-

posed], after accounting for other risk factors of CVD [model-based estimates], the

CVD hazard associated with a woman’s smoking exposure is 6.5 times [HR at start]

that of her counterfactual never smoker. Using the same adjusted model, a woman

who smoked 1 pack/day for 30 years is at 2.6 times the never smoker’s hazard of

CVD. A 50% reduction [desired HR reduction] in excess hazard for these same 2-

and 1-pack/day smokers, would take 2.9 and 4.1 years [calculated] following com-

plete and successful cessation. The corresponding ending hazard ratios would be

3.8 and 1.8 [HR at end], respectively.

Alternatively, after 5.85 years [estimated half-life, table D.2] of complete and

successful quitting of smoking, the 2-pack/day smoker’s CVD hazard is expected

to reach the 1 pack/day smoker’s hazard, i.e., after the half-life number of years,

the risk is reduced by 50%. In terms of reduction in hazard ratio or excess hazard,

this implies that the hazard ratio of CVD for a 2 pack/day smoker compared to

a never smoker reaches the hazard ratio for the 30-year 1 pack/day smoker com-

pared to a never smoker, after 5.85 years of no smoking exposure.

All of the points described in the preceding paragraphs have been annotated in

figure 2.8.
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CHAPTER 3

Simulation Study

The purpose of this chapter is to demonstrate the strengths and limitations of the

effective exposure estimation methods under known lag and effect size parame-

ters, by simulating data representative of real-world examples. I explore a wide

range of scenarios to identify the type of data that would lead to unbiased and

robust estimation of the parameters of interest.

In these simulation studies, I also compare several analytic methodologies in

terms of coverage probabilities and estimation bias. The aim of this chapter is to

show that the model performance improves with information content – i.e. the

more information, the better. In particular, the information necessary for estimat-

ing the half-life revolves around the proportion of subjects and subject-time spent

"in transition" between steady states. Meanwhile, information content for the haz-

ard ratio estimate comes from the proportion of subjects and subject-time spent at

"maximum risk" (or at the hazard’s plateau).

I will start by describing the types of scenarios considered, including one that is

based on real data from the Black Women’s Health Study (BWHS). I will then move

through the data generation processes and analytic approaches considered. The

"Results" section will focus on patterns and primary findings from the simulations

performed, with some concluding remarks regarding the strengths and limitations

of the simulation study.

3.1 SCENARIO SPECIFICATIONS

The initial setup for the 1-parameter simulation is loosely based on the association

between corticosteroids (CS) use and risk of fracture. CS use has been shown to
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leach calcium from the bones and with an increase in the risk of fracture within the

first 3 months of treatment.(Mitra, 2011) Those on oral CS over an extended period

of time are at roughly 1.5 times the risk of fracture as those not taking CS.(Van Staa

et al., 2000) Following discontinuation and after accounting for duration of use and

dose, excess risk decreases towards the baseline risk over the course of a year.(Van

Staa et al., 2000; Vestergaard et al., 2008)

3.1.1 Base Case: One-Parameter Effective Exposure

The base case simulation (BC1) represents an "optimal" study design in which one

would expect the proposed methods to work consistently well. For the sake of

simplicity, I have chosen to look at the one-parameter effective exposure (OPEE)

model with the half-life parameterization of the lag. Following the CS example, I

set the half-life to 3 months or 90 days. Recalling that the OCM and OPEE models

assume steady state is reached after 4-5 half-lives, a group of individuals starting

at maximum hazard would be expected to return to their baseline hazard around

360-450 days or roughly one year. Meanwhile, newly exposed individuals would

reach half of the prolonged exposure hazard after 90 days.

BC1 includes subjects with one of three possible exposure trajectories: those

who are never exposed serving as the controls ("ctrl"), one group that initiates use

at baseline, and another that discontinues use at baseline after having been ex-

posed for at least two years1. The latter two are referred to as the "up" and "down"

groups, respectively.

The sample is large with 10,000 subjects in each group (N=30,000 total), and

subjects are followed for a period of 900 days. Equivalent to just under 3 years, the

1Exact time is set to 900 days to keep durations consistent
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900 days mark, or 10 half-lives, also implies that both transitioning populations, in

this sample, will achieve steady state within the follow-up time. This time-frame is

quite standard for administrative data studies in which event times may be known

to the day, but not hour, of occurrence.

I consider a simple binary or dichotomous exposure scheme, with an underly-

ing relative effect of a 50% increased hazard, or 1.5 times the hazard for lifetime-

exposed versus unexposed individuals. At 90 days, the up group 2 is considered to

have reached 50% of the maximum hazard, which translates to a 1.22-fold hazard

of event compared to never exposed individuals. Additionally, I set the study-

wide prevalence of the outcome to 10%, meaning that controls in the study are

also at risk for event.

Figure 3.1 shows four panels of simulation scenarios, of which the upper left-

hand corner is the BC1 set of trajectories. Similar to figure 2.8, the left-y-axis and

solid lines represent the EE curve, while the right-y-axis and dashed lines reflect

the hazard ratio over time. On day 90, both risk curves (EE and HR), for the up

and down, groups intersect. After 90 days, those in the up group surpass the down

group in EE.

3.1.1.1 Sample Sizes

In order to understand the effect of sample size on the estimation algorithm per-

formance, I consider the base case scenario with 1,000 (N1k), 10,000 (N10k) and

100,000 (N100k) total participants. Since the study design for these simulations re-

quires balanced groups, the single remaining individual, following the thirds split,

is put into the control group.

2individuals that became exposed at the start of follow-up
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For the smaller samples N1k and N10k, I would expect the estimation of both

lag and HR parameters to be more biased with additionally worse coverage for the

lag parameter(s), compared to the BC1 scenario. Meanwhile, the N100k scenarios

should improve in both performance metrics, versus to the BC1 scenario. The

latter set is, naturally, more computationally expensive, but corresponds to the

size of administrative data. None of these sample sizes is comparable to clinical

study data, but looking at the smaller sets may shed light onto the generalizability

of these methods to the standard prospective cohort study design.

3.1.1.2 Dosing levels

A natural question that arises from a dose-dependent scenario is whether the bi-

nary model will appropriately identify the lag. My initial hypothesis is that the

half-life may be underestimated, or negatively biased, when performing the OPEE

and TPEE algorithms with the binary exposure. In a balanced design the resulting

effect size estimate should be a weighted average of the different effect levels.

The set of simulations (DoseMods) that aims to account for differences in dos-

ing of exposures is considered as a variation on the base case. The three groups

remain the same, though half of the up and down groups are assigned a dose-level

of 2. Specifically, 5,000 of the up group subjects are assumed to plateau at twice

the risk level, while 5,000 of the down group subjects start the study at twice the

hazard. This translates to an hazard ratio of 2.25 compared to the controls, which

can be seen in the upper right corner panel of figure 3.1.
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3.1.1.3 Adding a Fourth Group at Steady State Risk

To be able to differentiate between those who remain exposed and those on the de-

cline, I also consider a set of simulations (FourG) with a fourth group that does not

discontinue exposure ("on"). The hypothesis here is that the increased amount of

information pertaining to continued exposure would allow for more accurate es-

timation of both parameters. Specifically, I hypothesize that the estimated hazard

plateau will be less biased.

Figure 3.1’s bottom left corner shows the same set of trajectories as the base

case (BC1, upper-left) with the addition of the constant on group.
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Figure 3.1: Plots for One-Parameter Base Case Simulation Scenarios
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3.1.1.4 No Initiators

The remaining panel (bottom right) in figure 3.1 demonstrates a set of monotonic

trajectories that does not include the up group (NoUp), but does have individuals

who remain exposed throughout follow-up (on group). When considering studies

that focus on discontinuation of exposure, such as quitting smoking or coming off

of oral CS, to control for confounding a sample may exclude subjects that initiate,

so as to focus the analyses on the benefits of cessation.

For example, in chapter 4, I discuss the "restricted" sample of BWHS partici-

pants, which is comprised of women who are smokers and non-smokers through-

out the study, in addition to a group of women who successfully stopped smoking

3. Part of the goal for this analysis is to mirror previous approaches that restrict the

sample, like Rachet et al. (2003). I hypothesize that in this case the estimated time

to reduction might be shorter (decline estimate negatively biased), and the incline

estimate will have large bias – due to the lack of information about the upwards

transition.

In addition to the breadth of applications this variation can generalize, it also

represents a situation where the TPEE algorithm should fail. This is due to the

fact that there is little information about the incline parameter – since no one is

transitioning upward in risk.

3.1.1.5 High Risk

Not much explanation is needed for the high-risk variation (HR5) of the base case.

Here the input hazard ratio is a 5-fold risk of event for those are steady state risk.

I hypothesize that this stronger effect size provides "more information" and allows
3As determined by those with complete follow-up questionnaires absent of self-reports of smok-

ing after a minimum of 10-years of previous smoking reported at baseline
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for more precise estimation of the risk and associated effect half-life.

3.1.1.6 Null or Nearly Null Risk

To ensure that my model does not artificially induce an association when there is

none, I considered a scenario where there is no true relationship between the ex-

posure and outcome (HR1). The null EE curve is still generated with an imposed

half-life of 90 days, even though this underlying exposure measure is not mean-

ingful. This is because the probability of event due to the exposure is considered

null, which implies that there should not really be a lag associated with this effect.

I hypothesize that my estimation procedures may have difficulty discriminat-

ing between exposed and unexposed individuals, as the likelihood surface may be

flat. In the situation that either the OPEE or TPEE algorithms returns implausible

lags and/or effect size estimates, I also add some fixed half-life models into the

analyses to determine whether imposing any lag-of-effect biases the estimate of

effect size.

I further extend my simulations to the 10% and 20% increased risk scenarios,

or HR=1.1 and 1.2, respectively. The goal of this is to determine where the OPEE

model "breaks", to provide insight on the capabilities of my algorithms in detecting

nearly null associations that are lagged.

3.1.1.7 Variations on Half-Life

Shorter

Given that the parameter space for half-life is bounded by 0, I selected a half-life=1

day as a simulation variant (Half1) to look at null lag in the base case set of tra-

jectories. Using a small half-life should result in similar effect size estimates as
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a standard "current dose" model. Meanwhile, those exposed in the past (down

group) should not have events attributable to the lagged exposure, because the ef-

fect would subside almost immediately. This can be seen by looking at the upper

right corner of figure 3.2. The step-like function demonstrates how the down ex-

posure group returns to the level of the controls instantaneously, and the up group

may as well be classified as exposed from the start.
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Figure 3.2: Plots for One-Parameter Half-Life Variations to the Base-
case Simulation Scenario

The close proximity of this half-life to the likelihood’s edge implies the nor-

mality of the likelihood may be violated, which should make estimation of the
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asymptotic standard errors difficult. Due to this, I also consider half-lives of 10

and 30 days (Half10, Half10.4G and Half30.4G) to determine the breaking point of

both estimation algorithms and associated standard error approximations. Note:

The Half10 scenario represents the base case risk profiles with a 10-day half-life,

while the Half10.4G represents the FourG scenario profiles with a single 10-day

half-life parameter. Meanwhile, the scenario using a single half-life of 30 days is

only considered for the four risk profiles extension.

Longer

In a situation where no one reaches steady state, I hypothesize that the true max-

imum hazard associated with the EE may not readily identifiable. My algorithms

may be better at estimating the steady state hazard than the conventional exposure

models, however, the minimal change in risk during the follow-up period (less

transitioning information) may bias the estimates for half-life (or lag parameter)

and the hazard ratio.

One particular branch off of the BC1 scenario that I consider is one with a half-

life of effect of 1,000 days (Half1k). In this case, the individuals in my study never

reach steady state, because the study period is shorter than a single half-life. As no

one in the sample has reached the maximum hazard being estimated, the informa-

tion, or lack thereof, may hinder my ability to estimate the lag parameter.

The bottom left panel of figure 3.2 shows the linear-like curves for the EE and

HR over time. Keeping regimen timings (start and stop times of exposures) the

same as in the BC1 scenario, the down group has only been exposed for 900 days

prior to the study, meaning that these individuals have not even reached 50% in-

creased hazard. Meanwhile, the individuals that start exposure at the beginning
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of the study [up group] only cross the exposure level of the down group at roughly

550 days.

To account for the fact that the Half1k variation does not have anyone close to

plateau throughout the study, I added the fourth on group in a new set of simu-

lations (Half1k4G). The bottom right panel of the same figure 3.2 shows that the

on group, which starts the study at the same EE level as the down group, contin-

ues to climb towards steady state throughout the follow-up period. This fourth

group provides better information about the total obtainable risk associated with

exposure and the resulting estimates should be less biased for both half-life and

HR parameters than the 3-risk profiles variant (Half1k).

I also consider the single half-life of 450 days (Half450.4G) with four risk pro-

files (not pictured). This is to allow me to assess the algorithms’ ability to detect

a lag that is half of the follow-up time. That is, within the study period, individ-

uals that are up or down should transition from null to 1.36 and from 1.36 to 1.08

times the hazard of the ctrl group, respectively. The fourth on group starts at the

same hazard as the down individuals, but continues towards the 1.5-fold plateau

throughout the study (ending at the hazard associated with an EE level after 4

half-lives of transition).

3.1.2 Two-Parameter Effective Exposures

All of the scenarios described so far have assumed the single half-life parameter

model for EE. Naturally, the reader would like to see variations that address the

two-parameter effective exposure (TPEE) models.

To simplify comparisons, I consider variants of the BC1 scenario, changing only

the decline parameter and keeping the incline half-life at 90 days. This way, I can
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look at a situation where the decline is either faster or slower than the half-life,

with appropriate control and comparison. The data generation schemes and other

parameters (sample size, HR, prevalence, risk profiles) are kept the same as the

base case. The base case scenario in terms of the TPEE structure could be though

of as having an incline=90 days and decline=90 days (i.e. [90,90]).
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Figure 3.3: Plots for Two-Parameter Simulation Scenarios

Figure 3.3 demonstrates the two-parameter scenarios compared to BC1. The

upper right corner shows a decline half-life of 10 days (Out10), while the two bot-

tom panels reflect a decline half-life of 1,000 days. The bottom right (Out1k4G)

differs from the bottom left (Out1k) in that a fourth on group is added to the simu-
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lations 4.

Aside from assessing the TPEE algorithm’s performance in these scenarios, I

also am interested in the OPEE algorithm’s ability to converge given the analytic

and underlying models do not match. I hypothesize that the TPEE algorithm may

have similar bounds in the estimation of short and long decline half-lives as with

the short and long OPEE half-life models.

To parallel the OPEE half-lives considered, I also simulate four risk profile sce-

narios for the 10-day decline (Out10.4G), and declines of 30- and 450-days (Out30.4G

and Out450.4G, respectively).

3.1.3 Multivariate Real Data

To, more closely, investigate the role of protracted exposures in a "real-world" set-

ting, I utilize multivariate time-varying data from the BWHS cohort.5 In sum-

mary, this dataset includes women with monotonic and complex trajectories of

self-reported smoking patterns over time, along with time-varying information re-

garding potential confounders and risk factors of CVD. The goal is to use the real

predictors and exposure profiles for smoking and covariates, to simulate the event

of interest while controlling the half-life parameter and maximum hazard associ-

ated with prolonged smoking exposure.

Specifically, this dataset has real trajectories of dichotomous smoking exposure,

and only includes right-censoring for incident cancer diagnoses, loss to follow-up,

and death. Deaths are not further classified as CVD or non-CVD in this set, to

allow for random assignment of events across all individuals and their available

4Similar to the base case FourG and Half1k4G scenarios goal is to improve identifiability and
discrimination of the trajectories, thereby reducing bias in the estimation of the lag parameters.

5Outlined in more detail in Chapter 4.
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follow-up times. This is different from the samples used in Chapter 4, because the

true analytic samples censor cases of CVD following the event. Meanwhile, the set

of true CVD cases are allowed to continue through the study without censoring,

unless cancer, death, or loss to follow-up occur. This decision, to treat all partici-

pants the same, provides a dataset on which I can simulate CVD-like outcomes for

all available follow-up trajectories of smoking’s EE. Both scenarios described, be-

low, consider the OPEE of binary smoking as the underlying CVD hazard model.

Figure 3.4 shows a small sampling of participant trajectories classified by study-

wide (or lifetime in the study) exposure variation over time. The control group is

not included in the figure, but makes up a substantial portion ( 60%) of the true

cohort and scenario data.

3.1.3.1 Monotonic Trajectories

To disentangle the information-gain coming from covariate adjustment versus in-

formation gained by including more individuals in fluctuating [i.e. in states of

transition], I first consider a subset of participants with unidirectional smoking

profiles, similar to the "restricted" BWHS subset in Chapter 4. The scenario, here,

is referred to as the Multivariate with Monotonic Trajectories set of simulations

(MVmono).

The BWHS set is restricted to participants that either smoked throughout the

study (Smokers Throughout), never smoked prior to and throughout the study

(Nonsmokers Throughout), or smoked in the past and quit at some point during

or prior to the study with no return to smoking (Successful Cessators). Both the

smokers and quitters are further restricted to those with at least 10 years of smok-

ing exposure at entry to the study (1995). The top two panels of figure 3.4 (Smokers
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Figure 3.4: Example Trajectories from Black Women’s Health Study
Data Imposing a One-Parameter Half-Life of 3 years

and Quitters) show EE, or the annual probability of event, for several participants

under the imposed OPEE half-life of 3 years and corresponding 3-fold hazard of

CVD for extended exposure compared to never smokers.

As alluded to in the next paragraph, and as is consistent with the "NoUp" base

case variant, I hypothesize that the lack of information about smoking initiation

will make estimation more difficult when using the TPEE algorithm, particularly

with regards to the incline parameter.
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3.1.3.2 Multi-Trajectories

I call the final set of simulations the Multivariate Multi-trajectory scenario (MV-

multi). The hypothesis underlying this scenario is that the OPEE and TPEE al-

gorithms will have less bias and more coverage of the true lag and hazard ratio

parameters compared to the MVmono scenario. Returning to figure 3.4, the two

bottom panels represent the additional types of subjects and risk profiles that are

now included in this simulation scenario.

3.2 SIMULATION METHODOLOGY

3.2.1 Univariate Scenarios

For each simulation I start by specifying inputs for exposure trajectories 6, [popu-

lation] hazard ratio for steady state, and a population prevalence. The base case

simulation scenario, its variants, and the two-parameter simulation studies all fol-

low the same data generation schema where population-based exposure profiles

are specified a priori. Specifically, the probability of event at time t is calculated for

a given exposure profile on a daily basis. This allows me to control the granularity

of the data at roughly 1/100th of a half-life (recalling the base case half-life is 90

days, so technically 1/90th). These probabilities are assumed to apply to all indi-

viduals with the same risk profile, and events are assigned using a logistic model

of event at the daily discrete time points.

The discrepancy between the data generation model (odds) and the estimation

model (hazard) is not of concern, because the odds approximates the hazard when

the interval is short and the rate of events in the interval is sufficiently small.(Green

6i.e. half-life parameter(s), time since start of exposure, time since discontinuation, and dosing
level
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& Symons, 1983). Thus, when the overall prevalence of event is divided evenly

across all study time-points, the daily prevalence is roughly 0.01% (recalling the

10% study-wide prevalence).

At each time point, the probability is compared to a random number drawn

from the Uniform(0,1) distribution, with events set to "True" when p is less than

the corresponding random number. This process is done per subject by iterating

through the ordered sequence of time points until the first event occurs for an

individual, or until the last time point (900 days). Subjects are then right-censored

at event, but no other censoring situations or missing data are assumed to occur.

All non-event times for each individual are retained until the full set is split into

one observation per subject per unique event-time (study-wide event times).

Using the half-life parameterization of lag, the true parameters are set to reflect

a 50% increase in hazard (or a HR of 1.5) for those at the steady state EE. The base

case underlying EE curve assumes that new users will reach approximately half of

the steady state’s hazard after 90 days of constant exposure. Meanwhile, those who

start at steady state and discontinue exposure, will fall to approximately half their

hazard after 90 days. The two-parameter scenarios are slightly more complicated

to interpret, so I keep all the inclines at 90 days implying that all the down subjects

start at the same hazard (at time=0) as they would in BC1.

The total number of events and subjects, simulation seed used, and computa-

tion times are collected. Additionally, for each model fit, I retain the log-likelihood

and AIC, the estimated HR, and an estimate for the lag parameter(s) with cor-

responding standard errors for all estimated parameters. This resulting data is

combined to assess the bias and coverage probabilities of the new techniques.
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3.2.2 Multivariate Scenarios

As described in the scenario specification, the multivariate scenarios are based on

real data from the BWHS cohort. Thus, the covariance structures across time and

potential confounders for each individual are preserved, assuming that this cohort

provides an adequate random sample of the population from which it arose.

Prior to simulating the outcomes on the full set, I fit a pooled logistic regres-

sion (PLR) model on the true analytic sample. To adjust the estimates for each

covariate’s relationship with CVD appropriately, I used the categorical smoking

specification (current vs. never and past vs. never) as the primary exposure in a

multivariate model with additional adjustment for age 7. The corresponding be-

tas for the intercept, age, and pre-specified covariates are saved for use (described

later). These estimates represent part of the log-linear model for the yearly proba-

bility of event.

Unlike the CPH model, the PLR model provides an estimate for the intercept

and age-parameter. By adjusting for age, I am able to account for the time-to-event,

while still being able to compute a predicted probability of event given a subject’s

covariate structure at each time point. To compute the predicted probability of

event due to a known half-life of effect, I assume the OPEE model and set the true

lag parameter to a 3-year half-life with a corresponding 3-fold odds of event for

those at steady state risk for CVD due to smoking.

The following formula describes this simulated probability:

oddsit = −9.34 + 1.099Eit(h) + 0.04Ageit + 0.02BMIit + 0.25FamHxCVDi

7The models used in Chapter 4 are age-stratified Cox Proportional Hazards, thus, age is not
considered a covariate in those models and coefficients for the baseline hazard by age (or age and
intercept) are not available.
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− 0.07Statinsit + 0.16HighCholit + 0.64T2Dit + 0.84HTNit

+ 0.16MenoPre
it + 0.33MenoPost,Age@meno<45

it + 0.12MenoPost,Age@meno 45-49
it

− 0.25Exercise<1hr/wk
it − 0.39Exercise1+hr/wk

it

− 0.09AlcoholCurrent
it + 0.005AlcoholPast

it

pit =
exp(oddsit)

1 + exp(oddsit)

Similar to the univariate scenario’s event-time specifications, each individual’s

probability of event is compared to a random univariate value, iteratively from the

first time point to the last, or until an event is deemed to occur. In this case, how-

ever, not all subjects have the same available amount of follow-up time, which is

reflected by the censoring structure already imposed on the data prior to simula-

tions.

3.3 ANALYTIC VARIATIONS

The analytic model predominately used in the analyses is the CPH regression.

As mentioned in Chapter 2, the "survival" package functions are used for fitting

the time-dependent variable models. For the "Interval-Based" analyses, described

later, I also use Pooled Logistic Regression via the "speedglm" package in R.

One major reason for doing these simulations has been to compare my method

to conventional approaches used in epidemiologic research in the presence of lagged

effects. Thus, I consider some conventional exposure metrics that are used in the

application in chapter 4. Additionally, I want to understand how well the OPEE

and TPEE algorithms estimate the correct lag and effect parameters in various sce-

narios.
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Standard time-varying classifications of smoking exposure may include a cat-

egorical status (current vs. past vs. never), current indicator (current vs. not cur-

rent), ever indicator (ever vs. never), and some combinations using a pack-years

variable. The latter has been accepted as a standard for incorporating dosing (in-

tensity) over time, however, the majority of my simulations are based on binary

exposures, so no comparable metric was created within my study. Therefore, only

the first three exposure measures are analyzed within each simulation scenario.

Of the three metric models, the current and ever models use a single parameter

while the categorical model includes two parameters, one for current and on for

past exposed individuals compared to the never exposed. The simple risk profiles

would assign up and on individuals as currently exposed, and the down group as

past exposed. All three risk profiles would contribute to the ever indicator.

These models are compared to the OPEE and TPEE by looking at Akaike’s In-

formation Criterion (AIC), which applies a penalty for an increasing number of

estimated parameters. One and two parameters need to be added to the over-

all number of model parameters in the AIC calculation for the OPEE and TPEE

models, respectively. My hypothesis is that the OPEE and TPEE methods will pro-

duce "better fit" results than the conventional exposure measures, as determined

by minimizing the AIC.

I consider the Monte Carlo estimate of the percent bias, proposed by Koehler

et al. (2009), as a way to compare the bias of the univariate and multivariate model

estimates.

φ̂b
R =

1

R

R∑
r=1

θ̂r − θ

θ
× 100

To determine how well the variability approximations (i.e. standard errors)

cover the true parameter of interest, I considered the coverage probability (CP)
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metric. This can be understood as the proportion of simulations whose nominal

95% confidence intervals contain the true half-life or β parameter. Ideally, the CP

should be around 95%. Koehler et al. (2009) presents a Monte Carlo estimate of CP

as:

CP =
1

R

R∑
r=1

I
[
θ̂r − 1.96se(θ̂r) ≤ θ ≤ θ̂r + 1.96se(θ̂r)

]
In both metric formulas, θ denotes true value for the particular parameter of

interest, while R is the number of simulations. The θ̂r refers to the estimated pa-

rameter for the r simulation, and se(θ̂r) is the corresponding approximated stan-

dard error. All of my scenarios included 1,000 simulations, i.e. R=1,000. However,

for the tables presented in the text of this chapter, I have chosen to report the "non-

failed" CP and % bias (explained in section 3.3.1.2). This means that each scenario’s

R may vary in the tables, though the complete simulation results across all 1,000

runs can be found in appendix C.

3.3.1 Effective Exposure Algorithms

All simulation scenarios are analyzed using both the OPEE and TPEE algorithms,

regardless of the underlying data generation model. The goal is to compare the

performance of each algorithm’s estimation under varying truths. I hypothesize

that the OPEE approach will fail to identify the correct lag under scenarios with

two lag parameters, and that the TPEE algorithm will converge to similar estimates

for each lag parameter in an OPEE-simulated dataset.

For the purposes of assessing coverage in the new methods, the standard errors

used for the hazard in each model are re-calculated using the Information matrix-

derived variance. In this situation, the resulting standard errors are typically wider

than those from the original model fitting process, but this allows the variability to
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be adequately adjusted for the additional parameter(s).

As the algorithms require an input for the initial half-life "guess", all univariate

scenario algorithms are initialized with a starting half-life of 60 days, regardless of

the true half-life. When an algorithm fails (see below), the simulated data is sub-

jected to a second half-life search starting at a 100-day initialization. If the second-

initialized-algorithm fails to converge, no additional algorithms are applied and

the original initialized half-life results are kept for analysis.

3.3.1.1 Initialization

To account for potential bias from invalid initialization, I performed a small ex-

ploratory analysis of different initialization half-lives using the BC1 scenario sim-

ulations. These initial values considered are the half-life at 60-, 70-, 80-, 90-, 100-

and 110-days. As the first set of models compared during the initialization step in-

cludes the marginal likelihoods for half and twice the initial value, testing a wider

range of input values becomes irrelevant. This is because the first step expands

using a similar mechanism of halving (or multiplying by 2) to get into the approx-

imate range of the maximum likelihood. Thus, any variation in the results due to

initialization should depend on the location of the center when step 2 starts, i.e.

for a maximum occurring at 70 days (for a given simulated dataset), initializing

the half-life at 80 days may be problematic if the likelihood is not symmetric. I

hypothesize that a minor shift of the initial guess can move the profile likelihood

points for the algorithm around a problem ridge area, such that other initializa-

tions produce consistent estimates for the half-life and HR parameters.
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3.3.1.2 Algorithmic Failure

When I refer to "failed" and "non-failed" simulations, I am specifically focusing on

the OPEE and TPEE algorithms that struggle to converge during the estimation

process. This is based on non-estimate-able values for the half-life standard error

and/or infinite beta parameter estimates. In some situations this occurs due to a

flattening of the likelihood surface or failure of normality near a bound, while other

failures could be considered to come from the random variations of the simulated

data.

To make the results comparable, I have chosen to display only the "non-failed"

simulation results in the tables here. Therefore, the corresponding "# Fail" column

is meant to orient the reader with regards to the total number of failures for a par-

ticular parameter estimate out of the 1,000 simulations performed in that scenario.

3.3.2 Interval-Based Analyses

To account for situations in which the specific event time is unknown and assump-

tions are made about timing of exposure, I consider the impact of interval slicing

on the estimation of the lag and risk parameters. Unlike the original analytic meth-

ods for the simulations, the interval-based analyses are expected to shed some light

on the effect of repeated measures data assumptions. What I mean is that a typical

cohort dataset, like the BWHS, will collect information at pre-specified intervals,

which are assumed to be the start and stop points for both exposures and out-

comes. For example, in Chapter 4, a limitation may be the fact that each outcome

is only reflected in the year of the event, despite variability in the timing of events

within that year. Therefore, the resulting estimate for the half-life is expected to be

biased, since an individual with the event in March, who may have been exposed



69

for 3 months, is calculated as exposed for 12 months, since the outcome is set to

the year-end time.

Using the base case scenario’s simulated samples, I split each dataset into sec-

ondary sets with varying interval lengths (10, 50, 100, 300, 900). The interval sets

are then analyzed using both PLR and CPH. By comparing analytic model esti-

mates of the hazard ratio8 and lag parameters for the various intervals, I may be

able to make recommendations about the granularity of data needed for optimal

performance of my methods.

There are two dataset structures that I consider – structure (1) which assumes

that information is collected at equally spaced intervals and that all events occur at

the end of the interval; structure (2) which assumes that information is collected at

equally spaced intervals, yet the cases’ event times within the interval are known.

In Structure 1 the Cox Proportional Hazards models (cph1) assigns all events to

the same time in the interval, thereby the EE estimate for cases in an interval would

be biased. For example, subject A is coming down from exposure, and has an event

at 28 days. The true EE for A’s event time is 87%, but if A is assigned as an event at

the end of a 100-day interval then the corresponding EE will be 68%. Meanwhile,

the non-case B who follows the same trajectory as A will be compared using these

same EE levels, which reflect the interval-end EE. Similarly, the Pooled Logistic

Regression (plr1) will have true EE assigned to non-cases in the interval, while the

up group cases may be overestimated and down group cases underestimated at the

true time of the event in the interval. The results for cph1 vs plr1 should not differ

dramatically, as the time components in the CPH risk sets are identical to those

in each interval pool. As the interval length increases, the CPH and PLR ratio

8recalling that the odds ratio is an approximation of the hazard ratio here
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estimates should diverge 9.

In Structure 2 the Cox model (cph2) risk sets are based on event timings, lead-

ing to correct EE assignment for cases, but biased EEs for non-cases in the risk

set. For example, when subject A and B are both coming down from exposure, A’s

EE at event time 28 is 87%, but a 100-day interval means that B’s EE at time 100

of 68% is used for non-case comparison. Realistically, the two individuals should

be compared using the same EE at day 28. Therefore, a 10-day interval (B at 30

days EE=86%) should result in smaller misclassification bias than the 100-day in-

tervals. The problem persists using the pooled logistic regression model (plr2), but

both of structure 2’s analytic models should out-perform structure 1’s models in

identifying the correct half-life parameter.

3.4 RESULTS

3.4.1 Conventional Exposure Metrics

The conventional measures model tables (tables 3.1, and C.2) have several short-

hand notations worth explaining. PvsN and CvsN come from the time-varying

categorical three-level model and represent the estimated HR for the Past or Cur-

rent group compared to the Never group. Current refers to the model where those

in the on or up groups are considered to be at risk, and Ever refers to the model

where those in all groups except ctrl are at risk – i.e. the down group is treated as

being at the same hazard as on and up. The estimates presented for the conven-

tional measures in the interval analyses in the Appendix (table C.10) reflect the

hazard ratio (HR) in the CPH and odds ratio (OR) in the PLR models.
9based on the same concept that odds and risk can approximate one another as long as the

intervals remain short enough
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Table 3.1: Hazard Ratio Estimates for Conventional Metrics Across
All Simulations Of Selected Scenarios

Simulation Input CvsN Current Ever
Scenario HR Mean % Bias Mean % Bias Mean % Bias

BC1 1.5 1.42 -5.48 1.37 -8.58 1.24 -17.21
N1k 1.5 1.46 -2.48 1.40 -6.94 1.28 -14.79

N10k 1.5 1.42 -5.18 1.37 -8.36 1.24 -17.02
N100k 1.5 1.42 -5.56 1.37 -8.67 1.24 -17.23
FourG 1.5 1.46 -2.75 1.41 -5.94 1.33 -11.53
NoUp 1.5 1.50 0.16 1.45 -3.17 1.28 -14.42

DoseMods 1.5 1.71 14.28 1.38 -7.99 1.41 -6.08
Half10 1.5 1.49 -0.52 1.49 -0.91 1.25 -16.85

Half10.4G 1.5 1.50 -0.26 1.49 -0.65 1.33 -11.28
Half1k 1.5 1.11 -25.99 1.03 -31.21 1.13 -24.58

Half1k4G 1.5 1.19 -20.47 1.11 -26.08 1.18 -21.37
MVmono 3 2.96 -1.47 2.86 -4.82 1.51 -49.69
MVmulti 3 2.75 -8.18 2.59 -13.52 1.63 -45.82

Out10 1.5 1.42 -5.46 1.41 -5.82 1.21 -19.25
Out10.4G 1.5 1.46 -2.73 1.45 -3.11 1.31 -12.90

Out1k 1.5 1.42 -5.48 1.20 -19.71 1.39 -7.47
Out1k4G 1.5 1.46 -2.75 1.24 -17.40 1.43 -4.99
Input HR: The hazard ratio used in data simulation for the effective exposure at
steady-state risk
CvsN: Estimated HR for Current Exposure compared to Never exposed in categor-
ical model
Current: Estimate HR for Current vs. Not Current exposed risk ratio
Ever: Estimate HR for Ever vs. Never exposed risk ratio

Table 3.1 shows a selection of the simulation scenarios performed and the re-

maining scenarios considered can be found in the Appendix table C.2. In all simu-

lation scenarios and models of the categorical (current vs. past vs. never) exposure,

the past users effect size estimate was lower than the simulated hazard ratio (data

not shown).

As expected, all the conventional metrics in the multivariate simulations showed

an underestimation of the true association measure. For the multivariate scenarios,

the conventional metrics for current exposure were the least biased in both cate-

gorical and dichotomous models, with slightly more distance from the truth (CvsN

% Bias -8.2 vs. -1.5, Current % Bias -13.5 vs. -4.8) in MVmulti than MVmono. This

was not the case for the "Ever" models, likely because more individuals were con-
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tributing to the "past" or "ever" exposure categories in the MVmulti than MVmono

scenarios.

Adding a fourth group to the scenario (FourG vs. BC1, Half10.4G vs. Half10,

Half1k4G vs. Half1k, Out10.4G vs. Out10, Out1k4G vs. Out1k) reduced the bias

for all conventional measures. This is consistent with the information hypothesis

that having individuals who are on or exposed and close to steady state improves

the estimation of the hazard level. I discuss the variations observed in the OPEE

and TPEE algorithm performance between the 3- and 4-risk trajectory simulations

later (section 3.4.6).

3.4.2 Sample Size Variations

The conventional measure results for N10k and N100k sample sizes were identical

to the base case sample. It is interesting to note that all of these metrics were the

least biased for the smallest sample size scenario (N1k). Meanwhile, decreasing

sample size reduces coverage, increases bias, and is more likely to fail in conver-

gence, specifically for the half-life parameter.

Table 3.2 shows the OPEE performance of the HR and single-parameter half-

life estimates. The base case scenario corresponds to the 30,000 subject sample size

rows.

In this table, the "# Fail" column reflects convergence issues specific to the pa-

rameter – for the hazard ratio, failure is denoted by an infinite estimate or negative

variance component. Meanwhile, the half-life estimate’s failure comes from a neg-

ative approximated variance component. The latter two points are the same and

discussed in more detail later. As mentioned previously, the number in this column

reflect the failures out of the 1,000 total simulations performed for that particular
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Table 3.2: OPEE Performance by Sample Size

Parameter Sample
Size Mean Median Coverage

Probability % Bias # Fail

Hazard
Ratio

1,000 2.4e+66 1.66 95.3 1.6e+68 0
10,000 1.52 1.52 95.2 1.63 1
30,000 1.51 1.51 95.9 0.47 1
100,000 1.50 1.50 94 0.07 0

Half-Life

1,000 777.63 90.00 85.4 764.03 5
10,000 95.59 90.00 90.6 6.21 1
30,000 92.22 90.00 92.9 2.47 1
100,000 91.30 90.00 94.9 1.44 0

scenario.

While samples size seems to affect the estimation performance with respect

to the half-life parameter, the coverage of the hazard ratio by the normally ap-

proximated 95% confidence intervals was consistently favorable regardless of the

number of subjects in the simulation sample. This implies that my method can

still deliver appropriate estimates of the hazard ratio, even when the sample size

may be too small to estimate the half-life of the effective exposure. Increasing the

sample size may improve performance, however, the 100,000 sample size required

3-fold more computational time to perform the OPEE and TPEE algorithms com-

pared to the base case scenario of 30,000 individuals.

Using the TPEE algorithm in the N1k and N10k scenarios led to large overesti-

mation of the HR, while the base case sample size also saw slight overestimation

of hazard from TPEE (in Appendix C table C.6). The TPEE analyses on the N100k

scenario only failed for 1 simulation, compared to 74 in the base case sample size,

and overall had minimally biased estimates of the hazard ratio.
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3.4.3 One-Parameter Half-Life Variations

In table 3.3 the half-life=1 day scenario appears to have consistently low bias in

the hazard ratio estimation with a 95% coverage probability in the 95% CI bounds.

Additionally, this short half-life had the best coverage probability for OPEE half-

life across all scenarios evaluated by the OPEE model.(Table C.7) Given that good

estimation of the half-life drives less biased estimation of the hazard ratio, these

results are not surprising. This is further confirmed by the large bias seen for both

large half-life (1,000 days, single half-life) scenarios, regardless of the number of

trajectory groups (table 3.8). The large half-life models tended to fail more often

than for other scenarios, in both OPEE and TPEE algorithms.

Table 3.3: Simulation Results by One-Parameter Half-Life in Three
Profile Simulations

True OPEE TPEE
Parameter Half-Life Mean CP % Bias # Fail Mean CP % Bias # Fail

Hazard
Ratio

1 day 1.51 95.2 0.35 0 1.52 92.2 1.59 129
10 days 1.51 94.7 0.34 0 1.52 94.1 1.36 49
90 days 1.51 95.9 0.47 1 1.60 97.4 6.44 22

1,000 days 1.5e+87 86.8 9.8e+88 60 3.1e+203 60.3 2.1e+205 456

Incline
Half-Life

1 day 3.77 98.4 277.08 4 6.56 100 555.84 139
10 days 11.85 86.1 18.53 2 15.33 85.4 53.27 77
90 days 92.22 92.9 2.47 1 123.38 90.5 37.09 42

1,000 days 4006.82 80.4 300.68 57 26270.03 58.7 2527 456

Decline
Half-Life

1 day 24.07 92.7 2306.7 767
10 days 28.02 94.5 180.2 561
90 days 98.43 88.9 9.4 71

1,000 days 2752.38 93.5 175.2 507
CP: Coverage Probability

Table 3.4 demonstrates the single-parameter half-life variations for the four

risk-trajectories. The sweet spot for OPEE performance appears at the 90 days half-

life, where coverage of the hazard ratio and single lag parameter is the maximized

and percent bias minimized. The results for these same scenarios using the TPEE

algorithm (table C.6) also show the least % bias for all three parameter estimates
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in the 90 days simulation scenario, though coverage is slightly higher and failures

occur less often for a half-life of 450 days. This is understandable given that the

down group spends more time in transition under the 450-day half-life (than in the

90-day half-life), thus providing more information for the decline parameter.

Table 3.4: OPEE Performance by One-Parameter Half-Life in Four
Profile Simulations

Parameter True
Half-Life Mean Median Coverage

Probability % Bias # Fail

Hazard
Ratio

10 days 1.50 1.50 94.8 0.2 0
30 days 1.50 1.50 95 0.2 0
90 days 1.50 1.50 95.7 0.2 0

450 days 1.53 1.51 95.4 1.9 0
1,000 days 5.4e+20 1.50 88.2 3.6e+22 95

Half-Life

10 days 11.83 9.38 85.5 18.3 2
30 days 31.30 30 90.7 4.3 0
90 days 91.89 90 92.3 2.1 0

450 days 491.93 450 92.2 9.3 0
1,000 days 2838.39 900 86.1 183.8 95

3.4.4 Two Half-Life Parameters Variations

The OPEE algorithm applied to an underlying TPEE scenario with four risk tra-

jectories showed better coverage of the true Decline than Incline half-life when the

decline was shorter than the incline (Table 3.5). The 1,000 day decline scenario had

equally poor coverage of both parameters in the OPEE context (7-8%).

Generally, none of the TPEE scenarios failed the OPEE algorithm’s convergence

or normal approximation of standard errors, and all of the four group estimated

hazard ratios had small bias. The OPEE algorithm tended to underestimate the

longer half-life parameter and overestimate the shorter, as would be expected.

All longer decline simulation scenarios (Out450.4G, Out1k, and Out1k4G) cor-

rectly selected the minimum AIC model as the TPEE over 90% of the time vs.
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Table 3.5: OPEE Performance by Two-Parameter Effective Exposure
Four Group Simulations

Parameter True
Decline Mean Median Coverage

Probability % Bias # Fail

Hazard
Ratio

10 days 1.49 1.49 93.5 -0.48 0
30 days 1.50 1.50 95 -0.05 0
90 days 1.50 1.50 95.7 0.20 0

450 days 1.48 1.48 93.5 -1.28 0
1,000 days 1.52 1.50 95.8 1.02 0

Incline
and

Decline

10 days 45.02 41.25 39.7 59.7 -50 350.2 0
30 days 58.79 56.25 57.9 77.5 -34.7 96 0
90 days 91.89 90.00 92.3 2.1 0

450 days 226.86 225.00 24.2 10.7 152.1 -49.6 0
1,000 days 387.94 360.00 7.8 7.2 331.1 -61.2 0

The two values in the Coverage Probability and % Bias columns reflect the measure’s perfor-
mance in relation to the incline and decline true half-life parameters. The left-hand value for
each denotes the incline. The base case (90,90) scenario has only one unique value half-life,
thus only one value is reported in the table.

OPEE, Categorical, Current vs. Not-Current, and Ever vs. Never (data can be

found in appendix table C.4). The two-parameter scenarios with longer decline

(Half=(90,1000), Out1k and Out1k4G) had mean estimates bias for the past cate-

gory (PvN) in the categorical and ever models, closer to the true HR=1.5 than in

the base case scenario variations and the two-parameter scenarios with the shorter

decline lags (table 3.1).

Table 3.6 demonstrates the TPEE performance for the true underlying TPEE

simulations in the scenarios with four risk trajectories. As the decline parameter

increases, the rate of failure in estimating any parameter decreases. Similar to the

single half-life simulation 4-group scenarios, coverage and bias of the hazard ratio

were good (close to 95% and 0%, respectively) regardless of the underlying TPEE

model. Failure was more common for the decline parameter than for the incline

parameter.
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Table 3.6: TPEE Performance by Two-Parameter Effective Exposure
Four Group Simulations

Parameter True
Decline Mean Median Coverage

Probability % Bias # Fail

Hazard
Ratio

10 days 1.51 1.51 93.9 0.66 15
30 days 1.51 1.51 95.3 0.72 7
90 days 1.51 1.51 96 0.62 4
450 days 1.51 1.51 95.5 0.39 2

1,000 days 1.50 1.50 95.2 0.32 0

Incline
Half-Life

10 days 88.93 86.25 88.4 -1.19 21
30 days 90.38 86.25 90.4 0.43 15
90 days 95.05 90 91.7 5.61 4
450 days 95.60 90 92.4 6.22 2

1,000 days 95.00 90 92.3 5.56 0

Decline
Half-Life

10 days 29.02 19.69 94.8 190.21 460
30 days 43.70 36.56 93.6 45.68 216
90 days 97.96 90 91.9 8.85 28
450 days 482.72 480 94 7.27 2

1,000 days 1221.44 990 91.3 22.14 0

Interestingly, the smaller decline parameter scenarios tended to have better es-

timation of the incline parameter based on the smaller bias, though the incline’s

coverage could be considered lower (I might call it "ball park" across all decline

variations, CP=88.4 for Out10.4G vs. CP=91.3 for FourG).

3.4.5 Hazard Ratio Variations

The hazard ratio estimates for conventional measures in the null scenario, shown

in Table 3.7, all produced an average null HR estimate for the effect of the exposure.

The 10% and 20% increased-risk scenarios also had minimally-biased10 results for

the current exposure compared to non- or never-exposed individuals risk, in the

dichotomous and categorical exposure models, respectively.

It stands to note that the HR1 and HR10p scenarios were unable to estimate

10towards-the-null
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Table 3.7: Conventional vs. Fixed Half-Life Models in Null and
Nearly Null HR Scenarios

Categorical Current
vs. Not

Ever vs.
Never

Fixed Half-Life (days)
Scenario Statistic PvsN CvsN 1 10 100 1,000

HR=1
Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

% Bias 0.072 0.071 0.046 0.069 0.044 0.034 0.034 0.498
minAIC 586 0 0 17 62 161 174

HR=1.1
Mean 1.02 1.09 1.08 1.05 1.08 1.08 1.10 1.13

% Bias -7.7 -1.3 -2.05 -4.5 -2.01 -1.68 0.18 2.8
minAIC 393 0 0 13 93 417 84

HR=1.2
Mean 1.03 1.17 1.15 1.10 1.15 1.16 1.20 1.26

% Bias -14.23 -2.52 -3.91 -8.39 -3.85 -3.22 0.32 5.14
minAIC 200 0 0 9 105 674 12

HR: Hazard Ratio
PvsN: Estimate for Past Exposure compared to Never exposed in categorical model
CvsN: Estimate for Current Exposure compared to Never exposed in categorical model
minAIC: Number of times the model was selected by a minimum Akaike Information Criterion (AIC)
out of 1,000 simulations

the true HR in both EE algorithms (Table C.3), while the HR20p had low bias and

good coverage in the OPEE algorithm only. The median across OPEE and TPEE-

estimated hazard ratios of the 1,000 simulations lands on the true parameter, but

the mean hazard ratio estimates tend to explode for a true null or 1.1-fold hazard.

The 1.2 HR appears to be a threshold for the algorithm’s function of estimating the

magnitude of association.

The over-estimation of the hazard, across the null-scenario simulations, is not

an indicator for direction of the bias when using the OPEE or TPEE algorithms.

This estimation-issue comes from the bias imposed during selection of the incor-

rect half-life parameter(s) by the algorithm. Thus, I consider what would happen

if I imposed a half-life on my own, without the algorithm’s application.

Considering fixed half-lives of 1, 10, 100, and 1,000 days in the null risk (HR1)

scenario, the corresponding β parameter estimate was 0.0 on average (i.e. HR=1),

across the 1,000 simulations. For this particular scenario (HR1), the categorical ex-
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posure analytic model produced the minimum AIC in 586 of the 1,000 simulations,

with the remaining "best fit" models selected equally across the fixed half-lives

considered. In fact, neither of the standard dichotomous metrics ("Current" and

"Ever") produced the minimum AIC statistic in any of the scenarios considered

(Appendix Table C.4).

With increasing magnitude of risk, the minimum AIC-producing model – across

conventional metrics and fixed half-lives – settles on the fixed half-life closest to the

true lag parameter. Looking at table 3.7, the fixed half-life estimated HRs are the

same, while the fixed half-life of 100 days is selected over the conventional mod-

els and other fixed half-lives 417 and 674 times out of 1,000 simulations, for the

HR10p and HR20p scenarios, respectively. The estimated hazard ratios using the

fixed (bounded) half-lives range from 1.08 to 1.13 and 1.15 to 1.26 for the true haz-

ard ratios of 1.1 and 1.2. Comparatively, the conventional model hazard ratios all

underestimate the relative effect of exposure.

3.4.6 Three vs. Four Risk Groups

Figure 3.5 shows a histogram of the true hazard ratio across the 3- and 4-group

scenarios for a single half-life of 1,000 days. I see that the 4-profiles scenario has

a narrower curve centered around 1.5. This implies that estimation of the true

hazard ratio should be less biased in the 4-group runs than the 3-group runs.

Looking at table 3.8, it appears that adding a fourth group to the single-parameter

half-life scenarios does not appreciably change the results using the OPEE algo-

rithm, unlike the information hypothesis presented earlier. In the previous results

(section 3.4.3) focused on the half-life parameter only, the largest single half-life of

1,000 days, produced infinite estimates of the hazard ratio. This is likely a result of
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Figure 3.5: Histograms of steady state risk for half-life=1,000 days
simulations, comparing the 3-group to 4-group designs.

the overestimation in the half-life parameter (failing 60 and 95 times for the 1,000

day 3 and 4 group scenarios, respectively). For this reason, the numbers presented

in the table reflect the estimates of performance for the non-failed simulations, to

circumvent the "Inf" cell-values. Looking at the non-failed scenarios only, the %

bias is 301% and 184% for the half-life parameters in the 1,000 day 3- and 4- group

scenarios, respectively. While removing the failed simulations does give estimates

for the mean and % bias – i.e. non-infinite values – the estimated biases for the

1,000-day scenario HR parameters remain largely overestimated.

For the underlying TPEE scenarios, adding a fourth group generally tends to
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Table 3.8: OPEE Performance by One-Parameter Half-Life Compar-
ing 3- and 4- group simulations

Parameter True
Half-Life

# Risk
Groups Mean Median Coverage

Probability % Bias # Fail

Hazard
Ratio

10 days 3 1.51 1.51 94.7 0.34 0
4 1.50 1.50 94.8 0.20 0

90 days 3 1.51 1.51 95.9 0.47 1
4 1.50 1.50 95.7 0.20 0

1,000 days 3 1.5e+87 1.48 86.8 9.8e+88 60
4 5.4e+20 1.50 88.2 3.6e+22 95

Half-Life

10 days 3 11.85 9.38 86.1 18.53 2
4 11.83 9.38 85.5 18.28 2

90 days 3 92.22 90 92.9 2.47 1
4 91.89 90 92.3 2.10 0

1,000 days 3 4006.8 840 80.4 300.7 57
4 2838.4 900 86.1 183.8 95

reduce the likelihood of failures and bias of all parameters estimated. The decline

of 1,000 days scenario coverage of the true hazard ratio was less than acceptable

in the OPEE framework, but adding the fourth on group appreciably changed this

(42% vs. 96%, appendix table C.7). Adding the fourth group minimally improved

coverage for the decline parameter in the TPEE fits (Table 3.9), while all the 3-risk

profile scenarios overestimated the incline parameter more than their 4-profiles

counterparts.

3.4.7 Multivariate Scenarios

On average, the percent bias of the single half-life parameter estimates, across the

1,000 simulations, was 2.5% for the base case (BC1) scenario using the OPEE algo-

rithm, while the MVmono and MVmulti estimates of percent bias were 1.19% and

0.26% for the same analytic approach, respectively. 11 Moving to the TPEE algo-

rithm, the incline and decline percent biases were 37.1% and 9.4% in the base case.

11Recall that the MVmono and MVmulti models include adjustment for covariates
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Table 3.9: TPEE Performance by Two-Parameter Half-Lives Compar-
ing 3- and 4- group simulations

Parameter True
Decline

# Risk
Groups Mean Median Coverage

Probability % Bias # Fail

Hazard
Ratio

10 days 3 1.55 1.51 95.8 3.12 28
4 1.51 1.51 93.9 0.66 15

90 days 3 1.60 1.52 97.4 6.44 22
4 1.51 1.51 96 0.62 4

1,000 days 3 1.52 1.51 96.7 1.1 1
4 1.50 1.50 95.2 0.3 0

Incline
Half-Life

10 days 3 100.46 75 81.5 11.6 46
4 88.93 86.25 89.3 -1.2 21

90 days 3 123.38 90 90.5 37.1 42
4 95.05 90 91.7 5.6 4

1,000 days 3 101.71 90 91.7 13.0 1
4 95 90 92.3 5.6 0

Decline
Half-Life

10 days 3 37.09 23.44 94.3 270.9 458
4 29.02 19.69 94.8 190.2 460

90 days 3 98.43 90 88.9 9.4 71
4 97.96 90 91.9 8.9 28

1,000 days 3 1234.99 960 90 23.5 2
4 1221.44 990 91.3 22.1 0

The percent bias, upon addition of covariates (MVmono), was 13% for the incline

and 9.4% for the decline half-life parameters using the TPEE algorithm. The multi-

variate multi-trajectory (MVmulti) model simulations’ percent bias stayed smallest

(incline = 7.8% and decline = 6.4%).

The monotonic trajectories (MVmono) simulations had nearly the same perfor-

mance across OPEE and TPEE algorithms as the multi-trajectory (MVmulti) sam-

ple sims (Table 3.10). However, the multi-trajectory set of simulations was better

equipped (fewer failures, smaller bias) to inform the TPEE algorithms.

This was expected, since the monotonic trajectories sample had no individuals

transitioning upwards12. By adding more information from the multi-trajectory in-

12Those smokers still climbing in risk would be expected to have almost reached the maximum
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dividuals, coverage of the OPEE half-life parameter estimate improved minimally

(93.8% in MVmono vs. 94.9% in MVmulti). The TPEE algorithm performance was

not as similar between these scenarios, with better coverage of Incline and Decline

parameters in the MVmulti simulations (Table 3.10), though the coverage of the

hazard ratio estimates remained nearly identical.

Table 3.10: OPEE and TPEE Performance by Trajectory Variations

OPEE TPEE
Scenario Parameter Mean CP % Bias # Fail Mean CP % Bias # Fail

Base
Case

HR 1.51 95.9 0.47 1 1.60 97.4 6.4 22
Incline 92.22 92.9 2.5 1 123.38 90.5 37.1 42
Decline 98.43 88.9 9.4 71

Four
Groups

HR 1.50 95.7 0.2 0 1.51 96 0.62 4
Incline 91.89 92.3 2.1 0 95.1 91.7 5.6 4
Decline 97.96 91.9 8.9 28

No
Up

HR 1.51 95.9 0.57 1 2.5e+130 99.1 1.7e+132 343
Incline 97.81 91.6 8.7 1 2518.6 100 2698.5 386
Decline 108.9 93 21 386

MV
Mono

HR 2.98 94 -0.83 0 2.98 94.4 -0.80 9
Incline 3.04 93.8 1.19 1 3.40 91.6 13.2 59
Decline 3.28 82.6 9.4 60

MV
Multi

HR 2.97 92.8 -0.90 0 2.97 93.6 -0.86 5
Incline 3.01 94.9 0.26 0 3.24 92.6 7.8 20
Decline 3.19 86.7 6.4 20

HR: Hazard Ratio; CP: Coverage Probability;
NoUp: Three trajectories of risk in base case scenario with "down", "ctrl", and "on" groups only
MV Mono: Monotonic trajectories from "Restricted" sample of BWHS participants used to simulate a
3-fold maximum hazard with a one parameter 3-year half-life.
MV Multi: Full sample of BWHS participants used to simulate a 3-fold maximum hazard with a one
parameter 3-year half-life.

3.4.8 No Incline Variation

Similar to the MVmono, the NoUp scenario has no upwards-transitioning risk in-

dividuals. Compared to the base case and four group scenarios, the OPEE model

in this scenario estimated a larger half-life, on average (97.8 vs. 92.2 vs. 91.9 days,

hazard plateau as inclusion in the sample at least 10-years of prior exposure at baseline
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Table 3.10). The TPEE algorithm, here, continues to grossly overestimate the in-

cline half-life even when restricting to non-failed simulations (Incline=2519 days).

This is not as much of an issue for the decline parameter, though most three-group

OPEE models and scenarios appeared to also have larger bias in the TPEE Incline

than the Decline half-life estimates.

3.4.9 Dosing Variation

Referring to table 3.11, it is clear that both binary and dose-based OPEE and TPEE

model algorithms lead to similar bias and slightly lower coverage probabilities

in estimation of the lag parameter. However, the major pitfall of the binary-dose

assumption for this scenario is the overestimation of the true hazard ratio with 0%

coverage. This failure to estimate the true effect comes from improperly-weighting

the risks associated with different levels of exposure, and is not a unique limitation

to my methodology.(Copeland et al., 1977)

Table 3.11: Mean (Coverage Probability) of the OPEE and TPEE
algorithm-estimated half-lives and risk ratios under Binary vs. Dose-
based models in the context of 1,000 simulations of the Dosing vari-
ation scenario.

Half-Life
Incline Decline Hazard Ratio

Dose
Based

OPEE 91.20
(94.2%)

1.503
(95.4%)

TPEE 100.01
(95.0%)

91.37
(89.8%)

1.515
(97.2%)

Binary
OPEE 90.91

(93.3%)
1.874
(0%)

TPEE 103.99
(93.5%)

90.71
(87.9%)

1.911
(1.3%)
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3.4.10 Initialization

Table 3.12 shows the parameter estimates by EE algorithm. Coverage and bias of

both the hazard ratio and half-life estimates were nearly the same for all OPEE

algorithms, regardless of initialization half-life. Only one simulation of the 1,000

sets failed the OPEE (initialized at 60 days), but this would not have been reflected

in the final results for the BC1 simulations, because I ran all "failed" simulations

with a secondary initial value (100 days).

The results for the TPEE algorithm by initial value were not as consistent.

Roughly 20 simulations failed in terms of the hazard ratio estimation, but this was

tied back to failures from estimating the half-life parameters. In particular, remov-

ing the failed simulations resulted in a coverage probability of the HR of 97.3 for

both the 100 and 110 day initialized algorithms, and a % bias of the HR parameter

of 7.1 and 60.6 for these two initial half-lives, respectively.

In general, the initialized half-life appears to affect some aspects of the EE

model performance, though it was more egregious in the TPEE application.

3.4.11 Interval Analyses

Table 3.13 shows how both plr1 and cph1 tend to overestimate the half-life life in

OPEE, with increasing bias as interval length increases. Recall that this structure

miscalculates the true effective exposure for all individuals equally. Events are thus

assigned an EE level associated with longer survival, which naturally means that

the time-to-effect would appear longer. Meanwhile, structure 2 imposes different

biases on EE for cases and non-cases, which underestimates the true OPEE lag at

the 300 and 900 day intervals. More interval-analysis results can be found in the

Appendix tables (C.10 and C.9).



86

Table 3.12: Base Case Algorithm Performance by Initialization

Initial OPEE TPEE
Parameter Guess1 Mean CP % Bias # Fail Mean CP % Bias # Fail

Hazard
Ratio

60 days 1.51 95.9 0.47 0 1.61 97.4 7.2 22
70 days 1.51 96.1 0.45 0 1.67 97.2 11.1 24
80 days 1.51 96 0.45 0 1.63 97.3 8.9 19
90 days 1.51 96 0.46 0 1.60 97.5 6.9 21

100 days 1.51 95.9 0.44 0 1.61 97.3 7.1 24
110 days 1.51 96.2 0.45 0 1.61 97.3 60.6 21

Incline
Half-Life

60 days 92.22 92.9 2.47 1 126.27 90.3 40.3 42
70 days 92.02 93.2 2.25 0 126.54 90.3 40.6 43
80 days 91.91 93.2 2.13 0 127.57 90 41.8 41
90 days 92.14 92.9 2.38 0 125.41 90.3 39.4 40

100 days 91.87 92.9 2.08 0 122.58 90.4 36.2 45
110 days 91.99 92.9 2.21 0 129.55 90 44 41

Decline
Half-Life

60 days 97.99 89.1 8.9 69
70 days 98.25 88.9 9.2 73
80 days 98.30 89.4 9.2 69
90 days 98.57 89.5 9.5 72

100 days 99.00 89.7 10 74
110 days 98.42 89.3 9.4 71

1 Single initialized half-life value at the start of the algorithm’s fitting process
OPEE: One-Parameter Effective Exposure Algorithm Results
TPEE: Two-Parameter Effective Exposure Algorithm Results
CP: Coverage Probability

The overestimation in structure 1 also occurred in plr1 estimates of the hazard

ratio, while cph1 showed the best coverage of this estimate across all intervals and

OPEE analytic approaches (plr1 vs plr2 vs cph1 vs cph2). The method showing

the best coverage of the OPEE half-life parameter was cph2, except for the 900-

day interval length, because the risks sets at each event time are compared to the

study-end EE for all non-cases. In this particular situation, where only baseline

and study-end data contribute to the analysis, or where there is little information

on time spent in transition, the both CPH models overestimate the hazard ratio.

Applying the TPEE algorithm to the interval datasets resulted in overestima-

tion of HR, regardless of interval length (Appendix Table C.9). It is possible that

this overestimation in the short interval lengths, specifically for cph1, plr1, and
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plr2, is related to the overestimated half-lives for both parameters. Despite appear-

ing to have low bias in estimating the hazard ratio for the 10-day interval length

(HR=1.49), the cph2 model failed in the TPEE algorithm for 425 of the thousand

simulated samples. Failures rates of the TPEE algorithm increased with increasing

interval length, except for the cph1 models, though bias in estimation of both lag

parameters became worse for all models with larger intervals.

In Table C.10 the Current vs. Never group’s (categorical model) HR estimate

appears to have the best coverage of the true HR, compared to the other conven-

tional measures of exposure. The calculated EE in structure 1’s CPH models (cph1)

mirrors the behavior of the true EE estimates for coverage and bias in cph2. This

is because the calculation applied to structure 1 only changes the exposure-level

classification for the cases at their true event time in the interval. In fact, in the

last two columns of table C.10, the coverage and bias appear the same for the true

parameter fit (TrueEE) in both CPH models, until the interval length exceeds the

half-life, at which point the estimates diverge.

3.4.12 Failures in OPEE/TPEE Algorithms

Failure of the OPEE algorithm was seen more often in the smallest sample size

(N=1,000 participants failed 5 times in the OPEE algorithm), null hazard, and long

single half-life [1,000 days] scenarios. The null lag models, where the underly-

ing scenario had either a null HR for events or a half-life of one-day, "failed" in

the majority of TPEE algorithms. Since the Half1 did not see these same rates of

failure for the OPEE algorithms, it may be that the type of "failure" here comes

from problems in the normal approximation of the half-lives’ confidence bounds –

specifically when approximating the decline bounds (per coverage probability of
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21.6% across the 1,000 simulations, while the incline’s coverage was 86% for these

same simulations).

The large number of failures in the TPEE estimation of Out10 can be explained

by the failed normality of the likelihood surface when the half-life estimate for

the decline gets too small. By removing the [nearly half of the] simulations that

failed, coverage of the decline parameter changes from 51% to 94%, while the in-

cline half-life and ratio coverage probabilities improve by roughly 2% points. Ad-

ditionally, for both failed and non-failed simulations, the minimum AIC model

selection prefers the OPEE for the Out10 scenario (Table C.4).

It is possible that the underlying issue here (large failure rates in Out10) is ac-

tually due to the lack of information available from the short decline. Specifically,

the down group drops in risk almost immediately, meaning the proportion of time

spent in transition is 1/90th of the study period.

To resolve this, I could set the incline half-life to 1,000 days and the decline

to 90. This is roughly the same magnitude as 90,10, but I would be able to keep

the other parameter constant with the base case. Increasing both of the half-life

parameters, while maintaining a larger incline half-life, could also be considered

to try to have both half-lives within an estimate-able range for the study design.

Alternatively, I could stagger entry for the down group, to see if adding more

down individuals to the time-dependent risk sets could improve estimation perfor-

mance, regardless of the input incline and decline parameters. However, before

attempting to methodologically address this combination, it is more important to

understand the clinical parallel to this scenario. The biologic relationship, here,

assumes the EE rises at a slower rate than it falls. An example could be the use

of anti-psychotic medications that take a long time to activate symptom reduction,
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but for which relapse can happen immediately.(Agid et al., 2006)

3.5 CONCLUSIONS

The simulation study presented here accounts for multiple scenarios and situations

where the OPEE and TPEE algorithms may break. This includes multi-trajectory

scheme and multivariate models. My methods are bounded by reducing sample

size, decreasing the number of trajectories that contain information on rise and

fall, hazard ratios that approach null (specifically less than a 1.2 hazard ratio for

exposed), and when the half-life of the effect is nearly null or as long as the study

length. Additionally, the time-varying estimation suffers when wide measurement

intervals are imposed, especially when events are assigned a time-biased exposure

level (i.e. structure 1).

Under a null model, the algorithms typically fail in some way. Thus, in situa-

tions where the OPEE and TPEE "blow up", one can fit some fixed half-life models

and other conventional metrics for exposure with those results consistently point-

ing towards no association.

For reference, I have presented the results of exposure metrics that may be con-

sidered standard for a follow-up study of time-varying exposure and binary time-

dependent outcomes. The categorical model was the only conventional metric

model that was selected by AIC criteria across all the simulation scenarios (ta-

ble C.4). This mostly occurred for scenarios where the simulations failed TPEE

and/or OPEE. In the multivariate setting, adding "unstable" smokers (MVmulti)

to the group reduced bias in the hazard ratio estimate for past-exposed individu-

als compared to the multivariate monotonic trajectories scenario.

The overarching theme of this chapter has been that more information content
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improves estimation of both the lag and hazard ratio parameters. This is seen

through the addition of a "fourth" group to any of the scenarios, where the inclu-

sion of the on group13, regardless of the other trajectories, improves estimation of

the steady state’s magnitude of association.

This "more info" concept is especially evident in the MVmulti scenario’s correct

AIC-selection of the OPEE model, even in the presence of OPEE and/or TPEE fail-

ure (all 1,000 simulations selected the OPEE model). The trajectories of "unstable"

smoking participants (MVMulti) additionally lowered the bias and increased cov-

erage of the half-life and HR estimates from the OPEE algorithm as compared to

the MVmono scenario. The improvements were also seen in the conventional ex-

posure analyses in the MVmulti vs. MVmono scenarios. This is because the time-

varying indicators for smoking status also account for the changing exposures in

each risk set that feeds into estimation of the latent EE trajectories.

While my dissertation does not focus on inference or hypothesis testing, I do

believe that the Multivariate Multi-Trajectory scenario could hold a key to per-

formance in that realm of statistics. Particularly, the increased complexity of this

dataset, specifically addition of "on-again off-again" life-course smokers to the

sample, should provide more robust estimation of the true lag and effect parame-

ters. Naturally, adding subjects improves power, but this also benefits the knowledge-

base of any exposure-response relationship in that the full cohort reflects a more

representative sampling of the entire population.

For the interval-based analyses, almost all the OPEE model types and interval

lengths had minimal bias in the estimation of the true HR. For the study-length

interval (900 days), which can be paralleled to a case-control study design, OPEE

13recalling these individuals are assumed to be at or near steady state maximum risk



91

and TPEE are not recommended. However, this may be circumvented by creating

pools or risk-sets artificially – presuming the EE information gets appropriately

assigned for non-cases in those imposed intervals. This, in turn, creates an analytic

dataset that looks like the original data, in which one observation is specific per

subject per unique event time in the study. Given the known start and stop times

for exposure, one can compute the EE at any time point even if it is not measured.

Thus, preprocessing the data allows for analysis in a semi-continuous form that

circumvents the problems associated with interval-based analyses. In particular,

the function behaves as a time-transform for each subject’s exposure history.

3.5.1 Limitations

As I did not explicitly model covariate relationships in this study, I am not able to

comment on the impact of correlation between potential confounders and the EE.

However, I could extend the study to look at this by using data from the multivari-

ate scenarios to restrict the set of confounders in the model during the estimation

process. This should provide insight regarding the ability of the model to estimate

the lagged association when missing important confounders, such as hypertension

and alcohol use.

Another limitation of this simulation study is that I did not explicitly inves-

tigate the effect of competing events. I tried to account for some of this in the

multivariate scenario, by using real data that included right-censored individuals

at loss to follow-up, death, or cancer.

Both TPEE and OPEE univariate models assume balanced study designs and

do not account for random variation in the start and stop times of regimens. The

random trajectories taken for the MVmulti scenario could be the contributor to the
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lower percent bias seen in the half-life estimates of both EE algorithms. The two

multivariate scenarios also present more of a population-based balance of subjects

in each risk group –i.e. where the base case and its variants primarily included

2/3 exposed vs. 1/3 unexposed individuals, the BWHS underlying sample had

proportionally far more non-smokers ( 3/4 and 3/5 for MVmono and MVmulti,

respectively).

While I did not expect the OPEE algorithm to perform well under a true TPEE

model scenario, the high failure rate of the TPEE algorithm applied to a true OPEE

model scenario was not expected. Improvements can be made to the TPEE algo-

rithm that would allow for better (more precise) estimation of a true OPEE model.

3.5.2 Strengths

By generating the data on a daily basis, I have already conditioned the time-to-

event on the survival up to that time point at a fine gradient of possible survival

times. Since time is relative to the half-life parameter, it would be just as feasible

to generate events that occur in monthly or yearly units, as long as the granular-

ity of the risk over time is preserved. To check the bounds on this conclusion, I

could investigate a large half-life within the range of the study period. It would be

good to know the threshold at which this estimation becomes problematic. For my

purposes, I used a study-length equivalent to at least ten half-lives.

Both sets of MV scenarios had TPEE estimates of the two-lag parameters con-

verging towards an OPEE model. A future step to consider would be the construc-

tion of a test to determine whether the TPEE or OPEE is more appropriate. The

AIC presents a potential method for model selection, however, this is not a formal

hypothesis test.
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CHAPTER 4

Application to Real Data

4.1 BACKGROUND

4.1.1 Cigarette Smoking and Cardiovascular Diseases

Cigarette smoking has been shown to cause build-up of plaque in the arteries, also

known as atherosclerosis, a precursor condition to more advanced forms of car-

diovascular disease (CVD). Over a three-year period, the ARIC study found that

disease progression of atherosclerosis, as measured by the intima-medial thickness

of the carotid artery, was 50% increased amongst current smokers compared to

non-smokers.(Howard et al., 1998) For one of the largely-studied CVDs, myocar-

dial infarction (MI), smoking accounts for 36% of the population-attributable risk

of a first MI.(Yusuf et al., 2004) Previous research has also shown that there is also

a dose-response relationship of smoking and CVD, in that increasing the number

of cigarettes smoked per day increases the risk of CVD.(Rosenberg et al., 1990; Tol-

strup et al., 2014; Rogot & Murray, 1980; Teo et al., 2006) Due to these established

relationships between CVD and smoking, clinicians and health policy have largely

focused efforts on promoting smoking cessation.

Time-to-reduction in CVD hazard due to smoking has become particularly in-

teresting for researchers. Rachet et al. (2003) explored this lagged association em-

ploying B-splines and the Cox proportional hazards (CPH) framework to estimate

the time-to-return to baseline hazard for Framingham Heart Study participants

who successfully quit. The investigators showed that the flexible modeling ap-

proach could estimate a distribution for the lag, assuming that lag of effect varied

by subject, that was consistent with prior epidemiologic findings of roughly 3.4
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years to reduction in risk of heart attack following complete cessation of smoking.

The authors’ technique was limited to individuals with successful smoking ces-

sation, implying that the method could only generalize to situations in which the

data is unidirectional. Additionally, Rachet et al. discussed the limitations of their

results in the context of not knowing the true timing of exposure.

4.1.2 Aims

The goal of this chapter is to demonstrate an application of the Effective Exposure

(EE) methodology to data from the Black Women’s Health Study, a longitudinal

cohort of approximately 59,000 African-American enrolled in 1995 and followed

biennially.(Rosenberg et al., 1995) I will show that the underlying EE for smoking

in relation to increased risk of CVD can be modeled using an exponential curve

that plateaus at a maximum hazard level once the individual has smoked for a

prolonged period of time.

In my analyses, I consider all events and exposures occurring between baseline

and follow-up in 2015. Specifically, I estimate the increased hazard due to smoking

exposure in the CPH analytic framework using time-to-first CVD event as my out-

come. The OPEE and TPEE algorithms are applied to smoking as a binary ("on" vs

"off") exposure, as well as, dosing based on the number of packs smoked per day.

By looking at the profile likelihood surface for a range of plausible lags, I am able

to evaluate the validity of my model assumptions and estimation performance.

To emphasize the usefulness of my approach, I compare my results to those of

conventional exposure variables for smoking exposure and their estimated HR for

CVD. By the end of the chapter, I hope to demonstrate the interpretability of the

EE results, and will reflect on the strengths and limitations of my findings, in terms
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of the method overall and by comparison to previous literature on the association

between smoking (cessation, particularly) and several cardiovascular outcomes.

4.2 METHODS

4.2.1 Study Design

The Black Women’s Health Study (BWHS) is a prospective cohort study comprised

of 59,000 African American women from across the US, ages 21-69, who responded

to a mailed 14-page questionnaire in 1995.(Rosenberg et al., 1995) As of 2013, bien-

nial questionnaires had been completed with an overall follow-up of 88%, provid-

ing information on health events and various exposures, with some ascertained

more frequently than others. The Institutional Review Board at Boston Univer-

sity granted approval for the BWHS and all subjects provided written informed

consent.

4.2.2 Cardiovascular Disease – Outcome Specification

For these analyses, I consider several CVD conditions as the outcomes of inter-

est, setting the first reported event of any one of these as the time-to-event. These

include self-reported MI, stroke, congestive heart failure, and coronary artery by-

pass and grafting procedures. Participants were asked about one or more of these

conditions at all questionnaires, along with the year of first diagnosis.

When the year of diagnosis is not known, the questionnaire cycle in which the

CVD event was reported is taken as the year of the event. Additionally, if a subject

was found to have died from an underlying CVD event, as depicted by an ICD10

"I" code on a death certificate, this is marked as a CVD death and considered an

outcome in the year of death.
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During the assignment of person-years of follow-up, the BWHS analyses typi-

cally assume all events to have occurred at the mid-point of the year. This accounts

for potential misclassification of exposure for events that do not have a correspond-

ing month of diagnosis, though it imposes some bias on those with a known exact

time of event. For the purposes of my analyses, I assume all events occur at the

end of the year of diagnosis. The implications of this assumption are discussed in

more detail in the conclusions.

The BWHS is currently abstracting reports of CVD conditions with the hopes

of creating a validated and confirmed case-set. Due to this ongoing process, my

dataset is made up of both non-confirmed and confirmed cases, however, I have

removed individual cases that have been disconfirmed. This is important to re-

member, as the clinical relevance of these results should be approached with cau-

tion. To quote D’Agostino et al. (1990), "the examples [here] are presented mainly

for comparison of the methods; the reader should not view them for definitive sub-

stantive interpretation".

4.2.3 Smoking and Cigarettes/Day – Exposure Specifications

At baseline, in 1995, women were asked about smoking in terms of age at initia-

tion, number of cigarettes smoked per day (on average) for early and more recent

years of use, whether they quit and how long ago, and total duration of smoking

prior to enrollment. This set of questions provides information for classifying in-

dividuals as current vs. past vs. never smokers, with only 38 women missing data

on smoking at baseline 1. During sensitivity analyses of past and current smok-

ers (see section 4.2.6), only those with at least 10 years of prior smoking history at

1Additional had implausible years of smoking duration or missing years since quitting, which
resulted in their exclusion from the analytic sample.
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baseline are included.

In follow-up cycles, smoking was asked about in terms of cigarettes/day for

every 2-year questionnaire, except in 2011. Smoking during pregnancy was asked

in 1997, 1999, 2001, and 2003, while use of menthol cigarettes questions appeared

in the 2003, 2005, 2007, 2009, and 2013 questionnaires.

The smoking data from the BWHS cohort has been cleaned for consistency of

responses across time, as well as, within cycle for reported menthol cigarette use.

Subjects with missing information during one or two follow-up periods, with con-

sistent bordering responses, are assumed to continue the pattern of smoking as

reported in the bounding cycles. For example, if a woman answered "non-smoker"

in 1999 and "non-smoker" on the 2003 questionnaire, her missing 2001 cycle was

set to non-smoker. Additionally, when cigarettes/day (frequency/intensity) was

not provided for a given cycle, information was carried forward or back-filled from

adjacent cycles 2.

For use in "conventional" analyses, the time-varying dataset includes variables

of smoking status category (current vs. past vs. never), history of smoking (ever

vs. never), current number of cigarettes or packs/day (continuous, on average

for the 2-year period), and cumulative number of years smoked. When a cycle’s

smoking status for an individual is not known, the subject is excluded from the

risk set for that particular year.

Women are classified into one of five risk trajectories, as defined by the time-

varying smoking status across all follow-up periods: smokers throughout, non-

smokers throughout, successful quitters, smoking initiators, and those with an un-

stable smoking status. The first two categories require a baseline report of never

2Provided the adjacent cycle include non-missing information on cigarettes smoked per day and
the same binary smoking status as the one with missing data.
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or current smoking, with no change to smoking or non-smoking status, respec-

tively, throughout the 20 years of follow-up. Missing cycles do not change the risk

profiles for these women, as transition from one status to missing and back is not

considered to be a change in the exposure trajectory. The risk trajectories and the

number of women, person-years, and cases that fall into each group are described

in more detail in the results section 4.3 of this chapter.

4.2.4 Additional Covariates and Confounders

All models are adjusted for the following time-varying covariates: body mass in-

dex (BMI in kg/m2, continuous); frequency of vigorous exercise (none vs. <1

hour/week vs. 1+ hours/week); current menopausal status (pre- vs. post- vs.

unknown) and age at menopause (<45 vs. 45-<50 vs. 50+ years old for post-

menopausal women only); alcohol consumption (current vs. past vs. never);

history of diabetes (ever vs. never); history of high cholesterol and cholesterol

medication/statins use (ever vs. never); and history of hypertension treated with

medication (ever vs. never). Additionally, family history of cardiovascular disease

(specifically, stroke and myocardial infarction), a fixed risk factor, is included in

the models for all participants. The majority of these confounders were collected

at each questionnaire cycle, though the carry-forward method is used to assign

values at time points where this information can not be updated.

Subjects that did not report a history of any of the confounding conditions are

assumed to be unaffected at baseline, and are set to "yes" at the first report of dia-

betes, high cholesterol, or hypertension with concurrent use of medications. Use of

statins was collected on some questionnaires explicitly and as write-in responses

on others. Once set to "at risk" for the condition/statin use, that history of "ever" is



100

carried forward for the remainder of follow-up.

4.2.5 Data Preparation

The BWHS data was first converted into an Andersen-Gill(Andersen & Gill, 1982)

dataset in SAS 9.3(SAS Institute Inc., Cary, 2011), i.e. multiple rows per subject

with time-varying exposures updated at each available questionnaire cycle with

non-missing information. While each cycle included two years of follow-up, the

observations were split into annual risk sets, to preserve the interval-based com-

parisons of Effective Exposure for cases and non-cases.

Having an appropriately structured dataset is key in the OPEE and TPEE frame-

works, as well as, crucial for traditional time-varying covariate analyses in BWHS.

The only consequence to pre-preparing the data into multiple observations per

subject comes in the form of computational costs, as the results and precision

are not affected.(Therneau & Grambsch, 2000) If the time measure for the time-

to-event outcome is conditional on the interval, then this equates to the Cross-

Sectional Pooling with time-adjustment model.(Ngwa et al., 2016) This CSP method

is just a Cox proportional hazards model fit within annual intervals and strata of

current age, assuming separate baseline hazards for each strata-year, rather than a

single baseline hazard per individual (as might be used in a mixed effects model-

ing approach).

This same dataset structure can be used in a traditional Time-Dependent Co-

variate Model (TDCM), where the interval is not included as a stratification level,

but rather each observation’s start and stop times reflect the particular measures

contributing to the risk set at the stop-time-event. Ngwa et al. (2016) showed that

these two methods, time-adjusted CSP and TDCM are identical in performance
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and estimation of longitudinal exposures and time-to-event outcomes. Age is left

in the strata for all CPH models, to avoid issues with non-proportional hazards by

age.

To account for tied event times, the Breslow(Breslow, 1974) method is used in

all CPH model fits.

4.2.6 Restricted Sample Analyses

To understand the role of smoking cessation on risk of CVD, I considered a sim-

plified or restricted subset that could be useful in comparison to the single-dosing

simulation scenarios. This dataset also attempts to mimic the study-design used

by Rachet et al. (2003) in the estimation of the lag distribution.

In particular, I restricted the individuals for this set to one of three risk trajecto-

ries: Non-smokers throughout, smokers throughout, and successful smoking ces-

sators (quitters). The latter group included individuals who may have quit prior

to the study entry, or at some point within the study, as long as there was no report

of smoking for the remainder of the subject’s follow-up and a minimum of two

follow-up cycles as non-smokers. The successful cessation group, as well as, those

who were smokers throughout, were further restricted to women with at least 10

years of smoking exposure at the baseline interview. This restriction did not ac-

count for differences in the intensity of smoking, or number of packs smoked per

day3. By forcing all exposed individuals to have 10+ years of exposure at baseline,

if the true EE half-life were between 2 and 5 years, then the first component of the

multi-dosing EE should reflect a level where exposed individuals start within 2-5

half-lives of exposure.

3Though all subjects in both the restricted and full cohort datasets were required to not have
missing information on packs/day
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4.2.7 Conventional Analyses

The first set of exclusions applied to this full set removed missing or implausible

information on baseline smoking status (N = 360). Individuals with prevalent CVD

or prior reports of stroke, myocardial infarction, coronary bypass surgery or graft-

ing, congestive heart failure, and other cardiovascular procedures at baseline are

excluded from the analyses (N = 1,562). Additionally, subjects are excluded due

to missing information on any of the covariates of interest (N = 4,064), with the

exception of menopausal status. The total number of women excluded at baseline

due to prevalent cancer or incidence of cancer within the first follow-up cycle is N

= 1,685.

Previous research within the BWHS cohort has utilized PROC PHREG in SAS

to conduct CPH regression with separate baseline hazards estimated for age and

period combinations. As described in chapter 2, my algorithms all make use of R

software, with several key packages loaded.R Core Team (2017) For the purposes

of this dissertation, a similar approach is constructed within R 3.2.5 using the "sur-

vival" package(Therneau, 2015) to be able to compare estimates of various smoking

exposure classifications on CVD hazard. These classifications include time-varying

definitions of current/past/never smoking status, ever vs. never smoked, number

of cigarettes or packs per day, and cumulative years of smoking.

4.2.8 Effective Exposure Approach

After performing analyses the "traditional" way, I apply the OPEE and TPEE mod-

els, using the profile likelihood (PLL) method and both of the lag-estimation algo-

rithms. The goal of the PLL method is to fit all possible combinations of incline

and decline parameters, to see the shape of the joint parameter likelihood sur-
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face, over which the algorithms search for a maximum. This approach can be very

computationally-intensive and expensive as it requires calculation of each subject’s

EE for a combination of incline and decline half-lives, followed by the fitting of the

CPH model:

h(t) = h0(t) exp [βEt(h1, h2) + ΓX]

Where X includes the fixed and time-varying covariates, and Γ denotes the co-

efficients representing the excess hazard due to each covariate. The CPH model fits

include the log-likelihood, AIC, and effect estimates, corresponding to the maxi-

mum likelihood estimators conditional on the pair of lags. Each coordinate of

the half-life combination is then used to plot the overall surface of the profile log-

likelihoods.

I use the profile likelihood method to compare estimates of CVD hazard and

smoking across possible half-lives from two-weeks (∼0.05 years) to 20 years, in

increments of 0.05 years. The maximum log-likelihoods and corresponding confi-

dence bounds for both 1- and 2-lag-parameter models are compared to my estima-

tion algorithm results.

4.2.8.1 Profile Likelihood

In the TPEE context, in order to ascertain the confidence bounds of a single param-

eter, I first subset all the likelihood fits by levels of a single parameter. The max-

imum likelihood from each fixed level is used to create the specific profile across

that parameter. The points of this profile that have a log-likelihood less than 3

units away from the maximum provide the range of values for the 95% confidence

interval, using the 2-degree of freedom Chi-Square (χ2) statistic. I consider the 2-df

chi-square instead of the 1-df, because the half-life parameters are not independent
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and the joint distribution is more appropriate than the marginal.

As the fits across two parameters will contain the one parameter likelihoods,

where the incline and decline parameters are equal, the marginal distribution (1-

df) can be used to construct the OPEE confidence bounds.

4.2.8.2 Asymptotic Normality

I assume that the true lag of the EE smoking and CVD hazard is normally dis-

tributed, to calculate the 95% confidence intervals for the OPEE and TPEE lag

and effect parameters using the Information Matrix-derived standard errors and

a Z=1.96.

4.3 RESULTS

There were 323 cases that were censored due to loss to follow-up and 299 censored

due to cancer incidence prior to becoming a CVD case. The full analytic cohort in-

cludes a total of 2,786 cases over 786,139 person-years for 51,303 women. In the full

sample 3,705 subjects remained smokers throughout the study, 32,534 stayed non-

smokers, and 9,433 and 153 subjects quit smoking successfully or started smoking

(and did not quit) at some point during the study, respectively. The final group

consisted of 5,478 subjects who had an "unstable" smoking status throughout the

study, implying that they may have quit and returned to smoking, or one of several

multiple-change-points trajectories over the course of follow-up.

In the restricted subset of quitters, smokers and non-smokers throughout, there

were 2,396 total cases, of which all the non-smoking and smoker-throughout cases

stayed in the analysis. The number of cases per person-years for "smokers" and

"quitters" in the full analytic set is 749/148,836 and 352/47,665, respectively. For
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the restricted analyses, the corresponding cases/person-years is 707/138,159 and

332/41,888, for the "smokers" and "quitters", respectively. In both samples ana-

lyzed, the number of cases and person-years remained the same for those who

were never smokers throughout the study (1,301/512,257). The total number of

person-years for the restricted analysis decreased to 692,636.

4.3.1 Participant Characteristics

Table 4.1 shows the population characteristics at baseline (1995) by baseline smok-

ing status in terms of current vs. past vs. never smokers. All the numbers in the

table are age-adjusted to the sample’s age-distribution, and either represent the

mean (standard deviation) or row proportion. The baseline characteristics are also

presented for the restricted sample.

Smokers and past-smokers were more often drinkers (current or past), and

older than never smokers at baseline. Nearly a fifth of all participants had high

cholesterol at baseline, and just over a fifth were being treated for hypertension.

The restricted sample included 4,772 and 7,231 participants that smoke or used

to smoke at baseline, while the full sample included an additional 3,124 current

smokers and 2,482 past smokers at baseline. The reference group at baseline, of

never smokers, is based on 32,534 and 33,694 individuals for the restricted and full

samples, respectively. Of the smokers at baseline in the restricted sample, 1,534

stopped smoking during some point in follow-up and were deemed to be success-

ful at quitting (no return to smoking with at least 2 non-smoker follow-up cycles

of data following cessation). The difference in the number of never smokers at

baseline in the full and restricted samples comes from the 1,160 women who ini-

tiated smoking at some point during the study, of which 153 remained smokers
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Table 4.1: Age-Adjusted Baseline Characteristics by Smoking Status
in the Full and Restricted Black Women’s Health Study Samples

Baseline Smoking Exposure
Full Sample Restricted Sample

Baseline Characteristic1 Current Past Never Current Past Never
N 7,896 9,713 33,694 4,772 7,231 32,534
Age (in years)2 40.2(9.3) 43.9(10.1) 36.3(10.1) 41.9(8.6) 45.6(9.6) 36.4(10.1)
Body Mass Index (kg/m2) 27.7(6.4) 28.6(7.1) 27.8(6.6) 27.7(6.5) 28.4(6.9) 27.8(6.6)
Pack-Years of Exposure3 12.1(11.1) 8.0(10.5) 0.0(0.0) 13.8(10.9) 8.0(10.5) 0.0(0.0)
Family History of CVD, %4 41.2 39.70 38.20 39.6 40.5 38.4
History of Comorbidities

High Cholesterol, % 18.10 19.7 19.10 17.8 20.2 19.40
Statins Use, % 0.8 0.8 0.7 0.8 0.7 0.7
Type 2 Diabetes, % 3.9 4.40 3.8 3.8 4.3 3.9
Treated Hypertension, % 23.1 22.2 22.5 23 22.7 22.8

Vigorous Activity Level
None, % 41.1 30.6 31.7 42 30.2 31.8
<1 hour/week, % 16.10 16.10 16.8 17.2 16 16.8
≥1 hour/week, % 42.8 53.2 51.5 40.80 53.7 51.4

Menopausal Status
Premenopausal, % 76.7 78.10 78.7 76.10 77.60 78.10
Unknown or Dubious, % 6 6.2 6.2 6 6.4 6.3
Postmenopausal, % 17.3 15.7 15.1 17.90 16 15.6
Age at Menopause5

<45, % 8.30 6.7 6.2 8.70 6.7 6.3
45-<50, % 4.10 3.7 3.3 4.3 3.7 3.4
50+, % 3.2 3.5 3.8 3.3 3.6 3.9
Unknown, % 1.7 1.9 1.9 1.6 1.9 1.9

Alcohol Use
Non-Drinker, % 32.20 30.7 70.10 30.2 30.1 70.60
Current Drinker, % 47.4 39.4 17.3 45.8 38.5 16.8
Past Drinker, % 20.40 29.9 12.6 24 31.4 12.6

1 Values are means(SD) or percentages and are standardized to the age distribution of the study
population.

2 Not age-adjusted.
3 Cumulative Total of Packs per Day multiplied by Years of Smoking that quantity.
4 CVD: Cardiovascular Disease; First degree relatives with stroke or myocardial infarction.
5 Age at Menopause for Women classified as "Post-Menopausal" at Baseline.
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throughout the remaining follow-up period.

Table 4.2: Black Women’s Health Study Trajectories (1995-2015)

Smoker
Throughout

Non-Smoker
Throughout

Successful
Cessator

Smoking
Initiator

Unstable
Smoking

# Cases 352 1,301 749 8 376
# Women 3,705 32,534 9,433 153 5,478

4.3.2 Conventional Analyses

Table 4.3 shows the results from fitting multiple combinations of smoking variables

on the complete set of participants from the BWHS sample (1995-2015).

The metric producing the best-fit model, as determined by the largest log-

likelihood (-17516.91) and smallest AIC (35067.82), is the one that uses the time-

dependent indicator of current smoking and the pack-years of smoking exposure.

The estimated effect for a given current or past smoker requires a calculation us-

ing the linear combination of the coefficients for the current indicator and a one-

unit change pack-years. The current smoker indicator is set to 0 for past smokers,

though the effect of past smoking is thought to feed into the pack-years estimate.

Meanwhile, both of the combination models assume that never smokers have a

pack-years equivalent value of 0, which may violate the proportion hazards as-

sumption for this effect estimate.

The exposure metric whose model performed second best, and which provides

a more straight-forward interpretation, was the time-varying categorical model

(log-likelihood=-17523.97, AIC=35081.94). For any given time-period and age, af-

ter adjusting for the covariates, those who are current smokers are at 2.32 (95% CI:

2.1-2.6) times the hazard of developing CVD compared to never smokers, while

past smokers are at 1.23 (95% CI: 1.1-1.3) times the hazard compared to never
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smokers.

Table 4.3: Smoking exposure and risk of cardiovascular disease:
standard variable approaches comparison in full Black Women’s
Health Study Dataset (1995-2015)

95% Confidence
Interval

Smoking Exposure Model
Hazard
Ratio Lower Upper

Log-
Likelihood AIC

Current 2.32 2.10 2.56Smoking
Categories Past 1.23 1.12 1.34 -17523.97 35081.94

Ever vs. Never 1.54 1.43 1.67 -17588.86 35209.72
Current vs. Not 2.15 1.96 2.36 -17533.85 35099.71

Cumulative Years Smoked 1.02 1.02 1.02 -17546.45 35124.91
Current Smokers: Packs/Day 2.42 2.16 2.71 -17557.76 35147.52

Current Smoker 1.86 1.67 2.06Combination
Model 11 Pack-Years 1.01 1.01 1.01 -17516.91 35067.82

Ever Smoker 1.29 1.18 1.42Combination
Model 22 Pack-Years 1.01 1.01 1.01 -17566.03 35166.06

AIC: Akaike’s Information Criterion
1,2 Combination models 1 and 2 assume that never smokers have zero pack-years.

4.3.3 Effective Exposure Estimation

The maximum likelihood according to the profile log-likelihood surface is located

at an incline half-life of 9.3 years (95% PLL CI: 4.2-20.0) and decline of 7.00 year

(95% PLL CI: 4.2-11.7), with a corresponding hazard ratio of 2.8 (95% CI: 2.5-3.1)

(Table 4.4). Thus, the CVD hazard for a lifetime smoker is expected to plateau

at 2.8 times the never smoker’s hazard. The confidence bounds for the half-life

parameters in PLL were calculated using the 2-df chi-square distribution, and as

the combination of half-lives considered did not extend beyond 20 years, the in-

cline parameter’s upper 95% CI is bounded by 20. Naturally, these results raise

some questions – how could the detrimental effects of smoking take longer to ac-

cumulate than to dissipate? For now I will only focus on the decline parameter’s

interpretation.
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After adjusting for confounders and covariates, a woman’s CVD hazard asso-

ciated with smoking is expected to decrease 50% after 7 years of successful and

complete cessation. This is regardless of the starting risk. For a woman starting

near the maximum hazard ratio of 2.8 compared to her never-smoker counterpart,

her hazard ratio or excess hazard will reduce by 50% (to an HR = 1.89) after 4.8

years.

Using the packs/day classification, the incline and decline half-lives that max-

imize the likelihood were at 5.75 and 5.85 years, respectively (CI presented in ta-

ble). As the OPEE model’s packs/day maximum likelihood occurred at a single

half-life of 5.85 years, it would appear that the packs/day dosing favors a single

lag parameter. It is worth noting, however, that selecting to use the TPEE model

does not change the HR estimate for CVD in relation to an effective exposure of

smoking 1 pack/day.

The single-parameter lag where the profile is maximized for binary smoking

falls at 7.1 years (95% PLL CI: 4.6-10.8), with a corresponding relative hazard of

2.5 (95% CI: 2.25-2.77). Here, the single-lag is very close to the decline half-life of

the two-parameter profile. This demonstrates how the decline parameter is likely

reflecting the true half-life associated with CVD risk reduction following complete

cessation. Based on the AIC criteria, the 1-parameter (OPEE) framework is prefer-

able over the TPEE model, in both the binary and packs/day dosings for the EE of

smoking (35061.22 vs 35061.96 in binary and 35089.20 vs 35091.20 in packs/day).

Meanwhile, the minimum AIC for all of the full sample EE analyses (PLL and algo-

rithmic) selects the binary smoking OPEE model as the preferred metric for CVD

hazard by smoking EE.

The second half of table 4.4 shows the OPEE and TPEE algorithm results fol-
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lowing initialization at a half-life of 1 year. The half-life for the OPEE binary model

stopped at 6.75 years vs. 7.10 from the PLL approach. With very similar estimates

for the hazard ratio and it’s confidence bounds, the algorithmic approach is pri-

marily superior to PLL in the computational burden required (∼2 minutes vs. ∼2

hours, OPEE algorithm vs. PLL).4. Similarly, the OPEE packs/day model and PLL

1-parameter packs/day model are nearly identical in the results.

The confidence bounds presented for the lag parameters in PLL are wider than

those estimated asymptotically following the algorithmic half-life search. For both

2-parameter models (Binary and Packs/Day) and estimation approaches (PLL vs.

Algorithm), the decline parameter’s half-life confidence bounds are narrower than

for the incline parameter. Figures 4.1 and 4.2 show the profile likelihood contours

along the incline and decline parameters of the TPEE models using the binary and

packs-per-day dose exposures, respectively.

In both figures, the blue solid line represents the values of the decline parameter

that maximize the log-likelihood of the full model for a fixed incline parameter.

Conversely, the pink dashed line represents the incline value that maximizes the

log-likelihood for the full model fit when fixing the decline parameter. The red

triangle, where the two lines cross, is the point where the log-likelihood surface is

maximized. The contours represent the joint likelihood confidence bounds for the

log-likelihood surface 5.

Notably, the contour plot for binary smoking reflects the uneven bounds of

the incline and decline parameters, as seen in table 4.4. The width of the incline

parameter’s 95% joint PLL confidence interval demonstrates the uncertainty sur-

4Since the 1-parameter PLL fits were performed within the 2-parameter PLL grid, the computa-
tional times presented in Table 4.4 for the PLL modeling approaches are not mutually exclusive

5The deviance values that represent the 2-df chi-square distance from the maximum are 2.3, 3.0,
and 4.6 for the 90th, 95th, and 99th percentiles, respectively.
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Figure 4.1: Overall Effective Exposure Contour for Log-Likelihoods
Across Combinations of Incline and Decline Lag Parameters
amongst the full set of BWHS participants.

rounding this parameter that is due to a small number of participants "on the rise".

Since smoking is "bad for you", the number of participants that initiate smoking

in the study is small, thus it is likely that participants enrolled in a health study

are cognizant of the negative effects of smoking, and might therefore be less likely

to initiate use during the study. This just implies that the results may not general-

ize well to new smokers, especially with regards to time-to-plateau of in the CVD

hazard after starting to smoke.

In the second contour plot for packs/day (figure 4.2), the individual parame-
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ter’s profiles are nearly identical for incline and decline half-lives less than 5.75

years. This is consistent with the determination that a single lag parameter may be

appropriate in the estimation of the association between smoking and CVD when

using a packs/day dosing. As the incline parameter’s half-life increases, however,

the corresponding decline parameter that maximizes the likelihood stays between

5 and 10 years.
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Figure 4.2: Packs Per Day Effective Exposure Contour for Log-
Likelihoods Across Combinations of Incline and Decline Lag Param-
eters amongst the full set of BWHS participants.

The interpretation of the packs/day model is offered in terms of the OPEE

framework, due to the points made above. For a consistent 2 packs/day smoker
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of 30 years, after accounting for other risk factors of CVD, the CVD hazard asso-

ciated with a woman’s smoking exposure is 6.5 times that of her counterfactual

never smoker, while a woman who smoked 1 pack/day for 30 years is at 2.6 times

the never smoker’s hazard of CVD. A 50% reduction in HR or excess hazard for

these same 2- and 1-pack/day smokers, would take 2.9 and 4.1 years following

complete and successful cessation. The corresponding hazard ratios would be 3.8

and 1.8, respectively. Alternatively, after 5.85 years of complete and successful

quitting of smoking, the 2-pack/day smoker’s CVD hazard is expected to reach

the 1 pack/day smoker’s hazard, i.e., after the half-life number of years, the risk is

reduced by 50%. In terms of reduction in hazard ratio, this implies that the hazard

ratio of CVD for a 2 pack/day smoker compared to a never smoker reaches the

hazard ratio for the 30-year 1 pack/day smoker compared to a never smoker, after

5.85 years of no smoking exposure.

4.3.4 Restricted Sample Results

The baseline characteristics of this restricted sample’s participants are shown in Ta-

ble 4.1. This subset’s current and former smokers are older than in the full sample,

while the non-smokers are nearly the same age. It could be possible that age and

smoking have some interactive effect, but this segmentation is more an artifact of

the restriction imposed at baseline to include only those who would already have

reached steady state hazard from smoking at baseline (by requiring 10+ years of

prior smoking exposure at baseline).

Using the restricted sample of participants, the two models with the largest log-

likelihood and smallest AIC, across the conventional measures of smoking, were

the same as the "best fit" models from the full sample analyses. The HR estimates
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in this subset were consistently larger for the current smokers and smaller for the

past and ever smoker measures, likely due to the large number of women that

would have contributed to these group being excluded from the varying trajec-

tories group (Table D.1 in Appendix D). The hazard ratios for cumulative years

smoked and pack-years did not differ in this analysis, and similarly to the full

sample analysis, both of these estimates require interpretation based on a single

unit increase in pack-years exposure.

In the restricted sample, the HR estimates are the same for current smokers in

terms of packs/day and current smokers in the categorical model. Here, current

smokers are at a 2.56-fold CVD hazard compared to never smokers, after adjusting

for time-varying factors. This effect size is in the same ballpark as the estimated

hazard ratio from the OPEE model in the full sample. It is understandable that

the estimated effect size is larger for this analysis, because those classified as cur-

rent smokers from the "unstable" group are not contributing person-time to the

restricted analysis.

As in the full sample, the OPEE PLL and algorithm estimates of lag were nearly

the same, with comparable effect sizes (hazard ratios) and lower AICs than each

smoking exposure’s TPEE model counterpart (28842.84 vs. 28843.36 for binary

OPEE vs. TPEE, 28862.56 vs. 28863.84 for packs/day OPEE vs. TPEE). The esti-

mated lag of effect for the binary exposure was 4.5 years with a corresponding 2.52

times the CVD hazard at steady state compared to never smokers. Interestingly,

the estimate for the packs/day dosing OPEE half-life was longer (6.9 years) with

the CVD hazard associated with a lifetime of smoking 1 pack/day of 2.7 compared

to never smokers6.
6after adjustment for covariates, confounders, and age-related baseline hazards
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Similar to the full sample results, the restricted set’s bounds using the PLL ap-

proach were wider than the normally-approximated bounds from the algorithmic

results. Also, the decline parameters in both exposure models were closer in mag-

nitude to the OPEE model’s single half-life. This is to be expected as this particular

set of individuals did not include any initiators or varying risk trajectories.

Contour plots corresponding to the restricted set of BWHS participants can

be found in the Appendix D. For this sample, I have chosen to focus on a 3-

dimensional visualization of the profile surface, to illustrate the behavior of the

log-likelihood. All three plots in figure 4.3 represent the same log-likelihood sur-

face for the BWHS Restricted Subset using the Packs/Day dosing in the TPEE

framework (i.e. for coordinates reflecting the fixed incline and decline half-lives).

The intersecting plane represents the 95% joint confidence bound for the two lag

parameters’ profile log-likelihood surface. The maximum likelihood peak occurs

at the incline half-life of 8.15 years and decline half-life of 6.4 years.

The likelihood surface is steeper in the direction of the lower bounds for each

parameter, indicating that the true half-life of effect is less likely to be close to zero

than to be 10-years. This demonstrates that the CVD hazard for women who have

quit smoking 1 pack/day does not dissipate immediately, and that it takes at least

3.5 years for the risk to go down by 50%.

4.4 CONCLUSIONS

Compared to conventional smoking exposure measures, the analyses using Effec-

tive Exposure showed evidence of a lagged association between smoking and CVD

hazard that agrees with previous literature. The nearly three-fold risk of CVD

due to smoking, as seen in the restricted sample, has been demonstrated in other
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cohorts and analyses that address the lagged nature of the association between

smoking and CVD.(Kawachi et al., 1994; Rachet et al., 2003) However, the current

approach allows for researchers to estimate an effect without pre-specifying a lag-

time, and is flexible in that the entire sample of participants, regardless of their

exposure trajectory, can be included in the analysis.

In the restricted sample’s analysis, the half-life estimates for packs/day dosing

were longer than those for the binary exposure, which differed from the full sample

results.

4.4.1 Limitations

There are many known risk factors for CVD, overall. While I accounted for a ma-

jority of these potential confounders, my models did not adjust for oral contra-

ceptives or female hormone use, coffee, education, region of residence, angina,

and treatment of type II diabetes. Rosenberg et al. (1990) additionally adjusted for

a behavior score, and other literature has noted multiple psychosocial risk factors

for acute MI(Tofler, 2017), none of which were considered in this analysis. The lack

of adjustment for these variables may confound the results, though it would be in-

teresting to conduct a simulation study to determine the impact of such exclusions

on the estimation of the lag. Current literature suggests that there may actually be

an interaction between smoking and oral contraceptive use, and potentially other

forms of hormone therapy, which could result in different half-life estimates.

My methodology does not account for potential interactions between risk fac-

tors, neither between covariates nor with the EE measure. There is a clear need to

account for this, as well as, including additional risk factors that were not in these

analyses. For example, I would assume that exercise is more difficult for smokers,
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and therefore the effect of activity level on CVD hazard may differ by smoking sta-

tus and time since quitting. This does not even begin to address the possibility of

effect modification in the lags of smoking’s relationship with CVD due to another

risk factor – i.e. typically interaction implies effect modification in the measure

of association, though interaction could exist such that time-to-plateau differs by

another factor.

One of the major limitations of this applied analysis is the selection of cases.

The purpose of the analyses were to demonstrate the methodology for estimating

lagged effects in a "real" clinical application. The set of cases selected for the study

included various CVD conditions and non-confirmed cases. Currently, the BWHS

is performing record abstractions and quality control for CVD cases. Most of the

cases that have been self-reported are under review by trained epidemiologists

and physicians, meaning that there is a future opportunity to re-analyze the data

restricting the outcome to confirmed cases only. This will allow for cleaner infor-

mation regarding the type of cardiovascular event, as the pathophysiology of the

diseases may differ, as well as, the lagged-association between smoking’s effective

exposure and the hazard.

Smoking cessation is often concurrent with other lifestyle changes, therefore

there could be some confounding by indication. My model represents the condi-

tional lagged effect of smoking, based on fixed profiles for the covariates in the

model (i.e. adjusting for non-lagged trajectories of other exposures in the model).

The model assumes return to plateau of the never smoker risk of CVD. There-

fore, if the underlying biological mechanism is trauma and stiffening of the vascu-

lar wall, the model expects this damage to be reversible. However, the CVD hazard

could stay elevated for past smokers compared to never smokers, if the assump-
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tion of return to pre-smoking risk is incorrect. In this situation, I would expect the

estimated lag to appear longer than the true lag, because the lag-time should be

infinite with regards to returning to null. On the other hand, any reduction in the

hazard, following cessation, should be captured by the two-parameter model. A

longer estimated half-life for the decline parameter might account for the decay

towards a final exposure level that is greater than null.

The two-parameter model, amongst the entire sample, estimated a slightly

longer half-life for the incline lag than the decline lag. The fact that the incline rate

appeared slower (i.e. longer half-life) than the decline rate, and with wider con-

fidence intervals, is indicative of the information content available about partici-

pants in transition. As mentioned in the results, only 1,160 women began the study

as non-smokers and initiated smoking at some point during follow-up. Based on

my findings from the simulation study (chapter 3), having few or no individuals

on the rise tends to have positively biased estimates for both half-lives, with more

egregious overestimation in the incline half-life parameter. This lack of informa-

tion explains why the confidence interval width is larger for the incline parameter,

which intuitively represents the uncertainty in this parameter estimate.

4.4.2 Strengths

Epidemiologic Strengths

Part of the BWHS cohort’s strengths are the prospective data collection and nearly

complete information on smoking history that includes various trajectories with

interruptions in both smoking and quitting. Lack of control for recidivism, has

been a weakness in most other approaches that aimed to estimate the time-to-

reduction in the CVD hazard due to smoking.(Rachet et al., 2003; Rosenberg et al.,
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1990) Where previous literature has investigated smoking cessation and CVD in

case-control study designs(Rosenberg et al., 1990), they may be unable to estimate

the true CVD hazard associated with smoking and are subject to observation bias.

Prior literature about smoking cessation and risk of CVD/MI may have mis-

classified menthol smokers as non-smokers, because of the "high" vs. "low" yield

cigarette distinctions, as discussed by Rosenberg et al. (1990). Delnevo et al. (2011)

found that smoking cessation rates are lower amongst menthol cigarette users

compared to non-menthol smokers. It is possible that studies of smoking cessa-

tion did not account for menthol cigarette use, which could bias the estimated

CVD hazard and the amount of time for the hazard to return to normal. Thus, a

strength of my analysis is it’s ability to account for menthol smoking, as a source

contributing to the effective exposure measure of smoking in relation to CVD haz-

ard.

Methodologic Strengths

My method provides a single estimate of the HR and does not require complicated

restrictions for using ex-smoker data.

Most epidemiologic studies prefer the use of pack-years or cigarette-years for

quantifying the dose-response relationship of smoking intensity and duration in

association with dichotomous outcomes. However, when Leffondré et al. (2002)

investigated various smoking metrics in relation to lung cancer, they demonstrated

that having separate measures for duration and intensity provided more inter-

pretable and better fitting model estimates than the combined variable. Addition-

ally, they discovered that using the pack-years variable with never smokers set to

0 tended to overestimate the hazard ratio for current- and past-smokers, compared
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to models without never smokers.

In the 2010 Surgeon General’s report of tobacco smoke and smoking-attributable

diseases, it was noted that the risk of coronary heart disease did not appear to be

linearly associated with the quantity smoked.(U.S. Department of Health and Hu-

man Services, 2010) In particular, Law & Wald (2003) found a plateauing of the risk

after the user reached 25 cigarettes per day, though this threshold was not perfectly

flat. Therefore, it stands to reason that the packs/day analyses of the effective ex-

posure of smoking may not be the most appropriate, giving more weight to the

binary results. This is also consistent with my results that show a smaller AIC in

both samples (full and restricted) for the binary smoking EE than the packs/day

EE.
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CHAPTER 5

Conclusion

In longitudinal cohort studies, one will often assume a fixed amount of time must

pass prior to an exposure turning "on". This can be thought of as a delayed or

lagged association between an exposure and some risk of a time-to-event outcome.

In modeling the lagged exposure-response relationship with adjustment for other

time-varying factors, it may be more clinically relevant to consider the underlying

action mechanism of the exposure measure associated with the hazard. Thus, the

true association between exposure and response can be denoted by a latent quan-

tity (of exposure) that may be unobservable or difficult to measure/obtain in large

follow-up studies.

For example, when a lifetime smoker quits, the cardiovascular disease (CVD)

hazard may take some time to return to "normal", and most experts agree that the

impact of smoking should subside. A simple exposure metric would immediately

set this individual to "unexposed" creating misclassification in the population-

based estimate of the CVD hazard associated with smoking. The cumulative num-

ber of years smoked metric would also create misclassification, because this would

not account for the decline of the hazard when the individual quits.

In addition to lag, some exposure-response associations may not be entirely

linear, such that prolonged exposures do not appreciably change the hazard level.

For example, Law & Wald (2003) showed that smoking’s association with ischemic

heart disease is not linear and has some plateau of effect following 20 cigarettes

per day consumed. In particular, the CVD hazard associated with smoking 2 packs

per day may not be that different from the hazard associated with smoking 1 pack

per day, but both differ greatly from the CVD hazard associated with smoking 0.5
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packs per day.

To account for plateau in effect, delayed action mechanisms, and time-varying

exposure profiles, I have defined the "Effective Exposure" (EE) measure that can

be used to estimate exposure-response associations in observational time-to-event

data. This latent measure is constructed as a lag-parameterized weighted sum

of exposure sequences that plateaus at a maximum exposure level and returns to

normal based on the lag parameter(s) used. That is, the lag parameter reflects the

rate of accumulation and/or decay to/from the maximum EE level.

In addition to estimating the hazard ratio associated with the maximum EE, I

have developed a set of algorithms to estimate the lag parameter of the EE mea-

sure. Borrowing from pharmacokinetics, I have shown that the lag parameter can

also be defined as the half-life of effect, to allow for interpretation in terms of the

time-to-plateau or time-to-null of the effective exposure.

5.1 SUMMARY

In Chapter 2 I derived the equations for EE in the context of one- and two-lag pa-

rameters (OPEE and TPEE, respectively). The latter represents situations where

the time-to-plateau and time-to-null are not equivalent. Additionally, I showed

that both parametric forms could be applied to repeated exposures, which accom-

modates more types of exposure trajectories seen in "real world" data. For exam-

ple, individuals that start and stop smoking multiple times can still contribute to

population-models of CVD hazard, as their total time-varying EE is based on the

sum of EE for each interval of smoking history.

To concurrently estimate the hazard ratio and lag parameter(s), I derived algo-

rithms based on profile likelihood methodology. These fit Cox proportional haz-
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ards (CPH) or pooled logistic regression (PLR) models of EE versus time-to-event

outcome for iterations of fixed value lag(s). Both the OPEE and TPEE algorithms

perform a search/grid-search to identify the [combination of] lags that maximize

the log-likelihood.

Chapter 3 explored the estimation performance of my two algorithms for a

range of simulation scenarios. I demonstrated that the coverage probability of

the hazard ratio parameter was consistently close, if not more conservative, than

the nominal 95% confidence interval, for the majority of OPEE and TPEE lag-times

considered. Deviations from the 95% coverage occurred more often when the half-

life of effect exceeded the study follow-up period, and when the TPEE algorithm

was applied to an OPEE-generated simulation scenario.

The simulation study primarily showed that estimation of the half-life and haz-

ard depend on the information content in the data. Specifically, information per-

taining to number of subjects at plateau and the amount of time spent at this steady

state affected estimation bias and coverage of the hazard ratio parameter. This is

thought to be the driving force behind the low coverage of the HR in the OPEE half-

life=1,000 days scenario, because most individuals will not have reached steady

state EE by the end of follow-up.

The information content required for estimating the half-life or lag parameters

depends on the number of subjects transitioning in either direction and the amount

of time spent in transition. I showed that the estimation thresholds for the single

half-life parameter were at 30 and 450 days, which relates back to 1/30th and 1/2

of the follow-up time. For shorter half-lives, the problems with estimation were

primarily based on my inability to approximate a standard error for the estimate,

which reflects failure in the normality assumption for true values that are located
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close to the bound (0 days).

I used real exposure trajectories from participants in the Black Women’s Health

Study (BWHS) to show that adjustment for covariates and inclusion of multiple

time-varying exposure profiles improved half-life and hazard estimation. In par-

ticular, I demonstrated that restricting the BWHS set to quitters, smokers, and

never-smokers throughout the study imposed additional bias on estimation of the

true lag of effect (as compared to the full BWHS set of exposure profiles).

Following the simulation study, I applied my methods to examine the asso-

ciation between smoking and CVD hazard in the BWHS (chapter 4). As recom-

mended by Rothman (1981) and Abrahamowicz et al. (1996), I used Akaike’s In-

formation Criteria (Akaike, 1974) to compare conventional measures of smoking

exposure to my EE models. The AIC allowed me to account for model complexity

in these comparisons, by penalizing the OPEE and TPEE models for the one and

two extra half-life parameters estimated in the process. I showed that the difficult-

to-interpret metric combination of pack-years plus current smoking fit the best

out of all the conventional measures (AIC=35067.8), though both OPEE and TPEE

models produced lower/better AIC (35061.3 and 35062, respectively).

Part of the appeal behind my method is that I have estimated the prolonged

smoker’s hazard of CVD along with the time required to reduce the hazard by

50% for any individual. This hazard ratio estimate was consistent for both the

full and restricted samples, such that, after adjusting for confounders and CVD

risk factors, the lifetime smoker’s hazard of CVD is 2.5 times that of the never

smoking counterpart. This hazard ratio may appear to underestimate the excess

risk reported by previous literature(Kawachi et al., 1994; Rosenberg et al., 1990),

however, the point of these analyses was to demonstrate the methods and, to quote
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Dr. Cupples et al. (1988), "[these illustrations] are not to be construed as providing

substantive medical conclusions."

5.2 PRIOR LITERATURE

In chapter 1, I discussed some of the previous approaches for dealing with expo-

sures that have a delayed action mechanism.

Similar to my conclusions, Abrahamowicz et al. (2006) showed that a cumu-

lative weighting metric provided better fitting models than traditional measures

of time-varying dose and exposure duration in an application to benzodiazepines

and risk of injuries from falling. While the authors borrowed weights from the

known pharmacokinetic half-life of each drug, the conclusions regarding time-to-

reduction in risk varied by the type of drug considered. This could be due to dif-

fering biologic mechanisms, as argued by the authors, while I would agree more

with the conclusion regarding lack of empirical evidence due to the small num-

ber of events by each benzodiazepine drug in the study. I also showed that the

conventional models performed better in the small sample size simulations.

The models described by Richardson (2009) assume protracted exposures de-

pend on interval start and end times for multiple exposure events. He defines

the cumulative effective exposure as the exposure accrual over a given period,

which differs from what I propose in the shape of the function over time. Specifi-

cally, Richardson’s models assume either a bilinear or log-normal latency function,

which do not account for a plateauing of the effect or return to null effect over time.

Langholz et al. (1999) explored several models including one close to my own,

with an exponential decay following exposure discontinuation. This "effective

dose" structure differs from the EE model as it assumes a linear rise in effect. Simi-
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lar to my conclusions, the authors noted the perks of the half-life interpretation for

the decline in risk and that precision in the latency parameter estimate depended

on having adequate variation in exposure profiles (i.e. information!). Richardson

et al. (2011) noted that a decreased variability within-subjects for the follow-up

period could result in a flattening of the likelihood with respect to the lag-times

considered. This, in turn, leads to biased estimation of the association measures,

and potentially narrow confidence intervals.

The more widely-accepted solution to dealing with lagged effects seems to

settle on the cubic B–splines approach.(Rachet et al., 2003; Abrahamowicz et al.,

2012) While this method is flexible and can be applied to various underlying para-

metric models, it is sensitive to the number of knots selected and their locations,

with instability in the tails. They also require a larger number of degrees of free-

dom than my method as the polynomial function, alone, takes 4 degrees of free-

dom.(Abrahamowicz et al., 2012)

Taking the binary OPEE model’s estimates of a half-life of 7.1 years and maxi-

mum hazard ratio of 2.5: for a 30-year smoker’s hazard ratio to decrease by one-

third would take roughly 2.9 years following cessation. Meanwhile, Rachet et al.

(2003) estimated that the ex-smoker’s hazard is 2.7 times the non-smoker with a

mean lag of 3.3 years (stdev=0.97).

My analysis of smoking and time-to-first CVD has several strengths over the

proposed method and application developed by Rachet et al. For starters, my

model included time-varying confounders while Rachet considered only baseline

covariates. Given that smoking habits tend to vary over time along with other

behavioral factors, such as alcohol use and exercise, my approach likely had better

adjustment for the correlation between smoking and other factors of CVD hazard.
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Additionally, Rachet included only smoking cessators in the analysis, while my

method allows for complex trajectories. This also means that conclusions made

using my method are more generalizable to situations where individuals may not

quit permanently, or where exposure trajectories are non-monotonic.

5.3 LIMITATIONS

One of the limitations of my approach is the fact that the lag-time may not fall

within a study period or window of follow-up that permits estimation. As de-

scribed in chapter 3 and above, the OPEE and TPEE algorithms depend on ade-

quate information regarding time in transition in order to have unbiased estima-

tion of the half-life of effect. Thus, for EE that decline slowly, it is possible that

individuals may die before reaching the level of no effect, which can make estima-

tion difficult. For these types of situations, I may be able to extend my approach

to account for competing events, such as death. In general, it would be useful to

understand the impact of competing events and other censoring mechanisms, as

these are relevant in most time-to-event analyses.

While I was able to account for the accumulated CVD hazard of smoking’s

exposure in my models, as well as, the time since quitting, I am limited by the

fact that I did not explicitly consider a pack-years equivalent in my simulations in

chapter 3. It would be useful to understand how this conventional measure com-

pares to the OPEE and TPEE algorithm estimates for the hazard ratio. Particularly,

as the OPEE and TPEE model remove the need for classifying individuals by cur-

rent status, it would be useful to determine whether the maximum hazard plateau

matches that of the combined hazard estimate for currently exposed individuals

who have been exposed for an extended amount of time.
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5.4 FUTURE WORK

5.4.1 Theoretical Next Steps

Floor of Effect

My methods, so far, have all assumed that the hazard will return to "normal" given

sufficient passage of time, as determined to be 4-5 half-lives following cessation.

In some cases, it may not be appropriate to assume that individuals will return

completely to the unexposed level. For example, while I discussed the slow decay

in EE of lead following treatment by chelation, a more appropriate model may

be one in which the effect of lead is irreversible. This would imply that the level

to which the individual can return is not 0 or null, and thus would require an

additional estimate for the location or hazard associated with the "floor".

Confounders

I briefly discussed the benefits of adding covariates to the models in chapter 3,

in support of my information hypothesis. I also discussed the need to account

for potential effect modification and unmeasured confounders in chapter 4. For

example, smoking has been shown to increase the risk of stroke for individuals

that use oral contraceptives. This type of effect modification could also extend to

the use of female hormones for menopause, such that the plateau of smoking’s EE

varies by hormone use.

Future work is needed to better understand the effect of unmeasured confound-

ing on the estimation of the hazard and lag parameters. This should also be ex-

tended to situations where the confounder or covariate may behave as an effect

modifier, which could be reflected either in the estimate of the plateau and/or in
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the estimated time required to achieve plateau (i.e. lag).

Multiple Lagged Exposures

The methods developed for this dissertation have all focused on estimating the

lag and hazard associated with a single exposure. In prospective cohort data, like

BWHS or the Framingham Heart Study, the most common approach is to treat

each questionnaire cycle as a mini follow-up study. When looking at multiple risk

factors for a time-to-event outcome, it is possible to impose a lag on all or some of

the variables, by simply using data from prior cycles.

My approach has shown that it is possible to avoid the a priori specification,

by estimating the lag associated with the effective exposure and the event of inter-

est. However, my methods do not yet allow for more than one lagged exposure.

Thus, a future direction might include development of an [even more complex]

algorithm that can iterate the lags of multiple effective exposures simultaneously.

Hypothesis Testing

The majority of this dissertation has focused on the estimation process with no al-

lusion to statistical inference. While my methods are able to estimate HR as low as

1.2, I have not provided a formal approach for testing that the effect is significant.

For now, it is possible to use the normally approximated lag-adjusted standard

errors to determine whether the hazard is non-zero.

Additionally, the normally approximated standard errors for the lag may pro-

vide some insight regarding the magnitude of the delay in effect. For example, if

the lag parameter’s confidence interval includes 0, then it is possible that using the

current metric for exposure may suffice. However, before applying this logic, it
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would be important to determine whether the normality assumption is correct, as

this tends to be violated near the lower values of the half-life.

Another interesting question that could be answered through hypothesis test-

ing is whether the incline and decline half-life are the same. One way to test this

would be to bootstrap the sample and fit both OPEE and TPEE algorithms. The

AICs could be compared for each bootstrap pair of results, with an empirical prob-

ability assigned to selecting one model over another. The alternative bootstrapping

approach would fit just TPEE algorithms to the samples to build a bootstrapped

confidence interval for the mean difference in the lag parameters.

5.4.2 Dissemination

Prior to Dissemination

Add a module for the TPEE model to start from the OPEE model’s estimate.

Standard errors based on asymptotic theory, though they could also be com-

puted through bootstrapping. The former is computationally efficient, while the

latter should work best in the presence of "strange" likelihood surfaces. Future

research should compare the estimated confidence intervals for bootstrapped vs.

information-derived estimates of both hazard and lag parameters.

Optimization of Functions

One of the primary drawbacks of my current method is the computational effi-

ciency of the iterative algorithmic fitting process. While the "survival" package

offers some variants for fitting the time-dependent covariates, the underlying com-

putations in that module utilize C, which is a faster and more efficient program-

ming language. Ideally, I would like to develop the fundamental modules for my
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calculations in C, as well.

I could also compare to and consider utilizing functions from the "optim" pack-

age in R. This could be particularly useful when I try to approximate the standard

errors under failed normality.

R Package Development

I plan to prepare an R package, such that other researchers may use the methods I

have developed for my dissertation. Some technical aspects of the programs have

been included in the text and appendices, though additional modifications and

revisions may be implemented at later points. In particular, I developed modules

for data processing that facilitate the use of my estimation algorithms.

Public Health Articles

I plan to summarize and write manuscripts corresponding to the methods and

results presented in chapters 3 and 4.

5.4.3 Applications to Public Health Questions

Smoking and CVD in the Million Veteran’s Project

One analysis that is in the works, though has not been included in this disserta-

tion, is to look at smoking and CVD using the Veteran’s Affairs Million Veteran

Project administrative data. The structure of this dataset poses some interesting

challenges, and the analytic results would serve as external validation to the anal-

ysis described in chapter 4.

In particular, for this analysis, there is no data on individuals who return to

smoking, however, there is a fine gradient of information available on covariates
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and event timing.

Statins and Risk of Fracture

An interesting clinical question is raised in the conflicting evidence of a protective

association between statin use and risk of fracture.(Toh & Hernandez-Diaz, 2007)

Researchers have indicated uncertainty in the mechanism of action explaining this

association.(Scranton et al., 2005) In this case, my methodology could provide in-

sight regarding the half-life of and whether there is a true association. Specifi-

cally, half-life values approaching zero or infinity would indicate that the biologic

mechanism behind the association may not be valid and other explanations, such

as confounding by indication, could be driving the statistically significant associa-

tions observed.

Obesity and Total Knee Replacement

As mentioned in chapter 1, there are many examples of lagged effects that could

be interesting to analyze using the proposed approach. For instance, I could look

at the trajectories of body mass index (BMI) over time and risk of total knee re-

placement. There is a known deleterious effect of increased weight on knee os-

teoarthritis progression, due to a number of hypothesized mechanisms, such as

loading and inflammation.(Coggon et al., 2001; Felson et al., 1988) Given recom-

mendations to lose weight, an individual may lower the impact of their weight.

However, it us unknown whether the damage over the earlier period of time is

reversible, and thus, whether there is an estimate-able lag related to the effective

exposure of weight. The TPEE model is particularly interesting to apply to this

type of data, as it would allow for the modeling of separate lag-times of obesity’s
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effect on knee osteoarthritis and later replacement surgery.

5.5 FINAL THOUGHTS

There are several points to consider before using my methodology. The first is that

the EE approach should not be the first model considered. There should be sub-

stantial rationale for implementing the structure I’ve described – Does the hazard

or risk plateau after sufficient time of exposure? Is there a reason to believe that the

effect of exposure is lagged? Can I reasonably identify a clinically-relevant range

of lag-times that might exist in my data?

The latter question is meant to focus on the probable biologic mechanisms that

are being modeled, i.e. what range of lags would make sense clinically? In ad-

dition to this question, the researcher should consider whether the hypothesized

lag-time falls within the study length. Particularly, I showed that it is not possible

to precisely estimate the lag, when the study is too short. This is especially impor-

tant when considering use of this method in clinical trials data, as these may be

too short to account for the lag in effect. Clinical trials, especially phase I and II,

tend to have small numbers of participants, which I showed (small sample size) to

be a potential limitation in chapter 3. Because of the small sample sizes and lack of

variability in exposure trajectories [point of the design is to control the exposure],

it may be best to avoid use of my method in clinical trials.

Secondly, when lagged effects exist, but the sample is small or the hazard ra-

tio is close to null, it is possible to revert back to the conventional measures of

exposure to approximate the hazard. These may be slightly biased, however, the

confidence intervals produced should have decent coverage of the true measure

of association. If the researcher still feels the need to account for lag when the
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conventional measure HR is smaller than 1.2, I would recommend starting with

several fixed lags. The AIC can then be compared across the fixed-lag models and

conventional measures to determine which model is most predictive of the true

exposure-response relationship.

Finally, when the conditions for use have been met (variation in exposure tra-

jectories, HR>1.2, lag-time<study length, large enough sample size), the OPEE and

TPEE algorithms can be applied to properly formatted/arranged data to estimate

the lag and hazard. I recommend that the analyst try more than one initialization

value, to ensure that the estimation does not get stuck on a likelihood ridge. If the

algorithms continue to produce inconclusive or inconsistent estimates for the lag

and HR parameters, for multiple initial guesses, then one could fit a grid of points

across all plausible combinations of incline and decline lag. This would be iden-

tify the full profile likelihood maximum and PLL confidence bounds. Alternately,

should the algorithms converge, but approximation of the standard errors "fail",

it is possible to use the PLL confidence bounds to inform the desired uncertainty

measure for the parameters estimated.
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GLOSSARY OF TERMS

Effective Exposure: An underlying/latent curve reflecting the

etiologically-relevant exposure that has a lagged

association with a time-to-event outcome. The

curve increases like an exponential cumulative

density function with a lag parameter λ, and

decreases mono-exponentially from the level

that corresponds to the change-point amount. In

the OPEE context, the lag parameters for incline

and decline are assumed to be the same, while

for TPEE the incline and decline λ values are

different. Can also be understood as the relative

proportion of the exposure that is "actively"

associated with the event of interest.
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Dose: The unit of effective exposure that corresponds to

the prolonged exposure’s hazard. In the binary

context, the Dose takes the value of 1 for exposed

and 0 for unexposed. For dosing-based effective

exposures, the lag parameters reflect the time-to-

plateau for a one unit dose. An example of the

latter is the effective exposure of smoking 1 pack-

/day in relation to risk of cardiovascular disease,

where the plateau of a 2 pack/day smoker is at

2-fold the hazard level of the never smoker.

λ - Lag Parameter: The rate of growth/decay for an effect. May be

parameterized as the natural log of 2 divided by

the half-life of the effect.

Start and Stop Times: The individual initialization and discontinuation

of the given dose for an individual. These times

may vary across subjects and are assigned rela-

tive to the overall study time period.

Steady State: The amount of the drug entering and leaving the

body is in equilibrium, such that the concentra-

tion in the single compartment does not change

over time.
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One-Compartment Model: An equation, one compartment pharmacokinetic

model, for the concentration of a drug that de-

pends on input and output rates in a single lo-

cation, typically the plasma/blood. The intra-

venous (IV) model can be simplified to a time-

dependent risk curve that is parameterized by the

elimination rate of the specific component.

Event: A binary outcome that follows Bernoulli(pEE)

pEE : The probability of an event, given the Effective

Exposure

Trajectory: The time-varying pattern of exposure for a spe-

cific individual. Monotonic trajectories imply

that an individual’s risk profile transition in

a single direction or is static, while a "Multi-

Trajectory" implies that the subject’s effective ex-

posure has multiple change-points within the

follow-up period.
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APPENDIX A

Algorithms

OPEE FLOWCHARTS

Figure A.1: Big Picture OPEE Flowchart
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Figure A.2: OPEE Flowchart Steps 0 and 1
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Figure A.3: OPEE Flowchart Steps 2 and 3
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Figure A.4: OPEE Flowchart Step 4
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TPEE FLOWCHARTS

Figure A.5: Big-Picture TPEE Flowchart
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Figure A.6: TPEE Flowchart Step 0
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APPENDIX B

Selected Code Documentation

This appendix provides minimal necessary documentation for the functions de-

scribed in the Dissertation text. Full code and documentation can be found at

https://github.com/hgerlovin/Lagest.

makeDVecs Split the multiple exposure periods into vectors of dose and

time since start and stop

Description

Reads in values for treatment regimen doses, start and stop times to create analysis-

friendly dataset.

Usage

makeDVecs(Cp.vec=c(1), ts.vec=c(0), tf.vec=c(900), intlen=1,

studyt=NULL, struct=0)

Arguments

Cp.vec Vector of doses for the regimens. Default assumes the binary ex-

posure plateau and that there is a single regimen of exposure. To

have multiple exposures, include the same number of vector com-

ponents in Cp.vec, ts.vec, and tf.vec.

ts.vec Vector of start times for the regimens. Default assumes the expo-

sure was started at time 0.

https://github.com/hgerlovin/Lagest
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tf.vec Vector of end times for the regimens. Default assumes the expo-

sure continues through time=900. When studyt is not specified,

the last specified end-time (last regimen) is used as the total study

time.

intlen Increment time to use. Default is 1 time unit.

studyt Total study follow-up time. Default is NULL and will pull the last

regimen stop time.

struct Structure indicator. If turned on (1), then additional regimen is

added for time following discontinuation. Default is off (0), as-

suming that the total number of regimens is fixed and does not

need additional follow-up.

Value

Outputs a dataframe with time incremented rows - columns: time, currD,

everD, and three columns per regimen for 1 to X total exposure events.

Dose1 -

DoseX

Columns indicating the overall doses for each regimen.

Repeated throughout for computational ease.

tStart1 -

tStartX

Columns indicating the time since starting the specific

regimen – depends on the point in the trajectory. i.e. Takes

a value of 0 for times prior to initiation and increments

parallel with time following initiation.

tEnd1 -

tEndX

Columns indicating the time since discontinuing the spe-

cific regimen – depends on the point in the trajectory. i.e.

Takes a value of 0 for times prior to start of regimen and

while regimen is "on". Increments parallel to time follow-

ing discontinuation.
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time Column for the study time at the observation.

currD Column with value for the current regimen dose for the

subject-time-specific observation.

everD Column indicating whether any exposure has occurred as

of (prior to and including) the subject-time-specific obser-

vation.

Requires functions

lapply, unlist, colSums

C1fn.h Calculate effective exposure for specific subject-time

Description

Calculates a relative Effective Exposure component for regimen X for a single time-

and subject-specific observation using the one-parameter half-life effective expo-

sure formulation.

Usage

C1fn.h(d, s, e, h)

Arguments

d dose/concentration value (DoseX)

s time since start (tStartX)

e time since end (tEndX)
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h half-life parameter

Value

Returns a single computed value.

C1fun.h Calculating total effective exposure for an entire dataset

Description

Combines all individual effective exposure components for a subject at each time

to calculate the full effective exposure. Used in simulations and analysis.

Usage

C1fun.h(thalf=NULL, dat)

Arguments

thalf Single-parameter half-life to use in computation

dat dataframe with three columns per exposure event/regimen fol-

lowing the naming conventions for X total regimens: Dose1 -

DoseX, tStart1 - tStartX, tEnd1 - tEndX.

Value

Outputs a numeric vector of values for concentration that is equal in length to the

number of rows/observations in the dataframe dat.
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Requires functions

lapply, C1fn.h, Reduce, replace

Notes

Data should be in long format with one observation per subject per time point -

which can be created from the function makeDVecs.

solve.time Time to reduction in excess hazard

Description

Calculates the time to % reduction in the excess hazard following discontinuation

of an exposure.

Usage

solve.time(beta, D, half.in, half.out, time.in, reduct)

Arguments

beta Effect size coefficient (beta) from the model fitting results.

D Exposure level prior to discontinuation.

half.in Incline half-life parameter if the resulting model selected was the

two-parameter effective exposure model. For the one-parameter

effective exposure model, use the same value for the half.in and

half.out inputs.
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half.outDecline half-life parameter if the resulting model selected was the

two-parameter effective exposure model. See half.in for how

to handle OPEE framework.

time.in Amount of time exposed prior to discontinuation. Value should

exceed 1.

reduct Desired excess hazard reduction. For example, to determine the

time to 50% reduction in the hazard ratio for a specific individual

use reduct=0.5.

Value

Returns values for the estimated starting (time=0 at discontinuation) hazard ratio

(HR), starting risk or log(HR), ending HR and log(HR), time required to return to

the reduced HR, and the relative proportion of reduction from start to end time on

both HR and log(HR) scales.

start.risk The starting log(HR) after time.in units-time of expo-

sure prior to discontinuation.

start.relrisk The starting HR after time.in units-time of exposure

prior to discontinuation.

time.needed The calculated time needed to reduce the excess hazard to

reduct.

end.risk The ending log(HR) for the individual following the

time.needed units-time.

end.relrisk The ending HR for the individual following the

time.needed units-time.

relrisk.red Proportion of reduction in excess hazard. Note that this

returns the input reduct value.
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risk.red Proportion of reduction in the log(HR) scale.

startEE Effective Exposure starting value based on the dosing

scale with maximum HR at the value of D input param-

eter.

endEE Effective Exposure ending value that corresponds to the

reduced excess hazard. Similarly, this is relative to the

value of D input parameter.

Code for Interpretation Paradigm In Chapter 2

Calculate the time to 50% reduction in the HR for a 2 packs/day smoker of 30-

years. Final model being used comes from results in Chapter 4 (OPEE Packs/Day

Dosing in Full BWHS Sample).

solve.time(beta=log(2.63), D=2, half.in=5.85, half.out=5.85,

time.in=30, reduct=0.5)

Calculate the time to 50% reduction in the HR for a 1 pack/day smoker of 30-

years. Final model being used comes from results in Chapter 4 (OPEE Packs/Day

Dosing in Full BWHS Sample).

solve.time(beta=log(2.63), D=1, half.in=5.85, half.out=5.85,

time.in=30, reduct=0.5)
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APPENDIX C

Simulation Result Tables

BC1 Base case scenario

N1k Base case scenario with 1,000 total subjects

N10k Base case scenario with 10,000 total subjects

N100k Base case scenario with 100,000 total subjects

FourG Variation on the Base case scenario adding 10,000 subjects

with "on" binary exposure starting at the same time as the

"down" group (900 days prior to study start date), who re-

main "on" throughout the study follow-up or until censoring

at event.

NoUp Variation on the FourG/Base case scenario that removes the

"up" group. Remaining sample is 30,000 subjects split evenly

between controls, "down" and "on" groups.

DoseMods Variation on the Base case scenario where half of the "down"

and "up" groups are assigned a 2-fold risk of event (or

dose=2).

HR1 Variation on the base case scenario where there is no change

in risk of event due to the exposure. The input half-life is still

90 days, even though this is not clinically relevant.

HR10p Variation on the base case scenario where there is a minimal

10% increase in risk of event due to the exposure.

HR20p Variation on the base case scenario where there is a minimal

20% increase in risk of event due to the exposure.

HR5 Variation on the base case scenario where the steady state haz-

ard due to exposure is 5-fold compared to unexposed.
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Half1 Variation on the base case scenario with the half-life set to 1

day.

Half10 Variation on the base case scenario with the half-life set to 10

days.

Half10.4G Variation on Half10 with the additional "on" group.

Half30.4G Variation on the FourG scenario with the half-life set to 30

days.

Half450.4G Variation on the FourG scenario where the half-life of the ef-

fect is set to 450 days, or half of the follow-up time.

Half1k Variation on the base case scenario with the half-life set to

1,000 days.

Half1k4G Variation on the FourG scenario where the half-life of the ef-

fect is set to 1,000 days. This analysis differs from the "half1k"

by the addition of the "on" group of subjects.

MVmono The multivariate monotonic trajectories set of simulations per-

formed on the restricted set of subjects in the Black Women’s

Health Study data. Individuals included here were set to a

3-fold binary-smoking steady state effect with an assumed 3-

year single-half-life effective exposure.

MVmulti Variation on the "MVmono" set of simulations that includes all

subjects and all smoking trajectories from the BWHS dataset.

Input half-life, risk ratio, and underlying models were the

same as in MVmono.

Out10 Two parameter scenario with incline = 90 days and decline =

10 days.
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Out10.4G Variation on the "Out10" scenario with additional subjects in

the fourth group ("on" group)

Out30.4G Two parameter scenario with incline = 90 days and decline =

30 days, using the four risk profiles.

Out450.4G Two parameter scenario with incline = 90 days and decline =

450 days, using the four risk profiles.

Out1k Two-parameter scenario with incline = 90 days and decline =

1,000 days

Out1k4G Variation on the "Out1k" scenario with additional subjects in

the fourth group ("on" group)



Table C.2: Comparing Mean and Median Estimates of the Risk Ratio
across scenarios and standard metrics of exposure. Based on 1,000
simulated samples for each scenario.

Simulation Input PvsN CvsN Current Ever TrueEE
Scenario HR Mean Mean % Bias Mean % Bias Mean % Bias Mean

BC1 1.5 1.07 1.42 -5.48 1.37 -8.58 1.24 -17.21 1.50
N1k 1.5 1.10 1.46 -2.48 1.40 -6.94 1.28 -14.79 1.54

N10k 1.5 1.07 1.42 -5.18 1.37 -8.36 1.24 -17.02 1.51
N100k 1.5 1.07 1.42 -5.56 1.37 -8.67 1.24 -17.23 1.50
FourG 1.5 1.07 1.46 -2.75 1.41 -5.94 1.33 -11.53 1.50
NoUp 1.5 1.07 1.50 0.16 1.45 -3.17 1.28 -14.42 1.50

DoseMods 1.5 1.11 1.71 14.28 1.38 -7.99 1.41 -6.08 1.50
HR1 1 1.00 1.00 0.07 1.00 0.05 1.00 0.07 1.00

HR10p 1.1 1.02 1.09 -1.31 1.08 -2.05 1.05 -4.51 1.10
HR20p 1.2 1.03 1.17 -2.52 1.15 -3.91 1.10 -8.39 1.20

HR5 5 1.39 4.10 -18.10 3.43 -31.32 2.68 -46.49 5.00
Half1 1.5 1.00 1.50 0.06 1.50 0.01 1.25 -16.80 1.50

Half10 1.5 1.01 1.49 -0.52 1.49 -0.91 1.25 -16.85 1.50
Half10.4G 1.5 1.01 1.50 -0.26 1.49 -0.65 1.33 -11.28 1.50
Half30.4G 1.5 1.02 1.49 -0.89 1.47 -2.01 1.33 -11.34 1.50

Half450.4G 1.5 1.18 1.31 -12.50 1.20 -19.87 1.27 -15.34 1.50
Half1k 1.5 1.15 1.11 -25.99 1.03 -31.21 1.13 -24.58 1.51

Half1k4G 1.5 1.15 1.19 -20.47 1.11 -26.08 1.18 -21.37 1.50
MVmono 3 1.11 2.96 -1.47 2.86 -4.82 1.51 -49.69 2.98
MVmulti 3 1.18 2.75 -8.18 2.59 -13.52 1.63 -45.82 2.97

Out10 1.5 1.01 1.42 -5.46 1.41 -5.82 1.21 -19.25 1.50
Out10.4G 1.5 1.01 1.46 -2.73 1.45 -3.11 1.31 -12.90 1.50
Out30.4G 1.5 1.02 1.46 -2.74 1.44 -3.84 1.31 -12.55 1.50

Out450.4G 1.5 1.25 1.46 -2.76 1.29 -13.67 1.39 -7.31 1.50
Out1k 1.5 1.36 1.42 -5.48 1.20 -19.71 1.39 -7.47 1.50

Out1k4G 1.5 1.36 1.46 -2.75 1.24 -17.40 1.43 -4.99 1.50
Input HR: The hazard ratio used in data simulation for the effective exposure at steady-state risk;
PvsN: Estimate for Past Exposure compared to Never exposed in categorical model; CvsN: Estimate
for Current Exposure compared to Never exposed in categorical model; Current: Estimate for Current
vs. Not Current exposed risk ratio; Ever: Estimate for Ever vs. Never exposed risk ratio; TrueEE: The
simulated exposure’s "true" risk ratio if it were measured
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Table C.4: Frequency of Minimum AIC Simulations per Scenario by
Estimation Method

# Amongst Non-Failed
OPEE TPEE Categorical Failed OPEE TPEE Categorical

BC1 801 195 4 75 753 170 2
N1k 565 37 398 555 294 7 144

N10k 754 189 57 293 550 122 35
N100k 838 162 0 1 837 162 0
FourG 823 174 3 29 811 158 2
NoUp 846 70 84 432 481 43 44

DoseMods 824 176 0 1 823 176 0
HR1 438 10 552 826 98 2 74

HR10p 622 54 324 550 313 21 116
HR20p 735 120 145 391 464 60 85

HR5 876 124 0 0 876 124 0
Half1 379 52 569 770 106 21 103

Half10 714 102 184 563 334 58 45
Half10.4G 705 118 177 510 373 61 56
Half30.4G 790 167 43 245 628 101 26

Half450.4G 852 148 0 2 852 146 0
Half1k 768 30 202 511 389 19 81

Half1k4G 859 130 11 250 668 74 8
MVmono 997 0 3 61 937 0 2
MVmulti 1000 0 0 20 980 0 0

Out10 526 435 39 458 349 180 13
Out10.4G 341 636 23 460 266 263 11
Out30.4G 569 425 6 217 514 265 4

Out450.4G 58 939 3 2 58 938 2
Out1k 65 917 18 2 65 916 17

Out1k4G 1 990 9 0 1 990 9
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Table C.5: Summaries of Estimated Single Half-Life Parameter Using
One Parameter Effective Exposure Algorithm Across Scenarios

Simulation True # Amongst Non-Failed
Scenario Half Mean % Bias Median Failed Mean % Bias Median

BC1 90 92.13 2.4 90 1 92.22 2.5 90
N1k 90 773.8 760 90 5 777.6 764 90

N10k 90 95.5 6.1 90 1 95.6 6.2 90
N100k 90 91.3 1.4 90 0 91.3 1.4 90
FourG1 90 91.9 2.1 90 0 91.9 2.1 90
NoUp2 90 97.7 8.6 90 1 97.8 8.7 90

DoseMods 90 91.2 1.34 89.1 0 91.2 1.34 89.1
HR1 90 1.9e+9 2.1e+9 75 49 1259 1299 75

HR10p 90 796 785 93.8 11 804 793 93.8
HR20p 90 103.7 15.2 87.5 4 104.1 15.6 87.5

HR5 90 90.4 0.41 90 0 90.4 0.41 90
Half1 1 3.76 275.8 1.41 4 3.77 277 1.41

Half10 10 11.8 18.3 9.38 2 11.85 18.5 9.38
Half101 10 11.81 18.1 9.38 2 11.8 18.3 9.38
Half301 30 31.3 4.3 30 0 31.3 4.3 30

Half4501 450 491.9 9.3 450 0 491.9 9.3 450
Half1k 1000 4.1e+9 4.14e+8 900 60 4007 300.7 840
Half1k1 1000 9.4e+9 9.45e+8 1020 95 2839 183.4 900

MVmono 3 3.03 1.09 2.97 1 3.04 1.19 2.97
MVmulti 3 3.01 0.26 2.97 0 3.01 0.26 2.97

Out10 (90,10) 40.7 -54.8 37.5 0 40.7 -54.8 37.5
Out101 (90,10) 45 -50 41.3 0 45 -50 41.3
Out301 (90,30) 58.8 -34.7 56.3 0 58.8 -34.7 56.3

Out4501 (90,450) 226.9 152 225 0 226.9 152 225
Out1k (90,1000) 500.5 456 465 0 500.5 456 465

Out1k4G (90,1000) 387.9 331 360 0 387.9 331 360
1 Four risk trajectories in simulation scenario
2 Three risk trajectories included - down, on, ctrl
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Table C.7: OPEE Coverage Probabilities of the Incline, Decline, and
Hazard Ratio by Scenario. Amongst full set of 1,000 simulations and
Non-failed Algorithm Estimation Procedures

Incline Decline Hazard
Ratio

#
Failed

NF
Incline

NF
Decline

NF Hazard
Ratio

BC1 92.8 95.8 1 92.9 95.9
N1k 85 95.3 5 85.4 95.3

N10k 90.5 95.1 1 90.6 95.2
N100k 94.9 94 0 94.9 94
FourG 92.3 95.7 0 92.3 95.7
NoUp 91.5 95.8 1 91.6 95.9

DoseMods 94.2 95.4 0 94.2 95.4
HR1 70.5 89 49 74.1 92.2

HR10p 80 96.4 11 80.9 96.7
HR20p 85.6 95.9 4 85.9 95.9

HR5 94.2 96.5 0 94.2 96.5
Half1 98 95.2 4 98.4 95.2

Half10 85.9 94.7 2 86.1 94.7
Half10.4G 85.3 94.8 2 85.5 94.8
Half30.4G 90.7 95 0 90.7 95

Half450.4G 92.2 95.4 0 92.2 95.4
Half1k 75.9 81.6 60 80.4 86.8

Half1k4G 77.9 79.8 95 86.1 88.2
MVmono 93.7 94 1 93.8 94
MVmulti 94.9 92.8 0 94.9 92.8

Out10 35.5 67.3 89.3 0 35.5 67.3 89.3
Out10.4G 39.7 59.7 93.5 0 39.7 59.7 93.5
Out30.4G 57.9 77.5 95 0 57.9 77.5 95

Out450.4G 24.2 10.7 93.5 0 24.2 10.7 93.5
Out1k 1.2 14.3 42.4 0 1.2 14.3 42.4

Out1k4G 7.8 7.2 95.8 0 7.8 7.2 95.8
OPEE: One Parameter Effective Exposure
NF: Non-Failed Set of Simulations
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Table C.8: TPEE Coverage Probabilities of the Incline, Decline, and
Hazard Ratio by Scenario. Amongst full set of 1,000 simulations and
Non-failed Algorithm Estimation Procedures

Incline Decline Hazard
Ratio

#
Failed

NF
Incline

NF
Decline

NF Hazard
Ratio

BC1 86.9 82.5 95.3 74 90.5 88.9 97.4
N1k 81 45.1 90.6 554 85.4 99.1 96.9

N10k 78.8 67.4 93 293 82.6 94.3 97.3
N100k 94.5 91.3 96.5 1 94.6 91.4 96.6
FourG 91.3 89.3 95.5 29 91.7 91.9 96
NoUp 61.4 57.1 65 432 100 93 99.1

DoseMods 95 89.8 97.2 1 95.1 89.8 97.3
HR1 52 17.7 65.5 824 76.1 100 85.2

HR10p 78.3 44.4 93.9 547 81.9 97.8 97.4
HR20p 79.8 59.2 94.2 390 82.6 95.6 98.2

HR5 86.1 61.4 94.7 0 86.1 61.4 94.7
Half1 86 21.6 82.4 768 100 92.7 92.2

Half10 79.4 41.5 89.9 561 85.4 94.5 94.1
Half10.4G 81.6 47.2 91.7 510 86.5 96.1 94.5
Half30.4G 84.1 70.6 93.4 245 85.7 93.5 94.8

Half450.4G 92.8 94.4 95.6 2 92.8 94.5 95.7
Half1k 29.8 45.9 30.1 511 58.7 93.5 60.3

Half1k4G 62.8 65 64.3 250 82.3 86 84.7
MVmono 86.2 77.6 93.7 60 91.6 82.6 94.4
MVmulti 90.7 85 92.8 20 92.6 86.7 93.6

Out10 79.9 51.1 93.5 458 81.5 94.3 95.8
Out10.4G 88.4 51.2 93.5 460 89.3 94.8 93.9
Out30.4G 89.7 73.3 94.6 217 90.4 93.6 95.3

Out450.4G 92.2 93.8 95.3 2 92.4 94 95.5
Out1k 91.6 89.8 96.6 2 91.7 90 96.7

Out1k4G 92.3 91.3 95.2 0 92.3 91.3 95.2
TPEE: Two Parameter Effective Exposure
NF: Non-Failed Set of Simulations
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APPENDIX D

BWHS Results
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Figure D.1: Overall Effective Exposure Contour for Log-Likelihoods
Across Combinations of Incline and Decline Lag Parameters
amongst the simple subset of BWHS participants.
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Figure D.2: Packs Per Day Effective Exposure Contour for Log-
Likelihoods Across Combinations of Incline and Decline Lag Param-
eters amongst the simple subset of BWHS participants.



170

Table D.1: Smoking and risk of CVD: standard analyses amongst the
Restricted Subset of BWHS participants (1995-2015)

95% Confidence
Interval

Smoking Exposure Model
Hazard
Ratio Lower Upper

Log-
Likelihood AIC

Current 2.55 2.26 2.87Smoking
Categories Past 1.11 1.01 1.23 -14407.77 28849.53

Ever vs. Never 1.43 1.31 1.55 -14479.75 28991.49
Current vs. Not 2.46 2.19 2.75 -14409.98 28851.97

Cumulative Years Smoked 1.02 1.02 1.02 -14442.71 28917.42
Current Smokers: Packs/Day 2.55 2.23 2.90 -14437.65 28907.31

Current Smoker 2.16 1.90 2.47Combination
Model 11 Pack-Years 1.01 1.00 1.01 -14403.18 28840.36

Ever Smoker 1.17 1.05 1.30Combination
Model 22 Pack-Years 1.01 1.01 1.02 -14460.42 28954.83

AIC: Akaike’s Information Criterion
1,2 Combination models 1 and 2 assume that never smokers have zero pack-years.
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REFERENCE EQUATIONS

INTRODUCTION

Likelihood and Log-Likelihood of Cox Proportional Hazards Regression across k

distinct event times. The mk and jϵR(tk) represent the total number of events and

the index of subjects at risk at event time tk.

L(X, β, Y ) =
K∏
k=1

∑
jϵR(tk,Yj=1)

exp(Xjβ)[ ∑
jϵR(tk)

exp(Xjβ)

]mk

ℓ(X, β, Y ) =
K∑
k=1

 ∑
jϵR(tk,Yj=1)

(∑
q

xqjβq

)
−mk ln

 ∑
jϵR(tk)

e

∑
q
xqjβq


(D.1)

Cox Proportional Hazards.

h(t|X(t)) = h0(t)exp[x1jβ1 + ...+ xqjβq] (D.2)

Risk Sum - Multivariate

r̂i =
∑
q

xqiβ̂q = x1iβ̂1 + ...+ xqiβ̂q (D.3)
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Likelihood (L) and Log-Likelihood (ℓ) of the Logistic Regression Models

L(X, β, Y ) =
n∏

i=1

T∏
t=1

pYit
it (1− pit)

(1−Yit)

ℓ(X, β, Y ) =
n∑

i=1

T∑
t=1

Yitlnpit + (1− Yit)ln(1− pit)

(D.4)

Probability of Event, pit, for subject i at time t with q time-varying risk factors in

the logistic multivariate model.

pit =
exp(β0 + x1itβ1 + ...+ xqitβq)

1 + exp(β0 + x1itβ1 + ...+ xqitβq)
(D.5)

One-Compartment Model for Infusion

Ct
p =


k0
keV

[
1− e−ket

]
if t ≤ D

k0
keV

[
1− e−keD

]
e−ke(t−D) if t > D

(D.6)

Where D is the end–time for the infusion, t−D is the time elapsed since ending

the infusion, and where the first condition is equivalent to the second by replacing

D with t, when t is less than or equal to D. k0 and ke are the infusion and elimi-

nation rates, and V represents the volume of the administered infusion. At steady

state, the total concentration is equivalent to the first part of the equation:

Css
p =

k0
keV

(D.7)

Thus, the relative concentration at time t vs. the steady state (ss) level can be de-

scribed by the current concentration, Ct
p relative to the steady state concentration,
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Css
p :

Ct
p

Css
p

=
k0
keV

[
1− e−keD

]
∗ e−ke(t−D) × keV

k0
=
[
1− e−keD

]
∗ e−ke(t−D) (D.8)

Turning OCM into a generalized form of the relative ratio

Cratio =
Ct

p

Css
p

=
[
1− e−keD

]
∗ e−ke(t−D)

Condition of assumed curves

Cratio =


0 if t ≤ b

1− e−ke(t−b) if b < t ≤ f[
1− e−ke(f−b)

]
∗ e−ke(t−f)) if t > f

(D.9)
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DERIVATION

Basic formulation of the Effective Exposure over time given a single lag parameter,

known exposure level, and known start and stop times. D can be assumed to take

the value of 1 for exposed and 0 for unexposed, which will be referred to as the

"Binary Dosing Scheme".

Eit(λ, b, f) = D
(
1− e−λ(t−b)

)
∗ I (tϵ [b, f ]) +D

(
1− e−λ(f−b)

)
e−λ(t−f) ∗ I (t > f)

= D ∗
[
e−λ∗max(0,t−f) − e−λ∗max(0,t−b)

]
= D

[
e−λz2 − e−λz1

]
(D.10)

where

z1 = max(0, t− b) =


t− b if t > b

0 otherwise

z2 = max(0, t− f) =


t− f if t > f

0 otherwise

(D.11)

and where b and f represent the times the exposure starts and stops or is dis-

continued, respectively, for a given subject. D, b, and f are fixed values, i.e. not

time-varying.

Log-Likelihood of the Cox Proportional Hazards Model - Univariate for the Ef-

fective Exposure Measure.

ℓ(X,β, λ, Y ) =
K∑

k=1

 ∑
jϵR(tk,Yj=1)

βEj(λ) − mk ln

 ∑
jϵR(tk)

eβEj(λ)

 (D.12)
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Predicted probability of event for subject i at time t based on the logistic regression

parameters. (Relevant for simulation development)

p̂it =
eβ̂0+β̂1Eit(λ̂)

1 + eβ̂0+β̂1Eit(λ̂)
(D.13)

where β̂0 + β̂1Eit(λ̂)→ β̂0+ β̂1Eit(λ̂)+ γ̂1x1it+ ...+ γ̂qxqit for the multivariate setting.

Fisher’s Information Matrix for the One Parameter Effective Exposure Models.

Variations in λ and h simply require the appropriate substitution of the second

derivatives for either model’s (logistic or Cox PH) log-likelihood.

I(λ, β) = −


∂2ℓ

∂β2

∂2ℓ

∂β∂λ
∂2ℓ

∂β∂λ

∂2ℓ

∂λ2

 (D.14)

Fisher’s Information Matrix for the Two Parameter Effective Exposure Models.

Variations in (λ1, λ2) and (h1, h2) simply require the appropriate substitution of

the second derivatives for either model’s (logistic or Cox PH) log-likelihood.

I(λ1, λ2, β) = −



∂2ℓ

∂β2

∂2ℓ

∂β∂λ1

∂2ℓ

∂β∂λ2

∂2ℓ

∂β∂λ1

∂2ℓ

∂λ2
1

∂2ℓ

∂λ1∂λ2

∂2ℓ

∂β∂λ2

∂2ℓ

∂λ1∂λ2

∂2ℓ

∂λ2
2


(D.15)
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Effective Exposure Specification

Single Dosing, Single Lag Parameter equation (Main text equation (2.3)) and Single

Dosing, Two Lag Parameters equation (Main text equation (2.8)) where z1 and z2

retain the same specifications as mentioned in condition (2.2).

Eit(λ) = D
(
e−λz2 − e−λz1

)
Eit(h) = D

(
e−z2 log 2/h − e−z1 log 2/h

) (D.16)

Eit(λ1, λ2) = D
(
1− e−λ1(z1−z2)

)
e−λ2z2

Eit(h1, h2) = D
[
1− e−(z1−z2) log 2/h1

]
e−z2 log 2/h2

(D.17)

First Derivative with respect to lag or half-life parameter for equation (2.3)

∂Eit(λ)

∂λ
= D

[
z1e

−λz1 − z2e
−λz2

]
∂Eit(h)

∂h
=

D log 2

h2

[
z2e

−z2 log 2/h − z1e
−z1 log 2/h

] (D.18)

Second Derivative with respect to lag or half-life parameter for equation (2.3)

∂2Eit(λ)

∂λ2
= D

[
z22e

−λz2 − z21e
−λz1

]
∂2Eit(h)

∂h2
=

D (log 2)2

h4

(
z22e

−z2 log 2/h − z21e
−z1 log 2/h

)
− 2D log 2

h3

(
z2e

−z2 log 2/h − z1e
−z1 log 2/h

) (D.19)

First Derivative with respect to incline parameter for equation (2.8)

∂Eit(λ1, λ2)

∂λ1

= D (z1 − z2) e
−λ1(z1−z2)−λ2z2

∂Eit(h1, h2)

∂h1

=
−D (z1 − z2) log 2

h2
1

e− log 2[(z1−z2)/h1+z2/h2]

(D.20)
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First Derivative with respect to decline parameter for equation (2.8)

∂Eit(λ1, λ2)

∂λ2

= −Dz2
(
1− e−λ1(z1−z2)

)
e−λ2z2

∂Eit(h1, h2)

∂h2

=
Dz2 log 2

h2
2

(
1− e−(z1−z2) log 2/h1

)
e−z2 log 2/h2

(D.21)

Second Derivative with respect to incline parameter for equation (2.8)

∂2Eit(λ1, λ2)

∂λ2
1

= −D (z1 − z2)
2 e−λ1(z1−z2)−λ2z2

∂2Eit(h1, h2)

∂h1
2 =

D (z1 − z2) log 2

h2
1

(
2

h1

− (z1 − z2) log 2

h2
1

)
e− log 2[(z1−z2)/h1+z2/h2]

(D.22)

Second Derivative with respect to decline parameter for equation (2.8)

∂2Eit(λ1, λ2)

∂λ2
2

= Dz22
(
1− e−λ1(z1−z2)

)
e−λ2z2

∂2Eit(h1, h2)

∂h2
2 =

Dz2 log 2

h2
2

(
2

h2

− z2 log 2

h2
1

)(
1− e−(z1−z2) log 2/h1

)
e−z2 log 2/h2

(D.23)

Second Derivative with respect to both incline and decline parameters for equation

(2.8)

∂2Eit(λ1, λ2)

∂λ1∂λ2

= −Dz2 (z1 − z2) e
−λ1(z1−z2)−λ2z2

∂2Eit(h1, h2)

∂h1∂h2

=
−Dz2 (z1 − z2) (log 2)

2

h2
1h

2
2

e− log 2[(z1−z2)/h1+z2/h2]

(D.24)

Multiple Dosing

When considering multiple dosings, or trajectories that may increase or decrease

more than once, the formulation of Eit(Λ) becomes a sum function of the individ-

ual dosing exposures. To illustrate, assume a subject is exposed from years 0 to 20
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and 60 to 80 at a dose level of 2, while being exposed at a dose level of 1 from time

20 to 60. The current effective exposure at time t can be calculated as:

E
(tot)
it (λ) = D1

(
1− e−(z1−z2)λ

)
e−z2λ

+D2

(
1− e−(z3−z4)λ

)
e−z4λ

+D3

(
1− e−(z5−z6)λ

)
e−z6λ

(D.25)

where

z1 =


t if t > 0

0 otherwise

z2 = z3 =


t− 20 if t > 20

0 otherwise

z4 = z5 =


t− 60 if t > 60

0 otherwise

z6 =


t− 80 if t > 80

0 otherwise

This could also be written in a piecewise fashion, which implies that the first and

second derivatives can be readily calculated for each individual exposure event.

Let E(1)
it (λ), E(2)

it (λ), and E
(3)
it (λ), be the effective exposure components for each of

the exposure events.

E
(1)
it (λ) = D1

(
1− e−(z1−z2)λ

)
e−z2λ

E
(2)
it (λ) = D2

(
1− e−(z3−z4)λ

)
e−z4λ

E
(3)
it (λ) = D3

(
1− e−(z5−z6)λ

)
e−z6λ

E
(tot)
it (λ) = E

(1)
it (λ) + E

(2)
it (λ) + E

(3)
it (λ)

(D.26)

As mentioned previously, the λ can be interchanged with log 2/h, and E
(tot)
it (h)

represents the longitudinal function of EE based on this parameterization. To tran-

sition from OPEE to TPEE, I can substitute the single parameter with (λ1, λ2) or
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(h1, h2) in equation (2.11), updating the piecewise component exposures that feed

into E
(tot)
it .
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Cox Proportional Hazards Models

OPEE Log-Likelihood

ℓ(β, λ) =
K∑
k=1

[A1(tk)−mk log (C1(tk))] (D.27)

OPEE Score Function

∂ℓ

∂β
=

K∑
k=1

[
A2β(tk)−mk

B1(tk)

C1(tk)

]
∂ℓ

∂λ
=

K∑
k=1

[
A2λ(tk)−mk

C2λ(tk)

C1(tk)

] (D.28)

OPEE Fisher’s Information

∂2ℓ

∂β2
=

K∑
k=1

mk
[B1(tk)]

2 −B2β(tk)C1(tk)

[C1(tk)]
2

∂2ℓ

∂λ2
=

K∑
k=1

[
A3(tk)−mk

C3(tk)C1(tk)− (C2λ(tk))
2

(C1(tk))
2

]
∂2ℓ

∂β∂λ
=

K∑
k=1

[
A2λ(tk)

β
−mk

B2λ(tk)C1(tk)− C2λ(tk)B1(tk)

(C1(tk))
2

]
(D.29)

TPEE Score Function

∂ℓ

∂β
=

K∑
k=1

[
A2β(tk)−mk

B1(tk)

C1(tk)

]
∂ℓ

∂λ1

=
K∑
k=1

[
A4(tk)−mk

C4(tk)

C1(tk)

]
∂ℓ

∂λ2

=
K∑
k=1

[
A5(tk)−mk

C5(tk)

C1(tk)

]
(D.30)
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TPEE Fisher’s Information

∂2ℓ

∂β2
=

K∑
k=1

mk
[B1(tk)]

2 −B2β(tk)C1(tk)

[C1(tk)]
2

∂2ℓ

∂λ2
1

=
K∑
k=1

[
A6(tk)−mk

C6(tk)C1(tk)− (C4(tk))
2

(C1(tk))
2

]
∂2ℓ

∂λ2
2

=
K∑
k=1

[
A7(tk)−mk

C7(tk)C1(tk)− (C5(tk))
2

(C1(tk))
2

]
∂2ℓ

∂λ1∂λ2

=
K∑
k=1

[
A8(tk)−mk

C8(tk)C1(tk)− C4(tk)C5(tk)

(C1(tk))
2

]
∂2ℓ

∂β∂λ1

=
K∑
k=1

[
A4(tk)

β
−mk

B2λ1(tk)C1(tk)− C4(tk)B1(tk)

(C1(tk))
2

]
∂2ℓ

∂β∂λ2

=
K∑
k=1

[
A5(tk)

β
−mk

B2λ2(tk)C1(tk)− C5(tk)B1(tk)

(C1(tk))
2

]

(D.31)

Where we define the following compute-able quantities1:

A1(tk) =
∑

jϵR(tk,Yj=1)

βEj(λ) =
∑

jϵR(tk,Yj=1)

βEj(λ1, λ2)

A2β(tk) =
∂A1(tk)

∂β
=

∑
jϵR(tk,Yj=1)

Ej(λ) =
∑

jϵR(tk,Yj=1)

Ej(λ1, λ2)

A2λ(tk) =
∂A1(tk)

∂λ
=

∑
jϵR(tk,Yj=1)

β
∂Ej(λ)

∂λ

A3(tk) =
∂2A1(tk)

(∂λ)2
=

∑
jϵR(tk,Yj=1)

β
∂2Ej(λ)

∂λ2

A4(tk) =
∂A1(tk)

∂λ1

=
∑

jϵR(tk,Yj=1)

β
∂Ej(λ1, λ2)

∂λ1

A5(tk) =
∂A1(tk)

∂λ2

=
∑

jϵR(tk,Yj=1)

β
∂Ej(λ1, λ2)

∂λ2

1As these functions utilize the first and second derivatives of the effective exposure, one can
switch between the λ and h by adjusting which internal formulas to use, maintaining consistency
once estimation has started.
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A6(tk) =
∂2A1(tk)

∂λ2
1

=
∑

jϵR(tk,Yj=1)

β
∂2Ej(λ1, λ2)

∂λ2
1

A7(tk) =
∂2A1(tk)

∂λ2
2

=
∑

jϵR(tk,Yj=1)

β
∂2Ej(λ1, λ2)

∂λ2
2

A8(tk) =
∂2A1(tk)

∂λ1∂λ2

=
∑

jϵR(tk,Yj=1)

β
∂2Ej(λ1, λ2)

∂λ1∂λ2

B1(tk) =
∑

jϵR(tk)

Ej(λ)e
βEj(λ) =

∑
jϵR(tk)

Ej(λ1, λ2)e
βEj(λ1,λ2)

B2β(tk) =
∂B1(tk)

∂β
=

∑
jϵR(tk)

(Ej(λ))
2eβEj(λ) =

∑
jϵR(tk)

(Ej(λ1, λ2))
2eβEj(λ1,λ2)

B2λ(tk) =
∂B1(tk)

∂λ
=

∑
jϵR(tk)

∂Ej(λ)

∂λ
eβEj(λ) [1 + βEj(λ)]

B2λ1(tk) =
∂B1(tk)

∂λ1

=
∑

jϵR(tk)

∂Ej(λ1, λ2)

∂λ1

eβEj(λ1,λ2) [1 + βEj(λ1, λ2)]

B2λ2(tk) =
∂B1(tk)

∂λ2

=
∑

jϵR(tk)

∂Ej(λ1, λ2)

∂λ2

eβEj(λ1,λ2) [1 + βEj(λ1, λ2)]

C1(tk) =
∑

jϵR(tk)

eβEj(λ) =
∑

jϵR(tk)

eβEj(λ1,λ2)

C2λ(tk) =
∂C1(tk)

∂λ
=

∑
jϵR(tk)

β
∂Ej(λ)

∂λ
eβEj(λ)

C3(tk) =
∂2C1(tk)

(∂λ)2
=

∑
jϵR(tk)

βeβEj(λ)

[
∂2Ej(λ)

∂λ2
+ β

(
∂Ej(λ)

∂λ

)2
]

C4(tk) =
∂C1(tk)

∂λ1

=
∑

jϵR(tk)

β
∂Ej(λ1, λ2)

∂λ1

eβEj(λ1,λ2)

C5(tk) =
∂C1(tk)

∂λ2

=
∑

jϵR(tk)

β
∂Ej(λ1, λ2)

∂λ2

eβEj(λ1,λ2)



184

C6(tk) =
∂2C1(tk)

∂λ2
1

=
∑

jϵR(tk)

βeβEj(λ1,λ2)

[
∂2Ej(λ1, λ2)

∂λ2
1

+ β

(
∂Ej(λ1, λ2)

∂λ1

)2
]

C7(tk) =
∂2C1(tk)

∂λ2
2

=
∑

jϵR(tk)

βeβEj(λ1,λ2)

[
∂2Ej(λ1, λ2)

∂λ2
2

+ β

(
∂Ej(λ1, λ2)

∂λ2

)2
]

C8(tk) =
∂2C1(tk)

∂λ1∂λ2

=
∑

jϵR(tk)

βeβEj(λ1,λ2)

[
∂2Ej(λ1, λ2)

∂λ1∂λ2

+ β
∂Ej(λ1, λ2)

∂λ1

∂Ej(λ1, λ2)

∂λ2

]

Pooled Logistic Regression Models

Pooled Log-Likelihood

ℓ(Y, p) =
n∑

i=1

T∑
t=1

Yitlnpit + (1 − Yit)ln(1 − pit) (D.32)

where Yit takes the value of 1 for events and 0 otherwise, for subject i at time t. The

probability of event, pit, under the logistic model is computed by (D.33):

pit =



exp(β0 + β1Eit(λ))

1 + exp(β0 + β1Eit(λ))
for OPEE

exp(β0 + β1Eit(λ1, λ2))

1 + exp(β0 + β1Eit(λ1, λ2))
for TPEE

(D.33)

OPEE Score Function

∂ℓ

∂β0

=
n∑

i=1

T∑
t=1

Yit − pit

∂ℓ

∂β1

=
n∑

i=1

T∑
t=1

Eit(λ) (Yit − pit)

∂ℓ

∂λ
=

n∑
i=1

T∑
t=1

β1 (Yit − pit)
∂Eit(λ)

∂λ

(D.34)
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OPEE Fisher’s Information

∂2ℓ

∂β2
0

= −
n∑

i=1

T∑
t=1

∂pit
∂β0

∂2ℓ

∂β2
1

= −
n∑

i=1

T∑
t=1

Eit(λ)
∂pit
∂β1

∂2ℓ

∂λ2
=

n∑
i=1

T∑
t=1

β1 (Yit − pit)

(
∂2Eit(λ)

∂λ2

)
− β1

(
∂pit
∂λ

)(
∂Eit(λ)

∂λ

)
∂2ℓ

∂β0∂β1

= −
n∑

i=1

T∑
t=1

∂pit
∂β1

∂2ℓ

∂β0∂λ
= −

n∑
i=1

T∑
t=1

∂pit
∂λ

∂2ℓ

∂β1∂λ
=

n∑
i=1

T∑
t=1

(Yit − pit)
∂Eit(λ)

∂λ
− Eit(λ)

∂pit
∂λ

(D.35)

TPEE Score Function

∂ℓ

∂β0

=
n∑

i=1

T∑
t=1

Yit − pit

∂ℓ

∂β1

=
n∑

i=1

T∑
t=1

Eit(λ1, λ2) (Yit − pit)

∂ℓ

∂λ1

=
n∑

i=1

T∑
t=1

β1 (Yit − pit)
∂Eit(λ1, λ2)

∂λ1

∂ℓ

∂λ2

=
n∑

i=1

T∑
t=1

β1 (Yit − pit)
∂Eit(λ1, λ2)

∂λ2

(D.36)
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TPEE Fisher’s Information

∂2ℓ

∂β2
0

= −
n∑

i=1

T∑
t=1

∂pit
∂β0

∂2ℓ

∂β2
1

= −
n∑

i=1

T∑
t=1

(Eit(λ1, λ2))
2pit (1− pit)

∂2ℓ

∂λ2
1

=
n∑

i=1

T∑
t=1

β1 (Yit − pit)

(
∂2Eit(λ1, λ2)

∂λ2
1

)
− β1

(
∂Eit(λ1, λ2)

∂λ1

)(
∂pit
∂λ1

)
∂2ℓ

∂λ2
2

=
n∑

i=1

T∑
t=1

β1 (Yit − pit)

(
∂2Eit(λ1, λ2)

∂λ2
2

)
− β1

(
∂Eit(λ1, λ2)

∂λ2

)(
∂pit
∂λ2

)
∂2ℓ

∂β0∂β1

= −
n∑

i=1

T∑
t=1

∂pit
∂β1

∂2ℓ

∂β0∂λ1

= −
n∑

i=1

T∑
t=1

∂pit
∂λ1

∂2ℓ

∂β0∂λ2

= −
n∑

i=1

T∑
t=1

∂pit
∂λ2

∂2ℓ

∂λ1∂λ2

=
n∑

i=1

T∑
t=1

β1 (Yit − pit)

(
∂2Eit(λ1, λ2)

∂λ1∂λ2

)
− β1

(
∂Eit(λ1, λ2)

∂λ1

)(
∂pit
∂λ2

)
∂2ℓ

∂β1∂λ1

=
n∑

i=1

T∑
t=1

(Yit − pit)

(
∂Eit(λ1, λ2)

∂λ1

)
− Eit(λ1, λ2)

∂pit
∂λ1

∂2ℓ

∂β1∂λ2

=
n∑

i=1

T∑
t=1

(Yit − pit)

(
∂Eit(λ1, λ2)

∂λ2

)
− Eit(λ1, λ2)

∂pit
∂λ2

(D.37)
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Derivatives of Probability Function

∂pit
∂β0

= pit(1− pit)

∂pit
∂β1

=


Eit(λ)pit(1− pit) for OPEE

Eit(λ1, λ2)pit(1− pit) for TPEE

∂pit
∂λ

= β1pit(1− pit)
∂Eit(λ)

∂λ
∂pit
∂λ1

= β1pit(1− pit)
∂Eit(λ1, λ2)

∂λ1

∂pit
∂λ2

= β1pit(1− pit)
∂Eit(λ1, λ2)

∂λ2

(D.38)

Note: Moving from the OPEE to TPEE framework, Eit(λ) can be substituted as

Eit(λ1, λ2), with corresponding substitutions made in
∂pit
∂λ1

and
∂pit
∂λ2

to account for

the derivatives with respect to both lag parameters. Additionally, h and (h1, h2)

should replace λ and (λ1, λ2) in the denominator of the partial derivative functions

to obtain appropriate predicted probability estimates when calculating the Score

and Information values for a model fit using the half–life parameterization.
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DERIVATIONS: SINGLE DOSING, SINGLE LAG PARAMETER

Let D represent a specific steady state infusion dose that starts at t = b and ends

at t = f for the set of for subject i. We can represent subject i’s effective exposure,

Eit(λ) at time t by the following:

Eit(λ) = D
(
1− e−λ(t−b)

)
I (tϵ [b, f ]) +D

(
1− e−λ(f−b)

)
e−λ(t−f)I (t > f)

= D
(
e−λmax(0,t−f) − e−λmax(0,t−b)

)
= D

(
e−λz2 − e−λz1

)
where

z1 = max(0, t− b) =


t− b if t > b

0 otherwise

z2 = max(0, t− f) =


t− f if t > f

0 otherwise

Let us recall that Eit(λ) depends on the lag parameter, λ:

Eit(λ) = D
[
e−λz2 − e−λz1

]
∂Eit(λ)

∂λ
= D

[
z1e

−λz1 − z2e
−λz2

]
∂2Eit(λ)

∂λ2
= D

[
z22e

−λz2 − z21e
−λz1

]
Choosing to parameterize using h instead of λ requires slightly more complicated

equations for the first and second derivatives. The first component to identify is
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the relationship between h and λ: λ =
log 2

h
−→ ∂λ

∂h
=
− log 2

h2

∂Eit(λ)

∂h
= −z2

∂λ

∂h
D exp

(
−z2 log 2

h

)
+ z1

∂λ

∂h
D exp

(
−z1 log 2

h

)
=

z2 log 2

h2
D exp

(
−z2 log 2

h

)
− z1 log 2

h2
D exp

(
−z1 log 2

h

)
=

log 2

h2
D
[
z2e

−z2 log 2/h − z1e
−z1 log 2/h

]

∂2Eit(λ)

∂h2
=

∂

(
log 2

h2
D
[
z2e

−z2 log 2/h − z1e
−z1 log 2/h

])
∂h

=
−2z2 log 2

h3
De−z2 log 2/h +

[
z2 log 2

h2

]2
De−z2 log 2/h

−

(
−2z1 log 2

h3
De−z1 log 2/h +

[
z1 log 2

h2

]2
De−z1 log 2/h

)

=
D log 2

h3

([
z22 log 2

h
− 2z2

]
e−z2 log 2/h −

[
z21 log 2

h
− 2z1

]
e−z1 log 2/h

)



190

POOLED LOGISTIC REGRESSION

Define the odds of an event for subject i at time t:

exp [β0 + β1Eit(λ)] = exp
[
β0 + β1D

(
e−λz2 − e−λz1

)]
Define the probability of an event for subject i at time t:

pit =
exp [β0 + β1Eit(λ)]

1 + exp [β0 + β1Eit(λ)]
=

exp
[
β0 + β1D

(
e−λz2 − e−λz1

)]
1 + exp [β0 + β1D (e−λz2 − e−λz1)]

Likelihood function of logistic regression:

L(β0, β1, λ, Y ) =
n∏

i=1

T∏
t=1

p
Yij

it (1− pit)
1−Yit

Log-likelihood function for the logistic model:

ℓ(β0, β1, λ, Y ) =
n∑

i=1

T∑
t=1

Yit ln pit + (1− Yit) ln (1− pit)

=
n∑

i=1

T∑
t=1

Yitβ0 + Yitβ1Eit(λ)− ln (1 + exp [β0 + β1Eit(λ)])
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Score and Information Matrix Derivations

The following quantities can be used to solve for the asymptotic distribution of

the lag parameter, in that the Score and Fisher’s Information can be used to nu-

merically estimate the lag, or for an approximate Hessian from which to pull an

estimate of standard error. In all locations where
∂Eit(λ)

∂λ
is used, one may sub-

stitute
∂Eit(λ)

∂h
appropriately to converge towards estimates in the half-life lag-

parameterization.

∂pit
∂β0

=
exp [β0 + β1Eit(λ)]

(1 + exp [β0 + β1Eit(λ)])
−
(

exp [β0 + β1Eit(λ)]

(1 + exp [β0 + β1Eit(λ)])

)2

= pit(1− pit)

∂pit
∂β1

= Eit(λ)

[
exp [β0 + β1Eit(λ)]

(1 + exp [β0 + β1Eit(λ)])

(
exp [β0 + β1Eit(λ)]

1 + exp [β0 + β1Eit(λ)]

)2
]

= D
(
e−λz2 − e−λz1

)
pit(1− pit)

∂pit
∂λ

= β1
∂Eit(λ)

∂λ

[
exp [β0 + β1Eit(λ)]

(1 + exp [β0 + β1Eit(λ)])
−
(

exp [β0 + β1Eit(λ)]

(1 + exp [β0 + β1Eit(λ)])

)2
]

= β1
∂Eit(λ)

∂λ
pit(1− pit)

= β1D
(
z1e

−λz1 − z2e
−λz2

)
pit(1− pit)
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∂ℓ

∂β0

=
n∑

i=1

T∑
t=1

Yit −
exp [β0 + β1Eit(λ)]

1 + exp [β0 + β1Eit(λ)]

=
n∑

i=1

T∑
t=1

Yit − pit

∂ℓ

∂β1

=
n∑

i=1

T∑
t=1

YitEit(λ)−
Eit(λ) exp [β0 + β1Eit(λ)]

1 + exp [β0 + β1Eit(λ)]

=
n∑

i=1

T∑
t=1

Eit(λ) (Yit − pit)

∂ℓ

∂λ
=

n∑
i=1

T∑
t=1

Yitβ1
∂Eit(λ)

∂λ
− β1

∂Eit(λ)

∂λ

exp [β0 + β1Eit(λ)]

1 + exp [β0 + β1Eit(λ)]

=
n∑

i=1

T∑
t=1

β1
∂Eit(λ)

∂λ
(Yit − pit)

=
n∑

i=1

T∑
t=1

β1 (Yit − pit)D
(
z1e

−λz1 − z2e
−λz2

)
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∂2ℓ

∂β2
0

=

∂

(
∂ℓ

∂β0

)
∂β0

=

∂

(
n∑

i=1

T∑
t=1

Yit − pit

)
∂β0

= −
n∑

i=1

T∑
t=1

∂pit
∂β0

= −
n∑

i=1

T∑
t=1

pit (1− pit)

∂2ℓ

∂β2
1

=

∂

(
∂ℓ

∂β1

)
∂β1

=

∂

(
n∑

i=1

T∑
t=1

Eit(λ) (Yit − pit)

)
∂β1

= −
n∑

i=1

T∑
t=1

Eit(λ)
∂pit
∂β1

= −
n∑

i=1

T∑
t=1

Eit(λ)
2pit (1− pit)

∂2ℓ

∂λ2
=

∂

[
∂ℓ

∂λ

]
∂λ

=

∂

[
n∑

i=1

T∑
t=1

(
∂Eit(λ)

∂λ

)
β1 (Yit − pit)

]
∂λ

=
n∑

i=1

T∑
t=1

(
∂2Eit(λ)

∂λ2

)
β1 (Yit − pit)−

(
∂Eit(λ)

∂λ

)
β1

(
∂pit
∂λ

)

=
n∑

i=1

T∑
t=1

∂2Eit(λ)

∂λ2
β1 (Yit − pit)−

n∑
i=1

T∑
t=1

(
∂Eit(λ)

∂λ

)2

β2
1pit (1− pit)

=
n∑

i=1

T∑
t=1

β1 (Yit − pit)D
(
[z2]

2e−λz2 − [z1]
2e−λz1

)
−

n∑
i=1

T∑
t=1

β2
1pit (1− pit)D

2
[
z1e

−λz1 − z2e
−λz2

]2
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∂2ℓ

∂β0∂β1

=

∂

(
∂ℓ

∂β0

)
∂β1

=

∂

(
n∑

i=1

T∑
t=1

Yit − pit

)
∂β1

= −
n∑

i=1

T∑
t=1

∂pit
∂β1

= −
n∑

i=1

T∑
t=1

Eit(λ)pit (1− pit)

∂2ℓ

∂β0∂λ
=

∂

(
∂ℓ

∂β0

)
∂λ

=

∂

(
n∑

i=1

T∑
t=1

Yit − pit

)
∂λ

= −
n∑

i=1

T∑
t=1

∂pit
∂λ

= −
n∑

i=1

T∑
t=1

β1
∂Eit(λ)

∂λ
pit (1− pit)

= −
n∑

i=1

T∑
t=1

β1pit (1− pit)D
(
z1e

−λz1 − z2e
−λz2

)

∂2ℓ

∂β1∂λ
=

∂

(
∂ℓ

∂β1

)
∂λ

=

∂

(
n∑

i=1

T∑
t=1

Eit(λ)Yit − Eit(λ)pit

)
∂λ

=
n∑

i=1

T∑
t=1

Yit
∂Eit(λ)

∂λ
− pit

∂Eit(λ)

∂λ
− Eit(λ)

∂pit
∂λ

=
n∑

i=1

T∑
t=1

∂Eit(λ)

∂λ
[Yit − pit − β1Eit(λ)pit (1− pit)]

=
n∑

i=1

T∑
t=1

[
Yit − pit − β1pit (1− pit)D

(
e−λz2 − e−λz1

)]
×D

(
z1e

−λz1 − z2e
−λz2

)
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COX PROPORTIONAL HAZARDS

Likelihood Function with Breslow’s handling of tied event times:

L(β, λ, Y ) =
K∏
k=1

∏
jϵR(tk,Yj=1) e

βEj(λ)( ∑
jϵR(tk)

eβEj(λ)

)mk

where mk is the total number of events at time k, R(tk) is the set of subjects at risk

at time tk, and where the numerator for each unique event time, tk, is the product

of the exponential risk of event, eβEj(λ), for all subjects with events at time tk as

noted byR(tk, Ytk = 1).

Thus, the log-likelihood function takes the form:

ℓ(β, λ, Y ) =
K∑
k=1

 ∑
jϵR(tk,Yj=1)

βEj(λ)−mk log

 ∑
jϵR(tk)

eβEj(λ)


=

K∑
k=1

[A1(tk)−mk log (C1(tk))]

Two important notes to remember about the Cox likelihood function:

1. The sum from k = 1 to K imply a risk set be defined by unique stop-time

and strata, since the assumption is being made that the baseline hazard is

different across strata.

2. The form βEj(λ) is a stand-in for the risk score of an individual, and would,

more correctly, be written as βEj(λ) +
∑

ΓXjq, in a multivariate model with

q = 1, ..., Q covariates.
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Score and Information Matrix Derivations

∂ℓ

∂β
=

K∑
k=1

 ∑
jϵR(tk,Yj=1)

Ej(λ)−mk

∑
jϵR(tk)

Ej(λ)e
βEj(λ)∑

jϵR(tk)

eβEj(λ)


=

K∑
k=1

[
A2β(tk)−mk

B1(tk)

C1(tk)

]

∂ℓ

∂λ
=

K∑
k=1

β ∑
jϵR(tk,Yj=1)

∂Ej(λ)

∂λ
−mk

∑
jϵR(tk)

β
∂Ej(λ)

∂λ
eβEj(λ)∑

jϵR(tk)

eβEj(λ)


=

K∑
k=1

[
A2λ(tk)−mk

C2(tk)

C1(tk)

]

∂2ℓ

∂β2
=

∂

(
∂ℓ

∂β

)
∂β

=

∂

 K∑
k=1

 ∑
jϵR(tk,Yj=1)

Ej(λ)−mk

∑
jϵR(tk)

Ej(λ)e
βEj(λ)∑

jϵR(tk)

eβEj(λ)




∂β

= −
K∑
k=1

mk

( ∑
jϵR(tk)

Ej(λ)
2eβEj(λ)

)( ∑
jϵR(tk)

eβEj(λ)

)
( ∑

jϵR(tk)

eβEj(λ)

)2

+
K∑
k=1

mk

( ∑
jϵR(tk)

Ej(λ)e
βEj(λ)

)( ∑
jϵR(tk)

Ej(λ)e
βEj(λ)

)
( ∑

jϵR(tk)

eβEj(λ)

)2

=
K∑
k=1

mk
[B1(tk)]

2 −B2β(tk)C1(tk)

[C1(tk)]
2
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∂2ℓ

∂λ2
=

∂

 K∑
k=1

β ∑
jϵR(tk,Yj=1)

∂EEk

∂λ
−mk

∑
jϵR(tk)

β
∂Ej(λ)

∂λ
eβEj(λ)∑

jϵR(tk)
eβEj(λ)




∂λ

= β

K∑
k=1

∑
jϵR(tk,Yj=1)

∂2Ej(λ)

∂λ2
+

K∑
k=1

mk

( ∑
jϵR(tk)

β
∂Ej(λ)

∂λ
eβEj(λ)

)2

(∑
jϵR(tk)

eβEj(λ)
)2

−
k∑

k=1

mk

( ∑
jϵR(tk)

βeβEj(λ)

[
∂2Ej(λ)

∂λ2
+ β

(
∂Ej(λ)

∂λ

)2
])( ∑

jϵR(tk)

eβEj(λ)

)
(∑

jϵR(tk)
eβEj(λ)

)2
=

K∑
k=1

[
A3(tk)−mk

C3(tk)C1(tk)− (C2(tk))
2

(C1(tk))
2

]

∂2ℓ

∂β∂λ
=

∂

(
K∑
k=1

[ ∑
jϵR(tk,Yj=1)

Ej(λ)−mk

∑
jϵR(tk)

Ej(λ)e
βEj(λ)∑

jϵR(tk)
eβEj(λ)

])
∂λ

=
K∑
k=1

∑
jϵR(tk,Yj=1)

∂Ej(λ)

∂λ

−
K∑
k=1

mk

( ∑
jϵR(tk)

∂Ej(λ)

∂λ
eβEj(λ) [1 + βEj(λ)]

)( ∑
jϵR(tk)

eβEj(λ)

)
(∑

jϵR(tk)
eβEj(λ)

)2

+
K∑
k=1

mk

( ∑
jϵR(tk)

βeβEj(λ)
∂Ej(λ)

∂λ

)(∑
jϵR(tk)

Ej(λ)e
βEj(λ)

)
(∑

jϵR(tk)
eβEj(λ)

)2
=

K∑
k=1

[
A2λ(tk)

β
−mk

B2λ(tk)C1(tk)− C2(tk)B1(tk)

(C1(tk))
2

]
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Where we define the following compute-able quantities2:

• A1(tk) =
∑

jϵR(tk,Yj=1)

βEj(λ)

• A2β(tk) =
∂A1(tk)

∂β
=

∑
jϵR(tk,Yj=1)

Ej(λ)

• A2λ(tk) =
∂A1(tk)

∂λ
=

∑
jϵR(tk,Yj=1)

β
∂Ej(λ)

∂λ

• A3(tk) =
∂2A1(tk)

(∂λ)2
=

∑
jϵR(tk,Yj=1)

β
∂2Ej(λ)

∂λ2

• B1(tk) =
∑

jϵR(tk)

Ej(λ)e
βEj(λ)

• B2β(tk) =
∂B1(tk)

∂β
=

∑
jϵR(tk)

Ej(λ)
2eβEj(λ)

• B2λ(tk) =
∂B1(tk)

∂λ
=

∑
jϵR(tk)

∂Ej(λ)

∂λ
eβEj(λ) [1 + βEj(λ)]

• C1(tk) =
∑

jϵR(tk)

eβEj(λ)

• C2(tk) =
∂C1(tk)

∂λ
=

∑
jϵR(tk)

β
∂Ej(λ)

∂λ
eβEj(λ)

• C3(tk) =
∂2C1(tk)

(∂λ)2
=

∑
jϵR(tk)

βeβEj(λ)

[
∂2Ej(λ)

∂λ2
+ β

(
∂Ej(λ)

∂λ

)2
]

2As these functions utilize the first and second derivatives of the effective exposure, one can
switch between the λ and h by adjusting which internal formulas to use, maintaining consistency
once estimation has started.
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DERIVATIONS: SINGLE DOSING, TWO LAG PARAMETERS

Let D represent a specific steady state infusion dose that starts at t = b and ends

at t = f for the set of for subject i. We can represent subject i’s effective exposure,

Eit(λ1, λ2) at time t by the following:

Eit(λ1, λ2) = D
(
1− e−λ1(t−b)

)
I (tϵ [b, f ]) +D

(
1− e−λ1(f−b)

)
e−λ2(t−f)I (t > f)

= D
(
1− e−λ1(max(0,t−b)−max(0,t−f))

)
e−λ2(max(0,t−f))

= D
(
1− e−λ1(z1−z2)

)
e−λ2z2

where

z1 = max(0, t− b) =


t− b if t > b

0 otherwise

z2 = max(0, t− f) =


t− f if t > f

0 otherwise

Let us recall that Eit(λ1, λ2) depends on the lag parameters, λ1and λ2:

∂Eit(λ1, λ2)

∂λ1

= (z1 − z2)De−λ1(z1−z2)e−λ2z2

∂Eit(λ1, λ2)

∂λ2

= −z2D
(
1− e−λ1(z1−z2)

)
e−λ2z2

∂2Eit(λ1, λ2)

∂λ2
1

= − (z1 − z2)
2De−λ1(z1−z2)e−λ2z2
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∂2Eit(λ1, λ2)

∂λ2
2

= z22D
(
1− e−λ1(z1−z2)

)
e−λ2z2

∂2Eit(λ1, λ2)

∂λ1∂λ2

= − (z1 − z2) z2De−λ1(z1−z2)e−λ2z2

∂Eit(λ1, λ2)

∂h1

= (z1 − z2)
− log 2

h1
2 De−(z1−z2) log 2/h1e−z2 log 2/h2

∂Eit(λ1, λ2)

∂h2

= z2
log 2

h2
2 D

(
1− e−(z1−z2) log 2/h1

)
e−z2 log 2/h2

∂2Eit(λ1, λ2)

∂h1
2 =

(z1 − z2)D log 2

h1
2 e−(z1−z2) log 2/h1e−z2 log 2/h2

(
2

h1

− (z1 − z2) log 2

h1
2

)

∂2Eit(λ1, λ2)

∂h2
2 =

z2D log 2

h2
2

(
1− e−(z1−z2) log 2/h1

)
e−z2 log 2/h2

(
2

h2

− z2 log 2

h1
2

)

∂2Eit(λ1, λ2)

∂h1∂h2

= − (z1 − z2) z2
(log 2)2

h1
2h2

2 De−(z1−z2) log 2/h1e−z2 log 2/h2
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POOLED LOGISTIC REGRESSION

Similar to the One-Parameter, we now substitute Eit(λ) with Eit(λ1, λ2) to define

the odds of an event for subject i at time t:

exp [β0 + β1Eit(λ1, λ2)] = exp
[
β0 + β1D

(
1− e−λ1(z1−z2)

)
e−λ2z2

]
Where now the probability of an event for subject i at time t:

pit =
exp [β0 + β1Eit(λ1, λ2)]

1 + exp [β0 + β1Eit(λ1, λ2)]

=
exp

[
β0 + β1D

(
1− e−λ1(z1−z2)

)
e−λ2z2

]
1 + exp [β0 + β1D (1− e−λ1(z1−z2)) e−λ2z2 ]

Likelihood function of logistic regression:

L(β, λ1, λ2, Y ) =
n∏

i=1

T∏
t=1

p
Yij

it (1− pit)
1−Yit

Log-likelihood function for the logistic model:

ℓ(β, λ1, λ2, Y ) =
n∑

i=1

T∑
t=1

Yit ln pit + (1− Yit) ln (1− pit)

=
n∑

i=1

T∑
t=1

Yitβ0 + Yitβ1Eit(λ1, λ2)− ln (1 + exp [β0 + β1Eit(λ1, λ2)])
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∂pit
∂β1

= Eit(λ1, λ2)pit(1− pit)

∂pit
∂λ1

= β1
∂Eit(λ1, λ2)

∂λ1

pit(1− pit)

= (z1 − z2) β1De−λ1(z1−z2)e−λ2z2pit(1− pit)

= (z1 − z2) β1De−λ1(z1−z2)−λ2z2pit(1− pit)

∂pit
∂λ2

= β1
∂Eit(λ1, λ2)

∂λ2

pit(1− pit)

= −z2β1D
(
1− e−λ1(z1−z2)

)
e−λ2z2pit(1− pit)

= −z2β1D
(
e−λ2z2 − e−λ1(z1−z2)−λ2z2

)
pit(1− pit)
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Score and Information Matrix Derivations

∂ℓ

∂β1

=
n∑

i=1

T∑
t=1

Eit(λ1, λ2) (Yit − pit)

∂ℓ

∂λ1

=
n∑

i=1

T∑
t=1

β1
∂Eit(λ1, λ2)

∂λ1

(Yit − pit)

=
n∑

i=1

T∑
t=1

(z1 − z2) β1De−λ1(z1−z2)−λ2z2 (Yit − pit)

∂ℓ

∂λ2

=
n∑

i=1

T∑
t=1

β1
∂Eit(λ1, λ2)

∂λ2

(Yit − pit)

=
n∑

i=1

T∑
t=1

−z2β1D
(
e−λ2z2 − e−λ1(z1−z2)−λ2z2

)
(Yit − pit)

∂2ℓ

∂β2
1

= −
n∑

i=1

T∑
t=1

Eit(λ1, λ2)
2pit (1− pit)
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∂2ℓ

∂λ2
1

=

∂

[
∂ℓ

∂λ1

]
∂λ1

=

∂

[
n∑

i=1

T∑
t=1

(
∂Eit(λ1, λ2)

∂λ1

)
β1 (Yit − pit)

]
∂λ1

=
n∑

i=1

T∑
t=1

(
∂2Eit(λ1, λ2)

∂λ2
1

)
β1 (Yit − pit)−

(
∂Eit(λ1, λ2)

∂λ1

)
β1

(
∂pit
∂λ1

)

=
n∑

i=1

T∑
t=1

∂2Eit(λ1, λ2)

∂λ2
1

β1 (Yit − pit)−
n∑

i=1

T∑
t=1

(
∂Eit(λ1, λ2)

∂λ1

)2

β2
1pit (1− pit)

=
n∑

i=1

T∑
t=1

− (z1 − z2)
2 β1De−λ1(z1−z2)−λ2z2 (Yit − pit)

−
n∑

i=1

T∑
t=1

[
(z1 − z2)De−λ1(z1−z2)−λ2z2

]2
β2
1pit (1− pit)

∂2ℓ

∂λ2
2

=

∂

[
∂ℓ

∂λ2

]
∂λ2

=

∂

[
n∑

i=1

T∑
t=1

(
∂Eit(λ1, λ2)

∂λ2

)
β1 (Yit − pit)

]
∂λ2

=
n∑

i=1

T∑
t=1

∂2Eit(λ1, λ2)

∂λ2
2

β1 (Yit − pit)−
n∑

i=1

T∑
t=1

(
∂Eit(λ1, λ2)

∂λ2

)2

β2
1pit (1− pit)

=
n∑

i=1

T∑
t=1

z22β1D
(
e−λ2z2 − e−λ1(z1−z2)−λ2z2

)
(Yit − pit)

−
n∑

i=1

T∑
t=1

[
−z2D

(
e−λ2z2 − e−λ1(z1−z2)−λ2z2

)]2
β2
1pit (1− pit)
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∂2ℓ

∂λ1∂λ2

=

∂

[
∂ℓ

∂λ1

]
∂λ2

=

∂

[
n∑

i=1

T∑
t=1

(
∂Eit(λ1, λ2)

∂λ1

)
β1 (Yit − pit)

]
∂λ2

=
n∑

i=1

T∑
t=1

∂2Eit(λ1, λ2)

∂λ1∂λ2

β1 (Yit − pit)−
(
∂Eit(λ1, λ2)

∂λ1

)
β1

(
∂pit
∂λ2

)

=
n∑

i=1

T∑
t=1

−z2 (z1 − z2)De−λ1(z1−z2)−λ2z2β1 (Yit − pit)

+
n∑

i=1

T∑
t=1

z2 (z1 − z2) β
2
1D
(
e−λ2z2 − e−λ1(z1−z2)−λ2z2

)
pit (1− pit)

∂2ℓ

∂β1∂λ1

=

∂

(
∂ℓ

∂β1

)
∂λ1

=

∂

(
n∑

i=1

T∑
t=1

Eit(λ1, λ2)Yit − Eit(λ1, λ2)pit

)
∂λ1

=
n∑

i=1

T∑
t=1

Yit
∂Eit(λ1, λ2)

∂λ1

− pit
∂Eit(λ1, λ2)

∂λ1

− Eit(λ1, λ2)
∂pit
∂λ1

=
n∑

i=1

T∑
t=1

(z1 − z2)De−λ1(z1−z2)−λ2z2 (Yit − pit)

−
n∑

i=1

T∑
t=1

(z1 − z2)
[
De−λ1(z1−z2)−λ2z2

]2
β1pit (1− pit)

∂2ℓ

∂β1∂λ2

=

∂

(
∂ℓ

∂β1

)
∂λ2

=

∂

(
n∑

i=1

T∑
t=1

Eit(λ1, λ2)Yit − Eit(λ1, λ2)pit

)
∂λ2

=
n∑

i=1

T∑
t=1

Yit
∂Eit(λ1, λ2)

∂λ2

− pit
∂Eit(λ1, λ2)

∂λ2

− Eit(λ1, λ2)
∂pit
∂λ2

=
n∑

i=1

T∑
t=1

−z2D
(
e−λ2z2 − e−λ1(z1−z2)−λ2z2

)
(Yit − pit)

+
n∑

i=1

T∑
t=1

z2
[
D
(
e−λ2z2 − e−λ1(z1−z2)−λ2z2

)]2
β1pit (1− pit)
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COX PROPORTIONAL HAZARDS

For the Cox Proportional Hazards model, the likelihood and log-likelihood func-

tions take the same general form as the one-parameter lag equations. Also, the

partial first and second derivatives of the log-likelihood with respect to β, alone,

remain unchanged. The equations that follow complete the forms needed to de-

rive the Score and Hessian matrices for the two λ parameters. We add definitions

for the following compute-able quantities:

A4(ti) =
∂A1(ti)

∂λ1

=
∑

jϵR(ti,Yj=1)

β
∂Ej(λ1, λ2)

∂λ1

A5(ti) =
∂A1(ti)

∂λ2

=
∑

jϵR(ti,Yj=1)

β
∂Ej(λ1, λ2)

∂λ2

A6(ti) =
∂2A1(ti)

∂λ2
1

=
∑

jϵR(ti,Yj=1)

β
∂2Ej(λ1, λ2)

∂λ2
1

A7(ti) =
∂2A1(ti)

∂λ2
2

=
∑

jϵR(ti,Yj=1)

β
∂2Ej(λ1, λ2)

∂λ2
2

A8(ti) =
∂2A1(ti)

∂λ1∂λ2

=
∑

jϵR(ti,Yj=1)

β
∂2Ej(λ1, λ2)

∂λ1∂λ2

B2λ1(ti) =
∂B1(ti)

∂λ1

=
∑

jϵR(ti)

∂Ej(λ1, λ2)

∂λ1

eβEj(λ1,λ2) [1 + βEj(λ1, λ2)]

B2λ2(ti) =
∂B1(ti)

∂λ2

=
∑

jϵR(ti)

∂Ej(λ1, λ2)

∂λ2

eβEj(λ1,λ2) [1 + βEj(λ1, λ2)]

C4(ti) =
∂C1(ti)

∂λ1

=
∑

jϵR(ti)

β
∂Ej(λ1, λ2)

∂λ1

eβEj(λ1,λ2)

C5(ti) =
∂C1(ti)

∂λ2

=
∑

jϵR(ti)

β
∂Ej(λ1, λ2)

∂λ2

eβEj(λ1,λ2)
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C6(ti) =
∂2C1(ti)

∂λ2
1

=
∑

jϵR(ti)

βeβEj(λ1,λ2)

[
∂2Ej(λ1, λ2)

∂λ2
1

+ β

(
∂Ej(λ1, λ2)

∂λ1

)2
]

C7(ti) =
∂2C1(ti)

∂λ2
2

=
∑

jϵR(ti)

βeβEj(λ1,λ2)

[
∂2Ej(λ1, λ2)

∂λ2
2

+ β

(
∂Ej(λ1, λ2)

∂λ2

)2
]

C8(ti) =
∂2C1(ti)

∂λ1∂λ2

=
∑

jϵR(ti)

βeβEj(λ1,λ2)

[
∂2Ej(λ1, λ2)

∂λ1∂λ2

+ β
∂Ej(λ1, λ2)

∂λ1

∂Ej(λ1, λ2)

∂λ2

]

∂ℓ

∂λ1

=
I∑

i=1

β ∑
jϵR(ti,Yj=1)

∂Ej(λ1, λ2)

∂λ1

−mi

∑
jϵR(ti)

β
∂Ej(λ1, λ2)

∂λ1

eβEj(λ1,λ2)∑
jϵR(ti)

eβEj(λ1,λ2)


=

I∑
i=1

[
A4(ti)−mi

C4(ti)

C1(ti)

]

∂ℓ

∂λ2

=
I∑

i=1

β ∑
jϵR(ti,Yj=1)

∂Ej(λ1, λ2)

∂λ1

−mi

∑
jϵR(ti)

β
∂Ej(λ1, λ2)

∂λ1

eβEj(λ1,λ2)∑
jϵR(ti)

eβEj(λ1,λ2)


=

I∑
i=1

[
A5(ti)−mi

C5(ti)

C1(ti)

]
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∂
2
ℓ

∂
λ
2 1

=

∂

    I ∑ i=
1

    β
∑

jϵ
R
(t

i
,Y

j
=
1
)

∂
E
E

i

∂
λ
1

−
m

i

∑
jϵ
R
(t

i
)

β
∂
E

j
(λ

1
,λ

2
)

∂
λ
1

eβ
E

j
(λ

1
,λ

2
)

∑
jϵ
R
(t

i
)

eβ
E

j
(λ

1
,λ

2
)

        
∂
λ
1

=
β

I ∑ i=
1

∑
jϵ
R
(t

i
,Y

j
=
1
)

∂
2
E

j
(λ

1
,λ

2
)

∂
λ
2 1

+
I ∑ i=
1

m
i

( ∑ jϵ
R
(t

i
)

β
∂
E

j
(λ

1
,λ

2
)

∂
λ
1

eβ
E

j
(λ

1
,λ

2
)) 2

( ∑ jϵ
R
(t

i
)

eβ
E

j
( λ

1
,λ

2
)) 2

−
I ∑ i=
1

m
i

( ∑ jϵ
R
(t

i
)

β
eβ

E
j
(λ

1
,λ

2
)

[ ∂
2
E

j
(λ

1
,λ

2
)

∂
λ
2 1

+
β

( ∂E
j
(λ

1
,λ

2
)

∂
λ
1

) 2])
( ∑ jϵ

R
(t

i
)

eβ
E

j
(λ

1
,λ

2
))

( ∑ jϵ
R
(t

i
)

eβ
E

j
(λ

1
,λ

2
)) 2

=
I ∑ i=
1

[ A
6
(t

i)
−

m
i
C

6
(t

i)
C

1
(t

i)
−
(C

4
(t

i)
)2

(C
1
(t

i)
)2

]
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∂
2
ℓ

∂
λ
2 2

=

∂

    I ∑ i=
1

    β
∑

jϵ
R
(t

i
,Y

j
=
1
)

∂
E
E

i

∂
λ
2

−
m

i

∑
jϵ
R
(t

i
)

β
∂
E

j
(λ

1
,λ

2
)

∂
λ
2

eβ
E

j
(λ

1
,λ

2
)

∑
jϵ
R
(t

i
)

eβ
E

j
(λ

1
,λ

2
)

        
∂
λ
2

=
β

I ∑ i=
1

∑
jϵ
R
(t

i
,Y

j
=
1
)

∂
2
E

j
(λ

1
,λ

2
)

∂
λ
2 2

+
I ∑ i=
1

m
i

( ∑ jϵ
R
(t

i
)

β
∂
E

j
(λ

1
,λ

2
)

∂
λ
2

eβ
E

j
(λ

1
,λ

2
)) 2

( ∑ jϵ
R
(t

i
)

eβ
E

j
(λ

1
,λ

2
)) 2

−
I ∑ i=
1

m
i

( ∑ jϵ
R
(t

i
)

β
eβ

E
j
(λ

1
,λ

2
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DERIVATIONS: MULTIPLE DOSING

TWO DOSES, SINGLE LAG

Let D1 represent the first (in terms of when it occurred) exposure specific steady

state infusion dose that starts at t = b1 and ends at t = f1 for the subject i. This

same individual was later exposed at another steady state dosing level, D2 starting

at t = b2 and ending at t = f2. The full effective exposure, Eit(λ), for this individual,

i, at time, t, can be written as follows:

Eit(λ) = D1

(
1− e−λ(t−b1)

)
I (tϵ [b1, f1]) +D1

(
1− e−λ(f1−b1)

)
e−λ(t−f1)I (t > f1)

+D2

(
1− e−λ(t−b2)

)
I (tϵ [b2, f2]) +D2

(
1− e−λ(f2−b2)

)
e−λ(t−f2)I (t > f2)

= D1

(
e−λmax(0,t−f1) − e−λmax(0,t−b1)

)
+D2

(
e−λmax(0,t−f2) − e−λmax(0,t−b2)

)
= D1

(
e−λz2 − e−λz1

)
+D2

(
e−λz4 − e−λz3

)
where

z1 = max(0, t− b1) =


t− b1 if t > b1

0 otherwise

z2 = max(0, t− f1) =


t− f1 if t > f1

0 otherwise

z3 = max(0, t− b2) =


t− b2 if t > b2

0 otherwise
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z4 = max(0, t− f2) =


t− f2 if t > f2

0 otherwise

Let us recall that Eit(λ) depends on the lag parameter, λ:

Eit(λ) = D1

(
e−λz2 − e−λz1

)
+D2

(
e−λz4 − e−λz3

)
∂Eit(λ)

∂λ
= D1

(
z1e

−λz1 − z2e
−λz2

)
+D2

(
z3e

−λz3 − z4e
−λz4

)
∂2Eit(λ)

∂λ2
= D1

(
z22e

−λz2 − z21e
−λz1

)
+D2

(
z24e

−λz4 − z23e
−λz3

)
Choosing to parameterize the lag using h instead of λ:

∂Eit(λ)

∂h
=

log 2

h2

[
D1

(
z2e

−z2 log 2/h − z1e
−z1 log 2/h

)
+D2

(
z4e

−z4 log 2/h − z3e
−z3 log 2/h

)]

∂2Eit(λ)

∂h2
=

D1 log 2

h3

(
z22 log 2

h
e

−z2 log 2
h − 2z2e

−z2 log 2
h − z21 log 2

h
e

−z1 log 2
h + 2z1e

−z1 log 2
h

)

+
D2 log 2

h3

(
z24 log 2

h
e

−z4 log 2
h − 2z4e

−z4 log 2
h − z23 log 2

h
e

−z3 log 2
h + 2z3e

−z3 log 2
h

)
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TWO DOSES, TWO LAG PARAMETERS

For the same individual as described in the previous section, the effective exposure

using two lag parameters, Eit(λ1, λ2), can be written as:

Eit(λ1, λ2) = D1

(
1− e−λ1(t−b1)

)
I (tϵ [b1, f1])

+D1

(
1− e−λ1(f1−b1)

)
e−λ2(t−f1)I (t > f1)

+D2

(
1− e−λ1(t−b2)

)
I (tϵ [b2, f2])

+D2

(
1− e−λ1(f2−b2)

)
e−λ2(t−f2)I (t > f2)

= D1

(
1− e−λ1(max(0,t−b1)−max(0,t−f1))

)
e−λ2 max(0,t−f1)

+D2

(
1− e−λ1(max(0,t−b2)−max(0,t−f2))

)
e−λ2 max(0,t−f2)

= D1

(
1− e−λ1(z1−z2)

)
e−λ2z2 +D2

(
1− e−λ1(z3−z4)

)
e−λ2z4

Thus we derive the first and second derivatives of Eit(λ1, λ2) with respect to both

λ1and λ2:

∂Eit(λ1, λ2)

∂λ1

= (z1 − z2)D1e
−λ1(z1−z2)e−λ2z2 + (z3 − z4)D2e

−λ1(z3−z4)e−λ2z4

∂Eit(λ1, λ2)

∂λ2

= −z2D1

(
1− e−λ1(z1−z2)

)
e−λ2z2 − z4D2

(
1− e−λ1(z3−z4)

)
e−λ2z4

∂2Eit(λ1, λ2)

∂λ2
1

= − (z1 − z2)
2D1e

−λ1(z1−z2)e−λ2z2 − (z3 − z4)
2D2e

−λ1(z3−z4)e−λ2z4

∂2Eit(λ1, λ2)

∂λ2
2

= z22D1

(
1− e−λ1(z1−z2)

)
e−λ2z2 + z24D2

(
1− e−λ1(z3−z4)

)
e−λ2z4

∂2Eit(λ1, λ2)

∂λ1∂λ2

= − (z1 − z2) z2D1e
−λ1(z1−z2)e−λ2z2 − (z3 − z4) z4D2e

−λ1(z3−z4)e−λ2z4

Choosing to parameterize the lag using (h1, h2) instead of (λ1, λ2):

∂Eit(λ1, λ2)

∂h1

=
−(z1 − z2) log 2

h2
1

D1e
−(z1−z2) log 2/h1e−z2 log 2/h2
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− (z3 − z4) log 2

h2
1

D2e
−(z3−z4) log 2/h1e−z4 log 2/h2

∂Eit(λ1, λ2)

∂h2

=
z2 log 2D1

h2
2

(
1− e−(z1−z2) log 2/h1

)
e−z2 log 2/h2

+
z4 log 2D2

h2
2

(
1− e−(z3−z4) log 2/h1

)
e−z4 log 2/h2

∂2Eit(λ1, λ2)

∂h1
2 =

(z1 − z2)D1 log 2

h1
2 e−(z1−z2) log 2/h1e−z2 log 2/h2

(
2

h1

− (z1 − z2) log 2

h1
2

)
+

(z3 − z4)D2 log 2

h1
2 e−(z3−z4) log 2/h1e−z4 log 2/h2

(
2

h1

− (z3 − z4) log 2

h1
2

)

∂2Eit(λ1, λ2)

∂h2
2 =

z2D1 log 2

h2
2

(
1− e−(z1−z2) log 2/h1

)
e−z2 log 2/h2

(
2

h2

− z2 log 2

h1
2

)
+

z4D2 log 2

h2
2

(
1− e−(z3−z4) log 2/h1

)
e−z4 log 2/h2

(
2

h2

− z4 log 2

h1
2

)

∂2Eit(λ1, λ2)

∂h1∂h2

= −z2 (z1 − z2)
(log 2)2

h1
2h2

2 D1e
−(z1−z2) log 2/h1e−z2 log 2/h2

− z4 (z3 − z4)
(log 2)2

h1
2h2

2 D2e
−(z3−z4) log 2/h1e−z4 log 2/h2
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