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ABSTRACT 

   In the first chapter, I explore whether features derived from high resolution 

satellite images of Sri Lanka are able to predict poverty or income at local areas. I extract 

from satellite imagery area specific indicators of economic well-being including the 

number of cars, type and extent of crops, length and type of roads, roof extent and roof 

type, building height and number of buildings. Estimated models are able to explain 

between 60 to 65 percent of the village-specific variation in poverty and average level of 

log income.    

 

The second chapter investigates the effects of preferential trade programs such as the 

U.S. African Growth and Opportunity Act (AGOA) on the direction of African countries’ 

exports. While these programs intend to promote African exports, textbook models of 

trade suggest that such asymmetric tariff reductions could divert African exports from 

other destinations to the tariff reducing economy. I examine the import patterns of 177 

countries and estimate the diversion effect using a triple-difference estimation strategy, 

which exploits time variation in the product and country coverage of AGOA. I find no 
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evidence of systematic trade diversion within Africa, but do find evidence of diversion 

from other industrialized destinations, particularly for apparel products.    

 

In the third chapter I apply three model selection methods – Lasso regularized regression, 

Bayesian Model Averaging, and Extreme Bound Analysis -- to candidate variables in a 

gravity models of trade. I use a panel dataset of of 198 countries covering the years 1970 

to 2000, and find model selection methods suggest many fewer variables are robust that 

those suggested by the null hypothesis rejection methodology from ordinary least 

squares.   
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Abstract 

Measuring poverty is important for targeting aid and forming policy in developing 

economies. This is impeded by the high administrative and labor costs of large-scale 

surveys. This paper investigates the ability of high spatial resolution satellite images to 

accurately estimate poverty and economic well-being. We extract both object and texture 

features from satellite images of Sri Lanka. These data are then used to estimate models of 

local area poverty and economic well-being. The important features derived from satellite 

imagery include the number and density of buildings, shadow area (a proxy for building 

height), number of cars, density and length of roads, type of farmland, and roof material. 

These variables are used to estimate poverty rates and average log consumption for 1,291 

villages (Grama Niladhari Divisions). Predictions from a binomial logit model, using only 

these satellite features as explanatory variables, explain sixty percent of poverty and 

average log consumption at the village level. We control for overfitting by using Lasso 

regularization. Two out of sample applications, extrapolating predictions into adjacent 

areas and estimating local area poverty using an artificially reduced Census, confirm the 

out of sample predictive capabilities. We conclude that satellite imagery has the potential 

to revolutionize poverty measurement, and that surveys should adjust to take advantage of 

the rise in useful ancillary data. 

    

Keywords: poverty estimation, satellite imagery, machine learning  

JEL classification: I32, C50 
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1 Introduction 

Despite the best efforts of national statistics offices and the international 

development community, small area estimates of poverty and economic welfare remain 

rare. This is due in part to the lack of available household survey data measuring economic 

welfare in developing countries. Between 2002 and 2011, as many as 57 countries 

conducted zero or only one survey capable of producing poverty statistics, and data are all 

the more scarce in the poorest countries. (Serajuddin et al, 2015).  Even where household 

surveys are conducted regularly, they are typically too small to produce reliable estimates 

below the district level. Generating welfare estimates for smaller areas requires both a 

household welfare survey and contemporaneous census data, and the latter is typically 

available once per decade at best. Furthermore, safety concerns prohibit survey data 

collection in many conflict areas altogether. Lack of timely information on living standards 

in small areas impedes the efforts of policymakers and aid organizations to direct scarce 

resources to the poor, and prevents their constituents to hold them accountable for doing 

so.  

Satellite imagery has generated considerable enthusiasm as a potential supplement 

to household data that can help fill these severe data gaps. In recent years, private 

companies such as DigitalGlobe and Airbus have rapidly expanded the coverage and 

availability of high spatial resolution imagery (HSRI), driving down commercial prices. 

Planetlabs currently operates more satellites than any organization other than the US and 

Russian governments, and by mid-2016 will have launched enough satellites to acquire 

coverage of the entire globe with imagery resolution of 4 to 5 m per pixel on a daily basis. 
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Continued technological advances will increasingly allow social scientists to benefit from 

this type of imagery, which has been utilized intensively by the intelligence and military 

communities for decades.  

This paper investigates the ability of object and texture features derived from HSRI 

(High Spatial Resolution Imagery) to estimate and predict poverty rates at local levels. The 

area of our study covers 3,500 square kilometers in Sri Lanka, which contain 1,291 villages 

(Grama Niladhari (GN) divisions). For each village, we extract both object and so-called 

“texture” feature to use as explanatory variables in poverty prediction models. Object 

features extracted include the number of cars, number and size of buildings, type of 

farmland (plantation vs. paddy), the type of roofs, the share of shadow pixels (building 

height proxy), road extent and road material, along with textural measures. These objects 

are identified using a combination of deep learning based Convolutional Neural Networks 

(CNN) and manual “heads up” digitization. These satellite derived features are then 

matched to household estimates of per capita consumptions imputed into the 2011 Census 

for the 1,291 GN Divisions.  

We investigate four main questions: 1) To what extent can variation in village 

economic well-being -- poverty rates defined at the 10 and 40th percentiles of national 

income and average GN consumption -- be explained by high-resolution features? 2) 

Which features are most strongly correlated with welfare? 3) Can these models predict into 

geographically adjacent areas?; and 4) How should surveys adjust to meet the rise of useful 

ancillary data?  
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We find that: i) satellite features are highly predictive of economic well-being and 

explain about sixty percent of the variation in village average consumption or poverty; ii) 

Measures of built-up area and roof type are particularly strong correlates of welfare both 

in urban and rural areas. Car counts and building height are important correlates in urban 

areas, while the share of paved roads and agricultural type are strong correlates in rural 

areas; iii) Out-of-sample predictions are less accurate but tend to preserve rank; and iv) 

Satellite indicators can substitute for reduced number of households sampled per village. 

These results suggest that features extracted from high-resolution imagery hold 

considerable promise for contributing to poverty estimation and survey design. 

This paper contributes to a literature exploring how remotely sensed data may be 

used to assess welfare. The most popular remotely sensed measure for economic 

applications has been night-time lights (NTL), which measures the intensity of light 

captured passively by satellite. Strong correlations between NTL and GDP appear at the 

country level (Henderson et al., 2009) although within a country NTL appears more 

strongly correlated with density than welfare. The relationship between lights and wages 

or other measures of income appears weak (Mellander et al., 2013), casting doubt on its 

reliability as a proxy for small area estimates of welfare. Additionally, NTL is ill-suited for 

identifying variation in welfare within small areas because of its low spatial resolution. 

Even the most advanced NTL satellite, VIIRS, has a spatial resolution at nadir of 

approximately 1.0 squared km.5   

New developments in computer vision algorithms, however, allow for meaningful 

																																																								
5 Pixel size can vary depending on the angle of the satellite relative to the ground site.  
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information to be extracted from daytime imagery. Advances from Deep Learning such as 

Convolutional Neural Networks (CNN) have the capability to algorithmically classifying 

objects such as cars, building area, roads, crops and roof type (Krizhevsky, Sutskever, and 

Hinton, 2012). These objects may be more strongly correlated with local income and 

wealth than NTL. An alternative approach to analyzing HSRI involves calculating textural 

and spectral variation in the imagery instead of identifying objects (Graesser et al. 2012, 

Engstrom et al. 2015, Sandborn and Engstrom 2016).  In this approach the spatial and 

spectral variations in imagery are calculated over a neighborhood (a group of pixels) to 

characterize the local scale spatial pattern of the objects observed in the imagery. These 

measures, which we refer to as “texture” or “spectral” measures, capture information about 

an area that may not be clear from object recognition alone. 

This paper also contributes to a literature exploring how supervised learning 

techniques from machine learning may be applied to unstructured data to reveal 

information about human welfare (Athey, 2017). Glaeser, Kominers, Luca, and Naik 

(2015) apply texture-based machine vision classification to images that are captured from 

Google Street View, trained using subjective ratings of the images on the basis of the 

perceived safety. They estimate a support vector machine model and show the fitted model 

can reliably predict block level income in New York City. Jean et al. (2016) employ a 

transfer learning approach to generate estimates of economic well-being from satellite 

imagery. They first extract a set of features from the Google imagery, using a convolutional 

neural network trained to predict NTL.  In the second step, these features are then used to 

predict average consumption at the cluster level, taken from living standard measurement 
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surveys.7 This two-step approach allows the model to extrapolate relevant features of the 

imagery using the full range of NTL. This method improves upon the use of NTL alone to 

predict poverty. The model explains about 42 percent of the variation in village per capita 

consumption in a pooled sample of all four countries. However, the improvement over 

NTL alone is modest, as the two-step method raises the !" in the pooled estimate from 

about 0.38 with night-time lights alone to 0.42. This is consistent with the model’s 

substantial predictive power being mostly driven by differences in population density 

derived from NTL.  

In contrast to the aforementioned papers, this paper explores a two stage procedure 

for generating estimates of economic well-being: first features are extracted from satellite 

imagery, and then these features are used for supervised learning in estimating economic 

well-being. We believe this process has several advantages over more opaque prediction 

methods, including enabling a greater understanding of the performance of particular 

features in different contexts. For example, our approach makes it straightforward to 

investigate how well particular features predict poverty rates in urban and rural areas. In 

addition, this method demonstrates the potential to extract indicators from imagery that are 

useful for other purposes, such as better understanding road networks, agricultural 

productivity, and patterns of urbanization. We further distinguish from Jean et al. in that 

we estimate poverty in very small areas, with an average village size of just over 2 square 

kilometers, and use poverty and income estimates generated directly from the Census. 

																																																								
7 It is not clear whether the consumption aggregates have been spatially deflated, and failing to deflate the 
aggregates would exaggerates the predictive power of population density in explaining variation in welfare.  
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The paper proceeds as follows: Section 2 summarizes how the data were created 

and presents brief summary statistics. Section 3 presents the statistical methodology. 

Section 4 examines the predictive power of high resolution satellite features (HRSF) to 

estimate poverty in small areas at the village level. Section 5 examines out of sample 

performance using two applications from estimating local area economic well-being. 

Section 7 concludes.  

 

2 Data Description 

We use a sample site of approximately 3,500 sq. km. in Sri Lanka, shown in figure 

1- 1 highlighted in white. We collected high resolution imagery covering 47 Divisional 

Secretariat (DS) Divisions, the administrative area one level higher than GNs. A fully 

random sample of DSes was not feasible due to lack of complete coverage across DSes of 

high resolution imagery. We sampled DSes conditional on HSRI being available, drawing 

equal areas from urban, rural, and estate sectors.8 The total sample contains 1,291 GN 

divisions, with each GN division covering an average area of 2.12 square kilometers.  

																																																								
8 Sri Lanka is unique in that it classifies sectors as urban, rural, or estate. The Estate sector is a 
classification by the Department of Census that refers to “plantation areas, which are more than 20 acres in 
extent and have 10 or more residential laborers.”  For the purposes of this study, except for sample 
stratification, the estate sector is grouped together with the rural sector.  
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2.1 Derivation of GN Welfare Statistics 

Ideally village poverty and income statistics would be generated directly from the 

2012/13 Household Income and Expenditure Survey (HIES), a detailed consumption 

survey that measures the consumption patterns of 16,000 households. However, given the 

sample size the HIES was insufficient alone to generate consistent poverty estimates. We 

instead use the Elbers, Lanjouw, and Lanjouw (2003) imputation methodology to impute 

income estimates into the 2011 Census of Population and Housing, a method that is 

identical to one used to generate official poverty estimates at the DS Division level 

(Department of Census and Statistics and World Bank, 2015). For each household in the 

Figure 1- 1: Coverage Area of High Resolution Satellite Imagery 
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census, per capita consumption was estimated based on models developed from the HIES, 

using household indicators that are common to both the Census and the HIES.  

We use as a poverty line relative income thresholds from the national income 

distribution. 9  We use two poverty thresholds – one at 10% of the national income 

distribution, and another at the 40% level of national income distribution – intended to 

determine how satellite measures capture both poverty and inequality, respectively. We 

derive village headcount poverty rates using the standard Foster-Greer-Thorbecke (Foster 

et al., 1984) methodology  

#$%&'()*,,- =
1
0*

1(34 < 67)

9:

4;"

 

where <$%!'()*,,-  is the poverty headcount rate in GN Division =  at the 67  poverty 

threshold, defined at either the 10 or 40 percent of national income. The variable 34	is per 

capita household consumption for individual ? and 0*	is the total population of GN =. We 

calculated the national poverty threshold level, 67 , as the @ ∈ {10,40} percentile of the 

national predicted per capita consumption in the census. 1 is an indicator function that takes 

on one if individual ?’s per capita household consumption lies below the relative poverty 

threshold 67. Since we only consider the headcount rate, this is equivalent to the ratio of 

the number of individuals below the threshold to the total population in each village.  

Figure 1- 2 plots the histograms of poverty and consumption. The lower relative 

poverty rate (10%) shows considerable skewness. Many villages have zero estimated 

																																																								
9 According to the official poverty line, which was developed in 2002 and subsequently updated for 
inflation, 6.7 percent of the population was poor in 2012/13.  
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poverty at this lower threshold, shown as a mass point near zero. At the higher relative 

poverty threshold, the number of villages with zero estimated poverty is lower and the 

distribution of poverty rates is closer to normal. Average village consumption (income) in 

log points is present in the bottom center panel of figure 1- 2, showing a distribution that 

is possibly bimodal and left skewed.  

 

Notes: Histogram of village relative poverty. The two relative poverty rates refer to the 
fraction of individuals in each village below 10% or 40% of national income. Data is 
sourced from the poverty estimates imputed into the 2011 Sri Lankan Census. 
 

2.2 Comparison of GN Poverty Rates and Mean NTL Reflectance 

A simple visual comparison between mean NTL and village poverty rates illustrates 

why using NTL as a primary source of information on sub-national welfare is unwise. 

Figure 1- 2: Distribution of Poverty and Average Log GN Consumption 



 

 

12 

Figure 1- 3 presents a panel of three images for the Divisional Secretariat of Seethawaka: 

mean raw NTL (left), poverty rates derived from the 10% national income threshold 

(middle), and log of mean population density (right). Comparing the left and middle panels, 

there is only a small association between villages that have low NTL reflectance and those 

that are high in poverty. Problems of overglow (Henderson et al., 2012) mean that poor 

villages adjacent to wealthy ones will be misclassified as non-poor. While NTL tracks the 

general contours of poverty for the DS – lower poverty areas in the Northwest and higher 

poverty areas in the Southeast – this coarse association is only of limited use for public 

policy applications such as poverty targeting or budget allocations.  

What NTL does appear to approximate is population density of the underlying GN 

Divisions, which is consistent with the findings of Mellander et al. (2013). Comparing the 

right and left panel there appears to be a strong association between high NTL areas and 

areas with a high population density. We take this to suggest that the information content 

contained within NTL related to human welfare is limited. While lights at night may 

indicate gross associations at the lowest levels of poverty, only so much information about 

human welfare can be learned from the intensity of lights outputted at night. In contrast, 

HRSI daytime imagery may provide a much richer picture of on the ground welfare 

conditions.   
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Figure 1- 3: Comparison of Mean Night Time Lights (NTL), Poverty Rate, and 
Mean Population Density, Seethawaka, Sri Lanka 

 

2.3 Description of High Resolution Spatial Features (HRSF) 

The derived high resolution spatial features fall into six broad categories: (1) 

Agricultural Indicators, (2) Cars, (3) Building Density, (4) Road and Transportation; (5) 

Roof Type; and (6) Textural and Spectral characteristics.  Table 1- 1 present summary 

statistics for these variables. Under agricultural indicators we collected the fraction of GN 

agriculture that is paddy (rice cultivation) or plantation (cash crops such as tea), with the 

excluded category being agriculture not identified as either paddy or plantation. 

Agriculture in our sample is evenly split between paddy and plantation. We also calculated 

the fraction of total GN area that is either paddy, plantation, or any agriculture.  

Three car related variables were collected – log total number of cars in a GN, total 

cars divided by road length, and cars divided by area. The average village in our sample 

has 23 cars. However, there are many outliers with a large number of cars, with the largest 

GN containing 4,000 cars, and many having none.  
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Building density variables include the fraction of an area covered by built-up area, 

and two indicators that capture “shadows” of tall buildings which functions as a proxy for 

building height. Built up area captures any human settlements – buildings, homes, etc – 

regardless of use or condition. The shadow variables use the angle of the sun as it shines 

on a building, and the shadows it displaces, to estimate the height of a building10. We 

calculate the log of total shadows as well as the fraction of shadows covering a valid area. 

This will act as a crude proxy for building height. Villages with more shadows will have 

taller buildings on average, indicating higher density of development. 

The road variables we collect are the log of total road length, fraction of roads that 

are paved, and length of airport and length of railroad identified. For roof type, we collect 

the fraction of roofs in a village that are either clay, aluminum, asbestos, with the omitted 

category being roofs that are identified as none of the above, the vast majority being gray 

cement roofs. Roof type can be identified through remote sensing by using hyperspectral 

imaging, or using reflectance from several contiguous spectral bands. Different roof 

materials exhibit different spectral properties, particularly in the sub-visible bands of the 

spectrum. The roofs in our sample are clay (36.5%) aluminum (14.08%), asbestos (7.8%) 

or gray concrete (41.6%).  

We calculate seven separate types of spectral and textural features: Fourier 

transform, Gabor filter, Histogram of Oriented Gradients (HoG), Line support regions 

(LSR), Pantex, and Speed-Up Robustness Features (SURF). These features can be 

considered outputs from some dimension reduction technique, in that they are reduced 

																																																								
10 Valid area refers to areas at the foot of building where shadows may appear.  
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dimensionality descriptions of a complex 2-D satellite imagery. These are often used in 

machine vision problems to decompose an image. Like dimension reduction outputs, we 

may have to squint at the output to determine what these spectral or textural features are 

capturing. They are intended to capture aspects of a neighborhood that are not so easily 

identified directly, such as “sluminess” (presence of many irregular building lines) or high 

density.  

Because these measures may be novel to readers without backgrounds in remote 

sensing, further description may be helpful. We consider Pantex here to be a measure of 

human settlements. It’s a spatial similarity index, where each cell is compared to adjacent 

cells in all directions. Forests will have a low Pantex level, since cells in all directions have 

similar contrast, as will cells with straight roads. Cities dense with many buildings in all 

directions will have high Pantex values. HOG captures “local intensity gradients or edge 

directions” (Dalal and Triggs, 2005) and in context here captures intensity of lines of 

development or agriculture. Local binary patterns (LBPM) captures local spatial patterns 

and gray scale contrast. SURF detects local features used for characterizing grid patterns, 

and measures orderliness of building development, the opposite of which is typically 

referred to as a slum. Areas with right angles, corners, or areas with regular grid patterns, 

will have larger SURF values relative to areas with chaotic or irregular spacing.   

Although technically a spectral characteristic, we consider normalized differenced 

vegetation index (NDVI) a subset of building development, since its presence at lower 

resolutions can indicate development such as parks or lawns. We collect NDVI at two 

scales: 64 meters and 8 meters. These two measures will tell us whether the village contains 
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many large plots of vegetation (64 meter scale) or many small plots of vegetation (8 meters 

resolution). The latter may be more important for urban areas in distinguishing poor areas 

from rich, since rich urban areas tend to have more small plots of vegetation used as lawns 

and parks than poor areas within cities.  

For more detail on imagery and the feature extraction process we refer the reader 

to appendix A, In brief, object-based features were classified through a combination of 

convolutional neural network (CNN) training and object based image assessment (OBIA). 

Accuracy varied by feature, but overall class accuracy was above 90% for all features11. 

To illustrate the classification process, we will discuss two training examples for built-up 

area (building footprint) and cars, shown in figures 1- 4 and 1- 5. Figure 1- 4 shows raw 

satellite imagery in the right panel, and classified imagery according to the CNN algorithm 

in the left panel. Areas highlighted in green in are true positive building classifications, 

where areas classified by the algorithm as buildings were confirmed as such by manual 

identification. Areas in red are false positives that were erroneously classified by the 

algorithm as buildings even though no buildings are present. Figure 1- 5 shows raw satellite 

imagery from Colombo with cars identified by the CNN algorithm are highlighted by blue 

circles. The classifications occur on the road paths or in parking lots where cars are 

expected to appear. There are some false negatives – cars in the image not classified as 

such – particularly in areas where cars are obscured by trees or vegetation. However, the 

classifier appears accurate enough to distinguish high car areas from low car areas.  

																																																								
11 See for example the ROC curve for the buildings in figure A1. 
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Figure 1- 4: Example Developed Area (Buildings) Classification 

Notes: above image shows raw (left) and classified (right) for developed area building classifier from raw 
satellite imagery. Areas in green show are true positive building classifications. Images in red are false 
positives: erroneously classified areas as buildings. 

Notes: above image shows satellite imagery overlaid with cars identified algorithmically 
shown in blue. 
 
	  

Figure 1- 5: Example Car Classification 
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3 Statistical Methodology  

Our methodological aim is to find which high-resolution spatial features are consistent 

predictors of local poverty rates in absence of any other on-the-ground information on the 

GN itself. There are many ways in which we could model the poverty rate of each GN. 

Linear least-squares regression is the simplest method but is unlikely to produce accurate 

predictions of the true poverty rate given that the support the dependent variable we are 

trying to model lies on the interval [0,1] and OLS will generate predictions outside of that 

range.  A second and related problem is that poverty data is typically right skewed, with 

many observations having an estimated poverty rate of zero. Estimation will likely result 

in heteroskedasticity.12  

 

3.1 Baseline GLM Model  

We employ as a baseline a binomial logit model, that is a binomial model with a 

logit link function. This model has several favorable properties, including ease of 

interpretability of coefficients and estimation. There are several competing models we 

could have estimated. If the number of zeros is very large, discrete mixture models such as 

zero-inflated models or hurdle models may perform better. For robustness, we employ a 

standard OLS model.  

Given the list of covariates in table 1, variable choice is not straightforward. 

																																																								
12 It is possible we could improve the fit by using log transformations of the dependent variable, or more 
precisely log transforms including a constant term such as log	(3* + 1), or even an inverse hyperbolic sine 
transform (IHS). Because we are interested in recovering L[3|N] and not L[ln	(3)|N] or L IHS 3 N  this 
may introduce retransformation problems when retransforming the data to its original form (Mullahy, 1998).	
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Estimating a model with the full set of variables in table 1- 1 will likely produce predictions 

that are overfit, that is that produce good in-sample estimates but have poor out of sample 

performance (Athey and Imbens, 2015). One attractive method for variable selection 

among a large selection of covariates is Lasso regularization. The Lasso regression is a 

regularized regression that estimates a regression model with an added constraint that 

enforces parsimony (Tibshirani, 1996). The motivation for the shrinkage estimator is that 

by reducing the parameters of the model, one increases bias (in-sample error) at the expense 

of lower variance (out-of-sample error).  

We can apply regularization to the binomial logit by modifying the log-likelihood 

such that the estimated likelihood is of the form  

(1) 

 

 

			ST4UVWXXY = argmin
^

{3* log _* + ( *̀ − 3*) log 1 − _*
T4UYb4Wc	cYdec47fc4gYYh

9

*;i

+ j S*

k

*;i

lgm4U7Wdf	nWopYm

} 

Where the poverty rate in a village is given by the logit transform _* = exp	(N*
tS) and j ≥

0 is a shrinkage parameter that penalizes the absolute values of the coefficients. As we 

relax the penalization factor -- that is as j → 0 – the Lasso coefficients converge to the 

unconstrained estimates: ST4UVWXXY → ST4U . As j → ∞,  we increase the penalty, and 

ST4UVWXXY	converges to the zero vector. Lasso regressions are useful as a variable selection 

methodology because of the sharp xi metric, which creates a de-facto variable selection 

(Varian, 2014) in addition to “shrinking” coefficients in magnitude towards zero. To 
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choose the appropriate value of j we apply 10-fold cross validation, and choose the value 

of j	that minimizes root-mean squared error (RMSE) across folds.  

So far we haven’t discussed inferential standard errors, which are typically absent 

from Lasso models. Because of the Oracle property of the Lasso estimator (Fan and Li, 

2001), we can employ a two step methodology: first estimate a Lasso model over the full 

candidate set of covariates, N, resulting in  ST4UVWXXY	 and NXfcfopfh ⊂ N, the “selected” set 

of variables from the Lasso estimation where selected indicates Lasso returns a non-zero 

coefficient. We can then estimate an unconstrained GLM model using only the reduced set 

of selected coefficients. The Oracle property ensures that inference in the second stage 

using the reduced set of variables selected in the first stage is consistent with inference 

were we to use a single stage estimation strategy using only the selected variables present 

in the true data-generating process.  

 

4 Poverty Validation Using High Resolution Features  

Table 1- 2 presents the baseline estimates. The first two columns use the 10% 

relative poverty rate (poverty incidence) as the dependent variable, the next two columns 

use the 40% relative poverty rate (inequality) as the dependent variable. Lasso 

regularization selects 25 out of 31 candidate variables for the 10% poverty rate models, 

and 19 out of 31 candidate variables for the 40% poverty rate models. T-statistics are 

presented and reflect clustering at the DS level. We present coefficients as elasticities, 

where each covariate is evaluated at its mean value.  These can be interpreted as a 1% 

change leads to a coefficient change in estimated poverty rate.  
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Four of the five agricultural variables are selected for the poverty incidence models, 

and three out of five are selected for the inequality models. The largest coefficient in these 

groups is fraction of village devoted to paddy (rice) cultivation, with an estimate of -0.198, 

indicating that every 1% increase in paddy cultivation leads to a -0.198 reduction in 

poverty. Only one out of three cars variables – the log number of cars -- is selected in either 

model. The estimated elasticity is between -0.162 and -0.138. All four of the road variables 

are selected, with length of roads having large estimated elasticities. All three of the built-

up area variables are selected and statistically significant. Fraction of area with buildings 

is negatively related to poverty, and the building height proxy (shadows) is strongly 

positively associated with poverty. Two out of three roof type variables are selected, 

fraction clay, and fraction aluminum, both having positive elasticities, suggesting that 

poorer households tend to use clay and aluminum as roofing material. At first glance, this 

is surprising, as previous analysis in Kenya documents that roofs with higher luminosity 

are associated with lower levels of poverty (Suri et al., 2015). We find the opposite, 

suggesting that the relationship between roof luminosity and poverty is more complex, and 

is likely context and region dependent. Of the texture variables, three out of nine are 

selected for the inequality models (LBPM, LSR, and Gabor), and seven out of nine are 

selected for the poverty models (NDVI, LBPM, LSR, Gabor, Fourier, SURF). LBPM has 

the largest elasticity estimate of 1.9. Such a large coefficient suggest that these types of 

clusters of pixels picked up by LBPM suggests this type of clustering is important for 

human welfare.  

To complement the GLM models, table 1- 3 presents Post-Lasso OLS estimates for 
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poverty (Belloni and Chernuzhukov, 2013), and includes an additional model where 

average village income (consumption) is the dependent variable. Lasso regularization was 

again performed against the full set of candidate variables. The estimated models explain 

an impressive amount of the variation in economic well-being. R-squared values vary from 

0.608 for the average village consumption models, 0.61 for the 10% poverty line, and 0.618 

for the 40% poverty line. This is to say that a linear model that includes only remotely 

sensed information explains 61-62 percent of the variation of a village’s poverty rate and 

60 percent in the variation in that village’s income or consumption. Many of the same 

variables that were selected in the GLM models were selected with Regularized OLS. For 

the average village consumption models, fraction of roads paved, shadow height, roof type, 

NDVI, LBPM and agricultural variables are particularly important.  

To get a further sense of how these indicators perform in comparison to other 

remotely sensed indicators, table 1- 4 presents OLS models covering the same sample area 

using night time lights as the independent variable. The first three columns present poverty 

and income models. Aggregate night time lights is positive (negative) correlated with 

income (poverty), however the total explanatory power is low: !"  values for the three 

regressions are between 0.1 and 0.147. 13  Models built using high resolution satellite 

indicators capture more than three times as much variation in poverty or income than NTL. 

Columns 4-6 of table 1- 4 estimate a model of poverty or income against NTL and including 

DS fixed effects. Night time lights is no longer significant in any of the specifications, 

																																																								
13 Even using additional transformations of NTL – squared, cubed, or standard deviation – only increases 
!" values to 0.15.  
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indicating that within a DS NTL has little correlation with economic well-being.  

As a check of the accuracy of the linear models, we plot the predicted economic 

well-being against true economic well-being in figure 1- 6.14 Each point represents a 

village, where the location on the x-axis corresponds to the true poverty rate and location 

on the y-axis is the model predicted poverty rates. A model that is perfectly able to predict 

poverty using satellite variables would represent a 45 degree line, starting at the origin and 

ending at the upper right of the graph. Note that for all of the measure of economic well-

being, the predicted true points are roughly straddling the 45 degree line. Our methods are 

well able to distinguish high poverty areas from low poverty ones, albeit with some noise. 

As a further check of the models, figure 1- 7 presents a choropleth map showing 

the true welfare measures on the left panel, against the predicted welfare measures on the 

right, for a particular DS, Seethawaka. The top panel shows predicted income from the 

OLS model against actual income. The model is able to distinguish the poorer eastern areas 

from the richer western ones. Even poor GNs adjacent to richer ones can be distinguished. 

Note the scale of the figure, the smallest GNs are less than a half mile across, and yet the 

HRSF model is able to distinguish with considerable accuracy the variation in average 

consumption. The middle panel shows predicted and true poverty rates defined at the 10% 

relative poverty level. Again, the predicted model approximates the true poverty rates with 

considerable accuracy. The lower poverty regions in the south and north east are replicated 

in the predicted values. The model tends to under-predict poverty in the lowest poverty 

areas in the mid-west. This indicates that we may have a better fit using mixture models 

																																																								
14 These plots are often called “predicted-true” plots.  
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meant to model observations with many zeros such as zero-inflated poisson or hurdle 

models.  

4.1 Urban and Rural Linear Models  

 

To consider how the models perform differently in urban versus rural areas table 1-

4 shows model estimates estimated separately for 393 urban villages and the 898 rural ones. 

To parse out the villages into distinct urban and rural groups, we use the official Census 

definition of urban and rural.15 Variables were again selected through Lasso estimation. 

																																																								
15 In principle, a small area’s urban or rural characteristic could be estimated via remote sensing using a 
probability model based on variables such as NDVI, Built-up density, shadow pixels (building height 
index), agricultural product 

Figure 1- 6: Predicted Versus True Welfare Measures, 10% Relative 
Poverty Rate (left), 40% Relative Poverty Rate (right) 
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The urban model selects fewer variables – 13 of the candidate variables in the urban model 

are selected versus 16 for the rural model. This suggests that data generating process (DGP) 

for urban poverty is more sparse than the DGP for the rural poverty. R-squared values are 

slightly higher in rural areas (0.656) and significantly lower in urban areas (0.445).16 For 

the urban model, log number of cars, built-up development, and shadow pixels are 

important. In rural models, agricultural variables, roof type, shadow pixels, NDVI, Pantex 

and LBPM are important. Cars is notable in that the presence of cars matters for economic 

well-being in urban areas and not rural ones.  

 

4.2 What share of the explained variance is accounted for by different features?  

The results indicate that features derived from satellite imagery explain a large 

portion of village income or poverty. However, these results don’t address the question of 

how much variation is explained by which features. To address this issue, we decompose 

the !"  using a Shapley decomposition (Shorrocks, 2013; Huettner and Sunder, 2012; 

Israeli, 2007). This procedure calculates the marginal !" of a set of explanatory variables, 

as the amount by which !" declines when removing that set from the set of variables. In 

other words, for a model with @	sets of explanatory variables, the procedure will estimate 

27ei models and average the marginal !" obtained for each set of independent variables 

across all estimated models. Note this is insensitive to the order in which variables are 

entered into the model 

																																																								
16 This might be due to the nature of the consumption module in the HIES, which is structured to capture 
rural income moreso than urban consumption. 
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Table 1- 6 presents the !"	decomposition. Building density variables (built-up area, 

shadow pixels, and NDVI) and roof type collectively explain the majority of the variation 

in welfare: between 50 to 55 percent of the variation in welfare across the welfare measures 

is explained by these two variable subgroups. Roof type alone explains between 15% and 

17% of the variation. Of the building density variables, built-up area explains the most of 

the variation in welfare, explaining between 14 and 20 percent. Both shadow and NDVI 

also add explanatory power, adding between 6.7 – 16.6 and 5.5 – 9.7 respectively. 

Agricultural land variables add about 5 percent to the explanatory power. Cars explain a 

little more than that, between 6 and 8 percent. Perhaps this is due to the noise with which 

we observe cars, in that cars are not always located where their owners live. Although few 

texture features are individually statistically significant, as a group they contribute 10 to 15 

percent of the explained variation of the model. Variables on roads explain about 9 percent 

of the variation, which in results now shown is largely accounted for by the share of roads 

that are paved.  

 

Given the prevalence, ease of use and familiarity with night time lights, one might 

ask how much more explanatory power do the high resolution predictions provide in 

addition to night time lights? Table 1- 7 answers that question, by adding night time lights 

to the above Shapley decomposition. Within the night time lights category we’ve included 

average, squared, cubed, and average standard deviation transformation of NTL to push 

the information content of night time lights to the limit. Night time lights explains only 8.4 

to 12.8 percent of the variance in consumption or poverty according to the decomposition, 
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meaning by there is roughly a 90 percent additional variation in poverty or income that is 

captured through high resolution satellite predictions. Clearly there is a lot that is missed 

when using NTL as a singular proxy of economic well-being.  
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Figure 1- 7: Predicted Versus True Welfare Measures, Binomial Logit Models, 

Average Consumption (top), 10% Poverty (middle) 40% Poverty (bottom) 
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4.3 Correcting for Spatial Autoregression  

One unaddressed concern is whether the presence of either spatial autocorrelation 

or spatial heterogeneity confounds the results. Spatial autocorrelation can occur in the 

presence of geographic spillovers or interactions (Anselin, 2013), and considering the 

village-level observations one could develop plausible stories by which poverty is 

influenced by this mechanism. A Moran’s I test for the presence of such disturbances 

according to Anselin (1996) rejects the null hypothesis that there is no spatial 

autocorrelation present.  

To correct for the spatial autocorrelation we model explicitly the spatial 

autoregression (SAR) process and allow for SAR disturbances, a so called SARAR model. 

This is implemented via a generalized spatial two-stage least-squares (GS2SLS) as shown 

in Drukker et al. (2013). The results presented in table 1- 8 show that after correcting for 

spatial autocorrelation most high-resolution spatial features remains significant predictors 

of local area poverty. It appears that although there is some presence of autocorrelation, it 

is not sufficient to alter the joint significance of the spatial variables.  

 

4.4 Do High Resolution Satellite Features Explain the Poverty Gap?  

Measuring the intensity of poverty is another useful metric for understanding the 

distribution of economic well-being in a country. The Foster-Greer-Thorbecke (Foster et 

al., 1984) indices are one of the most widely used methods of measuring the intensity of 

poverty. It measures poverty depth by considering how far the poor are from a given 

poverty line. We calculate for our sample the {|}i metric, which is defined as {|}i =
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i

9

,e~:
,4;i 	, where 3*   is an individual’s income, and 6 is the poverty threshold. We 

compute the average {|}i for each village, and use this measure as a dependent variable 

in a regression where the right hand side includes the features created from high resolution 

satellite imagery. We consider two different measures of FGT: one measured using 

6	defined at the 10th percentile of national income, and one where it is measured at the 40th 

percentile.  Table 1- 9 presents the results estimated via OLS. The coefficients can be 

interpreted as a unit change in the distance between the poverty gap and the poverty line 

for the average village. We find that high resolution features explain the poverty gap well 

with adjusted !" values between 0.588 and 0.609. Many of the same variables that explain 

headcount poverty explain poverty gap, which is not surprising given their high degree of 

correlation. 

 

5 Out of Sample Performance with Two Applications 

 

5.1 Poverty Mapping Using Partial Census Sample Size Combined with HRSF 

The gold standard for estimating local area poverty is to combine a full Census with 

a consumption survey. For many areas where we would like to have accurate poverty maps, 

a full Census is either not available or only partial Census data is available. In this section 

we test whether a consumption survey combined with partial Census information provides 

an accurate measure of economic well-being. We conclude, with some reservation, that it 

does.  



 

 

31 

For this exercise we produce several simulations of the dependent variable (either 

income or poverty rate) using a Census with reduced sample size. We compute subsamples 

of 25% and 50% of villages (GNs) on which to train our high resolution models18. We also 

vary the number of households the sample and subsample that are “surveyed”. Income or 

poverty is measured in each GN using either 25%, 50% or 100% of the actual households 

in that GN. For example, a 50% GN sample where 25% of the households are surveyed 

trains a model on half of the villages, where the training data was computed using only a 

quarter of the households in the village. The estimated actual poverty rate of a village will 

become less precise the fewer households that are sampled per village. The fewer villages 

on which to train our models will make the estimates less precise. Increasing both the 

number of households sampled per village and the number of villages sampled is 

expensive, and this exercise is intended to estimate the tradeoffs in terms of poverty 

estimate accuracy of reducing both. 

Table 1- 10 presents model performance in this simulation exercise. We present in-

sample and out-of-sample !", which calculates the coefficient of variation for villages 

included or excluded from the training sample. First, out of sample !" is slightly higher 

than in-sample, indicating the models in the previous section may be underfit. For the 10% 

relative poverty rate models, out of sample !"	varies between 0.637 and 0.621 while in-

sample !" lies between 0.605 and 0.595. Estimated out of sample !"	is slightly increasing 

with the number of villages sample. In terms of average error rate of individual predictions, 

																																																								
18 Villages enter the training or test sets randomly, which differs from the exercise in the following section 
in which villages enter or exit the training set systematically based on contiguous geography.  
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we present normalized mean absolute error, which computes mean absolute error expressed 

as a percentage of average poverty rate or income. Average error does not seem to 

systematically decline when fewer households per village are sampled. Average 

normalized error is around 1/3 of the poverty rate for the 10% poverty level, ¼ of the 

poverty rate for the 40% inequality measure, and on a few percentage points of the average 

village income, regardless of number of households sampled per village. These results 

indicate that HRSF can act as a substitute for fewer households sampled per area, 

potentially saving millions in surveying costs.  

 

5.2 Poverty Extrapolation to Adjacent Areas Using HRSF Models 

A strong motivation for using satellite imagery is to extrapolate poverty estimates 

into areas where survey data on economic well-being does not exist. While most of the data 

deprivation that characterizes the developing world occurs at the country level, it is also 

common for surveys to omit selected regions, due to political turmoil, violence, animosity 

towards the central government, or prohibitive expense. For example, from 2002 through 

2009/10, Sri Lanka’s Household Income and Expenditure Survey failed to cover certain 

districts in the North and Eastern part of the country due to civil conflict, and Pakistan’s 

2012/13 Household Income and Expenditure Survey excluded the Federally Administered 

Tribal Areas and Jammu and Kashmir.  

To assess how well a model “travels” to a different geographic area, we use a form 

of “leave-one-out cross-validation” (LOOCV), a common method used to infer statistical 

out of sample performance (Gentle et al., 2012). In standard LOOCV, a model is fit for 
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every observation excluding one, then the estimated relationship is used to predict into the 

withheld observation. This is repeated for every observation in the dataset until every 

observation has an associated predicted value. This ensures that for all observations ?, the 

fitted value of 34 used to build the model is not influenced by the relationship between N4 

and 34.  

Our approach differs from the standard case in that for each estimation we exclude, 

or “leave out”, an entire Divisional Secretariat (DS), an administrative sub-unit at the level 

immediately below the district. To give a sense of size, our sample contains 47 unique DS 

divisions. This type of LOOCV is a more stringent test of out of sample performance, but 

one that more accurately approximates the intended use-case of extrapolating poverty into 

areas where data are not present. While traditional LOOCV assesses out-of-sample 

performance relative to a large set of single observations, omitted at random, most cases of 

incomplete survey coverage omit one or more regions within a country.19  If the data 

generating process for poverty is geographically heterogeneous, LOOCV at the DS level 

will give a more accurate assessment of our methodology in practice.  

Our algorithm for adjacent prediction LOOCV is as follows:  

1. Estimate a binomial Logit model �	{4}(Ne4) on all Divisional Secretariats save for 

holdout DS ?.  

2. Use the estimated model in step 1 to predicted values for withheld DS 34 =

�	{4}(N4). 

																																																								
19 A further complication is uncovered regions are not selected at random and are likely differ from the 
surveyed regions in unobserved ways. This will contribute to prediction error, since extrapolation requires 
assuming that the model estimated in the surveyed regions applies to the uncovered region as well. 
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3. Repeat until all DSes have predicted values. 

To assess accuracy we use three different metrics to compare predicted poverty 

rates against the true poverty rates at the GN Division level. 1) Normalized root mean 

squared error (NRMSE) = i

9
3Ä
ÅÇ − 3*9

*;i
"

, where 3Ä
ÅÇ  is the cross-validated 

predicted village economic well-being, 3* is the true economic well-being, and = indexes 

each GN. 2) Normalized mean absolute error as defined as in the previous section, and 3) 

Spearman rank correlation20.  

Table 1- 11 shows the simulation results. The adjacent prediction error rates are 

low for the average consumption models: NRMSE is estimated at 0.083 and NMAE at 

0.241. For the poverty rates, adjacent prediction error is higher. At the 10% poverty 

threshold NRMSE is 0.559, and NMAE is 0.404. For the 40% poverty threshold NRMSE 

is 0.363 and MAE is 0.276. These error rates may not be sufficient for calculating official 

statistics, but they may be sufficient for generating rank ordering of villages by poverty or 

income. The correlation between the predicted and the true values confirms this. 

Spearman’s É is estimated at between 0.68 and 0.7 for the three models. What to make of 

these results? Predicting into adjacent areas given this modeling strategy is insufficient for 

generating official statistics. It is possible that the choice of model influences out of sample 

behavior. Models with better non-linear properties, or models that can more easily handle 

																																																								
20 Spearman’s rank correlation is a non-parametric method that measures only the correlation in the 
monotonic rank ordering between two variables, in this case the predicted and true poverty rates. This 
metric indicates whether the GN divisions can successfully be ranked on the basis of their predicted 
poverty rates. A rank correlation coefficient of 1 would indicate that models using only HRSF can create a 
perfect rank ordering of village economic well-being using the more stringent DS leave one out cross 
validation.	
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heterogeneity – such as random forests, SVM, ensemble methods, or deep learning – will 

likely perform better predicting into adjacent areas. 

 

6 Conclusion 

How should surveys be designed in an era of Big Data? We believe these results 

show that ancillary data, particularly from high resolution satellite imagery, can act as a 

strong substitute for certain types of Census data. Traditionally, small area poverty 

estimates have been derived by combining a Census with a consumption survey. Given the 

prohibitive cost of conducting surveys sufficiently large to provide accurate statistics for 

small areas, measures of economic well-being are computed relatively infrequently, at best 

once every three years and often with a lag much larger than that. The welfare 

consequences of too infrequent measures of poverty and inequality are unknown but 

possibly large, given the many uses of accurate measures of economic well-being, from 

impact evaluation, to budget allocation to social transfers. If indicators derived from 

imagery explain a sufficiently large portion of variation in welfare, they could potentially 

serve as viable substitutes for Census data, which would greatly increase the frequency of 

small area poverty estimates.  

How well do indicators derived from satellite imagery predict poverty and which 

indicators are most important? We investigate these questions using a sample of 1,291 

villages in Sri Lanka, linking measures of economic well-being with features derived from 

high resolution satellite imagery. The results indicate that the correlation between satellite 

derived indicators and economic well-being is remarkably strong. GLM explain 61-61 



 

 

36 

percent in the variation in poverty, and 61 percent of the variation in average log income. 

In both rural and urban areas, variables measuring building density and built-up area are 

the strongest predictors of variation in poverty. This includes a built-up area measure, 

vegetation indexes, roof type, and number of shadow pixels, a proxy for building height. 

As expected, the extent and lushness of vegetation is negatively correlated with incomes 

in rural areas, and positively correlated with incomes in urban areas, suggesting that 

vegetation and gardens are a luxury in urban areas.  

The analysis also included several mathematical transformations indicating the 

“texture” of the image, which have been utilized for optical recognition purposes and other 

imagery processing applications. As a whole, these are correlated with poverty and even 

moreso with inequality. They generally appear to capture contrasts and sharp edges, which 

characterize wealthier areas, although additional analysis is needed to better understand 

which features explain variation in welfare, at what scale they should be calculated and 

what specific characteristics of the built environment they are measuring. The major 

advantage of these “texture” features is they provide insight into landscape variability 

without having to define objects, as they are simply characterizing the variability in the 

imagery. Because of this, these variables are simple and straight forward to calculate and 

require no training data to create unlike the other remote sensing variables utilized in this 

research.   

While these results are very encouraging, additional analysis suggests caution when 

extrapolating predictions into geographically adjacent areas. The normalized error rates 

from 1/4 to 1/2 of the poverty rates, depending on the incidence of poverty. A likely 
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impediment to extrapolation is geographic heterogeneity. Another factor is time 

differences at which satellites images were taken, contributing to overall independent 

variable noise. This could impact selected indicators such as car counts, which vary 

according to the day of the week the imagery was obtained. Indeed, the correlation between 

car counts and poverty in urban areas is negative and statistically significant when 

controlling for image dummies, but not in the full sample. Measures of agriculture also 

exhibit considerable seasonal variation which could also confound extrapolation to 

adjacent areas. This suggests that some indicators may be more biased than others when 

extrapolating across space, and that the size date of the image is an important consideration 

when considering spatial extrapolation using satellite-based indicators.     

These findings raise a host of questions for further work. The most immediate of 

these is whether   satellite indicators can substitute for Census data in different contexts. 

Does the strong correlation between satellite-based indicators and economic well-being 

extend to income measured directly from an expenditure survey? Because of the size of the 

consumption survey at our disposal, we could not test this directly. The village poverty 

rates used were generated from models that explained 40 to 50 percent of the variation in 

measured consumption. The strength of the results reported above is very encouraging. 

However, it is not clear that satellite-based indicators can legitimately substitute for census 

data to generate small area estimates if, for example, they can only explain one third of the 

variation in measured per capita consumption. Second, it is important to better understand 

the extent to which these results generalize to different ecological environments, such as 

Africa, the Middle East, and other parts of Asia. There is no guarantee that the predictive 
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power of building density, agriculture, and spatial features documented above, for example, 

will hold in all environments. 

A second line of research could explore whether changes in satellite imagery could 

be used to forecast changes in economic well-being across space and time. The ability to 

“now-cast” measures of economic well-being using contemporary changes in satellite 

imagery applied to old measures of poverty could be the panacea for a “data deprived” 

world. More research is needed to understand whether this is possible and if so, which 

satellite indicators reliably forecast changes in poverty in which contexts. Secondly, more 

research is needed before predicting into adjacent areas not covered by surveys is a reality. 

More flexible modeling specifications will likely improve adjacent area predictions. In 

general, the inevitable increase in the availability of imagery and feature identification 

algorithms, along with the encouraging results from this study, suggest that satellite 

imagery will become an increasingly valuable tool to help governments and stakeholders 

better understand the spatial nature of poverty.  
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Tables 

Table 1- 1: Village (Grama Niladhari) Summary Statistics 

 Mean Sd Min Max 

     Economic Well-Being     

Avg Consumption in Rs 10274.2 3052.7 4881.9 21077 

Rel. Pov. Rate at 10% Nat. Cons. 0.0903 0.066 0.0023 0.39 

Rel. Pov. Rate at 40% Nat. Cons. 0.332 0.16 0.035 0.8 

     Geographic Descriptors     

log Area (square meters) 14.73 1.01 12.1 18 

= 1 if urban 0.304 0.46 0 1 

province==[1] Western 0.587 0.49 0 1 

province==[3] Southern 0.255 0.44 0 1 

province==[6] North-Western 0.0643 0.25 0 1 

province==[7] North-Central 0.0155 0.12 0 1 

province==[8] UVA 0.0782 0.27 0 1 

     Agricultural variables     

% of GN area that is agriculture 0.168 0.15 0 0.94 

% of GN agriculture that is paddy 44.4 37.5 0 100 

% of GN agriculture that is plantation 46.38 37.8 0 100 

% of Total GN area that is paddy 8.629 10.9 0 74.7 

% of Total GN area that is plantation 8.168 11 0 94.1 

     Cars     

log number of cars 3.123 1.44 0 8.3 

Total cars divided by total road length 0.00556 0.01 0 0.17 

Total cars divided by total GN Area 3.77E-05 0.00007 0 0.00093 
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     Building Density 

% of area with buildings 7.817 6.82 0.13 33.9 

% shadows (building height) covering valid area 6.509 6.01 0.31 34.9 

ln shadow pixels (building height) 12.96 1.04 7.31 17.6 

     Road variables     

log of Sum of length of roads 9.445 0.94 1.47 13.1 

fraction of roads paved 38.3 28.7 0 100 

ln length airport roads 0.013 0.33 0 9.25 

ln length railroads 1.098 2.67 0 10.8 

     Roof type     

Fraction of total roofs that are clay 36.5 22 0 100 

Fraction of total roofs that are aluminum 14.08 7.06 0 71.9 

Fraction of total roofs are asbestos 7.766 11.3 0 71.2 

     Textural and spectral characteristics     

Vegetation Index (NDVI), mean, scale 64 0.427 0.21 0 0.86 

Vegetation Index (NDVI), mean, scale 8 0.566 0.24 0 0.99 

Pantex (human settlements), mean 0.627 0.54 0.02 2.94 

Histogram of Oriented Gradients (scale 64m), mean 3509.4 2070.3 129.1 10381 

Linear Binary Pattern Moments (scale 32m), mean 49.5 1.1 18.1 49.5 

Line support regions (scale 8m), mean 0.00836 0.004 -2E-07 0.035 

Gabor filter (scale 64m), mean 0.469 0.28 0.014 1.3 

Fourier transform, mean 84.34 17.8 4.51 113.4 

SURF (scale 16m), mean 12.06 7.77 0.13 31.6 

Observations 1291 
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Table 1- 2: Estimated GLM Models of Local Area Poverty using High Res Features 

 10% Relative Poverty 
Rate (“Poverty”) 

40% Relative Poverty Rate 
(“Inequality”) 

 
Mfx: elasticity 

at means  
t 

Mfx: elasticity 

at means 
t 

   Dep Var: Fraction of village below 10/40% of national income   

log Area (square km) 1.893** [3.04] 0.268 [0.75] 

= 1 if urban -0.152*** [-8.68] -0.0517*** [-4.71] 

% of GN area that is agriculture -0.0387 [-1.64]   

% of GN agriculture that is 
paddy -0.198*** [-4.54] -0.131*** [-4.71] 

% of GN agriculture that is 
plantation -0.137*** [-3.41] -0.0976*** [-3.73] 

% of Total GN area that is 
paddy -0.0113 [-0.61] -0.0249** [-2.98] 

log number of cars -0.162*** [-4.59] -0.138*** [-5.33] 

log of Sum of length of roads -1.178** [-3.25] -0.755*** [-3.52] 

fraction of roads paved -0.140*** [-5.79] -0.0935*** [-5.58] 

ln length airport roads -0.0013 [-1.55] -0.00061 [-1.37] 

ln length railroads 0.0187** [2.69] 0.00990* [2.11] 

% of area with buildings -0.304*** [-5.12] -0.255*** [-7.05] 

% shadows (building height) 
covering valid area 0.220*** [5.22] 0.148*** [5.28] 

ln shadow pixels (building 
height) 1.401*** [4.50] 1.401*** [6.17] 

Fraction of total roofs that are 
clay 0.307*** [8.80] 0.200*** [9.39] 

Fraction of total roofs that are 
aluminum 0.186*** [6.21] 0.103*** [4.77] 

log of Total count of buildings 
in GN -0.545** [-3.29] -0.362** [-2.82] 
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Vegetation Index (NDVI), 
mean, scale 64 0.251*** [6.35] 0.184*** [8.47] 

Vegetation Index (NDVI), 
mean, scale 8 -0.341*** [-4.38]   

Linear Binary Pattern Moments 
(scale 32m) 1.969*** [4.37] 1.618*** [5.04] 

Line support regions (scale 
8m), mean -0.0595 [-1.37] 0.268 [0.75] 

Gabor filter (scale 64m) mean -0.219** [-3.06] -0.0517*** [-4.71] 

Fourier transform, mean 1.359*** [6.27]   

SURF (scale 16m), mean -0.230** [-3.06] -0.131*** [-4.71] 

Observations 1291 1291 

Log-Likelihood -272.0925 -527.8597 

AIC 594.185 1095.719 

BIC 723.2643 1198.983 

 
Notes: Unit of observation is Grama Niladhari (GN) division. Models are clustered at the DS level. Variables 
were selected using Lasso regularization from the candidate set of variables shown in table 1. Marginal effects 
presented as elasticities evaluated at mean of independent variable. * p<0.05, ** p<0.01, *** p<0.001 
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Table 1- 3: OLS Models of Local Area Poverty Rates on High-Res Spatial Features 

 10% Poverty Rate 40% Poverty Rate Average Village Income 

 coef t coef t coef t 

log Area (square meters)  [2.52] 0.0093 [0.60] -0.0079 [-0.31] 

= 1 if urban -0.023 [-1.80] -0.037 [-1.06] 0.08 [1.18] 

% of GN area that is agriculture coef [-1.04] -0.017 [-0.27]   

% of GN agriculture that is paddy 0.020* [-2.97] -0.00087** [-2.97] 0.0014** [2.92] 

% of GN agriculture that is plantation -0.00021** [-2.84] -0.00059* [-2.66] 0.0012** [2.72] 

% of Total GN area that is paddy -0.00019 [-0.58] -0.00083 [-1.10] 0.0016* [2.10] 

Total cars divided by total road length -0.31 [-1.17]     

Total cars divided by total GN Area 29.6 [0.54]     

log number of cars -0.0059 [-0.89] -0.015 [-1.39] 0.024 [1.60] 

log of Sum of length of roads -0.020*** [-3.64] -0.027* [-2.32] 0.033 [1.67] 

fraction of roads paved -0.00035*** [-4.24] -0.00079** [-3.24] 0.0014** [3.06] 

ln length airport roads -0.0051 [-1.45]   0.022 [1.52] 

ln length railroads 0.00098 [1.31]   -0.0046 [-1.26] 

% of area with buildings -0.0027* [-2.31] -0.0093* [-2.34] 0.020* [2.56] 

% shadows (building height)  0.0022* [2.04] 0.0064* [2.18] -0.013* [-2.27] 
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ln shadow pixels (building height) 0.016* [2.51] 0.039* [2.64] -0.047 [-1.95] 

Fraction of total roofs that are clay 0.00077** [3.35] 0.0017** [3.25] -0.0027** [-3.15] 

Fraction of total roofs that are 
aluminum 0.00091*** [3.63] 0.0022** [3.15] -0.0040** [-3.15] 

Fraction of total roofs are asbestos -0.00033 [-1.08]     

log of Total count of buildings in GN -0.0090** [-2.71] -0.019* [-2.05] 0.029 [1.70] 

Vegetation Index (NDVI), mean, scale 
64 0.061* [2.20] 0.14** [2.94] -0.21** [-2.93] 

Vegetation Index (NDVI), mean, scale 8 -0.064** [-2.80]     

Linear Binary Pattern Moments (scale 
32m) mean 0.0021** [2.91] 0.0090*** [5.53] -0.017*** [-5.92] 

Line support regions (scale 8m), mean -0.66 [-0.87]     

Gabor filter (scale 64m) mean -0.052 [-1.53]     

Fourier transform, mean 0.0017** [3.42]     

SURF (scale 16m), mean -0.0014 [-0.94] -0.001 [-0.59] 0.0034 [1.06] 

Constant -0.32** [-3.03] -0.31 [-1.43] 10.1*** [29.9] 

Observations 1291 1291 1291 

R-sq 0.610351 0.618038 0.608118 

R-sq Adj. 0.602022 0.612633 0.60226 
 
Notes: Unit of observation is Grama Niladhari (GN) division. Variables were selected using Lasso regularization from the candidate set of variables 
shown in table 1. * p<0.05, ** p<0.01, *** p<0.001  
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Table 1- 4: Linear Model Estimates Night Lights on Small Area Poverty/Average GN Consumption 

 (1) (2) (3) (4) (5) (6) 

 10% Pov. Rate 40% Pov. Rate Avg. Income 10% Pov. Rate 40% Pov. Rate Avg. Income 

Night Lights 2012 -0.583*** -1.546** 2.922** -0.0383 -0.0898 0.186 

 (-3.53) (-3.38) (3.32) (-0.79) (-0.67) (0.64) 

Observations 1291 1291 1291 1291 1291 1291 

R-sq 0.109 0.131 0.147 0.000868 0.000842 0.00103 

R-sq Adj. 0.108 0.130 0.146 0.0000932 0.0000671 0.000258 

R-sq within    0.000868 0.000842 0.00103 

R-sq between    0.372 0.448 0.527 

R-sq overall    0.109 0.131 0.147 

Divisional Secretariat FEs No No No Yes Yes Yes 

 
Unit of observation is Grama Niladhari (GN) an area 4 administrative boundary. 
All models include a regression constant which is omitted from the table. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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 Table 1- 5: Urban and Rural Models of Local Area Average Income on High-Res Spatial Features 

 Rural Urban 

 coef t coef t 

     Dependent variable: Average log GN Consumption 

% of GN area that is agriculture 0.12* [2.34]   

% of GN agriculture that is paddy 0.00076** [3.11] 0.0002 [0.36] 

% of Total GN area that is plantation   -0.0058** [-3.20] 

log number of cars 0.019 [1.27] 0.085*** [5.73] 

log Area (square meters) -0.033 [-1.43]   

log of Sum of length of roads 0.029+ [1.93]   

fraction of roads paved 0.0012** [3.44] 0.0014+ [2.06] 

ln length airport roads 0.044*** [6.59]   

ln length railroads   -0.0052 [-1.50] 

% of area with buildings   0.028*** [6.07] 

% shadows (building height) covering valid area   -0.015** [-2.87] 

ln shadow pixels (building height) -0.057** [-3.23]   

Fraction of total roofs that are clay -0.0041*** [-6.70] 0.0026 [1.41] 

Fraction of total roofs that are aluminum -0.0051*** [-5.63] -0.0033+ [-1.84] 
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Fraction of total roofs are asbestos -0.0017* [-2.05]   

log of Total count of buildings in GN 0.040** [3.53] 0.031 [0.77] 

Vegetation Index (NDVI), mean, scale 64 -0.27*** [-4.68] 0.28 [1.65] 

Pantex (human settlements), mean 0.18*** [3.73]   

Linear Binary Pattern Moments (scale 32m), mean -0.013*** [-10.7]   

Line support regions (scale 8m), mean   -1.4 [-0.34] 

Fourier transform, mean   -0.0042+ [-1.96] 

Constant 10.6*** [36.8] 8.89*** [27.6] 

Observations 898 393 

R-sq 0.656151 0.446433 

R-sq Adj. 0.650303 0.427445 

 
Notes: Unit of observation is Grama Niladhari (GN). Variable selection was performed via Lasso regularization from the candidate set of variables 
shown in table 1. + p<0.10, * p<0.05, ** p<0.01, *** p<0.00
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Table 1- 6: Shapley Decomposition of Share of Variance Explained (R2 ) by High 
Resolution Spatial Feature Subgroup 

 
Average log 
predicted per capita 
consumption in GN 

10% Poverty Rate 40% Poverty Rate 

Urban 10.7 11 10.1 

Agricultural land variables 5.1 5.9 5.7 

Cars 6.2 7.9 6.8 

Building density variables 38.6 38.9 32.9 

Of which: Built-up area 20 13.7 16.5 

Shadow 13.1 16.6 6.7 

NDVI 5.5 8.6 9.7 

Road variables 9.8 9.1 9.9 

Roof Type 15 17.3 16.1 

Texture variables 14.6 9.7 12.9 

Observations 1291 1291 1291 

R-sq 0.62 0.587 0.622 

RMSE 0.1779 0.042 0.0988752 

F-stat 81.127 72.05378 83.498 

Log Likelihood 409.537 2250.214 1168.524 

 

Notes: Agricultural variables include fraction agriculture plantation, fraction agriculture paddy, and fraction 
of GN area that is plantation.  Car variables include log of car count, and cars per total road length. Building 
density variables include log of developed area, shadow count (building height proxy), fraction of GN 
developed, fraction covered by shadow, NDVI at scales 64 and 8. Road variables include log of unpaved 
road length, log of paved roads narrower than 5m, log of paved roads 5m+, log of airport roads, log of railroad 
length, and fraction of roads paved. Roof variables include count of roofs by type: clay, aluminum, asbestos, 
grey cement, and fraction of roofs of same type. Texture variables include Fourier series, Gabor, histogram 
of oriented gradients, Local Binary Pattern Moments mean and standard deviation, line support regions, and 
SURF.  
 



 

 

53 

Table 1- 7: Shapley Decomposition of Share of Variance Explained (R2 ) by High 
Resolution Spatial Feature Subgroup in Addition to Night Time Lights 

  
Average log 

predicted per capita 
consumption in GN 

10% Poverty 
Rate 

40% 
Poverty 

Rate 

Urban 10 10.4 9.4 

Agricultural land variables 4.2 4.6 4.6 

Cars 5.7 7.3 6.2 

Building density variables 31.3 35.7 33.5 

Of which: Built-up area      18.7      15.7      16.7 

Shadow      7.2      11.4      10.3 

NDVI      5.4      8.6      6.5 

Road variables 8.9 8.2 8.7 

Roof Type 13.4 15.9 14.45 

Texture variables 13.8 8.4 12.2 

    

Night Time Lights (avg, sq, cube, 
std) 12.8 8.4 10.8 

Variance in income/poverty 
explained by high resolution spatial 
features in addition to night time 
lights 

87.2 91.6 89.2 

Observations 1291 1291 1291 

R-sq  0.637 0.61 0.64 

RMSE 0.1733 0.04165 0.09623 

F-stat 73.761 65.807 75.975 

Log Likelihood 446.381 2287.176 1206.085 

Notes: Night time lights category includes the following transformations of night time lights: average, 
squared, cubed, and standard deviation. Agricultural variables include fraction agriculture plantation, fraction 
agriculture paddy, and fraction of GN area that is plantation.  Car variables include log of car count, and cars 
per total road length. Building density variables include log of developed area, shadow count (building height 
proxy), fraction of GN developed, fraction covered by shadow, NDVI at scales 64 and 8. Road variables 
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include log of unpaved road length, log of paved roads narrower than 5m, log of paved roads 5m+, log of 
airport roads, log of railroad length, and fraction of roads paved. Roof variables include count of roofs by 
type: clay, aluminum, asbestos, grey cement, and fraction of roofs of same type. Texture variables include 
Fourier series, Gabor, histogram of oriented gradients, Local Binary Pattern Moments mean and standard 
deviation, line support regions, and SURF.  
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Table 1- 8: MLE Estimation Correcting for Spatial Autoregression 

 Average log Village Consumption 
(Income) 

 coef t 

log Area (square meters) -0.046*** [-4.01] 

= 1 if urban 0.048+ [1.96] 

% of GN area that is agriculture 0.022 [0.42] 

% of GN agriculture that is paddy 0.00046+ [1.74] 

% of GN agriculture that is plantation 0.00076** [3.09] 

% of Total GN area that is paddy 0.00057 [0.79] 

Total cars divided by total road length -0.93 [-1.20] 

Total cars divided by total GN Area 401.4* [2.28] 

log number of cars 0.020*** [3.57] 

% of area with buildings 0.0083*** [4.19] 

log of Total count of buildings in GN 0.012 [1.23] 

Vegetation Index (NDVI), mean, scale 64 0.071 [1.54] 

Vegetation Index (NDVI), mean, scale 8 -0.042 [-0.67] 

log of Sum of length of roads 0.029** [2.70] 

fraction of roads paved 0.0012*** [6.00] 

ln length airport roads 0.0052 [1.50] 

ln length railroads -0.00092 [-0.48] 

Fraction of total roofs that are clay -0.0025*** [-5.83] 

Fraction of total roofs that are aluminum -0.0034*** [-4.92] 

Fraction of total roofs are asbestos 0.0014* [2.26] 

Linear Binary Pattern Moments (scale 32m), mean -0.0080*** [-3.38] 

Line support regions (scale 8m), mean -1.25 [-0.71] 

Gabor filter (scale 64m) mean -0.053 [-0.92] 
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Fourier transform, mean -0.0030*** [-3.61] 

SURF (scale 16m), mean 0.0052* [2.24] 

Constant 9.74*** [51.6] 

Observations 1287 

 
Notes: Standard errors have been corrected according to Conley (1999, 2008), with model estimation via 
GMM. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
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Table 1- 9: Estimating Poverty Gap Using High Res Features 

 Poverty Gap (FGT1 - 
10%) 

Poverty Gap (FGT1 - 
40%) 

  coef t coef t 

log Area (square km) 0.0060** [2.84] 0.0063 [1.02] 

= 1 if urban -0.0063+ [-2.00] -0.013 [-1.05] 

% of GN area that is agriculture -0.0081 [-1.29] -0.018 [-0.76] 

% of GN agriculture that is paddy -0.000087** [-3.24] -0.00033** [-3.10] 

% of GN agriculture that is plantation -0.000053** [-2.91] -0.00021* [-2.63] 

% of Total GN area that is paddy -2.3E-05 [-0.29] -0.00025 [-0.88] 

Total cars divided by total road length -0.09 [-1.32]   

Total cars divided by total GN Area 9.55 [0.72]   

log number of cars -0.0014 [-0.83] -0.0058 [-1.24] 

log of Sum of length of roads -0.0049** [-2.97] -0.011* [-2.48] 

fraction of roads paved -0.000077** [-3.37] -0.00023* [-2.67] 

ln length airport roads -0.00027 [-0.89]   

ln length railroads 0.00026 [1.35]   

% of area with buildings -0.00062* [-2.16] -0.0028* [-2.04] 

% shadows (building height) covering 
valid area 0.00053+ [1.76] 0.0017 [1.54] 

ln shadow pixels (building height) 0.0037* [2.19] 0.016* [2.68] 

Fraction of total roofs that are clay 0.00020** [2.96] 0.00070** [3.12] 

Fraction of total roofs that are aluminum 0.00024** [3.31] 0.00084** [3.19] 

Fraction of total roofs are asbestos -9.1E-05 [-1.14]   

log of Total count of buildings in GN -0.0022* [-2.62] -0.0073* [-2.09] 

Vegetation Index (NDVI), mean, scale 64 0.017* [2.33] 0.056** [2.88] 

Vegetation Index (NDVI), mean, scale 8 -0.019** [-2.95]   
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Linear Binary Pattern Moments (scale 
32m) 0.00048* [2.55] 0.0029*** [4.87] 

Line support regions (scale 8m), mean -0.27 [-1.39]   

Gabor filter (scale 64m) mean -0.016+ [-1.78]   

Fourier transform, mean 0.00046** [3.44]   

SURF (scale 16m), mean -0.00025 [-0.67] -0.0001 [-0.15] 

Constant -0.093** [-3.41] -0.17+ [-2.00] 

Observations 1234 1234 

R-sq 0.5884 0.6097 

R-sq Adj. 0.5792 0.6039 

+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001  
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Table 1- 10:  Model Performance Using Simulated Reduced Census Sampling 

    In-Sample 
R^2 

Out of 
Sample 
R^2 

Normalized 
Mean 
Absolute 
Error 
(NMAE)  

Sample of villages (GNs) 
for model training 

Sample of 
households within 
GNs 

      

Using 10% National Poverty Line As Dependent Variable 

100 

100% 0.6325 - 0.3272 

50% 0.6316 - 0.3271 

25% 0.6287 - 0.3283 

50 

100% 0.6058 0.6379 0.3355 

50% 0.6061 0.6378 0.3348 

25% 0.6092 0.6441 0.3342 

25 

100% 0.5995 0.6139 0.3393 

50% 0.5990 0.6167 0.3395 

25% 0.5948 0.6212 0.3392 

     

Using 40% National Poverty Line As Dependent Variable 

100 

100% 0.6215 - 0.2300 

50% 0.6213 - 0.2300 

25% 0.6209 - 0.2303 

50 

100% 0.6097 0.6104 0.2348 

50% 0.6097 0.6118 0.2346 

25% 0.6098 0.6154 0.2340 

25 
100% 0.5947 0.6132 0.2363 

50% 0.5939 0.6152 0.2357 
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25% 0.5923 0.6178 0.2346 

      

Using Income (Average Consumption) as Dependent Variable 

100 

100% 0.6081 - 0.014778 

50% 0.6080 - 0.014783 

25% 0.6077 - 0.014782 

50 

100% 0.5989 0.5964 0.01499 

50% 0.5987 0.5982 0.01498 

25% 0.5984 0.6014 0.01493 

25 

100% 0.5880 0.5943 0.01524 

50% 0.5874 0.5954 0.01520 

25% 0.5866 0.5966 0.01515 

  
Notes: This table simulates estimation error when using a reduced Census size. “Sample of villages” refers 
to the percentage of the villages within the Census used to train the model. “Sample of households within 
GN” refers to the number of households within the sampled GNs used to calculate the income or poverty rate 
statistic. In-sample (out-of-sample) !"  reports the coefficient of determination for the data used in the 
training (test) sample. Normalized mean absolute error (NMAE) reports the mean average error rate divided 
by the average income/poverty rate, such that the statistic gives the average absolute error expressed as a 
percentage of the income/poverty rate. 
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Table 1- 11: Estimated Poverty Extrapolation Performance, Using DS Leave-One-
Out Cross-Validation (LOOCV) 

 Average predicted per 
capita consumption in GN 

10% 
Poverty 
Rate 

40% 
Poverty 
Rate 

Normalized Root Mean Squared Error 
(NRMSE) .0836147 .5596012   .3631206 

Normalized Mean Absolute Error 
(NMAE) .0241663 .404652 .2766029 

Spearman Rank Correlation Between 
Predicted and True Poverty Rates .6982542 .6942492 .6792735 

 

Notes: Table presents out of sample estimates for of extrapolated poverty rate prediction 
into withheld Divisional Secretariat (DS) administrative districts. We estimate 47 models, 
each time withholding one of 47 DS units to reserve as an out of sample test. Using the 
relationship between poverty and satellite variables estimated using the training data, we 
predict into the withheld DS – so called “leave-one-out” cross-validation (LOOCV).  
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Appendix A: Description of Imagery and Extraction of Object and Texture Features 

from High Resolution Satellite Features 

 

Details on Satellite Imagery 

The satellite imagery consists of 55 unique “scenes” purchased from Digital Globe, 

covering areas specified in our sample area. 21   Each “scene” is an individual image 

captured by a particular sensor at a particular time. Images were acquired by three different 

sensors: Worldview 2, GeoEye 1, and Quickbird 2. These sensors have a spatial resolution 

of 0.46m2, 0.41m2, and 0.61m2, respectively in the panchromatic band and 1.84m2, 1.65m2, 

2.4m2 respectively in the multi-spectral bands. Pre-processing of imagery included pan-

sharpening, ortho-rectification, and image mosaicking.  

 

 Details on Extraction of Object Based Features 

Object features were classified using the assistance of two technical partners: 

Orbital Insight and LandInfo. Orbital Insight produced object classification for three 

variables: The share of the GN division that is built-up (i.e. consists of buildings), the 

number of cars in the GN, and the share of pixels in the GN that were identified as shadow 

pixels, which is a proxy for the gross floor area, or height, of buildings. The classification 

method used by Orbital Insight is similar to Krizhevsky, Sutskever, and Hinton (2012) 

which utilizes convolutional neural networks (CNN) to build object predictions from raw 

																																																								
21 Particular thanks to Digital Globe is due for their “Seeing the World” program, which offered very high 
spatial resolution imagery at reduced rates for non-commercial purposes.  
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imagery. LandInfo classified the remaining objects, which included roof type, paved and 

unpaved roads of different widths, railroads, and the type of agriculture. Landinfo used a 

combination the Trimble eCognition and Erdas Imagine software platforms to classify 

objects, except for roads, which were classified using visual interpretation.  

The CNN classification algorithm used by Orbital Insight involved four steps:  

1. Ingestion/Tiling 

2. Model Development 

3. Classifying All Pixels Using the Trained Model  

4. Aggregating Prediction Results to GN Division level 

The tiling stage split the large images into many small images or tiles, in order to 

make the modeling computationally scalable, as each tile could be distributed to a different 

GPU core for greater efficiency. In the model development stage, the classification model 

was trained and tuned. Model building began by manually classifying or labeling a sub-

sample of the imagery as a positive or negative value for a given object using a 

crowdsourced campaign. The classified data was split into an 80% training and a 20% 

testing set, where the training set was used to build the model. This allowed sample 

prediction metrics, presented below, to be calculated using the withheld test set. Training 

was run for 60,000 iterations using the Nesterov solver method, a variant of stochastic 

gradient descent.  

 

To get a sense of the accuracy, Figure 1-A 1 shows the receiver operator 

characteristics, or ROC curve, summarizing the classification accuracy of the developed 
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area building classifier. The ROC curve presents the true positive rate on the y-axis, against 

the false positive rate on the x axis as the discriminant threshold is varied. A classifier that 

is no better than random would correspond to the 45 degree line, while a perfect classifier 

would correspond to the point (0,1) in the ROC space. Improvements in classifier accuracy 

are shown as the curve moves up and to the left. The ROC curve suggests the classification 

algorithm is highly accurate, corresponding to a 90% accuracy rate overall. Once the model 

was full trained, the team applied the trained model to the full set of imagery. The results 

were then summarized at the GN level.22   

 

Figure 1-A 1: ROC Curve for Developed Area (Buildings) Classifier 

LandInfo extracted roof type, paved and unpaved roads of different widths, 

railroads, and the type of agriculture, using a combination of an object-based image 

																																																								
22 The GN shapefile was in turn based on the GN shapefile provided by DCS, modified to correct manually 
identified errors.  
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analysis (OBIA) methodology utilizing the Trimble eCognition software platform (Benz et 

al., 2004) and visual interpretation.  OBIA is a common classification methodology applied 

to HSRI because it is designed to map objects that are larger than the pixel size (Blaschke, 

2010). For this OBIA analysis, the first step was to segment the image into polygons that 

represent the features of interest based on spectral and spatial homogeneity of those 

features. The segments were created based on the degree of homogeneity using a range of 

scale, shape, and other parameters. Once an image was segmented, the objects themselves 

were then classified, using Erdas Imagine Software. Using this methodology, all of the 

roofs of individual buildings within the imagery were extracted and the type of roof was 

classified as asbestos, aluminum, clay, or grey roofs, in part based on validation of selected 

roofs in Colombo. The roof types of a few selected buildings were validated by direct 

observation. Roads and agriculture were extracted using a combination of eCognition and 

manual visual interpretation. Visual interpretation was required because the roads were 

covered by trees and in shadow, making automated detection difficult. In addition, the 

imagery was not always taken during the growing season, which along with the small, 

irregular shapes of the agricultural plots made automated extraction impractical. 

Figure 1-A 2 shows an example OBIA classification for roads, railroads, and road 

width. The road network in the village has been mapped in detail, showing not just major 

roads, but minor roads. Not shown are the road type, whether the road is paved or not. 

These features combine to indicate the extent to which a given area is accessible by road. 

Figure 1-A 3 shows an example roof type classification, where roof type is distinguished 

not just by material but by material shading.  
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Figure 1-A 2: Example Roads and Railroads Classification 

 

	  

Figure 1-A 3: Example Roof Type Classification 
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Details on Extraction of Spectral and Textural features  

Textural and spectral features were created using a block size of eight pixels and 

scales of 8, 16, 32, and 64 meters using a methodology similar to Graesser et al. (2012). 

This resulted in an output image comprised of 165 bands at a spatial resolution of 12.8 or 

16m depending on native, multispectral resolution of each of the sensors. The seven 

textural features calculated for this study were:  

1.  Histogram of oriented gradients (HOG), which captures edge orientations and 

sorts them into a histogram (Dalal and Triggs 2005).  

2. PanTex, which is a built-up presence index derived from the grey-level co-

occurrence matrix (GLCM) (Pesaresi et al. 2008). 

3. Line support regions (LSR), which characterize line attributes (Yu et al. 1999) 

4. Local binary patterns moments (LBPM), which define contiguous regions of 

pixel groups and sorts them into a histogram (Wang and He, 1990). 

5.  Fourier transform (FT) which examines pattern frequency across an image 

(Smith 1997). 

6. Gabor, a linear Gaussian filter used for edge detection (Gabor 1946)  

7. Speeded Up Robust Features (SURF), an algorithm that extracts key points 

(i.e., edges and corners) from an image through pyramidal Gaussian based 

decomposition (Bay et al., 2006). 

8. The Normalized Difference Vegetation Index (NDVI), the most widely used 

vegetation index that provides information about the presence and abundance 

of vegetation (Tucker 1979). 
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Additional spectral features calculated were simply the means of the four individual 

bands, Blue, Green, and Near Infrared. Once the spatial and spectral features were 

calculated, the mean, standard deviation, and sum were determined for each GN Division. 

Previous research has indicated that these features are correlated with census data that 

indicate poverty such as slum conditions, population density, solid waste collection, 

unimproved sanitation (Sandborn and Engstrom, 2016) and to map informal and slum areas 

within cities (Graesser et al. 2012, Engstrom et al. 2015).  
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Sampled divisional secretariats include Ambagamuwa, Ambalantota, Ambanpola, 

Bandaragama, Biyagama, Bulathsinhala, Colombo, Dehiwala, Devinuwara, Dodangoda, 

Doluwa, Dompe, Galle Four Gravets, Hali Ela, Hambantota, Homagama, Horana, Ingiriya, 

Kaduwela, Kalutara, Kamburupitiya, Katana, Kattankudy, Kelaniya, Kesbewa, Kirinda 

Figure 1-A 4: Pantex Classification Algorithm Description (top) and Example 
Classification (bottom right) Applied to Raw Imagery (bottom left) 
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Puhulwella, Kolonnawa, Kotapola, Kothmale, Kurunegala, Madurawala, Maharagama, 

Malimbada, Manmunai North, Matara Four Gravets, Moratuwa, Nagoda, Negambo, 

Nuwara Eliya, Nuwaragam Palatha East, Padukka, Panadura, Panvila, Puttalam, 

Rathmalana, Rattota, Seethawaka, Sri Jayawardanapura Kotte, Thihagoda, 

Thimbirigasyaya, Tissamaharama, dapalatha, Udunuwara, Ukuwela, and Uva Paranagama. 
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Appendix B: Information on Sri Lankan Administrative Divisions 

 

Figure 1-B 1: Graphical Depiction of Relative Size of Districts, Divisional 
Secretariats, and Grama Niladharis 
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Figure 1-B 2: Count of Administrative Divisions of Sri Lanka by Type 
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Abstract 

This paper investigates the effects of preferential trade programs such as the U.S. 

African Growth and Opportunity Act (AGOA) on the direction of African countries’ 

exports. While these programs intend to promote African exports, textbook models of trade 

suggest that such asymmetric tariff reductions could additionally divert African exports 

from other destinations to the tariff reducing economy. We examine the import patterns of 

177 countries and estimate the diversion effect using a triple-difference estimation strategy, 

which exploits time variation in the product and country coverage of AGOA. We find no 

evidence of systematic trade diversion within Africa, whereas diversion from other 

industrialized destinations to the US was significant, in particular for apparel products. At 

the same time we show that, more than diverting trade, AGOA had positive spillovers on 

																																																								
23 We thank Marianne Baxter, Samuel Bazzi, Stefania Garetto, Adam Guren, Christian Henn, Siddharth 
Kothari, Dilip Mookherjee, Megha Mukim, David Newhouse, Alberto Osnago, Bob Rijkers, and seminar 
participants at Boston University for the many helpful comments and discussions. Yun Liu and Guangzhi Yi 
provided excellent research assistance. All errors are our own. 
 
The views expressed herein are those of the authors and should not be attributed to the IMF, its 
Executive Board, or its management 
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the product composition of trade, which suggests that the product coverage of preferential 

trade agreements can influence structural change in Africa. 

Keywords: African Trade, Trade Diversion, Regional Trade Integration, Preferential Trade 

Agreements  

JEL Classification: F14, F15, O24  

 

1 Introduction  

The African Growth and Opportunity Act (AGOA) is a cornerstone of the United 

States’ economic and political relations with Sub-Saharan Africa. Since its inception in late 

2000, AGOA has offered substantial tariff reductions on a wide range of products 

originating from African beneficiary countries, with the intention of promoting export-led 

growth in the region. Other large economies, including the E.U. and China, established 

similar trade programs. Such unilateral agreements were enacted without any of the 

reciprocity requirements common to bilateral or multilateral trade agreements. This paper 

studies the impact of those programs on the direction of Africa’s exports. While the existing 

literature suggests that AGOA has served its principal purpose of promoting Africa’s 

exports and thereby enhancing the continent’s integration with the world economy, our 

central question is to what extent this growth reflects a redirection of trade flows. To study 

this question, we exploit the variation in the timing and product coverage of tariff 

reductions.  

We find considerable heterogeneity in the impact of AGOA. While some trade got 

diverted, mainly from other industrialized destinations to the US, we show that AGOA also 
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had positive spillovers, encouraging more African exporters to enter new markets. The 

response of bilateral trade flows to AGOA also varies widely across products, with 

diversion being particularly strong for apparel items.  

To illustrate our approach and main results, let us begin with a simple example. 

Consider the US imports of two product groups, footwear and headgear. 24 Seventy-five 

percent of product lines in footwear were covered under AGOA, whereas zero percent of 

headgear products received such treatment. 25  Figure 2- 1a compares average US imports 

of footwear and headgear, showing differences between AGOA eligible exporters in the 

left panel, and ineligible exporters in the right panel. For non-beneficiaries, there appears 

to be no systematic difference across product groups. However, for AGOA beneficiaries, 

there is a strong increase in the footwear exports from around 0.35 log points in 2000 to 

more than 0.7 log points in 2007, whereas no strong increase in headgear exports is seen. 

The figure is just one example of how, as intended, the program helped to promote exports 

of AGOA products from AGOA beneficiaries to the US.  

But what if we look at imports of the same product groups into Kenya? For 

geographic reasons, Kenya is an important trading partner to several AGOA beneficiaries. 

The left panel of Figure 2- 1b compares Kenyan imports of footwear and headgear from 

AGOA exporters before and after the implementation of AGOA. Imports of footwear 

products averaged of 1.6 log points in 1998, but steadily declined over the early 2000s, 

reaching 0.4 log points in 2008. By contrast, no systematic decline is seen for headgear, 

																																																								
24 Product groups are identified by their 2-digit HS codes (64, and 65 respectively) 
25 We define treatment here and throughout the paper as a product being eligible for an AGOA preferential 
tariff rate. 
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the non-treated product group. Similarly, when looking at Kenyan imports from non-

AGOA exporters, we see no systematic difference between imports of headgear and 

footwear, suggesting the decline in footwear imports into Kenya from AGOA-beneficiaries 

is due to some characteristic specific to AGOA product treatment. We interpret the process 

described by Figure 1b as trade diversion, that is, evidence that AGOA designated products 

were diverted from SSA countries to other destinations.  

Figure 2- 1c looks at imports into Brazil. Brazil had no comparable program to 

promote exports from SSA, in particular no program that favored footwear over headgear. 

Despite this, we see increases in footwear imports from AGOA exporters following the 

implementation of AGOA. Looking at non-AGOA exporters in the right panel, we see no 

systematic difference between imports of footwear and headgear between non-AGOA and 

AGOA exporters. We interpret this response of African exports in footwear as positive 

spillovers.  
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(a) U.S. Imports 

 

(b) Kenyan Imports 
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(c) Brazilian Imports 

Figure 2- 1: Imports from AGOA and non-AGOA exporters for high-AGOA treated 
product category (footwear) and low-AGOA treated category (headgear), before 

and after AGOA implementation in late 2000. 

 

Existing research and the policy discussion on AGOA have focused on the narrative 

of Figure 2- 1a. For example, Frazer and van Biesebroeck (2010) estimate the impact of 

AGOA on US imports using a triple-difference estimation strategy. 26   Controlling for 

several sets of fixed effects to ensure that their result is not driven by product-specific 

demand shocks or macroeconomic conditions in exporting countries, they find that, on 

average, AGOA led to a 13.5 % increase in imports of AGOA products from beneficiary 

countries. We follow their idea of exploiting the variation in the country and product 

coverage of AGOA to identify its effect on trade patterns. But rather than looking at the 

																																																								
26 Note that Figure 2- 3a depicts the triple between exporters, across products, and over time. 
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origin of U.S. imports, we focus on the destination of African exports. Using a similar 

triple-difference methodology, we ask whether Figure 2- 1b and 1c are representative for 

a wider range of products.  

The use of triple-difference regressions has proven useful in estimating the effects 

of preferential trade programs. Yet, we are also mindful of the potential problems of 

applying what is essentially a micro-econometric approach to a macroeconomic question. 

Beyond the mere diversion of trade from one destination to another, a general equilibrium 

model of trade would suggest that an asymmetric tariff reduction by a large export market 

will lead to a change in the production structure of African economies: Input factors are 

withdrawn from high-tariff sectors and used by sectors that benefited from the tariff 

reduction. This mechanism could be exacerbated by the presence of increasing returns in 

production or exporting. 27   To the empiricist such spillovers raise the question to what 

extent the left panel in Figure 2- 1a should be interpreted as a relative increase in African 

exports of footwear and to what degree it shows a relative decline in African exports of 

headgear. In other words, from a theoretical point of view, it is hard to make the case that 

products such as headgear can serve as a proper control group. To address this concern, we 

consider an alternative specification which controls for a countries total exports of a given 

product, which allows us to study the composition of exports by destination in the spirit of 

a quadruple-differences regression. For example, rather than asking “did exports of 

footwear from Ethiopia to Kenya increase?”, we ask “did Kenya’s share in Ethiopia’s 

																																																								
27 It is noteworthy that several African countries responded to AGOA with domestic industrial policies 
targeting sectors that benefited from AGOA to leverage its impact. 
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footwear export increase?”. This approach allows us to some extent to separate what 

countries export from where they ship it to.  

To be clear, claims regarding the welfare implications of these effects are beyond 

the scope of this paper. When it comes to trade diversion, it is difficult to assess whether 

AGOA exacerbated or reduced existing distortions in apparel trade. And the enhanced 

access to the US market has attracted inflows of foreign direct investment to Africa which, 

through transfers of technology and know-how can generate important spillovers. 

However, our results indicate that the impact of tariff reductions on aggregate export 

growth, especially for apparel, are smaller than suggested by the growth US-African trade. 

This finding complements the work of Rotunno et al. (2013) who show that a significant 

amount of US textile imports under AGOA are trans-shipments due to the generous rules 

of origin.  

The spillovers generated by tariff reductions also have important policy 

implications. McMillan and Rodrick (2011) find evidence that structural change has been 

TFP reducing for many low income and emerging countries, and they attribute this 

structural change with the product composition of exports. A growing body of literature, 

sparked by Hausman et al. (2007), also suggests that the composition of exports matters 

for the pace of economic development.  

This paper speaks to several literatures. Firstly, we contribute to the debate 

regarding the estimated impact of AGOA. By showing the AGOA had unintended 

consequences impacting intra-African trade, we suggest that current estimates of the 

estimated impact of AGOA may be overstated. This paper also contributes to the literature 
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on preferential tariff agreements in general, showing that even unilateral programs may 

have large general equilibrium effects. Finally, we contribute to the literature on regional 

trade integration, by shedding light on the extent to which preferential trade programs may 

impact regional integration among both beneficiary and non-beneficiary countries.  

The rest of the paper is organized as follows: Section 2 provides background into 

the creation of AGOA and gives a brief review of estimated impacts from this program, 

along with other research focused on trade diversion. Section 3 presents our methodology 

and gives an overview of the data sources used. Section 4 presents our main results.  

 

2 Background  

Since the implementation of its GSP program in 1975, the United States has offered 

substantial tariff reductions to most low-income and emerging economies, including most 

African countries, covering up to half of all product categories. The GSP program was 

expanded in 1997 to offer duty free access for additional products imported from eligible 

least developed countries (GSP for LDCs). In October 2000, the GSP and GSP for LDCs 

were complemented by the African Growth and Opportunity Act (AGOA), which was 

signed into law on May 18th, 200028  , and strengthened through three separate acts of 

congress between 2000 and 2015. It stipulates a nonreciprocal trade agreement between 

the United States and many Sub-Saharan African countries. The key benefits of the AGOA 

entail an extension of the enhanced market access specified in the GSP for LDCs to non-

LDCs (see Figure 2- 4b). Hence, after the reductions of worldwide trade barriers in the 

																																																								
28 Title I, Trade and Development Act of 2000; P.L. 106–200 



	

	

82 

1990s had gradually eroded the advantage of reduced tariffs, AGOA helped restoring the 

average discount in (ad-valorem equivalent) tariff rates for non-LDCs such as South Africa 

or Mauritius to around 2 percentage points (see Figure 2-5). An additional provision was 

created for textiles and apparel, knowing as the AGOA Textile program, which allows 

eligible countries to ship qualifying apparel duty-free and quota-free to the US. Eligible 

products are allowed to use inputs originating from outside of AGOA countries, but must 

meet the Rules of Origin requirement29. In addition to reduced preferential tariff rates, the 

U.S. provided technical assistance for AGOA eligible countries through US Agency for 

International Development (USAID) to assist countries in using the benefits of the 

initiative. Initially AGOA was set to expire in 2008, but it was extended in 2004 and 2015.  

 

Figure 2- 2: Composition of aggregate export from sub-Saharan Africa (38 
countries) by destination, 2013. (Source: IMF, DOTS) 

																																																								
29 Nevertheless, Rotunno et al. (2013) find that while the Multifiber Agreement was in effect (2001-2005) 
Chinese firms utilized the AGOA provision to “quota hop” for textile exports facing quota restrictions. They 
estimate that this form of transshipment accounts for 22% of Africa’s apparel exports from 2001-2008. 
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Figure 2- 3: Average MFN tariff rate, 2013 or latest available. (Source: 
World Bank, WDI 

 
At the time of the law’s signing, 34 countries were eligible to receive AGOA 

benefits, and as of 2015 the number of eligible AGOA countries stands at 4030. Country 

eligibility for the program is subject to a yearly review, and while the program was intended 

to be inclusive of Sub-Saharan African countries, country eligibility is dependent on three 

criteria: (1) making progress towards, or having established market based economic 

reforms, rule of law, elimination of trade barriers and barriers to US investment, protection 

of worker’s rights, increasing availability of health care and the elimination of child labor; 

(2) not engaging in activities detrimental to US security interests; and (3) not engaging in 

																																																								
30 Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Chad, Comoros, Republic of 
Congo, Cote d’Ivoire, Djibouti, Ethiopia, Gabon, The Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, 
Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao 
Tome and Principe, Senegal, Seychelles, Sierra Leone, South Africa, Tanzania, Togo, Uganda, and Zambia. 
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violations of human rights or harboring or promoting terrorist groups.  

Figure 2- 5 presents a map describing AGOA eligibility. Several SSA countries 

were never eligible for AGOA (Somalia, Sudan, and Zimbabwe. On occasion countries 

previously receiving AGOA benefits have been deemed ineligible for violating any of the 

above conditions. Notable examples include Madagascar following undemocratic changes 

in government in 2009, Cote d’Ivoire in 2005, and Guinea and Niger in 2009, and Guinea-

Bissau in 2012 Mauritania, Niger, Guinea, and Cote d’Ivoire had AGOA benefits revoked 

then subsequently restored, while Madagascar, Eritrea, DR Congo, Central African 

Republic, Mali, and the Gambia had benefits revoked and not restored as of the time of this 

writing.  

Estimated Impacts of AGOA in the Literature  

Estimated impacts of AGOA in the literature have been mixed, but the consensus 

appears to be that it had a positive causal impact on SSA exports. On a utilization basis, 

the program has been a large success. Figure 2- 6 compares imports into the US by selected 

preferential tariff program.31 Usage of AGOA peaked in 2008, with over $28 billion of 

imports coming into the US through AGOA designated lines from AGOA beneficiaries. In 

comparison to other preferential trade programs, AGOA is the largest US preferential trade 

program on an import value basis, apart from NAFTA. Of course, utilization is not an 

adequate measure of program success, as one could argue the US would have seen these 

level of imports from AGOA beneficiaries even without the program being enacted.  

To estimate a causal impact of AGOA researchers have employed a variety of 

																																																								
31 Source: http://dataweb.usitc.gov/ 
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methods. Nouve and Staaz (2003) use a modified gravity equation to estimate whether 

AGOA increased agricultural exports to the US, and find an insignificant effect of AGOA 

treatment. More recently, Frazer and van Biesebroeck (2010) estimate the impact of AGOA 

on all African exports to the US using a triple difference specification. We will pay 

particular attention to their estimator, as it functions as the starting point for our analysis. 

The authors find that AGOA product designation has a positive impact on US imports from 

AGOA designated countries, with an estimated DDD coefficient of 0.127 that is significant 

at the 5% level. This translates to a marginal impact of AGOA designation on a product of 

13.5%, meaning that AGOA designation causally increased imports from beneficiary 

countries by 13.5% relative to non-designated products. While the authors themselves do 

not make welfare claims as to the impact of increased African exports to the US, many 

subsequent researchers have interpreted these findings as such. For example, Frankel 

(2010) states “Mauritius was one of the first two countries [with Kenya] to be approved for 

AGOA, which has proven successful.”  
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(a) United States: Unweighted mean of ad valorem equivalent tariff rates over 6-digit 
products by country group  
 
 

 

(b) United States: Coverage of various preferential trade programs. Most AGOA 
products were already duty free under the GSP for LDC program. Products exclusively 
covered by AGOA are predominantly textiles, but also include fresh-cut flowers and 
vegetables.  
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(c) United States: preference margin (1 + τAGOA1 + τMFN) for AGOA eligible countries and 
eligible (6-digit) products, 2001  

Figure 2- 4 

	

 

Figure 2- 5: AGOA Eligible Countries 
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Figure 2- 6: US Imports by Selected Preferential Tariff Agreement, Source: US 
International Trade Commission 

 

This paper adds to a number of papers which have examined trade diversion 

resulting from unilateral and multilateral trade programs. Concerns about the diversionary 

effects of PTAs have a long history going back to Viner (1950)  32 , but despite the 

proliferation of such agreements there has been relatively little attention paid to the effects 

on trade diversion of these programs. Baldwin and Murray (1977) offered a thorough 

treatment when analyzing trade diversion and trade creation under the general system of 

preference (GSP), the formalized system of exemption from WTO/GATT tariff 

restrictions. Baldwin and Murray propose an estimator to calculate for donor countries the 

																																																								
32 For a good overview of the history of these concerns, and of PTAs in general, see Bhagwati’s Termites in 
the Trading System: How Preferential Agreements Undermine Free Trade (2008). 
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trade diversion from non-beneficiary countries, which differs from our approach in that we 

focus on the trade diversion for non-donor countries. On the empirical end, Krueger (1999) 

estimates whether there was significant trade diversion caused by NAFTA among US, 

Canada and Mexican imports. The author finds that “the evidence seems to indicate that 

those commodity categories in which Mexican exports to the U.S. grew most rapidly were 

also those categories in which it grew most rapidly with the rest of the world” and 

concludes that NAFTA was likely trade creating and not trade diverting. Clausing (2001) 

examines the Canada-US Free Trade Agreement and finds little evidence that the act led 

to trade diversion. In Africa, Holden and McMillan (2006) estimate the impact of the 

Southern African Development Community (SADC) on imports into South Africa. The 

authors find no impact of SADC on the composition of imports into South Africa, leading 

them conclude there was no trade diversion from this program.  

 

3 Methodology and Data  

Our starting point is Frazer and van Biesebroeck’s (2010) idea to exploit variation 

in AGOA product assignment and country AGOA eligibility, along with the timing and 

implementation of the program. Their estimator can intuitively be thought of as the 

difference between two difference-in-difference (DD) estimators, comparing the 

difference-in-difference impact of AGOA between AGOA beneficiary countries and non-

AGOA beneficiaries. Equation (2) below present the intuitive form of their DDD estimator 
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(1) 	

%%% = '()*+,-./ − '()*+11./ −	 '()*+,-2/ − '()*+112/
.34.	56789:;

− '()*+,-./ − '()*+11./ −	 '()*+,-2/ − '()*+112/
268<.34.	56789:;

 

where AP indicates an AGOA-designated product, NP indicates a non-AGOA product, and 

03 and 99 are two arbitrarily chosen years (2003, and 1999) after and before AGOA is 

implemented respectively. Their specification compares the growth of imports into the US 

of products at the six digit level from African countries, both designated AGOA 

beneficiaries and those not designated, and the growth of imports of of AGOA products 

with that of non-AGOA products. Note that this is exactly what is shown in Figure 2- 1. 

The first term on the right hand side of equation (1) gives the change in AGOA versus non-

AGOA products for AGOA beneficiaries, shown in the left panels of Figure 2- 1. The 

second term on the right hand side of equation (1), the difference in growth between AGOA 

and non-AGOA products for non-AGOA countries is shown in the right panel.  

Frazer and van Biesebroeck (2010) implement the estimator (1) as follows: 

(2) 	

ln ?6,A,9 = BCD.34. ∗ FGHFIJKLMNOA9 ∗ FGHFNKM(OJP69 + BCD
.34.RAAR:ST

∗ FGHFUIIUJV'IJKLMNOA9 ∗ FGHFUIIUJV'NKM(OJP69 + W69 + XA9

+ Y6A + Z6A9 

where zo, p, t is the value of exports of product p from exporter o to the US in year t, 

AGOAproductpt ∈ {0, 1} indicates whether a product is designated as AGOA in year t, 
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AGOAcountryot ∈ {0, 1} indicates whether an exporter is given AGOA status in year t, and 

µõt, γ̃pt, and δ̃op are exporter/year, product/year, and exporter/product fixed effects. Here the 

main coefficient of interest is βUS
AGOA which gives the triple-difference estimate of the 

impact of AGOA product designation on exports from AGOA beneficiary countries to the 

US. This coefficient is specific to the US. Under Frazer and van Biesebroeck’s preferred 

specification, the estimates of βUS
AGOA and βUS

AGOAapparel are 0.127 and 0.426 and highly 

significant, which is interpreted as evidence for a sizable effect of AGOA on export growth.  

This interpretation of the sign and magnitude of βUS
AGOA as evidence of export 

growth rests on the assumption that, as in an experiment with clearly designated treatment 

and control groups, each exporter/product pair is an independent observation. Products and 

countries not covered under AGOA serve as a control group to establish the counterfactual. 

Trade theory, however, teaches us that this empirical strategy, common to studies of 

microeconomic phenomena, may have its pitfalls when it comes to evaluating macro 

policies, if these policies affect relative prices and thereby change production and exporting 

decisions for all sectors. If firms that benefit from AGOA increase their exports, they hire 

more capital and labor which may otherwise have been employed by other firms. Relative 

to the counterfactual, these other firms thus use less labor and reduce their exports. The 

estimator in (2) cannot distinguish between the increase of AGOA trade and the decrease 

of non-AGOA trade and could therefore overestimate the impact of AGOA on exports to 

the US.  

The second assumption behind the above interpretation of βUS
AGOA is that AGOA 

did not trigger any diversion of trade from other destinations to the US. To test this 
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assumption, we extend our analysis to all origin/destination/product/year combinations. To 

do so, we generalize (2) to 

(3) 	

ln \6,],A,9 = B].34. ∗ FGHFIJKLMNOA9 ∗ FGHFNKM(OJP69 + B]
.34.RAAR:ST

∗ FGHFUIIUJV'IJKLMNOA9 ∗ FGHFUIIUJV'NKM(OJP69 + W6]9 + X]A9

+ Y6]A + Z6]A9 

where x denotes the value of exports and d is the destination country (so that 

zo, p, t ≡ xo, US, p, t). We estimate equation (3) separately for each importing country d in our 

sample. If AGOA was a microeconomic experiment that only affected trade flows between 

the US and its beneficiaries in treated products, then βd
AGOA = 0 for all d ≠ US. If AGOA 

affects the production structure and leads to more exports of benefiting firms and less 

exports of other firms, then βd
AGOA can be positive for some d ≠ US. And if AGOA triggers 

a diversion of covered products from destination d to the US, then βd
AGOA can be negative.  

Note that, while we interpret βd
AGOA < 0 as trade diversion, βd

AGOA > 0 does not 

imply the absence of such diversion. This is because AGOA may trigger both, trade 

diversion and a change in the product mix towards AGOA products, whereas βd
AGOA can 

only capture the net impact of these two forces. We therefore consider an alternative 

specification in which we control for ln(x̃opt), where x̃opt are country o’s total exports of a 

given product p. An alternative would be to\strikeout off\uuline off\uwave off add an 

origin/product/time fixed effect, and jointly estimate all coefficients for all importers, 

which would amount to a quadruple-difference equation. Doing so, however, would require 

considerably larger computational resources. Note that, if we control for covariates at the 
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origin ⁄ product ⁄ time level, the coefficients β obtain a different interpretation. Instead of 

measuring the relative effect of policies on the \uuline default\uwave defaultvalue\strikeout 

off\uuline off\uwave off of trade flows between country o and d, they measure the effect 

on the share of country d in country o’s exports of product p, since 

ln(xo, d, p, tx̃opt) = ln(xo, d, p, t) − ln(x̃opt).  

 

Data  

We use import data from UN Comtrade’s International Trade Statistics Database 

as the main source of data on trade flows between countries.33 This database provides 

yearly trade flows between countries disaggregated at the six-digit product level, covering 

most countries. Whenever available, we use data from 1996 to 2014. Product codes are 

harmonized to correspond to the 1996 HS nomenclature.34  Not all countries report import 

data throughout our period of interest. Among African countries in particular, data 

coverage often begins later, sometimes as late as the early 2000s. Out of a total of 45 

African countries in the UN Comtrade ITSD, 12 have trade flow series which begin after 

2001.35  Our triple difference empirical methodology requires variation in timing of AGOA 

designated countries. Since AGOA starts in 2001, we would need adequate import data 

covering the pre-treatment period.36 This is not problematic for estimating equation (3), as 

																																																								
33 http://comtrade.un.org/ 
34 During the period of study, from 1996-2014, HS product coding changed multiple times. We use the 
concordance tables published under http://wits.worldbank.org/product_concordance.html 
35 These countries are: Benin, Congo, Comoros, Egypt, Ghana, Guinea, Guinea-Bissau, Libya, Lesotho, 
Morocco, Swaziland, and Seychelles. 
36 This isn’t strictly necessary, as we do have variation in AGOA beneficiary countries post-2001. 
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we can exclude countries with insufficient coverage. However, when computing a country 

o’s total exports x̃opt of product p, we need to add up over all importers, i.e.,  

\6A9 = \6]A9
]

 

When computing these totals, we only include data from those importers who reported in 

every year between 1998 and 2010. This ensures that time variation in x̃opt is not caused by 

the entry of new reporting countries into the sample.  

A data description for each country is presented in Table 2- A.1 in the appendix. 

The second column gives the first year when our import panel begins. The third column 

gives the year import data ends for a given country, which for most countries is at the year 

2013. Several countries included in our main sample end earlier, such as Grenada which 

ends in 2009, and Syria which stops in 2010. The fourth column gives the number of 

positive flows of import lines observed in our data over the period in our data. This varies 

widely, based on the size of the importer along with their import structure. For example, 

we observe 2,238,378 positive import flows into the US at the six digit product level, while 

for the relatively smaller economy of Paraguay we observe 386,954 positive import flows. 

When estimating our specifications, we follow convention and include instances of zero 

trade flow between countries. To keep those observations with zero, we follow the 

convention in the development literature and use the inverse hyperbolic sine (IHS) 

transformation instead of taking logs.37 

																																																								
37 The IHS is defined as log	(\ + \" + 1). This can be interpreted the same as the standard logarithmic 
transformation. An alternative would be to transform variables with zeros using log(x + 1), though the former 
is preferred for small parametrization of x. For more see Burbidge et. al (1988) or MacKinnon and Mageer 
(1990). 
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Data on preferential trade agreements is obtained from a variety of sources. For 

AGOA, we use information from the US International Trade Commission (USITC).38 For 

non-apparel, tariff policy is defined at the HS-8 product level, while our trade flows data 

is available only at the HS-6 level, requiring some aggregation to make the two series 

compatible. We follow Frazer and van Biesebroeck (2010) and, within each 6-digit 

product, compute the share of HS-8 products that receive preferential tariff treatment. 

These shares are weighted using the total US imports between 1998 and 2000 for each 

product.39 For apparel products, we do not have a list of covered products. However, from 

the USITC’s trade data, we can recover information on apparel products that were imported 

under AGOA after 2000. This method allows us to identify AGOA apparel products, but 

we fail to identify AGOA apparel products which were not imported into the US from any 

country. By omitting these products, we are likely to overestimate the impact of AGOA for 

apparel. Information on country coverage is also available online. 40  

 

4 Results  

 

4.1 Exports to the US  

We estimate equation (3) separately for each importing country that reports 

sufficient data to Comtrade. We begin with an analysis of imports into the US and China 

to revisit the results of Frazer and van Biesebroeck (2010) who estimate the effects of 

																																																								
38 http://dataweb.usitc.gov 
39 data on US imports at the HS-8 level are also available from the USITC 
40 http://agoa.info/ 
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AGOA between 1998 and 2006. Table 2- 1 presents our estimates. The first column of 

estimates corresponds to Frazer and van Biesebroeck (2010), although with a longer sample 

period. The effect of AGOA on the value of US imports remains highly significant and 

positive, although for non-apparel products the effect is smaller than in the earlier 

estimates. This decline in the effect of AGOA is not surprising, given that MFN tariffs have 

declined considerably, thus eroding preferential tariff margins.  

Note that, for non-apparel products, the effect of AGOA on US imports becomes 

insignificant when we control for ln(x̃opt) in the second through fourth column, which 

suggests that, on average, for these products there was no significant diversion to the US. 

To the contrary, it appears that the spillovers to other countries were strong enough to keep 

the share of the US in African exports stable. On the other hand, for apparel, we have a 

coefficient of 0.187 – evidence for considerable trade diversion. The table also shows that 

the estimated effects on trade shares are robust to different ways of computing x̃opt, a 

country o’s aggregate exports of product p in year t.  

 

4.2 Preferential tariffs and trade flows  

We now extend the analysis and estimate equation (3) for each available importer, 

but without controlling for ln(x̃opt
1997 − 2013). The results for all 177 countries are presented 

in Table 2- A.2 in the appendix, but we prefer to use the graphical representation in Figure 

2- 7 in which each map plots the effect of an individual preferential tariff program (i.e., 

one map per column of Table 2- A.2).  
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For non-apparel products, AGOA had a positive impact not just for trade in AGOA 

products with the US, but also for African trade in these products with most other countries 

(Figure 2- 7a). An exception are several European destinations and Japan where we 

estimate a negative coefficient. For African countries, with the exception of Guinea-Bissau, 

imports of AGOA products from AGOA countries have increased relative to non-AGOA 

products.  

For apparel products (Figure 2- 7b), AGOA had a markedly different impact with 

negative coefficients for most countries. The relative drop in AGOA versus non-AGOA 

products is most pronounced for China, where it amounted to more than 50 percent. 

Interestingly, we find very little effect of AGOA on apparel trade flows within Africa (with 

the exception of South Africa).  

Table 2- 1: Regression results (equation (3)) for the US 

 Dependent variable: ln(xodpt) 

AGOA  0.036**  -0.001  0  0  

 (9.47)  (-0.68)  (-0.44)  (0.22)  

AGOA (apparel)  0.522**  0.177**  0.189**  0.182**  

 (27.77)  (32.27)  (39.07)  (37.85)  

ln(x̃opt
1998 − 2010)   0.784**    

  (4070.36)    

ln(x̃opt
1997 − 2013)    0.785**   

   (4778.16)   

ln(x̃opt
all)     0.775**  
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    (4932.93)  

country/product FE  yes  yes  yes  yes  

product/year FE  yes  yes  yes  yes  

country/year FE  yes  yes  yes  yes  

Observations  20287080  14651780  19160020  20287080  

 
Notes: t-statistics in parentheses; *significant at 5%; **significant at 1%; standard errors 
robust to heteroskedasticity. x̃opt

1998 − 2010: aggregate exports of product p to countries 
reporting in every year from 1998-2010; x̃opt

1997 − 2013: aggregate exports of product p to 
countries reporting in every year from 1997-2013; x̃opt

all: aggregate of all reported exports 
of product p. 

 

4.3 Preferential tariffs and trade shares  

When controlling for a country of origin’s aggregate exports of a product 

ln(x̃opt
1997 − 2013), we find that for most countries in Africa the coefficients on non-apparel 

AGOA products (see Figure 2- 10a and Table 2- A.3) are smaller than those in Figure 2- 

7a. Interpreted through the lens of our discussion in Section 3, this is not surprising and 

indicates that, on average, AGOA affected both the bilateral trade of product p between 

country o and country d as well as country o’s aggregate exports of product p, where the 

latter effect was positive on average for AGOA products. Moreover, we find that diversion 

effects were insignificant for most African countries.  

For advanced economies such as Japan and several European countries, the results 

are less straightforward to interpret. While the signs of coefficients remain negative when 

controlling for the country of origin’s total exports, the coefficients are closer to zero. This 

is surprising, since we now control for any positive spillovers. The same is true for apparel 
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products (see Figure 2- 10b), where we see more positive coefficients than in Figure 2- 7b.   

 

 

(a) AGOA (non-apparel) 

	
(b) AGOA (apparel) 

 

Figure 2- 7: Coefficient estimates: preferential tariffs and trade flows 
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5 Conclusion  

The analysis in this paper has shown that, as suggested by textbook models of trade, 

the asymmetric tariff reductions granted through AGOA have led to some trade diversion. 

However, this redirection of trade was of little consequence for intra-African trade. We 

have also shown that AGOA had a significant impact on the product composition of 

African exports. By taking these spillovers into account, policy makers in advanced 

economies can influence the speed and direction of structural change in Africa.  

 

 

(a) positive exports 
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(b) entry 

	
(c) exit 

 
Figure 2- 8: Coefficient estimates: preferential tariffs and the extensive margin of 

trade (non-apparel) 
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(a) positive exports 

 

(b) entry 
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(c) exit  

 
Figure 2- 9: Coefficient estimates: preferential tariffs and the extensive margin of 

trade (apparel) 
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(a) AGOA (non-apparel) 

	
(b) AGOA (apparel) 

Figure 2- 10: Coefficient estimates: preferential tariffs and trade shares 
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A Tables  
 

Table 2-A 1: Import Data Summary Statistics, by Importer 

Country  Min: Year  Max: Year  N: xodpt > 0  

Aruba  2000  2013  88337  

Albania  1996  2013  387233  

Argentina  1996  2013  901756  

Armenia  1997  2013  349844  

Antigua and Barbuda  1999  2013  143078  

Australia  1996  2013  1464686  

Austria  1996  2013  1674500  

Azerbaijan  1999  2013  307512  

Belgium  1999  2013  1405185  

Benin  1998  2013  153831  

Burkina Faso  2001  2013  149616  

Bulgaria  1996  2013  974817  

Bahamas  1997  2013  159289  

Belarus  1998  2013  657971  

Belize  1998  2013  185893  

Bolivia  1997  2013  505677  

Brazil  1997  2014  1138396  
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Barbados  2000  2013  349160  

Botswana  2000  2013  211843  

Central African Republic  1997  2013  35175  

Canada  1996  2013  2021374  

Switzerland  1996  2013  1615157  

Chile  1997  2013  963086  

China  1996  2013  1690627  

Cote d’Ivoire  2001  2013  366888  

Cameroon  2000  2012  337909  

Colombia  1996  2013  895067  

Cabo Verde  1997  2013  214964  

Costa Rica  1997  2013  762977  

Cyprus  1996  2013  726140  

Czech Republic  1996  2013  1516918  

Germany  1996  2013  2460386  

Dominica  1999  2012  133812  

Denmark  1996  2013  1296273  

Dominican Republic  2001  2013  516297  

Algeria  1996  2013  728515  

Ecuador  1996  2013  656641  
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Spain  1996  2013  1801144  

Estonia  1996  2013  960900  

Ethiopia  2001  2013  407171  

Finland  1996  2013  1219590  

France  1996  2013  2185653  

Faroe Islands  1996  2009  306809  

Gabon  1997  2009  189002  

United Kingdom  1996  2013  2096269  

Georgia  1998  2013  448345  

Gambia  1996  2013  144801  

Greece  1996  2013  1051610  

Grenada  2000  2009  119604  

Greenland  1996  2013  153090  

Guatemala  1997  2013  626631  

Guyana  1997  2013  214522  

Hong Kong  1996  2013  1075948  

Honduras  1997  2012  392197  

Croatia  1997  2013  1054499  

Hungary  1996  2013  1089324  

Indonesia  1996  2013  1093136  
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India  1996  2013  1320410  

Ireland  1996  2013  1005005  

Iran  1997  2011  304526  

Iceland  1997  2013  760963  

Israel  1996  2013  958322  

Italy  1996  2013  1994868  

Jamaica  1998  2013  354970  

Jordan  1998  2013  472091  

Japan  1996  2013  1252957  

Kazakhstan  1998  2013  736762  

Kenya  1997  2013  510046  

Kyrgyzstan  2000  2013  211553  

Cambodia  2000  2013  183280  

Saint Kitts and Nevis  1999  2011  127378  

Korea, Republic of  1996  2013  1290909  

Lebanon  1997  2013  779545  

Sri Lanka  1999  2013  641312  

Lithuania  1997  2013  894155  

Luxembourg  1999  2013  550454  

Latvia  1997  2013  774038  



	

	

111 

Macao  1996  2012  288342  

Moldova, Republic of  2000  2013  450495  

Madagascar  1996  2013  415744  

Maldives  1997  2013  339384  

Mexico  1996  2013  1423617  

Macedonia  1996  2013  662964  

Mali  1998  2012  177161  

Malta  1996  2013  515263  

Mongolia  1997  2013  156513  

Mozambique  2001  2013  270940  

Mauritania  2000  2013  79865  

Montserrat  1999  2013  48677  

Mauritius  1997  2013  573311  

Malawi  1999  2013  223183  

Malaysia  1997  2013  1054520  

Mayotte  2000  2009  134972  

Namibia  2000  2013  214878  

New Caledonia  2001  2013  400449  

Niger  1998  2013  192014  

Nigeria  1999  2013  395627  
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Nicaragua  1997  2013  456238  

Netherlands  1996  2013  1659269  

Norway  1996  2014  1522331  

Nepal  1998  2013  118332  

New Zealand  1996  2013  1147968  

Oman  2000  2013  392582  

Panama  1998  2013  449291  

Peru  1998  2013  763166  

Philippines  2000  2013  639572  

Papua New Guinea  2001  2012  125592  

Poland  1996  2013  1258822  

Portugal  1996  2013  1081196  

Paraguay  1998  2014  386954  

French Polynesia  1996  2013  443496  

Qatar  2000  2013  465732  

Romania  1997  2013  1181402  

Russian Federation  1997  2013  1517826  

Rwanda  2001  2013  184522  

Saudi Arabia  1999  2013  849153  

Sudan  1999  2011  246707  
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Senegal  1996  2013  380408  

Serbia  2000  2013  754673  

Singapore  1997  2013  1403708  

El Salvador  1997  2013  530798  

Sao Tome and Principe  1999  2013  50638  

Slovakia  1997  2013  1078971  

Slovenia  1996  2013  1213759  

Sweden  1996  2013  1422442  

Syrian Arab Republic  2001  2010  124107  

Turks and Caicos  1999  2012  19184  

Togo  1998  2013  109412  

Thailand  1999  2013  1184924  

Trinidad and Tobago  1999  2010  295975  

Tunisia  2000  2013  577592  

Turkey  1996  2013  1275049  

Tanzania  1997  2013  601849  

Uganda  1996  2013  456473  

Ukraine  2001  2013  813656  

Uruguay  1997  2013  552950  

United States  1996  2013  2238378  
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Saint Vincent  1998  2012  198737  

Venezuela  1996  2013  829753  

Viet Nam  2000  2013  650556  

Samoa  2001  2013  85310  

South Africa  1997  2013  1509265  

Zambia  1997  2013  367290  

Zimbabwe  2001  2013  263962  

 
Notes: Data are from UN Comtrade. “N:xodpt > 0” indicates the total number of positive observations 
the six-digit product level by an importer. 
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Table 2-A 2: Results: Effect of preferential tariffs on trade flows (by importing 
country and program). 

Importing country  AGOA  AGOA 
(apparel)  Observations  

Albania  0.02**  -0.064**  18290232  

 (12.736)  (-23.182)   

Algeria  0.02**  -0.029**  16961274  

 (8.694)  (-6.478)   

Andorra  -0.001  -0.132**  6705972  

 (-0.367)  (-18.257)   

Antigua and Barbuda  0.005**  0.002  8659910  

 (2.579)  (0.396)   

Argentina  0.016**  0.011*  17994636  

 (7.306)  (2.154)   

Armenia  0.031**  -0.281**  14789376  

 (17.659)  (-56.222)   

Aruba  -0.004  -  1659600  

 (-0.153)    

Australia  0.012**  -0.187**  20216196  

 (4.204)  (-20.878)   

Austria  -0.023**  -0.219**  21067542  
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(-8.765)  (-20.931)   

Azerbaijan  0.025**  0.027**  13510080  

 (8.78)  (9.568)   

Bahamas, The  -0.001  0.026**  9771396  

 (-0.462)  (6.251)   

Bahrain  -0.001  -0.114**  10032260  

 (-0.426)  (-7.587)   

Bangladesh  0.008**  0.033**  11009600  

 (3.299)  (5.697)   

Barbados  0.007**  0.026**  15027320  

 (4.747)  (5.689)   

Belarus  0.039**  -0.227**  17551536  

 (19.574)  (-49.49)   

Belgium-Luxembourg  -0.035**  -0.169**  21502638  

 (-11.086)  (-16.927)   

Belize  0.009**  -0.019**  13283328  

 (6.789)  (-7.039)   

Benin  0.004  -0.004  15501600  

 (1.12)  (-0.856)   

Bhutan  0.007  -0.057**  3178170  
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(1.342)  (-5.413)   

Bolivia  0.031**  -0.12**  18868725  

 (20.876)  (-37.211)   

Bosnia and Herzegovina  0.003  -0.209**  12110461  

 (1.887)  (-12.274)   

Botswana  0.011**  -0.007  13002444  

 (4.235)  (-0.668)   

Brazil  0.023**  -0.097**  19475098  

 (9.506)  (-17.527)   

Brunei  0.005  -0.038**  3903012  

 (1.465)  (-4.64)   

Bulgaria  0.03**  -0.229**  20948400  

 (15.157)  (-50.817)   

Burkina Faso  -0.001  -0.012  9235776  

 (-0.071)  (-1.376)   

Burundi  -0.001  -0.003  8446482  

 (-0.513)  (-0.534)   

Cambodia  -0.001  0.01**  12949104  

 (-0.359)  (5.199)   

Cameroon  0.005  -0.031**  12915240  
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(1.815)  (-4.95)   

Canada  0.019**  -0.129**  20363382  

 (6.298)  (-10.543)   

Cape Verde  -0.009**  -0.009*  14524392  

 (-4.924)  (-2.313)   

Central African Republic  -0.004  -0.009*  5974500  

 (-1.405)  (-2.291)   

Chile  0.027**  -0.132**  17379236  

 (11.611)  (-19.728)   

China  0.078**  -0.727**  19526472  

 (25.214)  (-89.313)   

Colombia  0.045**  -0.251**  20389824  

 (24.349)  (-51.558)   

Congo, Rep.  0.045**  -0.011**  5070338  

 (3.008)  (-2.749)   

Costa Rica  0.029**  -0.282**  19375461  

 (17.513)  (-64.342)   

Cote d’Ivoire  0.011*  0.014  12690612  

 (2.427)  (1.66)   

Croatia  0.035**  -0.336**  19909890  
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(17.062)  (-47.325)   

Cuba  0.027**  0.05**  7552192  

 (8.637)  (10.158)   

Cyprus  -0.01**  0.04**  19269684  

 (-5.4)  (6.836)   

Czech Republic  0.01**  -0.139**  21469086  

 (4.105)  (-17.768)   

Denmark  0.008**  -0.149**  20997468  

 (3.673)  (-19.556)   

Dominica  0.003  -0.006*  8477105  

 (1.789)  (-2.272)   

Dominican Republic  0.004**  -0.117**  14962402  

 (2.813)  (-16.719)   

East Timor  0.003  -  1085472  

 (0.325)    

Ecuador  0.046**  -0.126**  19985706  

 (26.298)  (-36.532)   

Egypt, Arab Rep.  -0.005  -  5229642  

 (-1.335)    

El Salvador  0.044**  -0.151**  16796000  
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(24.476)  (-44.229)   

Estonia  0.037**  -0.251**  20691504  

 (19.785)  (-46.375)   

Ethiopia(excludes Eritrea)  0.005*  0.071**  19632620  

 (2.183)  (15.3)   

Faeroe Islands  0.005**  -0.076**  14619150  

 (3.6)  (-20.71)   

Fiji  -0.001  0.001  11923728  

 (-0.726)  (0.149)   

Finland  -0.009**  -0.195**  20942712  

 (-4.294)  (-27.584)   

France  -0.031**  -0.118**  21305592  

 (-7.165)  (-9.188)   

French Polynesia  0.015**  -0.05**  17763480  

 (11.065)  (-11.261)   

Gabon  -0.008*  -0.012*  10305750  

 (-2.152)  (-1.96)   

Gambia, The  -0.003  0.012**  15161580  

 (-1.254)  (4.926)   

Georgia  0.041**  -0.263**  13969440  



	

	

121 

 
(19.575)  (-60.221)   

Germany  -0.043**  0.002  21309750  

 (-11.538)  (0.192)   

Ghana  0.037**  -0.046**  10704280  

 (4.069)  (-3.641)   

Greece  -0.011**  -0.122**  20603520  

 (-4.557)  (-22.947)   

Greenland  0  -0.026**  14771160  

 (0.033)  (-9.421)   

Grenada  0.011**  -0.01**  7527790  

 (5.365)  (-3.196)   

Guatemala  0.038**  -0.152**  18663399  

 (22.212)  (-46.057)   

Guinea  0.011**  0.021**  7783680  

 (3.304)  (4.188)   

Guinea-Bissau  -0.124*  0.116**  213759  

 (-2.421)  (3.873)   

Guyana  0.005**  -0.003  16664760  

 (4.124)  (-1.402)   

Honduras  0.027**  -0.132**  13976550  
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(13.29)  (-40.287)   

Hong Kong, China  -0.014**  -0.246**  17962560  

 (-5.232)  (-33.292)   

Hungary  -0.043**  0.058**  19502208  

 (-18.859)  (10.172)   

Iceland  0.017**  -0.11**  14475602  

 (7.973)  (-13.625)   

India  0.033**  -0.178**  19922868  

 (10.447)  (-38.368)   

Indonesia  0.017**  -0.22**  20639808  

 (6.592)  (-47.347)   

Iran, Islamic Rep.  0.029**  0.054**  9091620  

 (7.755)  (17.64)   

Ireland  -0.009**  -0.182**  21243222  

 (-3.814)  (-18.983)   

Israel  0.016**  -0.109**  18418752  

 (6.17)  (-19.941)   

Italy  -0.03**  -0.215**  20987856  

 (-8.781)  (-20.097)   

Jamaica  0.023**  -0.007  14040640  
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(11.039)  (-1.838)   

Japan  -0.021**  -0.072**  19836576  

 (-8.116)  (-7.276)   

Jordan  0.022**  0.021**  12364448  

 (7.749)  (4.02)   

Kazakhstan  0.05**  -0.368**  16779870  

 (21.608)  (-52.11)   

Kenya  0.025**  -0.037**  15985800  

 (7.622)  (-5.527)   

Kiribati  0.003  0.042**  2245470  

 (0.347)  (4.607)   

Korea, Rep.  0.004  -0.397**  21176100  

 (1.415)  (-51.018)   

Kuwait  0.007  -0.467**  4060640  

 (0.951)  (-3.973)   

Kyrgyz Republic  0.005**  -0.007*  10882704  

 (2.613)  (-2.237)   

Latvia  0.019**  -0.261**  15961776  

 (8.9)  (-57.217)   

Lebanon  0.006**  -0.187**  19436610  
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(3.066)  (-21.148)   

Libya  -0.008  0.068**  1787208  

 (-0.765)  (4.039)   

Lithuania  0.029**  -0.142**  17389776  

 (13.511)  (-32.706)   

Macao  -0.017**  -0.237**  14653711  

 (-10.582)  (-56.034)   

Macedonia, FYR  0.043**  -0.135**  19594080  

 (26.301)  (-35.471)   

Madagascar  0.01**  0.02**  18800460  

 (4.025)  (3.96)   

Malawi  0.016**  -0.028**  14079912  

 (4.592)  (-3.276)   

Malaysia  -0.009**  -0.08**  19734926  

 (-3.457)  (-19.095)   

Maldives  -0.031**  0.087**  6041545  

 (-3.939)  (9.784)   

Mali  0.028**  -0.018**  12114760  

 (6.085)  (-2.766)   

Malta  -0.008**  0.023**  18320850  



	

	

125 

 
(-4.937)  (4.757)   

Mauritania  -0.003  0.013**  11063808  

 (-1.207)  (3.471)   

Mauritius  0.003  -0.006  18527960  

 (1.245)  (-0.812)   

Mayotte  0  0.031**  8125110  

 (0.019)  (3.289)   

Mexico  0.056**  -0.235**  20447316  

 (23.221)  (-28.173)   

Micronesia, Fed. Sts.  -0.004  0.022**  5302530  

 (-1.63)  (4.799)   

Moldova  0.02**  -0.178**  14536368  

 (10.746)  (-34.437)   

Mongolia  0.038**  -0.078**  6852329  

 (14.548)  (-15.165)   

Montenegro  -0.003  -0.146**  7905744  

 (-1.566)  (-3.893)   

Montserrat  0.005*  0.009**  4439968  

 (2.428)  (3.038)   

Morocco  0.004  -0.343**  12065508  
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(1.683)  (-21.56)   

Mozambique  0.002  -0.021**  13541775  

 (1.152)  (-2.996)   

Myanmar  -0.005  0.037**  910320  

 (-0.74)  (2.903)   

Namibia  0.006*  0.072**  14216328  

 (2.239)  (8.13)   

Nepal  0.024**  -0.05**  8645148  

 (12.792)  (-13.424)   

Netherlands  -0.041**  -0.04**  21167820  

 (-12.614)  (-4.237)   

Netherlands Antilles  0  -0.073**  3836700  

 (-0.032)  (-6.792)   

New Caledonia  0.006**  -0.073**  13477620  

 (4.543)  (-9.309)   

New Zealand  0.015**  -0.171**  20766636  

 (7.082)  (-26.9)   

Nicaragua  0.036**  -0.111**  18478575  

 (25.12)  (-38.415)   

Niger  0.006  -0.009  15009072  
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(1.889)  (-1.386)   

Nigeria  0.004  0.08**  14610401  

 (0.99)  (15.573)   

Norway  0.018**  -0.202**  20144520  

 (7.568)  (-25.718)   

Occ.Pal.Terr.  -0.011*  -0.009*  4430706  

 (-2.268)  (-2.449)   

Oman  0.009**  0.039**  11911900  

 (3.489)  (7.395)   

Pakistan  0.003  -0.026**  12329328  

 (1.26)  (-4.143)   

Palau  -0.002  0.007  3306940  

 (-0.754)  (0.518)   

Panama  0.013**  -0.162**  10401105  

 (3.783)  (-18.422)   

Papua New Guinea  0  0.027**  5757288  

 (0.154)  (6.123)   

Paraguay  0.01**  -0.061**  13815360  

 (5.804)  (-17.878)   

Peru  0.032**  -0.121**  18446736  
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(15.336)  (-25.167)   

Philippines  -0.009**  -0.035**  15185450  

 (-3.406)  (-8.93)   

Poland  0.005  -0.546**  21035340  

 (1.839)  (-68.353)   

Portugal  0.001  -0.202**  21134700  

 (0.473)  (-27.519)   

Qatar  0.019**  -0.21**  8998770  

 (4.731)  (-17.222)   

Romania  0.003  -0.334**  19874530  

 (1.569)  (-63.893)   

Russian Federation  0.083**  -0.663**  19713336  

 (29.34)  (-73.866)   

Rwanda  0.014**  0.011  12269904  

 (3.386)  (1.308)   

Samoa  0.003**  -0.001  6984055  

 (2.721)  (-0.174)   

Sao Tome and Principe  0.004  0.009  7050000  

 (0.91)  (1.809)   

Saudi Arabia  -0.02**  0.221**  16011735  
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(-5.557)  (26.173)   

Senegal  0.018**  0.011**  16736184  

 (7.358)  (3.298)   

Seychelles  -0.012*  -0.032**  6429680  

 (-2.507)  (-3.034)   

Singapore  -0.012**  -0.179**  19394144  

 (-4.29)  (-19.43)   

Slovak Republic  -0.028**  -0.24**  20161490  

 (-13.714)  (-38.652)   

Slovenia  -0.008**  -0.158**  21130956  

 (-4.034)  (-22.067)   

South Africa  0.002  -0.237**  19968370  

 (0.638)  (-16.921)   

Spain  0.002  -0.313**  21188520  

 (0.649)  (-30.655)   

Sri Lanka  0.005*  0.012**  16549830  

 (2.482)  (3.824)   

St. Kitts and Nevis  0.007**  -0.004  10182952  

 (5.401)  (-1.675)   

St. Lucia  0.013**  -0.014**  6953040  
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(5.437)  (-3.462)   

St. Vincent and the 
Grenadines  0.007**  0.002  14165010  

 (5.969)  (0.686)   

Sudan  0.019**  0.042**  15206730  

 (8.398)  (15.602)   

Suriname  -0.003  -  1175490  

 (-0.17)    

Swaziland  -0.002  -0.034*  3347224  

 (-0.367)  (-2.465)   

Sweden  -0.024**  -0.147**  20991960  

 (-10.292)  (-19.387)   

Switzerland  -0.011**  -0.256**  20996064  

 (-3.865)  (-28.399)   

Syrian Arab Republic  -0.002  0.061**  7532330  

 (-0.926)  (22.153)   

Tanzania  0.036**  0.033**  19300950  

 (10.431)  (3.847)   

Thailand  0.016**  -0.288**  17595000  

 (5.15)  (-39.945)   

Togo  0  0.001  13931925  
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(-0.138)  (0.296)   

Tonga  -0.036**  -  2487550  

 (-3.462)    

Trinidad and Tobago  0.018**  -0.019**  12171324  

 (7.764)  (-5.247)   

Tunisia  0.01**  -0.089**  13938358  

 (4.341)  (-12.782)   

Turkey  0.053**  -0.512**  21056040  

 (21.194)  (-65.97)   

Turks and Caicos Isl.  -0.005  -0.005  1603264  

 (-1.44)  (-1.426)   

Uganda  0.009**  0.068**  20023956  

 (3.086)  (9.204)   

Ukraine  0.005**  -0.249**  14784510  

 (2.851)  (-28.027)   

United Arab Emirates  -0.02**  0.02  2660310  

 (-2.706)  (0.92)   

United Kingdom  -0.007  -0.14**  21389472  

 (-1.941)  (-10.588)   

United States  0.036**  0.522**  20287080  
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(9.466)  (27.768)   

Uruguay  0.008**  -0.108**  17068748  

 (4.262)  (-24.281)   

Vanuatu  0  0.001  2754000  

 (-0.059)  (0.107)   

Venezuela  0.054**  -0.053**  20259720  

 (27.413)  (-13.817)   

Vietnam  0.039**  0.029**  15094884  

 (14.859)  (6.424)   

Yemen  0.001  0.006*  9632950  

 (0.422)  (2.027)   

Yugoslavia  0.036**  -0.375**  14819922  

 (12.826)  (-43.084)   

Zambia  0.029**  -0.049**  17466820  

 (9.05)  (-5.476)   

Zimbabwe  -0.002  0.004  12151872  

 (-1.216)  (0.533)   

 
Note: t-statistics in parentheses; *significant at 5%; **significant at 1%; standard errors robust to 
heteroskedasticity. Dependent variable is the log of import value at the six digit product category. Each 
row represents the results from a separate regression estimating the impact of tariff programs on a 
country’s imports, where the impact of the program is estimated via a triple difference specification 
comparing differences in product coverage, country coverage, and timing of the program; Fixed effects 
at the exporter-product, product-year, and exporter-year level are included in all specifications. 
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Table 2-A 3: Results: Effect of preferential tariffs on trade shares (by importing 
country and program). 

Importing country  AGOA  AGOA 
(apparel)  ln(x̃opt

1998 − 2010)  Observations  

Albania  0  0.01**  0.525**  13209612  

 (-0.51)  (8.775)  (1439.053)   

Algeria  -0.004**  0.039**  0.565**  12249809  

 (-4.362)  (22.098)  (1748.06)   

Andorra  -0.004**  -0.007**  0.448**  5215756  

 (-4.154)  (-2.738)  (756.543)   

Antigua and Barbuda  0.001  0.013**  0.425**  6061937  

 (0.931)  (4.882)  (675.379)   

Argentina  -0.002*  0.029**  0.548**  12996126  

 (-2.245)  (14.376)  (1713.927)   

Armenia  -0.003**  0.01**  0.479**  11092032  

 (-3.22)  (6.902)  (1322.838)   

Aruba  -0.049**  -  0.46**  829800  

 (-3.992)   (438.22)   

Australia  0  0.007*  0.651**  14600586  

 (-0.001)  (2.462)  (2973.481)   

Austria  -0.012**  -0.028**  0.606**  15215447  

 (-11.363)  (-6.657)  (2390.843)   

Azerbaijan  0.002  0.009**  0.522**  10808064  
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(1.787)  (9.001)  (1292.917)   

Bahamas, The  -0.001  0.005**  0.469**  7472244  

 (-0.834)  (3.008)  (699.193)   

Bahrain  -0.001  -0.012**  0.546**  9029034  

 (-0.834)  (-4.474)  (1625.385)   

Bangladesh  0.009**  0.008*  0.519**  9908640  

 (4.166)  (2.044)  (1120.009)   

Barbados  0.002**  0.019**  0.438**  11807180  

 (2.678)  (7.222)  (1089.93)   

Belarus  0.005**  0.053**  0.549**  14260623  

 (7.53)  (40.663)  (1968.206)   

Belgium-Luxembourg  -0.016**  0.035**  0.663**  15529683  

 (-14.637)  (11.296)  (2785.501)   

Belize  -0.001*  -0.006**  0.447**  10792704  

 (-2.122)  (-4.169)  (803.747)   

Benin  0.001  -0.002  0.526**  12595050  

 (0.567)  (-1.099)  (1000.444)   

Bhutan  -0.008**  0.014**  0.431**  2471910  

 (-3.484)  (4.182)  (396.661)   

Bolivia  -0.002**  0.033**  0.496**  14429025  

 (-3.511)  (24.938)  (1440.682)   

Bosnia and Herzegovina  0  -0.01*  0.477**  8807608  
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(-0.312)  (-2.572)  (1232.788)   

Botswana  0.003  0.038**  0.455**  10216206  

 (1.087)  (4.908)  (777.22)   

Brazil  -0.002*  0.026**  0.604**  14892722  

 (-2.234)  (12.147)  (2019.517)   

Brunei  -0.006*  0.004  0.463**  2602008  

 (-2.073)  (1.121)  (641.283)   

Bulgaria  0.004**  0.001  0.572**  15129400  

 (5.481)  (0.686)  (2399.762)   

Burkina Faso  0.001  -0.025**  0.512**  7556544  

 (0.083)  (-3.363)  (969.2)   

Burundi  0.001  -0.005  0.492**  6142896  

 (0.833)  (-1.445)  (608.329)   

Cambodia  -0.001  0.002  0.502**  10174296  

 (-1.254)  (1.7)  (922.835)   

Cameroon  -0.003  0.005  0.48**  10928280  

 (-1.352)  (1.349)  (1307.212)   

Canada  -0.002  -0.001  0.597**  14706887  

 (-1.459)  (-0.107)  (2392.33)   

Cape Verde  -0.004**  0.01**  0.425**  11106888  

 (-3.962)  (4.466)  (879.891)   

Central African Republic  0  -0.003  0.525**  4381300  
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(-0.048)  (-0.822)  (564.081)   

Chile  0  0.015**  0.573**  13290004  

 (0.036)  (6.561)  (2068.721)   

China  0.015**  0.026**  0.637**  14102452  

 (12.711)  (8.286)  (2376.64)   

Colombia  -0.001  0.014**  0.564**  14725984  

 (-1)  (6.956)  (1834.385)   

Congo, Rep.  -0.016  -0.004  0.499**  2897336  

 (-1.909)  (-1.778)  (506.486)   

Costa Rica  -0.004**  0.035**  0.516**  14816529  

 (-6.448)  (19.811)  (1595.459)   

Cote d’Ivoire  0.007*  0.033**  0.485**  9517959  

 (2.125)  (5.518)  (1193.788)   

Croatia  0.004**  -0.019**  0.562**  15225210  

 (5.023)  (-8.468)  (2463.965)   

Cuba  0.001  0.029**  0.54**  7552192  

 (0.84)  (13.091)  (1127.541)   

Cyprus  -0.008**  0.009**  0.532**  13916994  

 (-11.458)  (4.211)  (1959.406)   

Czech Republic  -0.007**  -0.03**  0.585**  15505451  

 (-7.584)  (-9.746)  (2304.639)   

Denmark  -0.008**  0.049**  0.598**  15164838  
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(-8.944)  (17.361)  (2222.143)   

Dominica  0.001  0.003*  0.413**  7825020  

 (0.624)  (2.363)  (710.655)   

Dominican Republic  0.001  0.02**  0.502**  11509540  

 (1.142)  (5.114)  (1250.786)   

East Timor  -  -  0.36**  723648  

   (179.803)   

Ecuador  -0.001  0.005**  0.561**  14434121  

 (-0.839)  (3.558)  (1721.662)   

Egypt, Arab Rep.  -0.002  -  0.623**  2614821  

 (-0.423)   (902.847)   

El Salvador  0  -0.001  0.52**  12844000  

 (-0.468)  (-0.708)  (1334.304)   

Estonia  -0.002*  -0.007**  0.53**  14943864  

 (-2.415)  (-3.281)  (2014.581)   

Ethiopia(excludes Eritrea)  -0.002  0  0.533**  15013180  

 (-1.929)  (-0.211)  (1488.028)   

Faeroe Islands  -0.002**  -0.004**  0.419**  12530700  

 (-3.646)  (-3.013)  (1283.603)   

Fiji  0  0  0.484**  8942796  

 (-0.435)  (0.226)  (861.912)   

Finland  -0.006**  0.006*  0.585**  15125292  
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(-8.236)  (2.11)  (2230.221)   

France  -0.002  -0.023**  0.744**  15387372  

 (-1.315)  (-5.795)  (3850.275)   

French Polynesia  -0.004**  0.001  0.468**  12829180  

 (-8.358)  (0.364)  (1562.706)   

Gabon  -0.006*  -0.02**  0.529**  9513000  

 (-2.33)  (-4.658)  (1312.225)   

Gambia, The  -0.001  -0.003**  0.479**  10950030  

 (-0.458)  (-2.911)  (921.236)   

Georgia  0  0.004**  0.504**  11350170  

 (-0.136)  (2.684)  (1445.138)   

Germany  -0.01**  0.031**  0.755**  15390375  

 (-8.528)  (8.77)  (3864.219)   

Ghana  0.031**  -0.01  0.481**  7492996  

 (3.211)  (-1.091)  (1053.762)   

Greece  -0.005**  -0.02**  0.637**  14880320  

 (-6.256)  (-10.843)  (2511.673)   

Greenland  0  0.002**  0.449**  10668060  

 (-0.656)  (2.853)  (946.147)   

Grenada  -0.002*  -0.001  0.428**  7527790  

 (-2.058)  (-0.774)  (772.672)   

Guatemala  0  0.012**  0.567**  14272011  
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(-0.381)  (9.036)  (1680.694)   

Guinea  0.003  -0.002  0.529**  7783680  

 (1.664)  (-0.57)  (944.548)   

Guinea-Bissau  -0.01  0.05**  0.486**  213759  

 (-0.456)  (3.202)  (146.536)   

Guyana  -0.002**  0  0.503**  12743640  

 (-3.397)  (-0.111)  (982.634)   

Honduras  -0.001  -0.001  0.521**  11181240  

 (-0.656)  (-0.616)  (1260.064)   

Hong Kong, China  -0.001  -0.015**  0.668**  12972960  

 (-0.732)  (-5.06)  (2341.711)   

Hungary  -0.006**  -0.044**  0.64**  14084928  

 (-7.722)  (-25.018)  (3085.042)   

Iceland  -0.005**  0.005  0.492**  11069578  

 (-5.756)  (1.848)  (1945.298)   

India  0.001  0.072**  0.648**  14388738  

 (0.935)  (39.663)  (2415.874)   

Indonesia  -0.001  0.036**  0.594**  14906528  

 (-0.742)  (19.768)  (1868.602)   

Iran, Islamic Rep.  -0.004*  0.017**  0.669**  7576350  

 (-2.03)  (13.681)  (1736.414)   

Ireland  -0.007**  -0.015**  0.602**  15342327  
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(-7.725)  (-3.941)  (2363.099)   

Israel  -0.003**  0.003*  0.636**  13302432  

 (-3.837)  (1.962)  (2854.68)   

Italy  -0.006**  -0.047**  0.731**  15157896  

 (-6.164)  (-15.012)  (3527.362)   

Jamaica  -0.002**  0.008**  0.52**  11408020  

 (-3.156)  (6.232)  (1282.247)   

Japan  -0.003**  0.01**  0.696**  14326416  

 (-3.464)  (4.078)  (3185.766)   

Jordan  -0.003**  0.009**  0.599**  10046114  

 (-3.421)  (6.214)  (2128.689)   

Kazakhstan  0.007**  0.033**  0.531**  13423896  

 (6.627)  (20.187)  (1827.922)   

Kenya  -0.004**  0  0.554**  13854360  

 (-2.735)  (-0.032)  (1723.522)   

Kiribati  -0.012  0.009*  0.407**  1571829  

 (-0.492)  (2.029)  (379.718)   

Korea, Rep.  -0.002*  -0.005*  0.623**  15293850  

 (-2.203)  (-2.059)  (2237.105)   

Kuwait  0.043*  -0.069**  0.574**  3045480  

 (2.349)  (-3.942)  (989.843)   

Kyrgyz Republic  -0.004**  0  0.494**  8550696  
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(-4.678)  (-0.428)  (1068.613)   

Latvia  -0.005**  -0.033**  0.563**  12206064  

 (-6.474)  (-20.881)  (2069.963)   

Lebanon  -0.003**  0  0.565**  14863290  

 (-4.24)  (0.065)  (2164.378)   

Libya  -0.004  -0.005  0.626**  1787208  

 (-0.683)  (-0.783)  (898.562)   

Lithuania  -0.001  -0.029**  0.557**  13298064  

 (-1.113)  (-15.586)  (2042.484)   

Macao  -0.004**  -0.019**  0.499**  11205779  

 (-7.434)  (-15.447)  (1328.742)   

Macedonia, FYR  0  0.027**  0.492**  14151280  

 (0.577)  (18.995)  (1590.781)   

Madagascar  -0.004**  -0.003  0.477**  13578110  

 (-3.245)  (-1.413)  (1321.831)   

Malawi  0.005  -0.017**  0.487**  12068496  

 (1.849)  (-2.913)  (952.713)   

Malaysia  0.001  0.006**  0.672**  15091414  

 (1.689)  (5.466)  (2768.313)   

Maldives  -0.023**  0.026**  0.445**  4620005  

 (-6.704)  (7.692)  (1068.532)   

Mali  0.009**  -0.031**  0.544**  10384080  
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(2.602)  (-6.601)  (1095.435)   

Malta  -0.006**  0.014**  0.521**  13231725  

 (-11.87)  (10.298)  (1894.002)   

Mauritania  -0.005*  0  0.566**  8692992  

 (-2.373)  (-0.006)  (813.599)   

Mauritius  -0.006**  0.025**  0.516**  14168440  

 (-5.055)  (10.275)  (1832.962)   

Mayotte  -0.002  0.01  0.42**  8125110  

 (-0.805)  (1.73)  (941.223)   

Mexico  0.007**  -0.037**  0.612**  14767506  

 (7.322)  (-12.843)  (2253.95)   

Micronesia, Fed. Sts.  -0.009**  0.005  0.421**  3711771  

 (-3.876)  (1.794)  (516.314)   

Moldova  0  0.002  0.465**  11421432  

 (0.2)  (1.527)  (1382.634)   

Mongolia  -0.004**  0.016**  0.479**  5606451  

 (-4.646)  (13.321)  (967.864)   

Montenegro  -0.003  0.026  0.457**  4941090  

 (-1.926)  (1.542)  (857.987)   

Montserrat  -0.001  0.001  0.39**  3415360  

 (-0.442)  (0.519)  (451.977)   

Morocco  0  0.038**  0.541**  9049131  



	

	

143 

 
(0.101)  (8.451)  (1412.313)   

Mozambique  0.002  0.001  0.485**  10416750  

 (0.963)  (0.257)  (970.289)   

Myanmar  -0.002  -0.009  0.557**  910320  

 (-0.493)  (-1.756)  (352.06)   

Namibia  0.001  0.072**  0.458**  11169972  

 (0.246)  (9.88)  (796.887)   

Nepal  -0.005**  0.007**  0.558**  5763432  

 (-5.046)  (4.284)  (780.514)   

Netherlands  -0.006**  0.012**  0.71**  15287870  

 (-5.845)  (4.71)  (3580.934)   

Netherlands Antilles  -0.01**  -0.003  0.479**  3836700  

 (-3.128)  (-0.499)  (586.766)   

New Caledonia  -0.001  0.005**  0.453**  10367400  

 (-1.147)  (2.834)  (1329.605)   

New Zealand  0  0.025**  0.543**  14998126  

 (-0.599)  (9.741)  (2068.673)   

Nicaragua  -0.004**  0.015**  0.48**  14130675  

 (-5.573)  (12.97)  (1269.962)   

Niger  0.002  -0.015**  0.489**  12194871  

 (1.21)  (-4.772)  (889.156)   

Nigeria  -0.005  0.012**  0.656**  11238770  
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(-1.51)  (4.845)  (1692.838)   

Norway  -0.003**  0.007**  0.613**  14548820  

 (-3.317)  (2.605)  (2720.099)   

Occ.Pal.Terr  -0.009  -0.004*  0.469**  2531832  

 (-1.538)  (-2.076)  (473.741)   

Oman  -0.001  -0.002  0.591**  9359350  

 (-0.376)  (-1.037)  (1686.82)   

Pakistan  0  0.018**  0.566**  8966784  

 (0.218)  (4.829)  (1419.624)   

Palau  -0.003  -0.003  0.352**  1889680  

 (-1.052)  (-0.15)  (312.724)   

Panama  -0.004**  -0.02**  0.581**  8320884  

 (-3.251)  (-6.746)  (1698.675)   

Papua New Guinea  0.003  0.001  0.509**  3838192  

 (0.661)  (0.435)  (559.324)   

Paraguay  -0.003**  0.004**  0.49**  11224980  

 (-4.382)  (3.304)  (1232.762)   

Peru  -0.005**  0.052**  0.532**  14987973  

 (-6.16)  (24.134)  (1740.359)   

Philippines  -0.003  -0.003  0.602**  11931425  

 (-1.668)  (-1.885)  (1911.587)   

Poland  -0.01**  0.078**  0.635**  15192190  
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(-11.262)  (28.962)  (2650.559)   

Portugal  -0.008**  0.005  0.583**  15263950  

 (-8.524)  (1.763)  (2024.268)   

Qatar  -0.006**  0.051**  0.602**  8180700  

 (-3.36)  (16.568)  (2011.868)   

Romania  -0.001  0.02**  0.594**  15198170  

 (-1.713)  (10.652)  (2377.829)   

Russian Federation  0.013**  -0.06**  0.617**  15074904  

 (12.204)  (-19.568)  (2323.407)   

Rwanda  0.013**  0.031**  0.47**  9202428  

 (3.384)  (4.978)  (825.577)   

Samoa  0.001  0.005**  0.449**  5372350  

 (1.104)  (3.409)  (500.799)   

Sao Tome and Principe  0.001  -0.001  0.455**  5640000  

 (0.371)  (-0.378)  (419.374)   

Saudi Arabia  0.005*  0.01*  0.641**  12809388  

 (2.187)  (2.397)  (2521.433)   

Senegal  -0.005**  0.01**  0.524**  12087244  

 (-4.61)  (8.228)  (1491.771)   

Seychelles  -0.005  -0.031**  0.44**  5625970  

 (-1.671)  (-5.535)  (820.545)   

Singapore  -0.001  0.015**  0.632**  14830816  
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(-0.903)  (4.737)  (2326.242)   

Slovak Republic  -0.013**  0.014**  0.551**  15417610  

 (-16.836)  (6.503)  (2032.479)   

Slovenia  -0.009**  0.016**  0.533**  15261246  

 (-9.87)  (5.798)  (1971.637)   

South Africa  -0.005**  0.016**  0.57**  15269930  

 (-3.164)  (2.63)  (2090.242)   

Spain  -0.009**  -0.007  0.664**  15302820  

 (-8.231)  (-1.933)  (2750.324)   

Sri Lanka  -0.003*  0.018**  0.514**  13239864  

 (-2.571)  (10.078)  (1430.83)   

St. Kitts and Nevis  0.001  -0.001  0.414**  9399648  

 (1.817)  (-0.451)  (694.69)   

St. Lucia  0  0  0.431**  6953040  

 (-0.094)  (0.058)  (765.8)   

St. Vincent and the 
Grenadines  -0.001  0.008**  0.428**  12276342  

 (-1.551)  (7.523)  (877.772)   

Sudan  0.004*  0.007**  0.585**  13034340  

 (2.376)  (4.448)  (1203.033)   

Suriname  -0.005  -  0.528**  783660  

 (-0.437)   (377.238)   



	

	

147 

Swaziland  0.003  0.02*  0.616**  3347224  

 (0.747)  (2.325)  (223.31)   

Sweden  -0.008**  -0.009**  0.633**  15160860  

 (-9.243)  (-3.565)  (2592.083)   

Switzerland  -0.007**  0.007*  0.611**  15163824  

 (-6.561)  (2.42)  (2487.646)   

Syrian Arab Republic  -0.002*  0.01**  0.633**  7532330  

 (-2.201)  (8.545)  (1281.422)   

Tanzania  0.003*  0.018**  0.518**  14759550  

 (1.996)  (4.634)  (1526.257)   

Thailand  0.003  0.02**  0.572**  14076000  

 (1.368)  (7.802)  (1894.962)   

Togo  -0.005  -0.007  0.525**  11145540  

 (-1.669)  (-1.588)  (969.378)   

Tonga  -0.035**  -  0.402**  1492530  

 (-3.511)   (295.677)   

Trinidad and Tobago  0  0.01**  0.51**  12171324  

 (0.278)  (5.697)  (1332.839)   

Tunisia  0  0.012**  0.538**  10951567  

 (0.375)  (4.36)  (1549.235)   

Turkey  0.001  -0.022**  0.644**  15207140  

 (1.369)  (-9.219)  (2677.406)   



	

	

148 

Turks and Caicos Isl.  0.001  0.001  0.513**  1202448  

 (0.662)  (1.174)  (123.618)   

Uganda  -0.006**  0.007  0.501**  14461746  

 (-3.511)  (1.71)  (1290.708)   

Ukraine  0.001  0.037**  0.552**  11372700  

 (1.141)  (14.317)  (1656.058)   

United Arab Emirates  -0.005  -0.012  0.638**  2660310  

 (-1.128)  (-1.372)  (1079.49)   

United Kingdom  -0.002*  -0.014**  0.746**  15447952  

 (-1.986)  (-3.541)  (3744.628)   

United States  -0.001  0.177**  0.784**  14651780  

 (-0.682)  (32.269)  (4070.357)   

Uruguay  -0.007**  0.012**  0.499**  13052572  

 (-9.819)  (7.406)  (1498.31)   

Vanuatu  -0.007  0.007  0.393**  2203200  

 (-0.928)  (1.914)  (388.893)   

Venezuela  0.004**  0.032**  0.602**  14632020  

 (5.891)  (19.7)  (1874.813)   

Vietnam  0.004**  0.024**  0.627**  11860266  

 (2.864)  (10.891)  (1994.349)   

Yemen  0.002  0  0.552**  6743065  

 (1.636)  (0.052)  (974.207)   
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Yugoslavia  0.001  0.017**  0.541**  11399940  

 (0.605)  (5.337)  (1843.61)   

Zambia  0.006**  -0.014**  0.516**  13356980  

 (3.407)  (-3.131)  (1178.928)   

Zimbabwe  -0.005**  0.034**  0.469**  9113904  

 
Note: t-statistics in parentheses; *significant at 5%; **significant at 1%; standard errors robust to 
heteroskedasticity. Dependent variable is the log of import value at the six digit product category. Each 
row represents the results from a separate regression estimating the impact of tariff programs on a 
country’s imports, where the impact of the program is estimated via a triple difference specification 
comparing differences in product coverage, country coverage, and timing of the program; Fixed effects 
at the exporter-product, product-year, and exporter-year level are included in all specifications. 
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CHAPTER THREE 

 

Robust Determinants of Bilateral Trade 

Marianne Baxter41  

Boston University and NBER 

 Jonathan Hersh42 

Boston University 

Abstract 

What are the policies and country-level conditions which best explain bilateral trade 

flows between countries? As databases expand, an increasing number of possible 

explanatory variables are proposed that influence bilateral trade without a clear indication 

of which variables are robustly important across contexts, time periods, and which are not 

sensitive to inclusion of other control variables. To shed light on this problem, we apply 

three model selection methods – Lasso regularized regression, Bayesian Model Averaging, 

and Extreme Bound Analysis – to candidate variables in a gravity models of trade. Using 

a panel of 198 countries covering the years 1970 to 2000, we find model selection methods 

																																																								
41 mbaxter@bu.edu, Department of Economics, 270 Bay State Road, Boston, MA 02215.  
42 jhersh@bu.edu, Department of Economics, 270 Bay State Road, Boston, MA 02215. 
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suggest many fewer variables are robust that those suggested by the null hypothesis 

rejection methodology from ordinary least squares. 

 

Keywords: Bilateral trade flows, gravity model, machine learning 

JEL classification: F10, F14 

 

1.  Introduction 

In 1962, Tinbergen proposed that the flow of trade between two countries should be 

proportional to the size of the countries’ economies and inversely proportional to their 

distance. In reference to Newton’s law of universal gravitation, he dubbed this relationship 

as “gravity.”	 Subsequently, countless empirical studies found gravity to be a robust 

relationship across a broad range of contexts and time periods. The model was so popular 

that it led Anderson (1979) to state that the gravity model was “the most successful 

empirical trade device of the last twenty-five years.” 

This model was placed on firm theoretical ground through the work of Anderson and 

van Wincoop (2003) and the large literature that followed  At the same time, there has been 

a revival of interest in empirical ‘gravity’ models that are motivated by policy questions 

such as “do currency unions matter?” or “do trade agreements/customs unions increase 

trade?” both of which remain relevant today. The problem of variable selection for 

empirical analysis of the gravity model is growing more complex as the availability of 

machine-readable databases expand along with statistical and computational methods for 

handling large datasets.  It is tempting to include every possible empirical determinant of 
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trade in the gravity model, although there are well known problems with “overfitting.”44 

Further, variables that improve fit in-sample may not predict well when applied out of 

sample or to other datasets.  If the empirical gravity model is to be used to inform policy it 

must balance in-sample and out-of-sample performance.  

Our goal in this paper is to evaluate the robustness of commonly included measures 

of trade frictions, policy decisions, and country characteristics in determining the extent of 

bilateral trade. We use a panel of 198 countries from 1970 to 2000, and apply a standard 

empirical form of the gravity equation. To evaluate the robustness of variables included in 

the gravity equation we use three empirical methods:  Bayesian Model Averaging; Lasso; 

and Extreme Bound Analysis45  for the purposes of variable selection. Through these 

methods we learn which variables should be included in the gravity equation, that is which 

ones robustly predict trade flows.  

The rest of the paper proceeds as follows. Section 2 reviews the Anderson-van 

Wincoop (2003) model of the gravity equation, which has become the standard workhorse 

model used in empirical implementation, and summarizes relevant empirical research. 

Section 3 presents background on the three empirical methods used for variable selection. 

Section 4 introduces the data used in our analysis and section 5 contains the results of 

applying the three approaches to model selection to bilateral trade data.  Section 6 

concludes. 

																																																								
44 Even, curiously, data on Eurovision scores (Felbermayr and Toubal, 2009). 
45 These methods are not entirely new in economics, with Varian (2014), Belloni and Chernozhukov (2013) 
advocating for the use of Lasso, and Fernandez, Ley, and Steel (2001) employing Bayesian Model 
Averaging in the context of cross-country growth regressions. 
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2. Methodology 

Anderson (1979) was the first researcher to present theoretical foundations which 

rationalized the gravity model. His model rested on the assumption that each country 

produces a single, imperfectly substitutable good. Anderson and Van Wincoop (2003) 

extended the single-good framework of Anderson (1979) to an arbitrary number of goods. 

We use their model with some modifications to the specification of trade costs.  

 

2.1 Model Description 

The consumer’s objective is: 

(1) max
efg

Bhh

ijk
k Nhl

kji
k

k
kji

			m. O.		 IhlNhl = Plh  

where Nhl is the consumption in region o of goods from exporting region p, Ihl is the price 

of region p  goods for region o  consumers, and Pl  is nominal income in region o . The 

parameter Bh	is a scale distribution parameter and q is the elasticity of substitution between 

all goods. Trade costs enter the model through costs passed from exporter to importer. That 

is, Ohl	ps the trade cost factor between p and o, and given an exporter's supply price of Ih we 

can model the importer's supply price as Ihl 	= 	IhOhl. Next we let \hl be the nominal value 

of exports from p	to o. Since these exports are eventually consumed in region o we must 

have \hl = IhlNhl . Finally, since each country consumes the value of its income,  Ph =

\hll . Maximization of equation (1) yields:  

(2) \hl =
rfAf9fg
sg

(t<u)
Pl  
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where Ρl = BhIhOhl
t<u

h

i
ijk  is the consumer price index in region j. In words the 

optimization condition states that exports from region p to o are related to the exporter's 

supply price and the trade cost factor divided by the destination country’s CPI.  

Imposing market clearing gives us 

(3) Ph = \hl =
rf9fg
	sg

t<u
= BhIh t<u 9fg

sg

t<u
Phl	∀	p	lll   

Let yz = Pll   denote world income.  Summing over all countries gives the more 

tractable expression: 

(4) \hl =
;f;g
{|

9fg
}~sg

t<u
	  

where 

(5) Πh =
9fg
sg

t<u ;g
{|h

t
t<u

  

Anderson and van Wincoop (2003) propose one normalization that provides a 

solution to the set of equations (4) and (5) which is Πh = Ρh. They note however that this is 

not innocuous46. Nevertheless, with this normalization we arrive at the most widely used 

form of the gravity equation: 

(6) \hl =
;f;g
{|

9fg
sfsg

t<u
  

																																																								
46 The general solution is of the form �h = 	Ä�h and �h =�h/Ä. The normalization is not innocuous in 
that in practice these multilateral resistance terms are estimated via country fixed effects. This is appropriate 
for cross-sectional estimation, but not for panel estimation. For more on panel estimation with the gravity 
model see Baier and Bergstrand (2007) and Egger and Nelson (2011). 
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The “gravity” elements--a negative relationship between trade and distance and a 

positive relationship between trade and GDP--are evident in equation (6). Trade flows 

between regions p  and o  are positively related to the product of the countries’ GDP. 

Because Ohl is almost always parameterized to include distance, trade flows are inversely 

related to the distance between the two regions. The elements Ρh  and Ρl	  are the 

“multilateral resistance” terms for regions p  and o  respectively. Though they are only 

indexed by p and o, note that both of them include the sum of all other regions’ trade costs.  

 

2.2 Empirical Specification  

The estimating equation for the linear standard gravity equation is derived by taking the 

natural log of equation (6) and adding an error term: 

(7)															ln Çhl = É + ln Ph + ln Pl + 1 − q Ohl + 1 − q Ρh + 1 − q Ρl + Zhl  

where É	is a constant term, and Çhl	are the bilateral flows from region p	to o (i’s exports to 

j plus j’s exports to i).  The multilateral resistance terms Ρhl	can be accounted for using 

country-level fixed effects. The more troubling parameter is Ohl , the trade cost 

specification, which is not observed. In Anderson and van Wincoop (2003) the authors 

specify the trade cost as a function of bilateral distance and whether the trade flows occur 

between two different countries: Ohl = ÑhlLhl
A .  

In the related empirical literature, researchers have specified Ohl	 to include (i) 

measures of cultural or ethnic closeness, such as  having a common language or a common 

legal system; (ii) geographic considerations that affect the ease of moving goods, such as 
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sharing a border, being landlocked, being an island; (iii) membership in the WTO and/or 

other regional trading groups; (iv) a host of policies that bear on exchange rate stability; 

the ease of currency convertibility, banking and exchange rate crises. Specifying 

Ohl	correctly is important for the out-of-sample performance. Including too few variables 

and one runs the risk of under-fitting the model, and not capturing enough variation in trade 

flows. Including too many variables and one risk of over-fitting, that is fitting noise rather 

than signal. Here is where methods from machine learning may be useful. Many of these 

were created specifically to solve the problem of building models that perform well out of 

sample, given a choice of too many predictors that can be reliably estimated using OLS 

(Varian, 2014). Methods such as Lasso regularization have been used successfully for 

model selection to select linear covariates from a large set of candidate coefficients (Belloni 

and Chernozhukov, 2013; Afzal, et al., 2015). Tree-based algorithms such as random forest 

or gradient boosted trees have been used successfully for pattern discovery47, and may 

successfully reveal important patterns here.  

  

																																																								
47 See Bajari et al., 2015; Athey and Wager, 2015 for examples in economics 
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3. Statistical Methods 

3.1 Extreme Bound Analysis  
	
Extreme Bound Analysis (EBA) was proposed by Leamer (1983, 1985) to address model 

uncertainty. EBA attempts to find which variables, in the set of candidate variables Ö, are 

associated with an outcome variable yet robust to the inclusion of different control 

variables.  As summarized by Leamer (2008): 

“Extreme bounds analysis is a global sensitivity analysis that applies to the choice 

of variables in a linear regression. Rather than a discrete search over models that 

include or exclude subsets of the variables, this sensitivity analysis answers the 

question: how extreme can the estimates be if any linear homogenous restrictions 

on a selected subset of the coefficients are allowed?” 

The robustness of each coefficient is determined by whether the coefficient remains 

statistically significant and of the same sign in a reasonable number of estimated models. 

More formally, let Ü be the set of control variables that remain fixed in every model 

specification, which we call the “fixed” variables. The set Ö contains the variables that are 

the focus of the sensitivity analysis, which we refer to as the uncertain set of variables. 

Finally, let ál ⊆ X be the subset of variables which we use as control variables for a given 

specification o. Let x ∈ X be a singular control variable that we are focusing on with model 

o. The model we use to estimate the robustness of \	has the form  

(8) P = B,,l + Bl\ + XlÜ + Λäál + Z  

 
where o indexes the regression models. We estimate this regression for each of the * 
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possible models depending on the combinations of ál that are possible. The number of 

elements in ál is typically limited to three variables in the literature (see Levine and Renelt 

(1992)) though the number of elements to be included for each specification is in theory 

limited only by the size of X. In the present application, this specification is estimated for 

all subsets of X with the exception any subsets including x itself.  This process yields a 

distribution of coefficient estimates and associated standard errors, which are used to 

estimate empirical confidence intervals at some desired level of significance. The “extreme 

bound” for the coefficient of variable x is given by [a,b], where a  is the lowest value in 

any confidence interval and b  is the highest value in any confidence interval. The variable 

x is robust if [a,b] does not contain the value zero. The variable is “fragile” if [a,b] contains 

zero. 

3.2 Lasso Regression 

The Lasso regression is a member of the family of regularized regressions which estimates 

a regression model with an added constraint that forces parsimony in the coefficient 

estimate (Tibshirani, 1996). These estimators are referred to as “shrinkage” estimators, so 

named because relative to OLS their coefficients are biased towards zero. The motivation 

for shrinking coefficients towards zero comes from the bias-variance tradeoff; by adding 

more parameters one can easily reduce within-sample error or bias. This comes at the 

expense of a larger estimator variance or out-of-sample error. Lasso regressions and other 

shrinkage estimators attempt to strike a balance between in-sample and out-of-sample 

error.  

Formally, the Lasso estimator, BTRãã6 solves the minimization problem  
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(9) 			BTRãã6 = argmin
r

t
"

Ph − B, − \hlé
lèt Bl

"2
hèt	

4êD	D7ë	6í	ãì7R:S]	:Sãh]7RTã

+ Ä Blé
lèt

Dî:h8ïRñS	íRe96:
  

 

where Ä ≥ 0 is a parameter that represents a penalty associated with the sum of the absolute 

values of the coefficients. The Lasso estimator adjusts all parameter estimates by the same 

absolute amount unless this adjustment would cause the parameter to change sign, in which 

case, the parameter is set to zero (Friedman, Hastie, and Tibshirani, 2001). Note that as 

Ä → 0, the parameter penalization decreases and BTRãã6 → B4êD. As Ä → ∞,	 variables are 

penalized more stringently and BTRãã6	converges to the zero vector. 

 Optimal Ä∗ is selected through cross-validation and comparing root mean squared 

error (RMSE) from a vector of possible Ä.  The cross-validation algorithm for selecting Ä∗  

is as follows: Sample data are split into K equally sized subsamples, or ‘folds,’ of equal 

size. Model estimation is performed using (K-1) of the folds and the resulting estimates are 

used to forecast or fit the data on the withheld fold. The average root mean squared error 

of this forecast is a function of Ä. Thus, the ex-post optimal Ä∗  is the value of λ that 

minimizes this RMSE.  In practice, however, researchers often choose the value of λ that 

corresponds to the more restrictive model associated with a one-standard-deviation 

increase in the cross-validation RMSE.48 We follow this practice in our analysis.   

 Belloni and Chernozhukov (2013) discuss the Lasso estimator in the context of 

statistical inference. The original Lasso method (Tibshirani, 1996) was developed from the 

																																																								
48 See Krstajic et al (2014) for more discussion on the selection of Ä. The value is set to the RMSE 
minimizing value plus one standard error for the purposes of choosing “the simplest model whose accuracy 
is comparable with the best model.” That is, while a more complicated model may perform better, the more 
parsimonious model performs comparable well enough to the more complicated one. 
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standpoint of prediction, which differs from the usual approach of applied economists who 

are concerned with parameter inference. Belloni and Chernozhukov develop an estimator 

they call the “post-Lasso” estimator, which they show to perform at least as well as the 

Lasso estimator with slightly less bias. The post-Lasso estimator is a two-step procedure. 

In step 1, a Lasso model is estimated over a large set of possible control variables. The 

variables which have non-zero coefficients are selected and retained for use in the second 

step. In step 2, an OLS model is fit using only the subset of variables that had non-zero 

coefficients in the first step. This method leans on the strengths of each approach: Lasso is 

useful for variable selection but presents biased estimates of coefficients. 49  OLS is 

unbiased and efficient, though cannot handle models with large number of covariates. In 

our analysis we present both the Lasso and the Post-Lasso estimates.  

 
3.3 Bayesian Model Averaging 

Bayesian model averaging (BMA) is an intuitive approach to model uncertainty where 

Bayes Rule is applied to the model and data, from which one can construct posterior 

parameter estimates. One advantage of BMA is that as in typical Bayesian estimation 

procedures, the output is a posterior distribution of possible parameter estimates, which 

can be more revealing than the point estimates returned by other methods. BMA is 

estimated as follows:  First, all permutations of a linear regression model are estimated 

using the set of explanatory variables, Ö. We refer to Öõ as a particular subset of variables 

																																																								
49 Since Lasso estimation may shrink fixed effect coefficients, which should be included in any unbiased 
estimate, we employ a two step procedure. In the first step, we use Frisch-Waugh-Lovell (FWL) theorem 
(Frisch and Waugh, 1933; Lovell, 1963) to transform the dependent and independent variables to control 
for the level fixed effects. In the second step, the desired estimator is used on the FWL- transformed data 
series.  
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in Ö, and in that sense, each distinct Öõ is a separate model. In the second step, a posterior 

parameter vector is constructed using a weighted average of all parameters estimated from 

the set of estimated models in step 1. Because some models explain the data better than 

others, posterior parameters are a weighted function of parameter estimates using posterior 

model probabilities (PMP), which describe how well a given model (with an associated 

Öõ) explain the data. If the dimension of Ö is ú	–that is we can choose from ú possible 

explanatory variables to fit our model–this implies that BMA needs to estimate 2é possible 

models to estimate every possible explanatory variable combination, a considerable 

computational undertaking. In practice, restricting estimation to a sample of the 

2é	possible model computations reduces model estimation to a manageable size.  

To give more structure to the problem, consider the problem of estimating a model 

of the form 

(10) P = B,,õ + ûõBõ + Zõ 

where we must choose which set of variables ûõ ∈ Ö  should be included in a given 

regression. Using Bayes Rule, we can calculate the posterior model probability–a measure 

of the reasonableness of the coefficients used–as 

(11) I *õ P, û = A P *õ, û A ü†
A P *õ

   

Where I *õ P, û  is the probability of the model given the data, or the posterior model 

probability; I P *õ, û  is the probability of the outcome variable given the model and the 

set of covariates and I(*õ) is the unconditional probability of the particular specification 
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of the model, *õ. Using an application of the law of total probability we can rewrite the 

posterior model probability as 

(12) I *õ P, û = A P *õ, û A ü†

A P *l, û A üg 	°¢
g£i 	

	   

This leads to an expression for the model weighted posterior distribution for any estimator, 

Bï as  

(13) I Bï P, û = I Bï *õ, P, û I *õ û, P"¢
õèt    

The equation above shows that given the posterior model probability (PMP) we can 

estimate I Bï P, û −the probability that any estimator is included in the true model. The 

left hand side of equation is referred to as the posterior inclusion probability (PIP) and is 

reported a number between zero and one. The PIP reflects our relative confidence that the 

true model contains any particular variable. For example, if a variable has a PIP value of 

1.0 this indicates that 100% of the weighted models include the variable Bï as a regressor, 

giving us relative confidence that the true model contains this variable. From the posterior 

distributions we also recover the posterior mean–the posterior average of the coefficient–

and the posterior standard deviation, which give us the weighted average and the weighted 

standard deviation of the coefficient estimates across estimated model.  

 

4. Data 

Our panel covers the sample period of 1970 – 2000. Country coverage varies based on data 

availability. Regarding variables considered, we include a large set of candidate variables 

that the literature has suggested as measures of trade frictions, making attempts to use the 
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data sources most commonly employed. However, when faced with a choice we decide in 

favor of variables that are measured over the entire sample period. Summary statistics for 

the data used are presented in Table 3- 1.  

 
4.1 List of Data Sources 

Measurement of Trade Intensity 

Real Bilateral Trade Flows For measures of trade intensity, we use the NBER-UN 

dataset of bilateral trade flows as described in Feenstra et al. (2005). The NBER-UN dataset 

offers several advantages: a long panel from 1962-2000, trade statistics covering all 

reported trading partners as collected by the United Nations, and construction using the 

more reliable import statistics when these are available. In the few cases where import 

statistics are not available, Feenstra, et al. use export measures as reported by the trading 

partner. Since these data primarily use import statistics, the trade intensity data measure 

CIF trade flows.  

 

Gravity Variables 

Distance The defining features of a gravity equation are a positive relationship between 

trading partners’ size and trade intensity and an inverse relationship between distance and 

trade intensity. Several measures of geographical distance have been proposed and used, 

with no consensus in the literature as to which one is preferred.50  We consider four 

measures of distance, with a goal that the variable selection methods will provide evidence 

for which measure best explains trade volumes. Each distance measure is provided by the 

																																																								
50 See Disdier and Head (2008) for an illuminating meta-analysis on distance in gravity models. 
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Centre d'Etudes Prospectives et d'Informations Internationales (CEPII) (Mayer, and 

Zignago, 2011). The first distance measure is the natural log of distance between most 

populated cities -- the most standard distance measure employed in the empirical gravity 

literature. The second is the natural log of distance between capitals. The next two 

measures were developed by Head and Mayer (2002).  These measures are (i) the natural 

log of weighted distance and (ii) the natural log of CES-weighted distance. They calculate 

weighted distance as 

(14) Lhl =
A6A§
A6Af

A6A•
A6Ag

LïT¶T∈l	ï∈h

t/¶
 

where IKIï measures the population of area É	in country p. For simple weighted distance, 

ß is set to 1. However, with CES weighted distance, ß	is set to -1, which intentionally 

corresponds to the most frequently measured elasticity between trade and distance. 

Intuitively, these weighted distance metrics measure distance along the dimensions that 

matter: since good will eventually need to travel to where demand is located, these 

measures attempt to account for different dispersions in population densities.  

 

Product of GDPs Data on country GDP are from the Penn World Tables, version 7.1 

(Heston, Summers and Aten 2012) and are expressed in constant US dollars. Our GDP 

product variable is constructed as the average of the logs of the two partners’ levels of real 

GDP.   
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Geographical Determinants of Trade 

Contiguous, Island, and Landlocked For geographical determinants of trade, we look 

at three widely used variables in the literature: (i) an indicator variable for whether the 

trading partners are contiguous–that is they are adjacent to each other; (ii) an indicator for 

whether either trading partner is an island, and (iii) an indicator for whether either trading 

partner is landlocked.  

 

Proxies for Cultural Distance 

Next we consider variables which proxy for, or are directly related to, cultural distance 

between trading partners. These determinants of trade rest on the affinity principle: 

countries find it advantageous to trade with countries that similar to themselves. Some of 

these variables, such as language, can be thought of informative of reduced trade costs 

through easier contracting, or reduced transaction costs. Other cultural variables might 

proxy for shared demand systems across populations.  

 

Share Official Language, 9%+ Speak Language A language indicator is often included 

in gravity models of trade. One way to justify its inclusion is in reducing contracting and 

coordinating costs between trading partners, what we refer to as the direct mechanism of 

reducing trade costs. Because language is a specialized skill, it is not necessary for the 

majority of population to speak the language in order to exploit this channel of reduced 

trade costs. Therefore, we consider the indicator for whether 9% of the population share a 
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common language as a test for the direct reduction of trade costs through language. There 

is some support in the literature for broadening the scope of this common covariate. Melitz 

and Toubal (2014) estimate a model which adds linguistic proximity, shared native 

language, and spoken language to the usual official-language indicator variable.  They find 

that the inclusion of these variables results in trade impacts twice as large as with official 

language alone. The second language measurement we consider is whether the trading 

partners share an official language. This variable captures a sense of shared cultural 

background between trading partners, either through similarity of culture, or through 

shared historical past, during which one would have had much time to develop trading 

linkages.  

 

Religious Distance  We consider religious distance as a proxy for shared culture 

between trading partners. Lewer and van de Berg (2007) construct a series of indicator 

variables for shared majority religion and find trading partners who share religion have 

more trade. We take a slightly different approach and construct a continuous metric of 

similarity of religion that we define as religious distance. We parameterize religious 

distance as the Euclidean distance between the percent of the population in 16 different 

religious groups in the two countries, where these groups are defined by the World Religion 

Dataset51. A distance of 0 indicates that the trading partners have populations which have 

																																																								
51 The World Religion Dataset is available at and gives the percent of population in each of the 16 different 
major religious groups for 192 countries covering 1945-2010. 
http://www.thearda.com/Archive/Files/Downloads/WRDNATL_DL2.asp 
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identical population fractions for each religious group; higher values of the distance 

variable indicate less religious similarity. 

 

Factor Endowments 

Human Capital, Physical Capital, and Arable Land To measure the factor endowment 

of human capital we use the Barro-Lee (2013) statistics on the average years of schooling 

for the population over the age of 15. For physical capital, we define factor endowment as 

a measure of physical capital per worker.  Using data from the Penn World Tables, we 

calculate the value of capital stock measured at the current PPP exchange rate, divided by 

the number of employed persons in the economy. Finally, for the factor endowment for 

arable land is defined as arable land per worker, using data from the World Development 

Indicators.  For each measure of factor endowments (human capital; physical capital; arable 

land), the factor intensity for the trading pairs p and o is defined as  

 (15) ®9
hl = ln	(©h9 ∗ ©l9) 

where Fit is the endowment of for country i in period t. Countries with similar factor 

endowments will have larger factor intensity measures.  

 

Impediments to Flows of Goods and Capital	

WTO/GATT Membership, Regional Trade Agreements Multilateral agreements, such 

as the World Trade Organization (WTO) and the General Agreement on Tariffs and Trade 

(GATT), are one method by which countries can commit to lower impediments to the flow 
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of goods and capital. These trade organizations are tasked with the goal of increasing world 

trade, thus it is natural to posit that membership in these organizations has a positive effect 

on trade volumes. Rose (2004) estimated the effect of WTO/GATT membership on trade, 

parameterizing membership as an indicator for whether either trading partner are included 

in a trade agreement, and an indicator for whether both partners are in the WTO/GATT. 

He finds positive effects of membership. Baier and Bergstrand (2006) use a panel 

framework to attempt to address the endogeneity of membership within a free trade 

agreement, and find that the trade gains from membership are even larger than those found 

by Rose.  Subramanian and Wei (2007) find that WTO membership has a strong 

heterogeneous impact on trade, with effects largest when both trading partners are 

members, and further find that sectors which did not liberalize experienced no trade gains 

to WTO membership. We use WTO/GATT membership published by Centre d’Etudes 

Prospectives et d’Informacions Internationales (CEPIIWe also include an indicator for 

membership in a regional trade agreement, the data for which is courtesy of de Sousa 

(2012).  

 

Common Currency A shared currency between trading partners is widely believed to 

encourage trade. This was one of the main justifications for the introduction of the Euro in 

1999. We use de Sousa's (2012) formulation of shared currency, which parameterizes the 

variable as equal to 1 if trading partners are part of an explicit or implied currency union. 

In an explicit currency union, the currency of one country circulates as legal tender in the 

second country. An implied currency union exists when one country maintains an explicit 
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peg at a fixed rate of their currency to another country's currency. Note this does not include 

any other type of peg besides a fixed and maintained peg. The effect of a common currency 

on international trade has received more scrutiny than any other variable.  Several 

influential papers using data from 2000 and earlier (i.e., not including the Euro zone) found 

that countries with a common currency enjoyed a level of trade from 110% higher to 577% 

higher, compared with countries that did not share a common currency.52 In their meta-

analysis of studies that estimated this parameter, Rose and Stanley (2005) consider 34 

separate studies that overall present 754 estimates of the common currency effect. They 

find that the mean estimate implies a 136% increase in trade, while the median estimate 

implies a 70% increase in trade.   

 

Capital Openness The degree to which capital can flow freely between countries may also 

affect trade. We utilize Chinn and Ito's (2007) index for financial liberalization, which is 

itself based on the IMF's Annual Report on Exchange Arrangements and Exchange 

Restrictions (AREAER). Their index is based on the series of binary indicator variables 

provided in the financial transactions of the AREAER, for a five year window in which the 

capital controls were not in effect. They define mℎUJVh,9 =
ïf,´	§,´∈¨

eR:](¨≠)
 where ¨≠ is the set of 

possible capital controls in year t. Their capital openness variable is the first standardized 

principal component of this share variable. We consider their openness index to be a 

																																																								
52 In roughly chronological order, these are Rose (2001): 235% higher; Rose and van Wincoop (2001), 
136% to 297% higher; Frankel and Rose (2002) 371% higher; Glick and Rose (2002) 110% higher; and 
Barro and Tenreyo (2007), 577% higher. 
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parsimonious dimension reduction of a series of measures of capital controls projected into 

one dimension.  

 

Exchange Rate Measurements Exchange Rate Volatility, and Exchange Rate 

Regimes: Fixed Exchange Rate, Crawling Peg, or Moving Band Nominal exchange 

rate volatility has been shown to affect trade flows in models where firms set prices in 

advance (Broda and Romalis, 2003) and it has been tested empirically quite broadly. 

Nonetheless, Anderson and Van Wincoop (2004) in their review of the literature remark 

that there is “substantial consensus that the impact of exchange rate volatility on trade is 

very small at best, with even the sign uncertain (pg. 719.)” There are various ways to 

parameterize exchange rate volatility; we model exchange rate volatility as the residuals 

derived from an F!ÆØ(1,3) process for yearly bilateral exchange rates.  

To measure the type of exchange rate regime, we use the IMF “coarse” 

classifications, as reported by Reinhart and Rogoff (2004) and subsequent updates. We 

define indicators for three exchange rate classifications: fixed exchange rate, crawling peg, 

and a moving band exchange rate regime. Each classification has two types: whether either 

trading partner employs this exchange rate regime, and whether both trading partner has 

this arrangement.  

 

Crises Episodes  Indicators for Debt, Banking and Currency Crises Debt, banking 

and currency crises disrupt and depress economic activity in general, therefore it’s likely 

that crises episodes have a large impact on trade flows between countries. We use the IMF’s 
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Systematic Banking Crises Database–which also contains data on currency and debt crises–

as developed by Laeven and Valencia (2008) and updated in Laeven and Valencia (2012). 

The authors define a banking crisis to exist if two conditions are met: 

“1) Significant signs of financial distress in the banking system (as indicated by 

significant bank runs, losses in the banking system, and/or bank liquidations)  

2) Significant banking policy intervention measures in response to significant 

losses in the banking system.” (p. 4) 

The authors record 147 banking crises since 1970. Their definition of a currency crisis is 

based on Frankel and Rose (1996). A currency crisis is defined as a nominal depreciation 

of the currency versus the US dollar of at least 30%. The authors find 218 events which 

qualify as currency crises during the time period of 1970-2011. The Laeven and Valencia 

definition of a debt crisis is based on information from Beim and Calomiris (2001), World 

Bank (2002), IMF reports and other agencies, and Sturzenegger and Zettelmeyer (2006). 

The authors find 66 events that qualify as sovereign debt crises during the period 1970-

2011. Crises events are rare by definition. Since the effect of crisis on trade may not be 

immediate, we define an indicator variable taking the value one if either trading partner 

experienced a crisis within the previous three-year window and zero otherwise.  

 

5. Results  

The main results are presented in Tables 3-2 and 3-3. All specifications include 

year, exporter, and importer fixed effects.  Table 3-2 presents the coefficient estimates for 

OLS, Lasso and Post-Lasso, while Table 3-3 presents the results for Bayesian Model 
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Averaging and Extreme Bound Analysis. We consider a variable to be Lasso robust if it 

remains non-zero after Lasso Bayesian shrinkage, BMA robust if it has a posterior 

inclusion probability (PIP) of greater than 0.5, and EBA robust if the estimate upper bound 

and lower bound do not contain zero.  

Table 3-2 compares OLS and Lasso estimates.  Of the 31 covariates in the candidate 

set of variables (excluding the intercept), OLS regression finds that 26 of these variables 

are statistically significant at the 5% level.  However, only 17 are Lasso robust. Table 3-3 

shows that 18 are BMA robust and 19 are EBA robust.53  Together, the three methods 

suggest a more parsimonious model of the determinants of bilateral trade than would be 

implied by standard application of OLS.  

 Figure 3-1 presents histograms of the distribution of estimated regression 

coefficients for the EBA method, where the vertical red line shows where zero sits in the 

distribution. These distributions can be highly informative; some variables, such as the 

landlocked indicator show a tight coefficient distribution, indicating across almost all 

reasonable specifications we can expect the coefficient estimate to lie within this range. 

Other variables, such as regional trade agreement, show a bimodal coefficient distribution, 

suggesting this parameter has heterogeneous effects that may depend on other included 

covariates.  

Figure 3-2 presents the posterior model probabilities from BMA, showing the most 

likely model specifications with their accompanying probabilities. The model with the 

																																																								
53 We consider a variable Lasso robust if it remains non-zero after Lasso Bayesian shrinkage, BMA robust 
if it has a posterior inclusion probability (PIP) of greater than 0.5, and EBA robust if the estimate upper 
bound and lower bound do not contain zero. 



	

	

173 

highest estimated posterior model probability has a 17% posterior probability, and includes 

19 variables (excluding the variables of banking crisis, crawling peg, moving band, fixed 

exchange rate, official common language, and currency crisis). The second most likely 

model has a 16% posterior probability, and includes all the variables in the previous model 

and includes a crawling peg indicator. The third most likely model 15% posterior model 

probability and includes all of the variables of the previous model, but includes an indicator 

for banking crises. Together, these three models have a cumulative probability of 48%. 

Note that after 70% cumulative model probability the models appear to fragment, with 

many models having small fractional posterior probabilities. 

 Figure 3-3 shows the shrinkage path of the Lasso coefficients. The y-axis presents 

the standardized coefficient value as the value of the shrinkage parameter, lambda, varies. 

The OLS solution corresponds to the left-most position on the x-axis. As the lambda 

parameter increases, and we move to the right on the x-axis, variables are shrunk towards 

zero. For any given value of lambda some coefficients will be estimated to be zero, thus 

for each value of lambda positive y-values correspond to variables selected via Lasso. The 

shrinkage path – that is the order in which variables are shrunk to zero – is informative of 

which variables have the largest explanatory power. For example, for very large values of 

lambda, log of weighted distance remains while many other variables have been shrunk to 

zero.   

 

Gravity Variables 

Estimation via Lasso we find two out of the four candidate variables were not shrunk to 



	

	

174 

zero: weighted distance and CES distance, with coefficients of -0.994 and -0.133 

respectively. In comparison, OLS considers distance and weighted distance highly 

significant, with the log of distance having a puzzling positive coefficient. If we add the 

Lasso robust coefficients we get a combined elasticity of distance on trade of -1.127. This 

is slightly larger than the average elasticity of -0.907 as found in Disdier and Head’s meta-

analysis of 1,467 gravity models. Disdier and Head find that papers using earlier data tend 

to have smaller coefficients, and an average coefficient size of 0.9, 0.96, and 0.95 in 

decades 1970s, 1980s and 1990s respectively. Because BMA and EBA methods are less 

robust to the inclusion of highly correlated variables, we chose only one of the two Lasso 

robust distance measures to test using BMA and EBA. Using Bayesian model averaging 

we estimate a coefficient on CES weighted distance of -1.113. The posterior inclusion 

probability (PIP) is 1, meaning that 100% of the weighted posterior models included 

distance in the final model. The posterior standard deviation of the estimated coefficient is 

0.007, indicating a small amount of variation across models. Finally using EBA, we find 

an upper bound and lower bound range of (-1.34 to -1.1), within the range of significance 

suggested by EBA. Lasso shrinks the product of GDPs to an estimated 0.559 from the OLS 

estimate of 0.729. Using Post-Lasso, the estimate rises to 0.636. BMA shows the product 

of GDPs to be a tightly estimated 0.739, very close to the OLS estimate. This variable is 

also robust under EBA with an estimated range of (0.75, 0.99). 

 

Geographical Determinants 

All of the geographical determinants variables are robust according to the three methods 
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used. OLS estimates the contiguous dummy’s coefficient as 0.614, while Lasso gives an 

estimate of 0.431. BMA agrees with the Lasso estimate, giving a mean estimate of 0.405 

which is on the lower end of EBA’s estimate range from 0.37 to 0.69.  

 

Proxies for Cultural Distance 

Both language variables considered remain non-zero after Lasso shrinkage. The coefficient 

on official language is estimated at 0.066 and the coefficient on 9% speak is estimated at 

0.296. Egger and Lassmann (2012), in a meta-analysis of 701 coefficients culled from 81 

published articles, find an average coefficient of 0.49, considerably smaller than our 

estimate, even when one combines the two different language estimates. Our Post-Lasso 

estimate, is estimated at 0.047 for official language and at 0.327 for 9%+ population, also 

smaller than the literature average. The estimate from BMA show a posterior inclusion 

probability of 0.031, meaning only 3.1% of the weighted posterior models included this 

variable. EBA, however, shows robustness of official language, with an estimated 

coefficient range between 0.19 and 0.78. This variable’s counterpart, 9%+ population, 

however, is robust according to BMA with an estimated PIP of 1, and according to EBA 

which shows an estimated range of 0.21 and 0.76.  

 Both former colony and common colonizer appear strongly robust in the Lasso 

regression model, with coefficients of 0.738 and 0.319 respectively. The post-Lasso 

estimate highly significant with slightly larger coefficients of 0.867 and 0.394. This 

estimate is roughly on par with the coefficient estimated by Frankel and Rose (2002), and 

with the coefficient estimate of 0.45 in Glick and Rose (2002). The BMA and EBA show 
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similar robustness of these covariates. Former colony is robust according to BMA with an 

estimated PIP of 1 and an estimated post-mean of 0.866. EBA gives the upper bound and 

lower bound range of (0.86,1.36). Common colonizer has an estimated PIP of 1 and a post 

mean estimate of 0.413, roughly similar to the post-Lasso estimate. The EBA estimate 

shows robustness with a rather large estimated range of (0.35 to 0.77). Though no meta-

analysis exists for this coefficient, our estimate for former colony seems smaller than the 

coefficient on this covariate estimated previously, such as in Rose (2004) who estimates a 

coefficient of 1.28 for post-1970, or Rose and van Wincoop (2001) who find a coefficient 

of 1.74.  

 The estimated Lasso coefficient on common legal origin is 0.25, and has a post-

Lasso coefficient of 0.286, which is nearly identical to the OLS estimate of 0.282. This 

estimate is similar in magnitude to others in the literature, such as 0.306 estimated by Head, 

Mayer and Ries (2010) or 0.410 estimated Felbermayr and Toubal (2009). The post-mean 

estimate from BMA is very similar in magnitude, estimated at 0.287, with an 

accompanying PIP of 1. The EBA range of (0.27,0.51) indicates this variable is considered 

robust according to that method. Religious distance has an OLS estimate of -0.209, and 

using Lasso we get a coefficient of -0.174. Given that this is an index, it’s hard to interpret 

the magnitude of this coefficient, but given that the standard deviation of this index varies 

is 0.69 in our sample, moving one standard deviation of religiously dissimilarity is 

predicted to decrease aggregate trade flows between partners by 11%54. The Post-Lasso 

coefficient estimate is -0.215 and is significant at the canonical levels. This variable is also 

																																																								
54 Assuming a marginal effect from 0 to 0.69.  
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robust according to BMA and EBA. BMA gives a posterior inclusion probability (PMP) 

of 1 with a post-mean coefficient of -0.216 and a standard deviation of 0.009. EBA further 

finds this variable robust and gives a range of (-0.3, -0.17). In comparison to other work in 

the literature, our findings suggest a stronger effect of religious similarity than previous 

estimates (Linders et al., 2005) who estimate a coefficient of 0.22 for (binary) religious 

similarity between trading partners. Some of this difference may be coming from the 

continuous versus discrete parameterization of this variable, however when taken at face 

value our estimate implies a larger response to religious similarity and trade.  

 

Factor Endowments  

All three factor endowment variables – human capital, physical capital, and arable land -- 

are statistically significant using OLS with coefficients of 0.742, -0.129, and -0.231 

respectively. Lasso selects only human capital and arable land, with coefficients of 0.389 

and -0.15. Using BMA, all three variables have PIP of 1, and EBA finds all three robust. 

Human capital shows a BMA post-mean of 0.75, and an EBA range from (0.78, 1.37), 

consistent with the OLS coefficient estimate. Physical capital shows a BMA post-mean of 

-0.132 and an estimated EBA range of (-0.18, -0.09). Finally arable land shows a BMA 

post-mean of -0.229 and an estimated EBA range of (-0.41, -0.27).  

 

Impediments to the Flows of Goods and Capital 

WTO/GATT and common currency indicator are robust across all three methods. 

Exchange rate volatility is robust according to BMA, but not when using Lasso or EBA. 
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Regional trade agreements and capital openness are not significant in any of the 

specifications. For capital openness, While OLS estimates a coefficient of -0.00298, Lasso 

estimation estimates a zero coefficient. This result is mirrored in the results for BMA, 

which estimates a zero PIP, and EBA, which estimates a range of coefficient values of (-

0.21,0.04), which is not robust according to the method. This was a surprising result, as the 

degree to which capital can flow freely seems to a priori affect real trade flows. 

 

WTO/GATT membership looks strongly robust across methods. OLS estimates a 

significant coefficient of 0.335, Lasso estimates a coefficient of 0.171, and BMA estimates 

post-mean of 0.348. This compares to the coefficient estimated by Rose (2004) in column 

4 of table 1 of 0.15, which is closer to the Lasso result than the OLS estimates. Regarding 

common currency, OLS estimates a coefficient of 0.448, which Lasso shrinks to 0.109. 

The BMA post-mean is 0.353 with a PIP of 1, and EBA estimates a range of (0.11, 0.84). 

Frankel and Rose (2002) estimate coefficients on currency union membership that range 

from 1.36 to 1.55, which are substantially larger than our estimates.  

 

Exchange Rate Measurements 

Using OLS, all of the exchange rate variables are statistically significant from zero. 

However, there is large agreement across methods, showing only either crawling peg being 

robust. Lasso selects only either crawling peg indicator as robust and the rest are set to 

zero. Using BMA, exchange rate volatility, and either crawling peg have PIPs of 1 with 

estimated coefficients of -0.012 and 0.153 respectively. Both fixed exchange rate has a PIP 
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of 0.893 with an estimated post-mean of 0.071 and either moving band has a PIP of 0.048. 

Using EBA only either fixed exchange rate and either crawling peg are robust, with 

estimated ranges of (-0.14, -0.02) and (0.06, 0.18) respectively. The differences in 

statistical robustness between OLS and the other methods are stark. We can only speculate 

as to the reason for the differences. Our hypothesis is that OLS may be fitting a significant 

amount of noise that it interprets as signal, which the other methods do not.  

 

Crisis Measurements 

Estimating using OLS we see that of the three crisis episodes considered—debt, banking, 

or currency—only banking crisis is significant at the standard levels, showing a positive 

coefficient of 0.0513. However, when estimating via Lasso and applying Bayesian 

shrinkage this variable is estimated at zero and thus is not considered robust according to 

Lasso. Using Bayesian Model Averaging, we see that the presence of a debt crisis has a 

PIP of 0, indicating no probability of inclusion in the true model. The PIP of banking crisis 

is on the cusp of robustness, showing a value of 0.481 and a post-mean of 0.021. Currency 

crisis shows a near-zero PIP of 0.006 and a post-mean indistinguishable from zero. 

Estimating via EBA, we see that neither debt crisis nor currency crisis are robust according 

to EBA. However, banking crisis is, showing a range of estimated coefficient values of 

(0.02,0.1). The positive coefficient on banking crisis is slightly puzzling, and given the 

window of this variable of 3 years, this may indicate that we are picking up the “rebound” 

period when trade returns to trend after a crisis.  
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 To be sure, this is not to say that crisis episodes considered here do not necessarily 

have an impact on trade. When estimating trade flows without using year fixed effects 

(available from the authors by request) banking and currency crises are consistently 

negative and robust. Our results do not preclude the possibility that all worldwide trade is 

depressed during periods of banking and currency crises. That is to say, it is possible from 

viewing these results that all countries lose out during banking and currency crisis episodes, 

not just those that experience the crises themselves. There appears to be some support for 

this thesis, as shown in Shelburne (2010) who looks at trade decline during the global 

financial crisis from 2007-2010. How much is worldwide trade depressed? Our results 

indicate quite a lot. EBA shows the coefficient on banking crisis varies from -0.52 to -0.3, 

even when controlling for exporter and importer fixed effects. This translates to a marginal 

effect of -40% to -25.9% per trading partner, which indicates almost implausibly large 

aggregate declines. For currency crisis, the coefficient varies from -0.44 to -0.23 indicating 

marginal effects on trade of -35.6% to -20.5%.  

6. Conclusion  

How do the three variable selection methods refine the set of variables that should define 

the workhorse empirical gravity model?   First, our result reject the robustness of roughly 

a fifth of the variables in the candidate set for which OLS does not reject the null 

hypothesis. Second, the set of robust variables is remarkably consistent across the three 

model selection methodologies.    

 Table 3-3 shows relative agreement across methods. Very few variables appear 

highly significant using one method while not very significant in others. In particular Lasso 
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and EBA show very similar results qualitatively, differing in parameter inclusion 

significance for only 4 variables.  

Table 3-4 show the results across methods. A mark in the table indicates that the 

variable is robust according to that particular method.  Specifically, for lasso, a mark 

indicates a non-zero coefficient.  For EBA, a mark indicates that the upper and lower bound 

do not include zero. For Bayesian Model Averaging, a mark indicates a 50% or great PIP.  

Overall, our results show that model selection methods that balance “fit” and “prediction” 

are straightforward to employ; give a consistent set of results, at least in the context of the 

gravity model; and that these methods represent the best current solution to the problem of 

variable selection in potentially a wide variety of contexts.  
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Tables 
Table 3- 1: Summary Statistics 

  mean sd min max 

Ln of Real Bilateral Trade Flows 17.0 2.97 8.14 26.4 

ln Dist 8.70 0.78 4.09 9.89 

ln of Dist between Capitals 8.70 0.78 4.09 9.89 

ln of Weighted Distance 8.71 0.77 4.74 9.89 

ln of CES Weighted Distance 8.70 0.79 4.66 9.89 

Product of GDPs 22.8 2.29 14.4 31.6 

Contiguous 0.025 0.16 0 1 

Either Island 0.042 0.20 0 1 

Either Landlocked 0.19 0.39 0 1 

Share Official Language 0.16 0.37 0 1 

9%+ Speak Language 0.18 0.39 0 1 

Former Colony 0.034 0.18 0 1 

Common Colonizer 0.060 0.24 0 1 

Common Legal Origin 0.37 0.48 0 1 

Religious Distance 0.70 0.69 0 2.14 

Human Capital (product) 1.54 0.40 0.099 2.48 

Physical Capital (product) 21.1 1.77 13.4 24.9 

Arable Land (product) -3.21 1.83 -14.3 2.13 

WTO/GATT 0.96 0.19 0 1 

Regional Trade Agreement 0.051 0.22 0 1 
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Common Currency 0.0046 0.068 0 1 

Capital Openness 0.21 0.26 0 1 

Exchange Rate Volatility 0.35 1.80 0.035 65.0 

Either Fixed Exchange Rate 0.49 0.50 0 1 

Both Fixed Exchange Rate 0.095 0.29 0 1 

Either Crawling Peg Exch Rate 0.53 0.50 0 1 

Both Crawling Peg Exchange Rate 0.090 0.29 0 1 

Either Moving Band Exch Rate 0.39 0.49 0 1 

Both Moving Band Exchange Rate 0.045 0.21 0 1 

Debt Crisis 3yr Window 0.056 0.23 0 1 

Banking Crisis 3yr Window 0.15 0.35 0 1 

Currency Crisis 3yr Window 0.19 0.39 0 1 
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Table 3- 2: OLS, Lasso, and Post-Lasso Models 

  (1)   (2)   (3) 

Variable OLS  Lasso   Post Lasso 

ln Dist 0.500***  0   

ln of Dist between Capitals 0.201  0   

ln of Weighted Dist -1.875***  -0.994  -1.690*** 

ln of CES Weighted Dist 0.0205  -0.133  0.534*** 

ln of Product of GDPs 0.729***  0.559  0.636*** 

Contiguous 0.614***  0.431  0.601*** 

Either Island 0.475***  0.337  0.476*** 

Either Landlocked -0.531***  -0.211  -0.520*** 

Share Official Language 0.0646*  0.066  0.0470 

9%+ Speak Language 0.311***  0.296  0.327*** 

Former Colony 0.855***  0.738  0.867*** 

Common Colonizer 0.396***  0.319  0.394*** 

Common Legal Origin 0.282***  0.25  0.286*** 

Religious Distance -0.209***  -0.174  -0.215*** 

Human Capital (product) 0.742***  0.389  0.707*** 

Physical Capital (product) -0.129***  0   

Arable Land (product) -0.231***  -0.15  -0.249*** 

WTO/GATT 0.335***  0.171  0.353*** 

Regional Trade Agreement -0.00572  0   

Common Currency 0.448***  0.109  0.481*** 
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Capital Openness -0.00298  0   

Exchange Rate Volatility -0.0120***  0   

Either Fixed Exch Rate 0.0414**  0   

Both Fixed Exch Rate 0.0949***  0   

Either Crawling Peg Exch Rate 0.177***  0.073  0.130*** 

Both Crawling Peg Exch Rate 0.0814***  0   

Either Moving Band Exch 
Rate 0.0758***  0   

Both Moving Band Exch Rate 0.0871***  0   

Debt Crisis 3yr Window -0.0159  0   

Banking Crisis 3yr Window 0.0513***  0   

Currency Crisis 3yr Window -0.0142  0   

Constant 0.0668***  0.064  0.0667*** 

Observations 152,213   152,213   152,213 

Notes:  Dependent variable is the log of real bilateral trade flows for all regression 
specifications. All regressions include year, exporter, and importer fixed effects. For OLS, t 
statistics are presented in parentheses. Robust standard errors.  T-statistics are hidden in this 
version of the table.   *p<0.05, ** p <0.01, *** p<0.001 
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Table 3- 3: Bayesian Model Averaging and Extreme Bound Analysis Baseline 
Results 

  Bayesian Model Averaging   Extreme Bound 
Analysis 

 PIP Post Mean Post SD  UB to LB Robust 

ln of CES Weighted Dist 1 -1.113 0.007  (-1.34, -1.1) y 

Product of GDPs 1 0.736 0.016  (0.75, 0.99) y 

Contiguous 1 0.405 0.031  (0.37, 0.69) y 

Either Island 1 0.488 0.026  (0.46, 0.77) y 

Either Landlocked 1 -0.514 0.047  (-0.67, -0.38) y 

Share Official Language 0.031 0.002 0.011  (0.19, 0.78) y 

9%+ Speak Language 1 0.364 0.017  (0.21, 0.76) y 

Former Colony 1 0.866 0.027  (0.83, 1.36) y 

Common Colonizer 1 0.413 0.023  (0.35, 0.77) y 

Common Legal Origin 1 0.287 0.011  (0.27, 0.51) y 

Religious Distance 1 -0.216 0.009  (-0.3, -0.17) y 

Human Capital (product) 1 0.75 0.068  (0.78, 1.37) y 

Physical Capital (product) 1 -0.132 0.012  (-0.18, -0.09) y 

Arable Land (product) 1 -0.229 0.018  (-0.41, -0.27) y 

WTO/GATT 1 0.348 0.025  (0.12, 0.41) y 

Regional Trade Agreement 0 0 0  (-0.18, 0.07) n 

Common Currency 1 0.353 0.062  (0.11, 0.84) y 

Capital Openness 0 0 0  (-0.21, 0.04) n 

Exchange Rate Volatility 1 -0.012 0.002  (-0.01, 0) n 



	

	

191 

Either Fixed Exch Rate 0.051 0.002 0.01  (-0.14, -0.02) y 

Both Fixed Exch Rate 0.893 0.071 0.031  (-0.1, 0.1) n 

Either Crawling Peg ER 1 0.153 0.015  (0.06, 0.18) y 

Both Crawling Peg ER 0.449 0.027 0.032  (-0.09, 0.07) n 

Either Moving Band ER 0.924 0.048 0.02  (-0.02, 0.11) n 

Both Moving Band ER 0.174 0.013 0.029  (-0.07, 0.14) n 

Debt Crisis 3yr Window 0 0 0  (-0.08, 0.04) n 

Banking Crisis 3yr Window 0.481 0.021 0.024  (0.02, 0.1) y 

Currency Crisis 3yr 
Window 0.006 0 0.002  (-0.06, 0.03) n 

Dependent variable is real bilateral trade flows between trading partners. All specifications include 
exporter, importer, year fixed effects. PIP is the “posterior inclusion probability” and reflects our 
relative confidence that the true model contains any particular regressor. Post Mean is the weighted 
average over the posterior estimates of the regressor. Post SD is the standard deviation of coefficient's 
posterior distribution. LB refers to highest value of the parameter in all of the models estimated, UB 
refers to the highest value of the parameter estimated. Leamer considers an estimate “robust” if its 
highest and lowest estimated value does not include zero. 
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Table 3- 4: Summary of Variable Robustness Across Methods 

  OLS Lasso BMA EBA 

ln Dist ▪  ▪ ▪ 

ln of Dist between Capitals   ▪ ▪ 

ln of Weighted Distance ▪ ▪ ▪ ▪ 

ln of CES Weighted Distance  ▪ ▪ ▪ 

Product of GDPs ▪ ▪ ▪ ▪ 

Contiguous ▪ ▪ ▪ ▪ 

Either Island ▪ ▪ ▪ ▪ 

Either Landlocked ▪ ▪ ▪ ▪ 

Share Official Language ▪ ▪  ▪ 

9%+ Speak Language ▪ ▪ ▪ ▪ 

Former Colony ▪ ▪ ▪ ▪ 

Common Colonizer ▪ ▪ ▪ ▪ 

Common Legal Origin ▪ ▪ ▪ ▪ 

Religious Distance ▪ ▪ ▪ ▪ 

Human Capital (product) ▪ ▪ ▪ ▪ 

Physical Capital (product) ▪  ▪ ▪ 

Arable Land (product) ▪ ▪ ▪ ▪ 

WTO/GATT ▪ ▪ ▪ ▪ 

Regional Trade Agreement     

Common Currency ▪ ▪ ▪ ▪ 
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Capital Openness     

Exchange Rate Volatility ▪  ▪  

Either Fixed Exchange Rate ▪   ▪ 

Both Fixed Exchange Rate ▪  ▪  

Either Crawling Peg Exch Rate ▪ ▪ ▪ ▪ 

Both Crawling Peg Exchange 

Rate 
▪    

Either Moving Band Exch Rate ▪  ▪  

Both Moving Band Exchange 

Rate 
▪    

Debt Crisis 3yr Window     

Banking Crisis 3yr Window ▪  ▪ ▪ 

Currency Crisis 3yr Window         
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Figure 3- 1: Distributions of parameter estimates generated by Extreme Bounds 
Analysis 

Figure shows histograms of coefficient probability densities from Extreme Bounds Analysis 
estimation. The vertical red line shows where zero lies on the x-axis. Blue lines show the kernel 
density smoothed histograms.  
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Figure 3- 2: Bayesian Model Averaging, Posterior Model Probabilities 

 

Figure shows posterior model probabilities and the associated variables included in the models. 
Variables shaded red have negative estimated coefficients; blue shading indicates positive 
estimated coefficients. Blank shading indicates variable not included in the given model.  
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Figure 3- 3: Shrinkage Path for Lasso Estimation 
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