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A QUANTITATIVE ANALYSIS OF THALAMOCORTICAL WHITE MATTER 

DEVELOPMENT IN BENIGN CHILDHOOD EPILEPSY WITH CENTRO-

TEMPORAL SPIKES (BECTS)  

EMILY LEINER THORN 

ABSTRACT 

Background: A number of epilepsy syndromes are characterized by sleep-activated 

epileptiform discharges, however drivers of this process are not well understood. 

Previous research has found that thalamic injury in early life may increase the odds of 

sleep-activated spikes. Benign childhood epilepsy with centrotemporal spikes (BECTS) is 

among the most common pediatric-onset epilepsy syndromes, characterized by sleep-

potentiated spike activity, a focal sensorimotor seizure semiology, and deficits in 

language, attention, and behavioral functioning. Though ictal and interictal electro-

clinical activity resolves during mid-adolescence, adverse psychosocial outcomes may 

persist. Previous findings from monozygotic twin and neuroimaging studies suggest a 

multifactorial pattern of disease and raise suspicion for structural changes in 

thalamocortical connectivity focal to the seizure onset zone, though this has not been 

explored.  

Objective: This research aims to (1) assess white matter differences in focal 

thalamocortical connectivity between BECTS cases and healthy controls using validated 

probabilistic tractography methods, (2) assess the association between spike burden and 

white matter connectivity focal to the seizure onset zone, and (3) evaluate longitudinal 

changes in thalamocortical connectivity across four cases.  
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Methods: 42 subjects ages 6-15 years were recruited between November 2015 and 

February 2018, including 23 BECTS cases and 19 healthy controls. Subjects underwent 3 

Tesla structural and diffusion-weighted magnetic resonance imaging (2mm x 2mm x 

2mm) with 64 gradient directions (b-value=2000) and 72 electrode sleep-deprived 

electroencephalographic (EEG) recordings. Seed and target regions of interest (ROIs) 

were created within each hemisphere using the Desikan-Killiany atlas, with the thalamus 

set as a seed ROI, and SOZ cortex and non-SOZ (NSOZ) cortex as target ROIs. 

Probabilistic tractography was executed using PROBTRACKX2 with 500 streamlines per 

seed voxel, 0.5 millimeter steps, and a curvature threshold of 0.2. All streamlines 

reaching the target ROI were summed and normalized by seed voxel count. Results for 

BECTS and healthy controls were plotted by age. The slope of thalamocortical 

connectivity versus age was computed for each group and compared between groups 

using nonparametric bootstrap analysis. Additionally, the association between SOZ 

connectivity and spike burden was assessed in a subgroup analysis using a linear 

regression model, controlling for age.  

Results: A significant difference in the developmental trajectory of thalamocortical 

connectivity to the SOZ in BECTS cases compared to healthy controls was found 

(p=0.014), where the increase in connectivity with age observed in healthy controls was 

not present in BECTS children. These results did not extend to NSOZ thalamocortical 

connections (p=0.192). Longitudinal results support these observations, where all BECTS 

cases who underwent repeat imaging (N=4) showed a decrease in thalamocortical 
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connectivity to the SOZ over the follow-up period. No relationship was found between 

thalamocortical connectivity and spike burden (p=0.840). 

Conclusions: These findings suggest that children with BECTS show subtle alterations 

in thalamocortical white matter development focal to the seizure onset zone. 

Thalamocortical connectivity to the SOZ does not appear to directly mediate non-REM 

sleep spike potentiation in BECTS. Limitations of this study include the potential for 

selection bias and limited power to detect sample differences. Additional research is 

needed to further characterize thalamocortical network changes and electrographic and 

neuropsychological correlates. 
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INTRODUCTION  

A clinical overview of BECTS 

Benign childhood epilepsy with centrotemporal spikes (BECTS) is among the 

most common pediatric epilepsies, accounting for between 8-20% of focal syndromes.1,2 

BECTS is named for its highly stereotyped electrographic pattern, characterized by sleep-

potentiated spike activity localizing to the centrotemporal electrodes on 

electroencephalography (EEG), which overlay the pre- and post-central cortical gyri.1,2 

Spikes may present bilaterally, lateralized, or show a shifting predominance.2 Children 

demonstrate a stereotyped focal seizure semiology and age-specific period of seizure 

onset and epilepsy remission.1-3 The classical seizure presentation begins with lateralized, 

distal upper extremity clonus that progresses to ipsilateral mouth or facial twitching, 

which may be accompanied by hypersalivation and expressive aphasia.2-5 Spatial 

mapping indicates that the inferior portion of the pre-and post-central gyri are associated 

with upper body motor and somatosensory activation, consistent with the previously 

described semiology (Figure 1b). Given the concordance between electrographic and 

semiological features, BECTS seizures are also eponymously described as the Rolandic 

march, named for the nineteenth-century anatomist who first described the division of the 

cortex into pre- and post-central gyri by the central sulcus, or fissure of Rolando (Figure 

1).7  
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Figure 1. Spatial mapping of the primary sensorimotor cortex. Top: Labeling of pre-

central (blue) and post-central (red) cortex separated by the central sulcus. Bottom: 

Visualization of the sensorimotor homunculus, corresponding to the spatial mapping of 

primary motor and somatosensory cortex.8 

 

BECTS cases are diagnosed primarily through a combination of clinical 

presentation and EEG-confirmed biphasic spike activity localizing to the centrotemporal 

scalp electrodes.9 Ictal and interictal spike activity occur predominately during the non-
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rapid eye movement (NREM) stages of sleep and may thus go unrecognized and 

underdiagnosed.5.9  

BECTS reaches peak incidence by ages 7-10 years and remission is typically 

confirmed by age 16 years.2,5,10 Disease duration and severity are difficult to estimate, 

due to a variable seizure presentation. Remission is often defined clinically as seizure 

freedom of at least one year sustained following medication taper.10 BECTS is 1.5 times 

more common in males than females.6 The disorder is also commonly accompanied by 

language, cognitive, and behavioral difficulties.1,11-13 

Poor performance specific to language and verbal memory cognitive domains are 

reported.11,12 Language appears to be significantly impacted early in disease progression 

and may predate diagnosis.11 Deficits in attention have also been reported, and the 

presence of Rolandic epileptiform activity on EEG is estimated to occur in 3.5 to 5.6 

percent of children with a diagnosis of Attention Deficit Hyperactivity Disorder.14,15 

More recently, disturbances in declarative memory have been found in children with 

BECTS.16 The sleep disturbances associated with active disease raise the possibility that 

memory consolidation is impaired by disruptions in NREM rhythms, however 

neuropsychological correlates to spike burden remain unconfirmed. 

Historically, BECTS has been presumed to share a genetic etiology similar to 

other pediatric epilepsies. This understanding has been challenged by a retrospective 

analysis of BECTS in a multicenter, prospective study, which included population-based 

cohorts in Denmark, Virginia, Norway, and Australia.17 Among the combined 1,952 twin 

pairs, BECTS was identified in 18 individuals, and found to be discordant in all 10 
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monozygotic and eight dizygotic twin pairs.17 Other first-degree relatives were likewise 

found to be unaffected, with five experiencing febrile seizures and one experiencing 

symptomatic epilepsy.17 The considerable potential for a multifactorial, environment-

mediated process in BECTS merits investigation of neuroanatomical biomarkers of 

disease, in addition to further exploration of genetic susceptibility.17,18 

There remains a paucity of evidence-based guidance for the clinical management 

of BECTS. During the stage of active disease, EEG studies display some preponderance 

of epileptiform activity during NREM sleep, however the frequency and duration of these 

electrographic abnormalities as well as the frequency and type of seizures experienced 

may vary considerably both within and between individuals.19 Furthermore, variation in 

neuropsychological measures of cognition, language, and executive functioning 

contribute to a complicated and unpredictable disease course.20 Children with BECTS 

have been shown to experience poorer psychosocial outcomes that extend beyond disease 

remission, in addition to suffering from the typical risks associated with uncontrolled 

epilepsy.11,21,22 In one study, 23% required speech therapy, while 35% were found to 

repeat a year in school, rates much higher than their non-BECTS peers.23 Given this 

complex clinical picture, the ILAE formally recommended the reclassification of 

‘benign’ as ‘self-limited’ in a 2010 special report published in Epilepsia.24   

There is disagreement in the literature concerning the seizure control effectiveness 

of available pharmacologic therapies. A review of randomized controlled trials found no 

short-term effectiveness in a six-month follow up among FDA-approved medications, 

and insufficient evidence on medium or long-term effectiveness.25 Medication may 
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further modulate seizure patterns and contribute adversely to neuropsychological 

function, limiting the study and identification of phenotypical predictors of disease 

outcomes. Previous research has suggested cognitive deficits were more likely in the 

presence of EEG discharges, multiple seizures, and medication.26 In a review of 96 

articles, it was found that nearly one third of authors did not recommend treating BECTS 

with anti-seizure medications (ASMs).27 Clinicians thus possess little evidence-based 

guidance to counsel individual families on individual risk of seizure recurrence or 

expected neuropsychological trajectory following a BECTS diagnosis. Further 

understanding of disease etiology and seizure prediction are urgently needed to provide 

information regarding potential therapeutic targets and to minimize the potential for 

iatrogenic harm. 

Epilepsy and the thalamus 

The thalamus is a centralized brain structure made up of two symmetric, almond-

shaped nuclei bundles, located superior to the mesencephalon with extensive cortical 

connections.30 Additionally, it serves as the primary relay center for sensorimotor 

information traveling between the cortex and brain stem and is intimately involved in the 

regulation of sleep physiology.30,31 It has also been demonstrated convincingly in 

experimental animal models to possess intrinsic self-oscillatory properties, and thus 

capable of hyperexcitability.30,31 Experimental observations also suggest a temporal 

relationship between thalamic firing and pertinent scalp EEG spike correlates.31 These 

intrinsic thalamic oscillations are furthermore tonically inhibited during wake and REM 
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sleep.30,31 Their activation during NREM sleep thus temporally co-occurs with the 

preponderance of electrographic abnormalities present in several epilepsy syndromes.  

The cause of this phenomenon is not well understood. Previous work has found 

that early thalamic injury may predispose patients to sleep-potentiated spikes, but an 

underlying mechanism has not been identified.32,33 Continuous spike-wave of sleep 

(CSWS), a childhood-associated epileptic syndrome, is characterized by regressive 

aphasia and continuous epileptiform activity during NREM sleep.33 Recent neuroimaging 

and neurophysiological studies have found associations between CSWS and early-life 

thalamic lesions.32-34 In a case-control study which stratified CSWS subjects according to 

sleep-potentiated epileptiform spike rate during NREM sleep, increases in spike burden 

were associated with increased odds of early developmental lesions visible on 1.5 Tesla 

Magnetic Resonance Imaging (MRI), and substantially greater odds of early-life thalamic 

lesions (14.0% vs. 2.1%).32 In a case series of nine children with CSWS and thalamic 

lesions on MRI, probabilistic tractography revealed white matter volume loss specific to 

thalamocortical radiations in four cases.33 In a prospective cohort of 14 subjects with 

early-life thalamic hemorrhage due to neonatal thrombosis, three were later observed to 

develop sleep-potentiated epileptiform activity on EEG or focal epilepsy without 

apparent NREM spike correlate, while five individuals were diagnosed with CSWS.34 

Notably, thalamic nuclei have demonstrated vulnerability to perinatal hypoxic-ischemic 

induced apoptosis in animal models and human cases.35  

 Studies of other common pediatric epilepsies further raise the possibility of links 

to the thalamocortical network. Childhood Absence Epilepsy (CAE)  has been linked to 
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genetic mutations in thalamocortical calcium channels.36 Differences in thalamocortical 

network white matter cytoarchitecture have likewise been described in temporal lobe 

epilepsies incident during childhood.37  

Today, more careful assessment of thalamocortical networks is possible using 

modern neuroimaging to infer white matter tracts non-invasively from diffusion MRI. 

White matter tractography 

Diffusion MRI enables noninvasive mapping of the fiber architecture of the white 

matter tracts in the brain using diffusion tensor imaging (DTI) and related models.38  DTI 

leverages the proton-rich water diffusion properties of different tissue to map differences 

in proton movement using unique MRI pulse sequences. 38,39 This is based on the 

assumption that water in free space diffuses in all directions equally, and when 

constricted by large hydrophobic white matter fiber bundles of the brain, flows primarily 

along the length of the fibers. 38,39 In DTI modeling, a tensor composed of the principal 

diffusion eigenvector and corresponding eigenvalue, as well as principal orthogonal 

eigenvectors and eigenvalues, are fit to each voxel. 38,39 Fractional anisotropy (FA), 

representing a scaled measure of variance between eigenvalues, is used as a measure of 

white matter strength.38,39 In white matter tractography, these or similar measurements 

are evaluated using advanced computer algorithms to infer spatial characteristics of fiber 

architecture.39,40 

Diffusion-based white matter tractography may be used to estimate clinical 

features of neurological disorders and white matter pathologies across development.40  
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Neuroanatomical features of development and BECTS 

The complex, likely multifactorial, etiological picture underlying BECTS, along 

with its transient occurrence in the setting of dramatic brain development, raises 

suspicion for the existence of structural alterations in brain connectivity. Recent advances 

in the resolution and integration of neuroimaging technology, including multimodal high-

density EEG and magnetoencephalography (MEG), 3T magnetic resonance imaging 

(MRI), post-acquisition algorithmic signal distortion correction, and probabilistic 

tractography models, have ushered in an era of research with new information regarding 

network-associated changes in neuroanatomy throughout normal development and 

disease.40-42 These tools have resulted in a robust characterization of neurotypical 

development related to grey and white matter maturation.40-42 Advances have also 

contributed to understanding of neuroanatomical abnormalities in a wide range of 

epilepsy syndromes.43 Fewer studies exist which have attempted to characterize pediatric 

epilepsies, in particular development-associated network changes in BECTS.  

Neurotypical development 

It is now understood that the human brain undergoes neuronal maturation and 

remodeling throughout childhood and adolescence, extending into young adulthood.44 

Animal models and human studies demonstrate that migration and maturation of 

subcortical thalamic radiations to the developing cortex extends into the post-natal 

period.45,46 Significant increases in myelination follow this process. In human cross-

sectional and longitudinal analysis, increases in white matter connectivity, a measure of 

fiber density and degree of myelination, are observed to continue between ages 4 and 20 
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years.47  Differences in the lateralization of white matter changes are unknown, though 

there is some suggestion that it is more prominent in the left-dominant hemisphere.48 

White matter maturation has also been associated with increases in cognitive functions, 

language, and semantic memory.49-51  

Early grey matter development-associated changes include thickening of the 

cortex as the cortical sub-plate is replaced by differentiation of cortical layers, as well as 

selective synaptic pruning, the latter of which has been implicated in a number of 

neuropsychiatric disorders.45,50 In longitudinal analysis, regionally-specific changes in 

cortical grey matter volume have been observed, including frontal and parietal increases 

until age 12, temporal increases until age 16, and occipital increases through age 20.47 

Potential sex dimorphisms in white matter development during childhood and 

adolescence remain poorly characterized.52, 53  

Microstructural white matter differences in BECTS 

Diffusion-weighted imaging techniques have been used to assess microstructural 

differences in white matter within pediatric epilepsies.54 Decreases in fractional 

anisotropy (FA) has been observed in children with BECTS.55-57 A cross-sectional DTI 

analysis of white matter maturation in 25 BECTS children compared to 25 age-matched 

healthy controls found decreased FA and increased diffusivity measures, particularly in 

left primary sensorimotor cortex, and ipsilateral to the EEG focus.56 Interestingly, FA 

was also found to correlate inversely with epilepsy duration.56 A second cross-sectional 

DTI study of microstructural differences involving 28 children with BECTS and 19 

healthy controls similarly found greater regional loss of FA in the hemisphere ipsilateral 
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to spike activity, as well as bilaterally in the cingulate gyrus.57 The FA in these regions 

were also found to be inversely associated with seizure frequency.57 It remains 

unconfirmed whether this finding relates to specific white matter tracts.  

A review of the existing literature yielded no known investigation of 

development-associated differences in thalamocortical connectivity focal to the seizure 

onset zone in children with BECTS.  
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SPECIFIC AIMS 

There is a demonstrable need to identify biomarkers of disease to aid in clinical 

decision-making and therapeutic targets in BECTS. Recent advances in multimodal high 

density electrography and neuroimaging provide a noninvasive opportunity to investigate 

neuroanatomical and neurophysiological biomarkers of disease that until recently may 

have been undetectable in traditional clinical settings.  

 This research aims to (1) compare development-associated changes in 

thalamocortical connectivity to the seizure onset zone (SOZ) and non-SOZ (NSOZ) in 

BECTS cases relative to healthy controls through the collection of 3 Tesla structural and 

diffusion-weighted MRI and validated probabilistic white matter pathway estimation 

techniques; (2) assess the association between thalamo-SOZ connectivity and NREM 

spike burden through the collection of electrographic data from high-density EEG; and 

(3) assess intrasubject changes in thalamocortical connectivity over development through 

the collection and analysis of longitudinal data in 4 BECTS subjects.  

We hypothesize that BECTS cases will demonstrate focal differences in the 

trajectory of thalamocortical connectivity over development in the SOZ, relative to 

healthy controls. We also hypothesize that NREM spike burden will be a positive, 

independent predictor of connectivity focal to the seizure onset zone. 

High resolution MRI, high-density multimodal MEG and EEG, and sophisticated 

pathway reconstruction techniques have the potential to reveal new information regarding 

microstructural white matter differences. Modeling network abnormalities in BECTS, a 

disease with stereotyped electrographic, semiological, and age-dependent patterns, has 
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the potential to identify biomarkers that may aid in the identification of therapeutic 

targets, effective treatments, and patient counseling. Results of this study may also have 

broad implications in the study and treatment of other forms of epilepsy. 
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METHODS 

 

Study population 

This research utilized data from an ongoing single-center, case-control study 

which recruited subject at a major academic medical center in Boston, Massachusetts 

between December 2015 and February 2018. Children ages 6-15 years were recruited 

using systematic chart review to identify cases and public advertising to recruit healthy 

controls. Case subjects were required to have a clinical and EEG-confirmed BECTS 

diagnosis, while control subjects were required to have no history of neurocognitive 

disease. Individuals who completed a baseline visit, which included multimodal MEG 

and EEG data acquisition, followed by MRI data acquisition, were invited to complete an 

optional repeat visit one year following the baseline visit.  

Data acquisition 

Electrographic data 

EEG data was collected by trained researchers using a 70 electrode cap, with  two  

temporal electrodes, as well as ground, reference, EOG, and EKG. Cap sizes included 

two centimeter head circumference intervals between 50 and 60 centimeters. All data was 

collected during a morning timeslot and subjects were requested to sleep fewer hours the 

evening prior to the visit. In preparation for monitoring, any electrodes which could not 

achieve below the targeted impedance value of 5 mV were documented. EEG electrodes 

were spatially encoded using a digitizing stylus. Rest data was collected in four minute 

intervals over 10-12 trials.  
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Figure 2. Schematic of EEG electrode coordinates. Spatial coordinates of the 70 

electrode EEG cap.  

 

All EEGs were manually reviewed by a board-certified pediatric 

neurophysiologist in bipolar, common average, and nasion-physical reference. 

Centrotemporal epileptiform spikes were manually marked and spike rate quantified per 

hemisphere per subject (.e.g. spikes per minute). 

Neuroimaging data 

Structural and diffusion imaging data for each subject was collected with a Prisma 

3 Tesla MRI scanner. Structural imaging data was collected according to the following 

parameters: root mean square average of four echo times (TE) = TE 2.69 milliseconds 

(ms), TE 3.55 ms, TE 5.41 ms , and TE 7.27 ms; repetition time (TR)=2530 ms; voxel 

size=1x1x1; slice thickness=1 mm; slices per slab=176; reconstruction matrix=256x256. 

Diffusion-weighted imaging was collected according to the following parameters: TE=64 
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ms, TR=5300 ms, voxel size=2x2x2; slice thickness=2 mm; 64 gradient directions with 

b=2000 s/mm2; reconstruction matrix=128x128. Spatial encoding was anterior to 

posterior. B0 imaging included TE=56 ms and spatial encoding posterior to anterior. 

Data processing 

The principal investigator of this study, a trained neurophysiologist and epilepsy 

specialist, independently reviewed all raw EEG data to classify sleep state. Spike rate per 

second during NREM Stage 2 (N2) sleep was calculated by hemisphere in active subjects 

with spike activity captured on EEG during the study. Sample characteristics of this 

subset are summarized in Table 2.  

MRI data underwent reconstruction, white matter segmentation, and cortical 

parcellation using Freesurfer v5.3 and FSL.58 This process also included correction for 

gradient nonlinearity during spatial encoding. Subsequently, data underwent signal 

distortion correction for motion, eddy currents, and field inhomogeneities. A trained 

radiologist was consulted to confirm the quality of corrected data. 

A method of simple partial volume modeling with Markov Chain Monte Carlo 

(MCMC) sampling, using FMRIB’s Bayesian Estimation of Diffusion Parameters 

Obtained Using Sampling Techniques (BEDPOSTX), was then executed to construct 

voxel-wise probability density functions (PDF) of model parameters. A detailed 

explanation of this technique can be found in Behrens et al. (2007).59 To summarize, 

BEDPOSTX is a method of representing the uncertainty in the principal direction of 

diffusion at each voxel by estimating the joint posterior distribution of polar coordinate 

parameters, 𝜃 and 𝜙. Diffusion-weighted voxels are segmented and associated parameters 
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evaluated by MCMC across gradient directions to estimate the marginal probability 

density functions (PDFs) of 𝜃 and 𝜙. The joint marginal posterior PDF, (𝑝(𝜃, 𝜙)) is later 

used in tractography. 

Region of interest (ROI) creation 

Diffusion seed and target ROI masks were created using labels from FMRIB’s 

Desikan-Killiany atlas fit to the diffusion imaging of each subject. Seed masks included 

left and right hemisphere thalamus labels, shown in Figure 4b. Target masks included left 

and right hemisphere seizure onset zone (SOZ) and non-seizure onset zone (NSOZ) 

cortical labels, shown in Figure 4b. Additionally, exclusion masks were created to 

encompass the hemisphere contralateral to seed and target ROIs, enabling separate 

evaluation of the hemispheres (Figure 3). All masks were independently visually 

inspected to confirm appropriate fitting.  

 
Figure 3. Example Desikan-Killiany atlas exclusion label. Example right hemisphere 

exclusion mask. 



 

17 

Probabilistic tractography  

Probabilistic tractography was executed using PROBTRACKX2, a component of 

FMRIB, with specification of appropriate ROI masks and local joint posterior PDFs. At 

each seed voxel, the principal direction of diffusion parameter was sampled from the 

local posterior PDF, and a .5mm step along this path was taken. The process was then 

repeated until termination of the streamline in the target mask or at 2000 steps. 500 

streamlines were executed per seed voxel to construct a spatial PDF of connectivity 

between the seed and target ROIs. Additionally, the contralateral hemisphere of each trial 

was set as an exclusion mask and pathway steps were restricted to a curvature threshold 

of .2. This process was repeated for each target ROI by hemisphere. In contrast to 

deterministic methods, this process enables continuation along paths that are not the most 

highly connected pathway, as well as paths which have focal areas of reduced 

connectivity. Notably, this methodology was validated using ROI-based thalamus seed 

and cortical targets.59 An overview of the tractography pipeline is shown in Figure 4. 

Data analysis 

Resulting tractography matrices for SOZ and NSOZ connectivity were used to 

extract the number of streamlines that successfully terminated in the target ROI and were 

normalized by the total number of streamlines sent per hemisphere:  

 

 

 



 

18 

𝐿𝐻𝑆𝑂𝑍   

=   
𝑛 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡𝑎𝑟𝑔𝑒𝑡 

𝑛 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑒𝑑 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠
 

𝑅𝐻𝑆𝑂𝑍   

=   
𝑛 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡𝑎𝑟𝑔𝑒𝑡 

𝑛 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑒𝑑 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠
 

 

𝐿𝐻𝑁𝑆𝑂𝑍   

=   
𝑛 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡𝑎𝑟𝑔𝑒𝑡 

𝑛 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑒𝑑 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠
 

𝑅𝐻𝑁𝑆𝑂𝑍   

=   
𝑛 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡𝑎𝑟𝑔𝑒𝑡 

𝑛 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑒𝑑 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠

 

Hemispheres were then averaged to yield three measures of connectivity:  

 

𝐶𝐼𝑆𝑂𝑍  =   
𝐿𝐻𝑆𝑂𝑍  +  𝑅𝐻𝑆𝑂𝑍  

2
 

𝐶𝐼𝑁𝑆𝑂𝑍  =   
𝐿𝐻𝑁𝑆𝑂𝑍  +  𝑅𝐻𝑁𝑆𝑂𝑍  

2
 

 

All statistical tests were performed for both SOZ and NSOZ connectivity indices 

(CI). A nonparametric bootstrap test was used to assess differences in connectivity slope 

by group, given that this approach requires fewer assumptions and is based exclusively 

on sample characteristics. Two groups of equal size to case (N=23) and control (N=19) 

groups were sampled from the union of both groups (Ν=42) and used to calculate a mean 

slope difference. This process was iterated over 10,000 trials to ensure convergence. The 

resulting observed confidence interval of slope differences was evaluated against the 

empirical slope difference between groups at an 𝛼=.05 level. Finally, linear regression 

adjusting for age was used to assess spike burden as a predictor of connectivity in 

BECTS cases with spike activity captured on EEG.  
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Figure 4. Thalamocortical tractography processing pipeline. A) High resolution 

structural and diffusion MRIs are acquired. B) Structural MRIs are used to generate 

cortical and thalamic labels (top). Diffusion MRIs are used to extract diffusion 

parameters per voxel from 64 gradient directions (example principal directions of 

diffusion for 25 voxels shown in inset). C) Distribution of diffusion parameters is 

repeatedly sampled to infer the probability of white matter tracts between ROIs. 
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RESULTS  

 

A total of 48 subjects were enrolled in the study. Three cases who did not tolerate 

diffusion imaging and one case with excessive motion artifact were excluded from 

analysis, yielding a final sample of 23 BECTS cases and 19 healthy controls. Sample 

characteristics can be found in Table 1.  

11 BECTS cases demonstrated spike activity on EEG and were included in the 

subset analysis of the association between connectivity and spike burden. Subset sample 

characteristics are summarized in Table 2. 

Additionally, 4 subjects repeated all study activities an average of 1.30 years (SD: 

.32) following the baseline visit. Changes in the connectivity indices over the follow-up 

period are summarized in Figure 8.  

 

Table 1. Descriptive characteristics of the study sample, N=42.  

 
Cases 

N=23 

Controls 

N=19 
𝑝‖ 

Mean age (SD) 11.3 (2.3) 11.0 (2.1) .09 

Male count (%) 18 (78.3) 9 (47.4) .04* 

Disease status count (%)    

Active † 15 (65.2) - - 

Seizure free ‡ 2 (8.7) - - 

Remission § 6 (26.1) - - 

†History of seizures in the previous 12 months ‡no history of seizures in the previous 12 months 

and ASM use, §no history of seizures in the previous 12 months and no ASM use, ‖𝛼=.05 
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Table 2. Sample characteristics of active cases with spike activity captured on EEG. 

 Male† Age‡ Bilateral spikes† 

Subset (N=11) 7 (63.6) 10.6 (9.1-14.7) 6 (54.5) 

†Count (%) ‡Median (range)  

Thalamocortical connectivity and disease 

Sex was found to be a statistically significant covariate predictive of group 

(p=.04), while age was not (Table 1).  

Visual analysis revealed an increase in thalamocortical connectivity to the SOZ in 

healthy control subjects that was not apparent in BECTS subjects (Figure 5A, B). This 

pattern was not observed in the NSOZ. 
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Figure 5. Relationship between thalamo-SOZ connectivity index and age. A) Visual 

analysis reveals a relationship between age and CI to the SOZ among healthy controls. 

Solid line indicates linear regression model fit, dashed lines indicate 95% confidence 

intervals. B) Visual analysis reveals no relationship between age and CI to the SOZ 

among BECTS subjects.  C) Bootstrap analysis reveals a significant difference between 

the slopes of the healthy controls and BECTS subjects (p=0.0123) D) Visual analysis 

reveals a no relationship between age and CI to the NSOZ among healthy controls or E) 

BECTS. Solid line indicates linear regression model fit, dashed lines indicate 95% 

confidence intervals.  F) Bootstrap analysis reveals no difference between the slopes of 

NSOZ CI between the healthy controls and BECTS subjects (p=0.19). 

Nonparametric bootstrap analysis showed a difference in the slope of 

thalamocortical CI to the SOZ across age between BECTS cases and healthy controls 

compared to the observed null slope difference frequency distribution (p=0.0123, Figure 

5A-C). There was no difference in the thalamocortical CI developmental trajectory to the 

NSOZ between BECTS and healthy controls (p=0.19, Figure 5D-F). Multiple logistic 
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regression analyses adjusting for sex did not find significant differences in group across 

CI predictors (p>0.05). 

Thalamocortical connectivity and spike rate during N2 sleep 

In a simple linear analysis of BECTS cases with spike activity captured on EEG, 

spike burden was not found to significantly predict SOZ CI measures (p=0.11). Age and 

sex were not found to be significant covariates.  

 
 

Figure 6. Relationship between thalamo-SOZ CI and spike rate. Among BECTS 

subjects, there is no relationship between CI and spike rate (p=0.11). Solid line indicates 

linear regression model fit, dashed lines indicate 95% confidence intervals. 

 

Case study of longitudinal changes in thalamocortical connectivity 
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 Four subjects returned for repeat MRI and EEG data collection sessions 

approximately one year after their initial evaluation (mean 1.3 years, range 1.1-1.8). To 

confirm the deviation from increased thalamocortical connectivity to the SOZ present in 

normal development that was observed in the cross-sectional datasets above, the change 

in thalamocortical CI to the SOZ in these four longitudinal BECTS subjects over 

development was evaluated. Consistent with the cross-sectional data, a decrease in 

thalamocortical CI to the SOZ in each of the longitudinal subjects with age was found 

(Figure 7).   
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Figure 7. Relationship between thalamo-SOZ CI and age among longitudinal 

subjects. Consistent with the cross-sectional data, connectivity decreases with age in 

BECTS subjects. 
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DISCUSSION 

 

In this study, healthy controls showed a positive developmental trajectory in 

global thalamocortical connectivity to the sensorimotor cortex with age. This finding is 

consistent with the well-established literature on white matter maturation during 

childhood and adolescence.47-49,51-53 This maturation is associated with the 

neuroanatomical features of increases in myelination, axon diameter, and density of white 

matter fiber tracts.47,51  

In contrast, no overall differences in thalamocortical connectivity indices were 

observed in BECTS cases compared to healthy controls. Notably, BECTS cases showed 

this aberrant developmental change with age specific to the seizure onset zone (i.e. 

primary sensorimotor cortex). NSOZ thalamocortical connectivity remained similar 

between groups across age. These findings support previous research demonstrating a 

lower fractional anisotropy in white matter focal to the seizure onset zone.55-57 

Longitudinal analysis of 4 BECTS cases each showed a reduction in SOZ connectivity, 

further supporting this finding.  

The development-associated difference in the trajectory of thalamic connectivity 

focal to the seizure onset zone is of particular interest in the context of disease 

progression. In this study, abnormal development-associated changes appear to occur as 

the natural history of disease advances toward remission. Findings corroborate the 

existing literature that reduced FA correlates with increases in the duration of epilepsy.55 

It is unclear whether this abnormality results from a primary disease process that occurs 

in parallel with other network drivers of disease resolution, or whether these changes 
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occur as a response to disease features. One possible explanation could be that the 

connectivity is qualitatively abnormal and could undergo remodeling or an increase in 

myelination to offset deficits, resulting in relatively undetectable macroscopic changes in 

connectivity over time. Given the previous observations that aberrant cortical thinning 

occurs between ages 8-14 in BECTS, a potential mechanism for white matter loss could 

be cortical pruning of thalamocortical projections to layer IV of the cortex, resulting in 

gradual distal regression toward subcortical nuclei according to neurological processes 

described in the literature.60 Apoptosis of reciprocal corticothalamic nuclei in cortical 

layer VI would likewise account for these observations.  

Decreases of FA focal to the pre- and post-central gyrus have been previously 

associated with increases in spike burden.55-57 Our findings that spike burden was not 

predictive of SOZ connectivity raises questions about the disease-modifying potential of 

epileptiform spikes, which merits further exploration.  

There are a number of limitations to this study. It should be noted, foremost, that 

we cannot rule out the potential that tractography analyses non-specifically captured 

projections originating in the cortex (i.e. corticothalamic pathways), though the seed 

specification of our model excluding the corticospinal tract pathway worked to limit this. 

Regardless, these processes are intimately linked during development, and further 

research is required to quantify the unique structural features of these pathways as well as 

the temporal directionality of changes in connectivity.   

Additional limitations include power to detect sample differences and potential 

confounding. The confounding of covariates such as sex cannot be ruled out, given the 
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discordant literature on development-associated sex dimorphisms in focal white matter 

pathways.52,53  

A limited sample size likewise precluded further subset analysis of spike rate by 

lateralization of spike activity. It is possible that spike burden could vary between 

bilateral, and left or right lateralizing phenotypes. The case-control design of this study 

also potentially limits its generalizability to the BECTS and healthy control populations. 

Recruitment of cases from a single outpatient center and controls willing to undergo 

imaging cannot fully eliminate the potential for selection bias.  

An important direction for future research is the contemporaneous assessment of 

peri-thalamic and peri-cortical measures of white matter connectivity over time. Further 

case-specific longitudinal analysis over the active and remission periods of disease would 

likewise help to validate group findings. Future studies exploring other measures of 

disease stage, including time from last seizure, with respect to connectivity, could help to 

assess the reliability of spike burden correlates. 

One area not examined in this study, but which merits further investigation, is the 

relationship between thalamocortical connectivity and measures of cognition, language, 

and behavior. A structural basis for neurocognitive features of BECTS has not been 

delineated. The aberrant thalamocortical trajectory specific to the seizure onset zone 

observed in this study, taken together with the constellation of impairments that 

characterizes disease pathology, suggests multiple spatially- and temporally-dependent 

structural and physiological network aberrations. Further study of neuropsychological 
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correlates and changes in connectivity across the thalamocortical network could further 

identify microstructural biomarkers of BECTS onset and progression. 
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