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MODERN APPROACHES TO SEPSIS – EVOLVING DEFINITIONS, 

CLINICIAN ROLES AND AI-BASED DIAGNOSTIC AIDS 

JASON MATHIAS 

 
ABSTRACT 

 Sepsis is an ongoing concern in critical care. It is hard to quickly detect, and rapid 

deterioration of a patient into septic shock causes death in around 30% - 50% of patients, 

while survivors may live with organ damage and shorter lifespans. Traditional methods 

of detection require long laboratory tests and clinician vigilance, which put a strain on 

hospital resources.  

 New advances in machine learning offer an alternative – using algorithmic 

analysis in real-time to watch for a deteriorating patient state. The use of readily available 

data – heart rate, respiratory rate – combined with electronic medical records and fast 

laboratory tests presents an opportunity for early detection of sepsis, which can 

potentially make great strides in minimizing damage to patients.  

 A variety of algorithmic methods have been proposed by researchers, and 

research so far has been promising. Algorithms inretrospective studies have performed 

equal or better to standard protocols such as SIRS or SOFA. Some promising research 

even presents the opportunity to approach sepsis diagnosis and treatment in an entirely 

new manner. At the present stage, however, the field is at too early a stage for use in a 

clinical environment. This review intends to review some prominent types of machine 

learning algorithms, as well as discuss current concerns regarding machine learning-

based detection support systems (ML-DSS).  



 

 vii 

 

TABLE OF CONTENTS 

 

TITLE……………………………………………………………………………………...i 

COPYRIGHT PAGE……………………………………………………………………...ii 

READER APPROVAL PAGE…………………………………………………………..iii 

DEDICATION ................................................................................................................... iv 

ACKNOWLEDGMENTS .................................................................................................. v 

ABSTRACT ....................................................................................................................... vi 

TABLE OF CONTENTS .................................................................................................. vii 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES ............................................................................................................ x 

LIST OF ABBREVIATIONS ............................................................................................ xi 

INTRODUCTION .............................................................................................................. 1 

SEPSIS MECHANISMS .................................................................................................... 4 

ISSUES OF SEPSIS DIAGNOSIS AND TREATMENT .................................................. 5 

BIOMARKERS AS A TOOL OF DIAGNOSIS ................................................................ 7 

COSTS OF SEPSIS TO PUBLIC HEALTH .................................................................... 10 

EVOLVING DEFINITIONS OF SEPSIS ........................................................................ 11 



 

 viii 

TREATMENT OF SEPSIS............................................................................................... 16 

COMPUTER-BASED DETECTION SYSTEMS ............................................................ 17 

MACHINE LEARNING : A PREDICTIVE, RATHER THAN REACTIVE, TOOL..... 19 

SEPSIS PREDICTION WITH MACHINE LEARNING................................................. 20 

A GROWING TREND OF ROBUSTNESS ............................................................ 28 

MACHINE LEARNING FUNDAMENTALS ................................................................. 29 

LIMITATIONS TO MACHINE LEARNING ................................................................. 32 

ADVANCED MACHINE LEARNING ALGORITHMS – DEEP LEARNING, HIDDEN 

MARKOV MODELS ....................................................................................................... 34 

HIDDEN MARKOV MODELS ............................................................................... 34 

DEEP LEARNING ................................................................................................... 37 

REINFORCEMENT LEARNING............................................................................ 39 

CLINICIAN DISTRUST AND ALGORITHMIC TRANSPARENCY .......................... 42 

USABILITY AND ALARM FATIGUE .......................................................................... 44 

FUTURE IMPLEMENTATIONS .................................................................................... 45 

CONCLUSION ................................................................................................................. 46 

REFERENCES ................................................................................................................. 49 

VITA ................................................................................................................................. 61 

 

  



 

 ix 

LIST OF TABLES 

 

 

Table Title Page 

1 Known markers to differentiate sepsis from non-infection 

forms of SIRS, with known limitations. 

10 

2 SOFA score categories and criteria. 15 

   

   

   

   

 

 

  



 

 x 

LIST OF FIGURES 

 

 

 

Figure Title Page 

1 Example of an algorithmic guideline for nurses in 

Tedesco, et al. 

6 

2 Sample probability table of transitions between weather 

states. 

35 

   

   

   

   

 

  



 

 xi 

LIST OF ABBREVIATIONS 

 

BU ............................................................................................................ Boston University 

CRP ......................................................................................................... C-Reactive Protein 

HMM................................................................................................. Hidden Markov Model 

MAP ................................................................................................. Mean Arterial Pressure 

MFA .................................................................................................... Master’s of Fine Arts 

ML-DSS .............................................. Machine Learning-Based Decision Support System 

NLP ........................................................................................ Natural Language Processing 

PCT .................................................................................................................. Procalcitonin 

SIRS ............................................................ Systematic Inflammatory Response Syndrome 

SOFA/qSOFA .............................. Sepsis-Related Organ Failure Assessment/Quick SOFA 

WBC ......................................................................................................... White Blood Cell 

 

 



 

1 

INTRODUCTION 

 

 Sepsis is a prevalent concern in critical care scenarios, and a leading cause of 

mortality for hospitalized patients. Tromp et al. estimates that 2% of all hospitalized 

patients are diagnosed with severe sepsis or septic shock.1,2 Later stages of sepsis have 

high morbidity, and early detection is very important for chances of good outcome. While 

specific definitions of sepsis are controversial, the mechanism of sepsis occurs from 

infection. A pathogen infects the bloodstream, triggering a systemic inflammatory 

response. If the response is large enough to become dysregulated, that can lead to organ 

failure in patients3. Upon onset of sepsis in an in-hospital setting, there is a 20-30% rate 

of mortality. Patients that survive to discharge often have increased risk for death in the 

following months and years, and can endure mood disorders and impaired physical or 

neurocognitive functioning4.  

 Unfortunately, sepsis detection is a complicated process. There is still no single 

unifying biomarker that clearly demarcates sepsis5 – rather, an evolving set of criteria, 

combining biomarkers and physiological symptoms, is used to diagnose the condition as 

rapidly as possible to allow for speedy administration of treatment. Some of these criteria 

look for consequences of organ damage brought about by inflammation and ischemia6, 

while others are assessments of visible symptoms such as changes in body temperature or 

respiratory rate. An example of this set of criteria is the Sepsis-III definition, which takes  

a series of physiologic parameters (heart rate, respiratory rate, etc.) and plugs them into 

an equation, a high enough score indicating a sepsis condition7. 
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 Making sepsis diagnosis more complicated is the high human resource 

requirement – A clinician has to take a series of vital signs, and using these values, 

calculate a ‘score’ for whether the patient shows symptoms of sepsis. Due to the 

complexity of the clinical setting, this can be a strain on already strained resources. Given 

this condition, there has been an interest in using computer technology as a diagnostic 

aid. There have been successful attempts to automatically sense when vital signs 

correspond to the guidelines of a protocol like Sepsis-III, but there is a limit to this 

usefulness – these systems will only alert at the “sicker stages” of onset of sepsis, rather 

than when a patient is in the early stages.  

 Sepsis has a high mortality rate, but even sepsis survivors face additional 

morbidity. Re-hospitalization occurs within a year for the majority of survivors,8 and for 

patients with sepsis and organ dysfunction, there is a 74% chance of mortality within 5 

years9. While having a computer process alert clinicians of sepsis is useful (as it could 

potentially decrease sepsis severity and therefore lower mortality rates), it would be more 

ideal to have a system that could predict sepsis before it presents in the patient, to prevent 

major organ damage and further increase patient morbidity. 

 With the recent rise in machine learning, there has been an interest in applying 

advanced algorithms to create a Machine Learning-Based Diagnostic Support System 

(ML-DSS) from biomarkers and readily-available Electronic Health Record (EHR) 

recordings. In theory, a properly trained algorithm could give a confidence level of how 

likely it is that the patient is becoming septic, before manual scores would even show a 

sepsis diagnosis. A few promising retrospective studies have been conducted, as well as 
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some live clinical studies. While the initial results are promising, more research should be 

conducted before machine learning algorithms are robust enough – and integrated into 

clinician workflow well enough – to be regularly used in an Emergency Department or 

Intensive Care Unit.  

 The purpose of this thesis is for clinicians with minimal computer programming 

knowledge, and computer science professionals with minimal clinical experience. It is 

intended to be a primer on the current state of sepsis, diagnosis and treatment paradigms 

for sepsis, an introduction to machine learning algorithms, and an exploration of issues 

related to machine learning implementation. 

 One important limitation of note is that definitions for sepsis recently 

changed in 2016, and as such, academic literature may not be comparable when 

discussing the same subject. Even literature after 2016 may refer to the older SIRS-based 

definition of sepsis. Until 2016, Sepsis was defined as a pathogenic infection in the 

bloodstream, combined with the host response (SIRS)10. In 2016, the condition was 

redefined as a “life-threatening organ dysfunction caused by a dysregulated host response 

to infection.”7 In both definitions, the presence of a pathogen in the blood causes an 

immune response, and since the bloodstream allows for fast movement throughought the 

body, the potential for pathogen damage (and immune response) becomes pervasive 

throughout the body. Prior to 2016, the presence of organ dysfunction was considered 

‘severe sepsis’, and where possible, this article uses the definition of ‘severe sepsis’ to 

minimize confusion.  
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SEPSIS MECHANISMS 

While the complete mechanisms for symptoms of sepsis are not fully understood, 

part of the mechanism is a bodily response that causes low oxygen perfusion to necessary 

tissues, which leads to impaired organ function11. Cytokine release at the presence of 

infection causes an immune response12, as well as an increase in coagulative response, as 

well as inhibition of fibrinolysis.13 This is normally intended to isolate a pathogen14 - if 

an infection is limited to a small, separated area, low oxygen perfusion works to induce 

cell death, which starves the infection of a nutrient supply. If this system is enacted 

throughout the body, however, the effect is not pathogen isolation, but potentially 

widespread damage. If not treated, this can lead to organ failure, and the onset of septic 

shock, which is defined as low blood pressure brought on by sepsis15.  

Since the underlying mechanism for sepsis is an infection in the bloodstream, the 

gold standard for sepsis diagnosis remains the presence of identifiable bacteria in the 

bloodstream16. However, pathogens only present in blood cultures only about 30% of the 

time17, so looking for proof of infection can be inconclusive. One issue of complexity is 

that there are multiple pathways that can lead to sepsis – for some patients there is an 

immune-mediated response, whereas in others there may be an immune suppression or an 

accelerated lymphatic apoptosis15. As such, sepsis can have a variety of symptoms and 

markers, but the absence or presence of a specific biomarker may not actually be 

indicative of sepsis. 
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ISSUES OF SEPSIS DIAGNOSIS AND TREATMENT 

There is a substantial increase in mortality from sepsis if the patient is diagnosed with 

sepsis while in a hospital setting. If sepsis patients are separated by whether they Present 

on Admission (POA) or are diagnosed while in the hospital setting (NPOA, or “Not 

Present on Admission”), the POA have about a 15% mortality rate, while NPOA patients 

have a significantly higher mortality rate of about 35%18. To some extent, this is because 

sepsis is difficult to diagnose – SIRS may be a symptom of an impending myocardial 

infarction rather than a bloodstream infection, which would require different 

treatments.18  

For rapid diagnosis, clinicians will often calculate a score, either the Systemic 

Inflammatory Response Syndrome (SIRS)19 score or the Quick Systemic Organ Failure 

Assessment (qSOFA)7 score. Manual paper-based aids are sometimes used for nurses to 

calculate a diagnostic SIRS or SOFA score, which can be time-intensive. An example is 

shown as figure 1.20  
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Figure 1. Example of an algorithmic guideline for nurses in Tedesco, et al. Nurses were encouraged to fill out the 

tool by hand, as a way to assess the severity of sepsis in a patient. 

  



 

7 

 

Human error and logistical difficulty add to the issues of sepsis treatment. The 

Surviving Sepsis Campaign recommends a series of four steps to be completed within 3 

hours of admission of a patient with severe sepsis: “(1) measure the serum lactate level, 

(2) obtain blood cultures before antibiotic initiation, (3) administer broadspectrum 

antibiotics, and (4) infuse 30 mL/kg of an intravenous (IV) crystalloid solution in patients 

with hypotension or a lactate level of 4 mmol/L or greater” (Bruce et al)21. Steps that 

require multidisciplinary coordination (such as antibiotic and fluid administration) are 

often not performed in that timeframe – and since one of the most important factors for 

prognosis is timely treatment, any delays can increase mortality rates. In a study of 

interprofessional coordination with regards to sepsis treatment administration, when 

compliance with the three-hour window improved, mortality from sepsis decreased 

significantly, even in a time of increased sepsis diagnosis.20 

 

BIOMARKERS AS A TOOL OF DIAGNOSIS 

To complicate matters, many of the symptoms of sepsis can present in other 

conditions such as pancreatitis22. Early signs of sepsis include symptoms such as fever 

and tachycardia, which, while indicative of sepsis, are also indicative of other non-

infection-based systemic inflammatory response syndromes.23 Symptoms could also be 

indicative of infections that have not gotten into the bloodstream - In one study, 

automated screening tools were implemented to flag any patients that met criteria for 
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SIRS. When the results were analyzed, only 44% of the patients ended up having sepsis, 

though a large percentage of the non-sepsis conditions were some sort of infection.24 

Since it is important to confirm the presence of pathogens, laboratory biomarkers 

are often used for diagnosis. 178 biomarkers have been proposed for sepsis diagnosis25, 

though it is important to note that no single biomarker exists that is specific only to 

sepsis. One reason so many biomarkers have been proposed is that sepsis has a complex 

pathophysiology – in addition to inflammation, coagulation, complement system 

activation and apoptosis are all part of sepsis pathophysiology, so markers have been 

proposed related to these, and other, steps in the process.25  

A few promising biomarkers stand out – Procalcitonin, Hyperlactatemia, and C-

Reactive Protein. Some of these biomarkers stand out for their specificity and sensitivity, 

while others do so because of their availability in the hospital setting. 

Procalcitonin23 has been proposed as a good potential biomarker, though its 

presence alone cannot indicate sepsis. Procalcitonin is virtually undetectable in healthy 

individuals, but as it is a prohormone for calcitonin, which is released as a response to 

bacterial infection, Procalcitonin levels can be used to measure bacterial infection.26 

Procalcitonin, is not highly specific or highly sensitive to sepsis25 (increased levels are 

present in other inflammatory responses such as trauma27 and major surgery28), but 

procalcitonin nevertheless has seen extensive use as a diagnostic tool.  

CRP is primarily produced by hepatocytes as a response to IL-6,29 but in 

comparison to an IL-6 laboratory test, CRP is more readily available. The presence of 

CRP is correlated with organ failure, to the point that persistently high levels of CRP 
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correlate with poor prognosis.30 However, CRP is also not specific to sepsis, and is 

increased in other inflammatory diseases.10 

Hyperlactatemia6 is another promising biomarker – lack of oxygenation causes 

tissues to produce lactic acid as a byproduct of anaerobic metabolism, so high levels of 

lactic acid can be monitored to monitor for the effects of SIRS. 

 In the case of neonates, cytokines and cell-surface molecules tend to be over-

expressed, so diagnostic tools sensitive to these signals provide a promising option for 

neonatal sepsis diagnosis16. Two markers that are promising for neonates are IL-12, and 

Interferon-produced Protein 10 (IP-10).25  

In a review of biomarker literature, Pierrakos et al. suggest that perhaps 

biomarkers are more effective for ruling out sepsis, rather than for diagnosing.25 

Specifically, PCT has a high negative predictive value for sepsis – that is, if levels of 

PCT are not high, it is unlikely that the patient has sepsis.31 

Other markers, arising from various effects of sepsis, are presented in Table 1. For 

a more complete picture, Pierrakos, et al., in their review of biomarkers, present a series 

of more than 170 biomarkers, categorized based on aspects of sepsis they are designed to 

monitor.25 
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Table 1. Markers used to differentiate sepsis, along with limitations. From Bloos, Reinhart et al10. 

 

COSTS OF SEPSIS TO PUBLIC HEALTH 

In 2013, Sepsis represented the most expensive condition treated in the United 

States.32 At roughly 23.7 billion dollars, it represented more than 6% of the total costs of 

all hospitalizations. A large part of the cost stems from re-hospitalizations – in the state of 

California alone, between 2009 and 2011, re-hospitalization due to sepsis represented a 

$500 million cost annually, more than the re-hospitalization costs of acute myocardial 

infarction and congestive heart failure combined.33  

Survivors of sepsis suffer additional morbidities. There is a five-fold increase in 

5-year mortality for survivors of an index sepsis episode.34 60% of sepsis survivors are 
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re-hospitalized within a year, most often due to infection. Of those that are re-

hospitalized, there is a 17% mortality rate.8 For infection-related rehospitalizations, more 

than half of the cases were reported to be due to an unresolved or recurrent infection 

relating to the index sepsis event.35  

Costs for both index sepsis cases and re-hospitalizations are high. In a 

retrospective analysis of costs between 1995 and 1998, the average cost of an index 

hospitalization for sepsis with organ dysfunction was about $27,000, with patients 

requiring an ICU visit averaging about $36,00036. (It is important to note that costs are 

highly variable. The standard deviation for a mean of $27,000 was $55,000, reflecting the 

variable nature of individual costs depending on patient conditions such as co-

morbidities).  

For re-admissions, costs increased by another $11,000 to $25,000, depending on 

whether the patient survived past 12 months.36 A similar study conducted around 2011 

data showed a similar cost of $25,000 for hospital readmissions, with the most common 

(22%) cause of readmission being sepsis, though it was not clear whether this was due to 

a recurrent sepsis or new infection.37  

 
EVOLVING DEFINITIONS OF SEPSIS 

The definition of a clinical diagnosis of sepsis is not universally agreed upon. 

While the gold standard of Sepsis remains the proof of infection in the bloodstream, the 

clinical presentations of the condition are varied and can be different depending on 

factors such as age and compounding factors such as alcohol use disorder.  
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In 1991, SIRS was defined by Bone et al. 22 as a clinical standard to diagnose 

Sepsis. Sepsis was defined as SIRS with a suspicion or finding of blood infection, which 

came to be known as the “Sepsis-1” definition.  

SIRS is defined as a patient having two of the following four conditions: 

“tachycardia (heart rate >90 beats/min), tachypnea (respiratory rate >20 breaths/min), 

fever or hypothermia (temperature >38 or <36 °C), and leukocytosis, leukopenia, or 

bandemia (white blood cells >1,200/mm3, <4,000/mm3 or bandemia ≥10%)” (Marik et 

al)19. A diagnosis of sepsis requires proof or a suspicion of infection, as well. There are 

three states of sepsis within Sepsis-I – ‘sepsis’, ‘severe sepsis’ (organ dysfunction 

brought upon by sepsis), and ‘septic shock’ (low blood pressure brought on by sepsis).  

One of the advantages of Sepsis-1 was that its diagnosis required largely external 

criteria – heart rate, respiratory rate, and temperature can all be readily assessed via a 

machine or clinician observation, leaving only white blood cell count (WBC) as a test 

that required laboratory examination. However, this was not without consequence - while 

SIRS became widely standardized for the diagnosis and treatment of sepsis, it has been 

criticized for a low specificity.38 Non-sepsis conditions such as ischemia, tissue injury, 

and pancreatitis can present with SIRS, 22 and since the recommended treatment for each 

condition is not the administration of antibiotics, there was concern of potential 

misdiagnosis and treatment that does not improve the patient’s condition. In addition, in 

one study, 13% of patients presented as negative for SIRS, yet still had sepsis.39  

In 2016, an attempt to address this issue of low specificity was made by the 

Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care 
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Medicine (ESICM). The new definition, known as Sepsis-III, largely abandons SIRS as a 

criteria19. Sepsis-III redefines sepsis as “life-threatening organ dysfunction caused by 

dysregulated host response to infection”7. Before this definition, ‘Sepsis’ was defined as 

the presence of bloodstream infection and SIRS, while the presence of organ dysfunction 

was considered ‘severe sepsis’. With the new Sepsis-III definition, ‘severe sepsis’ has 

largely become renamed to ‘sepsis’, and infection without organ dysfunction is 

sometimes referred to as ‘pre-sepsis.’40  

In re-casting sepsis as a condition of organ dysfunction (as opposed to 

inflammatory response), SIRS detection was replaced with criteria for the detection and 

diagnosis of organ dysfunction. The proposed measure was the Sequential Organ Failure 

Assessment (SOFA) score, an assessment found to be more predictive for in-hospital 

mortality than the SIRS criteria. SOFA looks at six major categories, rather than four, and 

assigns point values from 0 to 4. Higher scores indicate higher mortality rates, and the 

direction of change in SOFA points indicates the direction of patient prognosis. In other 

words, if the SOFA score increases, the patient is going into a worse condition. Increases 

in SOFA score of more than 2 points to potential organ dysfunction.41 A table of the 

SOFA scoring sheet and score analysis is presented in Table 2. 

 Note that the SOFA score uses multiple laboratory tests (Platelet, Bilirubin 

concentration) and also a measure of mental consciousness impairment (Glasgow Coma 

Score)42. It also monitors multiple organ systems. A simpler analysis, the quick 

Sequential Organ Failure Assessment (qSOFA) presents a faster alternative, designed for 

rapid diagnosis within an intensive care unit. The qSOFA uses only three measures – low 
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blood pressure ( low blood pressure (SBP≤100 mmHg), high respiratory rate (≥22 breaths 

per min), or altered mentation (Glasgow coma scale<15).43 Each of these measures are 

accessible without bloodwork, allowing for a relatively rapid analysis which can then be 

followed up with a more comprehensive SOFA analysis if needed.    
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Table 2. SOFA score categories and criteria. Note that increased score 

trends indicate significant chances of mortality. Table from Chamberlain, 

NR36  
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While the new Sepsis-III definition has generally been accepted in the hospital 

setting, it is not without criticism. One criticism stems from the loss of a definition for 

bloodborne infection without organ damage. Before Sepsis-III, any infection and 

dysregulated immune response would be considered sepsis, regardless of organ 

dysfunction. The change in definition has been seen as potentially precluding treatment 

for the early stages of infection40, which could allow for better patient outcomes. In at 

least one study, qSOFA was found to be poorly sensitive for organ dysfunction,44 and 

argued that the SIRS score conveys “more prognostic and clinical information”,44 even if 

SOFA presents a comparable analysis of mortality rates. Consensus has not been reached 

on the preference of SIRS or SOFA/qSOFA. 

 

TREATMENT OF SEPSIS 

For proper treatment of sepsis, early detection is critical. The longer a pathogen is 

in a bloodstream, the stronger the immune response will be, and the stronger symptoms 

such as organ dysfunction will be. As organ dysfunction increases, the chance for 

secondary complications increases, and mortality rates increase. At some point, 

conditions become bad enough to cause low blood pressure, known as septic shock. Once 

a patient has septic shock, every hour delay increases the chance of mortality by 8%.45  

Once a diagnosis of sepsis, severe sepsis, or septic shock is made, treatment 

options focus on detecting the source of the infection, minimizing damage to the body, 

and eliminating pathogens. Guidelines have been established by the Surviving Sepsis 

Campaign which recommend a series of procedures.11 Since there is likely a bacteria 
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causing sepsis, the first step is to understand what bacteria that is, so two blood cultures 

are taken, aerobic and anaerobic. Identifying the bacteria allows for more targeted 

administration of antibiotics, and pathogens tend to depend on the original infection 

site.46 For instance, Staphylococcus aureus and coagulase negative staphylococci are the 

most causative organisms for meningitis and pneumonia46, and Escherichia coli is the 

most prevalent cause of urinary tract infection-related sepsis.47  

This, however, should only be done if it does not interfere with administration of 

antibiotics within an hour of diagnosis – if it does, the antibiotics take precedence.11 The 

antibiotics should be broad spectrum at this point, or an antibiotic that works on both 

gram-positive and gram-negative bacteria. Considering the presence of drug resistant 

bacteria, some possible supplemental drug administration must be considered. For 

instance, if there is a risk of MRSA in the area, drugs such as vancomycin or teicoplanin 

are suggested supplements.11    

Next, if the patient has hypoperfusion, the Surviving Sepsis campaign guidelines 

suggest administration of IV crystalline fluid, 30 ml/kg, within 3 hours. Finally, a lactate 

assessment should be regularly done, and the goal should be to normalize lactate levels, 

which implies proper tissue perfusion.11  

 

COMPUTER-BASED DETECTION SYSTEMS 

As early detection and treatment of sepsis dramatically affects prognosis48, there 

has been an interest using computational systems to monitor patients without the need for 

a clinician. In theory, a computer system could actively monitor a patient’s vital signs for 
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symptoms characteristic of early sepsis, and raise a warning to clinicians if the right 

criteria is met. At the most basic level, this would amount to a computer reading vital 

signs and laboratory data, tabulating a score based on Sepsis-3 or APACHE criteria, and 

alerting a clinician if the basic requirements for sepsis are met.  

An example of this was conducted at Barnes-Jewish hospital in St. Louis49. Using 

an automated warning tool that required manual nurse entry of hemodynamic data and 

automated entry of laboratory data, the tool would generate and send an alert to staff if a 

patient registered as a potential case. All patients that registered an alert went on to have 

sepsis, severe sepsis, or septic shock within 48 hours of an alert being generated, and the 

early warning was reported to significantly increase the rate of interventions within 12 

hours of a generated alert49.  

While this system is functional, it is limited to being, essentially, another sensor. 

It lacks the ability to predict worsening conditions, and will only alert clinicians at 

conditions that meet sepsis criteria, rather than when the patient is deteriorating into 

sepsis. At that point, there may already be damage to the body. Yet, detecting sepsis 

before it shows the established symptom criteria is tricky even for a clinician – 

Myocardial Infarctions, for instance, can sometimes also cause SIRS symptoms, so 

simply alerting clinicians every time SIRS is detected would not be an effective 

preventative measure. Simply setting notices for potential SIRS criteria could lead to alert 

fatigue, potentially neutralizing the benefits of an automated sepsis detection system.   
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MACHINE LEARNING : A PREDICTIVE, RATHER THAN REACTIVE, TOOL 

As such, for a system to effectively alert clinicians to potential Sepsis situations, 

computer programs have to move past the idea of simply programming a checklist of 

symptoms, and move into smarter, Machine-Learning-based predictions.  

Machine Learning is a broad umbrella term encompassing a variety of algorithmic 

approaches to combing data to make predictions. Broadly, machine learning takes a large 

set of data and uses statistical analysis to “learn” patterns in the data. Large volumes of 

data that are difficult for a clinician to assess and quickly analyze can be processed at 

significantly higher speeds by algorithmic analysis. For instance, patients in a critical-

care units can be continuously monitored for heart rate and respiratory rate, and these 

data points can be analyzed for trends without human assistance. When combining this 

with electronic medical records, laboratory analysis of biomarkers or white blood cell 

(WBC) count, a machine learning algorithm has a potentially rich field of data to use in 

order to detect patterns in patients with sepsis. The specific diagnosis of sepsis requires 

some indication that the SIRS is infection-related, so the addition of biomarkers aid in 

telling a clinician that sepsis-specific treatments (as opposed to, say, cardiac arrest) are 

called for.  

Machine Learning has recently seen a renaissance in the fields of statistics and 

computer science, and has since been applied to fields as separate as melanoma detection 

and language translation. The origins of what is currently called “machine learning” are 

rooted in statistical analysis, and trace back more than 30 years50. However, recent 

increases in both the volume of accessible data (including EHR data) and cheap 
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computational ability have allowed for a substantial increase in activity in the field.51 In 

an abstract sense, machine learning represents a shift in program design – instead of 

programming a set of rules, the program designer creates an algorithm that can take an 

“unknown” value, use statistics to make ‘guesses’ about what that value means, and then 

check that ‘guess’ against the right answer. The system does not necessarily have a 

reference for what a specific value or condition means – it simply recognizes that certain 

values are statistically correlated with certain outcomes, and uses that analysis to make a 

prediction about newly presented information.  

There are multiple styles within the study of machine learning, ranging from the 

relatively simple “logistic regression” to the very complex “deep learning”. It is 

important to understand, however, that “more complex” doesn’t necessarily mean 

“better” - in general, the more complex the machine learning algorithm, the more 

powerful the algorithm or the more data it can process, but the more difficult 

development and optimization becomes. 

 

SEPSIS PREDICTION WITH MACHINE LEARNING 

A number of machine learning experiments pertaining to sepsis prediction have 

been attempted. The studies range in algorithmic styles, from Deep Learning to Hidden 

Markov Models to more basic logistic regression. Almost all studies are retrospective 

analyses of EHR datasets, many from MIMIC-II and MIMIC-III. Retrospective analysis 

projects are interested in predicting sepsis that is occurring to a patient while in a hospital 

setting, so often they will remove data about patients entering with a diagnosis of sepsis, 
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or that is diagnosed with sepsis within a few hours of arrival.52 Not all studies are 

retrospective – Algorithmic development company Dascena created a commercial 

product, InSight, as an ML-DSS tool, and performed a randomized clinical trial. The trial 

saw a 12.4% decrease in mortality when using Insight.53  

The specific biomarkers and vital signs collected varies for each study. Shamim et 

al. used 65 different variables, ranging from blood pressure to fibrinogen, to the standard 

deviation of respiratory rate intervals52. Taneja et al. used six biomarkers, and found that 

specific biomarkers would be of peak importance at different stages of sepsis (for 

instance, nCD64 was more indicative of early sepsis, while high PCT levels were more 

indicative of latter stages of sepsis).54 This was used to great effect for that study, as the 

algorithm could accurately suggest the severity of sepsis that the patient was in.   

Interestingly, one of the first published studies was a prospective trial. In 2010, 

Tang et al separated patients coming into the Emergency Department with sepsis 

symptoms as either SIRS or Severe Sepsis. 28 total patients began, and 2 were excluded 

due to complications. It found that the algorithm was able to successfully classify SIRS 

versus severe sepsis, though they found issues with specificity.55 They suggested a larger 

sample size and more comprehensive cardiovascular features as possible improvements 

for later studies.  

In 2011, Ohno-Machado, editor of the Journal of the American Medical 

Informatics Association, called for an investigation into Natural Language Processing 

(NLP) for EHRs, noting that the unstructured handwritten notes provided in EHRs 

contain important information to use in research.56 That same year, Sawyer et al. 
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published a report of a computerized non-machine learning alert system, which was 

based on “shock index (heart rate divided by systolic blood pressure), MAP, international 

normalized ratio, WBC count, hemoglobin, absolute neutrophil count, serum albumin, 

total bilirubin, and sodium.49 The prospective clinical trial showed increased speed of 

intervention, antibiotic escalation, intravenous fluid administration, and oxygen therapy. 

It noted no change in hospital mortality or length of stay, however.49 

Convertino et al. published a study of machine learning for diagnosing 

hemorragic shock, for both civilian and battlefield trauma. The study used lower body 

negative pressure as a model of hemorrhage until hemodynamic decompensation. The 

study was “96.5% effective in predicting the estimated amount of reduced central blood 

volume”.57 While not directly applicable to septic shock, the study does have some 

similarity and promising findings.   

In 2014, Gultepe at al. focused on hyperlactatemia as a measure of potential septic 

mortality, using machine learning as a prediction tool. A retrospective study of 741 

patients from the University of Southern California Davis were used, and their vital signs 

and white blood cell (WBC) counts were associated with sepsis occurrence and mortality. 

The intent was to use the algorithm to predict lactate level and mortality risk. Using only 

vital signs and WBC count, they were able to make predictions of lactate level with an 

accuracy of 0.99, and using mean arterial pressure, median absolute deviation of 

respiratory rate, and median lactate levels, they were able to predict mortality to an 

accuracy of 0.73 retrospectively.58  
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That same year, Mani et al. looked at neonatal sepsis diagnosis with machine 

learning, comparing nine ML algorithms to clinician diagnosis. The retrospective study 

looked at 299 neonatal patients from an 18 month period from January 2006. The study 

generated temporal variables from time-stamped measurements from the laboratory, in 

order to give a time-sensitivity to the processed information. Interestingly, the study 

looked at both culture-positive and culture-negative sepsis, as bacterial cultures don’t 

always present a pathogen in cases of sepsis.17 The results were significant – when 

including culture-negative sepsis, “the treatment sensitivity of all the nine ML algorithms 

and specificity of eight out of the nine ML algorithms tested exceeded that of the 

physician…When culture-negative sepsis was excluded both sensitivity and specificity 

exceeded that of the physician for all the ML algorithms. The top three predictive 

variables were the hematocrit or packed cell volume, chorioamnionitis and respiratory 

rate.”59 

Nguyen et al. published another study of a non-ML alert automated alert system, 

based on SIRS, in 2014. In the 795 automated sepsis alerts that were generated, there was 

a 44.7% prevalence of sepsis. In 300 randomly selected non-sepsis alerts, there was a 0% 

prevalence of sepsis. While a step in the right direction, the low accuracy suggests that a 

more complex algorithm for prediction was necessary.  

Tsoukalas et al. (2015) noted the difficulty of making a framework for clinical 

decision support when data was incomplete, as in EHR records. Nevertheless, they used a 

larger dataset of 1492 patients, and used a form of the Markov Model (explained below) 

to derive an optimal policy for treatment. When that optimal policy was followed, there 
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was an increase in transition to better states (25.9% vs. 12.9%) and a decrease of 

transition to worse states (33.7% vs. 51.2%).60  

In 2016, Dascena, a diagnostic algorithm company specializing in ML-DSS for 

sepsis, published a pair of papers on their tool, InSight. These were retrospective analyses 

of patients in the MIMIC-II61 and MIMIC-III62 databases. In the MIMIC-II study, the 

focus was on hospital-acquired sepsis, so the company screened for patients that do not 

present with SIRS at the time of admission or within the first four hours of stay, and who 

had documented measurements for SBP, pulse pressure, heart rate, temperature, 

respiration rate, WBC, pH, Blood oxygen saturation and age (a total of 1,394 patients). 

Of that set, patients whose record contained an ICD9 code (995.9) for sepsis and met the 

SIRS criteria for a 5-hour period of time were used for the trial, a total of 159 patients. In 

that case, InSight was able to predict the possibility of a patient being given an ICD code 

and presenting with SIRS criteria 3 hours before the ‘zero hour’ (point of first diagnosis), 

to an accuracy of .92, higher than a PCT test (which had an accuracy of 0.85).61 While 

promising, the sample size of 159 is somewhat inconclusive, which might suggest why 

the second study, based on MIMIC-III was used.  

The MIMIC-III study analysed a set of 1,840 septic ICU stays, against 17,214 

nonseptic patients. Interestingly, this assessment also tested the system “in the presence 

of data sparsity” – that is, when randomly selected pieces of information were deleted 

from the EHR data. Insight was also tested against a series of diagnostic criteria, such as 

SIRS, SOFA, MEWS (Modified Early Warning Score) and SAPS II (Simplified Acute 

Physiology Score II). For markers, InSight used systolic blood pressure, pulse pressure, 
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heart rate, respiration rate, temperature, Glasgow Coma score, and peripheral capillary 

oxygen saturation, arguing that “all of these features are nearly universally available at 

the bedside and do not rely on laboratory tests.” The study found a higher performance 

than SAPS II and SOFA, and comparable performance with other machine learning 

algorithms, without requiring biomarkers.  

While this information is promising, it is important to note that it is retrospective, 

and not directly used in a clinical trial. Dascena was later used in a prospective 

randomized clinical trial, in a paper published by Shimabukuro et al53. The intent was to 

measure if the use of Dascena’s machine learning algorithm would reduce length of stay 

and mortality rate in the hospital. Similar to the MIMIC-III study, the algorithm was 

compared to SIRS, SOFA, qSOFA, and MEWS systems. In this case, however, in 

addition to the non-laboratory variables (blood pressure, respiratory rate, etc.) used in the 

preview test, labs such as pH, WBC count, and glucose were included. The system would 

then generate a risk score for severe sepsis between 1 and 100, and if the patient 

exceeded a score of 80, the charge nurse was notified. The sample size was again small at 

142 patients, but there was a sizeable 20.6% reduction in length of stay, and had a 12.4% 

drop in mortality as well. Patients in the experimental (ML-aided) group also received 

antibiotic treatment an average of 2.76 hours earlier.53 

Taylor et al (2016) presented a machine learning algorithm that used 20 variables, 

from oxygen saturation to blood urea nitrate (BUN), to make its predictions. It similarly 

found higher accuracy than the SIRS definition.63 Goodman et al (2016) looked 

specifically at using machine learning to make timely predictions of extended-spectrum 
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β-lactamase (ESBL)-producing bacteria.64 Since ESBL bacteria can hydrolyze most 

broad-spectrum β-lactam antibiotics65, many antibiotic regimens have limited activity 

against ESBL producers66, and awareness can help clinicians use the right antibiotics. 

Interestingly, the study used a form of machine learning called ‘recursive partitioning’ 

that produces a more user-friendly, interpretable decision tree, so that clinicians can read 

its logic more easily.64 The study used five predictors: “history of ESBL 

colonization/infection, chronic indwelling vascular hardware, age ≥43 years, recent 

hospitalization in an ESBL high-burden region, and ≥6 days of antibiotic exposure in the 

prior 6 months.” The finding had positive and negative predictive values above 90% 

using those predictors. 64 

A few studies have focused on improving algorithm design or streamlining 

workflow. Ghosh et al. used Hidden Markov Models (HMM) to create an analysis, 

attmepting to create time-to-event prediction models, that see the path to sepsis as a timed 

series of patterns.67 The study only used MAP, heart rate and respiratory rate, and used 

that to predict, given a patient at a certain state, how likely it was that the patient was 

going to move towards a condition of septic shock. The study argues that the use of timed 

relational metadata about the three variables has an improved effect on prediction.67 Hu et 

al. focused on proposing a more automated model for manual chart review, using 

machine learning to ‘read’ outcomes and look for post-operative complications such as 

sepsis.68 The paper explored a few machine learning styles, suggesting ideas for future 

research.  
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Horng et al (2017) focused on using free text (such as clinician’s notes in an 

EHR) to augment the machine learning algorithm. This retrospective study processed the 

free text and would then add information such as vital signs and demographic 

information to the algorithm. They found that adding this free text information improved 

discriminatory ability, as the area under the curve (AUC) increased from 0.67 to 0.86.69 

Taneja et al (2017)54 presented a study that granularized phases of sepsis, and 

looked to find the presence of biomarkers for specific stages. They combined the study of 

16 non-traditional biomarkers with 15 EHR variables, to find patterns. The study argues 

that a “one size fits all” system for every potential sepsis patient is an incomplete picture 

– providing a range of biomarkers and vital sign information would allow an algorithm to 

more accurately pinpoint the stage of sepsis and suggest personalized treatment.54 

Kam et al (2017) is one of the first papers to introduce the concept of deep 

learning into sepsis prediction. The paper presented a response to InSight, using deep 

feedforward networks to create an algorithm and compare it to InSight. The study used 

the same MIMIC-II database as one of InSight’s studies, and leveraged the more complex 

‘long short-term memory’ ability to create an algorithm that can learn sequential patterns 

and make conclusions from them (this is further explained below in ‘Deep Learning’).70  

Cockrell et al. (2017)71 and Peterson et al. (2018)72 presented two related papers 

that paired deep learning with simulation. Cockrell et al. proposed a simplified sepsis 

computer simulation, which could simulate up to 7 million sepsis ‘patients’ by creating a 

virtual immune system response. Peterson et al. took that simulation system and applied a 

deep learning algorithm to it, and enabled reinforcement learning – that is, it allowed the 



 

28 

algorithm to take ‘actions’ on the virtual patients, and learn how effective its actions were 

to reduce symptoms. This led to an algorithm that would analyze the patterns of specific 

cytokines in patients, and would suggest a multi-cytokine mediation therapy, 

personalized to the patient.72 While this needs to be validated with studies on live 

organisms, the study shows great promise, and is a far cry from the “one size fits all” 

nature of diagnostic protocols like SIRS and SOFA.  

Raghu et al (2017) applied deep reinforcement learning to a retrospective analysis 

of the MIMIC-III database. The study then used the reinforcement “action” system to 

allow the algorithm to make various protocols for when to administer IV fluids and 

vasopressors, specifically. It would then look at the outcomes of the various patients, and 

adjust its protocols to maximize the number of successful outcomes. The study found that 

doctors that followed the algorithm’s timing protocols for administering vasopressors and 

IV fluids ended up with the least mortalities.73  

A GROWING TREND OF ROBUSTNESS 

The papers here show a gradual increase in complexity with regards to the 

application of machine learning in sepsis. At first, analysis resembles statistics more than 

complicated machine learning, and is used more to make conclusions about clinician 

behaviour. As the algorithms become more complex, a trend of retrospective analysis 

finding predictions of equal or higher accuracy than SIRS or SOFA emerges. Later 

research focuses on approaching sepsis at new angles – simulating and proposing new 

ways of looking at stages of the disease, and tailoring personalized treatments based on a 

network of biomarkers. While the applications of financial and logistical feasibility need 
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to be taken into account, this represents a new, exciting opportunity in sepsis diagnosis 

and treatment – instead of the confusing, unspecific, time-intensive nature of diagnostic 

tools such as SIRS and SOFA, machine learning could create highly specific treatments 

that can look at larger volumes of data than a clinician could, and suggest specific 

treatments designed for specific stages of sepsis.  

Of particular interest is the theorized multi-cytokine-based prediction system 

proposed by Peterson et al.72 Sepsis and SIRS have both been criticized for issues with 

specificity, and clinician diagnosis from visually identifiable symptoms combined with a 

handful of commonly available biomarkers is likely always going to present an 

incomplete picture compared to a granular analysis of cytokine activity in the body. It 

will be interesting to see if the future analysis of this proposal leads to a new mode of 

thinking regarding sepsis diagnosis.   

 

MACHINE LEARNING FUNDAMENTALS 

A comprehensive analysis of the multiple types of machine learning is beyond the 

scope of this paper, and it is important to note that there are dozens of types of machine 

learning algorithms that one can apply to a problem such as sepsis (LASSO, naïve Bayes, 

random forest) that are used in machine learning approaches to sepsis detection. 

However, It is useful for clinicians to have an understanding of the basics of machine 

learning, to understand what is and is not being analyzed.  

Machine learning represents a philosophical shift in the tackling of a problem. 

Instead of attempting to define every possible angle to a problem and code solutions for 
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each possibility, a machine learning program is designed to be given a set of data, and to 

find patterns through statistical analysis. The advantage here is that problems that cannot 

be simplified into a simple rule set can be tackled with machine learning. 

A classic example of this is the detection of handwritten numbers74. Standardized 

fonts will always show a ‘9’ with the same width, the same curve or line representing the 

lower half of the ‘9’, but handwritten versions can vary dramatically, and programming a 

ruleset to cover every possible combination would be very complex. Instead, if a machine 

learning program is given a database of handwritten numbers, along with a ‘correct 

answer’ for which number the drawing represents, it is possible to train the program to 

predict the numbers to a high degree of accuracy. The program is told only that there are 

10 values (0-9) and that the image it is presented with is one of those numbers. The 

computer makes a ‘guess’, then looks at the right answer (provided with the image). If it 

is incorrect, it modifies parts of its algorithm and tries again with the next number, until it 

is able to recognize numbers with a high accuracy75. 

This is, of course, an oversimplification, as there is a deep level of complexity 

surrounding many parts of machine learning. The actual structure of the algorithm, how it 

decides to make an actual guess, and how it corrects for a ‘wrong’ guess, are complicated 

topics with many avenues to explore. However, there are a few basic similarities worth 

delineating for a clinician to understand.  

Many machine learning algorithms use a node-based system (referred to as 

‘neurons’), where a decision in one neuron activates the next neuron, in a manner 

inspired by the neuron excitation system used in the human brain76. While the ultimate 
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design is not entirely the same as the human neuronal system, the basic structure is 

similar. To continue with the example of handwritten digit recognition, imagine that there 

are only 10 possible right answers (0-9), and the algorithm is designed to conclude which 

of the 10 answers it is “seeing” in the image of a black ‘3’. In order to do so, it constructs 

a series of columns, each with a number of neurons. The final column consists of 10 

neurons, the answers 0-9. It then looks at the information provided by the image (for 

instance, the black/white value of pixel 1, pixel 2, pixel 3, etc). Pixels are then grouped 

into neurons, and the neurons that contain black color will then ‘fire’ and turn on other 

neurons, similar to an organic neuron system. Eventually, the neurons all must settle on 

one of 10 possible answers, 0-9, by looking at which groups of neurons are being turned 

on. 

However, not every piece of information will be equally relevant – for instance, 

the presence of hyperlactatemia is an more relavant indicator of sepsis than age or body 

weight, so that information must be seen as more significantly by the program. In the 

case of recognizing numbers from an image, perhaps corners of an image are less likely 

to be relevant for understanding the image than the middle area. As such, the computer 

must learn to ‘weight’ some information over others. This weighing of certain neuronss 

becomes key to the machine’s “learning”. Initially, all neurons might be weighed 

randomly, or equally. As the program gets more things wrong or right, it adjusts the 

values of these weights, and with enough repeated cycles, it finds that certain weights are 

more likely to produce a right answer than others. This works in a manner similar to the 

psychological principal of positive and negative reinforcement – the more a weight 
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supports correct answers, the larger it becomes. In the end, through hundreds to 

thousands of guesses and tiny corrections, the weights are tuned to reliably ‘read’ what 

the machine is being given.  

 

LIMITATIONS TO MACHINE LEARNING 

Due to the nature of this style of learning, there are a few strong caveats. For 

instance, machine learning systems are very ‘data-hungry’ – that is, they require large 

sets of data before they can start doing accurate predictions. For instance, the MNIST 

database of handwritten digits contains 60,000 ‘training’ samples (for the machine 

learning algorithm to train on) and 10,000 ‘test’ samples for the algorithm to attempt 

prediction with77. The amount of examples necessary to properly train a specific 

algorithm differs for the various types of machine learning algorithms (Markov Models, 

Deep Learning, Logistic Regression, etc.). The high volume of examples, however, is in 

many ways a product of the statistical roots of machine learning, as large volumes of data 

are required to accurately assess trends in the data. As changes to the weights of 

algorithms are made incrementally, large volumes of examples are needed in order for the 

program to make predictions with a high degree of accuracy.  

Because of this high volume requirement, getting a large enough volume of data 

was previously a difficult task. However, the growing volume of electronic health records 

(EHR) has allowed for the automated collection of relevant data, which has allowed the 

regular use of machine learning for data analysis to be a viable, potentially powerful 

tool.78   
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Unfortunately, a second major roadblock impedes progress, even with an EHR – 

the problem of ‘dirty’ data. As the program does not necessarily know what a specific 

value means, it is largely unable to discern if a certain value is ‘correct’. In machine 

learning, the learning is only as good as the data presented to it – if the data collected is 

missing critical information, is mislabeled, or is riddled with incorrect information, the 

machine will make incorrect assumptions due to having this faulty data. For data 

scientists, cleaning data is a large, resource-intensive part of their job – enough so that it 

is considered the major roadblock to progress when working on a system79. ‘Clean’ data 

refers to data that has been checked for missing data, which can be a very time-intensive 

process.   

One of the issues that arises from the clinical data collected is that the quality and 

comprehensiveness of clinical data is at a lower level than research data.80 This is partly 

due to a difference in priorities when collecting data, as research-based data gathering 

will have a different set of priorities than clinical data gathering.81 Another issue is that 

clinical data will often have handwritten notes describing a physician’s diagnosis, and 

those notes are generally unstructured69 compared to standardized codes, and may contain 

shorthand abbreviations that are not standardized. If an important piece of information is 

contained in these notes, a machine learning algorithm would have to learn to take that 

into account. Some research has been done into natural language processing (NLP) for 

this purpose,56 and some studies have used this improve Machine Learning diagnosis for 

sepsis.69  
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ADVANCED MACHINE LEARNING ALGORITHMS – DEEP LEARNING, 

HIDDEN MARKOV MODELS 

In recent years, the challenges that machine learning have been able to address have 

gotten more and more complicated. For instance, image recognition algorithms have been 

programmed that can recognize skin based melanoma cancers with a dermatologist’s 

degree of accuracy, using only a phone’s camera82. Advancements in this vein have come 

about because of an increase in computing power, the commercialization of 

computational tools such as IBM Watson and because of further research into advanced 

forms of machine learning, such as Deep Learning.  

HIDDEN MARKOV MODELS 

 Advanced systems of machine learning are designed around different paradigms, 

and these differences allow for predictions in different veins. For example, one approach 

is the Hidden Markov Model, a variant of the Markov Model (or Markov Chain). Similar 

to traditional methods, Markov Models look at a limited series of states (for instance, 

‘healthy,’ ‘sepsis,’ ‘severe sepsis’, ‘septic shock,’ ‘deceased’), and calculates the 

probability in of moving to a new state depending only on the current state (a rule known 

as the “Markov Property”).67 The intent is to model the relationship between states as a 

function of probability. A common example, described in Ramage 200783, is the 

modelling of weather patterns. If the current state of weather in Los Angeles is “sunny”, 

what is the probability that it will transition within a few days to “cloudy,” or “raining?” 

If every transition is calculated (for instance, by recording weather states for 100 days 
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and noting transitions), a set of data can be generated that models the chance of a certain 

weather state, based on the current stated.  

 

Figure 2. Sample probability table of transitions between weather states. In this set of data, if the current state is 'sun', 

there is an 80% chance of the next day's weather being the same state of 'sun', and a 10% chance of changing to either 

'cloud 

A normal Markov Model requires that the states are observable – that is, one must be able 

to go outside and see the weather for 100 days, in order to create the table. This presents a 

difficulty, therefore, if one wished to calculate this same probability, but for weather in 

the past when no weather data was taken. Similarly, in the case of sepsis, the condition of 

blood infection is similarly hidden from the clinician –testing for the presence of 

pathogens in the blood of a septic patient yields a positive result only 30% of the time17 – 

so the clinician must assess the likelihood of the patient having sepsis based on other 

factors such as heart rate or respiratory rate or hyperlactatemia. In cases like this, the 

Hidden Markov Model is used.  

 In the Hidden Markov Model, one cannot observe the system they wish to model, 

and as such must model an ancillary, related system. In the analogy of weather, imagine 

if the modeler was attempting to model the weather in Los Angeles 10 years prior, and 

the weather data was not recorded during the required time period, but daily sales data of 
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umbrellas in a local open-air mall was readily accessible. Logically, sales data of 

umbrellas correlate to rainy days, though the conclusion is not necessarily guaranteed 

(perhaps on a dry day, someone needs to purchase an umbrella for a trip to another rainy 

city, or on a rainy day, fewer people purchase an umbrella because they bought one the 

rainy day before). While the information doesn’t correlate directly, one could create a 

model of various purchasing states, and then use that to make a model predicting weather 

patterns.  

  In the case of Sepsis, then, the use of observable factors (heart rate, respiratory 

rate, etc.) are available for a hospitalized patient, while the ‘state’ of sepsis is not readily 

accessible. Logically, however, the factors have a correlation to sepsis, as defined by 

systems such as SOPA and APACHE II guidelines. As such, the rates of transition from, 

say, ‘normal heart rate’ to ‘tachychardic heart rate’ are observable and modelable, and 

can be used to predict the ‘hidden’ system (the probability of going from ‘mildly septic’ 

to ‘severely septic’ given one’s current health data). 

Two studies have used the Hidden Markov Model system for sepsis prediction. 

Peterson, et. Al used the system to predict five states – discharged, sepsis of severity level 

1,2,3 (known as S1, S2, S3) and deceased – retrospectively on a collection of data from 

the Kaiser Permanente Northern California Data Set.84 The model was built using five 

common vital signs – respiratory rate, systolic blood pressure, diastolic blood pressure, 

heart rate, and temperature. To give context to that data, there were three “covariate” 

factors used as well – age, acute physiology score (LAPS2), and chronic disease burden 

score (COPS2). Using the records of 20,000 patient hospitalization episodes,84 the system 
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modeled a range of likely values for the five vital signs, for ‘discharged’, ‘S1’, ‘S2’, and 

so on.  This data was then validated against the “Sepsis-1” SIRS criteria and qSOFA, and 

used to predict mortality risk, which was identified as the S3 state. Using this 

retrospective data, the study found the Hidden Markov Model used to be more accurately 

predictive of high-risk sepsis states than the sepsis-1 or qSOFA criteria. 

Ghosh et al. extracted mean arterial pressure, heart rate and respiratory rate from 

the MIMIC-II database, and mapped their interactions to a Coupled Hidden Markov 

Model (CHMM). The study found that coupling these variables and creating a model of 

their influence on each other resulted in a statistically significant increase in prediction of 

septic shock compared to baseline models.67 

Gultepe et al. used Hidden Markov Modeling to predict lactate levels, and then 

used that system as part of a larger machine learning algorithm.58 Using only vital signs 

and WBC count, they were able to predict lactate levels to an accuracy of 0.99, and then 

couple that information with analysis of arterial pressure and respiratory rate to predict 

patient mortality in a larger machine learning algorithm. Vital signs and WBC were the 

‘known’ markov variables, and those were used to understand the ‘hidden’ relationship of 

lactate levels.  

DEEP LEARNING 

As mentioned before, one of the biggest impediments to machine learning is the necessity 

of clean, accurate data. The data has to also be as similar as possible, to limit the potential 

for the machine learning algorithm to make incorrect conclusions. For instance, in the 

example of handwritten number recognition, a traditional machine learning algorithm 
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would have a harder time being as accurate if the numbers were presented at dramatically 

different sizes, or in different colors. The computer might conclude that an important 

characteristic of a ‘4’ is the color red, while a ‘5’ is twice the size of a ‘4’. Another 

famous example comes from image recognition – a ‘standardized’ set of faces would 

need to be of similar skin tone, with similar lighting condition, where the faces are 

centered and facing the camera. The more non-standardized conditions, the more 

difficulty the algorithm has correctly predicting accurately.  

 “Deep learning” attempts to address these two concerns, as the algorithms are 

designed to detect patterns within data that isn’t necessarily standardized to a high 

degree, and which may contain erroneous or confusing data. Deep learning algorithms, 

for instance, are able to take images of cats, facing towards and away from the camera, at 

different times of day, and predict that the image it is seeing is that of a cat. The 

erroneous data of lighting conditions or size can be ignored, because of the different way 

that deep learning is making its calculations.  

 In the case of a cat, there are near universal aspects of cats - pointed ears, eyes, a 

nose and mouth, a tail and four legs - that when put together, constitute a cat. The 

‘neurons’ (as mentioned above) for a Deep learning algorithm are designed to discover 

these smaller attributes, and then use that discovery to detect their presence in the data it 

is analyzing. If enough attributes of a cat are present, no matter the size or condition, the 

algorithm can recognize the presence of a cat in an image. The computational ability 

required to make this more complex analysis is far more significant, and the system is 
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more complex than a more traditional machine learning algorithm that does not collect a 

series of smaller attributes.  

 In theory, this is very applicable to EHR data, as EHR data is notoriously 

unstandardized. Many terms or shorthand phrases for the same condition differ from 

hospital to hospital, and some hospitals will have different protocols relating to, say, 

testing for sepsis. Handwritten doctor’s notes about a condition could vary greatly from 

doctor to doctor. In theory, the advent of deep learning gives the opportunity to detect 

patterns in spite of these inconsistencies.    

 Deep learning has seen relatively few published studies on sepsis recognition, 

possibly due to the relative newness of deep learning as an area of study. However, a few 

studies have seen interesting results. A study by Kam et al. used deep learning applied to 

the same MIMIC-II database as the Insight study. It found higher rates of reliable 

diagnosis, crediting, in part, a “neural network architecture that can learn sequential 

patterns.”70 Other studies in deep learning focused on another area of machine learning, 

known as reinforcement learning. 

REINFORCEMENT LEARNING 

In traditional ‘supervised’ machine learning, a data point is given with a ‘correct’ 

answer of what that data point means, and the machine learning algorithm is designed to 

learn the associations. There is also ‘unsupervised’ learning, in which a dataset is given 

with no clear association with what is ‘correct’, with machine learning algorithm 

attempting to find patterns in the data. Reinforcement learning is different from those 

two, in that it is designed to learn from interactions – that is, a reinforcement learning 
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algorithm that would make ‘decisions’, and see how well the decisions maximized a 

‘reward’ variable85 (such as patient mortality). This is analogous to the psychological 

concept of reinforcement learning,86 first made famous by Pavlov and his famous 

experiment on his dogs. 

A good example of this form of machine learning is a study by Cockrell, et al., 

which created a simulation of virtual sepsis patients, and a study by Peterson, et al. that 

used reinforcement learning to conduct experimental treatment ‘actions’ on the virtual 

patients. The algorithm would then learn how well its treatment actions would help the 

virtual patients, and adjust its treatments until they maximized patient health. 

Cockrell, et al. created a simplified model of 7 million virtual sepsis patients with 

a wide range of symptoms. The simulation, the Innate Immune Response Agent-Based 

Model (IIRABM), represents the dynamic of immune response, down to the temporary 

roles of pro- and anti-inflammatory cytokines.71 While the simulations were “vastly 

simpler” than a real-world sepsis patient, the use of simplified models allows for 

comprehensive testing when all variables are known, and any potential learning can then 

be applied to the more complicated real-world cases. The intent was to present a body of 

potential “patients” to study with High Performance Computing (HCP) models such as 

deep learning, to see if it was possible to create personalized diagnoses of sepsis, to aid in 

personalized treatments rather than generalized antibiotic regimens.71  

That study was then used by Peterson et al. to run a deep learning analysis. The 

analysis was designed to analyze if “adaptive, personalized multi-cytokine mediation can 

control the trajectory of sepsis and lower patient mortality.”72 The study used the 
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IIRABM as a Reinforcement Learning environment. The deep learning algorithm would 

make an action upon the IIRABM simulation, and would record how effective the result 

was on the population of simulated sepsis patients. It would then continue experimenting 

with actions until it found effective policies to reduce mortality as much as possible.  

Using this deep reinforcement learning model, the study was able to come to 0% 

mortality in simulated subjects. It created specific policies for patients that were 

personalized (patient-specific), involved mediating multiple cytokines simultaneously in 

coordination, and were adaptive to the virtual patient’s progress over time.72 While this is 

clearly a virtual system, and thus the results are not immediately generalizable to real-life 

patients, the model is instructive – it shows that deep learning can analyze large volumes 

of data to present a policy, which can then be tested more formally in clinical trials.  

Another study by Raghu et al. analyzed the MIMIC-III database with 

reinforcement learning.73 The MIMIC-III database represents patients that have already 

been treated, so dynamic actions on the populace are not possible. However, 

reinforcement learning could be used to “read” the medical interventions, and to 

understand how effective they were in maximizing the ‘reward’ of a healthy outcome (in 

this case, lowered SOFA scores). The benefit of using reinforcement learning is that the 

model can “infer optimal strategies from training examples that do not represent optimal 

behavior.”73 In observing patterns of sepsis treatment, it found an “optimal” vasopressor 

and IV fluid dose, arguing that lower mortality resulted from cases where physicians 

applied vasopressors and IV fluids in accordance to this optimal policy.73 More research 

would be required before this practice could be regularly applied in clinical settings, but 
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this does present a data-driven approach to answer the question of the optimal sepsis 

treatment policy. 

 

CLINICIAN DISTRUST AND ALGORITHMIC TRANSPARENCY 

With more advanced machine learning designs comes more computational ability, 

and as such, the ability to use more data to more accurately predict a condition like 

sepsis. However, the complexity also makes any attempt to ‘read’ or understand the inner 

workings significantly more complex. For instance, while a clinician may not be able to 

see the infrared detection of an pulse oximeter, and does not personally calculate the ratio 

of red to infrared light (which translates into a measure of blood oxygen saturation via the 

Beer-Lambert Law87), the doctor could personally calculate the ratio, and can understand 

that the system is reliably based on this specific input. Machine learning, on the other 

hand, is a form of guessing and statistical probablility assigned to diagnose life-or-death 

conditions such as sepsis. As such, there has been an increase in skepticism regarding 

machine learning’s somewhat random learning process. For instance, The research group 

AI Now published a 2017 report recommending that healthcare agencies should not use 

“black box” algorithms, as their use raises ‘serious due process concerns’.88  

An example of a machine learning algorithm making a logical, but problematic 

conclusion, was that of the relationship between asthma and pneumonia mortality.89 A 

researcher for Microsoft explained that in the 1990s, they had trained an algorithm to 

predict mortality probability for pneumonia patients, to separate low-risk from high-risk 

individuals. The intent was to place high-risk patients in higher priority for treatment. 
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The algorithm looked at prior data, and deduced that asthmatic patients had a lower 

probability of mortality from pneumonia, and were placed in the low-risk tier. However, 

this lower probability occurred because asthma is considered a serious risk factor for 

pneumonia. Asthmatic patients were quicker to bring themselves to treatment when 

noticing difficulty breathing, and patients presenting with a history of asthma were 

admitted more immediately.89 In other words, prioritizing asthmatic patients was what 

made the mortality rate decrease for these patients. The algorithm would have no way of 

knowing that, however, and the algorithm moving that classification of patient to the low-

risk tier would have removed that benefit. If an algorithm is not designed to be readable, 

this sort of deduction cannot be recognized by a supervisor and corrected, and could have 

dangerous results.  

Similarly, machine learning algorithms could make decisions based on 

information that is unethical, such as making triage decisions based on the ethnicity or 

gender of a patient, rather than on the patient’s condition.90 Part of this moral dilemma is 

being decided by legal systems - The recent General Data Protection Regulation (GDPR) 

passed by the European Union creates a “right to explanation,”91 where a user can ask for 

an explanation of how an algorithmic decision was made about them. In response to 

ethical and legal pressure, machine learning researchers have been designing algorithms 

to include interpretability. For instance, an algorithm could display text snippets related 

to information used to inform decisions, so that a supervisor could deduce what part of 

the data is being used to make a certain decision.92,93.  
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USABILITY AND ALARM FATIGUE 

While multiple researchers have used machine learning retroactively to analyze 

patient data and diagnose sepsis, there have been relatively few proactive clinical trials. 

While there is promise in conducting a retroactive trial, more research is needed into 

effective, repeatable clinical trials to strengthen the case of using Machine Learning-

Based Diagnostic Support Systems (ML-DSS) in the hospital setting. In addition to 

experiential robustness, an ML-DSS should also take care to integrate well into the 

clinical setting, rather than adding another burden for clinicians. 

One issue to consider is the potential to adding to alarm fatigue. Many electronic 

systems already present in an Emergency Department or Intensive Care Unit are 

equipped with alarms meant to alert staff about potential emergencies. The volume of 

alerts currently used can be immense – A study at UCSF found that in one month, more 

than 2.5 million alarms were raised, and that nearly half of these alarms were for a wildly 

inaccurate arrhythmia alert system. Of the 1.15 million arrhythmia alarms that were 

generated, more than 88% were false positives.94  

Interestingly, this problem has also attracted some interest from the machine 

learning community - a research group is using a machine learning system to find and 

suppress false alarms for arrhythmias.95 Researchers have reported that monitor alerts 

result in changes in patient management less than 1% of the time96due to the high volume 

of alarms that do not convey meaningful information – if an ML-DSS program is to be 
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effective in the treatment of sepsis, it cannot simply add to the noise affecting clinicians 

in the hospital setting.   

Since standards for sepsis are controversial and not entirely standardized, there is 

also a possibility that an ML-DSS program could be making decisions based on older, 

outdated guidelines. Machine learning algorithms already face distrust by medical 

professionals due to the the “black box” nature of the algorithm’s decision process97 – if a 

standard for sepsis diagnosis or billing codes were to change in five years, and the 

machine is not updated for the new standards, this would only add to alarm fatigue, and it 

is likely that staff will be similarly dismissive of any new system, no matter how 

theoretically effective it might be.  

 

FUTURE IMPLEMENTATIONS 

Perhaps, with proper user experience design, an ML-DSS could be used to save 

time, as opposed to handing a clinician more responsibilities. For instance, upon sensing 

that a patient’s vital signs are leading towards possible sepsis, perhaps an ML-DSS could 

automatically order blood work for biomarkers such as PCT and CRP. If conditions 

continue to worsen, the system could automatically order tests for a more specific 

diagnosis, such as markers for the presence of certain bacteria. If a clinician then comes 

to assess the patient, a clear timetable of suspicions, of laboratory results and suspected 

pathogens could be presented to the clinician, simplifying the amount of steps needed to 

reach a diagnosis. The system could be designed such that alerts only present to clinicians 

once standard steps have been taken, reducing the workload for the clinician.  
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Machine learning algorithms have the ability to continuously process data at a 

level clinicians are unable to. As Taneja et al. found, machine learning algorithms can 

learn to prioritize certain biomarkers at certain stages, and predict the severity of sepsis 

due to this. Monitoring a comprehensive suite of biomarkers, especially if the ML-DSS 

could also automatically order blood tests, could provide a more clear picture, rather than 

simply alerting a clinician to the possibility of a diagnosis. It is possible that, if an ML-

DSS is designed with interpretability in mind, that the interface could display the 

reasoning for the actions it suggests taking, providing a sort of upgraded, commented lab 

result that a clinician could use to make decisions.  

Similarly, ML-DSS programs could be used to reduce patient rehospitalization. 

Rehospitalizations for patients with sepsis are mostly due to infection or another septic 

episode. After an index sepsis incident, nearly 40% of patients are transferred to skilled 

nursing facilities.33 Perhaps an ML-DSS program could be designed to communicate with 

facility systems to provide similar diagnostic support, and monitor for signs of infection, 

prompting recommendations for antibiotic treatment to be administered at the skilled 

nursing facility.  

CONCLUSION 

Sepsis is a complex, deadly disease, known since the time of Hippocrates.98 In the 

present day, it is one of the leading causes of mortality in the hospital setting. It is also not 

fully understood – pathologies of sepsis differ depending on the age of the patient and prior 

comorbidities, making diagnosis difficult. Bloodwork can’t paint a complete picture, as 

there’s no single biomarker that clearly delineates sepsis, and the most prevalently tested 
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biomarkers are chosen for laboratory availability rather than specificity. The very 

definition of sepsis in the medical community is controversial, subject to a major change 

in 2016, which is not universally accepted. Patient factors are also highly influential with 

respect to outcome and not always easily mineable from the chart. Patients that contract 

sepsis live with a severe symptoms, prone to re-hospitalization (often due to infection) and 

with a five times higher chance of mortality five years after the index event. Given the high 

cost of life and resources, there is a real need to address sepsis and minimize the loss of 

life and limb.  

Traditional computerized ‘alerts’ that monitor vital signs and notify clinicians of 

possible sepsis have been around for some time, but they are limited to only reporting a 

patient already in sepsis. Academic research has been investigating using machine 

learning to predict sepsis instead, and to increase the accuracy and timeliness of both 

sepsis diagnosis and treatment. The field has seen multiple promising studies, with 

algorithms that are reported to be equally as sensitive and specific as current diagnostic 

protocols such as SIRS and qSOFA. Some algorithms even propose new methods of 

detection and treatment, looking at a more granular level at the levels of individual 

cytokines on a continuous level, to guage how far along the condition of sepsis a patient 

is. These proposed algorithms have lots of promise for prediction, diagnosis and 

treatment, but more research needs to be conducted before these studies are to be seen in 

Emergency Departments around the world. Most of the studies conducted so far are 

retrospective studies done on EHR databases, and few prospective studies have been 

performed. However, this is not far off – one company, Dascena, has tested Machine 



 

48 

Learning-Based Diagnostic Support System (ML-DSS) called InSight in a live clinical 

trial. To the author’s knowledge, InSight is the only commercially available ML-DSS 

tool currently available, but more are likely to follow.  

A few complications need to be considered for an ML-DSS to be truly effective. 

An ML-DSS should be transparent and intuitive enough that a clinician can understand 

what the decisions are being based off of, so that the clinician can trust the software, and 

can check for erroneous assumptions that the algorithm is making. In addition, for true 

acceptance in a clinical setting, an ML-DSS should reduce, rather than add to, the alert 

fatigue that is currently present in hospitals. Adding another alert to the cacophony being 

given to a clinician will likely not help in the timely diagnosis and treatment of sepsis. 

However, if proper thought is put into the design of an ML-DSS for a clinical setting, and 

financial and logistical considerations are further developed, machine learning can have a 

powerful, useful, and ultimately life-saving role in the diagnosis and treatment of sepsis.  
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