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ABSTRACT 

 Phase transformations and chemical interactions occur in many materials systems 

exposed to elevated temperatures. In this study, materials exposed to high temperatures in 

three distinctive applications, have been examined.  

The first application involves the fabrication of semiconductor-core optical fibers 

for mid-infrared transmission. Such fibers can be used for chemical sensing, threat 

detection, and bio-imaging. In this study, germanium-core borosilicate glass cladded fibers 

were fabricated using rod-in-tube drawing. An analytical model for the deformation and 

heat transfer in the fiber preform during the high temperature fabrication process was 

developed. The solidification of the germanium core was experimentally studied using a 

proxy system of melting ice in a tube. The relative roles of conductive and convective heat 

transfer in determining the melting mechanism was analyzed. The fabricated fibers were 

characterized by various electron microscopy based techniques to understand impurity 

diffusion from the cladding to the core, as well as to study the crystalline quality of the Ge 

core. 

The second application involves solid oxide membrane (SOM) based electrolytic 
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production of silicon, where the interaction between the ceramic membrane and the molten 

salt is the key in determining the lifetime of the membrane. The yttria-stabilized zirconia 

(YSZ) membrane was found to degrade over time due to chemical interactions with the 

silica-containing molten oxy-fluoride flux. These interactions led to the formation of a 

yttria depletion layer in the YSZ in contact with the molten salt. A series of flux 

compositions were designed to systematically test the correlation between flux optical 

basicity, yttria activity and YSZ membrane degradation. The results provide a guideline 

for eliminating membrane degradation during the production of silicon using the SOM 

electrolysis process. 

The third application involves molten mixtures of lithium chloride and metallic 

lithium for metal oxide reduction application. These mixtures exhibit anomalous physical 

properties that lack a comprehensive explanation. In this study, the structures of bulk 

molten LiCl and LiCl-Li mixtures were investigated using an in-situ high-energy x-ray 

diffraction (HEXRD) technique. The structure factors and the pair distribution functions 

(PDF) of LiCl-Li mixtures were compared with those of pure LiCl. The results suggest Li 

disperses in LiCl as nano-clusters. 
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1. Background and Overview 

Chemical interactions and phase transformations in materials under high 

temperatures occur in many applications. If such interactions are desirable, high 

temperatures may provide advantages over room temperature interactions, such as higher 

reactivity rate, higher energy efficiency and absence of aqueous solutions.  However, 

deleterious effects such as corrosion, and complexity of atmosphere control are also 

exacerbated at higher temperatures. Moreover, availability of physical and chemical 

properties of materials at high temperature is still limited, making predictive behavior of 

high temperature materials and systems more challenging. This research involves the study 

of the materials interactions and phase transformation at high temperatures in three diverse 

applications.  

The first application is the fabrication of semiconductor-core optical fibers for mid-

infrared transmission. In this study, the deformation, heat transfer and phase change in the 

fiber preform were modeled to optimize the high temperature fiber drawing process. The 

drawn fibers were also characterized using electron microscopy based techniques to 

identify the potential sources of transmission losses. The second application is the 

electrolytic production of solar grade silicon using a solid oxide membrane (SOM) based 

system in which silica is dissolved in a molten fluoride-based flux. In this study, the 

corrosion of the yttria stabilized zirconia (YSZ) SOM membrane when exposed to silica 

containing oxy-fluoride flux at high temperatures was exanimated as a function of flux 

composition. An optimal flux composition is proposed to optimize the process. The third 

application involves reduction of metal oxides using molten lithium chloride and lithium 
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mixtures. For this application, the molten LiCl-Li mixture was characterized using the 

synchrotron based High Energy X-Ray Diffraction (HEXRD) technique. The obtained 

paired distribution functions (PDF) was studied to understand the structure of molten 

lithium chloride and lithium mixtures. 

In this document, the fabrication of semiconductor-core optical fibers is discussed 

in Chapter 2, the corrosion of SOM-based electrolytic production of Si is discussed in 

Chapter 3, and the structure of molten LiCl-Li mixtures is discussed in Chapter 4. Each 

chapter contains its own introduction, experimental details, and results and discussion 

sections. Chapter 5 is the conclusion section for the entire dissertation. 
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2. Semiconductor Core Optical Fibers for Mid-Infrared Transmission 

2.1 Introduction 

Optical fibers are widely used in modern communication applications. The 2009 

Nobel Prize in Physics was awarded to Dr. Charles Kao for “groundbreaking achievements 

concerning the transmission of light in fiber for optical communication” [1]. A majority of 

optical fibers used for optical communications are made by subjecting silica glass preforms 

through the fiber drawing process [2]. The optimum wavelength of light guided in silica 

glass fiber is 1.55 µm since it sits at the cusp of Rayleigh scattering at lower wavelengths 

and infrared absorption at higher wavelengths, as shown in Figure 1. Light with 

wavelengths in the mid-infrared range (λ=2-10µm) suffers high transmission losses in 

silica fibers.   

 

Figure 1. Transmission of silica fibers and theoretical limitations [3]. 
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Optical fibers that transmit in the mid-infrared (IR) region are receiving increasing 

attention because they have a variety of potential applications, including chemical sensing 

[4], biomedical surgery [5], and aircraft threat detection, among others. Several mid-IR 

transmitting materials have been used to fabricate optical fibers over the years, including 

heavy metal oxides [6], crystalline halides [7 8], fluoride glasses [9] and chalcogenide 

glasses [10 11]. These as-fabricated fibers have acceptable mid-IR transmission losses, but 

suffer from room temperature devitrification, which limit their applications due to property 

degradation over time. In the last decade, semiconductor materials have become an 

emerging candidate for mid-IR fiber cores [12]. Fabrication methods such as high-pressure 

vapor chemical deposition (HP-CVD) [13-15] and ‘rod-in-tube’ drawing [16 17] have been 

explored for these materials. The HP-CVD method has limitations on the fiber length into 

which the core can be deposited. The ‘rod-in-tube’ method has been used to fabricate 

germanium core fibers with silica [16] and borosilicate glass [17] claddings. Silica has a 

large coefficient of thermal expansion (CTE) mismatch with germanium, leading to crack 

formation in the fibers. Borosilicate glass has a much better CTE match with germanium, 

and it features lower working temperatures. However, previous attempts to fabricate mid-

IR transmitting Ge-core/borosilicate glass cladded fibers have large transmission losses, 

presumably due to impurity diffusion from the cladding to the core [17].  

In the present work, Ge-core/borosilicate glass cladded fibers, which exhibit mid-

IR transmission, were fabricated1 by the ‘rod-in-tube’ method as shown in Figure 2. The 

                                                        
1 Fiber fabrication by Dr. Mustafa Ordu. 
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fiber deformation and heat transfer at high temperatures were studied to build models to 

guide the fiber fabrication process. The microstructures of the fabricated fibers were 

examined, and strategies to further reduce transmission losses were explored in this study.  

 

Figure 2. Schematic of the fiber drawing process. 

2.1.1 Neck formation 

In a typical fiber drawing process, the glass preform with the germanium core is 

heated in the tube furnace to a temperature that germanium core melts and the glass 

cladding softens, and then is pulled downwards by its own weight. During deformation, a 
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‘neck’ forms on the preform, as shown in Figure 2, where the rate of reduction of the cross-

sectional area is the fastest. As a result, a stable cross-section that is significantly smaller 

than the diameter of the original preform, is reached.  

The location where this neck forms is crucial to determine optimal position of the 

germanium core in the preform. The germanium core needs to be placed right above the 

neck (e.g. 1-3 cm above) to ensure the successful fabrication of germanium core fiber. If 

the rod is below the neck, the drawn fiber will not have a semiconductor core. If it is well 

above the neck, the molten Ge will remain in contact with the cladding at elevated 

temperatures for long periods, increasing the extent of impurity diffusion.  

The neck formation is a result of the balance between forces (e.g. gravity and 

viscosity) and the conservation of mass [18]. Since the viscosity of fiber preform is a 

function of temperature, it is important to understand the heat transfer process in the 

preform. Previous studies have focused on the shape of the neck when the fiber is pulled 

at a constant speed [18 19]. In this study, the neck location is estimated numerically for a 

static perform located in the furnace at working temperature.  

 

2.1.2 Heat transfer with phase change 

During the fiber fabrication process, the germanium core undergoes a solidification 

process after leaving furnace hot zone. The solidification of Ge core in the borosilicate 

glass cladding is a heat transfer process that involves phase changes. Since the fiber core 

diameter is of the order of tens of microns, the solidification times are of the order of 
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milliseconds. Thus, it is difficult to capture the solidification process through experimental 

methods. Instead, the melting of ice inside cylindrical containers is experimentally studied, 

and modelled, which is qualitatively similar to the reverse process of Ge core solidification, 

i.e., the melting of the germanium core inside the glass cladding. 

Melting of phase change materials (such as ice/water) inside horizontal cylindrical 

containers under constrained (fixed in the center) [20 21] and unconstrained (free to 

float/sink) [22-24] configurations have been investigated previously. In the unconstrained 

configuration, due to the density difference of solid phase and liquid phase, gravity brings 

the solid phase change material (PCM) in closed contact with container inner surface and 

is separated by a thin continuously forming liquid layer. In this study, the detailed melting 

mechanisms of ice melting in an unconstrained fashion in copper and plastic (polyvinyl 

chloride (PCV)) tubes have been experimentally investigated. The experimental results are 

explained using an analytical model. The obtained model can be applied to fiber fabrication 

and to PCM energy storage applications [25-28]. 
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2.2 Experiments and Results 

2.2.1 Modeling of Neck Formation 

2.2.1.1 Geometry and Governing Equations 

The geometry and initial position of fiber preform are shown as schematics in 

Figure 3 and Figure 4. The fiber preform is placed in a vertical tube furnace with its lower 

end slightly above the bottom of the furnace tube. In the figures, L is the initial length of 

the fiber preform inside the furnace, and L’ is the length of heating zone of the furnace. 

The x-axis points along the axial direction of the fiber preform with the origin at the top of 

the furnace heating zone with a downward positive direction. The r-axis points along the 

radical direction of the fiber preform with the origin at the center of the preform cross-

section with an outward positive direction. R is the radius of the fiber preform and R’ is the 

radius of the furnace inner wall as shown in Figure 4  

 

Figure 3. The geometry and position of the fiber drawing setup. 
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To predict the time dependent deformation of the preform, the ‘Trouton’ model 

[29] was applied. Since the glass preform is a highly viscous and slender cylinder object, 

its deformation can be described using Stoke’s equations. The kinematic and zero-stress 

boundary conditions are applied at the free surface. The solution to the Stoke’s equation 

for an axisymmetric fiber in leading order of asymptotic expansions according to the 

‘Trouton’ model can be written as:  

conservation of mass, given as: 

𝜕𝐴

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑢𝐴) = 0 

(1) 

and stress balance between gravity and viscosity, given as: 

𝜕

𝜕𝑥
(3𝐴𝜇

𝜕𝑢

𝜕𝑥
) = −𝜌𝑔𝐴 

(2)  

Here, 𝐴 =  𝜋𝑅2, is the cross-section area of the fiber preform, u is the velocity of the 

preform in x direction, ρ is the density of the fiber preform material and µ is the dynamic 

viscosity of the fiber preform. The surface tension force is ignored here since viscous forces 

are 103-109 times greater than the surface tension forces in this application [29]. The 

governing equations are then non-dimensionalized (with non-dimensional terms indicated 

with primes) as following: 

𝐴 = 𝜖2𝐿2𝐴′;  𝑢 = 𝑈𝑢′ 

𝑡 = (𝐿 𝑈⁄ )𝑡′;  𝑥 = 𝐿𝑥′; 

𝜇 =
𝐿2𝜌𝑔

𝑈
𝜇′  

(3) 
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This yields non-dimensional, scaled equations, given as: 

{
 
 

 
 𝜕𝐴′

𝜕𝑡′
+

𝜕

𝜕𝑥′
(𝑢′𝐴′) = 0

𝜕

𝜕𝑥′
(3𝐴′𝜇′

𝜕𝑢′

𝜕𝑥′
) = −𝐴′

  

(4) 

After dropping the primes, Equation 4 can be expressed as: 

{

𝜕𝐴

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑢𝐴) = 0

𝜕

𝜕𝑥
(3𝐴𝜇

𝜕𝑢

𝜕𝑥
) = −𝐴

  

(5) 

with boundary conditions, given as: 

{
𝑢(0, 𝑡) = 0
𝐴(𝑥, 0) = 𝐴0

 

(6) 

Since the length of the fiber is increasing throughout this process, Lagrangian 

transformation is used to solve these equations, given as: 

{
 

 
𝜕

𝜕𝜏
=
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
𝜕

𝜕𝜉
=
𝜕𝑥

𝜕𝜉

𝜕

𝜕𝑥

 

(7) 

Thus, the governing equations are transformed as: 

{
 
 

 
 

𝜕

𝜕𝜏
(𝐴
𝜕𝑥

𝜕𝜉
) = 0

3
1

𝜕𝑥
𝜕𝜉

𝜕

𝜕𝜉
(−

𝜕𝐴

𝜕𝜏
𝜇) = −𝐴

  

(8) 

 
with the boundary conditions,  
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{

𝑥(𝜉) = 0 𝑎𝑡 𝜉 = 0

𝑥(𝜉) = ℓ(𝜏) 𝑎𝑡 𝜉 = 1

𝐴(𝑥(𝜉), 0) = 𝐴0

 

(9) 

From the transformed continuity equation 
𝜕

𝜕𝜏
(𝐴

𝜕𝑥

𝜕𝜉
) = 0, it is clear that 𝐴

𝜕𝑥

𝜕𝜉
 is only a 

function of 𝜉, and not a function of τ. By applying the boundary condition, 𝐴(𝑥(𝜉),0) =

𝐴0, the function is obtained as 𝐴
𝜕𝑥

𝜕𝜉
= 𝐴0(𝜉). Then, the stress balance equation can be 

transformed to, 

3
𝜕

𝜕𝜉
(
𝜕𝐴

𝜕𝜏
𝜇) = 𝐴0(𝜉) 

(10) 

Since the initial shape of the preform is a straight cylinder (with no neck), the initial 

condition can be written as 𝐴0 = 1. Based on experimental observations, the bottom of the 

fiber does not deform during the drawing process, so the boundary condition: 𝜕𝐴 𝜕𝜏⁄ =

0 at 𝜉 = 1, is also applied to the bottom of the fiber, leading to:  

𝐴(𝜉) =
𝜏

3

(𝜉 − 1)

𝜇
+ 1 

(11) 

Also, from 𝐴
𝜕𝑥

𝜕𝜉
= 𝐴0(𝜉), the total length of the fiber preform can be expressed as,  

ℓ(𝜏) = 𝑥(1) − 𝑥(0) = ∫
𝐴0(𝜉)

𝐴(𝜉)
𝑑𝜉

1

0

 

(12) 

By applying boundary conditions, the total length of the deformed preform can now be 

expressed as:  
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ℓ(𝜏) = ∫
1

𝜏
3
(𝜉 − 1)
𝜇 + 1 

1

0

𝑑𝜉 

(13) 

2.2.1.2 Heat Transfer in the Preform 

Since the viscosity of the borosilicate glass varies with the temperature of the fiber 

preform, it is important to understand the heat transfer process in the fiber preform. For the 

preform placed in the tube furnace, radiation is the primary heat transfer mechanism [18]. 

In the radiation model, the surfaces of the glass preform and the tube furnace are both 

considered as gray bodies. The radiation from the furnace surface to the preform surface is 

estimated as: 

𝑞21 =
𝐸𝑏2 − 𝐸𝑏1

1 − 𝜀1
𝜀1𝐴1

+
1

𝐴1𝐹12
+
1 − 𝜀2
𝜀2𝐴2

 

(14) 

where 𝐸𝑏2 is the energy flux from furnace surface, 𝐸𝑏1 is the energy flux from the preform 

surface, 𝜀2 and 𝜀1 are the emissivity of the two surfaces,  𝐴2 and 𝐴1 are the surface areas 

of the furnace and preform, respectively. 𝐹12 is the view factor from furnace surface to the 

preform surface.  
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Figure 4.  Cross-section view of the fiber preform and furnace during drawing. 

 

In addition to thermal radiation, thermal conduction through air from the furnace to 

the preform and inside the preform also takes place, and can be described as: 

𝑞 = −𝑘∇𝑇 
(15) 

where 𝑘 is the thermal conductivity. In the model, the fiber preform at room temperature 

is introduced into the hot furnace, where the furnace surface and the air inside are at 

elevated temperature.  

Table 1. Materials properties used in heat transfer simulations 

Physical Properties Value 

Emissivity of furnace wall (𝜀2) 0.8 

Emissivity of preform (𝜀1) 0.6 

Thermal conductivity of air (kair) 8.58×10-2 W/(m·K) 

Thermal conductivity of preform (ki) 1.2 W/(m·K) 
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Density of air (ρair) 0.26 kg/m3 

Density of preform (ρi) 2230 kg/m3 

Specific heat of air (Cair) 1.197 kJ/(kg·K) 

Specific heat of preform (Ci) 0.9 kJ/(kg·K) 

 

Since 3D numerical modeling of the thermal transfer process in the fiber preform 

is computationally expensive, the heat transfer process of a 2D cross-section of the system 

(Figure 4) is constructed in COMSOL Multiphysics®. The initial conditions and materials 

properties are listed in Table. 1. The heat transfer process is simulated for three different 

preforms at different temperatures. The initial conditions and geometry of these three 

preforms are listed in Table. 2 with the length of the furnace L’ = 35cm and radius R’ = 

3.8cm.  

Table 2. Initial conditions for the heat transfer simulations 

Preform Radius (R) Length (L) 

Furnace and Air 

Temperature  

(Tf and Tair) 

Initial Preform 

Temperature (Ti) 

1 0.45cm 32.5 cm 1433K 298K 

2 0.7cm 25 cm 1333K 298K 

3 1cm 25 cm 1433K 298K 

 

The simulated 2D temperature profile of Preform 1 at t = 20s is shown in Figure 5, 

as an example. In the plot, there is a temperature gradient from the surface to the center of 

the preform. To simplify the model, the temperature of this cross-section is assumed to be 
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uniform, and equal to the average temperature of the cross-section. The time dependent 

average temperature variation of the preform at that location is shown in Figure 6.  

The axial temperature profile of the furnace heating zone is assumed to be a 

Gaussian, with the highest temperature located in the middle of the furnace as shown in 

Figure 7. As mentioned previously, in order to restrict the simulation to 2D, it is assumed 

that there is no axial heat transfer along the preform. As a result, the axial temperature 

profile of the preform follows that of the furnace heating zone as shown in Figure 7.  

 

Figure 5. Simulated temperature profile of fiber preform and furnace cross section. 
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Figure 6. The temperature variation of the preform at the simulated location. 

 

Figure 7. Schematic of the preform location inside furnace, the furnace axial temperature 

profile and the preform axial temperature profile. 
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The viscosity of the glass preform is temperature dependent, and the relationship 

can be expressed as [30]: 

𝜇 = 10−2.15+7254.8/(𝑇(𝑥,𝑡)−342.3) 
(16) 

Thus, for each individual preform, the time dependent variation of viscosity profile along 

the x-axis was obtained.  

 

2.2.1.3 Simulation and Validation 

The perform viscosity profile obtained from the thermal transfer modeling is 

coupled with the analytical solution obtained from the ‘Toutron’ model in MATLAB®. 

The deformation of the fiber preform in the furnace under the influence of varying viscosity 

was simulated. Figure 8 shows the simulated deformation profile and the viscosity profile 

along the x-axis of Preform 1 from t=40s to t=50s. The figure shows that, as time increases, 

the viscosity decreases while the deformation increases and a neck starts to form. The 

simulation results in Figure 9 and Figure 10 show the time dependent variation of the cross-

section area profile and the total length of Preform 1 for the time period from t = 30s to t 

= 50s. From these results, the neck location and necking time can be predicted. For 

example, the neck on the Preform 1 starts at around x = 0.3 which is 9 cm from the top of 

the heating zone. The necking time is defined as the thinnest region along the preform is 

0.75 of its initial value, so for Preform 1, the necking time is around 45s.  The simulated 

results are compared with the experimental results in Table 3. The modeled results are in 

good agreement with the experimental results.  
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Figure 8. Simulated deformation and viscosity profile of Preform 1 during drawing 

process. 

 
 

  
 

Figure 9. Cross section area profile along the x axis of Preform 1 as a function of time. 
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Figure 10. Variation in the non-dimensionalized length of Preform 1as a function of non-

dimensionalized time. 

 

Table 3. Neck formation simulation data and experimental results 

Preform 

Simulated 

neck location 

x (cm) 

Experimental 

neck location x 

(cm) 

Simulated 

necking time (s) 

Experimental 

necking time (s) 

1 9.75 9 45 64 

2 10 10 120 97 

3 10 9 145 175 
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2.2.2 Germanium-Core Fiber Characterization 

Mid-IR transmitting Ge-core/borosilicate glass cladded optical fibers were 

fabricated at 1000°C by the ‘rod-in-tube’ method using a mini draw tower built in-house.2 

The results reported in this section is based on fibers drawn from a 9mm OD preform. The 

drawn fibers had a 40 µm Ge-core diameter and a 177 µm borosilicate glass cladding 

diameter. After drawing, the fibers were placed in epoxy, and the end was polished to 

observe the fibers in cross section using a Scanning Electron Microscopy (SEM) (Zeiss 

Supra 55, Carl Zeiss, Oberkochen, Germany). An optical micrograph of a 40µm Ge-core 

fiber is shown in Figure 11. 

 

Figure 11. Optical micrograph of a fabricated fiber cross section. 

                                                        
2 Fibers drawn by Dr. Mustafa Ordu 
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To test the optical performance of the fibers, the fibers were mounted in epoxy and 

polished at both ends.  Before testing mid-IR transmission through the fabricated Ge core 

fibers, it is important to test the mid-IR transmissivity of all the materials in the mounted 

samples, to ensure that light is only transmitted through the fiber core. The transmission 

through epoxy and borosilicate glass in the 1.7-10μm wavelength range measured using 

Fourier transform infrared (FT-IR) spectroscopy (Bruker Optics Inc., Massachusetts) is 

shown in Figure 12a. 3  The figure clearly shows that that light transmission stops at 

wavelengths above 3.3μm and 2.1μm in the borosilicate glass and epoxy, respectively. On 

the other hand, the transmission spectra through an unprocessed germanium rod and a large 

diameter (~ 300µm) Ge-core fiber have similar shapes (Figure 12b), although the 

transmission loss in the cane is higher. This however demonstrates that a molten and re-

solidified Ge-core does transmit mid-IR wavelengths. 

 

  

Figure 12. Wavelength dependent FT-IR spectroscopy of (a) borosilicate glass and epoxy, 

and (b) unprocessed Ge rod and Ge cane. 

 

                                                        
3 Optical measurements conducted by Dr. Mustafa Ordu. 
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The transmission through a Ge-core fiber was tested using a quantum cascade laser 

(QCL) at wavelengths between 5.82 µm and 6.28 µm. The signal through fibers of different 

lengths (8.63, 8.25, and 7.91mm) are tested and compared with the output signal without a 

sample in the light path. The transmission loss at each individual length was calculated 

using:  

𝛼 = −
10

𝐿
log10(

𝑃0
0.642𝑃𝑖

) 

(17) 

where L is the length of the fiber, Pi and P0 are the fiber output power and background 

power respectively. This led to three sets of wavelength dependent transmission loss data 

whose wavelength dependent average values are plotted in Figure 13. Since the wavelength 

range tested is too narrow to deduce any meaningful trends with respect to wavelength 

dependence, an average transmission loss of all wavelength for all samples tested was then 

calculated to be 5.1dB/cm.4  

 

Figure 13. Transmission losses in Ge-core fiber. 

                                                        
4 Optical measurements conducted by Dr. Mustafa Ordu. 
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To identify the cause(s) for the transmission loss, the fabricated fiber was 

characterized using electron microscopy based elemental analysis and diffraction analysis. 

Ballato et al. [17] have reported that the diffusion of light elements (e.g. oxygen) from the 

cladding into the core is one of the major causes of transmission loss in semiconductor core 

fibers. In order to study the diffusion profile at a high spatial resolution, electron 

transparent transmission electron microscopy (TEM) samples containing the fiber 

core/cladding interface were prepared using a focused ion beam (FIB; FEI, Oregon) based 

‘lift-out’ technique. Elemental dot maps and composition profiles across the core-cladding 

interface were obtained by scanning/transmission electron microscopy (S/TEM; FEI, 

Oregon) and energy dispersive x-ray (EDX) spectroscopy at 200KV, using a 1nm diameter 

electron beam. Electron transparent samples were also made by standard polishing and ion 

milling techniques for high-resolution TEM (HRTEM) studies of the interface. Finally, the 

grain structure of the Ge core was also examined by electron back scattered diffraction 

(EBSD) mapping (Oxford Instruments, Concord, MA).  

Figure 14a shows a TEM bright-field micrograph of the Ge-core/borosilicate glass-

clad interface of fiber, along with EDX elemental dot maps of Ge, O and Si (Figure 14b-

d), indicating that the glass/cladding interface is quite sharp. Figure 14e shows an EDX 

line-scan across a core/cladding interface region, indicating that the diffusion of the 

cladding components (Si, O, B, K, Na and Al) diffusion from cladding to core is minimal 

with the diffusion distances in the submicron regime. The low oxygen content of the core 

is likely a result of the low drawing temperature and is encouraging for mid-IR 

transmission since oxygen is known to increase mid-IR transmission losses in fibers. The 
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extent of impurity diffusion is significantly less than that reported by Ballato et al. for Ge-

core borosilicate clad fibers [17]. 

 

Figure 14. (a) TEM bright-field micrograph of core/cladding interface of fiber. EDX dot 

maps of (b) Ge, (c) O, and (d) Si. (e) EDX line scan showing the composition profile of Si, 

Ge, O, B, K, Na, and Al across the core/cladding interface. The diffusion of oxygen from 

the cladding to the core is minimal. 

 
Figure 15a shows an HRTEM micrograph of core/cladding interface in the fiber. 

The crystalline quality of the Ge core is evident in the micrograph. A higher magnification 

HRTEM micrograph of the Ge core, imaged on the [1̅12] zone axis is shown in Figure 15b. 

A selected area diffraction (SAD) pattern from this grain is indexed as shown as an inset 

in Figure 15b. Clearly, the germanium core shows high crystallinity at the core/cladding 

interface.  
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Figure 15. (a) HRTEM micrograph the core/cladding interface in the Ge-core fiber. (b) 

HRTEM image of the Ge grain imaged along the [𝟏̅𝟏𝟐] zone-axis and SAD pattern (insert). 
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Figure 16. (a) SEM micrograph of fiber polished along its length. (b) Orientation map 

measured by EBSD. The red lines show the presence of twin boundaries. (c) Orientation 

key used in the map in (b). 

 
In order to investigate the germanium core crystal orientation over a longer range 

(e.g. sub millimeter range), SEM based EBSD was carried on fibers polished in cross-

section along the fiber length. The SEM image of the studied Ge-core fiber is shown in 

Figure 16a. EBSD mapping in Figure 16b shows the crystal orientation of different regions 

in the polished fiber with the orientation key shown in Figure 16c. The grains in the 

germanium core shows an average size of approximate 200µm with different crystal 

orientations. The grain boundaries in the fiber is also visible in this map. The red lines in 

Figure 16b shows the location of twin boundaries, which indicates that almost all the grain 

boundaries observed are actually twin boundaries. 

It is clear that the diffusion of light elements into the core is significantly reduced. 

The germanium core exhibits high degree of crystallinity after re-solidification. For these 

reasons, the fabricated fibers reported here have the lowest measured losses for a Ge-core, 

borosilicate cladded optical fiber produced by the ‘rod-in-tube’ method [31]. However, 

grain boundaries are present in the fiber, which are probably one of the major reasons for 
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the measured transmission losses.  

 

2.2.3 Ice Melting in a Tube: A Case of Heat Transfer with Phase Change 

In order to reduce the transmission loss of fabricated fibers, materials engineering 

via post processing on fabricated fiber can be applied. Several post-processing techniques, 

such as tapering and laser treatment, have been developed to optimize both the materials 

and the geometry of the fibers. Among these techniques, furnace-based annealing of the 

fabricated fiber in horizontal configuration has been used to re-melt the core and 

directionally solidify to increase the grain size of the crystalline core [32]. It is important 

to estimate the time for core re-melt so the fiber exposure to the annealing process can be 

minimized. 

Phase changes of the germanium core during post processing of the fiber is difficult 

to measure experimentally due to the high temperatures involved and the small sample 

dimensions. Melting of ice in horizontal cylindrical tubes have been experimentally studied 

and modeled as a proxy to the fiber core melting process.  

 

2.2.3.1 Experiment details 

The experiment set up is shown schematically in Figure 17a. The tube was held 

horizontally with well-circulated room temperature air around it. The geometry of the tube 

is shown in Figure 17b, where R is the initial radius of the ice rod, ℓ(𝑡) is the effective 

radius of the ice rod during melting and 𝐿 is the length of the tube. One end of the tubes 
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was sealed with a 5mm transparent PVC plate to provide a window to observe the melting 

process. The other end of the tube was sealed off by a 1 mm latex membrane to prevent air 

pocket generation resulting from the volume change accompanying the phase 

transformation.  

De-ionized (DI) water was carefully de-gassed by boiling for 45 minutes prior to 

freezing. Thermocouples were placed both inside and outside the top surface of the tube 

for temperature measurements. A digital camera is placed at the PVC end of the tube to 

capture the time dependent melting process. A light source was applied on the back end of 

the tube for improved imaging. Experiments were carried out with PVC and copper tubes 

of various diameters at room temperature. 

 

 

 

Figure 17. (a) Schematic of the ice melting experiment. (b) Geometry of the tube used in 

the experiment. 
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Figure 18. (a) Time elapsed images of ice melting inside a copper tube. (b) Time elapsed 

images of ice melting inside a PVC tube. 

 
Time elapsed images of ice melting in Cu and PVC tubes are shown in Figure 18a 

and Figure 18b, respectively. Inside the Cu tube, the upper half of the ice rod melts more 

rapidly than the lower half. The imbalance in melting rates creates elliptical shaped cross-

sections with the top part following the container wall curvature and the lower part 

relatively keeping its initial curvature as shown in Figure 18a. These observations agree 

those reported by Riviere et al. [24]. However, inside PVC tubes, the ice cylinder cross-

section keeps its circular shape during most of the melting process. 

 

2.2.3.2 Results and Discussion 

From the time elapsed photos (e.g., Figure 18), the effective radius of the ice rod, 

ℓ, is plotted as a function of time in Figure 19a for Cu and PVC tubes of different diameters. 

The results indicates that, in general, the ice-melting time in the Cu tube is shorter than that 

in the PVC tube, and that the melting time increases with increasing ice rod diameter for 
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both cases. As seen in Figure 18a, once water from melted ice accumulates in the system, 

the ice rods rise as a result of buoyancy. The heat conduction is then concentrated at the 

top part of the tube as a result of the close contact between the ice and the top inner tube 

surface. [23] This configuration is qualitatively similar to the evaporation of a Leidenfrost 

drop that features a thin vapor layer between the water drop and hot surface. According to 

Bareiss et al. [23] and Biance et al. [33], the melting time can be scaled as: 

𝜏𝑐 =
𝜌ℒ𝑅𝛿

(𝑇𝑖 − 𝑇𝑚)𝜅𝑙
, 𝛿 = (𝑅

𝜅𝑙(𝑇𝑖 − 𝑇𝑚)

𝜌ℒ

𝜇

𝜌𝑙𝑔
)1/4 

(18) 

where ρ is the density of ice, ℒ is the latent heat of fusion of ice, R is the initial radius of 

ice rod, Ti is the container inner wall temperature, Tm is the melting temperature of ice and 

κl, ρl and μ are the thermal conductivity, density and viscosity of water, respectively. δ is 

the characteristic water layer thickness. The experiment results using normalized radius 

(ℓ/R) and time scales (𝜏𝑐) are plotted in Figure 19b. The PVC tube data collapses into a 

single curve, as does the Cu tube data, the two data sets themselves are distinct, indicating 

that the dominant mechanism is different for the two cases. 
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Figure 19. Results of the ice melting experiments, showing the (a) effective radius of the 

ice rod, 𝓵, as a function of time in copper and PVC tubes, and (b) experiment results 

normalized by characteristic time from the conduction dominating model. 
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Figure 20. Rotational motion of ice rod during melting: (a) time elapsed image of ice rod 

axial angle change inside copper tube (upper row) and PVC tube (lower row) from 200s 

to 450s. (b) Schematic of melting process when QT > QS, where QT and QS are the heat flux 

from the top surface and the heat flux around the sides. (c) Schematic of ice melting process 

when QT < QS. 

 
Besides the differences in the ice rod shape and melting time, there are also 

noticeable differences in the motion of the ice during melting in the two tubes. Figure 20a 

shows the motion of ice in Cu and PVC tubes during the same time period in the melting 
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process. The ice rod melting in the Cu tube only wiggles as has been reported in previous 

studies [24]. The ice rod melting in the PVC tube rotates almost half a circle during the 

same period. A possible explanation lies in considering melting rate variations in different 

directions. At the closest contact region at the top of the tube, ice melts mainly by the 

conductive heat, QT, through the thin water layer. In contrast, both sides of the ice rod melt 

by the convective heat flux, QS, due to warmer water flowing downward along the ice 

surface from the thin top layer (that is itself warmed by the conduction through the tube 

wall). These warm water streamlines have been visualized by Riviere et al. [24].  

When QT is larger than QS, the top of the ice melts faster, leading to an elliptical 

shape that is stable to small rotational perturbations as shown Figure 20b. With the top part 

continuing to melt faster than the sides, the ice rod keeps this elliptical shape till the end. 

When QS is larger than QT, the sides melt faster than the top, creating an elliptical shape 

that is unstable to small rotational perturbations. Thus, the ice rod rolls over to a more 

stable position in which the major axis of the ellipse is horizontal. Since the sides melt 

faster, the elliptical shape ends up as a circle and this process starts over again. An 

exaggerated schematic of this process is shown in Figure 20c. As this process is happening 

continuously, the continuous rotational motion and the near circular shape of ice rod is 

observed experimentally.  

To analyze this process quantitatively, the convective heat from the top to the sides 

and bottom of the system is estimated using a correlation proposed by Churchill and Chu 

[34], and given as: 
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𝑄𝑠 =
𝜅𝑙(𝑇𝑖 − 𝑇𝑚)

2𝑅
(0.6 +

0.387𝑅𝑎1/6

(1 + (0.559/𝑃𝑟)9/16)8/27
)2 ≈ 0.15𝜅𝑙(

𝑔𝛽

𝜈𝛼
)1/3(𝑇𝑖 − 𝑇𝑚)

4/3 

(19) 

where, 𝑃𝑟 =
𝜈

𝛼
 is the Prandtl number, 𝑅𝑎 =

𝑔𝛽

𝜈𝛼
(𝑇𝑖 − 𝑇𝑚) is the Rayleigh number, Tm is the 

melting temperature of ice, 𝜈  is the kinematic viscosity of water, 𝛽  is the thermal 

expansion coefficient of water and 𝛼 is the thermal diffusivity of water. The conductive 

heat transferred through the thin water layer in a copper tube can be estimated from the 

conduction dominated model [23 33] mentioned previously, as: 

𝑄𝑇 =
𝜌ℒ𝑅

𝜏𝑐
 

(20) 

But the conduction dominated model cannot be applied directly to the results from the PVC 

tube results as shown by the non-convergence of the Cu and PVC tube data shown in Figure 

19b. For this case, QT is calculated as the total heat transfer through the PVC wall 

(calculated from the measured temperature difference between inner and outer walls) 

minus the heat that is transferred downward with the water stream, giving: 

𝑄𝑇 =
(𝑇0 − 𝑇𝑖)𝜅𝑐
ln (𝑅0/𝑅)𝑅0

− 𝑄𝑆 

(21) 

The results are shown in Table 4. The ratio QT/QS, indicates that, in Cu tubes, heat flux 

from the top, QT, is greater than heat flux from the sides, QS. In PVC tubes, QS is greater 

than QT. As the greater heat flux is the rate controlling driving force, the melting time of 

ice rods in both tubes can be estimated as, 
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𝜏𝑚 =
𝜌ℒ𝑅

𝑄𝑚𝑎𝑥
, 𝑄𝑚𝑎𝑥 = {

𝑄𝑆, 𝑄𝑇/𝑄𝑆 < 1
𝑄𝑇 , 𝑄𝑇/𝑄𝑆 > 1 

 

(22) 

When the melting times are normalized according to Equation 21, the melting time results 

of PVC tube and copper tube experiments scales with 𝜏𝑚. Both results collapse on to a 

single curve, especially before t 𝜏𝑚⁄ = 0.5 as shown in Figure 21. 

Table 4. Table of thermal transport data 

Tube 

Material 

𝑹 

(𝐦𝐦) 
𝜿𝒄 

(𝑾/𝒎𝑲) 
𝑻𝒊 
(℃) 

𝑸𝑻 

(𝑱/𝒎𝟐) 
𝑸𝑺 

(𝑱/𝒎𝟐) 
𝑸𝑻/𝑸𝑺 

Copper 3.5 109 4 2785.8 2141.9 1.30 

Copper 10 109 3.3 1833.7 1335.8 1.37 

Copper 16 109 3.7 1797.0 1473.5 1.22 

PVC 4.3 0.19 4 1765.5 2042.5 0.86 

PVC 7 0.19 3.4 1246.2 1516.8 0.82 

PVC 13 0.19 3.7 707.0 1536.9 0.46 

 

The ice rod morphology and motion is also affected by QT/QS. For the case of QT/QS 

> 1, the experimental results in Figure 22 show the ℓ/𝑤 plots deviate quickly from ℓ 𝑤⁄ =

1, and follow the ℓ 𝑤⁄ = ℓ √2𝑅ℓ − ℓ2⁄  trend which is the largest ℓ/𝑤 ratio possible at 

given ℓ, indicating a ‘stable’ elliptical shape. For the case of QT/QS < 1, the aspect ratio of 

the melting ice rod, ℓ/𝑤 , stays around 1 with some fluctuation above and below 1 

indicating the flipping and rotation motion as a result of an ‘unstable’ (near circular) 
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elliptical shape. The rotation motion recorded is plotted as the angle turned throughout the 

melting process in Figure 23. When QT /QS > 1, ice rod reaches a ‘stable’ ellipse and does 

not rotate over 𝜋 2⁄ . However, when QT /QS < 1, the ice rod forms an unstable ellipse that 

rotates over 𝜋/2 and in some cases more than a full circle. These results indicate the 

competition between the heat fluxes melting the top (conduction) and sides (convection) is 

a critical factor in determining the melting time and the shape of the ice rod, and its rotation 

during melting. 

 

Figure 21. Time variation of ice rod size normalized by characteristic time scale obtained 

from Qmax. 

Based on the above analysis, QT/QS can be quantified as: 
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𝑄𝑇
𝑄𝑆

=
1

0.03𝑅𝑎1/3
∆𝑇𝑜𝜅𝑐
Δ𝑇𝑖𝜅𝑙

 

(23) 

where Δ𝑇𝑜 = 𝑇𝑜 − 𝑇𝑖, Δ𝑇𝑖 = 𝑇𝑖 − 𝑇𝑚, Ra is the Rayleigh number (
𝑔𝛽

𝜈𝛼
(𝑇𝑖 − 𝑇𝑚)𝑥

3), and 𝜅𝑐 

and 𝜅𝑙  are the thermal conductivity of the tube wall and the liquid, respectively. Some 

common phase change applications involving melting in a tube are shown in Figure 24 as 

a plot of 
∆𝑇𝑜𝜅𝑐

Δ𝑇𝑖𝜅𝑙
 versus Ra. The QT /QS = 1 is shown as a line with a slope of 1/3 in this log-

log plot. Areas above this line correspond to QT /QS >1, while areas below this line 

correspond to QT /QS <1.  

  

Figure 22. Variation of the aspect ratio, ℓ/w, over time in Cu and PVC tubes. 
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Figure 23. Variation of ice rod axial angles in Cu and PVC tubes over time. 

 

Figure 24. QT and QS ratio distribution in various applications in a plot of Ra vs.  
𝜟𝑻𝒐𝜿𝒄

𝜟𝑻𝒊𝜿𝒍
. 



 

 

39 

The plot shows that water in metal pipeline has the same Ra as that in plastic tube, but 

because of the high thermal conductivity 𝜅𝑐  of the metal wall, it falls in the 

𝑄𝑇 𝑄𝑆 > 1⁄  regime, while water in a plastic tube falls on the other side due to the low 𝜅𝑐 

value. For crude oil in a pipeline, the large pipe diameter leads to a large value of Ra.  For 

this case, even with a steel pipe, the phase change will be QS dominated. In a semiconductor 

core fiber, the very small diameter (in the µm range) leads to a small value of Ra. However, 

since the thermal conductivity of semiconductor 𝜅𝑙  is much greater than that of glass 

cladding 𝜅𝑐, it falls in the QT/QS > 1 regime, indicating that the dominating heat transfer 

mechanism in core melting in the fiber during post processing process is heat conduction. 

Finally, melting of paraffin wax, a commonly used PCM in energy storage devices can be 

moved from convection dominated to the preferred conduction dominated melting by 

decreasing the diameter of the tube encasing the wax (decreasing Ra), or by increasing the 

tube wall thermal conductivity. Approaches studied to achieve this have included use of 

mini-capsules for PCM [35] and installing fins on the tube wall [36]. 
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2.3 Conclusions 

A novel germanium-core borosilicate clad optical fiber for mid-infrared 

transmission was successfully fabrication using the ‘rod-in-tube’ method. The neck 

formation process of the fiber preform during the drawing process was modeled by 

coupling the ‘Toutron’ model with a 2D heat transfer model. The predicted neck formation 

location and formation time was found to be in good agreement with the experimental data. 

The results provide the guidance for the accurately positioning of semiconductor core in 

the preform, which ultimately lead to the lowest reported transmission loss for Ge-core 

borosilicate cladded fibers made by this method. The optical characterization shows the 

transmission of mid-infrared through the fiber with relatively high loss. The electron 

microscopy characterization on the fiber materials indicates that germanium core shows 

high crystallinity and minimal light element diffusion. Although grain boundaries did exist 

in the Ge-core, they were found to be predominantly twin boundaries. 

The heat transfer in the semiconductor core fiber during annealing-based post 

processing was studied using a proxy of ice melting in cylindrical containers. It was found 

that the melting time is scaled to the dominating heat transfer mechanism in the system. 

The heat transfer from the top and the heat transfer from the side are two competing 

mechanism. The ratio between them is found to depend on both the Rayleigh number of 

the fluid and the thermal conductivity of the wall. This result can also be applied to guide 

the design of phase change materials for energy storage. 
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3. Yttria Stabilized Zirconia Stability in Silicon Solid Oxide Membrane Electrolysis 

3.1  Introduction 

Solid Oxide Membrane (SOM) based electrolysis process can produce high purity 

metals from their oxides efficiently and in an environmental friendly manner [37]. Several 

high value metals including Mg [38-42], Si [43 44], Al [45] and Ta [46] have been 

successfully produced through SOM electrolysis. Thus, SOM electrolysis is a potential 

alternative route of producing solar grade silicon that can overcome some of the challenges 

of the currently used Siemens method, that is energy and cost intensive and also produces 

environmentally harmful byproducts [47].  

 

Figure 25. Schematic of SOM process for metal production. 

 
Figure 25 shows the working principle of the SOM electrolysis process. A potential 

that is higher than the disassociation potential of a metal oxide that is dissolved in a molten 

flux is applied between the electrodes. This causes the metal cations to migrate to the 
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cathode where they are reduced to metal, while the oxygen anions migrate through the YSZ 

membrane to the anode where they are oxidized to oxygen gas.   

 

3.1.1 Silicon SOM process 

To produce silicon from silica using SOM electrolysis, silica is dissolved in a 

molten oxyfluoride flux at elevated temperatures (1100-1300°C). Figure 26 shows the 

schematic of the SOM assembly used in this study. The cathode is made of a silicon plate 

connected to a graphite rod current collector, which responds to the applied potential by 

plating silicon onto itself. The anode is made of inert materials that does not react with 

oxygen, and it is separated from the molten flux by the YSZ (SOM) tube. When the oxygen 

anions reach the silver pool in the YSZ tube, they are oxidized into oxygen gas, which is 

isolated from the flux and the cathode and then removed from the system though the YSZ 

tube outlet. To overcome the mass transfer limitation of silica in the flux, the flux is 

mechanically agitated by bubbling forming gas (95% Ar and 5% H2) into the flux through 

a molybdenum tube.5  

                                                        
5 Apparatus designed by Dr. Thomas Villalon Jr.  
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Figure 26. The schematic of Si-SOM electrolysis assembly. 

 

3.1.2 YSZ degradation in flux 

In a previous study, silica dissolved in a eutectic BaF2-MgF2 melt was found to 

chemically attack the partially yttria stabilized zirconia (6 mol% Y2O3, pYSZ) ceramic 

membrane, even in the absence of an applied electric potential [44]. This attack caused 

yttria depletion from YSZ grains, which led to their phase transformation to tetragonal 

yttria stabilized zirconia (tYSZ) at the operating temperature (1100ºC). Upon cooling, the 

tYSZ underwent a tetragonal to monoclinic phase transformation accompanied by a 

volume change, which led to cracking of the YSZ membrane. This YSZ phase 

transformation pathway is shown on the Y2O3 – ZrO2 phase diagram in Figure 27. It was 

also found that increasing the silica content in the flux accelerated the attack while the 
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addition of YF3 to the flux retarded the attack on the YSZ membrane. Finally, a flux with 

2 wt% SiO2, 15 wt% YF3 and a balance of eutectic BaF2-MgF2 was used to successfully 

produce Si without any attack on the YSZ membrane. However, even though the 

production of Si was demonstrated, several issues remained, including the presence of 

potentially harmful Ba2+ cations [48], the requirement of a very high YF3 content in the 

flux (15 wt%), and the relatively low SiO2 content in the flux (2 wt%) which causes higher 

concentration polarization losses and lower energy efficiency.  

 

Figure 27. ZrO2–Y2O3 phase diagram and proposed path of yttria depletion in YSZ 

(reconstructed from Reference [49]). 
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In previous research on aluminum production from SOM electrolysis of alumina 

dissolved in a molten fluoride flux, Su et al. [45] pointed out that oxides like Al2O3 in the 

molten flux corrode the YSZ membrane because alumina has a lower optical basicity 

compared to the YSZ ceramic. When oxides with higher optical basicity, such as CaO, 

were added to the flux, the CaO neutralized the Al2O3 containing flux and retarded the 

corrosion of YSZ. However, the relationship between the optical basicity of the flux and 

the YSZ corrosion was not fully explored or explained in that study.  

 

3.1.3 Optical Basicity 

The acid-base reactions between oxides in the molten state at high temperatures is 

extensively studied in several important processes, such as in the production of iron and 

steel [50], and in glass making [51]. An oxide with lower basicity acts as an oxygen ion 

acceptor, while an oxide with higher basicity acts as an oxygen donor. Several acid-base 

theories have been proposed to explain the reactions of molten oxides, such as the Lux-

Flood theory [52 53]. However, there are limitations when describing a system with 

multiple oxides with different basicity. Empirical coefficients were used, which is not 

satisfactory from the chemical point of view. Duffy proposed the concept of the optical 

basicity of an oxide as an effective measurement of the acidity/basicity of the oxide at its 

molten state [51 54]. To measure the optical basicity of an oxide, the ultraviolet spectrum 

of a ‘probe ion’ is used to determine the negative charge borne by the oxygen atoms. The 

optical basicity of an oxide, Λ, can be obtained from the 6s-6p ultraviolet absorption 
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frequency, ν, using the following equation: 

𝛬 =
60700𝑐𝑚−1 − 𝜈

31000𝑐𝑚−1
 

(24) 

By definition, the optical basicity of CaO, Λ = 1.0. For a system with multiple oxides, its 

optical basicity can be calculated using the following equation.  

𝛬 =
∑𝑋1𝑛1𝛬𝑡ℎ,1 + 𝑋2𝑛2𝛬𝑡ℎ,2 +⋯

∑𝑋1𝑛1 + 𝑋2𝑛2 +⋯
 

(25) 

where, Λ is the optical basicity of the system, and Λth,i, Xi, and ni are the optical basicity, 

mole fraction, and the oxidation state of the ith oxide in the mixture, respectively. With the 

optical basicity of values of the flux, the propensity for acid-base reactions between a 

molten flux in contact with oxides can be predicted. 

 

3.2  Experimental Details 

3.2.1 Experimental Design 

Since BaF2 in the BaF2 – MgF2 eutectic flux is potentially harmful, it was replaced 

in this study by a relatively benign CaF2 –MgF2 eutectic which also has a similar low 

melting eutectic (974°C) [55]. In addition, since the SiO2-CaO-CaF2 system is well known 

to form liquid oxy-fluoride over a wide range of compositions [56], the chosen flux 

composition was able to dissolve up to 7.7 wt% SiO2 and 9 wt% CaO. It is known that the 

yttrium ion activity difference between the YSZ membrane and the molten flux contributes 

to its diffusion from the YSZ to the flux [57]. In this study, 4 wt% YF3 was added to the 
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flux to reduce this difference in yttrium ion activity. To design fluxes to analyze the 

correlation between flux optical basicity and YSZ corrosion, it is necessary to understand 

the relation between flux oxide optical basicity and flux composition. The flux optical 

basicity can be estimated using Duffy’s optical basicity model for multiple oxides system 

mentioned above. In this case, the optical basicity of the molten flux can be calculated as: 

𝛬 =
𝑋𝐶𝑎𝑂𝑛𝐶𝑎𝑂𝛬𝐶𝑎𝑂 + 𝑋𝑆𝑖𝑂2𝑛𝑆𝑖𝑂2𝛬𝑆𝑖𝑂2

𝑋𝐶𝑎𝑂𝑛𝐶𝑎𝑂 + 𝑋𝑆𝑖𝑂2𝑛𝑆𝑖𝑂2
 

(26) 

Table 5. Optical basicity and cation oxidation state of oxides 

Oxide CaO SiO2 Y2O3 ZrO2 

Optical Basicity (Λ) 1.0 [54] 0.48 [54] 0.72 [58] 0.71 [58] 

Cation Oxidation State (n) +2 +4 +3 +4 

 

Table 5 lists the optical basicity and oxidation of the relevant oxides in this study. 

By taking the optical basicity and cation oxidation state values of CaO and SiO2 into the 

equation, Equation 26 can be further simplified to a function of the ratio of mole fractions 

of CaO and SiO2, as: 

𝛬 =

(
𝑋𝐶𝑎𝑂
𝑋𝑆𝑖𝑂2

)𝑛𝐶𝑎𝑂𝛬𝐶𝑎𝑂 + 𝑛𝑆𝑖𝑂2𝛬𝑆𝑖𝑂2

(
𝑋𝐶𝑎𝑂
𝑋𝑆𝑖𝑂2

)𝑛𝐶𝑎𝑂 + 𝑛𝑆𝑖𝑂2

=

(
𝑋𝐶𝑎𝑂
𝑋𝑆𝑖𝑂2

) + 0.96

(
𝑋𝐶𝑎𝑂
𝑋𝑆𝑖𝑂2

) + 2
 

(27) 

Two groups of fluxes were designed to examine the effects of flux oxide content 

on flux optical basicity and YSZ degradation. Fluxes in the first group contained a constant 

SiO2 content of 5 wt% with CaO contents ranging from 0 wt% to 9 wt%. Fluxes in the 
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second group contain a constant CaO content of 9 wt% and SiO2 contents ranging from 5 

wt% to 7.7 wt%. The detailed composition and optical basicity of each tested flux is listed 

in Table 6. 

Table 6. Composition and optical basicity of tested flux 

Composition (wt%) 
Group 1 

Constant SiO2 varying CaO 

Group 2 

Constant CaO varying SiO2 

CaO 0 3.6 7.5 9 9 9 9 9 

SiO2 5 5 5 5 5 5.4 6.7 7.7 

YF3 4 4 4 4 4 4 4 4 

CaF2 50.2 48.2 46.1 45.3 45.3 45 44.3 43.8 

MgF2 40.8 39.1 37.4 36.7 36.7 36.6 36 35.5 

Optical basicity (Λ) 0.48 0.625 0.71 0.735 0.735 0.725 0.70 0.68 

 

3.2.2 Experimental Process 

All chemicals used in this study were purchased from Alfa-Aesar (Ward Hill, MA). 

Before mixing, the chemicals were heated to and held at 450ºC for 8 hours in ceramic 

crucibles to remove any water. Eutectic CaF2-MgF2 mixtures were heated in carbon 

crucibles to 1150°C under forming gas (95% Ar and 5% H2) and held in the molten state 

for 2 hours before cooling to room temperature. Residual carbon deposits on the solidified 

CaF2-MgF2 eutectic from the crucible was mechanically removed. The eutectic fluorides 

were then crushed and mixed with the desired amount of oxides and YF3 for a total mass 

of 60g. This mixture of oxides and fluorides was then heated in a cylindrical 304 stainless 

steel crucible with a 41.15 mm (1.62 in) inner diameter under forming gas atmosphere to 
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1150°C and held in the molten state for 2h before cooling to room temperature. YSZ 

containing 6 mol% Y2O3 (which will hereon be referred to as 6YSZ) tubes with a 19.05 

mm (0.75 in) outer diameter and a 14.22 mm (0.56 in) inner diameter (McDanel Advanced 

Ceramic Technology, Beaver Falls, PA) were cut into approximate 0.4 cm long rings, each 

weighing around 4g.   

The high temperature annealing process to test the chemical stability of YSZ in 

molten flux is shown in Figure 28. The 6YSZ ring was first placed on top of the solidified 

pre-selected flux in the stainless steel crucibles at room temperature. One YSZ ring sample 

was used for each flux composition. The crucible containing the flux (including fluorides 

and oxides) and the ring was weighed before it was heated to 1200°C with a ramp rate of 

6°C/min and held at 1200°C for 24h under forming gas atmosphere. Due to density 

differences between the liquid flux and the 6YSZ, the 6YSZ ring sank to the bottom of the 

crucible and was completely immersed in the flux. After 24h, the system was cooled to 

room temperature at a rate of 6°C/min after which the crucible containing the flux and the 

YSZ ring was weighed again.  The difference in the weights of the crucible before and after 

the 24h hold at 1200°C under the forming gas atmosphere that the flux is exposed to in an 

actual SOM electrolysis experiment was attributed to the volatilization of the flux. Thus, 

the weight loss of the flux was a measure of the stability of the flux under SOM electrolysis 

operating conditions.   
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Figure 28. Schematic of the annealing process of YSZ in molten flux. 

The 6YSZ ring together with the flux were taken out from the steel crucibles and 

mounted in epoxy. Mounted samples were polished using diamond abrasives down to a 

0.05 μm finish for microstructural analysis. Scanning electron microscopy (SEM) and 

Energy-dispersive X-ray spectroscopy (EDX) analyses are performed using a Zeiss Supra 

55 SEM (Carl Zeiss, Oberkochen, Germany) equipped with Genesis EDX detector (EDAX, 

Inc., Mahwah, NJ). Transmission electron microscopy (TEM) analysis was performed 

(Tecnai Osiris, FEI, Hillsboro, Oregon) on electron transparent samples prepared by the 

‘lift-out’ method using a Focused Ion Beam instrument (Quanta 3D FEG, FEI, Hillsboro, 

Oregon). 

 

3.3  Results 

3.3.1 Volatility 

To track the volatility of the fluxes tested, the mass of the samples before and after 

the 24h hold at 1200°C were recorded. The volatility was calculated using the following 

equation, 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =  
∆𝑚

𝐴 ∙ 𝑡
 

(28) 
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where m is the mass loss of the sample, A is cross section area of the crucible and t is the 

duration of the high temperature hold. The mass loss and the corresponding volatility of 

the different flux samples are listed in Table 7. The table shows that in general, the addition 

of CaO decreases the volatility of the flux while the addition of SiO2 increase the flux 

volatility. During the stability test of fluxes with constant silica content, the mass loss and 

calculated volatility remains almost unchanged for flux with 0wt% CaO and 3.6wt% CaO, 

but it decreases significantly when CaO content reaches 7.5wt%. For the samples tested in 

flux with constant CaO content, the volatility increases with the SiO2 content, increasing 

from 5wt% to 7.7wt%. 

 
Table 7. Mass loss and volatility of different fluxes 

 

 
 

3.3.2 YSZ degradation 

An SEM micrograph of a polished cross-section of the 6YSZ membrane tested in 

the flux containing 5wt% SiO2 and 0wt% CaO is shown in Figure 29a. In the YSZ region 

close to the YSZ/flux interface, there is a layer exhibiting a different contrast compared to 

the bulk 6YSZ. The yttrium concentration profile obtained through an EDX line-scan 

across this interface region is overlaid in Figure 29a. The figure shows a clear decrease in 

Group 
Group 1 

Constant SiO2 varying CaO 

Group 2 

Constant CaO varying SiO2 

CaO/SiO2 Content 

(wt%/wt%) 
0/5 3.6/5 7.5/5 9/5 9/5 9/5.4 9/6.7 9/7.7 

Mass Loss (g) 0.467 0.504 0.035 0 0 0.34 0.347 1.058 

Volatility (
𝜇𝑔

𝑐𝑚2∙𝑠
) 0.407 0.439 0.030 0 0 0.296 0.302 0.921 
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yttrium content from the bulk 6YSZ to ~ 2at% in this layer. This layer is the yttria depletion 

layer (YDL) as described in a previous study [44]. A higher magnification SEM 

micrograph of the YDL, shown in Figure 29b, clearly shows that the YSZ grains in YDL 

region have been attacked by the flux. The EDX spectrum of this region (shown by a box 

in Figure 29b) is shown in Figure 29c. The EDX spectrum confirms the presence of the 

flux components, i.e., Ca, Mg, F and Si, in the YDL region of the 6YSZ membrane.  

 

Figure 29. (a) SEM micrograph of YSZ and flux (5wt% SiO2, 0wt% CaO) interface, with 

overlaid Y concentration profile showing Y depletion in the YDL. (b) SEM micrograph of 

the YDL at a higher magnification. (c) The EDX spectrum of the selected region in (b). 

 
In order to isolate the location of the flux components in the YDL, EDX-based 

elemental dot maps were obtained in the YDL, and the results are shown in Figure 30. The 

figure shows that Ca, Mg and F accumulate in the triple grain junctions of YSZ. This 

suggests that the flux has penetrated in the YDL, presumably by attacking the grain 

boundaries, and has accumulated at the triple grain junctions. These results are consistent 

in all samples in which a YDL is formed as a result of the presence of silica in the flux.  
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Figure 30. SEM micrograph of a portion of the yttria deleted layer and the corresponding 

EDX dot maps of Zr, Ca, Mg, F, and an overlay of all the elemental dot maps. 

 
To study the grain boundary attack in more detail, TEM studies (in the STEM 

mode) were carried out on an electron transparent sample from the YDL region of a YSZ 

membrane exposed to a flux containing 5wt% SiO2 and 0wt% CaO. Figure 31a shows a 

bright-field STEM image of three YSZ grains (dark grey contrast) around a triple junction 

in the YDL. The brighter regions around the grains represent the flux, which itself appears 

to have phase separated upon cooling to room temperature. A grain boundary between two 

grains is visible on the lower left of the micrograph. A high angle annular dark-field 

(HAADF) micrograph and EDX-based elemental dot maps of a region marked by a 

rectangle in Figure 31a are shown in Figure 31b. Clearly, the flux has separated into MgF 

and CaF phases at room temperature. Interestingly, the silica in the phase-separated flux is 

confined mostly to the MgF phase at room temperature.  
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Figure 31. (a) Bright filed (BF) STEM image, and (b) high-angle annular dark-field 

(HAADF) image and elemental dot maps of F, Y, Mg, Zr, Si, O, and Ca of YSZ grains and 

flux accumulated at a triple grain junction in the YDL. 

 
Quantitative EDX analysis was performed on the several YSZ grains inside the 

YDL, and an example is shown in Figure 32, which shows that the Y content was somewhat 

uniform across the grain but was depleted from the original value of 3.8at% in 6YSZ to 

around 2at%. This value is closer to the yttria solubility limit of tYSZ at 1200ºC (which is 

2 mol% Y2O3 or 2YSZ according to the ZrO2-Y2O3 phase diagram [49 59]). This 

observation is in agreement with the Y profile in Figure 29a. Xu et al. also reported that 

6YSZ grains can lose yttria and become 2YSZ in the YDL region when attacked by a silica 

containing flux [44]. 
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Figure 32. Yttrium content profile from the center of a YSZ grain in the YDL to the grain 

boundary where flux has penetrated. 

 

 

Figure 33. SEM micrographs of YSZ and flux interface of samples in Group 1. 
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Figure 34. SEM micrographs of YSZ and flux interfaces of samples in Group2. 

 
SEM images of the interfaces between the flux and the YSZ membrane of all the 

samples tested are shown in Figure 33 and Figure 34. In addition, SEM-based EDX line 

scans were taken across the YSZ flux interface to identify the composition and thickness 

of the YDL in all the samples tested, and the Y concentration profiles of all two groups of 

samples are plotted in Figure 35. In each case, the yttrium content decreased from ~ 4 at% 

in the bulk (unattacked) YSZ to around 2 at% in the YDL. The thickness of the 2 at% 

region at the YSZ/flux interface is the YDL thickness. Figure 33 and Figure 35a show that 

for Group 1 samples exposed to fluxes containing 5wt% SiO2, the YDL thickness 

decreased as the CaO content in the flux increased and essentially reached 0 at 9wt% CaO. 
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Figure 34 and Figure 35b show that, for Group 2 samples exposed to fluxes containing 

9wt% CaO, the YDL does not form until the SiO2 content in the flux reached 6.7wt%, after 

which the YDL thickness increased with increasing SiO2 content.  

 

Figure 35. Yttrium content profile across the YSZ membrane and flux interface for (a) 

Group 1 (constant 5wt% SiO2, varying CaO content), and (b) Group 2 (constant 9wt% 

CaO, varying SiO2, content). 
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3.4  Discussion 

3.4.1 Volatility 

Volatility data (Table 7) of Group 1 fluxes (constant SiO2 content) shows that the 

volatility of the flux generally decreases as the amount of CaO increases in the flux, while 

the data for Group 2 fluxes (constant CaO content) shows that the volatility increases with 

increasing silica content in the flux. Since all the chemicals used in the experiments were 

properly dried in advance, the mass loss of the flux is mainly attributed to the formation 

and loss of SiF4 according to the following reaction between SiO2 and CaF2 [56 60]: 

𝑆𝑖𝑂2 + 2𝐶𝑎𝐹2 ⇌ 2𝐶𝑎𝑂 + 𝑆𝑖𝐹4(𝑔) 
(29) 

This reaction is highly undesirable, because it not only generates toxic SiF4 gas, but also 

causes Si to leave the system, thereby reducing the SOM electrolysis efficiency. The partial 

pressure of SiF4, 𝑝𝑆𝑖𝐹4 , can be written as:  

𝑝𝑆𝑖𝐹4 =
𝑎𝑆𝑖𝑂2𝑎𝐶𝑎𝐹2

2 𝐾𝑒𝑞

𝑎𝐶𝑎𝑂
2  

 (30) 

where aSiO2, aCaF2 and aCaO are the activities of SiO2, CaF2 and CaO, respectively, in the 

flux. Increasing the CaO concentration in the flux increases aCaO, thereby reducing pSiF4, 

leading to a reduction in mass loss as SiF4 and accompanying loss of Si from the flux. 

Conversely, increasing the silica content of the flux increases aSiO2, thereby increasing pSiF4, 

leading to a larger mass loss. 
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3.4.2 YSZ degradation mechanism 

3.4.2.1 The Effect of flux optical basicity 

The experimental results clearly show that the addition of SiO2 in the flux enhances 

YSZ degradation, while the addition of CaO mitigates it. It has been shown in previous 

studies that silica can cause the segregation of yttria to the grain boundaries in the YSZ 

membranes [61 62] and the formation of a glassy silica phase at the YSZ grain boundaries 

[61 63-65]. De Wet et al. reported that the acidity of silica causes the grain boundary attack 

on YSZ grains in their study of interaction between sand and YSZ thermal barrier coatings 

[65]. According to the Duffy’s optical basicity theory [54], the optical basicity of an oxide 

is a measure of its tendency to release oxygen anions (electron pairs) when interacting with 

other oxides. The optical basicity, Λ, of SiO2 is 0.48, which is very acidic compared to both 

ZrO2 (Λ=0.71) and Y2O3 (Λ=0.72) [58]. Therefore, SiO2 tends to attract the oxygen from 

both oxides in the YSZ and preferably from Y2O3. However, experimentally, the zirconia 

in the YSZ remains intact upon exposure to the flux, while the yttria does not. There may 

be two explanations for this phenomenon. Although the optical basicity of ZrO2 (Λ=0.71) 

is very close to that of yttria, the ZrO2 is considered to be a network former when its cation 

coordination number is 6 and an intermediate oxide when its cation coordination number 

is 8 [65-67]. Since the zirconia used in this study is doped with 6 mol% yttria, the majority 

of Zr cations have a coordination number of 8. As a result, the ZrO2 in the YSZ acts as 

weak oxygen acceptor/intermediate oxide, in comparison to Y2O3, which acts as an oxygen 

donor. Therefore, yttria loses oxygen anions to silica while the ZrO2 in the YSZ remains 

intact after exposure to the silica containing flux at high temperature. An alternate 
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explanation may be related to the difference in Y3+ and Zr4+ solubility in the melt when in 

equilibrium with the YSZ phase. A significant lower solubility of Zr4+ can also explain this 

observation.  

In the molten flux, the SiO2 molecules form a silica network featuring (SiO4)
-4 

tetrahedral connected by ‘bridging’ oxygen atoms, making Si a strong oxygen acceptor as 

well as a network former [54 68]. Since yttria has a higher optical basicity than SiO2 and it 

is known to be a network modifier to SiO2 [69 70], it acts as an oxygen donor to the silica 

network. The O2- ions from Y2O3 breaks the silica network by turning the ‘bridging’ 

oxygens into ‘non-bridging’ oxygens as [54 68 71]:  

   (31) 

Grain boundaries being are high-energy interfaces are locations where the silica in the 

molten flux preferentially attacks by removing O2- ions from Y2O3. At the same time, free 

Y3+ ions at the YSZ grain boundaries are incorporated into the molten flux. This process is 

shown schematically in Figure 36a. This attack on the grain boundaries of the YSZ 

membrane leads to the penetration of flux into the YSZ through the grain boundaries, as 

shown in Figure 30 and Figure 31.  

The preferential removal of yttria from the YSZ grain boundary also causes an yttria 

concentration gradient between the center of the YSZ grains and the attacked grain 

boundaries as shown in Figure 36b. This concentration gradient drives the yttria diffusion 

from the center of the grain to the grain boundary. While yttria being consumed at the grain 

boundary by the silica network breaking reaction, the yttria diffusion continues in the bulk 
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of the grain until the entire YSZ grain loses yttria and transforms into tetragonal YSZ 

(2YSZ) as shown in Figure 36c. The uniform yttrium concentration profile from the center 

to the edge of the YSZ grain (Figure 32) supports this assumption.  

 

Figure 36. Schematic of YSZ degradation mechanism when exposed to silica containing 

flux showing (a) grain boundary attack by SiO2 in the flux, (b) outward diffusion of yttria 

in the grains, and (c) resulting formation of YDL with 2YSZ grains with flux accumulated 

at triple grain junctions. 

The somewhat linear interface between the YDL and unattacked region in the YSZ 

membrane, as well as the uniform 2YSZ composition in the entire YSZ region indicates 

that the rate of YDL formation is controlled by the grain boundary attack by the silica in 

the molten flux. This assertion is supported by the study by Xu et al. [44], which showed 

that the YDL thickness increases linearly with time of exposure of the YSZ membrane to 

the silica-containing flux. Since diffusion distances are of the order the average grain radius 

(< 5µm), this diffusion process is a relatively rapid as compared to the kinetics of the grain 
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boundary attack.  

 
It is interesting that the yttria depletion in the grains do not continue below the 2YSZ, 

which is the concentration of yttria in saturated tetragonal YSZ. This phenomenon has been 

observed in various studies [44 57]. A possible explanation is that the diffusivity of yttria 

in tetragonal YSZ is an order of magnitude smaller than that in cubic YSZ at 1200ºC [72]. 

Another possible explanation is that the 2YSZ composition is in thermodynamic 

equilibrium with the fluxes, all of which contain 4 wt% YF3. 

Since the acidity of silica is responsible for its attack on the YSZ grain boundaries, 

introduction of CaO, which is a basic oxide, into the flux helps neutralize the acidity of 

SiO2. The optical basicity of CaO, Λ=1.0, is higher than that of Y2O3, implying that CaO 

is the strongest electron pair (oxygen ion) donor in the system. When CaO is introduced 

into the flux, the O2- ions from CaO break the silica network. As a result, the number of 

oxygen acceptors in the silica network is reduced, leading to a decrease in the oxygen 

accepting capability of the silica network [51]. This reduces the propensity of the silica 

network to accept oxygen ions from yttria in the YSZ, thereby reducing the rate of grain 

boundary attack. Since the optical basicity is a measure of the oxygen donation capability, 

it is reasonable to assume that when the flux optical basicity is equal to or higher than the 

optical basicity of yttria, the silica network in the flux no longer acts as an oxygen ion 

acceptor from yttria, and the grain boundary attack of the YSZ stops.  The variation of the 

optical basicity of the flux as a function of the CaO/SiO2 mole fraction ratio (based on 

Equation 27) is plotted in Figure 37. The figure shows that the flux optical basicity is 

greater than that of yttria when XCaO/XSiO2
 ratio in the flux is greater than 1.714 (XSiO2 < 
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0.583XCaO). The optical basicity of fluxes used in this study are plotted in the same figure. 

 

 

Figure 37. The optical basicity as a function of the CaO and SiO2 mole fraction ratio and 

the optical basicity of the tested fluxes. 
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Figure 38. Plot of optical basicity and YDL thickness for various samples. 

 
A plot of the YDL thickness versus the optical basicity of the flux is shown in 

Figure 38. As predicted, when the flux optical basicity is greater than the optical basicity 

of yttria (Λ = 0.72), the YDL vanishes and the YSZ membrane is protected. This proves 

the yttria is no longer an oxygen donor to the modified silica network, once the flux optical 

basicity is higher than that of the yttria. However, when the optical basicity of the flux is 

lower than that of yttria, the correlation between the optical basicity and the YDL thickness 

is unclear. For example, a sample with lower optical basicity exhibits a larger YDL 

thickness than another sample with higher optical basicity. This implies that the optical 

basicity of the flux only predicts if the YSZ membrane will be attacked. However, when 

the grain boundary attack does take place, the kinetics of the attack is not controlled solely 

by the optical basicity of the flux. 
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3.4.2.2 The effect of excess silica 

As explained in the previous section, the rate-controlling step in the YSZ 

degradation is the grain boundary attack caused by the interaction between yttria in the 

YSZ and silica network in the flux, and the attack occurs only when the optical basicity of 

the flux is lower than that of yttria. When grain boundary attack does take place (i.e., the 

optical basicity of the flux is lower than that of yttria), one way to think about the effect of 

the CaO addition is that the CaO neutralizes a portion of the silica, i.e., the neutralized 

portion of the SiO2 and the added CaO make the optical basicity of the flux the same as 

that of yttria (Λ = 0.72).  It is reasonable to assume that the YDL formation kinetics depends 

on the concentration of the silica that is not neutralized by the CaO. According to the optical 

basicity calculations, every mole of CaO added to the flux neutralizes 0.583 moles of SiO2. 

Thus, the excess (unneutralized) amount of SiO2 that is active, XSiO2,excess, can be calculated 

as: 

𝑋𝑆𝑖𝑂2,𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑋𝑆𝑖𝑂2 − 0.583 • 𝑋𝐶𝑎𝑂 

(32) 

To explore the role of excess silica in the flux on the YSZ degradation kinetics, a 

group (Group 3) of fluxes with identical optical basicity but different CaO and SiO2 amount 

were tested. Since the YSZ degradation only happens when the flux optical basicity is 

smaller than that of yttria, the flux optical basicity of 0.625 was chosen. The detailed 

compositions of tested fluxes are listed in Table 8. 
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Table 8. Composition of tested flux with a constant optical basicity 

Composition (wt%) 
Group 3 

Constant optical basicity 

CaO 2.7 3.6 4.5 5.4 

SiO2 3.75 5 6.25 7.5 

YF3 4 4 4 4 

CaF2 49.43 48.2 47.05 45.9 

MgF2 40.12 39.2 38.2 37.2 

Optical basicity (Λ) 0.625 0.625 0.625 0.625 

 

SEM-based EDX line scans were taken across the YSZ flux interface to identify 

the composition and thickness of the YDL in all the samples tested, and the Y concentration 

profiles of this group of samples are plotted in Figure 39. The YDL thickness of all samples 

tested in this group together with the previous two groups are plotted versus the optical 

basicity of the fluxes they were exposed to, in Figure 40. Clearly, the kinetics of the attack 

is not controlled solely by the optical basicity of the flux. 
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Figure 39. Yttrium content profile across the YSZ membrane and flux interface for Group 

3 (varying CaO and SiO2 content for a constant optical basicity of 0.625). 

 
The YDL thickness of each sample in Group 3 is obtained from Figure 39 and is 

plotted against the excess silica amount of each sample in Figure 41. The YDL thickness 

shows a near linear positive correlation with the excess silica mole fraction in the flux, 

indicating that the corrosion reaction is first order with respect to excess silica 

concentration. These results indicate that while optical basicity predicts whether a grain 

boundary attack of the YSZ membrane will occur, the kinetics of the grain boundary attack 

is controlled by the concentration of excess silica (or active portion of the silica network) 

in the system.  
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Figure 40. Plot of optical basicity and YDL thickness for various samples. 

 

Figure 41. Plot of excess silica in the flux versus YDL thickness for Group 3 samples. 
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3.4.2.3 Diffusion of yttrium in YSZ 

In a previous study on the SOM electrolysis of Mg from MgO dissolved in MgF2-

CaF2 eutectic, it is found that the imbalance between the yttria activity in YSZ and that in 

flux led to the diffusion of yttrium in a direction perpendicular to the YSZ/flux interface 

[57]. This outward diffusion of yttrium is independent of the grain boundary attack by the 

flux, and constitutes a mechanism that can also contribute the formation of the YDL. Since 

the optical basicity of MgO, Λ = 0.78 is higher than that of yttria, according to the analysis 

above, MgO does not cause the grain boundary attack on the YSZ membrane. However, in 

the Si-SOM, the SiO2 in the flux can cause YSZ degradation by attacking its grain 

boundaries. Therefore, in order to study the diffusion behavior of yttrium in the YSZ 

exposed to the silica dissolved flux, it is necessary to adjust the optical basicity to be higher 

than that of yttria to remove the grain boundary attack from this process.  

Another set of experiments was carried out using a set of flux compositions (Group 

4) with higher optical basicity compare to that of yttria (Λ=0.72) and varying YF3 content 

from 0wt% to 6wt%. The flux compositions are listed in Table 9. The high temperature 

annealing experiments are carried out under the same condition as described in Section 

3.2.2 except that the annealing time was increased to 120 hours. 
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Table 9. Flux compositions with varying YF3 content 

Composition (wt%) 
Group 4 

Constant SiO2 varying YF3 content 

CaO 10.4 9.7 9 8.3 

SiO2 5 5 5 5 

YF3 0 2 4 6 

CaF2 46.7 45.0 45.3 44.5 

MgF2 37.9 37.3 36.7 36.2 

Optical Basicity 0.754 0.745 0.735 0.725 

 

The SEM based EDX line scans were carried out across the YSZ membrane and 

flux interface, and the results are plotted in Figure 42. Since the optical basicity of all the 

fluxes were higher than that of yttria, YSZ grain boundary attack from the silica in the flux 

was expected to be prevented in all samples. The results indicate that the yttrium activity 

difference between the YSZ and the flux does drive yttrium diffusion in the YSZ towards 

the YSZ/flux interface. When the YF3 content in the flux is low, yttrium diffused into the 

flux and this leads to the formation of a YDL. The removal of yttrium does allow for flux 

penetration in the YDL. When the YF3 content equals or is greater than 2 wt% in the flux, 

the diffusion of yttria from the YSZ into the flux stops.  



 

 

71 

 

Figure 42. Yttrium concentration profiles across the YSZ membrane and flux interface for 

Group 4 samples. 

 
As observed in a previous study [57], when the YF3 content in the flux is high (e.g. 

4wt% and 6wt%), there is accumulation of yttrium at the YSZ/flux interface. As a result, 

the yttrium diffused from the flux into the YSZ membrane. The diffusion profile of yttrium 

diffusion into the YSZ was modeled using the semi-infinite solution to the Fick’s second 

law, given as: 

𝐶 = 𝐶0 + (𝐶∞ − 𝐶0)erf (
𝑥

2√𝐷𝑡
) 

 (33) 

where C0 is the steady state concentration at the flux/YSZ interface, C∞ is the concentration 

of yttrium in the bulk YSZ membrane, D is the diffusivity of yttrium in the YSZ membrane. 

The semi-infinite boundary conditions assume that the YSZ membrane is much thicker 
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than the diffusion profile. 

The experimental data was fitted to the model using the nonlinear least square 

approximation method. For the experimental data of 6 wt% YF3, the fitted curve is shown 

in Figure 43a, and the diffusivity obtained was D =  7.205 × 10−12 𝑐𝑚2/𝑠 . For the 

experimental data of 4 wt% YF3, the fitted curve is shown in Figure 43b and the diffusivity 

obtained was D =  6.362 × 10−12 𝑐𝑚2/𝑠. The two calculated diffusivity values are very 

close. Since the grain boundary diffusivity of cations is orders of magnitude greater than 

the lattice diffusivity in the YSZ at 1200°C (1473K), the obtained yttrium diffusivity is 

compared with the grain boundary diffusivity of yttrium in 3 mol% yttria stabilized 

tetragonal zirconia (3YTZ) in Figure 44. The figure shows that the calculated diffusivity 

of yttrium in 6YSZ is higher than the reported diffusivity value in 3YSZ. This might be 

due to the fact that the tetragonal and cubic structures co-exist in 6YSZ. The cation 

diffusivity is significantly higher in cubic YSZ than in tetragonal YSZ at this temperature 

range as shown in Figure 44.  
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Figure 43. Diffusion profile of yttrium at the YSZ and the flux interface of (a) the sample 

exposed to flux containing 6wt% YF3; (b) the sample exposed to flux containing 4wt% YF3. 
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Figure 44. Diffusivity of cations in cubic YSZ and tetragonal YSZ.(Reconstructed from 

References [57] and [72]) 

 
It is clear that when there is an imbalance of yttria activity in the flux and the 

membrane, yttrium can diffuse from the high activity phase into low yttrium activity phase. 

For the yttria free flux case, losing yttrium from the 6YSZ phase led to the formation of 

2YSZ accompanied with a volume change, which could lead to the formation of cracks 

which leads to the penetration of flux into the membrane. As a result, the diffusion distance 

for yttrium in the YSZ membrane to reach liquid flux is significantly reduced, thereby 

increasing the rate of diffusion of yttrium into the flux. This allows for yttrium depletion 

across 100s of microns in thickness. When the yttria activity in the flux is higher than that 
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in YSZ, yttrium diffuses into the YSZ from the flux. Since there is no cracks formation and 

the liquid flux was unable to creep into the grain boundaries. The yttrium can only diffuse 

though the solid phase, and the diffusion distances are much shorter (only 10s of microns). 

These experiments confirm that the oxide acidity is not the sole reason that causes 

the degradation of YSZ. A low activity of yttria in the flux (compared to YSZ) can also led 

to the formation of a YDL. Therefore, to prevent the YSZ membrane from degradation, 

both the optical basicity of the flux and the yttria activity of the flux has to match with that 

of YSZ. A flux containing 5wt% SiO2 requires 8wt% CaO to neutralize the acidity of the 

silica and match the optical basicity of the flux to that of yttria. Since silica is a common 

impurity in the MgF2 [73], excess CaO is recommended to ensure the YSZ membrane is 

protected from the attack. To prevent yttrium diffusion from the YSZ membrane into the 

flux, more than 2wt% of YF3 is required in the flux. Therefore, a flux with 5wt% SiO2, 

9wt% CaO, 4wt% YF3 and reminder eutectic MgF2-CaF2 was selected for SOM 

electrolysis. 

 

3.5 Conclusions 

In this study, the detailed correlation between the flux composition, its optical 

basicity, and the chemical stability of a YSZ membrane exposed to the flux at high 

temperature, was investigated. The optical basicity of the flux can be adjusted by changing 

the ratio between the acidic SiO2 and basic CaO. When the optical basicity of the flux is 

lower than the optical basicity of the yttria in the YSZ membrane, the silica network in the 
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flux attacks the YSZ grain boundaries by attracting oxygen ions from yttria at the YSZ 

grain boundaries, and causing yttrium ions at these locations to get incorporated into the 

flux. This leads to yttria depletion in the 6YSZ grains, and the concentration difference 

between the bulk of the grain and the grain boundary leads to an out-diffusion of yttria 

from the grain to the grain boundary. This converts the partially stabilized 6YSZ to 

tetragonal 2YSZ in the YDL. The kinetics of YDL formation is controlled by the rate of 

grain boundary attack by the silica in the flux, which is itself controlled by the 

concentration of the silica in the flux that is not neutralized by CaO. Once the optical 

basicity of the flux matches than that of yttria, the YSZ membrane is protected from the 

grain boundary attack and YDL formation. In addition to the grain boundary attack, 

chemical diffusion of yttrium due to the imbalance of yttria activity in the YSZ and flux is 

another cause of yttria depletion. To counter this imbalance, greater than 2wt% of YF3 in 

the flux is required. Based on these results, a eutectic CaF2-MgF2 flux with 5wt% SiO2, 

9wt% CaO, and 4wt% YF3 is proposed for SOM electrolysis for Si production with lower 

concentration polarization losses and no attack on the SOM membrane. 
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4. Structures of Molten Lithium Chloride and Lithium Mixtures 

4.1  Introduction 

Molten LiCl-Li2O is commonly used as the electrolyte in the electrolytic production 

of metal such as Ti [74], Ta [75], Nb [76] and U [77] from their oxides. In some of these 

electrolysis processes, when the dissociation potential of metal oxide is close to that of 

Li/Li+, Li+ is unavoidably reduced with the desired metal cation. As the process proceeds, 

the produced Li metal is found to be dispersed in the electrolyte [77 78]. The dissolution 

of Li reduces the current efficiency of the electrolysis system and causes corrosion of 

system components. Therefore, it is important to understand the dispersion mechanism of 

Li metal in the molten salt. Although there have been extensive studies on this subject [77 

78], however the detailed mechanism is not fully understood.  

One possible mechanism is the formation of hyperlithiated compounds such as 

Li2Cl in the molten LiCl matrix which has been studied theoretically [79 80]. However, no 

experimental evidence has been reported about their existence in a fused phase. In several 

other studies, micron-sized metallic particles were found in quenched LiCl-Li, which 

suggests colloidal suspension is another path of Li dispersion in LiCl [81-84].  

Suspensions of nanoparticles in other molten salts have been investigated in various 

applications due to their unique physical properties [85]. In a recent study, Merwin et al. 

reported that in-situ Raman spectra of LiCl-(LiO2)-Li mixtures corresponded to the 

presence of Li8 nanoclusters in the mixture with and without the presence of LiO2 [86]. 

However, the Raman spectroscopy measurements were taken from the top surface of the 
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Li-LiCl mixture that might be affected by the presence of Li vapors. To eliminate the 

uncertainty of interference from Li vapor, a direct measurement on bulk liquid is required. 

The use of synchrotron based high energy x-ray diffraction (HEXRD) has a long history of 

studying liquid structure by obtaining the Pair Distribution Function (PDF) of the liquid 

being studied [87]. Information, including distance between neighboring atoms, bond 

angles and density can be extracted from the pair distribution function of liquid. The high 

penetration of high energy x-rays allows for the direct measurement on the bulk molten 

salts by transmitting the beam through a transparent port in the crucible and through the 

bulk fluid. In this work, the structure of molten Li-LiCl mixture is characterized using in-

situ HEXRD. 

 

4.2  Experimental Details 

Due to the reactivity of the components present in the liquid, the experiments need 

to be conducted under an inert atmosphere. The schematic of the chamber design for the 

in-situ study of molten Li-LiCl is shown in Figure 45. The stainless steel chamber has five 

circular openings which host the gas outlet/inlet, heating element power inlet, electrodes 

inlet and two Kapton film windows. Inside the chamber, the holder for the amorphous 

carbon crucible is fixed using screws on to an aluminum silicate plate that is itself bolted 

to the bottom stainless steel plate of the chamber. The amorphous carbon crucible used in 

this study had an inner diameter of 4 mm and a wall thickness of 0.5mm. 

The HEXRD experiments were performed at the Advanced Photon Source (APS) 
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station 6-ID-D at Argon National Laboratory. The high-energy synchrotron-based x-ray 

has a wavelength of 0.1235Å (100keV energy). The HEXRD experiments are conducted 

using a direct transmission geometry setup as shown in Figure 46. The incident X-ray beam 

goes through the Kapton film window and hits the carbon crucible, while the diffracted 

beam comes out from the other side and reaches the 2D detector through the other Kapton 

film window. Kapton was chosen as the window material due to its nearly perfect 

transmission of high energy x-rays. Additionally, vitreous amorphous carbon was used for 

the melt containing crucible due to its lack of crystallinity and minimal absorption cross 

section for high energy x-rays. 

 

 

Figure 45. Schematic of the vacuum chamber for in-situ HEXRD experiment. 
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Figure 46. Schematic of High Energy X-ray Diffraction experiment setup. 

 
To obtain the background diffraction of the containers (e.g. carbon crucible and 

Kapton films) used in this experiment, the empty amorphous carbon crucible was loaded 

into the chamber. The system was then heated to and held at 500, 600 and 650°C. During 

the heating process, the system was first pumped down to -20 inHg gauge pressure for 30 

minutes and then purged with Ar to 5 inHg gauge pressure to establish an inert atmosphere 

in the chamber. The HEXRD data of the amorphous carbon crucible and Kapton windows 

at different temperatures were recorded. After the system was cooled down, approximately 

0.15g solid LiCl (99.998% Purity, Sigma-Aldrich, Milwaukee, WI) was loaded into the 

cylindrical amorphous carbon crucible. The system was then first pumped down to vacuum 

for 30 minutes to eliminate the water and oxygen inside the chamber, before it was purged 

with Ar back to 5 inHg gauge pressure to avoid the evaporation of molten LiCl during the 
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heating process. While the system was held at 650°C and the LiCl melted, the high energy 

X-ray beam was incident on the sample, and the diffraction data was recorded. After the 

diffraction data of pure LiCl was recorded, the tungsten electrodes were lowered into the 

molten LiCl. As shown in Figure 45 and 46, one of the tungsten wires acted as the working 

electrode, the other tungsten wire acted as the quasi-reference electrode, and the amorphous 

carbon crucible that was connected to a stainless steel wire acted as the counter electrode. 

These electrodes were connected to a potentiostat (Solartron Analytical, Hampshire, UK) 

that electrochemically reduced Li+ to Li by passing a constant current of 60 mA through 

the system for 120 s with an applied voltage between the working electrode and counter 

electrode greater than the dissociation voltage of LiCl. Assuming 100% current efficiency, 

the reduced lithium can be calculated using Faraday’s law of electrolysis as: 

𝑚 =
𝐼𝑡

𝑧𝐹
𝑀 ≈ 0.52 × 10−3 𝑔 

(34) 

where I is the input current, t is the electrolysis duration, z is the valence number of lithium 

ion, and F is Faraday constant. Under these conditions, the theoretical maximum amount 

of reduced lithium is about 0.35 wt% or 2.1 mol% of the total LiCl in the crucible, which 

is within the range of solubility limit of Li in LiCl (greater than 3 mol%) reported in various 

sources using different methods at 923K [83 84 88 89]. The HEXRD data was recorded 

during the electrolysis process, and was continued after the electrolysis for a total time of 

300s. 
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4.3 Results 

The diffraction data of pure molten LiCl was obtained by subtracting the signal 

obtained from amorphous carbon crucible and Kapton film windows. The structure factor 

of molten LiCl is plot in Figure 47a. The structure factor of LiCl is transformed into the 

Pair Distribution Function (PDF) of LiCl using a Fourier Transform. The PDF of molten 

LiCl before electrolysis is plot in Figure 47b. The PDF data obtained from these HEXRD 

experiments is compared with that obtained from neutron scattering [90 91] in Figure 47a 

and Figure 47b. Both structure factor and PDF data from HEXRD show reasonable 

agreement with the neutron diffraction data. McGreevy et al. identified the first peak in the 

PDF LiCl as the Li-Cl bond and the second peak is the combination of Li-Li and Cl-Cl 

bonds from the neutron scattering data of molten LiCl [91]. Since the scattering probability 

is proportional to the square of the atomic number of the atom, the Li-Li bond peak 

intensity is approximately 1/32 of the Cl-Cl bond peak intensity. As a result, The Li-Li 

bond is embedded in the shoulder of the Cl-Cl bond.  
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Figure 47. (a) The structure factor and (b) the pair distribution function of molten LiCl at 

650°C 
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Figure 48. Structure factor of molten LiCl-Li mixture during the electrolysis experiment. 

The insert shows the structure factor data in low scattering vector (Q) region. 

 
The structure factor of LiCl during the entire electrolysis experiment is plotted in 

Figure 48 with each line representing an average of the structure factor data within every 

10s interval. The structure factor of LiCl-Li curve in general keeps the same shape with an 

increasing intensity in the mid to high scattering vector Q region (2 - 14Å-1). In the low 

scattering vector Q region (Q < 1Å-1, selected using a dashed square), the increase in 

structure factor curve intensity is more obvious as shown in the insert in Figure 48. The 

pair distribution function of LiCl obtained during the same electrolysis process is plotted 

in Figure 49 with each line representing an average of the PDF data within every 10s 
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interval. From the plot, a subtle change in the pair distribution function of the molten LiCl 

is observed as the electrolysis proceeds. To exam this change in detail, the PDF data of 

LiCl during electrolysis in the range of r = 3.3Å to r = 4.5Å (Li-Li and Cl-Cl peak) at t = 

0s (before electrolysis), 100s (during electrolysis), 200s and 300s (after electrolysis) is 

plotted in Figure 50. It is clear that the peak intensity increases as the electrolysis proceeds 

and keeps relatively constant after electrolysis ends. To extract this increase in the LiCl-Li 

mixture PDF peak intensity over time, the peak intensity at r = 3.76Å is plotted against 

time in Figure 51. In the plot, the period that electrolysis was in progress is indicated as a 

shaded area. It is apparent that the atomic density in this region increases during the 

electrolysis and once the electrolysis ends, the atoms density stays almost constant. Besides 

the peak intensity increase, the peak position was found to be shifted during the electrolysis 

process. To observe this shift in more detail, the position r at the half maximum of the peak 

on the left side of the curve and on the right side of the curve shown in Figure 50 is tracked 

and plotted in Figure 52. From the plot, it is clear that the both the left and right half 

maximum points of the peak shifted to the left by around 0.01Å after the electrolysis 

process stops. 
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Figure 49. Pair distribution function of LiCl-Li mixture during the electrolysis experiment. 

The insert shows the zoomed selected region 

 

 

Figure 50. Pair distribution function of LiCl-Li mixture during the electrolysis experiment 

at r = 3.3 to 4.5Å. 
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Figure 51. Pair distribution function peak intensity of LiCl-Li during the electrolysis 

experiment at r = 3.76Å. 

 

 

Figure 52. The position of the half maximum point of the peak on a. the left side and b. the 

right side of the curve. 
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4.4  Discussion 

The PDF of LiCl-Li mixture during and after electrolysis indicate that the 

electrolysis caused a short range (2-5Å) atoms density fluctuation in the LiCl. However, 

the bulk density, as measured by the unphysical region (0-2Å), did not change. 

Furthermore, no additional Li-Li peak is observed. A possible reason is that the Li-Li peak 

intensity in the PDF plot of LiCl is much weaker compared to that of the Cl-Cl peak. As 

shown in Figure 53, in the combined LiCl PDF data, the weight of Li-Li partial PDF is 

much smaller compared to that of Li-Cl and Cl-Cl [91]. The Li-Li peak is embedded in the 

left shoulder of the Cl-Cl peak. Another possible explanation is that the concentration of 

Li in the LiCl-Li mixture produced through electrolysis process was low (~ 2mol% or less). 

As a result, the signal intensity from the Li is weaker comparing to that from LiCl. 

Therefore, it is difficult to distinguish the change in Li-Li peak from the Cl-Cl peak.  
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Figure 53. Partial PDF and combined PDF of LiCl (reconstructed from [91]) 

 
The increase in the structure factor of the LiCl-Li mixture at low scattering vector 

Q range (0.4-0.6Å-1) during electrolysis process indicates local atom density fluctuations 

in the mid-long range (10-15Å) in real space. This implies the existence of nanometer sized 

structuring in the melt. Structuring on this length scale is hypothesized to indicate the 

presence of the previously mentioned Li nanoclusters (e.g. Li8). The presence of such 

clusters in the otherwise homogenous fluid may be the cause of atomic density fluctuations 

in this region. It is also worth noticing that, in the PDF of LiCl-Li mixture, the position of 

the fist Cl-Cl peak is shifted to the lower distances after the electrolysis by 0.01Å. This 

indicates the distance between Cl- ions is shortened. This Cl-Cl distance shortening might 

also be caused by the formation of lithium nano clusters. A possible mechanism of this 

shortening effect is shown schematically in Figure 54. In molten LiCl, a Li+ ion is most 
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likely surrounded by 5 Cl- ions as shown in Figure 54 [91]. In a unit volume, after the 

electrolysis, the Li-Cl cluster is pushed away by the formed Li cluster (Li8 is used here as 

an example). However, the bulk density of the liquid did not change over the electrolysis 

process, as evidenced by the constant slope of the dashed line in Figure 49, which is 

proportional to the bulk density of the liquid. This implies that the mass of the atoms in 

this unit volume should be relatively constant. The formation of one Li8 cluster causes 

about 1.5 Cl ions out of the unit area, but total numbers of atoms in the unit area increases. 

To accommodate the increased numbers of atoms in the unit volume, the distance between 

atoms is shortened, which is observed as the Cl-Cl peaks shifting to the shorter distance 

direction in the PDF of the molten mixture.  

 

Figure 54. Schematic of the formation of Li8 clusters in molten LiCl (not to scale) 

 
Thus, the HEXRD experimental results indicate the presence of atomic density 

fluctuations in the mid-long range (~10 Å) in the molten fluid, which is accompanied by 
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the reduction in the distance between Cl atoms. It is hypnotized that the metallic Li atoms 

form lithium clusters in molten LiCl that causes these changes.  

 

4.5  Conclusions 

In this study, the structure of molten LiCl and molten LiCl-Li mixtures was 

characterized using the high energy X-ray diffraction technique. The obtained structure 

factor and pair distribution function of molten LiCi agrees with those obtained from 

neutron scattering. The LiCl-Li mixture was produced by electrochemically reducing Li+ 

to Li in molten LiCl under an inert atmosphere. The structure factor and pair distribution 

function of LiCl-Li mixture was recorded during and after the electrolysis process. It was 

found that the intensity of the Cl-Cl peak in the pair distribution function of LiCl-Li mixture 

increased while the Li was being produced and remained constant after the electrolysis 

stopped. The Cl-Cl distance was found shortened by 0.01Å in the PDF plot after the 

electrolysis, which is proposed to result from the formation of Li nano-clusters. The 

findings from this study are in agreement with the hypothesis that metallic Li disperses in 

Li as nano-clusters. The detailed size and structure of the Li nano cluster can not be 

discerned in the HEXRD experiment, since the resolution of HEXRD is limited at lower 

angles (low scattering vector region). To quantitatively study the specific sizes of these Li 

nano-clusters, small angle scattering (SAX) technique can be applied in future studies. 
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5. Conclusions 

This dissertation covers three diverse applications of materials interactions under 

high temperatures. In the first application, a germanium-core borosilicate cladding optical 

fiber that showed mid-infrared transmission was successfully fabricated using the ‘rod-in-

tube’ method. The neck formation in the fiber preform during the drawing process was 

modeled. The model is in good agreement with the experimental data and provided 

guidance for the optimal positioning of the semiconductor core in the preform. 

Characterization of the fibers showed excellent crystalline quality of the fibers with most 

grain boundaries being twin boundaries. Also, the optimal placement of the Ge core in the 

preform minimized the time the molten core was in contact with the borosilicate glass, 

thereby allowing minimal impurity diffusion from the cladding to the core. This led to the 

lowest reported losses in such fibers fabricated by the ‘rod-in-tube’ method, to date.  

The solidification of the germanium core in the drawn fiber was studied using a 

proxy of ice melting in cylindrical containers. The melting time is found to scale with the 

dominant heat transfer mechanism in the system. The competing mechanisms are the 

conductive heat transfer from the top and convective heat transfer from the side. The ratio 

between them depends on the Rayleigh number of the fluid and the thermal conductivity 

of the container wall. This result provides an estimation of the germanium core 

solidification time and can be further applied to guide the design of phase change materials 

for energy storage.  

For the application of Si production by SOM-based electrolysis, the corrosion of 
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YSZ ceramic membrane in contact with the silicon containing molten oxy-fluoride flux 

was studied. It is found the silica network in the flux attacks the YSZ grain boundaries, 

when the optical basicity of the flux is lower than that of the yttria in the YSZ membrane. 

Silica in the flux, which is more acidic than yttria in the YSZ, attracts oxygen ions away 

from the yttria, especially located at the grain boundaries of YSZ. In addition, yttrium 

diffuses out of the YSZ grains to the flux due to an activity difference in the YSZ grains 

and the flux. This grain boundary attack causes the formation of an yttria depletion layer. 

The kinetics of the YDL formation is controlled by the rate of grain boundary attack by the 

silica in the flux. The flux can be made more basic by adding CaO, and its optical basicity 

can be adjusted by changing the ratio between the acidic SiO2 and basic CaO. Once the 

optical basicity of the flux matches than that of yttria, the YSZ membrane is protected from 

the grain boundary attack and no YDL formation occurs. Adding YF3 in the flux also 

reduces the activity difference of yttrium between the membrane and the flux. Based on 

the experimental results, a eutectic CaF2-MgF2 flux with 5wt% SiO2, 9wt% CaO, and 4wt% 

YF3 was chosen for SOM electrolysis for Si production, and led to lower concentration 

polarization losses with no attack on the SOM membrane. 

In the last application, the structure of molten LiCl and molten LiCl-Li mixture is 

studied using in-situ High Energy X-Ray Diffraction (HEXRD) technique. The structure 

factor and pair distribution function (PDF) obtained from the HEXRD agrees with those 

derived from the neutron diffraction. The LiCl-Li mixture is produced by the 

electrochemical reduction of Li+ ions to Li metal in molten LiCl, while its structure being 

examined using HEXRD. The structure factor and pair distribution function of LiCl-Li 
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mixture is compared with those of pure LiCl. The structure factor intensity is found 

increased in the low scattering vector region which indicates the formation of nanometer 

sized clusters. The atoms density fluctuation and the decrease between Cl-Cl shown in the 

PDF of LiCl-Li mixture are also found caused by the formation of Li nano clusters. These 

changes qualitatively confirm that Li disperses in LiCl in the form of lithium nano-clusters.  
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