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WILLIAM J. SHAIN

Boston University, Graduate School of Arts and Sciences, 2018

Major Professor: Bennett B. Goldberg, PhD
Professor of Physics

ABSTRACT

Linear problems are possibly the kindest problems in physics and mathematics.

Given sufficient information, the linear equations describing such problems are in-

trinsically solvable. The solution can be written as a vector having undergone a

linear transformation in a vector space; extracting the solution is simply a matter

of inverting the transformation. In an ideal optical system, the problem of extract-

ing the object under investigation would be well defined, and the solution trivial to

implement. However, real optical systems are all aberrated in some way, and these

aberrations obfuscate the information, scrambling it and rendering it inextricable.

The process of detangling the object from the aberrated system is no longer a trivial

problem or even a uniquely solvable one, and represents one of the great challenges in

optics today. This thesis provides a review of the theory behind optical microscopy

in the presence of absent information, an architecture for the modern physical and

computational methods used to solve the linear inversion problem, and three distinct

application spaces of relevance. I hope you find it useful.
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1

Chapter 1

Introduction to Optical Microscopy

1.1 Origins of the Classical Microscope

For over a century, the core of any study in electromagentic phenomena has been

Maxwell’s equations (Jackson, 1999):

∇ · ~D = ρf

∇ · ~B = 0

∇× ~E = −∂
~B

∂t

∇× ~H = ~Jf +
∂ ~D

∂t

(1.1)

These equations describe the interaction between all electromagnetically charged

objects, as mediated by the electromagnetic fields. When the charges are separated

by a neutral medium with a linear refractive index nr, equations 1.1 decouple into

separate vector equations for the electric and magnetic fields:

(
nr
c

∂2

∂t2
−∇2

)
~E = 0(

nr
c

∂2

∂t2
−∇2

)
~B = 0

(1.2)

The solutions to these equations are the radiative (and decaying) complex fields

we call light. The key feature to the wave formulation given by equations 1.2 is that
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the propagation of the fields is linear. The form of the linear propagation operator

suggests the appropriate bases eigenfunctions are complex exponentials. The pro-

pogation in a given spatial direction k̂ can be defined by decomposing the fields into

oscillating functions of uniform lateral intensity, called plane waves (Jackson, 1999):

~Ekz(~r, t) = E0e
i2π(~k·~r−wt)ε̂1

~Bkz(~r, t) =
1

c
E0e

i2π(~k·~r−wt)ε̂2

k̂ =
~k

|~k|
= ε̂1 × ε̂2

(1.3)

As can be verified by plugging equations 1.3 into equations 1.2 to get k2 = n2
r

c2
w2.

For radiating solutions, the flow of energy by these waves through a point ~r at time t

in the direction n̂ is called the intensity (I), and is determined by the time-averaged

Poynting vector ~S, where:

~S = ~E × 1

µ
~B

I =< ~S · n̂ >τ (~r, t) =
1

2

√
ε

µ
|E0|2

(1.4)

While these are in principle vector equations, we will define a single axis of

propagation ẑ and assume a single polarization ε̂1 = x̂. this allows us to suppress

the vector nature of the fields, the overall time dependent phase, and the magnetic

component of the field . Moreover, since any real electromagnetic field can be written

as a linear superposition of plane waves and each plane wave undergoes a linear

transformation from one plane to another, we can write the electric (and magnetic)

field at one plane as a linear transformation of some prior plane (Jackson, 1999):

~Ef (~rf , tf ) =

∫∫
G(~rf , ~r0, tf , t0) ~Ef (~r0, t0)d~r0dt0 (1.5)
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This general linear equation is the key to solving many (if not most) optical

problems, for once the propagator G is determined, the field at any other point in

space and time can be derived directly through equation 1.5. In an ideal imaging

system the electomagnetic field is perfectly mapped point by point from one plane to

another (up to magnification and overall multiplicative factors), so the propagator

G is simply the Dirac delta function:

~Ef (~rf , tf ) =

∫∫
δ(

1

M
~rf − ~r0)δ(tf − (t0 − τ)) ~Ef (~r0, t0)d~r0dt0 (1.6)

Where the magnification M = f2

f1
accounts for rescaling the image and the time

delay τ = c
L

accounts for the time for light to transverse the microscope. In a

standard 4f microscope imaging system, the temporal dynamics of the light are

preserved to within a high degree of accuracy and we can ignore the overall temporal

phase. However, spatial frequencies higher than the frequency of the light wave are

non-radiative and suppressed entirely (as discussed in appendix A). The result is a

system that does not fully reproduce the field in the focal plane: the resolution is

limited to approximately dres = λ
2NA

, where the numerical aperature (NA) is given

NA = nr sin(θc) by the highest input angle θc at which incident light can be accepted

through the microscope (Mertz, 2010). As a result, a perfect δ-function reproduction

of the object field is impossible. Instead, since the classical microscope has a linear

propagator, we can characterize the imaging aberrations by their effect on a single

point source located at the focal plane:

~Ef ( ~ρf ) =

∫
CSF (

1

M
~ρf , ~ρi) ~Ef (~ρi)d

2~ρi (1.7)
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The goal of microscopy is to measure in some way the field ~EI(~ρI) and from that

measurement determine the object field ~EO(~ρO). As such, ideally one would find

a function CSF−1 such that for a measured field of some kind, we can perfectly

reproduce the object:

~EO( ~ρO) =

∫∫
CSF−1(

1

M
~ρO, ~ρf )CSF (

1

M
~ρf , ~ρi) ~Ei(~ρi)d

2~ρfd
2~ρi

δ(
1

M
~rO − ~ri) =

∫
CSF−1(

1

M
~ρO, ~ρf )CSF (

1

M
~ρf , ~ρi)d

2~ρf

(1.8)

Given a well-built microscope and an excellent understanding of its propagator,

it would be possible to construct such an operator. However, real systems have

aberrations, noise, and a lack of information. Such an operator cannot necessarily

be constructed. Fortunately, a sufficiently good approximation can often be imple-

mented. the question becomes how to best implement and approximate the ideal

microscope, such that the object can be reconstructed. Since the equations govern-

ing the microscope transfer function are linear, we turn to the mathematics of linear

inversion to extract the object information from the available measured information.

As demonstrated throughout this thesis, increasingly minimal information requires

increasingly sophisticated mathematics.

1.2 Modern Adaptive Optics

In order to optimize the information acquired by the microscope in a specific applica-

tion, optimizing the mathematical reconstruction is best complemented by physical

control of the light field hitting the detector. In particular, a Spatial Light Modulator

(SLM) can be used to manipulate the amplitude or phase of the light in some plane,
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changing the CSF of the microcsope in a predetermined manner (Maurer et al., 2011;

Booth, 2014). Using an SLM, we can manipulate the light to physically correct for

aberrations (see Fig. 1·1), reducing the burden on computational and mathematical

algorithms.

Figure 1·1: Implementing an SLM corrects for aberrations in an
aberrated microscope

While transmissive SLM’s abound, in all cases we use a reflective type of SLM

called a Deformable Mirror (DM) for controlling the phase of the light. A DM is

a reflective surface attached to posts that are controlled by electro-static actuators

(Bifano, 2010; Stockbridge et al., 2012; Archer-Zhang et al., 2016). These actuators

pull or push the reflective surface into different geometric positions; light reflecting

off of the surface attains a local phase shift proportional to the mirror displacement

(Fig. 1·2). The DM allows fast and achromatic control of the phase of light passing

through the optical system at the modulation plane with minimal loss of transmission

found in other SLM technologies (Yang et al., 2016). In particular, we place the DM

in the pupil plane: while there are a number of configurations in which a DM is
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implemented for aberration correction (see for example (Li et al., 2015)), the pupil-

plane configuration provides isoplanatic corrections to the system in that light from

each point in the object passes through the pupil plane (Fig. 1·1). This simplifies

the inversion of the linear process, as we wil see below (chapters 2-4)

Figure 1·2: Deformable mirrors with different surface structures gen-
erate phase shifts in incoming light. Phase shifts are proportional to
the local deflection of the DM surface, set by electrostatically con-
trolled pistons.

This thesis is divided into 5 chapters (and associated appendecies). The first

chapter (1) reviews the principles of optics required for modern optical microscopy,

and the challanges faced in acquiring information about an object using an optical

microscope. The second chapter (2) describes an adaptive-optics (AO) setup for

imaging and ultimately tracking fluid flow in highly porous rock; scattering from the

rock structure occludes the flow markers, and a Superpenetrative Multi-Photon Mi-

croscope (S-MPM) system is used to correct for the scattering in conjunction with a

basic linear addition algorithm. The third chapter (3) describes a fast focal-scanning

extended depth-of-field (EDOF) microscope for imaging volumetric dynamic sam-

ples; much of the sample is defocused, and the EDOF microscope is used to restore

diffraction-limited resolution in conjunction with an open-loop deconvolution algo-

rithm. The fourth chapter (4) describes a Matched-Filter Compressive Imaging

(MFCI) flow cytometer for identifying cells and particles without chemical labels;
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each cell population creates a unique scatter pattern, and the MFCI flow cytometer

spatially separates and identifies the distinct scattering features in conjunction with

a machine-learning (ML) algorithm. The fifth chapter reviews the balance between

physically and computationally retreiving information from an aberrated optical sys-

tem, and indicates potential directions for future exporations



8

Chapter 2

Basic Linearity in Optics

2.1 Fluid Flow in Porous Rock

Imaging inside a porous medium presents one of the most flagrant occlusions of

information in optics. Light passing through a porous medium will scatter off the

pore structure (Fig. 2·1), which typically is filled with a fluid of mismatched index

and which varies in size and shape throughout the medium. The result is a completely

randomized output wherein the emmitted fields exhibit Gaussian statistics, and the

intensity has a Poissonian profile (Goodman, 2007). In a classical imaging system,

any information about an object beyond or inside the medium is scrambled behind

the randomization.

Figure 2·1: Schematic representation of light passing through a scat-
tering medium, resulting in poissonian intensity fluctuations in the
transmitted light (a form of speckle)

The inability to image in rock is a painful stumbling block for understanding the

flow dynamics found in enhanced oil recovery. Enhanced oil recovery processes, such
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as fracking, have become a valuable tool for increasing oil production (Thomas, S.,

2008). Water is pumped into the boundaries of the oil field, pushing out oil remaining

in the microporous structure of the sedimentary rock. Understanding the flow prop-

erties of the oil-water mixtures is critical for optimizing production (Fredrich et al.,

2006; Datta et al., 2013). Such an understanding can be obtained by visualizing the

flow field using small fluorescent markers. However, tracking and analysing these

markers is inherently challanging as they are embedded inside the porous medium,

where the variations in refractive index between the rock and the oil/water fluid

causes strong scattering (see appendix B for a discussion of the scattering properties

of rock). The strong scattering of the rock medium has therefore limited the detailed

study of the rock structures to the surface region only: attempting to image deeper

into the rock structure requires removal of the surface layer (SHAH et al., 2017).

This is impractical for studies of fluid dynamics critical to optimizing oil recovery.

Since the effects of aberrations depend on the characteristic length scales of the

index variations, one natural solution is to image at longer wavelengths, where scat-

tering is intrinsically weaker. While longer wavelengths provide inherently less reso-

lution (see appendix A), this can be circumvented by taking advantages of non-linear

effects in the imaging process. Multi-photon microscopy, and two-photon microscopy

in particular, have proven invaluable in imaging deep within aberrating and scat-

tering media, as the long-wavelength excitation combined with non-linear excitation

allow for deep penetration into the medium with sufficient resolution (Crosignani

et al., 2012; Ji, 2014). The low light-efficiency of the multi-photon process is cir-

cumvented by implementing a focus-scanning microscope: an incoming plane wave is

focused down to a single point, which generates fluorescence at a higher wavelength

than the excitation (Mertz, 2010). Such fluorescence is easily redirected and collected

by using a dichroic filter and suitable detector. by scanning the point throughout
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the region of interest, we construct an image of fluorescence markers in the field of

view.

2.2 Super-penetrative Multi-Photon Microscopy

Yet even though longer-wavelength systems can extend the viable imaging depth

from the scattering length ls to the transport-mean-free-path l∗, aberrations in many

applications can still degrade image quality to the point of failure when imaging deep

into the material. It then becomes necessary to remove the aberrations entirely,

through either computational or physical means. Since multi-photon techniques are

often light-limited, as the non-linear excitation process is rare, it is best to physically

remove aberrations and restore optical power to the focal spot as much as possible.

For non-linear processes, this can be done through a super-penetrative multi-photon

microscopy (S-MPM) system (Tang et al., 2012; Paudel, 2015; Shain et al., 2015).

In S-MPM, the scattering matrix acts as a position-dependent phase and amplitude

mask at a single point in the sample. The field can be described through applying a

linear transform acting on a uniform input field (Yu et al., 2013):

~Ef =
∑
i

Tfi ~Ei (2.1)

For an isoplanatic region, the transfer function can be expressed as a pupil func-

tion acting on the Fourier representation of the fields (Mertz, 2010):

~Ef (~k⊥) = CTFrock(~k⊥) · ~Ei(~k⊥) (2.2)

Where ~E is the Fourier transform of the electric field ( ~E) and the coherent transfer
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function (CTF) is the fourier transform of the CSF in equation 1.7. To recover an

unaberrated image, it is necessary only to correct the aberrated CTF applied to the

light field by applying a physical transformation of the light that effects a linear

multiplicative inverse:

~Ei(~k⊥) =
1

CTFrock(~k⊥)
~Ef (~k⊥) (2.3)

We implement the direct light manipulation of equation 2.3 through a 1024 ac-

tuator segmented DM from Boston MicroMachines (BMC). The DM is placed in the

microscope pupil plane (Shain et al., 2015), and a closed-loop optimization algorithm

(Paudel, 2015) is applied to a deformable mirror that maximizes the intensity at a

single point (Vellekoop and Mosk, 2007). Since aberrations shift power away from

the focal point to the surrounding areas, we maximize the intensity at a single point

by applying an orthogonal set of basis functions to the DM - in our case, Hadamard

functions (Stockbridge et al., 2012). This can be done by applying a different phase

to each pattern, and then using the linearity of the basis to reconstruct the optimal

DM shape, redirecting light to the nominal focal spot (Fig. 2·2).

The result is improved imaging in a local field-of-view (FOV), as seen in figure

2·3. Unfortuantely, this improved imaging is only seen in a small corrected FOV. As

we image through different parts of the rock, a new set of random features generates

the scattering effects, and the correcting pattern applied to the DM is no longer

correlated with the imaging point. The length of this correlation, defined by the

optical memory effect (Berkovits and Feng, 1994; Judkewitz et al., 2015), determines

the FOV attainable by a single correcting point.

In a fully scattering media such as porous rock, the width of the memory effect

diminishes with thickness as λ
L

, where L is the thickness of the rock. As seen in
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Figure 2·2: Deformable Mirror (DM) used to refocus light through
scattering media to a single point

figure 2·4,while one can always correct for the effects of scattering at an arbitrary

distance in the medium, the usable FOV about the correction shrinks to a diffraction-

limited spot. While some flow statistics may be performed with only a single point of

high-quality imaging, such a small field-of-view (FOV) is far from ideal for actually

imaging the fluid flow. Despite being able to recover information about the sample

at a single point by physically inverting the scattering process at that spot in the

rock, imaging a large volume in the rock requires an additional innovation.
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Figure 2·3: Aberration correction with an S-MPM Microscope

Figure 2·4: Left: 200µm x 200µm 2-Photon image of natural rock
fluorescence from Arab-D rock surface , with 1µm fluorescent bead
layer 100µm below (not visible). Right: Fluorescent beads before and
after applying S-MPM correction.

2.3 Multi-Point Optimization

As mentioned in section 2.2, a usable FOV on the order of the diffraction limit is

impractical at best. In order to obtain an improved image across the entire sample,

one would need to determine the inverse phase map for each memory-effect correlated



14

region, and then apply the correction dynamically while scanning over the volume

of interest; in effect, breaking the CSF into local optimized components:

CSFnet =
∑
i

θiCSFi (2.4)

where θi = 1 within the ith optimization region and zero elsewhere. For biological

samples this would be prohibitively time-consuming as the time needed to determine

the full inverse map would be longer than the stability time of a given pattern.

However, since the rock structure is static in time, we can develop a full imaging

map for the entire region of interest (ROI), and successfully apply it to image inside

the rock using a high-speed deformable mirror. The result is a patchwork image of

isoplanatic patches (Fig. 2·5) built out of the optimal CSF in each region.

Figure 2·5: Diagramical representation of MPO solution

We therefore developed a technique to increase the field-of-view when using our

current S-MPM setup to expand our FOV when imaging in rock. If we begin with

a FOV larger than the spacing between beads (or any source for optimization), we

can jump from one bead to another and generate a Multi-Point Optimization (MPO)

map. Since the scattering properties of the rock remain constant even under dynamic

flow conditions, we can update the DM to the appropriate pattern for a given pixel

without re-optimizing each image. In this way we can pre-optimize a large volume of

the rock, which would enable us to track nanoparticles through an arbitrarily large
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portion of the rock sample at a frame rate limited only by our scanning speed.

Figure 2·6: Stitch imaging of 1µm beads. Field-of-view is 10µm x
10µm. (a) without correction, (b) single optimized sweep image (c)
step scan is shown, (d) local maxima, (e-f) manual stitching of five
images.

We imaged 1µm fluorescent beads directly under the 67µm thick Saudi Aramco

rock filled with mounting wax. Figure 6(a) shows beads without correction, Figure

6(b) shows an optimized image when beam was parked at the center of the image,

with an approximately 1µm FOV. In order to map exact galvo position of each image

pixels, we rescan with 50x50 pixels step scan (the step scan image is shown in Figure

6(c)). The slight shift in the image center was due a systematic offset between zero

positions at the two scanning modes (parked beam and sweep beam). A list of local

maxima was calculated from the initial scan image which are plotted in Figure 6(d).

Using these exact galvo positions we found optimized voltage maps of deformable

mirror (DM) for each local maxima. Figure 6(e) and Figure 6(f) are the images

produced by manually stitching of five optimized images from step scan and sweep
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scan respectively, demonstrating a 10m FOV.

In practice, it would be possible to change the DM pattern while scanning, pro-

viding a full field-of-view with no loss of framerate. The DM pattern would be

determined by the galvo scan position and the appropriate inverse solution given

above. We see that by using a physical correction at a large number of points in

the rock to restore the acquired sample information, the technique needed to piece

together the full image structure is a simple linear equation. Moreover, a high-speed

SLM is critical for actually implementing the correction; if the SLM is significanly

slower than the scanning mirrors, then the whole system becomes limited by the

operating speed. In fact, for a fast enough SLM, one could imagine implementing

an open-loop measurment of the coherent scattering function via a wavefront sensor

and implementing MPO at biological timescales.
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Chapter 3

Deconvolution Algorithms and

Applications

3.1 Dynamic Volumetric Imaging

Many samples of interest have dynamics that occur over large volumes and short

timescales. These dynamic volumetric samples, such as neuronal activity in brains

(Gong et al., 2015; Ji et al., 2016; Yang and Yuste, 2017), bacteria in their natural

environment (Frentz et al., 2010; Bishara et al., 2011; Wang et al., 1960; Zhuang

and Sitti, 2016; Constantino et al., 2016), tracer molecules describing fluid flow

(Memmolo et al., 2015; Chen et al., 2017), and even flame plumes (Carter et al.,

2016), all require images of the full volume at high resoluion and high speed to

fully describe the sample. An imaging system capturing such an extended dynamic

sample must therefore record a large volume at high resolution and high speed in

order to obtain features of interest.

An ideal 3D imaging system would map each point in the volumetric object to a

unique point in the system output:

Ij =
∑
i

δjiOi (3.1)

Modern cameras, unfortunately, are two-dimentional rather than three-dimensional:

they can only measure information along a single plane. This in and of itself would
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not be a problem if cameras directly measured the electric field, which obeys a lin-

ear transfer equation that would (theoretically) allow full recovery of the volumetric

region of interest. However, current cameras directly measure only the amplitude

of the field stripped of the phase component. Moreover, the sources of interest are

points that emit mutually incoherent light, so the fluctuations in the electromagnetic

field needed to reconstruct the full volumetric ROI are quickly averaged out. For a

standard microscope system there is a linear propagation of intensity from the object

to the camera given by:

I(~xI) =

∫
PSF (~xI , ~xO)O(~xO)d~xO (3.2)

Where the convolution kernel, called the point-spread function (PSF), represents

the transfer function of a 2-D plane. In a classical imaging system, only the focal

plane is fully reproduced as accurately as possibile: objects outside the focal plane are

aberrated by defocus. This limits acquisition to a thin depth-of-field (DOF) where

the objects are in-focus, preventing researchers from fully reproducing the volume

dynamics. No such classical imaging technique is capable of full volumetric recovery

at high speed and high resolution in a simple manner. There is therefore a strong

need for an easily implementable imaging method that provides high-resolution and

high-framerate volumetric images.

3.1.1 Extended Depth-of-Field with Axial Scanning Microscope

One solution is to create an extended depth-of-field (EDOF) microscope system that

maintains lateral resolution over a long axial range (Welford, 1960; Hausler, 1972;

Indebetouw and Bai, 1984). An EDOF can be implemented in either scanning (Du-

four et al., 2006; Lu et al., 2017) or widefield (Abrahamsson et al., 2006; Dowski
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and Cathey, 1995; Grewe et al., 2011) systems, creating an axially-invariant ex-

tended PSF (EPSF) by manipulating how the light passes through the system. We

implement the extended depth-of-field by placing a DM in the focal plane of the

microscope and applying a parabolic shape to the DM surface (Fig. 3·1). This shifts

the focal plane of the microscope by a distance Z = −nf 2
2 /(M

2fDM) in the sample,

where fDM is the focal length associated with the DM shape and n is the index of

refraction in the sample (Giese et al., 2014). The DM can change curvature at over

20kHz, allowing us to bring over 20 planes of the sample into focus on the camera

in the timespan of a single kHz-rate camera frame. Applying a stroke S to the DM

results in a shift in the focal plane of a distance:

Z = 4n

(
f2

MRDM

)2

S (3.3)

Sweeping over a large stroke range ∆S results in an image of the sample intensity

compressed by integrating over the axial direction (Shain et al., 2017b). For well-

separated point like objects, this technique is sufficient to fully recover the lateral

locations of the objects in the volume of interest and they can be easily localized

under the EDOF microscope (Fig. 3·2a,b). This can be attributed to the lateral

shape of the EPSF: it has approximately the same gaussian shape near the lateral

intensity peak and the same full-width at half maximum (FWHM) as a classical PSF

(Fig. 3·2d). For sparse structures where only the centroid information is needed to

recover the object, simply physically extending the PSF in the axial direction is

therefore sufficient.
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Figure 3·1: Schematic of EDOF Microscope. Vertical dashed line
indicates location of intermediate image plane.

3.2 Open-Loop Deconvolution

When imaging denser structures, centroiding is insufficient: the object is described

by the precise intensity at each point. However, the contribution from the long

tail of the extended PSF occludes that information, resulting in a haze that blurres

the object (Fig. 3·3). Fortunately, the contributions to the background haze are

linear combinations of the sample itself convolved with the PSF, and the process can

be inverted through deconvolution (Bertero and Boccacci, 1998). Since the imaged

intensity is a convolution of the PSF with the object, taking a Fourier transform of

the image and applying the Fourier convolution theorem (Katz et al., 2014; Lu and

Hua, 2015) reduces equation 3.2 to a simple linear multiplication problem:

F [I](~k⊥) = OTF~k⊥ · F [O](~k⊥)

O = F−1

[
F [I]

OTF

] (3.4)

Where the optical transfer function (OTF) is the Fourier transform of the PSF:

OTF = F [PSF ]. This is the same linear transfer equation as equation 2.3, and
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Figure 3·2: Classic vs. EDOF microscope imaging of 1µm diam-
eter fluorescent beads embedded in PDMS. Images taken with 20×
0.5NA objective; EDOF=70µm with 26 DM frames. Beads that are
defocused in the standard image (a) reappear in the EDOF image (b).
Normalized axial PSFs for classic and EDOF microscope demonstrate
significand increase of the DOF under focal scanning (c). Lateral PSFs
for classic and EDOF microscope are shown in (d), illustrating that
while EDOF maintains the lateral resolution as defined by the FWHM
it increases the surrounding intensity as well. Scale bar is 25m.
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ideally would be solved similarly; indeed, so long as the OTF is well defined, the

object can be recovered by simple division by the OTF on both sides. When the

OTF approaches zero, however, division by the OTF over-amplifies the corresponding

spatial frequency of the object. This introduces noise at that spatial frequency to the

reconstructed object. In such a case, the raw OTF cannot be used as-is: it must be

regularized to ensure physically viable outputs from a given input. We use Weiner

deconvolution with Tikonov regularization (Bertero and Boccacci, 1998), wherein

an additional term δ is added to the denominator in such a way as to reduce the

amplification of noise:

Oest(~xO) = F−1

[OTF ∗~k⊥ · F [I](~k⊥)

|OTF |2 + δ2

]
(3.5)

For large values of the OTF, equation 3.5 reduces to equation 3.4. The advantage

of this regularization is that in the event that the OTF goes to zero, the denominator

reduces to a non-zero value. This is always the case at high spatial frequencies due

to the diffraction limit, and is potentially the case at any other spatial frequencies

depending on the system-specific OTF. In theory the parameter δ is chosen to be

the spectral density of the noise (Lu and Hua, 2015; Meitav et al., 2016), so that

noise at a given frequency is not overamplied, but in practice δ is often taken as a

constant that is chosen by visual adjustment of the deconvolved images (Shain et al.,

2017b).

3.2.1 Deconvolving Extended Depth-of-Field Images

In order to implement deconvolution some assesment of the OTF must be made, ei-

ther through measuring or calculating the PSF (open-loop deconvolution), or through

estimating the OTF by indirect constraints (blind deconvolution). For the EDOF
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Figure 3·3: (a) A classical microscope image of tissue marked with
fluorescent highlighter shows intricate detail in a small in-focus region
and a blurred object elsewhere. (b) An EDOF image uniformly blurs
the object, occluding it throughout the FOV. (c) EDOF with decon-
volution removes the blur across the image, restoring full resolution to
the parts of the objcet within the scan range (D = 70µm); parts of
the object outside the scan range remain blurred, as the EDOF model
for the OTF does not take them into account.

microscope, we derived a formal approximation for the extended OTF (EOTF) of

any object within the scan range (Shain et al., 2017b):

EOTF (k⊥;D) ≈ min


2
π

(
cos−1 k⊥

∆k⊥
− k⊥

∆k⊥

√
1− | k⊥

∆k⊥
|2
)

4k

πD∆k2
⊥

k⊥
∆k⊥

√
1− | k⊥

∆k⊥
|2,

(3.6)

Where ∆k⊥ = 2NA/λ is the bandwidth of the microscope (Mertz, 2010). From

equation 3.6, the EOTF of the optical system acts as a low-pass filter: higher spa-

tial frequencies are blurred into lower ones by combining in-focus and defocused

realizations of the object. Inserting the EOTF of equation 3.6 into equation 3.5

implements a properly tuned high-pass filter, and by choosing an approprate value

for δ (0.01 < δ < 0.1), we can obtain an improved image of the dense structure (Fig.

3·3). Note that not all of the image has been deconvolved successfully: parts of the

object that lay outside the scan range remain blurry (Fig. 3·3c), as the EOTF does

not accurately describe the intensity transfer function for those parts of the sample.

A final consideration is that the EOTF, while extending over a large axial range,
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is still a 2D transfer function. It can be used to improve the lateral resolution, but

cannot recover any depth information about the object. Indeed, all the information

about the object’s depth is removed from the system by the axial scanning process,

which compresses the three-dimensional object into a two-dimensional image. This

dimensionality reduction makes the linear system inherently non-invertible. As a

result, more sophisticated techniques are needed to recover the three-dimensional

information of the object.

3.3 Axial Localization with Modulated Illumination

One method to recover axial information from an EDOF-style microscope is to mod-

ify the physical microscope system by forcing the PSF to depend on the axial po-

sition. While there are a number of different techniques that can be used to create

such an axially-varying PSF (Llull et al., 2015; Berlich et al., 2016), a particularly

easy implementation is to simply vary the illumination power during the focal sweep.

The illumination source (usually a laser or LED) can typically be modulated faster

than any other component in the system, and control can be achieved with a func-

tion generator synchronized to the DM modulation rate without further modification

to the EDOF microscope setup shown in fig. 3·1. The most basic modulation is a

linear ramp, and by acquiring two frames in succession - one modulated to linearly

increase the intensity over the focal sweep (Im), and one with the modulation static

(I0) - we can recover both the deconvolved axially-averaged intensity O(~x0) and the

intensity-averaged axial position hz0(~x0) of the object at each point (see appendix D

for full derivation):
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O(~x0) =

∫
O(~x0, z0)dz0 = F−1

[
Ĩ0(~k⊥, D)

L0EOTF (~k⊥, D)

]

hz0(~x0) =

∫
z0O(~x0, z0)dz0∫
O(~x0, z0)dz0

=

F−1

[[
Ĩm(~k⊥,D)−Ĩ0(~k⊥,D)

]
m
[
MOTF (~k⊥,D)

] ]

F−1

[
Ĩ0(~k⊥,D)

L0EOTF (~k⊥,D)

] (3.7)

This axial localization with modulated illumination (ALMI) technique calls for

a slight improvement in our regularization parameter. With a static illumination

the EOTF goes to zero only at high frequency, and so the regularization parameter

can be set based on the high-frequency noise alone, allowing us to use a constant

value for δ. However, the modulated OTF (MOTF) appering in equation 3.7 goes to

zero at both high and low spatial frequency, necessitating a regularization parameter

that varies between those limits (see Fig. 3·4). These zeros are fundamental to the

microscope system: just as the decay of the EOTF at high spatial frequency arises

from the effects of diffraction (see section 3.2.1), the zero value of the MOTF at

low spatial frequency is connected to the lack of sectioning (Mertz, 2010) in linear

microscope systems. Instead of using a constant value for δ, we implement a step

function with different low-frequency and high-frequency values:

δ(~k⊥) =

{
δ1 (k⊥ > kc)
δ0 (k⊥ < kc)

(3.8)

where kc is a cutoff frequency separating the high and low frequency regimes (typi-

cally chosen where EOTF and MOTF intersect). In general, we found that δ0 could

be chosen much smaller than δ1. This could be related to the low-frequency region

(where MOTF is small) covering much less k⊥-space area than the high-frequency

region (where both MOTF and EOTF are small); this could be causing the presence

of noise in the low-frequency region to be less detrimental. In all cases, the specific
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values of δ0 and δ1 were chosen by eye.

Figure 3·4: EOTF (red) and MOTF (black) curves for a focal scan
range of 60µm, as a function of spatial frequency normalized to the
diffraction limit. Example regularization parameters (blue, purple) are
shown for reference.

3.3.1 Experimental Validation

We experimentally evaluate the accuracy of our axial localization with modulated-

illumination (ALMI) strategy by measuring the effect of the deconvolution correc-

tions used in equations 3.7. For this comparison, we introduce the naive depth

estimator:

hu (~x0) =
D

2

Im (~x0)− I0 (~x0)

I0 (~x0)
(3.9)

To verify the accuracy of the axial co-ordinate, we measured the position of 1µm

diameter fluorescent beads while axially translating the beads with a separate me-
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chanical stage. A Thorlabs M470 L3-C Blue LED was used to generate fluorescence

at about 500nm, and an Olympus BX51 microscope with a 20x, 0.5NA objective

was used to collect the light, giving a classical depth-of-field of about 2µm. We

used a 140-actuator Multi-DM from Boston Micromachines Corporation (BMC) to

generate a total scan range of D=60µm.

Figure 3·5: Verification of axial localization with an isolated 1µm
bead (inset). Scale-bar is 5µm. Intensity of the bead as a function of
stage position before (solid red) and after (solid black) deconvolution
illustrates the range of the extended DOF of about 60µm. Axial local-
ization of the bead before deconvolution (red) shows good agreement
with the nominal stage position (dotted black) over the extended DOF
(slope ≈ 0.8, r2 = 0.996). Axial localization with a single (blue) and
double (black) parameter deconvolution shows improved axial accu-
racy (slope ≈ 0.9, r2 = 0.997).

For isolated beads (Fig. 3·5), both hu (~x0) (Eq. 3.9) and hz0 (Eq. 3.7) provide

accurate axial localization over the focal-scan range. Outside this range, the accu-

racy of the axial localization decreases dramatically, as the ALMI model no longer
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applies. However, for larger lateral structures such as groups or rafts of beads (Fig.

3·6), axial localization values can only be accurately recovered when applying the

deconvolution algorithm of equation 3.7. In other words, while deconvolution is not

required for sparse, point-like objects, it becomes critical for laterally extended ob-

jects. In fact, because the noise level at low spatial frequencies is better than at

high spatial frequencies, laterally extended objects can be accurately estimated even

beyond the scan range.

While we used fluorescent sources to verify the ALMI technique, any incoherent

imaging modality with the above OTF can be easily adapted for volumetric imaging.

To demonstrate the sufficiency of arbitrary incoherent illumination (with an axially

symmetric response) for this technique, we imaged 4µm fluorescent beads suspended

in PDMS with both fluorescent and dark-field illumination modes. A Thorlabs M625

L3 Red LED was used to provide additional darkfield illumination from below the

4µm bead sample, allowing for easy comparison between the two imaging modes

(Fig. 3·7a,b). Fluorescence and darkfield images give identical relative positions for

each of the 4µm bead samples, with an offset between the two imaging modalities

of about 3.2µm (Fig. 3·7c). This offset is slightly larger than the nominal resolution

given by the classical depth-of-field, however this is due to a slight shift observed

in the nominal focal plane, likely caused by changing the imaging wavelength from

500nm to 625nm.

Figures 3·5, 3·6, and 3·7 illustrate the capacity of our ALMI technique to perform

axial localization of both fluorescent and non-fluorescent objects. A crucial require-

ment for this localization, however, is that the objects do not overlap one another

in the axial direction. In the event such overlap occurs, our technique returns an

overall intensity-weighted average of the depth (per equation 3.7). For example, if

two point-like objects lie at the same lateral position but at different depths z1 and
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Figure 3·6: Verification of axial localization with an extended clus-
ter of 1µm beads (inset). Scale-bar is 5µm. Axial localization of the
cluster before (red) deconvolution shows linearity but poor accuracy
in estimating the axial position within the DOF, systematically un-
derestimating deviations from Z = 0 (slope ≈ 0.4, r2 = 0.983). After
applying deconvolution (blue) with a single regularization parameter
the accuracy improves significantly (slope ≈ 0.8, r2 = 0.998). Two-
parameter deconvolution (black) provides even higher accuracy (slope
≈ 0.9, r2 = 0.999) which extends even beyond the focal scan range of
60µm.
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Figure 3·7: MI-EDOF images of 4µm beads embedded in PDMS
acquired with fluorescence (top left) and darkfield (top right) imaging
modes. Axial displacement from nominal focus is represented by the
color axis (in units of microns); scale bar is 50µm. Comparison of the
axial positions obtained in fluorescence and darkfield modes is also
shown (bottom), yielding a linear fit of slope 1.02, and offset 3.2µm.



31

z2, our technique returns an image of only a single object located at an apparent

depth (z1 + z2)/2. This weighted-intensity axial localization is apparent in Fig. 3·8,

which shows a darkfield image of a cylindrospermum algae (Carolina Biological Sup-

ply) suspended in water. The algae is generally sparse enough to identify the depth

profile of individual strands; where the strands overlap, the depth is identified as an

intensity-weighted average axial position. Since we use a single-shot deconvolution

method to obtain the heights, any overlapping parts of the object skew the recovered

position, whether or not they are within the scan range. This also underscores the

limitation of the open-loop deconvolution technique in general, in that where ob-

jects extend beyond valid regime for modelling the PSF, even the parts of the object

within the scan range may not be fully recovered. To account for such extended

objects, more advanced techniques are required (see section 3.4).

3.3.2 Discriminating Neurons with Depth Information

Fortunately, for many applications full quantitative 3D imaging is not required.

Functional neuron imaging in particular requires only a semi-quantitative assessment

of depth, as the depth parameter is used primarily to distinguish overlapping neurons

that fire simultaneously. Since the neurons blink both independently and in-sync,

it is possible to identify a given neuron or a combination of neurons is firing by

looking at the relative apparent depth of the neuron in time. We demonstrate this

in figure 3·9, which shows neuronal activity of two distinct overlapping neurons taken

with an ALMI microscope system. Intensity plots of the overlapping (purple) and

non-overlapping (green, blue) regions show that the overlap region exhibits calcium

transients associated with either neuron (Fig. 3·9a-b). However, the overlap intensity

alone would not be sufficient to enable the association of a particular transient to a

particular neuron, without recourse to statistical correlations over non-overlapping
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Figure 3·8: Cylindrospermum algae acquired with ALMI in dark-
field mode using a 20× 0.5NA Olympus objective (left). From the
modulated-illumination image, two algae strands appear to overlap at
two distinct points (A and B). Plots of the recorded axial location of
each strand (top right) near point B reveal sharp variations that con-
verge to a common axial location, indicative of an incorrect apparent
co-localization of the strands. The convergence at point A occurs at
much more slowly, suggesting the two strands are in fact co-localized
at that point. This is verified by an x-z projection obtained from an
image stack, where we confirm that the strands are axially co-located
point A but axially separated at point B. The different behaviors of ax-
ial plots about these points suggests that with prior information about
the sample (such as continuity constraints), correct axial information
can be inferred even in non-co-localized cases.
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regions (Inglis et al., 2008; Theis et al., 2016). Using our axial localization technique,

analysis of the axial positioning data (Fig. 3·9c) indicates that when the green neuron

fires, the apparent depth of the overlap increases (Fig. 3·9d1), whereas when the

blue neuron fires, the apparent depth decreases (Fig. 3·9d3). When both neurons

are simultaneously active, the depth appears unchanged (Fig. 3·9d2), since our

technique provides the intensity-averaged axial position as indicated in Fig. 3·8. In

other words, the association of calcium transients to specific neurons can be achieved

locally using information obtained from a single image point, rather than requiring

delocalized cross-correlations obtained from spatially separated image points.

Figure 3·9: a) In-vivo ALMI data from GCaMP-labeled neurons in
a mouse striatum (three frames are shown from a video). Distinct
neurons are observed (blue, green) in the indicated ROI that laterally
overlap (purple); scalebar is 50µm. b,c) Intensity and depth varia-
tions are monitored simultaneously, facilitating the discrimination of
neuronal activity. d1-3) ALMI video frames show neurons firing either
individually or together; scalebars are 20µm. e1-2) Intensity and depth
of neurons firing almost simultaneously. f1-3) ALMI video frames show
near-simultaneous firing of neurons; scalebars are 20µm
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3.4 Blind Deconvolution

The ALMI technique, and EDOF techniques in general, rely on the assumption that

the sample is enclosed entirely within the scan range. For sparse objects, even those

extended over a large volume, this is a reasonable approximation in that parts of

the sample outside the scan range are dim and ultimately negligible. For densly

packed objects, this assuption breaks down and sources outside the scan range begin

to contribute meaningfully to the EDOF image. An important example is with flu-

orescent brain imaging, in which there are two secondary effects that contribute to

the image arising from objects beyond the scan range: defocused fluorescent and de-

focused absorbing structures (Shain et al., 2017c). Defocused fluorescent structures

deep within the brain combine to contribute a (mostly) uniform fluorescent haze,

acting like a trans-illumination source that reduces the SNR; this back-illumination

cannot be deconvolved through the open-loop methods above (section 3.2). If the

static background were the only effect of the deep fluorescence, it could be treated

as an overall offset and subtracted before deconvolving the image. Yet because of

the trans-illumination coming through the sample, defocused absorbing structures

within the brain (such as blood vessels) become visible. Absorbing structures within

the scan region can be treated as objects of negative fluorescence; however, objects

located close enough to the scan region to be distinguished but too far outside the

region to be modelled accurately by the EOTF cannot be accounted for in the EOTF

approximation. Since open-loop deconvolution treats the image as if it has a uniform

PSF, the 2D acquisition of the images precludes the ability to distinguish parts of

the object within the scan range from parts of the object outside that range. It is

fundamentally unable to account for these additional structures.
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3.4.1 Dual fluorescence-absorption deconvolution

Since open-loop deconvolution is insufficient, a more advanced mathematical formu-

lation is necessary. Rather than obtaining the object structure in a single-shot from

a closed-form expression containing our knowledge of the OTF, we use a metric ε

that models the OTF to iteratively optimize our estimate of the object, where ε is

given by:

ε = ||I −O ∗ PSF ||2 (3.10)

Where in theory both the PSF and the object O can be estimated in a given model

(Bertero and Boccacci, 1998). Open-loop deconvolution can be seen as a special case

of this framework, where the PSF is precicesly modeled for the entire object and so

the optimal estimate of O can be calculated precisely (per equation 3.5 above). When

the PSF at each point in the object cannot be analytically modelled, minimizing ε is

achieved by semi-blindly varying the model parameters and evaluating the change in

ε. This blind-deconvolution technique is implemented by using an iterative gradient

descent algorithm (Jost et al., 2015; Chambolle and Pock, 2016):

µi+1 = µi − τ∇ε(µi) (3.11)

Where µi is a given parameter (such as the object fluorescence or absorption at

a point) taken at the ith iteration, and τ provides a convergence rate over a given

time. Gradient descent is particularly attractive as it can be parallelized to optimize

efficiently over the full parameter space (Paudel, 2015). This provides an effective

method for estimating the object, limited somewhat by convergence issues: any µi
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that generates a local minima in ε acts as a possible estimate of the object. As

such, having a precise estimate of the PSF and a good initial estimate of the object

dramatically improves performance (Shain et al., 2017c). To obtain a model that

accoutns for the intensity of the object outside the scan range, we return to the

static-illumination EDOF implementation and describe the object as a three-layer

structure. One layer is a mostly uniform illumination source that is generated by

significantly defocused parts of the object (such as the deep brain tissue); this is

modelled as a constant offset (L0). Another layer is a network of partially defocused

absorbing structures; this is modelled as having a large-width gaussian PSF (GPSF)

applied to the absorbing blood vessels (D2
abs), approximating strong defocus. The

final layer is the object structure within the scan range; this is modelled by the

EPSF described above applied to both fluorescing (S2
fl) and absorbing (S2

abs) cells

within the scan range. Combining the layers into a single expression yields a dual

fluorescence-absorption (DFA) reconstruction for minimizing the metric:

ε = ||I − (L0 −D2
abs ∗GPSF + (S2

fl − S2
abs) ∗ EPSF )||2 (3.12)

Where the ∗ operator indicates convolution. Applying the DFA reconstruction

to live images of the motor cortex region of mouse brain yields significantly better

contrast than the open-loop Weiner deconvolution method implemented above, as

seen in figure 3·10. Moreover, by parametrizing the object in terms of both fluores-

cence and absorbing strucutres we obtain a representation of the neural structure

and the vascular structure with a single optimization. While the neural structure is

typically the focus of functional fluorescent imaging, obtaining a simultaneous repre-

sentation of both structures could allow for improved probing of the neuro-vascular

interactions of interest (Christie et al., 2017), without requiring additional physical
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Figure 3·10: Time projection of mouse motor cortex taken with
EDOF microscope; FOV ≈ 250 µm. a) raw EDOF images, b) open-
loop deconvolution, c,d) fluorescence and absorbing structures using
DFA deconvolution.

or computational modifications to the imaging system.

One point of note is that the object structure in equation 3.12 (described by D2
abs,

Sfl, and Sabs) is implemented as a parameter-squared representation, making the

equation appear non-linear in the parameters. In fact, the system is still linear with

respect to these squared parameters, and indeed one could replace these parameters

by non-squared versions that directly represent the fluorescence or absorption of the

object. Nevertheless, we obtain two advantages by describing the object with respect
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to squared parameters. First, it ensures positivity of the underlying values, forcing

the absorbing parameters to represent reduction of intensity and the fluorescent

parameters to represent increases of intensity. Second, by parametrizing the object

in this manner, we promote sparse solutions upon implementing a gradient descent

algorithm: as the parameter values increase they have more of an effect on the

metric, favoring a solution µi of sparse bright objects over dense weak ones. This

allows us to apply our information about the neural structure of the brain - that it is

composed of discrete, sparse cells - without requiring additional constraints such as

L1 minimization (Chambolle and Pock, 2016). If we recall that the squared values of

the parameters are the ones with physical meaning, we find that the deconvolution

method results in a linear (and therefore quantitative) estimate of the object (Shain

et al., 2017c).
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Chapter 4

Compressive Linear Systems with

Constraints

4.1 Matched-Filter Compressive Imaging (MFCI) Flow Cy-

tometry

As a limiting case of mathematical complexity, we consider the case where minimal

infromation from the object is acquired. Specifically, we investigate high-throughput

label-free flow cytometry. Flow cytometry is used to distinguish particle types; this

can be done through chemical markers with fluorescence cytometry (Wojcik and Do-

brucki, 2008; Futamura et al., 2015) or geometrical structure with imaging cytometry

(Blasi et al., 2016; Lei et al., 2016). Flow cytometry is used primarily for disease

identification in medicine (Smith et al., 2016; Alix-Panabières and Pantel, 2013), as

well as impurity detection and quality control in a variety of industries (Leme et al.,

2012; Mathaes et al., 2013). Both fluorescence and imaging cytometry have their

individual drawbacks that apply across the various applications: fluorescence cytom-

etry requires the introduction of a fluorophore that can be damaging to the sample,

and imaging cytometry is limited to camera acquisition rates. There is therefore a

strong motivation to develop high-speed label-free cytometry, wherein the wide-field

image of the particle is reformulated as a handful of critical data points that fully

describe the sample.

We obtain high-speed label-free cytometry by applying a spatial filter in the
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fourier plane (Pasternack et al., 2008; Zhou et al., 2015) of the microscope (Fig.

4·1). The filter separates the light scattered by the particle at different spatial

frequencies by tilting the light from different parts of the pupil plane into distinct

high-speed detectors in the image plane, providing a form of compressed imaging

(Zhou et al., 2015). For mutually incoherent regions of the field-of-view, the scatter

patterns add independently on the detector. The relationship between the number of

particles of a given population and the toal scattering intensity is therefore a linear

one (Shain et al., 2017a), and this implementation of matched-filter compressive

imaging (MFCI) flow cytometry can be described by a linear equation:

Ic(t) =
∑
i

Tcini(t) (4.1)

Where ni(t) is the number of particles of the ith population passing through

the measurable FOV as a function of time, Ic(t) is the corresponding intensity on

detector c, and Tci is the intensity transfer matrix (similar to the PSF in equation

3.2) connecting the scattering intensity of the particles to the signal on the detectors.

For a given filter pattern, each population will have a specifc intensity map to the

four quadrant detectors. This pattern can be tuned for a particular application to

optimally identify a set of desired populations in a given mixture - in other words, a

matched filter.

4.2 Implementation of MFCI Flow Cytometer

We use a wide-field microscope configuration, modified to include a Boston Micro-

machines Corp (BMC) Hex-337 tip-tilt-piston deformable mirror (TTP-DM) similar

to the Iris AO PTT111 (Copeland et al., 2016). The TTP-DM is placed in a pupil-
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conjugate plane to implement the spatial filter. A Thorlabs 625nm LED is used for

trans-illumination, and a 20x 0.46 NA Olympus objective is used to magnify the

cells. A SensL high-speed quadrant detector is used to detect four distinct signals

from light redirected into four quadrants in the image plane, and a Thorlabs GiGE

Vision camera was placed in a conjugate-image plane to verify the separation in the

image plane of the different spatial frequencies. Flowing particles are provided by

a syringe pump to a lab-build microfluidic flow channel placed in the focal plane of

the MFCI system. A schematic of the setup is given in figure 4·1.

Figure 4·1: Schematic of MFCI Flow Cytometer

To test the success of our cytometry method, we investigated 4µm fluorescent

beads, yeast bacteria, and Bascillus Cerus bacteria (Carolina Biological Supply) as

a good representative of biological mixtures. Each particle has a unique scattering

structure, depending on its symmetries and index variations, as seen in the wide-field

camera images of the different objects (Fig. 4·2a-c). Moreover, each particle has a

scattering pattern in the pupil plane that is invariant to the lateral position of the

object: objects with low-frequency structures (such as the 4µm beads) result in light

being deflected at a small angle, whereas objects with fine details (such as yeast and

Bascillus Cerus) cause light to scatter at higher angles (Fig. 4·2d-f).

We verified that the signal generated by a given particle in each detector remains
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Figure 4·2: Normalized images of beads, yeast, and bascillus cerus
taken in image and pupil planes. A net intensity drop is consistantly
seen in all pupil plane images where the ballistic light is reduced due to
scattering. For the 4µm bead (left), this light is scattered into a ring
about the ballistic component; for the yeast bacteria (center), the light
is scattered farther out due to the finer structure of the bacteria cell;
for the bascillus cerus bacteria (right), there is increased scattering
along the thin axis of the bacteria relative to the long axis, due to the
asymmetry of the bacteria geometry.
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constant as the particle moves across the FOV, and that different particles of the

same population (and therefore the same geometry) have the same signal, as expected

(Fig. 4·3). Moreover, the scattering signature of the populations were distinguishable

in each channel, as shown for the beads and yeast in figure 4·4. To ensure accurate

comparison of the scattering strength across channels, signals were normalized by

subtracting the background intensity (taken as the median of the channel signal:

Bc = median(Ic)) and dividing by that intensity in each channel. This represents

the relative change δI in intensity for each channel:

δIc =
Ic −Bc

Bc

(4.2)

Figure 4·3: Example of Bead flowing past detector for a specific DM
pattern. As the bead passes the FOV, the intensity in each channel
is deflected (either increasing or decreasing) as light is scattered away
from or into the corresponding spatial frequencies
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Figure 4·4: Average output signals < δIc > of 4µm diameter beads
and yeast bacteria flowing past MFCI flow cytometer. Filter applied
to separate signals is shown in figure 4·3. Clear separation between
the beads and the yeast signals are visible in each of the four channels.
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4.3 Linear Inversion through Machine Learning

Equation 4.1 is a linear transfer equation, just like equation 2.2 and 3.2. It would

be tempting to apply the same division-style inverse as equations 2.3 and 3.4 (or

equation 3.5). In equation 4.1, however, there is a critical underlying distinction:

the number of particles ni that are transfered to the intensity at the detector is a

positive discrete integer for each population. This constraint cannot be implemented

through division or pseudo-inversion techniques, and would be difficult to implement

with closed-loop optimization due to noise fluctuations. An entirely different solution

method is necessary.

To invert the linear equation 4.1 defining the MFCI, we implemented a machine-

learning (ML) algorithm (such as nearest-neighbor clustering, or a neural-network)

to find the optimal solution. These algorithms have found wide-spread use in image

data partitioning and feature/object identification (Sinha et al., 2017; Lin et al.,

2017; Steinvall et al., 2017), and have been widely demonstrated to be robust to noise

and population variations given a sufficiently sized dataset. While ML algorithms

can be applied to linear and non-linear problems, a critical simplification to our ML

algorithm arises from the linear nature of equation 4.1 demonstrated in figure 4·5:

the training data need only include instances of single isolated particles from each

population. Given such a training set, we can extrapolate our ML algorithm to

account for any arbitrary combination of cells by scaling the expected signals and

summing accordingly. This is a unique feature to linear systems that in general is

lacking in ML applications. On a practical level, this drastically simplifies the traning

process, as well as the ability for transfer learning of a given population signature to

a different cell mixture. Preliminary data suggests this is a viable approach, however

a more thorough analysis is needed to demonstrate the success of supervised machine
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learning to cluster the populations in an MFCI flow cytometer.

Figure 4·5: Linearity of LED illumination vs. Laser Illumination:
groups of 2µm beads placed in the FOV and imaged with both a laser
and an LED source. Intensity in each channel is recorded, after sub-
tracting a line of best-fit as a linear assumption. For laser illumination
(blue circles) in each channel, the intensity varied wildly depending on
the number of beads; whereas with LED illumination (red x’s), the in-
tensity was relatively constant even with significant changes in particle
count.

As a final point, we note that while the detector response is linear with respect

to the cell population, it is highly non-linear with respect to the filter shape on

the DM. Different patterns will identify specific populations from a given mixture,

and there is no clear analytic prediction that can be used to design the filter for

optimal detection. Such optimization would be especially useful for applications

such as cancer detection or water contamination, in which the particles that must be

detected are (hopefully) rare. Fortunately, ML algorithms are effective for non-linear
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applications as well, and the ML architecture set in place for particle identification

can be easily modified to incorporate an ML pattern optimization schemel. Such an

optimization algorithm is the subject of future work on the MFCI flow cytometer

project.
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Chapter 5

Conclusions

5.1 A General Linear Microscopy Framework

Information about an object can be recovered by a microscope through the effect of

the object on the electromagnetic field. The greater the gap between the minimal

object description and the information provided by the microscope, the more pow-

erful the mathematical techniques for fully recovering the object. Fortunately, since

much of optics depends on linear transfer equations, more powerful mathematical

techniques are readily available.

Seeing through rock with an S-MPM microscope implementing MPO imaging

required only the simplest manifestation of linear mathematics to reconstruct the

object: most of the necessary information was extracted by the microscope directly,

after physically correcting the light paths with a DM. For dynamic volumetric ob-

jects, part of the object was recovered through focal scanning with a DM. However,

the remainder of the information required the more advanced regularized deconvolu-

tion methods as the linear equation was ill-defined for specific frequencies. For large

objects extending beyond the expanded depth-of-field, regularized deconvolution was

insufficient and a closed-loop multi-layer model was required. With MFCI flow cy-

tometry, a DM supplied the minimum necessary information through compressed

spatial filtering. The compression of the object geometry, as well as the constraints

on the object parameters, suggested that even a closed-loop deconvolutin algorithm
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would be unable to recover the cell populations at a given moment. Instead, the more

powerful machine-learning techniques are necessary to obtain accurate identification

of the sample.

The key observation is that as the requirements for extracting the object informa-

tion change, both the physical microscope and the extraction algorithm must respond

accordingly. We can write a sort of pseudo-equation that describes the situations in

which one can fullly recover the object:

P (1 + A) ⊂ O (5.1)

The information supplied by the physical microscope (P), modulated by the in-

formation supplied by the inversion algorithm (A), must contain the necessary object

information (O). The microscope technique can be tuned for the problem at hand

by using SLM’s to maximize the information available, and the mathematical recov-

ery algorithm must be chosen by exploiting the linear nature of optics to fill in the

information gap. As more information is needed under harsher physical constraints,

both the physical microscope and the computational recovery must be refined. This

balance between experimental and theoretical enhancements is found throughout

physics and science in general, and as we see in the above examples, they should

be considered in tandem. Ideally one could express both the microscope and the

algorithm in a single framework that would allow easy identification of the systems

capable of recovering a given sample, optimizing not just a given microscope system

for a given application but instead the whole field of microscopy. This thesis provides

a small potential step towards such an architecture.
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Appendix A

Derivation of the Classical Microscope

Propagator

A.1 The Origin of Plane Waves

A.1.1 Plane Wave Decomposition

Any continuous function of real space can be written as a (potentially infinite) compo-

sition of plane waves. This is commonly known as a Fourier decomposition (Jackson,

1999) and is formulated through:

~E(~k⊥) =

∫
e−i2π

~k⊥·~ρ0 ~E(~ρ0) (A.1)

Where the fourier modes ~E are eigenfunctions of the wave equation 1.2. Breaking

the propagation vector ~k into ~k = ~k⊥+~kz, an arbitrary plane wave can be re-written

as propagating a distance D along the ẑ direction with a temporal frequency w, axial

spatial frequency |~kz| =

√
k2 − |~k⊥|2, and eigenvalue ei2π(kzD−wD/c). Summing over

each plane wave multiplied by its respective eigenvalue gives the total electic field

in the Fourier basis as an integral over the transformed plane-waves. Since the two

vector components of the field sum independently, we suppress the vector nature for

now unless otherwise specified. Taking an inverse Fourier-transform gives the field

in the final plane (as seen in figure A·1):
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E(~ρ,D) =

∫ ∫
ei2π

~k⊥·~ρe±i2πD
√
k2−|~k⊥|2e−i2π

~k⊥·~ρ0E(~ρ0, 0)d2~ρ0d
2~kz (A.2)

Figure A·1: Propagation of light through a homogeneous medium.

This can be re-written to remove the intermediate Fourier transform, leaving the

solution in terms of only the initial and final co-ordinates:

E(~ρ,D) = −ik
∫

D

ρ2
0 +D2

ei2πk
√
ρ2

0+D2(
1 +

i

2πk
√
ρ2

0 +D2

)
E(~ρ0, 0)d2~ρ0d

2 (A.3)

While equation A.3, called the Rayleigh-Sommerfeld diffraction integral, is an

exact description of free-space light propagation, it is extremely difficult and mostly

unnecessary to solve for the cases of relevance (Mertz, 2010). Of note is the fact

that for sufficiently high lateral spatial frequencies, the exponential becomes a real

decaying function and its contribution to the integral becomes negligible for classical

microscopes (the origin of the so-called ”Diffraction Limit”). This suggests that

we should limit our integration over lateral spatial frequencies to those of finite

value. Indeed, we will take the paraxial approximation in which we assume the
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light is mostly going straight (|k⊥| << k), and therefore kz =

√
k2 − |~k⊥|2 ≈ k(1−

|~k⊥|2
2k2 ). This appoximation vastly simplifies the form of the propagtator, as seen below

(A.1.3), and is valid for all the microscope systems discussed here.

A.1.2 Making an Image

When there are discontinuties in the refractive index, equation A.2 no longer applies.

However, if the disruption in the refractive index is short, such as light passing

through a thin film, we can approximate the transmitted field as having a local

phase shift depending on the local index variation:

~E(~ρ, dT ) = ~E(~ρ, 0)ei2π
dT
λ

∆n(~ρ) (A.4)

Figure A·2: Propagation of light through a thin film for an arbitrary
wave plate and for a quadratic phase .

When the phase variation takes the form of a 2D parabola (Fig. A·2), it acts as

a lens of focal length f . The effect can be characterized as imparting an additional

curvature κ = 1
f

to the phase of the electric field. If we describe the input field E0
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as having its own well-defined curvature κ0, such as the electric field generated by

a point source or Huygens wavelet (Jackson, 1999), the effect of the parabolic thin

film is to simply sum the curvature linearly:

~E(~ρ, dT ) = ~E(~ρ, 0)e−iπ
k
f
|~ρ|2

= ~E(~ρ, 0)e−iπkκL|~ρ|
2

= ~E0e
−iπkκi|~ρ|2e−iπkκL|~ρ|

2

= ~E0e
−iπkκf |~ρ|2

(A.5)

Where κf = κ0 + κL. For sufficient positive curvature, this forces the field back

to a point - the defining feature of a lens. Re-writing the curvature of the input and

output fields in terms of the convergence points d0 = 1
κ0

and df = 1
κf

results in the

classic thin lens equation:

1

d0

+
1

f
=

1

df
(A.6)

A.1.3 The Classic Microscope

When a plane wave is incident on the lens, we can treat the plane wave as if it has

zero curvature (d0 =∞), bringing any plane wave into focus at df = f . Since the tilt

of the field is unaffected by the lens, a plane wave incident at an angle θ is brought

into focus at a distance |~ρ| = f sin(θ) from the lens axis. This unique feature of

a lens to map planewaves to points (and points to planewaves) implies a conjugate

relationship between the position of a light wave and the angle at which it propagates

(Fig. A·3). Indeed, for the paraxial approximation mentioned above (section A.1.1)

we can derive a Fourier transform relationship between the electromagnetic field at
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Figure A·3: Fourier-conjugate nature of positions and angles between
one focal plane of a lens and the other.

the initial focal plane and the field at the final focal plane. Following the work of

(Mertz, 2010), we obtain:

~E(~ρ1) = −ik
f
ei4πkf

∫
e−i2π

k
f
~ρ1·~ρ0 ~E(~ρ0)d2 ~ρ0 (A.7)

Since we also identify the input field with a plane-wave representation, we identify

the field at a given co-ordinate in the output plane with the laterial spatial frequency

at the input plane: k⊥ = 2π
λf
ρ. The field at one focal plane of a lens is precisely the

Fourier transform of the field at the other focal plane (within the paraxial approxi-

mation). If we then place a second lens a distance d = f1 + f2 after the first (Fig.

A·4), the result chains together two Fourier transforms:

~EI(~ρI) = − k2

f1f0

ei4πk(f1+f0)

∫∫
e−i2π

k
f
~ρ1·~ρPP (~ρP )e−i2π

k
f
~ρP ·~ρP ~E(~ρ0)d2 ~ρPd

2 ~ρ0

= − k2

f1f0

ei4πk(f1+f0)

∫ [ ∫
e−i2π

k
f
~ρ1·~ρPP (~ρP )e−i2π

k
f
~ρP ·~ρP d ~ρP

]
~E(~ρ0)d2 ~ρ0

≈ − k2

f1f0

ei4πk(f1+f0)

∫
δ
( 1

M
ρ1 − ρ0

)
~E(~ρ0)d2 ~ρ0

= − k2

f1f0

ei4πk(f1+f0) ~EO(−f0

f1

~ρI)

(A.8)

Where the magnification is M = −f1

f0
, and the ideal pupil function P (~ρP ) = 1;
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that is, the light is perfectly transformed by the two successive fourier transforms.

The result of equations A.8 is a flipped and rescaled version of the input field to the

first lens appearing at the output focal plane of the second lens. Whereas a single lens

mapped the electromagnetic intensity at one plane to another (per equation A.6),

the phases in the new field were not identically preserved. With a 4f system, the

propagator function in equation A.8 approximates a delta-function, allowing us to

reproduce any electromagnetic field at another plane magnified by a factor M = f2

f1
.

In fact, taking into account the finite radiation frequency, we can better express the

microscope in terms of its coherent transfer function (CTF), defined as the transfer

function of the fourier components. For a 4f microscope, the CTF is identical to

the pupil function P (Mertz, 2010) In the fourier domain, this is easily expressed by

having the pupil function have a finite cutoff:

P (~ρP ) =

{
1 ρP <

f
k
∆k

0 ρP >
f
k
∆k

(A.9)

Where ∆k = 2NA
λ

defines the passband of the microscope. Identifying the pupil

position ~ρP with the fourier mode of the field ~k⊥ = k
f
~ρP allows us to write the

microscope in terms of how it transmitts spatial frequencies:

EI(~k⊥) = P (~k⊥) · EO(~k⊥) (A.10)

Where the finite cutoff defined by ∆k creates the diffraction limit. As a result,

we express the field at the image through:

~EI(~ρI) =

∫
CSF (

1

M
~ρI , ~ρ0) ~EO(~ρO)d2~ρO (A.11)
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Where the coherent spread function (CSF) is the Fourier transform of the CTF.

This defines a classical microscope as seen in Fig. A·4, and is the basis of optical

microscopy (equation 1.7 in section 1.1).

Figure A·4: Classical Microscope System
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Appendix B

Optical Characterization of Porous Rock

Porous rock is a highly scattering medium when filled with air, water, or even oil.

This is due to both the fractal nature of the pore structure and the large refractive

index of the rock itself. As such, a variety of metrics are necessary in order to

properly characterize how well one can image through a thin rock section. Many of

the physical aspects of limestones and other oil-well rocks have been well described

by the literature, however the optical characteristics of the rock were lacking. We

therefore investigated the two parameters most indicative of our ability to recreate

a focal spot deep in the rock: the Transport Mean-Free-Path (l∗) and the Sample

Bandwidth (∆νs). These parameters allow us to estimate the usable field-of-view

and our expected signal-to-noise ratio at a given point in the rock.

B.1 Transport Mean-Free-Path

When light initially enters a scattering medium, it is dominantly ballistic: most of

the photons are ballistic, and any aberrations or weak scattering can be fully cor-

rected using spatial light modulation techniques (Li et al., 2015). However, as light

continues into the sample the ballistic component of the light decays exponentially,

as determined by the scattering length ls. As a result, the corrlations between the

transmission to different points in the sample decrease (Berkovits and Feng, 1994),

reducing the field-of-view (see also section2.2). At a certain thickness into the sam-
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Figure B·1: Diagram of light travelling through a scattering medium.
Initially the light retains its directionality, but by l∗ (dotted line) the
light is now diffusing evenly throughout the sample.

ple, light can be approximated as diffusing through the medium (Ishimaru, 1978),

propagating equally forwards and backwards through the rock (Fig. B·1). This char-

acteristic distance defines the Transport Mean Free Path (l∗); beyond this thickness,

phase information of the incoming beam is lost. At a thickness of l∗ the corrected

FOV is reduced to a diffraction limited spot (Fig. 2·4). l∗ therefore provides im-

portant information on how well we can image inside a particular sample using the

S-MPM technique.

In order to measure l∗, we followed the work by Genack (Genack, 1987) where

transmission through a thick non-absorbing diffusive slab can be approximated as:

T (L) =
5

3

l∗

L
(B.1)

Here, T = Itrans
Iin

is the normalized transmission ratio and L is the sample thick-

ness. To estimate l∗, we used an integrating sphere to collect the full transmitted

light for a given thickness and solved equation B.1 for l∗ in terms of the transmis-

sion ratio and sample thickness. While the specific value of l∗ varied significanly for

different rock samples, ranging from tens to hundreds of microns, we were able to
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verify that l∗ increased with as both the index mismatch and the porosity of the

medium decreased, in both cases resulting from increased homogeneity of the rock.

A full examination of the transport mean-free-path of rock was beyond the scope of

our research.

B.2 Sample Bandwidth and Diffusion Coefficient

The S-MPM microscope in section 2.2 relies on coherent optimization of speckle

grains to produce an optimized focal point, enhanced above the average intensity

by E = Iopt
Iavg

. A key requirement to successfully enhance the multi-photon signal

required for 2.2 is the specular structure of the output light; that is, there must exist

distinct spatial fluctiations that are then optimized. The light passing through the

scattering medium must therefore generate a limited number of frequency modes -

white light has no speckle to optimize. However, as light travels through the scatter-

ing medium, the multiply-scattered light can dwell in the medium for a significant

time. This delay, called the Thouless time (τTh) causes different frequency compo-

nents loose coherence and separate into distinct frequency modes (see Fig. B·2).

A given sample will have a bandwidth called the Sample Bandwidth (∆vs) where

sources of shorter bandwidth l remain coherent. The sample and source bandwidths

together determine the maximum enhancement obtainable with a phase modulator

of N elements (Paudel et al., 2013):

E =
π

4
N

∆vs
∆vs + ∆vl

(B.2)

To determine ∆s for porous rock, we followed the work of ref. (Paudel et al., 2013)

and controlled the bandwidth of an optical source before passing through the rock

sample. We used a super-luminescent diode (SLD) to generate a large bandwidth
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beam. A diffraction grating spatially separated the frequency components, and a

tunable slit filtered out the edges of the beam to directly tune the bandwidth. After

specifying the bandwidth, the beam was redirected to focus onto the rock sample,

and the diffuse light transmitted through the rock was collected on a camera (Fig.

B·3). We correlated the intensity contrast of the output speckle pattern (defined

as the standard devaition divided by the mean intensity) with the laser bandwidth

(Paudel et al., 2013):

C =

√
∆vs

∆vs + ∆vl
(B.3)

The sample bandwidth is expected to vary with thickness as: ∆vs = D
L2 , so

from ∆vs and the thickness we can calculate the diffusion coefficient D. Porous rock

had diffusion coefficients ranging from 104 to 105 m2/s, with larger (faster) diffusion

generally occuring for lower scattering strength. For imaging water and oil flow

at about 100µm deep, this resulted in a sample bandwidth of about 1-2 THz and

50THz. When used in conjunction with our femtosecond laser and Kilo-SLM, we

expect an enhancement of 1 at about 200µm, beyond which point the optimization is

expected to fail entirely for lack of signal. We therefore would not expect to obtain

any improved imaging cabability at depths beyond 200µm without increasing the

number of elements in our SLM.
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Figure B·2: a) Diagram of laser pulse incident on scattering me-
dia. The ballistic light exits as if there were no scattering, retaining
the pulse shape. The scattered light exits after the ballistic light, and
spreads significantly in time. b) Diagram of sample bandwidth. Broad
pulse corresponds to a beam of finite bandwidth. For a finite band-
width ∆l incident on a scattering media, the spectrum is divided into
blocks of width ∆νs which remain coherent. The above spectrum, for
example, is broken into approximately four distinct modes.



62

Figure B·3: Schematic of setup used to measure the sample band-
width ∆s. An SLD was directed onto a diffraction grating and spatially
filtered with a tunable slit; from there it was recombined and redirected
to the sample, and the transmitted light imaged on the camera. SLD:
Super-luminescent diode, PBS: polarizing beam splitter, ND: neutral
density filter, QWP: quarter wave plate, DM: deformable mirror, L:
lens, M: mirror
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Appendix C

Image Analysis in Low SNR environments

As we are imaging deep within the rock, we will necessarily be analyzing both high-

quality and low-quality images, depending on the local thickness and scattering

properties of the rock. We found that the traditional method of applying a thresh-

old and clustering adjoining signals lead to fragmented or over-clustered data when

applied to close-packed, noisy images (Fig. C·1).

C.1 Partitioning by Local Maxima

We therefore defined beads by clustering pixels according to their local maxima

(Youssef, 1987). Any two pixels are deemed equivalent if one is the local maximum

of the other. The local region is taken to be approximately the resolution or point-

spread function (PSF) of our imaging system. Once we have partitioned the image,

we then define the structures within each region. For beads (or other spherical

structures) we define a Full-Diameter at Half-Max (FDHM) for each local maximum.

The FDHM of each region is calculated by averaging the Full-Width at Half-Max

taken from line-scans at multiple angles, each centered about the local maximum.

The radius of the bead is half the FDHM. We can then define the intensity of a bead

as the mean intensity of all pixels within the bead radius. Note that as we have

not yet defined a threshold, every region has an associated bead structure including

regions which arise from noise fluctuations. By defining the intensity through the
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Figure C·1: Threshold and cluster method used to identify 1µm
diameter beads in a 20µm x20µm image. Each pixel in the initial
image (a) is defined as signal or background, creating a binary image
(b). Adjacent signal pixels are combined to form a single structure,
such as a bead (c). However, the algorithm may misidentify a chain
of beads as a single structure (d) or isolate a few pixels (e).

FDHM, we can now see a clear separation in intensity between true bead structures

that arise from imaging actual fluorescent objects and background structures that

arise from noise fluctuations. The two populations are well-separated in intensity,

as shown in a histogram of bead intensities. This allows for a natural definition of a

threshold value for signal: by grouping the histogram data towards the local maxima,

we find a natural separation point between the two populations. We can then use

this threshold to remove the background structures, allowing for easy analysis of

only the actual beads (Fig. C·2).
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Figure C·2: Use of partitioning to identify beads. Initial image (a)
is broken into local regions with local maxima (b). By taking a local
measure of the intensity and plotting a histogram of the regions (c),
we see regions naturally separate into background and signal. This
lets us identify and quantify the bead intensities and geometries

C.2 Primary Image Metrics

To quantify the image quality of an image, we use a total of 5 metrics. The apparent

resolution, contrast, and SNR apply to any image, and the enhancement and FOV

are defined only for images taken after optimization. These parameters accurately

characterize how the rock affects the imaging capabilities as a function of depth into

the sample (Fig. 2·4), and additional parameters of potential interest are measured

as well (Fig. C·3).
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Figure C·3: Output of analysis program applied to 20µm x 20µm
image of 1µm diameter beads (no scattering). The structures creating
signal are identified, and the relevant image metrics and parameters
are recorded. Scale bar: 1µm

Resolution: We define the apparent resolution of an image as the smallest FDHM

of isolated fluorescent structures (such as a single bead with no neighbors) in the

image. The smaller the resolution, the higher the image quality. It is necessary to

use isolated structures, as beads that are touching may generate artificially small

radii, overestimating the resolution. It is important to note that we cannot measure

resolution smaller than the fluorescent structure - if we image 5µm diameter beads

with a 1µm Point-Spread-Function (PSF), the image would indicate a resolution of

at least 5m, but no more. Since the resolution is independent of the power at the

sample or the noise in the system, we can use it to compare imaging techniques,

rather than only the imaging systems.

Signal-Noise Ratio: The signal-nose ratio (SNR) of an image is defined as the

ratio of the intensity of the true bead structures to the background parts of the

image, which are defined through the intensity histogram (Fig C·2). For a high-
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quality image with well-separated signal and background the ratio is easily defined.

When imaging deep inside rock, however, the SNR decays to 1, and the actual value

becomes sensitive to the binning of the histogram. In this limit, the contrast becomes

a more useful metric of image quality.

Contrast: The contrast of an image is defined as the standard deviation of the

intensity divided by the mean intensity. A higher contrast typically indicates a

higher quality image: as the standard deviation is measuring the difference between

the signal and background intensities, the contrast is qualitatively similar to the

SNR. As we image deeper into the rock, and the SNR drops to 1, the fluctuation

in intensity occur more to system noise or speckle. In this limit, we can no longer

distinguish the signal and noise peaks, a higher contrast actually implies a lower

quality image, as it implies more pixel-to-pixel noise (such as shot noise) relative to

the signal from the fluorescence.

Enhancement: The enhancement of an optimization is defined as the ratio of the

intensity of the optimized pixel after optimization to before optimization. As the

optimization procedure redirects power into the optimized pixel, a high enhancement

indicates a stronger optimization. As we image deeper into the rock, the maximum

enhancement we can obtain initially increases as we correct for more scattering.

However, as we go deeper into the rock, the number of independent frequency modes

increases, limiting our ability to enhance a spatial point, and the maximum enhance-

ment decays to Emax=1.

Field-of-View: The field-of-view (FOV) of an optimized image is defined as the

maximum diameter of the image where the intensity (of a pixel or bead) is half the

optimized intensity. This represents the part of the image where the optimization

pattern allows for increased image quality (resolution, SNR). As we image deeper

into the rock, the FOV decays to the size of a single speckle grain.
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Appendix D

Derivation of Deconvolution

Approximations

D.1 Derivation of Modulated OTF

We start with an EDOF system that uses a deformable mirror in the pupil plane to

change the focus of the microscope system (Fig. 3·1) over a scan range D, from z=-

D/2 to z=+D/2. For static illumination L0, the intensity on the camera is integrated

along the axial direction to produce a projected intensity as a function of position,

giving an EDOF image I0. If we then modulate the intensity by a linear ramp

L(z) = L0 + mz in sync with the focal position z, we obtain an image Im where

an objects below the focal plane (z<0) is dimmer and objects above the focal plane

(z>0) are brighter, proportional to their axial position. For a single point source

located in the imaging volume, we can obtain the lateral and axial co-ordinates of

the source by taking a static and a modulated image, and combining appropriately:

~x0 =
{

(x0, y0)|I0(x0, y0) = max
[
I0

]}
hz0(~x0) =

Im(~x0)− I0(~x0)
m
L0
I0(~x0)

(D.1)

where ~x0 are the lateral co-ordinates and hz0 is the axial position. m = ∆L
D

is the

change in illumination intensity over the scan range. This allows for 3D localization

of an isolated particle in only two camera frames.
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Equation D.1 provides a good approximation for point sources, but breaks down

for extended objects. In order to correctly extract the axial position of a laterally

extended sample, we derive an explicit form of the Optical Transfer Function (OTF)

for linearly modulated illumination that we can use to deconvolve the images. We

start with the spatial-frequency intensity distribution in a given imaging plane in

terms of the object:

Ĩ(~k⊥, kz) = OTF (~k⊥, kz)Õ(~k⊥, kz) (D.2)

where Õ(~k⊥, kz) is the 3D fourier transform of the object, Ĩ(~k⊥, kz) is the 3D

fourier transform of the image, and OTF (~k⊥, kz) is the 3D optical transfer function

of a diffraction-limited imaging system, given by Frieden (Frieden, 1967). Equation

D.2 can be reformulated to obtain the intensity in a given imaging plane by taking

a Fourier transform with respect to the axial co-ordinate:

Ĩ(~k⊥, z) =

∫∫
ei2πkz(z−z0)OTF (~k⊥, kz)Õ(~k⊥, z0)dkzdz0

=

∫∫
cos[2πkz(z − z0)]OTF (~k⊥, kz)Õ(~k⊥, z0)dkzdz0

=

∫
OTFc(~k⊥, z − z0)Õ(~k⊥, z0)dz0

(D.3)

where the complex exponential reduces to a cosine due to the OTF in Eq. D.3

being symmetric in kz. By modulating the intensity and the imaging plane in-sync

using the deformable mirror, we integrate the intensity along the axial co-ordinate

to obtain:

Ĩm(~k⊥, D) =

D/2∫
−D/2

dz

D
Lm(z)

∫
OTFc(~k⊥, z − z0)Õ(~k⊥, z0)dz0 (D.4)

where D is the full depth-of-field. L(z) is the illumination modulation given by:

L(z) = L0 + mz, where L0 is the illumination intensity in the nominal focal plane
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(z = 0) and m = ∆L
D

is the change in intensity over the scan range. This defines an

effective OTF for a specific imaging plane given by:

OTFD(~k⊥, z0) =

D/2∫
−D/2

dz

D
L(z)OTFc(~k⊥, z − z0) (D.5)

Equation D.5 can be explicitly integrated over z to obtain:

OTFD(~k⊥, z0) =

∫ [
L0sinc[2πkzD]cos[2πkzz0]

+mz0sinc[2πkzD]sinc[2πkzz0]

−mz0cos[2πkzD]sinc[2πkzz0]

]
OTF (~k⊥, kz)dkz

(D.6)

In the limit of small axial displacement (that is, the object is well within the scan

range), we can approximate Eq. D.6 to linear order in z0, reducing it to:

OTFD(~k⊥, z0) = (L0 +mz0)EOTF (~k⊥, D)−mz0OTFc(~k⊥, D/2) (D.7)

Where EOTF (~k⊥, D) is the OTF for a uniformly illuminated focal scan resulting

in an extended depth of field (Shain et al., 2017b), and OTFc(~k⊥, D/2) is the OTF

for an image plane at a depth of D/2 relative to the nominal focal plane. Substituting

Eq. D.7 into Eq. D.4 allows us to isolate the average axial position of the sample:

Ĩm(~k⊥, D)− Ĩ0(~k⊥, D) = m
[
EOTF (~k⊥, D)−OTFc(~k⊥, D/2)

] ∫
z0Õ(~k⊥, z0)dz0

(D.8)

where Ĩ0(~k⊥, D) = L0EOTF (~k⊥, D)
∫
Õ(~k⊥, z0)dz0 is the constant illumination

extended depth-of-field image. Dividing by the OTF terms gives:
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[
Ĩm(~k⊥, D)− Ĩ0(~k⊥, D)

]
m
[
EOTF (~k⊥, D)−OTFc(~k⊥, D/2)

] =

∫
z0Õ(~k⊥, z0)dz0 (D.9)

which we can convert to the full real-space co-ordinates by taking an inverse

Fourier transform:

F−1

[ [
Ĩm(~k⊥, D)− Ĩ0(~k⊥, D)

]
m
[
EOTF (~k⊥, D)−OTFc(~k⊥, D/2)

]] =

∫
z0O(~x0, z0)dz0 (D.10)

Prompting us to define the modulatedMOTF (~k⊥, D) = EOTF (~k⊥, D)−OTFc(~k⊥, D/2).

Similarly, we can obtain the axially-averaged intensity by taking a uniform-illumination

scan:

F−1

[
Ĩ0(~k⊥, D)

L0EOTF (~k⊥, D)

]
=

∫
O(~x0, z0)dz0 (D.11)

For an axially sparse sample, such as a surface, membrane, or isolated particle, the

object function separates into lateral and axial components: O(~x0, z0) = O(~x0)δ(z0−

hz0(~x0)). Inserting this into Equations D.10 and D.11 lets us isolate the height of

the sample as a function of lateral position:

O(~x0) =

∫
O(~x0, z0)dz0

hz0(~x0) =

∫
z0O(~x0, z0)dz0∫
O(~x0, z0)dz0

(D.12)

Which provides a more accurate version of Eq. D.1.
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