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Abstract

Oscillations are ubiquitous features of brain dynamics that undergo task-related changes in

synchrony, power, and frequency. The impact of those changes on target networks is poorly

understood. In this work, we used a biophysically detailed model of prefrontal cortex (PFC)

to explore the effects of varying the spike rate, synchrony, and waveform of strong oscil-

latory inputs on the behavior of cortical networks driven by them. Interacting populations of

excitatory and inhibitory neurons with strong feedback inhibition are inhibition-based net-

work oscillators that exhibit resonance (i.e., larger responses to preferred input frequen-

cies). We quantified network responses in terms of mean firing rates and the population

frequency of network oscillation; and characterized their behavior in terms of the natural

response to asynchronous input and the resonant response to oscillatory inputs. We show

that strong feedback inhibition causes the PFC to generate internal (natural) oscillations

in the beta/gamma frequency range (>15 Hz) and to maximize principal cell spiking in

response to external oscillations at slightly higher frequencies. Importantly, we found that

the fastest oscillation frequency that can be relayed by the network maximizes local inhibi-

tion and is equal to a frequency even higher than that which maximizes the firing rate of

excitatory cells; we call this phenomenon population frequency resonance. This form of res-

onance is shown to determine the optimal driving frequency for suppressing responses to

asynchronous activity. Lastly, we demonstrate that the natural and resonant frequencies

can be tuned by changes in neuronal excitability, the duration of feedback inhibition, and

dynamic properties of the input. Our results predict that PFC networks are tuned for generat-

ing and selectively responding to beta- and gamma-rhythmic signals due to the natural and

resonant properties of inhibition-based oscillators. They also suggest strategies for optimiz-

ing transcranial stimulation and using oscillatory networks in neuromorphic engineering.
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Author summary

The prefrontal cortex (PFC) flexibly encodes task-relevant representations and outputs

biases to mediate higher cognitive functions. The relevant neural ensembles undergo task-

related changes in oscillatory dynamics at beta- and gamma frequencies. Using a compu-

tational model of the PFC network, we show that strong feedback inhibition causes the

PFC to generate internal oscillations and to prefer external oscillations at similar frequen-

cies. The precise frequencies that are generated and preferred can be flexibly tuned by

varying the synchrony and strength of input network activity, the level of background

excitation, and neuromodulation of intrinsic ion currents. We also show that the peak

output frequency in response to external oscillations, which depends on the synchrony

and strength of the input as well as the strong inhibitory feedback, is faster than the inter-

nally generated frequency, and that this difference enables exclusive response to oscil-

latory inputs. These properties enable changes in oscillatory dynamics to govern the

selective processing and gating of task-relevant signals in service of cognitive control.

Introduction

Oscillatory neural activity is a common feature of brain dynamics. In vitro experiments have

demonstrated that different brain regions can produce network oscillations at different fre-

quencies [1, 2]. In vivo experiments have shown that field potential oscillations in prefrontal

cortex (PFC) at beta- (15-35Hz) and gamma-(35-80Hz) frequencies undergo task-related

modulations in their power [3] and synchrony [4] and that multiple frequencies can appear

in the same region [5, 6]. Despite the wealth of experimental evidence suggesting changes in

oscillation frequency and synchrony are functionally significant, little remains known about

the mechanisms by which they affect processing in downstream networks (but see [7]). In this

paper, we will explore the natural, resonant, and competitive dynamics of PFC networks and

how the task-modulated properties of oscillatory signals affect those dynamics.

Neural systems at multiple spatial scales are known to exhibit larger responses to oscillatory

inputs at preferred (resonant) frequencies. For instance, neurons can exhibit resonance in sub-

threshold voltage fluctuations [8, 9], and networks can exhibit resonance in the amplitude of

suprathreshold instantaneous firing rates of self-inhibiting interneurons (INs) [10] and recip-

rocally connected populations of principal cells (PCs) and INs [11]. Given weak inputs, these

systems often exhibit response amplitudes that scale linearly with the input, and they oscillate

with the same frequency as the input. In the linear regime, analytical methods can be applied

to fully characterize network responses [11]. However, the results of such analyses no longer

hold when inputs are strong and responses become strongly nonlinear.

Neural models of fast network oscillations, like those observed in PFC, often involve popu-

lations of cells receiving strong feedback inhibition to synchronize the network and strong

excitatory input to drive the oscillation [6]. Under a constant (possibly noisy) tonic input,

self-inhibiting populations of INs and reciprocally connected PC and IN populations can gen-

erate (natural) gamma-frequency network oscillations, termed ING [1, 12] and PING [12, 13],

respectively. Due to the strong input and oscillatory response to a tonic drive, the earlier work

on network resonance does not extend to these inhibition-based oscillators.

In this article, we present a numerical study of the natural and resonant behavior of an inhi-

bition-based PC/IN network oscillator. In contrast to the linear regime, we will show that the

frequency of the network oscillation equals the input up to a maximal frequency, above which,

it decreases; we call this phenomenon population frequency resonance. We will show that
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different input frequencies maximize inhibition and excitation when inputs are strong and

that the population frequency peaks when inhibition is maximized. The importance of this

phenomenon will be demonstrated by showing that the optimal driving frequency for sup-

pressing responses to asynchronous input is that which maximizes population frequency and

not that which maximizes the firing rate of excitatory PCs. Finally, we will show how network

resonance depends on dynamic, task-modulated properties of the input as well as intrinsic

properties of the resonant network. Our quantitative results identify mechanisms that are

not model specific, as will be shown by analogous simulations in a Hodgkin-Huxley type

model of PFC and a generic integrate-and-fire network model that exhibit qualitatively similar

behavior.

The paper will begin with a characterization of network responses to asynchronous and

oscillatory inputs. Responses will be characterized in terms of firing rate and population fre-

quency, and then the latter will be shown to determine the maximal suppression of asynchro-

nous activity. The dependence of response on experimentally-motivated input parameters will

be described. Finally, the paper will end with a discussion of the functional relevance of these

findings for flexible neural processing.

Results

We explored the impact of modulating task-related signals on cortical processing using an

experimentally-constrained, Hodgkin-Huxley type network model of prefrontal cortex (PFC).

Principal cell (PC) activity in PFC can be interpreted as a bias signal that mediates higher

cognitive functions. The model represents a deep output layer of reciprocally-connected PCs

and fast spiking interneurons (INs) that provide strong feedback inhibition. The network was

driven by collections of independent spike trains modeling upstream activity in populations of

excitatory cells. The input spike trains were either asynchronous with constant rate or medi-

ated by an oscillatory modulation of the rate. Rhythmic activity is considered task-relevant

[14] while the asynchronous activity is task-irrelevant (see Discussion for further consider-

ations). We studied how the network behavior varies with task-related changes in synchrony,

frequency, and strength of periodic inputs, and how that behavior relates to the response

driven by equal-strength, asynchronous activity.

Response of the PC/IN network with spiking input

PC/IN networks generate non-sinusoidal rhythms in response to asynchronous spik-

ing. Disconnected PCs respond to a tonic input of asynchronous spiking (Fig 1A) with asyn-

chronous responses (Fig 1Bi). Similar to PING oscillations driven by a noisy tonic drive [13],

PC/IN networks with increasingly strong feedback inhibition respond to asynchronous spik-

ing with an increasingly periodic modulation of instantaneous firing rate (iFR); the input

strength-dependent frequency of the response to an asynchronous input will be called the nat-

ural frequency of the network, fN, for a given input strength (Fig 1Bii and 1Biii; see Table 1 for

definitions of the symbols used throughout this paper). Notably, the response of the PC/IN

network is pulsatile (Fig 1Biii, iFR trace) because of how quickly INs silence the PC population

and the longer time required for PC-synchronizing inhibition to decay; this results in spike

trains that are more synchronous than would occur in an oscillation with sinusoidal rate-mod-

ulation; this form of spike synchrony in the input will be shown below to have significant con-

sequences for responses in downstream networks. As with all inhibition-based oscillators, the

rhythm period increases with the duration of inhibition ([6], S1 Fig), and the network remains

silent within a cycle as long as the inhibition remains sufficiently strong. Over time, this results
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006357 August 9, 2018 3 / 29

https://doi.org/10.1371/journal.pcbi.1006357


in the PC/IN network outputting periodic volleys of spikes (i.e., pulse packets) separated by

periods of inhibition.

Natural and resonant frequencies are different in strongly-driven PC/IN networks.

Linear oscillators respond to a sinusoidal input with an amplitude that depends on the input

frequency and with a frequency that matches its input frequency. The response of the strongly-

driven PC/IN network deviates from this behavior in several respects, and it is at this point

Fig 1. Strong feedback inhibition produces natural oscillation in PC/IN network. (A) Diagram showing feedforward excitation

from external (independent) Poisson spike inputs to 20 excitatory principal cells (PCs) receiving feedback inhibition from 5

inhibitory interneurons (INs). See Methods for details. (B) Simulations showing the network switching from an asynchronous to

oscillatory state with natural oscillation as the strength of feedback inhibition is increased.

https://doi.org/10.1371/journal.pcbi.1006357.g001

Table 1. Meaning of symbols used in the study of resonance and gating.

Symbol Description

λ(t) Instantaneous input rate of Poisson process (kHz)

rinp Time-averaged Poisson input rate, hλit (kHz)

finp Frequency of Poisson input rate-modulation (Hz)

δinp Pulse width of Poisson input with square wave rate-modulation (ms)

iFR Instantaneous output firing rate averaged over principal cells (sp/s)

�rPC Time-averaged population firing rate of principal cells (sp/s)

�r IN Time-averaged population firing rate of interneurons (sp/s)

fpop Frequency of output population rhythm (Hz); identical for PCs and INs

fN Natural frequency (Hz) (i.e., fpop elicited by asynchronous input)

f PCR �rPC-resonant frequency (Hz) (i.e., input finp maximizing output �rPC)

f INR �r IN-resonant frequency (Hz) (i.e., input finp maximizing output �r IN)

f popR fpop-resonant frequency (Hz) (i.e., input finp maximizing output fpop)

https://doi.org/10.1371/journal.pcbi.1006357.t001
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that a more careful examination of what is meant by input and output of a PC/IN network is

required.

Oscillatory inputs to networks of neurons are often treated as sinusoidal. An important rea-

son for this is that the sinusoidal frequency response of a linear system completely describes

the system and contains all the information needed to derive its response to any signal [11].

However, as we have already shown, inhibition-based PC/IN oscillators are non-sinusoidal,

and we are investigating a nonlinear (i.e., strong input) regime. Therefore, we will use numeri-

cal simulation to investigate the network response to non-sinusoidal inputs, perhaps delivered

from other upstream PC/IN oscillators. As an approximation to the kind of periodic pulse

packets that PC/IN networks generate, we will explore the effects of periodic Poisson signals

with square wave rate-modulation in addition to the more traditional signals with sine wave

rate-modulation.

Outputs from neurons and populations of neurons are usually analyzed in terms of firing

rates because spikes drive neurotransmission and their rates determine integrated effects on

postsynaptic neurons. However, postsynaptic activation of PCs can depend more strongly

on the frequency of input population oscillation than the firing rates of presynaptic neurons

[10, 15, 16]. Thus, to characterize outputs in terms of properties that determine downstream

effects, we analyzed the collective population frequency (i.e., the frequency of output rate-

modulation) in addition to the time- and population-averaged firing rates of PCs and INs

(see Methods for more details on the choice of output measures). The population frequency

differs from the mean PC firing rate when only a fraction of PCs spike per cycle or PCs spike

more than once per cycle on average. If PC/IN networks were like linear oscillators, their fre-

quency would be inherited from the input; however, as we will show in PC/IN networks, the

output frequency has its own peak (i.e., exhibits resonance), and its characterization is equally

important.

Given this understanding of inputs and outputs for PC/IN networks, we next contrasted

the response to an ongoing tonic input of asynchronous spiking with the responses to sinusoi-

dal and high-synchrony, square wave inputs with equal-strength (i.e., equal time-averaged

rate rinp) and frequency finp (Fig 2A), in analogy to the tonic and frequency responses for

linear oscillators described above. We plotted the mean population firing rates, �rPC and �rIN , in

response to square waves (Fig 2Bi) and sine waves (Fig 2C) as measures of output activity for

PC and IN populations, respectively. In the strong input regime, all input frequencies elicited a

response. Rhythmic inputs produced greater PC responses than asynchronous inputs for most

input frequencies (compare the solid �rPC curve to the horizontal dashed line in Fig 2Bi and 2C)

because their more synchronous spike trains enabled a larger fraction of more correlated PCs

to reach threshold before INs were sufficiently engaged to silence the entire population (Fig

2D and 2E).

Given sinusoidal drive, the fraction of PCs that could spike before being inhibited increased

for input frequencies around the natural frequency, fN, relative to input frequencies far from

fN; the fraction peaked at f PCR slightly above fN (Fig 2C, blue curve). Given fixed-mean, high-

synchrony square wave drive, all cells spiked on every cycle up to a peak due to the larger

instantaneous amplitudes that are present at low frequencies for such inputs (see Methods for

a qualitative comparison of �rPC response profiles between weak vs. strong and square vs. sine

wave inputs). For both input waveforms, �rPC peaked at the same f PCR ¼ 24Hz, and the number

of PCs spiking per cycle (i.e., the iFR amplitude) decreased beyond f PCR . f PCR is always� fN in

our model because the correlated spiking of oscillatory inputs produces larger instantaneous

drives than the equal-mean asynchronous input while the strength and duration of feedback

inhibition on each cycle are the same for both oscillatory and asynchronous inputs. Divergence
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Fig 2. Input frequency-dependent output response profiles. (A) Diagram of PFC network receiving sinusoidal or

high-synchrony square wave input. (B) Response to high-synchrony input. (i) Mean firing rate (FR) profile for PC

(blue) and IN (red) populations. Horizontal dashed lines mark the FR response to equal-strength asynchronous input.

The diagonal dashed (1:1) line marks where firing rate equals input frequency. (ii) Population frequency profile for PC

and IN populations. Peak population frequency occurs at the input frequency maximizing IN activity (i.e., feedback

inhibition). Horizontal dashed lines mark the natural frequency in response to asynchronous input. (C) FR profile for

PC (blue) and IN (red) populations in response to sinusoidal input. Dashed lines mark the same features as in (Bi). (D)

Spike rasters and PC iFR responses to oscillatory inputs at the PC and IN firing rate resonant frequencies. (E) Spike

rasters and PC iFR responses to inputs producing network responses paced by internal time constants: (left)

asynchronous input, (right) high-frequency input.

https://doi.org/10.1371/journal.pcbi.1006357.g002
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between natural and resonant frequencies is common in nonlinear [17] and linear systems [8]

that show resonance and intrinsic oscillations, except for the harmonic oscillator where they

are equivalent. This peak in PC population response to rhythmic inputs with frequencies near

fN depends on matching periodic drives with the rate-limiting time constants of the driven

network [18]. The mechanism that determines the precise value of f PCR in the inhibition-based

PC/IN oscillator is not fully understood (see Discussion). Like fN, f PCR decreases with increasing

duration of inhibition (S1 Fig), and the dependence of both on input properties and intrinsic

modulatory currents will be presented in later sections.

In contrast to PC firing rates peaking near the natural frequency, fN, time-averaged IN fir-

ing rates continued to increase until input frequency reached f INR > f PCR (Fig 2Bi, red curve),

where the decreasing number of PCs spiking per cycle became too few to induce IN spiking

on each cycle (see next section for more details). Interestingly, this shows that activity of INs

driven exclusively by PCs can continue increasing with the frequency of a rhythmic drive to

PCs even when PC activity is decreasing, and, consequently, that firing rate resonant frequen-

cies of PC and IN populations can differ. This divergence of f PCR and f INR required (1) strong

input (S1 Fig), (2) a population of PCs with noisy spiking (S2 Fig), (3) PC! IN synapses that

are strong enough for a fraction of PCs to activate INs (S2 Fig), and (4) an IN capable of pro-

ducing higher firing rates than the PC. For instance, if there is only a single PC (or all PCs

spike at the same moment), then the INs can spike only when the PC spikes; thus, the IN spike

rate would necessarily decrease with the PC spike rate, and the two would peak for the same

input frequency. However, if there is a PC population with noisy spiking and strong PC! IN

synapses, then spikes in a subset of the PC population can engage the INs on a given cycle

without requiring all cells in the PC population to spike. In this case, even when the time- and

population-averaged PC firing rate decreases, INs can continue spiking on every cycle of the

input. These qualitative results also hold for leaky integrate-and-fire (LIF) networks (S3 Fig),

and the quantitative results hold in a PFC network with 5 times as many PC cells (S4 Fig).

Response properties for input frequencies below fN and above f INR will be shown to depend on

input synchrony and strength.

Peak oscillation frequency is determined by peak interneuron firing. At the population

level, outputs can be further described by the frequency of population oscillation, fpop (Fig 2Bii);

that is, the modulation frequency of the instantaneous population firing rate, or equivalently,

the inter-pulse frequency of spike packets emitted by the PC/IN network (see Methods for more

details). fpop profiles also exhibited a peak at a particular input frequency, f popR , a phenomenon

we call population frequency resonance. For square and sine wave inputs to the PFC and LIF

networks, the population frequency peaked at f INR (i.e., f popR ¼ f INR ), then approached the natural

frequency as the response became paced by the network’s internal time constants (i.e., fpop! fN
as finp!1) (Fig 2Bii). The peak in output frequency is a manifestation of the breakdown in

1:1 synchronization (i.e., frequency locking) of the nonlinear network oscillator to an external

periodic drive. The population frequency peaked at f INR because the PC population could lock to

the period of the drive only as long as INs were able to synchronously silence the PC population

on each cycle of the input (Fig 2D and 2E). This yields the possibly counterintuitive result for

the inhibition-based PC/IN oscillator that the fastest output oscillation (but not the highest PC

firing rate) occurs at the excitatory input frequency that maximizes feedback inhibition.

Population frequency resonance suppresses response to asynchronous

activity

The difference in natural and resonant frequencies in the PC/IN network has at least one func-

tional consequence that we will introduce here. It will serve as motivation for our further

Flexible resonance in PFC networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006357 August 9, 2018 7 / 29

https://doi.org/10.1371/journal.pcbi.1006357


exploration of the dependence of natural and resonant frequencies on other properties in the

remaining sections below. Consider two parallel pathways driving separate output PC popula-

tions that are reciprocally connected to a shared pool of INs (Fig 3A). One pathway (the target)

delivers a rhythmic signal to one PC population while the opposing pathway (the distractor)

delivers an equal-strength asynchronous signal to the competing PC population.

Without competition, both PC populations would output periodic pulse packets of excit-

atory spikes, the target at the input frequency if finp � f popR and the distractor at the natural fre-

quency fN. The PC population frequency determines how frequently a PC population engages

the IN population. When multiple outputs compete through shared INs, the output population

with the highest frequency oscillation most frequently drives IN cells, tends to phase lock with

them, and suppresses spiking in output populations oscillating more slowly. Any time the tar-

get population oscillates with a frequency faster than the natural frequency (i.e., fpop> fN),

spiking in the distractor population is suppressed (Fig 3B). Importantly, peak suppression of

the distractor population occurs when the target population frequency is maximal and not

when the target PC activity is strongest. This implies that the optimal driving frequency to sup-

press responses to asynchronous distractors is the fpop-resonant frequency (Fig 3B and 3C).

Such a rhythmically-driven output oscillating faster than the natural oscillation will always

drive INs to continuously suppress responses to asynchronous distractors as long as the faster

oscillation in the target remains. Internally-generated, nested oscillations with frequencies

greater than fN would also suppress the response to asynchronous drive but only while present

on the depolarizing phase of the slower driving oscillation. This distractor suppression occurs

because the target population recruits interneuron-mediated lateral inhibition on every cycle

of its oscillatory input with a period shorter than that required for the distractor population to

reach threshold (Fig 3C, see membrane potential plots). Even if the lower-frequency distractor

would otherwise have a higher firing rate than the target, its spike output is never fully realized

when it receives another pulse of strong inhibition before reaching threshold. For this reason,

the outcome of the competition is determined by the frequency of the population oscillation

and not its amplitude. Dynamically, the suppression arises within a cycle as the target begins

to oscillate more quickly than the distractor (S5 Fig). In contrast, there is no suppression of

either pathway when the distractor input is strong enough so that the natural frequency that

it induces equals the population frequency of the target (S6 Fig), despite the distractor PCs

having lower firing rate, or when both PC populations receive asynchronous input (see T1 in

S5 Fig).

Furthermore, the extent to which maximum fpop (i.e., f popR ) exceeds fN determines the range

of input frequencies that can activate targets that suppress competing responses to asynchro-

nous distractors (Fig 3B). Since f popR > fN , there is always an input frequency that can suppress

competing distractors. In this scenario, the expected firing rate difference does not determine

who is suppressive as long as firing rates are sufficient for a PC population pulse to activate the

inhibitory INs. This result provides further justification for considering fpop as an output mea-

sure (in addition to �rPC) because that frequency can determine the outcome of competition.

This example represents a novel, functionally-relevant reason for examining output fpop and

demonstrates the importance of the separation between the natural fN and resonant frequen-

cies (f popR ¼ f INR ) in PC/IN networks with strong feedback inhibition.

Inputs tune the PC/IN network

For the remainder of the work presented here we will examine how the response properties

of the PC/IN network (with one output PC population) depend on flexible parameters of the

input and the slower effects of neuromodulation. It will be shown that the response properties

Flexible resonance in PFC networks
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Fig 3. Frequency-dependent suppression of asynchronous activity. (A) Diagram showing a target PC population,

PCT, driven by medium-synchrony oscillatory input in competition with an asynchronously-driven distractor PC

population, PCD. (B) Dependence of distractor suppression on target input frequency. (i) Time-averaged firing rates

(FRs) of PCT (blue) and PCD (black) populations. As expected, PCT FR peaks at the �rPC-resonant frequency. PCD

responds at the FR expected given asynchronous input (horizontal black line, labeled “natural response”) when target

input frequency is below the natural frequency (vertical black line) or far above f RPC; it is suppressed at intermediate

frequencies. (ii) PCT population (output) frequency versus the input frequency to PCT. As expected, PCT fpop peaks at

the fpop-resonant frequency. Importantly, whenever fpop exceeds the natural frequency (horizontal black line), PCD FR

is suppressed; maximal suppression of PCD occurs when PCT fpop is maximal and not when PCT FR peaks in (i). (C)

Example simulation with continuous suppression of the distractor pathway by a target pathway driven with a fpop-
resonant input. On every cycle, the more rapidly oscillating target population engages the INs before the distractor

reaches threshold.

https://doi.org/10.1371/journal.pcbi.1006357.g003
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of the PC/IN oscillator are not purely intrinsic and can be adaptively shaped by extrinsic influ-

ences. This represents a powerful means by which task-related modulations can influence cor-

tical processing.

Input synchrony increases the separation between natural and peak frequencies. More

synchronous input rhythms (i.e., smaller δinp) delivering more coincident spikes (i.e., larger

instantaneous drives) to each PC cell (Fig 4A) drove larger fractions of the target PC popula-

tion to spike on each cycle before feedback inhibition was recruited to silence it. Consequently,

greater synchrony enhanced output firing rates �rPC for all input frequencies and the strength

of resonant response (Fig 4Bi) without affecting the resonant input frequency f PCR maximizing

PC firing rates (Fig 4Bi and 4C). In contrast, f INR increased with input synchrony because �rPC
remained sufficiently large to engage interneurons for greater finp; and, since f popR ¼ f INR , peak

population frequency also increased (Fig 4C); this increase in separation between natural and

peak frequencies with synchrony implies that a wider range of input frequencies can be exclu-

sively selected (i.e., suppress responses to asynchronous activity) when they are more synchro-

nous. In summary, output networks are able to achieve faster network oscillations, produce

greater projection neuron output, and recruit more local inhibition when target signal inputs

are more synchronous.

Input synchrony-dependent responses below the natural frequency and above the peak

frequency. We discovered a number of noteworthy behaviors of the PC/IN network that

depend on input synchrony at driving frequencies above and below the natural and resonant

frequencies. When inputs have low synchrony, they can deliver a suprathreshold input to PCs

that lasts longer than the duration of feedback inhibition, resulting in PC oscillations nested

within each cycle of the input (Fig 4D). This represents a mechanism for generating nested

oscillations through an interaction between a slow external driving rhythm (with low spike

synchrony) and an internally generated, inhibition-based natural rhythm. These nested oscilla-

tions can produce second population frequencies that have more power than the input fre-

quency (see the bump for low frequency sine wave inputs in Fig 4C and corresponding power

spectra in S7 Fig) and mean rates that exceed the input frequency when PCs spike more than

once per input cycle (see bumps at low frequencies in Fig 4B).

In contrast, PCs spike at most once per cycle when inputs are highly synchronous. Addi-

tionally, it is known that there is greater postsynaptic EPSP summation of more synchronous

spikes. For highly synchronous inputs, this causes all PCs to spike on every cycle when there

are enough input spikes driving them. Given square-wave inputs with a fixed number of total

spikes (built-in to the study to achieve equal-strength rhythmic and asynchronous inputs), the

number of spikes delivered per cycle decreases as frequency increases. This decrease in pulse

strength with increasing frequency restricts the range of input frequencies that engage all PCs

on every cycle. The dependencies of input pulse strength on synchrony and frequency cause

the mean output rate to increase with input frequencies well below fN to an extent that scales

with input synchrony (Fig 4B, compare low and high synchrony). Finally, well above the natu-

ral frequency, the �rPC profile exhibited smaller peaks at harmonics of the resonant frequency in

response to highly synchronous inputs (Fig 4E).

Stronger inputs increase natural and resonant frequencies. Stronger inputs (i.e.,

higher time-averaged rate rinp) (Fig 5A), delivering larger mean drives to each PC cell,

increased the mean output firing rate (Fig 5Bi), natural and peak population frequencies

(Fig 5Bii), and firing rate resonant frequencies (Fig 5C). The dependence of fN on rinp
implies the natural response is a variable-frequency network oscillation controlled by the

strength of input (see Discussion for functional implications). f PCR equaled fN for weak

inputs and increasingly exceeded it for inputs with increasing strength; in contrast, f INR and
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Fig 4. Dependence of response profiles on input synchrony. (A) Diagram of PFC network receiving variable-

synchrony square wave or sinusoidal inputs. (Bi) Firing rate profile for PC populations given oscillatory inputs with

different degrees of synchrony. (Bii) Population frequency profile for inputs with different degrees of synchrony.

Horizontal dashed line marks the natural frequencies for each degree of synchrony. (C) The effect of input synchrony

on resonant frequencies. Maximum population frequency (at the IN firing rate res. freq.) increases with input

synchrony. (D) Spike rasters and PC iFR responses showing the nesting of natural oscillations generated by a local

network on the depolarizing phase of a lower-frequency external driving oscillation with sine wave (left) or square

wave (right) rate-modulation. (E) Spike rasters and PC iFR responses showing that weaker firing rate resonance at the

first harmonic (i.e., smaller bump at finp = 44Hz in Bi, blue curve) occurs for high synchrony (left) but not low

synchrony (right) oscillatory inputs.

https://doi.org/10.1371/journal.pcbi.1006357.g004
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Fig 5. Dependence of response profiles on input strength. (A) Diagram of PFC network receiving variable-strength

high-synchrony square wave input. (Bi) Firing rate profile for PC populations given oscillatory inputs with different

strengths. (Bii) Population frequency profile for inputs with different strengths. Horizontal dashed lines mark the

natural frequencies for each drive strength. (C) The effect of input strength on natural and resonant frequencies. (D)

Spike rasters and PC iFR responses showing the typical case of stronger input driving more output: (left) weaker input,

less output, (right) stronger input, more output. (E) Spike rasters and PC iFR responses showing special case of

resonance at first harmonic enabling a weaker input to drive more output: (left) weaker input, more output, (right)

stronger input, less output.

https://doi.org/10.1371/journal.pcbi.1006357.g005
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f popR exceeded fN for all input strengths that were strong enough to produce a natural oscilla-

tion (Fig 5C). Finally, f INR and f PCR converged when the input was too weak to produce a natu-

ral oscillation and the network entered a band-pass regime (S1 Fig). The fact that the peak

frequency always exceeds the natural frequency at drives where a natural oscillation is pres-

ent implies that there is always an input frequency that enables suppression of responses to

asynchronous activity.

Neuromodulation of the PC/IN network. We have shown in previous sections that the

control PC/IN network based on rat medial prefrontal cortex exhibits beta-range natural (Fig

1) and resonant (Fig 2) frequencies. Next, we simulated knockout experiments to explore how

modulating the conductance of non-spiking currents would affect the network response (Fig

6). Removing hyperpolarizing currents (IKs, IKCa) increased the �rPC-resonant frequency, while

removing depolarizing currents (INaP) decreased the resonant frequency or (ICa) silenced PCs

altogether (Fig 6C). The weak effect of removing the hyperpolarizing currents could be ampli-

fied by increasing their conductance. As long as PCs remained in a spiking regime, removing

modulatory currents did not qualitatively alter the response profile in most cases. The one

exception was that removing IKCa resulted in a flatter profile near the peak; then across realiza-

tions, this caused resonant peaks to occur at neighboring input frequencies and produced a

Fig 6. Neuromodulation of firing rate resonance in PC/IN network. (A) Diagram showing an external sinusoidal

Poisson input to the dendrites of 20 two-compartment principal cells (PCs) receiving feedback inhibition from a

population of 5 fast spiking interneurons (INs). PC and IN models include conductances found in prefrontal neurons

(see Fig 7A for details). (B) Input frequency-dependent firing rate profile showing resonance at a beta2 frequency. (C)

The effect of knocking out individual ion currents on the resonant input frequency maximizing firing rate outputs.

Removing hyperpolarizing currents (-Ks, -KCa) increased the resonant frequency, while removing depolarizing

currents (-NaP) decreased the resonant frequency or (-Ca) silenced the cell altogether (see Fig 7A for ion channel key).

Error bars indicate mean ± standard deviation across 10 realizations; only -KCa had a non-zero standard deviation

(i.e., values that differed across realizations). (D) The effect of hyperpolarizing and depolarizing injected currents, Iapp,

on the resonant frequency mirrored the effect of knockouts on excitability.

https://doi.org/10.1371/journal.pcbi.1006357.g006
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non-zero standard deviation on the f PCR bar plot. A parsimonious explanation of these effects

is that the shift in resonant frequency resulted from the shift in excitability caused by the non-

spiking currents. Consistent with this hypothesis, similar shifts were achieved with the addi-

tion of tonic inputs that similarly shift baseline excitability (Fig 6D). Thus, neuromodulation

of non-spiking currents and baseline excitability can tune the response profiles of PC/IN

networks.

Discussion

In this work, we characterized the prefrontal PC/IN network response to strong oscillatory

inputs in terms of biologically-relevant input and output properties. The PC/IN network with

strong feedback inhibition exhibited resonance in the spiking of PC and IN populations as

well as the output population frequency of the network. We have shown that a separation of

preferred frequency for output spiking (the frequency maximizing PC activity) and the maxi-

mal frequency that can be relayed by the network is enabled by the combination of (1) strong

excitatory input that generates a response to all input frequencies, (2) strong feedback inhibi-

tion: the ability of fast spiking INs to synchronously silence the PC population, and (3) noisy

spiking in a population of PCs for which an active subset are able to activate INs. The peak

output frequency of the inhibition-based network oscillator was determined by the input fre-

quency maximizing local inhibition from the INs and always exceeded the natural frequency

induced by equal-strength asynchronous activity. This population frequency resonance was

shown to determine the optimal driving frequency for suppressing responses to asynchronous

input. Finally, we showed that the resonant properties of PC/IN networks can be flexibly tuned

by task-modulated signal properties (synchrony and strength) to dynamically shape ongoing

neural processing.

Functional implications

Boosting: Amplifying signals with preferred frequencies. Firing rate resonance (i.e., �rPC-res-

onance) in neuronal networks can be used to amplify population signals embedded in a reso-

nant oscillation. Such amplification has been shown to promote the propagation of signals

across weakly connected brain areas [19] and to support the transmission of time-varying, rate-

coded signals when signal fluctuations are slow relative to the resonant frequency [10]. The

smaller �rPC-resonances we observed at higher harmonics could enable synchronous signals car-

ried at higher frequencies to benefit from the same effects.

High beta-frequency (20-35Hz) oscillations have been observed in prefrontal cortex (PFC)

in numerous studies [4, 14, 20]. Here, we have shown that a PC/IN network constrained by

prefrontal data exhibits �rPC-resonance in the same range for a wide variety of inputs (i.e., oscil-

latory inputs with firing rates and synchrony levels spanning those observed experimentally in

the same region). This beta resonance suggests that PFC networks are tuned for processing sig-

nals embedded in beta rhythms. Furthermore, we have shown that the natural response of the

prefrontal network driven by asynchronous spiking is to generate beta-frequency oscillations.

This could explain why beta rhythms are frequently associated with top-down cognitive con-

trol of attention [21, 22] and decision making [23, 24].

Transcranial stimulation is often used to enhance neural oscillations [25, 26]. [27] showed

that transcranial alternating current stimulation (tACS) with sawtooth waves is more effective

at enhancing alpha-frequency oscillations than tACS with sinusoidal waves; whether tACS

predominantly excites interneurons or principal cells depends on the intensity of stimulation

[28]. Our work suggests that, given an excitatory intensity, tACS stimulation with square

waves (i.e., periodic pulses) could be even more effective at enhancing neural oscillations.
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Furthermore, the relationship between natural and resonant frequencies suggests an experi-

mental protocol for maximally activating a region using a fixed excitatory intensity: first, apply

a continuous pulse of direct current stimulation (tDCS) while recording EEG to identify the

natural frequency of a target region; then, use equal-intensity tACS at the same or slightly

higher frequency. This approach would enable maximal activation of a region near its pre-

ferred frequency following a single direct current stimulation. It also provides more specific

activation of target regions with corresponding resonant properties. The protocol could be

validated experimentally by comparing the tDCS response to a set of tACS responses with dif-

ferent stimulation frequencies. The natural frequency could be computed as the beta/gamma

frequency (i.e., potential frequencies for inhibition-paced network oscillators) with peak EEG

power following tDCS, while the resonant frequency is the tACS stimulation frequency maxi-

mizing EEG power around the stimulation frequency. The same protocol could be performed

using transcranial magnetic stimulation (TMS) and rhythmic TMS.

Gating: Selecting outputs based on preferred frequencies. We have also shown that, while

peak PC firing determines maximum spike output in a network with one PC population, it is

population frequency that determines whether responses to asynchronous activity will be sup-

pressed in PC populations competing through IN-mediated lateral inhibition. This enables

exclusive response to oscillatory inputs, demonstrated in this work with one PC population

driven by an fpop-maximizing oscillatory input and the other by an asynchronous input (Fig 3).

It is the output population oscillating faster in response to external oscillations that dominates

control of the interneuron population from cycle to cycle and which effectively suppresses the

opposing response to asynchronous drive.

Asynchronous activity does not necessarily reflect background noise [29]; whether it is sig-

nal or noise, our work suggests resonant oscillatory activity may be given priority over it. PFC

models of working memory (WM) often include item representations maintained in asyn-

chronous, persistent activity [30, 31], and a similar encoding state has been implemented in

neuromorphic hardware [32]. However, working memory items have also been found to be

phase-locked to high-frequency beta rhythms [14], and spiking models of WM items in oscil-

latory states have been developed [31, 33, 34]. We hypothesize that WM representations, main-

tained in superficial layers of PFC [35], can encode items in both asynchronous and oscillatory

states, and that the latter are given priority due to the resonant properties of the deep output

layer that we investigated in this work. As we have shown, a deep layer PC population driven

by a fpop-resonant oscillatory item in a superficial WM buffer would suppress the response in

PC populations driven by items in an asynchronous state.

In the PC/IN network, increasing feedforward inhibition decreases the PC response to

asynchronous and oscillatory inputs. For sufficiently strong feedforward inhibition, the PC/IN

network is transformed into a bandpass filter that responds exclusively to sinusoidal inputs

with a frequency near the �rPC-resonant frequency of the network (see Methods for a compari-

son of filter properties given sine vs. square wave inputs); in this case, asynchronous inputs

have no effect on the PC population. [10] used an IN network with firing rate resonance and

sinusoidal input to deliver bandpass-creating feedforward inhibition to a PC population; in

their case, the bandpass PC response depended further on a phase lag between the excitatory

input and feedforward inhibition at the �rIN-resonant frequency. With this setup, they show

how bandpass filters can be used to de-multiplex target signals from a mixture of converging

inputs. The prefrontal PC/IN network could similarly de-multiplex signals given bandpass-

creating feedforward inhibition and sinusoidal input.

Modulation: Tuning the output and preferred input frequencies. [36] showed that the

resonant frequency can be tuned by changing the connection weights among excitatory

and inhibitory populations (i.e., “rewiring the network topology”). Here, we show that the
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resonant and natural frequencies of similar networks can be tuned dynamically by changing

the strength of an oscillatory input or the baseline excitation in the output PC population. The

latter can be tuned through neuromodulation (Fig 6C) (e.g., modulation of potassium currents

in PFC by dopamine [37] and acetylcholine [38]) or external applied currents (Fig 6D) repre-

senting modulatory signals with asynchronous spiking.

One consequence of the dependence of the natural output frequency on input firing rate

(Fig 5C) is that PC/IN networks with strong feedback inhibition can operate as variable-fre-

quency oscillators. If a PC/IN network outputs to a bank of band-pass filter networks with dif-

ferent center frequences, this could enable input rate-based control of which filter network is

activated. In this scenario, a PC/IN network driven by asynchronous spiking would effectively

perform a firing rate-to-oscillation frequency conversion that could be used to route signals

to select elements of a downstream filter bank. The fact that the output frequency depends on

the time constant of feedback inhibition means that correspondence between output and cen-

ter frequencies could be facilitated by matching interneuron types in the converter and filter

networks. Furthermore, the variable-frequency response could potentially serve encoding of

slowly-varying asynchronous signals using pulse-frequency modulation [39] or participation

in a phase-locked loop. Such systems would need to account for, or be invariant to, the concur-

rent amplitude modulation of the PC/IN network. The fact that the output rhythms are sparse

(i.e., only a fraction of PCs spike on every cycle) makes the signal energy efficient and poten-

tially suitable for use in neuromorphic engineering [40, 41].

Together, these results demonstrate flexibility of neural processing provided by extrinsic

tuning of PC/IN oscillator properties.

Relation to other work

Resonance phenomena have been studied in neural systems at multiple scales. Peaks in the sin-

gle neuron membrane potential response to subthreshold oscillatory inputs have been studied

in terms of the interplay between intrinsic ion currents [9]; their ability to influence spiking

has been demonstrated in single neurons [42]; and relationships between subthreshold reso-

nance and the natural network frequency of electrically coupled excitatory cells have been

shown [43]. Our PC model, in isolation, exhibits subthreshold resonance at delta frequencies

(2Hz) (S1A Fig) that translates into an input strength-independent spiking resonance at the

same frequency for suprathreshold inputs (S1B and S1C Fig). The addition of strong feedback

inhibition suppresses the spiking response to delta-frequency inputs while a higher-frequency,

input strength-dependent spiking resonance emerges in response to strong inputs (S1D Fig).

We have explored this higher-frequency resonance in this work and shown how it depends

on the strength of input (S1Ei and S1Eii Fig) and the time constant of feedback inhibition

(S1Eiii Fig).

The mechanism that determines the precise value of f PCR in the inhibition-based PC/IN

oscillator is not fully understood. Insight into the locking of an inhibition-based IN network

oscillator to periodic drive with heterogeneous phases has been obtained using a timing map

[18]; a similar analysis might provide insight in the present case of a PC/IN network locking

preferentially to a particular periodic drive with heterogeneous spike times but is beyond the

scope of this work. The work in [18] and our results suggest the value of f PCR is related to the

number of PC spikes that are necessary to engage INs on a given cycle. Changing the network

size while keeping the synaptic strengths constant did not affect f PCR (compare Fig 2Bi to S4

Fig). This is in contrast to work showing that resonant frequency in a network model of Wil-

son-Cowan oscillators depended strongly on network size [44]. Further work is needed to

understand the differences between resonances in spiking versus activity-based networks.
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[11] showed that strong feedback inhibition is required for firing rate resonance in inte-

grate-and-fire networks of excitatory and inhibitory cells driven by sinusoidal inputs; they also

showed that stronger inputs increase resonant frequencies. We have reproduced these qualita-

tive findings in a more detailed network model and extended the results by showing how

firing rate resonance relates to the natural and peak oscillation frequencies in the strong-input

regime, and how they all depend on other properties of the oscillatory input (i.e., waveform

and spike synchrony). Compared to the integrate-and-fire networks (S3 Fig), the prefrontal

network exhibited lower natural and resonant frequencies. [45] showed that heterogeneity of

PC intrinsic properties in a PC/IN network produces a range of resonant frequencies that sup-

ports combining, instead of selecting, inputs. In contrast, our PC population is homogeneous,

and the network produces more selective responses favoring outputs with fpop-resonant inputs.

See Methods for a comparison of output measures used in this and other studies of spiking res-

onance. [46] investigated the response of an inhibition-paced IN population to physiologi-

cally-relevant periodic pulse inputs, but their work did not include PC cells or examine

resonance.

Limitations and future directions

The model investigated in this work made the following simplifications: no NMDA synapses,

usage of all-to-all connectivity between PCs and INs, no PC-to-PC or IN-to-IN connectivity,

and the lack of noise driving INs. Preliminary simulations demonstrated that probabilistic

connectivity, weak noise, and weak NMDA synapses did not disrupt the results. For strong

noise to INs, additional IN-to-IN feedback inhibition is necessary to synchronize the IN

population. Furthermore, IN-to-IN and PC-to-PC connectivity have been shown to modulate

resonant frequencies [36]. We suspect the main requirement for our results to hold is that

the network is in a regime that produces a natural oscillation in response to an asynchronous

input to the PCs (i.e., external noise to INs must be weak enough, feedback inhibition strong

enough, and PC-to-IN drives strong and fast enough for a fraction of spiking PC cells to con-

trol IN activity from cycle to cycle).

Another important limitation of the present work pertains to the role of modulatory

intrinsic currents. We have focused on regimes where PCs are roughly regular spiking and

INs are fast spiking. More work is needed to understand how the dynamics reported here

would be affected by PCs that are intrinsically bursting (as observed in deep layers of cortex

and thalamus) and INs exhibiting low-threshold spiking. Furthermore, our account of the

effects of knocking out modulatory currents is limited to effects on overall activity levels

across the PC population. In contrast, work by [47] shows that modulatory currents can

impact the cycle-to-cycle probability of individual cells participating in the population

rhythm.

Conclusions

The work reported here has introduced a distinction between time-averaged firing rate reso-

nance in excitatory PCs and inhibitory INs that arises when inputs are strong. We have also

introduced a new form of network resonance observed in strongly-driven inhibition-based

PC/IN oscillators, called population frequency resonance that depends on firing rate reso-

nance in INs; and demonstrated its importance for suppressing responses to asynchronous

activity. These results have also made a significant contribution to understanding how

PC/IN networks with strong feedback inhibition are affected by task-modulated changes in

oscillatory inputs, in general, and why beta rhythms are so frequently associated with pre-

frontal activity.
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Materials and methods

Network models

The network model represents a cortical output layer with 20 excitatory principal cells (PCs)

connected reciprocally to 5 inhibitory interneurons (INs). Hodgkin-Huxley (HH) type PC and

IN models were taken from a computational representation of a deep layer PFC network con-

sisting of two-compartment PCs (soma and dendrite) with ion channels producing INaF, IKDR,

INaP, IKs, ICa, and IKCa currents (μA/cm2) and fast spiking INs with channels producing INaF
and IKDR currents [48] (Fig 7A; see figure caption for channel definitions). IN cells had spike-

generating INaF and IKDR currents with more hyperpolarized kinetics and faster sodium inacti-

vation than PC cells, resulting in a more excitable interneuron with fast spiking behavior [48].

In the control case, PC and IN cell models were identical to those in the original published

work [48] while network connectivity was adjusted to produce natural oscillations (not in

[48]), as described below, and the number of cells in the network was decreased to enable

exploration of larger regions of parameter space while remaining large enough to capture the

dynamics of interest for this study; however, the same resonant frequencies were obtained in

simulations using the original network size (S4 Fig). Knockout experiments were simulated by

removing intrinsic currents one at a time from the PC cell model. All cells were modeled using

a conductance-based framework with passive and active electrical properties of the soma and

dendrite constrained by experimental considerations [49]. Membrane potential V (mV) was

governed by:

Cm
dV
dt
¼ � Iinpðt;VÞ �

X
Iint �

X
Isyn ð1Þ

where t is time (ms), Cm = 1 μF/cm2 is the membrane capacitance, Iint denotes the intrinsic

membrane currents (μA/cm2) listed above, Iinp(t, V) is an excitatory current (μA/cm2) reflect-

ing inputs from external sources described below, and Isyn denotes synaptic currents (μA/cm2)

driven by PC and IN cells in the network. We chose to explore the prefrontal model as part

of a larger project on prefrontal oscillations. We confirmed the generality of our qualitative

results using a leaky integrate-and-fire (LIF) model; see the caption of S3 Fig. for details on the

LIF model. We explored single cell and minimal network versions of our HH type model to

Fig 7. Architecture of output networks. (A) Diagram showing feedforward excitation from external independent Poisson spike

trains to the dendrites of 20 two-compartment (soma, dend) principal cells (PCs) receiving feedback inhibition from a population

of 5 fast spiking interneurons (INs). All PC and IN cells have biophysics based on rat prelimbic cortex (Ion channel key:

NaF = fast sodium channel; KDR = fast delayed rectifier potassium channel; NaP = persistent sodium channel; Ks = slow (M-

type) potassium channel; Ca = high-threshold calcium channel; KCa = calcium-dependent potassium channel). (B) Diagram

showing a rhythmically-driven target population of PC cells (PCT) competing with an asynchronously-driven distractor

population (PCD) through a shared population of inhibitory IN cells.

https://doi.org/10.1371/journal.pcbi.1006357.g007
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investigate potential relationships between single cell and network resonances; details on these

simulations can be found in the caption of S1 Fig.

The output layer had either one or two populations of PC cells with each output population

receiving either one or two input signals. Input frequency-dependent response profiles were

characterized using a network with one input and one output (Fig 7A). Competition between

the outputs of parallel pathways was investigated using a network with two homogeneous out-

put populations receiving one input each while interacting through a shared population of

inhibitory cells (Fig 7B).

Network connectivity

PC cells provided excitation to all IN cells, mediated by α-amino-3-hydroxy-5-methyl-4-isoxa-

zolepropionic acid (AMPA) currents. IN cells in turn provided strong feedback inhibition

mediated by γ-aminobutyric acid (GABAA) currents to all PC cells. This combination of fast

excitation and strong feedback inhibition is known to generate robust network oscillations in

response to tonic drive [12, 13]. AMPA currents were modelled by:

IAMPA ¼ gAMPAsðV � EAMPAÞ ð2Þ

where V is the postsynaptic membrane voltage, gAMPA is the maximal synaptic conductance, s
is a synaptic gating variable, and EAMPA = 0 mV is the synaptic reversal potential. Synaptic gat-

ing was modeled using a first-order kinetics scheme:

ds
dt
¼ HðVpreÞ

1 � s
tr
�

s
td

ð3Þ

where Vpre is the presynaptic membrane voltage, τr = 0.4 ms and τd = 2 ms are time constants

for neurotransmitter release and decay, respectively, and H(V) = 1 + tanh(V/4) is a sigmoidal

approximation to the Heaviside step function. GABAA currents are modeled in the same way

with EGABA = −75 mV and τd = 5 ms. Maximum synaptic conductances for PC cells were (in

mS/cm2): GABAA (.1); for IN cells: AMPA (1).

External inputs

Each PC cell received independent Poisson spike trains (Fig 8) with time-varying instanta-

neous rate λ(t) (sp/s) and time-averaged rate rinp = hλi; spikes were integrated in a synaptic

gate sinp with exponential AMPAergic decay contributing to an excitatory synaptic current

Iinp = ginp sinp(V − EAMPA) with maximal conductance ginp (mS/cm2). Input signals were mod-

eled by collections of spike trains with the same instantaneous rate-modulation. A given input

signal to a PC output population can be interpreted as conveying rate-coded information from

a source population in a particular dynamical state.

Signals from sources in different dynamical states were generated by modulating instanta-

neous rates λ(t) according to the activity patterns exhibited by populations in those states. Sig-

nals from source populations in an asynchronous state were modeled by Poisson spike trains

with constant rate λ(t) = rinp (Fig 8A) whereas signals from sources in an oscillatory state were

modeled using periodically-modulated instantaneous rates (Fig 8B). Signals with sine wave

modulation had λ(t) = rinp(1 + sin(2πfinpt))/2 parameterized by rinp (sp/s) and rate modulation

frequency finp (Hz). Sinusoidal modulation causes spike synchrony (the interval over which

spikes are spread within each cycle) to covary with frequency as the same number of spikes

become spread over a larger period as frequency decreases. Thus, we also investigated oscillatory

inputs with square wave modulation in order to differentiate the effects of synchrony and fre-

quency while maintaining the ability to compare our results with other work. Square wave rate-
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modulation results in periodic trains of spikes with fixed synchrony (pulse packets) parameter-

ized by rinp (sp/s), inter-pulse frequency finp (Hz), and pulse width δinp (ms). δinp reflects the

synchrony of spikes in the source population with smaller values implying greater synchrony;

decreasing δinp corresponds to decreasing the duty cycle of the square wave. For the square wave

input, we chose to hold constant rinp so that across frequencies the only significant change is in

the patterning of spikes and not the total number of spikes; this results in larger pulses being

delivered to postsynaptic PCs at lower frequencies as would be expected if lower frequencies are

produced by larger networks [50]. If the number of spikes per cycle was fixed, instead, as would

be the case for a given input population with iFR fluctuating more rapidly and all cells spiking

on every cycle, then the mean strength of the input would increase with frequency, and its effect

on resonance would no longer be comparable to a sinusoidal input with increasing frequency.

The consequence of holding the number of spikes per cycle fixed for a square wave input is dis-

cussed further below and related to the results for fixed-mean square waves in S8 Fig.

Fig 8. Input network activity. (A) Asynchronous Poisson input with (i) constant instantaneous rate rinp and (ii) raster for 100 input cells with

rinp = 10 sp/s (equivalent to 1 input cell with rinp = 1000 sp/s). (B) Poisson inputs with oscillatory instantaneous rate-modulation. (i)

Instantaneous rate modulated by low synchrony square wave, parameterized by pulse width δinp and inter-pulse frequency finp. (ii) raster plot

produced by square wave input. (iii) High synchrony, square wave rate-modulation. (iv) sine wave modulation, parameterized by frequency finp.
(C) Output measures for the PC/IN network. (i) Diagram of a PC/IN network receiving an input from (B). (ii) Plots showing the instantaneous

firing rate (iFR) computed for each population using Gaussian kernel regression on the spike raster. Time-averaged firing rates are defined by

the mean iFR for each population. (iii) Power spectrum showing how population frequency is defined by the spectral frequency with peak power

in the iFR.

https://doi.org/10.1371/journal.pcbi.1006357.g008
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All principal cells in the output layer received additional asynchronous inputs representing

uncorrelated background activity from 100 cells in other brain areas spiking at 1 sp/s. Notably

feedforward inhibition was excluded from the present work so that asynchronous inputs were

maximally effective at driving PC cells. The effects of adding feedforward inhibition and con-

ditions under which each case holds are considered in the Discussion. Control values for input

parameters were rinp = 1000 sp/s (corresponding to a source population with 1000 projection

neurons spiking at 1 sp/s); δinp = 1 ms (high synchrony), 10 ms (medium synchrony), or 19 ms

(low synchrony), and ginp = .0015 mS/cm2. High synchrony inputs are similar to strong, peri-

odic spikes while medium and low synchrony inputs distribute spikes uniformly over intervals

comparable to sine waves at 100 Hz and 53 Hz, respectively.

In simulations probing resonant properties, the input modulation frequency finp was varied

from 1 Hz to 50 Hz (in 1 Hz steps) across simulations. In simulations exploring output gating

among parallel pathways, input signals had the same mean strength (i.e., rinp); this ensures that

any difference between the ability of inputs to drive their targets resulted from differences in

the dynamical states of the source populations and not differences in their activity levels.

Data analysis

For each simulation, instantaneous output firing rates, iFR, were computed withGaussian ker-

nel regression on population spike times using a kernel with 6 ms width for visualization and 2

ms for calculating the power spectrum. Mean population firing rates, �rPC and �rIN , were com-

puted by averaging iFR over time for PC and IN populations, respectively; they index overall

activity levels by the average firing rate of the average cell in the population (Fig 8Ci and 8Cii).

The frequency of an output population oscillation, fpop, is the dominant frequency of the iFR

oscillation and was identified as the spectral frequency with peak power in Welch’s spectrum

of the iFR (Fig 8Ciii, S7 Fig). As defined, fpop usually reflects the rhythmicity of internal spik-

ing; however, when nested oscillations are present at low frequencies, fpop may reflect either

internal or external rhythm frequencies (see Fig 4D for a raster plot and PC iFR, Fig 4B for a

fpop response profile, and S7 Fig. for an iFR power spectrum with nested oscillations). This

ambiguity does not interfere with our study of resonance at higher frequencies where the

signal has a single dominant frequency; however, a disambiguating measure of population fre-

quency would be necessary to study regimes in which multiple frequencies are strongly present

(e.g., strong, low-frequency, low-synchrony periodic inputs). The natural frequency fN of the

output network was identified as the population frequency fpop produced in response to an

asynchronous input.

Our measure of spiking activity in the strongly-driven network differs from measures used

in work on resonance in weakly-driven networks [10, 11, 42]. In the weakly-driven (i.e., linear)

regime, the iFR amplitude scales linearly with the input and can serve as a measure for detect-

ing resonance. However, in the strongly-driven regime that we explore, iFR may scale nonli-

nearly with the input; in the case of high-synchrony inputs, iFR amplitude saturates below

the resonant frequency (i.e., all cells spike once on every cycle), and it has a more complicated

profile and scaling with input strength in other cases. [51] has explored spiking resonance in a

strongly-driven single cell and defined a measure called spike frequency that is roughly equiva-

lent to the time-averaged firing rate. We have chosen to use a similar measure, the time-aver-

aged iFR, �r�, to capture overall increases or decreases in the amount of spiking produced in the

strongly-driven network.

Qualitatively, �rPC profiles differ for the PFC PC/IN network with strong feedback inhibition

depending on the waveform of the periodic input (Fig 9). Weak sinusoidal inputs produce

band-pass responses like those observed in [10, 11] (Fig 9Ai; S1D and S1Ei Fig, blue curve).
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Increasing the strength of those inputs produces an all-pass regime in which inputs at all fre-

quencies elicit a response, although a resonant peak remains (Fig 9Aii; S1D and S1Ei Fig, black

curve). In contrast, a weak square wave with mean input held constant across frequencies pro-

duces a low-pass response due to the larger input pulses at low frequencies (Fig 9Bi). However,

the curve still exhibits a peak that occurs at the same input frequency as for the sine wave given

equal-strength input. Finally, a weak square wave with pulse amplitude held constant produces

a high-pass response due to the increasing input strength that occurs with an increasing num-

ber of pulses (Fig 9Ci). Increasing the strength of square wave inputs also moves the network

into an all-pass regime (Fig 9Bii and 9Cii), but only the fixed-mean square wave exhibits a res-

onant peak (Fig 9Bii). In this work, we focus on the sine and square wave cases where mean

input strength is held fixed and resonance is well-defined in physiologically-relevant frequency

ranges.

Across simulations varying input frequencies, statistics were plotted as the mean ± standard

deviation calculated across 10 realizations. Input frequency-dependent plots of mean firing

rates and population frequencies will be called response profiles. The time-averaged firing rate

resonant frequencies, f PCR and f INR , are the input frequencies at which global maxima occurred

in the �rPC and �rIN firing rate profiles, respectively. Similarly, the resonant input frequency, f popR ,

maximizing output oscillation frequency was found from peaks in fpop population frequency

profiles, excluding the peaks that are due to nested oscillations in response to strong, low-fre-

quency, low-synchrony periodic drives.

Fig 9. Cartoon profiles of time- and population-averaged PC firing rates in response to different types of oscillatory

inputs. (A) Response to sinusoidal drive. (i) Weak input produces a band-pass filter (BPF) response with spikes driven by

near-resonant frequencies and only a fraction of cells spiking on every cycle. (ii) Strong input produces an all-pass response

with a resonant peak. B) Response to fixed-mean square wave drive. (i) Weak input produces a low-pass filter (LPF)

response with spikes driven by all frequencies below a resonant peak and all cells spiking on every cycle. (C) Response to

fixed-amplitude square wave drive. (i) Weak input produces a high-pass filter (HPF) response. (ii) Strong input produces an

all-pass response without a well-defined resonant peak.

https://doi.org/10.1371/journal.pcbi.1006357.g009
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Simulation tools

All models were implemented in Matlab using the DynaSim toolbox [52] (http://

dynasimtoolbox.org) and are publicly available online at: http://github.com/jsherfey/PFC_

models. Numerical integration was performed using a 4th-order Runge-Kutta method

with a fixed time step of 0.01 ms. Simulations were run for 2500ms and repeated 10 times.

The network was allowed to settle to steady-state before external signals were delivered

at 400 ms. Plots of instantaneous responses begin at signal onset. The first 500 ms of

response was excluded from analysis, although including the transient did not alter our

results significantly.

Supporting information

S1 Fig. Comparison of types of resonance in the single PC and PC/IN networks. (A) After

removing background noise to allow for subthreshold fluctuations, subthreshold resonance in

the voltage fluctuation was observed at 2 Hz in a single principal cell (PC) driven by a weak

sinusoidal drive (rinp = .1 kHz). Example voltage traces are shown in response to asynchronous

input and sinusoidal inputs at f = 1 Hz, 2 Hz, and 5 Hz. The amplitude of voltage fluctuation,

Vmax − Vmin is plotted versus input frequency, and the peak is marked with a × symbol. (B)

After the input strength was increased to a slightly suprathreshold level (rinp = .3 kHz), supra-

threshold spiking resonance was observed at the same 2 Hz frequency in a single PC. Example

voltage traces are shown in response to asynchronous input and sinusoidal inputs at f = 1 Hz,

2 Hz, and 5 Hz. The time-averaged firing rate (FR) is plotted versus input frequency, and the

peak is marked with a + symbol. This suggests that the subthreshold resonance translates to

suprathreshold resonance in the linear regime. (C) (i) FR profile showing that as the strength

of sinusoidal input is increased further to rinp = .8 kHz and 1 kHz, spiking resonance in the sin-

gle PC remains at the same frequency and multiple bumps in time-averaged firing rate emerge

at higher frequencies. The dotted circle marks the frequency at which an input strength-depen-

dent bump in firing rate occurs (in the single PC) that is closest to the global maxima in the

network. (ii) The scatter plot shows the continuity between the input strength-independent

subthreshold and suprathreshold resonances in the single PC. (D) Response of a minimal PC/

IN network with one PC and one IN. Strength of the PC! IN synapse was increased so that a

spike in the single PC elicited a spike in the IN, and the background noise was removed for

comparison with the resonant response of the single PC. (i) PC firing rate profiles in the mini-

mal network given sinusoidal inputs with suprathreshold input strength rinp = .3, .8, 1 kHz.

Feedback inhibition suppressed the resonant peak at 2 Hz and led to the response at higher fre-

quency being resonant (marked with a closed circle). (ii) Scatter plot showing that the FR reso-

nance in the PC (marked with a blue circle) and IN (marked with a red triangle) occur at the

same input frequency and scale with the strength of input. (iii) Scatter plot showing that the

FR resonant frequency decreases as the duration of inhibition increases. (E) Response of the

full PC/IN network. Background noise was removed for comparison with the single PC and

minimal network cases. (i) PC firing rate profiles in the full network given sinusoidal inputs

with suprathreshold input strength rinp = .3, .8, 1 kHz. Feedback inhibition driven by a popula-

tion of PCs produced lower time-averaged firing rates in the average cell and increased the res-

onant frequency; the increase in resonant frequency may be due to a mechanism similar to

that explored in [18]. (ii) Scatter plot showing that FR resonant frequencies in the PC (marked

with a blue circle) and IN (marked with a red triangle) populations increase with input

strength. Comparison to the profiles in (i) reveals that the FR resonant frequencies of PC and

IN populations separate when the network moves from a band-pass to all-pass regime (i.e.,

with natural oscillation generated by equal-strength asynchronous drive). (iii) Scatter plot
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showing that FR resonant frequencies decrease in the full network as the duration of inhibition

increases.

(TIF)

S2 Fig. Separation of f PC
R and f IN

R requires a PC population with heterogeneous spike times.

(A) Time-averaged firing rate profiles of PC (blue) and IN (red) cells in a minimal PC/IN net-

work with one PC and one IN given high synchrony, square wave input. The IN can spike only

when the PC spikes which causes their firing rates to peak in response to the same input fre-

quency. (B) Time-averaged firing rate profiles of PC (blue) and IN (red) populations in the full

PC/IN network given high synchrony, square wave input. The IN cells continue spiking after

the firing peaks in the PC population because even a subset of PCs spiking on every cycle of

the input is sufficient to engage all the INs.

(TIF)

S3 Fig. Input frequency-dependent output response profiles in integrate-and-fire net-

works. Qualitative features of the PFC network model were reproduced in a simpler PC/IN

network model with leaky integrate-and-fire (LIF) neurons. (top) Firing rate profile for PC

(blue) and IN (red) populations. (bottom) Population frequency profile for PC and IN popula-

tions. Peak population frequency occurs at the input frequency maximizing IN activity (i.e.,

feedback inhibition). LIF neurons were modeled with membrane potential V (mV) governed

by: dVdt ¼ � Iinpðt;VÞ � glðV � ElÞ � gsynðV � EsynÞ where t is time (ms), gl = 0.1, El = − 65 mV,

Iinp(t, V) is an excitatory current (μA/cm2) reflecting inputs from external sources described

in the Methods section, and Isyn denotes synaptic currents (μA/cm2) with double exponential

conductances driven by other populations. When the membrane potential reaches the thresh-

old of 0 mV, the voltage is reset and held at -65 mV for a refractory period of 3 ms. There were

25 PCs and 5 INs. For PCs, synaptic inputs were inhibitory with gsyn = 0.1, Esyn = −80 mV, 2

ms decay and 0.4 rise time constants. For INs, synaptic inputs were excitatory with gsyn = 0.03,

Esyn = 0 mV, 10 ms decay and 0.2 rise time constants. Inputs to the LIF network were the same

as the more detailed PFC network described in the Methods section except that ginp = .00375

mS/cm2 and gnoise = 0.0056 mS/cm2.

(TIF)

S4 Fig. Time-averaged firing rate resonance in the PFC network with 100 PCs and 37

INs. (A) Firing rate profile for PC (blue) and IN (red) populations in a PFC network with

100 PCs and 37 INs. All parameters of the model were kept fixed relative to the control

model except the number of cells per population was increased. Note that the resonant

frequencies are the same as in the control model with 20 PCs and 5 INs. (B) Raster plots

showing maximal PC spiking at finp ¼ f PCR and maximal IN spiking (with less PC spiking) at

finp ¼ f INR .

(TIF)

S5 Fig. Suppression of response to asynchronous activity occurs within one cycle of the tar-

get oscillating more quickly. (A) Diagram showing a target PC population, PCT, driven by

an asynchronous input during period T1 then a medium-synchrony oscillatory input at the 28

Hz fpop-resonant frequency during period T2 in competition with a distractor PC population,

PCD, driven by an equal-mean asynchronous input during both periods. (B) Raster plot show-

ing that no suppression of either population occurs when their population frequencies are

the same during period T1 but that PCD is suppressed within a cycle of PCT oscillating more

quickly during period T2.

(TIF)
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S6 Fig. Suppression of response to asynchronous activity does not occur when the natural

frequency equals the population frequency of the target. (A) Diagram showing a target

PC population, PCT, driven by medium-synchrony oscillatory input at the 28 Hz fpop-resonant

frequency in competition with a distractor PC population, PCD, driven by a higher-rate asyn-

chronous input that produces a 28 Hz natural oscillation. (B) Raster plot showing that syn-

chronous spiking occurs in both populations with time-averaged firing rates that would be

expected in each population given their inputs in the absence of competition. (C) Plots show-

ing the (top) input, (middle) mean population voltage, and (bottom) instantaneous firing rate

for (left) PCT and (right) PCD populations.

(TIF)

S7 Fig. Example iFR power spectra used for the determination of population frequency.

(A) Response to 8 Hz sinusoidal drive. (i) Nested oscillations in the PC iFR. (ii) Power spec-

trum with peaks at both the external driving frequency and frequency of internally-generated,

nested oscillations. Low-synchrony square wave inputs can also produce nested oscillations.

Across realizations, different frequencies may have peak power, which results in ambiguity

when fpop is defined as the frequency with peak power. However, this does not affect the cur-

rent study because nesting only occurs at frequencies well below the time-averaged firing rate

peaks of ongoing inhibition-based oscillations investigated in this work. (B) Response to 25

Hz sinusoidal drive. (i) PC population with instantaneous firing rate locked to the period of

the input; this occurs for intermediate frequencies of a sinusoidal input and all frequencies of

a high-synchrony square wave input up to the IN firing rate resonant frequency. (ii) Power

spectrum with peaks at the external driving frequency and its harmonics. (C) Response to 50

Hz sinusoidal drive. (i) PC population with instantaneous firing rate paced by the network’s

internal time constants; this occurs for driving frequencies above the IN firing rate resonant

frequency. (ii) Power spectrum with prominent peaks at the internally-generated, natural fre-

quency and its harmonics as well as a much smaller peak at the external driving frequency.

The response to 50 Hz square wave drive, independent of the degree of input synchrony,

exhibits a similar asymptotic behavior.

(TIF)

S8 Fig. Relationship between resonance with fixed-mean square waves and responses to

fixed-amplitude square waves. (A) Response to fixed-amplitude square wave with pulse

amplitude fixed to rp = 4 kHz for all driving frequencies. (i) Firing rate (FR) profile for

medium-synchrony square waves. Given fixed pulse amplitude, mean input strength increases

with input frequency, proportionally to (pulse amplitude) × (inter-pulse frequency) × (pulse

width), as an increasing number of 4 kHz pulses occur in the same period of time; 4 kHz corre-

sponds to the amplitude of a fixed-mean square wave pulse when rinp = 1 kHz and finp = 25 Hz.

FRs peak at higher frequencies than in response to a fixed-mean square wave. (ii) Plot showing

(1) the resonant frequency of peak PC FR given fixed-mean square waves for different drive

strengths, rinp (black), (2) the fixed-amplitude input frequencies corresponding to different

drive strengths (blue), and (3) a vertical line marking the fixed-amplitude drive strength at

the first peak of PC FR in (Ai). The intersection of these curves shows that the first peak in the

fixed-amplitude FR profile in (Ai) occurs when the mean strength for a given finp establishes

an input strength-dependent FR resonant frequency (determined using fixed-mean square

waves) that matches the input frequency. (B) Same as (A) except the pulse amplitude was fixed

to rp = 5 kHz for all driving frequencies. 5 kHz corresponds to the amplitude of a fixed-mean

square wave pulse when rinp = 1 kHz and finp = 20 Hz. (i) Firing rates peak at an even higher

input frequency. (ii) Compared to (Aii), the blue curve shifted to the right because every fre-

quency is associated with a higher mean firing rate when the pulse amplitude increases. The
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frequency at which the peak occurs in (Bi) corresponds to the mean input strength marked

with a vertical line. As in (A), the intersection of the three curves shows that the first peak in

the fixed-amplitude FR profile in (Bi) occurs when the input frequency equals the FR resonant

frequency given the mean input strength associated with a fixed-amplitude square wave at that

input frequency. These results suggest that when pulse amplitude is fixed, as in the fixed-mean

case, the resonant frequency increases with mean input strength. However, the mean input

strength increases with input frequency when pulse amplitude is fixed, leading to a more com-

plicated relationship between input frequency and local maxima in the response profile for

fixed-amplitude square wave inputs.

(TIF)
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