
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2018

Cooperative high-performance
computing with FPGAs - matrix
multiply case-study

https://hdl.handle.net/2144/30740
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/215934688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Thesis

COOPERATIVE HIGH-PERFORMANCE COMPUTING

WITH FPGAS - MATRIX MULTIPLY CASE-STUDY

by

ROBERT P. MUNAFO

A.B., Dartmouth College, 1986

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

2018

c© 2018 by
ROBERT P. MUNAFO
All rights reserved

Approved by

First Reader

Martin C. Herbordt, PhD
Professor of Electrical and Computer Engineering

Second Reader

Michel A. Kinsy, PhD
Assistant Professor of Electrical and Computer Engineering

Third Reader

Tali Moreshet, PhD
Senior Lecturer & Research Assistant Professor of Electrical and
Computer Engineering

A problem is only a problem when viewed as a problem.
All change is hard at first, messy in the middle

and gorgeous at the end.
— Robin Sharma

iv

Acknowledgments

I wish to acknowledge my advisor Prof. Martin Herbordt for the many meetings to

discuss and clarify ideas, and for extensive patience. In addition I acknowledge all of

my committee members for poking and prodding in new directions, and for imploring

passionately for clarity and direction in my statements.

The other members of the CAAD lab (both present and past, the latter notably

including Jaiyi Sheng Ph.D.) have answered many questions small and large and

helped explain many bits of engineering design and methods that have made their

way into this work.

It also goes nearly without saying that I have friends and family, without whose

help and support I would not have gotten this far. Thank you, particularly to the

friends and colleagues who encouraged me to go back to school in the first place.

— Robert Munafo

v

COOPERATIVE HIGH-PERFORMANCE COMPUTING

WITH FPGAS - MATRIX MULTIPLY CASE-STUDY

ROBERT P. MUNAFO

ABSTRACT

In high-performance computing, there is great opportunity for systems that use

FPGAs to handle communication while also performing computation on data in tran-

sit in an “altruistic” manner–that is, using resources for computation that might

otherwise be used for communication, and in a way that improves overall system

performance and efficiency. We provide a specific definition of Computing in the

Network that captures this opportunity. We then outline some overall requirements

and guidelines for cooperative computing that include this ability, and make sugges-

tions for specific computing capabilities to be added to the networking hardware in

a system. We then explore some algorithms running on a network so equipped for a

few specific computing tasks: dense matrix multiplication, sparse matrix transposi-

tion and sparse matrix multiplication. In the first instance we give limits of problem

size and estimates of performance that should be attainable with present-day FPGA

hardware.

vi

Contents

1 Introduction 1

1.1 Outline . 2

2 Our Thesis, and Approach to Computing in the Network 3

2.1 Definitions and Classifications . 5

2.1.1 The Domain of Interest . 5

2.2 Taxonomy of Target HPC Architecture Models 6

2.3 Overview of Research Program for CiN Evaluation 8

2.3.1 Focus on D” Systems . 10

2.3.2 Parameterizing and Exploring Altruistic Computation 11

2.3.3 A Taxonomy of CiN AC Operations 12

2.3.4 Sub-taxonomy of CiN Operations On Data-in-Flight 13

2.3.5 Applicability to D’ Systems 14

2.3.6 Ambiguity Between D’ and D” Systems From the Application

Perspective . 15

2.4 Type D” Systems and the Hardware Designer 15

2.4.1 Tools for the Hardware Designer 16

2.5 Type D” Systems and the Client Application Programmer 18

2.5.1 Essential Components of a Design for Computation in the Net-

work . 18

2.5.2 Useful Scalar Reduction Operations 19

2.5.3 Splitting and Joining, and Multidimensional Data 20

vii

2.6 Evaluation Through Case Study . 21

3 Related Work and Design Considerations 22

3.1 Other Work Involving FPGAs or ASICs, and Not of Type D” 22

3.2 An Uncommon Class of HPC Architectures 23

3.2.1 Proposal . 23

3.2.2 Other Work With FPGAs and of Type D” 25

3.2.3 Improvements to Bandwidth and Latency 26

3.2.4 Differences From Prior Work 27

3.2.5 General Distributed-Computation Design Considerations . . . 28

3.3 Product-Specific Design Considerations 31

3.3.1 Stratix 10–DSP Blocks . 31

3.3.2 Stratix 10–Communication Links 32

3.4 Considerations Specific to Most Problems 34

3.4.1 Granularity of On-Chip Memory 34

4 Case Studies 35

4.1 Method . 35

4.1.1 Dense Matrix-Matrix Multiply 35

4.1.2 Single-FPGA Dense Matrix-Matrix Multiply 36

4.1.3 Data Broadcast Timing . 37

4.1.4 Systolic Array MMM Designs 38

4.1.5 Flexibility of Design; Choosing Dimensions for Simulation . . 40

4.1.6 Time for Local Calculation . 41

4.1.7 Dense MMM on a Grid of FPGAs 43

4.1.8 Simulation for Performance Estimation 46

4.1.9 Estimated Performance . 47

4.1.10 Comparison to Rival Architectures 49

viii

4.2 Sparse Matrix Multiplication and Transpose 50

4.2.1 Sparse Matrix Transpose . 51

4.2.2 Balanced Bucket Sort With Radix Search 52

4.2.3 Performance Comparison to a Single Node 54

5 Summary, and Future Considerations 56

5.1 Impact of Future Products . 56

5.2 Areas for Future Research . 57

References 58

Curriculum Vitae 66

ix

List of Tables

2.1 Functions on Typed Data . 20

4.1 MMM Performance Comparison . 49

x

List of Figures

2·1 Commonly-cited design trade-off corners in the single node (left) and

in multi-node systems (right). See text for details. 3

2·2 HPC system design models I and I’. See text for details. 6

2·3 HPC system design models D and D’. See text for details. 7

2·4 Choosing the best ratio of Lcomm to LcompN for an application. See text

for details. 11

3·1 Two type D” designs representing the proposal of this thesis. See text

for details. 24

3·2 A Stratix 10 DSP block (from (Intel Corporation, 2017b)) 31

3·3 One possible arrangement of DSP blocks on an FPGA (from (Linux-

Gizmos, 2017)) . 31

4·1 Single-chip matrix-matrix multiply using a large array of DSPs per-

forming multiply-accumulate. a) depicts idealized operation using broad-

casts of A elements to an entire row, and of B elements to an entire

column, of the DSPs. b) alters the timing so that elements of A and

B travel one cell at a time through the systolic array. 37

4·2 Systolic array Matrix-Matrix Multiply. Details in text. 39

4·3 One cell of the MMM systolic array. Details in text. 40

4·4 One row controller. Details in text. 40

4·5 Router design suitable for our proposal. Adapted from (Sheng, 2017). 44

xi

4·6 Writing a data stream to, or reading a stream from, BRAMs organized

as slices. Details in text. 46

4·7 Effect of using more transceivers. (a) 4096 DSPs, 4 MGTs in each

direction. Most problem sizes are communication-bound. (b) 4096

DSPs, 16 MGTs in each direction. Larger problems now compute-

bound. In all cases the smallest problems are latency-bound. 48

4·8 These two charts consider using fewer DSP units. (a) 256 DSPs, 4

MGTs in each direction. (b) 256 DSPs, 16 MGTs in each direction. . 48

xii

List of Abbreviations

AC Altruistic Computing
ALM Adaptive Logic Module
API Application Programming Interface
BRAM Block RAM
CAAD Computer Architecture and Automated Design
CiN Compute (or Computing) in the Network
CPU Central Processing Unit
CUDA (Nvidia trademark, not an abbreviation)
DDR Double Data Rate
DPI Direct and Programmable Interconnects
DSP Digital Signal Processor
FFT Fast Fourier Transform
FIFO First-In, First-Out
FPGA Field-Programmable Gate Array
GB Giga (109) Byte
GFLOP Giga (109) FLoating-point OPerations
GPU Graphics Processing Unit
HPC High-Performance Computing
IC Integrated Circuit
IP Intellectual Property (module in FPGA design)
MGT Multi-Gigabit Transceiver
MIPS Million(s of) Instructions Per Second
MMM Matrix-Matrix Multiply
MPI Message-Passing Interface
NIC Network Interface Controller
PCIe Peripheral Component Interconnect Express
RAM Random-Access Memory
SIMD Single-Instruction, Multiple Data
SUMMA Scalable Universal Matrix Multiply Algorithm
TDP Thermal Design Power
TFLOP Tera (1012) FLoating-point OPerations
TOR Top-Of-Rack (network switch)
TPU Tensor Processing Unit

xiii

1

Chapter 1

Introduction

High Performance Computing (HPC) is the domain of computing applications that are

computationally intensive, including the simulation and modeling of physical systems.

HPC applications provide results that cannot be obtained through physical laboratory

experiments or direct measurements. As such, HPC provides essential benefits to

society, including the enabling of a vast array of scientific research (Pres., 2005); also,

HPC is an indispensable tool of engineering (NSF, 2006).

As described by (Herbordt, 2018), four “great problems” for designing com-

puter systems for HPC are as follows: (i) computational efficiency (getting the most

GFLOPs out of available chip area), (ii) minimizing power usage, (iii) maintaining

performance with portability, and (iv) handling the communication bottleneck, i.e.,

the increasing need for communication that accompanies ever more compute-intensive

operations on ever growing datasets.

This last “great” problem is of particular interest to us in this thesis, and, as we

will argue, it requires new architectures and design techniques.

Much research has addressed a similar problem regarding the latency of memory

access. That work falls under the umbrella of Compute in Memory, and its main ap-

proach is to put computing capability closer to memory cells, in particular, within the

memory chip itself. Examples include EXECUBE (Kogge, 1994), IRAM (Patterson

et al., 1997), and Micron’s Hybrid Memory Cube (Pawlowski, 2011), (Gokhale et al.,

2015).

2

Similarly, we propose to address the communication bottleneck with techniques

that add computation capability to the devices that perform data communication;

we refer to such capability as Compute in the Network (CiN). The approach we take

is to provide ways for application’s calculations to be combined with communication

operations within a custom hardware design (specifically, with an FPGA). Properly

applied, these techniques can address the communication bottleneck by providing

dramatically reduced latency. For a more detailed introduction see (Herbordt, 2018).

As IBM BlueGene designer Paul Coteus is credited with saying (Herbordt, 2018),

“For future computer systems to continue performance improvements, we need [to]

compute everywhere, including in [the network] interfaces and [in the] network”.

1.1 Outline

In the chapter 2 we will expound our main Thesis, including key definitions, tax-

onomies of system design and CiN capabilities, and our rationale for such. We outline

proposed development tools for those who wish to add specific CiN capabilities to a

system.

Chapter 3 describes some related prior work and many details of modern FPGAs

that set constraints on what can be done in our proposed CiN model.

In chapter 4 we perform a thorough case study of CiN applied to dense matrix-

matrix multiply. We give brief outlines of two other case studies (sparse matrix

transpose and sparse matrix multiply).

We finish with a summary, implications of anticipated new technology, and sug-

gestions for deeper inquiry into the present results and related CiN areas.

Compute-
bound

(memory)
Bandwidth-
bound

(memory)
Latency-
bound

Compute-
bound

Memory-
bound

Network-
bound

Figure 2·1: Commonly-cited design trade-off corners in the single
node (left) and in multi-node systems (right). See text for details.

Chapter 2

Our Thesis, and Approach to Computing

in the Network

Computer Science and Engineering (CSE) designers must make many design deci-

sions, that are of varying but ever-finite longevity. As old decisions yield to new, the

change is often driven by a need to specialize and/or consolidate, or by a need to

generalize and/or broaden, the components and the capabilities of each component

or subsystem and the scope of its intended application.

These decisions manifest themselves particularly strongly on the integrated circuit

(IC)–by which we will implicitly include single-package multi-chip hybrids–because

of the large costs (both of time and energy) of crossing the package boundary. For

example, during the years that memory IC access times could keep up with CPU

cycle times, all memory was external to the CPU IC. In the mid-1990s, the CPU

cycle time became too fast for comparably-priced memory ICs to keep up, and mem-

ory (in the form of L1 cache, later L2 and L3) was added to the CPU. Similarly,

3

4

communication ICs have almost entirely comprised communication functions such as

switching, (de)coding, (de)modulation, except in some notable recent examples to be

mentioned later. Likewise, memory ICs consist almost entirely of storage with some

notable “Compute in Memory” exceptions we mentioned in the Introduction.

Around 2004-2006, Dennard scaling ended but Moore’s law continued, making

power an ever-growing constraint on transistor utilization and overall chip design.

Thermal concerns make it increasingly difficult to concentrate more and more com-

puting into an IC, and make it increasingly difficult to transfer data on- and off-chip

at proportionately growing rates. These issues almost inevitably lead to a general-

ization and decentralization of functions, and a rise of the multifunction IC. Such

multifunction ICs should be able to store data and also to compute (transform) data,

and of course they need to incorporate communication functions; and all of these

capabilities should be full-fledged rivals of the specialized ICs of the past.

This inevitable progression to multifunction ICs strongly suggests a mandate to

capitalize on any opportunity to compute on data in transit, that is, to employ the

communication network of an HPC system to facilitate more efficient execution of

HPC applications. We give our Thesis, in the following mandate:

Perform each computation as soon as its inputs are in the same place

at the same time; and maximize opportunities to do so by arranging for

the utilization of the communication network, not just for relaying data,

but also for operating upon it.

This is Computing in the Network (CiN).

5

2.1 Definitions and Classifications

2.1.1 The Domain of Interest

Our mandate to facilitate Compute in the Network applies particularly strongly to

systems built for HPC applications. These are constructed as clusters of computing

nodes that are equipped to work together running a single program. The alternative

model, clusters and clouds that efficiently run applications in batch mode indepen-

dently on multiple nodes, while important, does not depend as significantly on com-

munication performance and so is much less relevant to CiN. In HPC systems, the

nodes each have memory, computing capability (in a CPU possibly with other ICs

such as a GPU), and an interface to a system-wide communication network. This

interface could be an IC or set of ICs; we will refer to this interface as the node’s

Network Interface Controller (NIC). The NIC can initiate and receive data com-

munications, but full end-to-end delivery of messages in non-trivial systems requires

switching (or routing) of data at intermediate points. We will refer to the components

which perform this data transfer, between the NICs at the end-points, as switches.

In some clusters each switch is associated with a particular node; such clusters are

referred to as having direct interconnects. Clusters that have some or all switches

independent of the nodes are referred to as having indirect interconnects.

Of particular interest to us are FPGA chips. These have logic that can be re-

configured by the user to suit the application (see (Herbordt et al., 2007b; Herbordt

et al., 2008; VanCourt and Herbordt, 2009) for overviews). FPGAs have been applied

to great effect for communication, notably in network switches, and also in special-

ized compute-intensive roles such as signal processing (Liu et al., 2016; Sheng et al.,

2015a). Through market forces these applications have brought FPGAs to the point

where they now have communication capabilities far exceeding other types of ICs.

An FPGA provides up to 100 or so Multi-Gigabit Transceivers (MGTs), each with

6

...

...

...

...

...

...

...

...

...

...

...

......

Figure 2·2: HPC system design models I and I’. See text for details.

40 gigabits per second (Gib/sec) of bandwidth and increasing to 100 Gib/sec in the

next generation. The majority of the FPGA remains configurable permitting its user

(the hardware designer for the HPC node) to freely allocate logic to computation or

to communication, in whatever proportion is most suitable.

2.2 Taxonomy of Target HPC Architecture Models

So far we have used an intuitive definition of CiN: computation performed during data

transfer among nodes. While CiN capability has been available in some older systems,

it is not generally available in current commercial HPC offerings. Exceptions are

those consisting of tightly coupled FPGAs (described below). Before continuing the

discussion of why other current systems cannot be said to support CiN we first specify

CiN more carefully. We do this by classifying HPC architectures and describing how

they must be augmented for CiN.

Type I: We refer to a system as Type I if it has indirect communication, i.e.,

nodes are not associated directly with communication switches (see Figure 2·2) and

neither performs functions of the other. The majority of current HPC clusters and su-

percomputers are of this design, including any installation using Top-of-Rack (TOR)

switches to handle all inter-node data traffic.

7

Figure 2·3: HPC system design models D and D’. See text for details.

Type I’ is an augmentation of a Type I design to enable CiN through the addition

of some computation capability within the switches. The switches have not been

changed their basic function. A notable example involves the use of FPGA-equipped

Ethernet switches in high-speed trading (Arista Networks, 2013; Agron Design, 2013).

We are not aware of any type I’ system currently in use for HPC. Here we point out

that computing in the NIC does not constitute CiN. One example is the Mellanox

InfiniBand product line with hardware-assisted collective capability, using circuitry

in an ASIC for reduction collectives. A system using such switches is not of type I’

because the ASIC is part of the NIC, i.e., part of the node: all network latency is still

being incurred in getting the data to the destination node’s NIC where the reduction

computation is performed.

Type D: A cluster with direct communication is type D. Every node, in addition

to performing its own computations, and being a sender and receiver of data, also

contains a switch (router) for messages sent by other nodes to other nodes; how-

ever the switch operates independently of the nodes’ computation logic and does not

do anything with other nodes’ data except forward it. The history of HPC has in-

cluded some notably famous examples, such as the Connection Machine (Hillis, 1984);

8

and some previously-mentioned compute in memory designs like EXECUBE (Kogge,

1994) and IRAM (Patterson et al., 1997).

Type D’, named in analogy with type I’. Design type D’ is like type D, but

some compute capability has been added to the switching logic within each node.

That ability is limited, or difficult to access, or the switch and CPU are both on the

same IC and the design is using the CPU part of the node to do computation but

with a heavy latency penalty from bringing the data out of the switch to the CPU

and then injecting it back into the switch for further travel through the network.

The Blue Gene/L design, as described at (Gara et al., 2005; Salapura et al., 2005),

has all computation on an ASIC which includes network interfaces, and switching is

performed by a separate ASIC called the BG/L link chip. The Blue Gene/L uses

its 3D torus network for most traffic, as that has the greatest bandwidth. The link

chip implements cut-through routing with no need for software intervention, which

limits the ability of any interior node to interpose computation upon data transiting

through it to and from other nodes.

Type D” systems are like type D, but their nodes incorporate computing logic

into the switch in a way that is fully flexible, and is autonomous with respect to the

CPU(s). FPGAs provide this possibility in a way that is uniquely flexible, and more

efficient than can be achieved with CPUs or ASICs.

2.3 Overview of Research Program for CiN Evaluation

In the taxonomy of section 2.2, the types that are capable of CiN are I’, D’, and

D”. In the CAAD laboratory we have type D” systems and subsystem designs readily

available for experiments. These have been used to explore CiN methods and measure

or estimate their performance.

In any of the direct systems (type D, D’, D”) the nodes are by definition all of

9

the same design, with each node having a switch, but nodes play different roles with

respect to any given inter-node data communication. The node supplying the data

and the ultimate destination node are leaf nodes, with respect to that communication.

Any intermediate nodes that are traversed between source and destination are interior

nodes. In D-type systems these are full-class nodes on par with the source and

destination, but in I-type systems the closest equivalent are switches which constitute

a different type of node. In D-type systems nodes will typically be filling both roles

(leaf and interior) for most of the time, and shifting roles from one communication

operation to another. In a sufficiently large and well-optimized algorithm the nodes

will most always serving both roles.

Comparative evaluation of I vs. I’ designs, and of D vs. D’, presents some diffi-

culties. Typically there is a desire to consider moving applications from one design

to another, and a cost-benefit analysis is to be performed. Cost evaluation requires

detailed knowledge of the internal design of every part of the system, and in the

case of most installed production HPC systems, these details are often not available

because they are proprietary or poorly documented. Even with complete knowledge

of a design, as is the case for experimental studies in the literature, in order to get

the desired benefits, the changes between an I (or D) design and an I’ (or D’) are so

great as to make comparison difficult or irrelevant. An application tuned for one type

of system will run sub-optimally or not at all on another type. If a crude analogy of

operation exists, there are almost always small differences in load balancing, the map-

ping of data onto nodes with respect to the system’s network topology, and so on. The

Department of Energy has addressed this type of issue in their CoDEx (Co-Design

for Exascale) (DOE, 2011) program, which develops applications and architectures

together.

To perform the cost comparison of an I or D design versus a comparable I’ or D’

10

design, we might be able to make adequate approximations from the ratios of the

amount of added logic to the unchanged baseline; work on D” designs (with FPGAs

and hardware design simulation tools) can inform this.

2.3.1 Focus on D” Systems

We now focus on D” systems and define more of their details. All of the D, D’ and

D” systems are direct, but in D” systems the communication (switching) and compu-

tation functions are integrated into the same IC; or if separate, the communication

functions are in an IC that can be readily reconfigured to add most any type of

computation, which is uniquely possible if an FPGA is used. This has been done in

Novo-G# (George et al., 2016) and in the Catapult I (Putnam et al., 2014). Both are

D” systems with FPGAs directly connected to each other via their MGTs. In these

systems the communication logic can be readily changed (e.g., to implement new rout-

ing algorithms), and computing logic can be connected directly to the switch/router

design.

We now use symbols to refer to the fraction of a node’s logic dedicated to com-

munication and to computing: these are Lcomm and Lcomp respectively, with Lcomm +

Lcomp = 1. When necessary for disambiguation, we designate two types of compu-

tation, LcompC and LcompN , with their sum equal to Lcomp. The first refers to logic

used for any computation performed in the node’s leaf role, i.e., on data that is not

in transit to another node. LcompN is the computation that is essential to our thesis:

it is any computation performed in the interior role, i.e., with operands that do not

originate on the node doing the computation, and with results that are destined for

another node. Note that if in any particular application the FPGA is not actually

performing any LcompN function then the system is operating as a type D system and

there is no CiN.

This type of computation, performed in the interior nodes with nonzero LcompN ,

11

P
er

fo
rm

an
ce

low LcompN

compute bound

communication bound

high LcompN

Figure 2·4: Choosing the best ratio of Lcomm to LcompN for an appli-
cation. See text for details.

is the essential service provided by the CiN design model expounded in this thesis.

Any computation provided by such logic is what we refer to as altruistic computation

(AC).

2.3.2 Parameterizing and Exploring Altruistic Computation

The two types of computational logic (LcompC and LcompN) are, at the device level,

of the same type. In an FPGA that incorporates all three functions, the LcompC , and

LcompN functions could be designed in a way that shares some component modules

or gates. However, this would preclude having a node use the LcompC function in its

role as leaf while simultaneously doing AC through its LcompN function in its role as

interior node. Optimum utilization is our goal, including the ability to perform all

three logic functions at the same time in each node.

Given these parameters Lcomm, LcompC , and LcompN and an FPGA-based devel-

opment platform we can freely propose incremental changes in the three parameters,

and in particular, increasing one at the expense of the others. We then evaluate the

change in performance; if a shift to greater LcompN results in greater performance

then AC is beneficial. The stylized representation of figure 2·4 shows alternatives for

12

the switching IC of a D” system like that on the right in figure 3·1. The hardware

designer can choose how to allocate FPGA logic for a particular application, with

varying results. The ideal choice would be near the peak of the solid curve, which is

bounded above by the two dashed curves. Different applications would have different

dashed curves according to their communications intensity and the extent to which

altruistic computation can benefit them; a designer would need to take all of these

into account when choosing what LcompN logic to include.

2.3.3 A Taxonomy of CiN AC Operations

We specifically exclude NIC-type operations from consideration as CiN or as LcompN .

NIC-type operations include packing and unpacking data for transport, encryption,

and encoding for low-level protocols. Encryption is a type of computation but is

typically employed with paired decryption for transparent end-to-end security, These

are functions that are normally performed by the NIC and as such they are understood

to be Lcomm; therefore they are not CiN.

Some operations that we do characterize as CiN include:

1. Operating on data in flight: a detailed taxonomy will be given in the following

section.

2. Separate data and control: The sending leaf node does not know what cal-

culation should be performed at the time of sending, but this can be determined at

a later time while the data is in an interior node. As an analogy, consider a live

database that rapidly updates with new information and responds to frequent (un-

predictable) queries. A node receiving a data update must multicast or broadcast,

while another node servicing a query must multicast or broadcast with the opcode

and return address for the gather/reduction collective that gives the result. This is

normally all done in CPU, but CiN offers the opportunity for substantial improve-

ment in certain operations: when the multicasts of the two operations just described

13

are in the same (interior) node, the opcode can be applied to the update and result

sent to the opcode’s return address.

3. Load-balancing: the algorithm specifies a distribution of work that turns out to

cause some leaf nodes to be compute bound, while interior nodes are largely free. Since

all nodes serve both roles, this means that the application is loading the LcompC logic

much more heavily than the LcompN logic; and we note that this situation often cannot

be anticipated as it will be dependent on the dataset or the allocation (provisioning)

of physical nodes to a task. If the system has the capability to implement a given

operation in either LcompC or LcompN , then it could exercise that flexibility in whole

or in part, and achieve this third type of CiN.

2.3.4 Sub-taxonomy of CiN Operations On Data-in-Flight

Within type 1 in the previous section, we further distinguish types of operations as

follows:

1a. Load-balancing and/or improvement in latency through the use of interior

LcompN in place of leaf LcompC : if there are N bytes of input to a calculation and

an equal amount of output, and the output is only needed at some other node, then

LcompC could be used at either the source or destination; but since it all needs to

be sent, one might be able to arrange to use LcompN to perform some or all of the

calculation during transit. Switch buffering or link latency might be such that this

calculation’s latency could be entirely hidden behind the communication latency. In

some cases the computation might even be performed in pieces along the way. This

also serves to balance load, as there would be as many as N nodes participating in

the computation.

1b. Combining data from two sources to produce one or more results that are

forwarded to another node. This includes reduction calculations, such as a collective

sum, which is typically done using a spanning tree across all participating nodes with

14

individual calculations at nodes of the tree. As in 1a, this is an optimization because

latency can be hidden. This case adds the additional benefit of reducing overall load

on Lcomm by reducing the quantity of data being sent (a collective sum is less data

than its inputs).

1c. Systolic algorithms with streams of data traveling in two or more different

directions and being used as input and/or transformed at the node where they meet,

with data traveling on. The interior nodes are doing calculation, so we are using

LcompN . Data is being sent on to use as inputs to LcompN on the next node, and/or

because they are needed as the destination leaf. As in 1a, the amount of computation

might not change from using LcompN to do it, however there is great opportunity for

hiding communication latency. Our case studies in a later chapter fit this category.

1d. Sharing packetization overhead by multiple nodes. Putting data into the

network incurs latency associated with the network protocol and Lcomm implemen-

tation. If a leaf needs to send 1 datum each to N distinct destinations, which data

also need to be transformed by a calculation as in 1a, rather than sending each da-

tum as a separate message it could be sent as a single block, along a route that hits

each destination node, with the Lcomm hardware instructed to delegate one of the N

calculations to the LcompN logic in each node along the way just before delivery. An

example exists in a normalized matrix transpose: a collective sum is used to compute

a scaling factor, then all elements must be multiplied by this factor, and all rows (or

columns) redistributed among nodes so that the nodes all hold the result in the same

row-major (or column-major) order as was the original matrix.

2.3.5 Applicability to D’ Systems

The core method of evaluating LcompN proposals is to consider performance as a

function of the ratio LcompN/Lcomm or perhaps LcompN/(Lcomm + LcompC). This could

be envisaged as viewing a graph and choosing the highest point on a curve. In a type

15

D” system, the entire curve is available at any time (perhaps involving reconfiguration

of the FPGAs). The method is also applicable to type D’ systems, despite that only

one point on the curve must be chosen when actually building a system.

2.3.6 Ambiguity Between D’ and D” Systems From the Application Per-

spective

Many applications programming interfaces (APIs) advertise a capability that, as given

by its specification, hides details of a system’s capabilities. In the case of distributed

or parallel computing APIs, they often make one or more of the types D, D’, D”, and

even I, I’ indistinguishable to the programmer. For example, since its earliest versions

the MPI specification (Gropp et al., 1998) has allowed the programmer to hand off

collective reduction through such functions as MPI REDUCE and MPI REDUCE SCATTER.

The programmer does not need to know or care whether the computation part of

the operation is being done by LcompC , LcompN , or some of each. This situation

resulted from historical (pre-1990’s) work on type D systems with heavily altruistic

algorithms; these systems had primitive switching logic and used the CPUs for all

Lcomm functions. To address this issue, our models and our method assume specific

knowledge of the system and of the ways that a computation can be carried out via

LcompC and/or LcompN logic. We can consider multiple alternatives that would be

possible on the same system. The actual one chosen for a running application could

depend on runtime specifics such as the system’s overall load at the time, number of

available physical nodes, and so on.

2.4 Type D” Systems and the Hardware Designer

In describing computations, particularly for collective reductions, there are simple

and common operations like those shown in table 2.1. We now point out that in a

D” system, all of the LcompN hardware is reconfigurable and any functions can be

16

defined. We here propose that system designers can be supplied with tools to define

these functions from a set of primitives. It is also possible that a LcompN capability

could be customized at runtime, this is addressed in the following section.

2.4.1 Tools for the Hardware Designer

Past work here at the CAAD (Computer Architecture and Automated Design) labo-

ratory includes using an FPGA to implement: bioinformatics algorithms (Conti et al.,

2004; VanCourt and Herbordt, 2004; Herbordt et al., 2006; Herbordt et al., 2007a;

VanCourt and Herbordt, 2007; Mahram and Herbordt, 2012; Mahram and Herbordt,

2016); machine learning (Geng et al., 2018; Sanaullah et al., 2018); much of a single

molecular dynamics simulation application (Gu et al., 2005; Gu et al., 2008; Chiu

et al., 2008; Chiu and Herbordt, 2009; Herbordt et al., 2009; Chiu and Herbordt,

2010; Chiu et al., 2011; Khan and Herbordt, 2011; Khan and Herbordt, 2012; Xiong

and Herbordt, 2017); complex molecular modeling (VanCourt et al., 2004; VanCourt

and Herbordt, 2005b; VanCourt and Herbordt, 2006; Sukhwani and Herbordt, 2008;

Sukhwani and Herbordt, 2009a; Sukhwani and Herbordt, 2009b; Sukhwani and Her-

bordt, 2010; Sukhwani and Herbordt, 2014); Particle-grid mapping (Gu and Herbordt,

2007; Sanaullah et al., 2016a; Sanaullah et al., 2016b); FFTs on the Microsoft Cata-

pult II and Novo-G# systems (the former as a model I cloud computing example, the

latter to approach model D”) (Humphries et al., 2014; Sheng et al., 2017; Sanaullah

and Herbordt, 2018). In most of these, the computing algorithm(s) have required a

large and complex hardware design with many parts.

We hope that such designs will be possible in a general purpose HPC system

built on model D”, with the FPGAs programmable for each client application. In

order for an application (such as a molecular dynamics simulation) to benefit from

the AC capability of the system, there needs to be a way for the hardware designer

to specify the needed calculations and patterns of data movement (including, for

17

example, expansion and reduction trees). In other words, we need an “API” for the

hardware designer.

First let us consider an ordinary reduction on a single (scalar) data type. The

originating nodes each transmit a piece of data, suitably tagged; routing computation

results in the data being routed along many paths that converge at interior nodes,

forming a reduction tree. At each node of that tree, there are two or more data

merging. The hardware needs to be able to recognize things that are merging as

being part of the same computation. For this purpose we assume that the data have

already been tagged, specifying which collective computation they are a part of, and

what type of merge is being done. The types of computation for reduction would

include at least those shown in table 2.1.

This can be generalized to reductions involving non-scalar data (such as vectors)

and on structured data (such as ordered tuples with elements of mixed types). Each

datum now consists of two or more distinct fields. There now needs to be a way to

specify a parse tree describing the structure of the data, and a way to specify which

computations are done and in what order. This could be done using code with an

expression-like syntax, or possibly though a dataflow programming GUI. A complete

GUI-based design system for this sort of application is described in (VanCourt and

Herbordt, 2005a).

Many computations that lend themselves well to a systolic array approach can

be composed of many individual operations at the grid points, where each operation

involves two (or more) inputs coming from different sources (neighboring nodes) and

two (or more) outputs with distinct destinations. The outputs are functions of two

inputs, that can be defined by parse trees just as with reductions. The only difference

is that each node in the systolic dataflow graph has two or more outputs, so there

need to be multiple functions. As before, data need to be tagged for disambiguation.

18

For an FPGA computing system with altruistic capabilities to be maximally use-

ful, there should be tools to enable entire new distributed computing algorithms to

be implemented in the LcompN hardware. Such tools could be used by a person who

has a particular algorithm in mind but does not concern themselves with the entire

system design.

This can be facilitated by a description language, capable of describing distributed

data with complete generality. The distribution of the data across nodes, the type

and structure of each piece of data, and methods of determining what gets combined

with what, can all be encoded in a language which can be compiled into the needed

data structures, defining operations to be performed on data, and defining values for

tags to be passed to the hardware by the application or CiN API. As before, this

could also be done through a design tool with a graphical user interface, providing

the same functions, or a larger development environment incorporating both methods

of specification.

2.5 Type D” Systems and the Client Application Program-

mer

In section 2.4.1 we outlined the process by which new LcompN capabilities can be added

to a system through hardware design. It is also possible to provide a general-purpose

LcompN capability, programmable at runtime, enabling the applications programmer

to specify custom or composite computations in a manner similar to OpenGL or

OpenCL kernels.

2.5.1 Essential Components of a Design for Computation in the Network

Bringing together the discussion in the foregoing sections, we can itemize the features

of a full CiN solution for HPC:

19

• Nodes each equipped with FPGAs, that can be reconfigured to provide network-

ing with directly linked computation logic (Lcomm and LcompN), connected in a direct

network to make a D” system.

• An API through which hardware designers can describe computing operations

on data in transit (described earlier), for translation to hardware blocks in the FPGA

configuration.

• An API through which the client can submit data, describe its type and orga-

nization, request one or more operations including communication and computation,

and receive the output; but without the need to know where and how any calculation

is performed.

In each of the types of AC in the taxonomy of section 2.3.3 the client application

submits data to the network and eventually receives results, with the computation

being done sometime in between. It is desirable to shield the client application from

knowledge of how and where the computation is being done. The client will merely

present its data, request the operation, and get the answer.

2.5.2 Useful Scalar Reduction Operations

We can take a hint from the existing MPI standard (Gropp et al., 1998, sec. 4.11.2)

and recommend the operations in table 2.1.

20

Table 2.1: Functions on Typed Data

name meaning

(x, y)→ max(x, y) maximum
(x, y)→ min(x, y) minimum
(x, y)→ x+ y sum
(x, y)→ x× y product
(x, y)→ x || y logical or
(x, y)→ x|y bitwise or
(x, y)→ x && y logical and
(x, y)→ x&y bitwise and
(x, y)→ !!x == !y logical xor
(x, y)→ x⊕ y bitwise xor
(xi, yj)→ (x > y) ? (x, i) : (y, j) maximum value and location
(xi, yj)→ (x < y) ? (x, i) : (y, j) maximum value and location

2.5.3 Splitting and Joining, and Multidimensional Data

In an additive reduction, the client could submit a collection of scalars to the network,

and get a scalar answer back. These data would ordinarily be submitted from multiple

nodes in the role of leaf transmitter, with the answer delivered to one or multiple

recipient leaf nodes. However, it should be equivalent for a single node to submit the

individual data values as a single vector with n elements, as might be done if the data

were already brought together by an MPI GATHER.

The action of joining (concatenating) data, and its inverse (splitting a vector of

data into its components) are useful for other purposes. The MPI ALLTOALL function,

when all buffers are of the same data type and lengths, with the length equal to the

number of ranks, effectively splits each vector of the given data, communicates the

pieces, then joins them so that each rank receives one datum from each of the ranks

(including itself). Put another way, of the data passed to MPI ALLTOALL are the rows

of a square matrix, the results are the rows of its transpose.

It is desirable to provide a way that the client can request operations on multi-

dimensional data, such as matrix transpose and matrix multiplication. To make this

possible there needs to be a way that the client can express the way its data (initially

21

split amongst multiple ranks) are to be interpreted as a single object.

A very large matrix may be held in rectangular blocks, one per rank, arranged in

such a way that every row and every column of the whole matrix is split up amongst

multiple ranks. If each block is of dimensions a × b, and if the whole array is of

dimensions ca × db, then there are cd blocks and cd ranks. The partitioning into

blocks might need to change for optimal results. If a client task is running as several

or many MPI ranks per node, and there is one large FPGA available per node that

can perform matrix multiplication, it will usually be necessary to regroup the blocks

of matrix data from the block size of the ranks to the block size supported by the

FPGAs’ LcompN hardware. As mentioned earlier, it is often useful for the API to hide

such implementation details from the client.

2.6 Evaluation Through Case Study

If a hardware system capable of AC via CiN exists, and the necessary design tools are

available, the question we would like to ask is, how much benefit could such a design

provide? Earlier (section 2.3.2) we outlined a general approach involving the relation

between the allocation of logic to Lcomm, LcompC , and LcompN functions, and resulting

performance of application implementations that optimally use that allocation.

To do this evaluation in practice, we consider case studies of specific computation

tasks, that can be implemented on known FPGAs with directly-attached high-speed

links and their own routers. In each case we can estimate the performance that might

be achieved, and compare to rival solutions using more traditional computing designs.

In the next chapter we proceed to discuss some of these rival computing designs.

22

Chapter 3

Related Work and Design Considerations

3.1 Other Work Involving FPGAs or ASICs, and Not of

Type D”

FPGAs and/or ASICs can be used as networking processors in HPC systems. In most

cases these perform only communication-related processing: they transfer application

data, but do not transform it nor store it for later re-use.

Exceptions include the latest InfiniBand transceivers from Mellanox (in their

Quantum switches) with 200 GiB/sec data transfer rates. The ASIC provides lim-

ited computing capability for reductions; this feature is called Co-Design Scalable

Hierarchical Aggregation and Reduction Protocol (SHARP). The switch cannot be

extended to support new types of reduction or other CiN operations, and its collec-

tive functions are available only through drivers via libraries such as MPI (Skjellum,

2017).

The Microsoft Catapult II project (Caulfield et al., 2016) has equipped nodes in

Microsoft datacenters with FPGAs for application-specific coprocessing. Each node

has one FPGA using two 40 Gib transceivers to directly handle all traffic into and

out of the node (the FPGA is a “bump in the wire” between the node’s NIC and the

TOR switch). This enables on-the-fly stream processing of the node’s traffic, such as

encryption. Unaltered pass-through traffic has very low added latency. The FPGA

can also generate and receive its own traffic over either link. Each FPGA can act as

an accelerator for its CPU, and many FPGAs in the datacenter can work together

23

as leaf nodes in a distributed computing task. If the task assigned to the CPU is not

using its FPGA, then that FPGA is available to other cloud users. As the datacenter

has TOR switches and multiple higher levels of switching, it is an I’ system. Any

computing the FPGAs do will be leaf node computing, so the system is not able

to do true CiN operations as a D” system can–for example, in a sum reduction, all

arithmetic would take place in the leaf nodes and the communication needs would be

the same as if doing the reduction using the CPUs.

Recently Amazon has been offering FPGA-equipped nodes (EC2 F1 instances) on

its cloud service. They are very recent Xilinx UltraScale chips with attached memory,

but there is no capability for multiple nodes’ FPGAs to communicate directly with

one another.

Recently Google has been offering their Tensor Processing Units (TPUs) to its

cloud customers (Google Cloud, 2017). These are ASICs that are useful for all-to-all

and convolutional neural networks for machine learning and deep learning applica-

tions.

The Catapult II paper (Caulfield et al., 2016) has a more thorough survey of

designs using FPGAs in its related work section. None are more applicable to our

thesis than those already mentioned.

3.2 An Uncommon Class of HPC Architectures

3.2.1 Proposal

In this thesis we propose to use FPGAs for all of the communication needs of an HPC

system, and also utilize additional on-chip capacity to perform certain broadly useful

distributed computing tasks, of the types described in section 2.3.3. We propose to

do so in a way that avoids the latency and software overhead of prior designs, such

as those using existing versions of MPI. Further we propose to invest in significantly

24

...

...

...

...

...

Figure 3·1: Two type D” designs representing the proposal of this
thesis. See text for details.

higher bandwidth per link.

The goal is to find higher overall performance through an optimal balance of Lcomm

and LcompN functions on each FPGA, along with reduced communication latency

through tight coupling of these functions, along with increased bandwidth comparable

to that of an individual node’s main memory.

Figures 2·2, 2·3 show highly schematized representation of three types of HPC

systems. Each square represents an IC, assumed to be of comparable cost. Each

link is also taken to be of comparable cost. The dotted links represent high speed

asynchronous links such as InfiniBand; the solid links are clock-synchronized buses

or other high-speed connections0 within the node, such as PCIe. The colors are:

blue for standard CPU (computing logic, LcompC), orange (representing buffers and

queues) for communication logic Lcomm, green for computing logic integrated with

the networking hardware for altruistic computation, LcompN . The physical topologies

in figure 2·2 represent conventional multilevel indirect networks such as Clos and N-

fly that are common in HPC; the other figures show a grid; but neither topology is

specific to models I or D.

Our proposal resembles figure 3·1. Computing capability is added to each node in

25

the IC that handles switching. The two designs shown differ only in physical topology

and in the number of ICs used to contain the three types of logic functions LcompC),

Lcomm, and LcompN . This is to be done with FPGAs so that the communication and

AC logic can be as tightly coupled as possible. There is a much greater bandwidth

per link, through the use of many MGTs in each direction. The rest of the node

design remains, possibly including a conventional CPU with memory and a GPU or

other co-processor. Such designs have been little-studied in recent times.

For the purposes of our case studies we ignore the CPUs and other parts of a node

outside the FPGA. We wish to show how much computation could be attained with

CiN via a shift of logic from Lcomm to LcompN , while the rest of the node is free to

perform other work.

3.2.2 Other Work With FPGAs and of Type D”

Prior work of this type includes the Novo-G# system (George et al., 2016), which has

been used in earlier work by others here at Boston University. It is a 64-node system

with Stratix-V FPGAs performing all the networking functions, as well as computing

(in the cited paper, the application is a 3-dimensional FFT). Each link provides 40

Gib/sec of bandwidth in each direction.

The Microsoft Catapult I system (Putnam et al., 2014) had 48 cloud-type nodes

each with an FPGA for application-specific coprocessing. The FPGAs have their

own network in a 6 × 8 torus topology. Each FPGA has a shell with router for

communicating with the other FPGAs, a PCIe interface to its host CPU, and DDR3

channels to memory; and a role or application area to implement a specific HPC

application. This is similar in some ways to what we are proposing.

Our CAAD laboratory is the first to implement wormhole virtual-channel-based

routing on a network based on FPGA MGT links (Herbordt, 2018, p. 31).

A recent CAAD Ph.D Thesis (Sheng et al., 2017) deeply explores a D”-type system

26

design similar to that we are proposing. To the extent that our proposal would be

used to perform the same task (3D FFT suitable for molecular dynamics), we propose

to build on it by increasing the inter-node bandwidth. We are building on that

work in other ways, notably by supporting completely different computation tasks.

However we share a fundamental design choice with Sheng because, as he wrote,

“the co-location of user logic and router [is crucial for achieving] tight coupling of

communication and computation”.

Sheng discusses a conventional router design that uses virtual channels and per-

forms wormhole routing, such as is described in (Dally and Towles, 2004). Sheng

proposes the addition of pipeline stages to accommodate collective operations (such

as multicast and reduction), which we would include in order to maintain versatility.

He also proposes an enhancement specifically for Novo-G#, involving injection ports

and ejection paths. These are for leaf traffic, and for messages that traverse only one

link they bypass most of the routing logic, reducing latency.

3.2.3 Improvements to Bandwidth and Latency

The latest FPGAs support on the order of 96 MGT channels per chip. If connected

in a 3D grid, each FPGA could have up to 16 channels per grid direction. Each

MGT can operate as about 20 Gbits/sec, giving about 2 GiB/sec per channel or 32

GiB/sec overall per direction. This is of comparable magnitude to the bandwidth

of DDR channels to memory. For example, the Intel Xeon E7-4830V3, a 12-core

Haswell-EX product (Intel Corporation, 2015b), has a total memory bandwidth of 85

GB/sec.

Turning to latency, the MGT channels incur a latency of about 100 ns. As seen in

figure 4·5 traffic originating on-chip bypasses some of the routing logic and queues, as

does traffic destined on-chip. So, routing adds only a few cycles when the communica-

tion traverses only a single link. Therefore, the expected latency will be comparable

27

to that of a DDR memory device.

The grid or torus physical topology is suitable to some classes of problems, but not

all. We accept this limitation but point out that our proposal is equally applicable

to any physical topology.

3.2.4 Differences From Prior Work

This proposal involves a single chip type performing an entire task, such as Matrix-

Matrix Multiply (MMM). Systems with this attribute were once popular (most no-

tably in the late 1980s and early 1990s), when they were called single-chip glueless

scalable designs. There are a few important differences here.

Out thesis does not propose to do any HPC task completely in the FPGAs; rather

the FPGAs are primarily there to perform the communication processing, but are

augmented with the capability to perform certain computational tasks as well.

Our thesis does not deprecate multi-IC node designs or mandate a transition to

single-IC designs; to the contrary, the standard CPU is assumed part of the design as

it is general-purpose with memory and possibly such things as PCI-attached storage

or a GPU. The Microsoft Catapult I (Putnam et al., 2014) system approaches our

proposal, but we propose much greater bandwidth for inter-FPGA communication.

Older glueless designs used synchronized clocks, and usually a system-wide syn-

chronous broadcast of some kind (as in early massive-scale SIMD systems, such as

(Hillis, 1984), in later special designs e.g. (Kogge, 1994)). Present-day GPUs are

SIMD-like, with many stream processors within a single chip. Our proposal does not

rely on or propose global synchronization. However we do place a heavy emphasis on

avoiding variations in latency to improve overall performance.

28

3.2.5 General Distributed-Computation Design Considerations

Routing Without Bubbles : In an older “telephone model” for computer networks,

a point-to-point connection is established and bandwidth is guaranteed: once the first

unit of data arrives, the rest of the data stream can be sent without bubbles or gaps

between data elements. This would be possible if a number of conditions hold: 1)

The partitioning of the application maps onto the network graph in such a way that

all communications traverse only a single edge; 2) this mapping does not change (no

node failures or task migration); and 3) any given data stream is completed before

another one starts. For the purposes of the following analysis, the first is the most

important because it avoids two simultaneous data streams competing for any link.

Graph Emulation of a 2D Grid : A system might not actually provide a 2-D

grid, because of its network topology, or because of the unavailability of a subset of

nodes that are connected in a grid. In this case the application designed to use a

2-D grid pattern of communication will still use such a pattern, but actual network

traffic will follow some other pattern. The physical network is said to be emulating

the application’s desired topology. Messages will need to traverse two or more edges

of the network graph, greatly increasing latency as compared to the ideal mapping in

which the physical network matches the application’s needs.

To mitigate this problem, HPC systems often allocate nodes to tasks in a way

that tries to map the application’s desired graph onto the physical graph in a way

that is optimal with respect to latency.

Our MMM and sparse matrix inversion examples use algorithms that can be done

efficiently on a 2D grid. We assume that a 2-D grid can be emulated on the ac-

tual network, with never more than some small constant (perhaps 2) physical hops

per emulated edge. We also assume that full bandwidth will be available over each

emulated edge.

29

There are many available algorithms for MMM on gridlike-connected many-node

systems, see for example (Li et al., 1993), (Geijn and Watts., 1997), (Gunnels et al.,

1996). We choose to use contiguous blocks of matrix data, and the Cannon algorithm

in the variant that moves A and B data while keeping C stationary. This avoids group

broadcasts (such as row-wise broadcasts of blocks in a single column); and within the

broadcast-avoiding methods it requires the fewest number of transfers overall.

Memory Capacity : FPGAs often provide one or two hard IP (non-reconfigurable,

fixed, speed and power-optimal design) DDR interfaces, and newer ones provide the

ability to control several or many channels. Stratix 10 products support several DDR

memory interfaces (limits depend on the specific product, design limitations of power

usage and speed (Intel Corporation, 2018), and overall system cost). Having many

channels and many attached memory devices will contribute greatly to the cost of

the node. We consider this to be a sufficiently great disadvantage that it is not worth

pursuing further. A single DDR interface may make sense; more than that would

overly narrow the applicability of our study.

Given a limit to at most one DDR interface, it cannot contribute much to data

access bandwidth. By contrast, there are many small memory blocks on the FPGA

itself, each of which can be addressed independently and each providing high band-

width. The designs considered here do most (or all) of their data access via on-chip

memory.

Memory Bandwidth and Communication via MGTs :

A DDR4 channel at 2333 MHz provides 18.7 GB/sec of throughput and various

latencies (depending on access patterns and controller design, see (Song and Parihar,

2012) and (Chang., 2017); for our purposes 10ns-100ns is a good guideline). These

are comparable to the use of 8 MGT transceivers in parallel. With 16 MGTs per

edge of a 2D or 3D grid/torus topology, nodes can receive data from a neighbor at

30

a higher sustained rate than they could read that data from locally attached DDR4

SDRAM.

FPGA Utilization and Efficiency Trade-offs :

FPGA design has many inter-related restrictions. They often occur in the form

of trade-offs: for example, a designer might find that not all of the device’s DSP

units are available because there are not enough general-purpose connection buses to

place and route the specified design. They would then need to either reduce the scale

of the design (and not use all of the chip’s DSPs) or change to a design that uses

a less demanding connection scheme. Thus, there is a trade-off between DSP unit

utilization and connection flexibility.

Many place-and-route and timing limitations are too complex to work out directly;

instead one must simply try a design, see what does not work, then change the

design and try again. This situation is exacerbated by a very slow development cycle

(typically many hours to place and route a design). Some of these difficulties are cited

in (Baxter et al., 2008), which describes experiments on a grid FPGA supercomputer

with a design similar to that we propose. They report place-and-route times on the

order of six hours. The situation hasn’t improved in ten years; here in the CAAD lab

we are seeing times of 18 hours or more.

In our estimates we assume that the FPGA and design tools will enable routing all

signals in any reasonable design that employs fewer than 90% of the DSP units, and

that long signal paths will need to be registered, adding a few or several clock cycles of

latency. Here we make a similar assumption with regards to ALMs (general-purpose

logic) and memory blocks (BRAMs and lookup tables).

Power Efficiency : As outlined in section 3.3.2, the thermal budget of the latest

FPGAs is comparable to the latest high-performance CPUs. Depending on DRAM

utilization and other factors, this proposal could double the power usage of each HPC

31

Figure 3·2: A Stratix
10 DSP block (from (Intel
Corporation, 2017b))

Figure 3·3: One possible
arrangement of DSP blocks
on an FPGA (from (Linux-
Gizmos, 2017))

node when working on a particular task. This would be partially offset by the use of

the FPGA, and not an ordinary NIC, to provide all networking functions. It is also

important to ensure that functional units within the FPGA design can be shut down

when not in use to save power.

3.3 Product-Specific Design Considerations

In all cases we treat the Stratix 10 family as an example of FPGA designs in general;

many other general-purpose FPGAs will have all of the constraints described here,

differing only in details.

3.3.1 Stratix 10–DSP Blocks

Figure 3·2 shows a typical FPGA hard compute unit: the DSP block in the Stratix

10 series. Note the ability to accumulate a new product into a sum in a single cycle:

streaming two vectors into the Ay and Az inputs will result in their dot-product on

the output 5 cycles after the final vector elements are input.

The design shown process data in IEEE 32-bit floating-point format. This is

one of several user-accessible configurations that are all implemented by the same

underlying hard IP. Another option provides two multiply units, but in fixed-point

32

representation and at lower precision.

3.3.2 Stratix 10–Communication Links

Power Requirements of MGTs : It is unclear whether all 96 MGTs in a Stratix

10 could be used at the same time, while also using a significant fraction of the DSP

and memory blocks. The answer will depend on clock speed as well as the cooling

system. We are using 300 MHz as a design clock frequency. Intel/Altera provide some

power estimation guidelines (Intel Corporation, 2016) that suggest that the memory

blocks will use about 7 W, the DSP blocks 8.6 W, all 80 MGTs operating at 17.4

Gbps would use 45 W; all with the core clock at 500 MHz (which itself should use

about 6W). The estimated total TDP would be around 70W; the package size and

design are similar to recent dual-socket Xeon CPUs, which have similar or higher

TDPs (Intel Corporation, 2017c).

Impedance Matching : To operate at full speed, the MGTs need to be config-

ured to match the impedance and other electrical characteristics of the interconnect

cables. This configuration can take quite a bit of effort with individual adjustments

per link; however it helps to match cable types and lengths whenever possible.

Bandwidth : The bandwidth of a single MGT channel can exceed that of a

BRAM’s write port. For example, in much of the work of (Sheng et al., 2017) the

core clock was 150 MHz and MGT clock was 75 MHz, with one phit (physical digit)

of 256 bits being transmitted each MGT clock. The BRAM word width is 64 bits,

so if a single BRAM port is used (the other port is needed for other purposes) the

MGT bandwidth is 4 words per MGT clock and 2 words per core clock. If the BRAM

is clocked at the core clock speed, it would require the use of two BRAM blocks or

slices to keep up with a single MGT’s receive data stream.

Latency : In (Sheng et al., 2017) is a statistical study of latency of the Stratix V

MGTs, using a phit rate (MGT clock) of 75 MHz. The mean latency was about 13

33

clocks, and standard deviation about 1. The core clock (used for the router logic) was

twice the speed of the MGT clock, and routing required 7 clock cycles. Allowing for a

4.5− σ departure from the mean, latency can be estimated to be 13 + 4.5 + 7/2 = 21

MGT clocks, or about 280 ns.

Jitter : Each multi-gigabit link uses two clocks, one in each direction, each syn-

chronized with the sending end’s clock. These clocks cannot be perfectly in sync, so

the rate of data flow in each direction through a given MGT will vary. This issue is

handled inside the MGTs on the sending end by deliberately inserting a filler phit at

intervals, and on the receiving end by discarding these.

For example, if a node is sending 2048 phits through its MGT and the core clock

rate is exactly twice the MGT clock rate, it will take 4096 core clock cycles to send

all the data; but in the same time the number of phits received from the other end

might be 2047 or 2049. Also, if two blocks of data is sent out over different ports,

and two others being received, the transfers will take different amounts of time even

if all four blocks are the same size and there are no routing/buffering delays in the

network.

Therefore, it is important that the controllers responsible for generating outgoing

data streams and handing incoming data be independent from each other and from

the controller(s) doing local calculation. Double-buffering will be used (to calculate

on one block of data while the next is being received), so the master controller may

need to wait for all transfers to complete and for local computation to complete before

attempting to switch buffers or initiate new transfers.

34

3.4 Considerations Specific to Most Problems

3.4.1 Granularity of On-Chip Memory

Stratix-10 (and any FPGA family/architecture) has a limited number of memory

partitions. In the higher-end variants of Stratix 10 there are over 11,000 “M20K”

blocks (each has 20,000 bits), which can be combined to make larger blocks. This

is not enough to have, for example, two memory blocks for each DSP block (unless

no memory were being used for anything else!). It is unlikely that desired memory

sizes will be an exact multiple of the M20K blocks’ size. Designs must take these into

account by allowing for a large fraction of BRAM capacity to remain unused.

35

Chapter 4

Case Studies

4.1 Method

It is beyond the scope of this thesis to create a whole FPGA design including a router

design like (Herbordt et al., 1999; Sheng et al., 2014; Sheng et al., 2015b; Sheng

et al., 2016b; Sheng et al., 2016a; Sheng et al., 2017; Sheng et al., 2018) along with

one of the applications described below, and get a many-node configuration running

in simulation.

To estimate the performance of a multi-FPGA algorithm, we work out how the

task can be split across multiple nodes, then estimate the time taken for the local

computation on an individual FPGA, and estimate the time for each FPGA to send

data to neighboring nodes. These estimates are then combined in the appropriate

way (with overlap in time, when possible). All of the considerations described above

(such as latencies of the DSP blocks) are taken into account.

4.1.1 Dense Matrix-Matrix Multiply

As we mentioned in section 3.2.4, we chose a distributed dense matrix-matrix multipli-

cation technique that avoids row-wise or column-wise broadcasts and communicates

only between adjacent neighbors on a 2-D grid. The local computation consists of

dense matrix-matrix multiplication of two blocks of A and B (treated as smaller ma-

trices) to yield a block (matrix); several of these are added together to form that

node’s share of the final answer C. With extra buffers, each local MMM can be done

36

while the next blocks of A and B are being sent.

4.1.2 Single-FPGA Dense Matrix-Matrix Multiply

In the matrix multiplication C = A×B, the elements of C are dot-products of rows

of A with columns of B. The computation of a dot-product of two k-element vectors

can be viewed as a dependency tree, with a minimum latency of dlog2(k − 1)e times

the latency for addition plus 1 times the latency for multiplication. However a full

add tree would consume at least k DSP units for each k-element dot-product that we

wish to compute in parallel, and most of these resources would be idle for most of the

time, unless (for a massively-parallel SIMD or systolic implementation) the memory

for all three arrays A, B and C were partitioned into at least as many slices as we

have add-multiply trees.

Instead, a single DSP unit can compute the k-element dot product with a latency

of k − 1 additions and 1 multiplication if it performs each multiplication serially. If

the product C is of dimensions n×m, then all nm dot products could be computed in

parallel using nm DSP units, if the A and B matrices are stored in BRAMs that are

partitioned (sliced) by rows and by columns respectively. The nm DSP units would

each have its own minimal-size BRAM to store a share of C.

In ideal form (which is not possible, as described below) is illustrated on the left

side of figure 4·1. On the jth clock cycle, the i BRAMs holding the i rows of A would

each broadcast one element Aij to all of the DSP blocks in the corresponding row

of C; simultaneously each of the BRAMs holding the columns of B would broadcast

the jth element to the corresponding column of C. The entire process would take k

cycles of broadcasting, plus the latency of the first multiply-add, to get a dot product

Cij, a single element of the answer.

For computing products of large arrays we need to store more than a single row

of A and B per BRAM block, and have DSP blocks computing more than a single

37

B

CA
●
◍
○

■
▥
□

Colors represent
successive clock
cycles: t1, t2, t3, ...

In area C, black
represents activity
at every clock cycle B

CA
●●● →

●●● →
●●● →

↑
●
●
●

↑
●
●
●

↑
●
●
●

Altered timing to
avoid broadcasts

▲
▲
▲

▲
▲
▲

▲
▲
▲

▲
▲
▲

▲
▲
▲

▲
▲
▲

■
▥
□

■
▥
□

■
▥
□

■
▥
□

■
▥
□n

m

k

k

●
◍
○

●
◍
○

Figure 4·1: Single-chip matrix-matrix multiply using a large array of
DSPs performing multiply-accumulate. a) depicts idealized operation
using broadcasts of A elements to an entire row, and of B elements to
an entire column, of the DSPs. b) alters the timing so that elements of
A and B travel one cell at a time through the systolic array.

element of the product C. With a suitable controller we can hide most of the latency

of the multiply-add, and of the propagation through the systolic array, which we

address next.

4.1.3 Data Broadcast Timing

In practice, large broadcasts are a bad idea in FPGA design. The DSP blocks on an

FPGA are in a fixed layout that is meant to be fairly optimal for the majority of user

designs, and that means it will not be conveniently arranged in an n×m grid for us.

It is fair to guess that if a design attempts to broadcast Aij to all of the DSP blocks

in the corresponding row of C, the longest path in the broadcast distribution tree will

be a major fraction of the distance across the chip, traversing many junctions of the

interconnect fabric, each adding gate-delays. Therefore we assume that a single-cycle,

or even a “few”-cycles row-broadcast is impossible. (The handling of a core clock is a

separate case: FPGAs have special clock distribution trees that bring a synchronized

38

clock to all parts of the chip, most user designs require one or more global clocks. See

e.g. (Altera, 2017))

Altera and Intel (Intel Corporation, 2015a) have made a big deal about the Hyper-

Flex architecture and Hyper-Registers that are used by the design tools to automat-

ically pipeline long chains of combinatorial logic and help with long paths through

the FPGA’s interconnect. Though a single-cycle broadcast is likely impossible, a

“few”-cycles broadcast latency-matched to all recipients would probably work, and

that could just be added to the existing five-cycle multiply-add latency of the DSPs.

4.1.4 Systolic Array MMM Designs

However, we can instead use a classical systolic approach in which no data element

moves more than one cell per clock cycle. This makes the overall design easier to

place and route, makes this analysis more definitive, and does not incur significant

loss of performance, because after the first k cycles the extra latency can be hidden

by starting the next set of ij dot-products while the previous one is completing. Each

cell of the systolic array is one BRAM and one DSP block and is working on a single

element of C at any given time; elements of A travel horizontally through the array

while elements of B travel vertically.

The overall multiplier design is shown in figure 4·2. Each clock cycle, one element

of A is read from each of the slices of A BRAM and fed to the leftmost element of

a row of the systolic array. At the same time, an element of B is read from each B

slice and fed to the bottommost element of each column.

The rows and columns each need a controller. This controller decides which BRAM

element to read out on the current clock cycle, and when to tell the systolic cells to

write their result (sum), reset the running total to zero, and/or start on a new element

of *C*. If one of these special things needs to happen, the message needs to be passed

along to all the cells in the systolic array. This is done with control signals generated

39

B
 B

R
A

M

C
ol

um
n

C
on

tr
ol

le
r

B
 B

R
A

M

C
ol

um
n

C
on

tr
ol

le
r

B
 B

R
A

M

C
ol

um
n

C
on

tr
ol

le
r

B
 B

R
A

M

C
ol

um
n

C
on

tr
ol

le
r

MMM
Master

Controller

...A
i
 BRAM

Row Controller
systolic

cell
systolic

cell
systolic

cell
systolic

cell

...A
i
 BRAM

Row Controller
systolic

cell
systolic

cell
systolic

cell
systolic

cell

...A
i
 BRAM

Row Controller
systolic

cell
systolic

cell
systolic

cell
systolic

cell

...

...

Not shown: global
clock; 2nd ports to

BRAMs

Figure 4·2: Systolic array Matrix-Matrix Multiply. Details in text.

by the row controller.

Each cell of the main systolic array is as shown in figure 4·3. On each clock

cycle, a value from array A and a value from B arrive from the left and from below,

respectively. In addition, from the left come control signals telling when to start

working on the next element of C. Typically, the A and B values will get sent to

the inputs of the DSP block, which is operating in IEEE 32-bit multiply-accumulate

mode. The DSP block outputs its current sum, and this sum lags behind the input

by five clock cycles.

Each slice of A has a BRAM slice and a row controller, shown in figure 4·4. The

row controller receives an opcode, number of columns, and current row index from

below; on each clock cycle it passes these values to the row controller above it. When

the row controller is told to begin a row, it resets its column counter to zero. On each

clock cycle it reads a data value from BRAM, which gets sent into the row of the

systolic array. When the column counter reaches the maximum, the controller stops

40

ctl

C
BRAM

DSP block
x+

A
ij

B
ij

Not shown:
global clock;
2nd port to

BRAM

Figure 4·3: One cell of the MMM systolic array. Details in text.

Address
Calculation

<=

from row below

15 .. 0
column

(counter)

N
columnsop

15 .. 0

row
31 .. 1633 32

control
logic

to row above

reset,incr
control

(to array)

data
(to array)

A
i
 BRAM

Figure 4·4: One row controller. Details in text.

fetching new data from the BRAM but waits five more clock cycles before sending the

control signal into the systolic array telling it to write sums back into the C BRAMs.

4.1.5 Flexibility of Design; Choosing Dimensions for Simulation

The DSP blocks in a modern FPGA are not clustered together in a single block;

long columns such as in figure 3·3 are more typical. In order to maximize efficiency in

place-and-route (both in the quantity of logic modules, DSP units, etc. needed for the

design, and to achieve the highest possible clock speed) it is likely that a rectangular

array would be preferable to a square systolic array. There is no special reason a

41

square is needed, though aspect ratios closer to 1.0 are better because they reduce

the max(n,m) − 1 latency discussed below. There is no change in communication

bandwidth needed for the multi-FPGA design, so long as the entire problem is broken

up into an integral number of rows and columns of equal size. This can be achieved

by adding extra columns/rows filled with zeros if needed.

For computing products of large arrays we need to store more than a single row

of A and B per BRAM block, and have DSP blocks computing more than a single

element of the product C. If the BRAMs for A and B are large enough, the number

of rows per slice of A can be the same as the number of columns per slice of B, and in

any case this will result in the same-sized BRAM blocks because the other dimension

is still k. So, without loss of generality we can use a rectangular systolic array of any

aspect ratio to efficiently perform the C = A×B matrix multiplication for any values

of (n, k,m).

Therefore, for the rest of this discussion we will take (n,m) = (32, 32) and i =

j = k = 1024, we are multiplying two 1024 × 1024 square matrices. There is a grid

of (32× 32) cells, each consisting of a DSP block and its associated BRAM, holding

a 1/(32× 32) = 1/1024 share of the product array C.

4.1.6 Time for Local Calculation

Each row of the grid is fed by BRAM that holds a 1/32 share of the rows of array

A; in the example these would each hold 32 × 1024 elements. Elements of A travel

horizontally through the row, one cell per clock cycle. Similarly, each column is fed

by BRAM holding a 1/32 share of the columns of array B, 1024× 32 elements in all,

and data travel vertically one cell per clock.

The design described in the previous section delays rows of A and columns of B

in such a way that matching pieces of data reach each cell of the systolic array at the

same time; see the simplified sketch in figure 4·1. In the figure, the bottom row of A

42

and the left row of B can begin on the first clock cycle; the next row and column can

begin one clock cycle later, and so on. The maximum delay will be one less than the

number of rows or the number of columns in the systolic array, whichever is larger.

Thus the latency to the farthest corner (upper-right cell) will be max(n,m)− 1, i.e.

31 clocks in this (32× 32)-cell example.

Within the DSP block there is a 4-cycle latency to get the first pair of data through

the multiply unit and adder, and one more cycle for each additional pair of terms

whose product is added to the running total.

Each element of the final product matrix C is computed in L+ 1024 consecutive

cycles, where L is the total latency (31 + 4 in this example), but they aren’t all

computed during the same L + 1024 cycles. With a 32 × 32 systolic array we can

compute 32×32 elements of C in L+1024 cycles. The node’s share of C is likely bigger,

and if so, the DSPs will each begin on another element of C and the appropriate rows

of A and columns of B will be streamed out of the BRAMs. For these subsequent

phases of the operation, most of the 31 + 4 cycle latency can be hidden by starting

on the next A row and B column shortly after the previous ones have finished. There

still need to be a few cycles for the DSPs to get the full total for writing back to the

C BRAM, then to clear their running total to zero to start a new dot product.

Because each cell in the systolic array holds a 1/(32 × 32) = 1/1024 share of

the product array C, the entire calculation of C = A × B would take 1024 of these

(1024 +L)-cycle phases. Using a highly conservative 150 MHz core clock, this design

would take 7.0 milliseconds to compute the product of two 1024× 1024 matrices.

Intel/Altera claim 9.2 TFLOPs (IEEE single precision) for the Stratix 10 2800

products, which have 5760 DSP units; this means they’re counting on all being utilized

and a clock speed of 800 MHz.

We have been assuming that only a fraction of the DSP units will be available

43

and a much more modest clock speed. Others in our research group who are familiar

with the Stratix 10 have advised us that it’s reasonable to estimate a core clock of

300 MHz would be attainable, but not much beyond that. At 300 MHz, the time for

the 1024× 1024 MMM drops to to 3.8 msec.

It is also reasonable to expect that a larger than 32× 32 systolic array should be

achievable; up to 5760 DSP blocks are available. Using a 64×64 systolic array brings

the time down to 0.87 msec, and floating-point performance to 2.46 TFLOPs.

4.1.7 Dense MMM on a Grid of FPGAs

As we mentioned in section 3.2.4 we chose the Cannon algorithm with stationary

matrix C to organize the movement of blocks of matrix data between the nodes on

a grid. This algorithm is described in (Li et al., 1993). To summarize, the elements

of A and B are initially distributed evenly among the nodes of a 2D grid; there is an

initial setup phase in which row i and column j need to be rotated until all pieces

of A and of B are on the same node as a corresponding piece of C that depends on

both of them; and thereafter the calculation is done concurrently with simultaneous

single-step row- and column-rotations until every dot-product in C is complete, which

can be done without any computing elements being idle.

We assume that the FPGA design includes a wormhole, virtual-channel based

router similar to that shown in figure 4.4 of (Sheng, 2017). A block diagram is in

figure 4·5, showing just four pipeline stages (routing computation, virtual channel

allocation, switch allocation, switch traversal). That work develops the router design

further to include three more stages to handle collective operations, but we have left

these out of the diagram for simplicity.

Above in section 4.1.6 we discussed BRAMs holding “slices” of arrays A and B;

in the example there were 32 slices for each.

For the multi-FPGA design these BRAMs would need to be doubled in number,

44

...

Async FIFO Route Comp.

Async FIFO

Async FIFO

to user
logic

...

VC Allocation

...

Async FIFO

Async FIFO

Async FIFO...

...

...

Virt. Channel

Virt. Channel

Virt. Channel

Virt. Channel
from X+

from X-

from Z-

to X+

to X-

to Z-

Input Units

from user
logic

Switch Allocation

Switch
Route Comp.

Route Comp.

Figure 4·5: Router design suitable for our proposal. Adapted from
(Sheng, 2017).

but each slice remaining the same size as before, to hold two equal-sized blocks of

A or B data. One of these BRAMs is in write mode, storing data being received

from a neighbor node, while the other BRAM is in read mode on both of its ports,

transmitting its contents to a neighbor node while simultaneously supplying data

(usually with a different access pattern) to the calculation units.

Data must travel between the router and the BRAM slices of A, B, and C. For

the same reasons that we are using a systolic array for computation, we must use a

design for reading and writing the BRAMs that will avoid long paths through the

interconnect. This can be done by a mechanism like that in figure 4·6. There will be

circuitry like this for all five sets of BRAM slices (two of A, two of B, and C).

Suppose one set of BRAM slices is currently the receive buffer for a block of A

data from the router. A controller will monitor the receive port(s) of the router,

waiting for the appropriate packet to arrive. Each time payload data arrives, it will

place that data, along with an appropriate address and control bits indicating write,

to the register address data R/W in the figure. An address decoder looks at the

address to see if it applies to any of four BRAM slices under its responsibility. If

there is a match, it asserts the select line of the BRAM and gives that BRAM the

needed address bits and R/W control signal. The BRAM reading data asserts its data

output, and the multiplexer (also controlled by the address decoder) routes the data

45

to the address data R/W register on the bottom. That register leads to similar

logic for another set of BRAM slices.

Operation is similar in the case of reading data and streaming out to the router.

In this case, there is also the possibility of back-pressure from the network’s flow

control. If at some point the router cannot accept more data, the process of reading

data from the BRAMs will have to pause. For this reason, the controller responsible

for transmit-receive needs to have a buffer large enough to hold however many data

reads might be in flight. In the example shown in the figure the BRAMs are in groups

of 4, and for this discussion we have been considering a total of 32 BRAM slices per

set; so there might be as many as eight address data R/W transactions in the

pipeline. There needs to be a buffer that can hold this much data. The same buffer

will also be used for assembling data into the flits (flow control digits) used by the

router, for example combining four 32-bit floats into a 128-bit flit.

We now point out that in the single case of the C BRAMs, there are more and

smaller slices. A similar design will work, but there is potentially more latency. It

would also be feasible to distribute the C BRAMs among several groups each with its

own address data R/W transaction pipeline, bringing the latency back down to a

level comparable to the others but adding some complexity to the master controller

for C BRAMs.

There is the possibility, mentioned in section 3.3.2 under the heading Bandwidth,

that it might take more than one BRAM block to keep up with the MGT rate. This

might mean slicing the BRAMs up to a greater degree than discussed already. In this

case sets of BRAMs (each with its own read-write transaction pipeline and controller)

can be associated with MGTs via multiplexers and/or demultiplexers. In a 32 × 32

systolic array example, if we use 4 MGTs per grid direction then each would be

matched to 32/4 = 8 pairs of BRAMs.

46

address data R/W

Not shown: global
clock; MMM
systolic array

address data R/W

to later stage or controller

from earlier stage or controller

BRAM 3

BRAM 2

BRAM 1

BRAM 0

addr. decode

Figure 4·6: Writing a data stream to, or reading a stream from,
BRAMs organized as slices. Details in text.

As discussed earlier the latency in MGT clocks for sending data through one link

in the network is about 20 MGT clock cycles. Different router and buffer designs

are described (Sheng, 2017); we are including latency for: the MGTs themselves,

small FIFOs to deal with jitter, and a 7-stage router which includes stages to handle

collectives. These are MGT clock cycles or phit cycles. Throughput is one phit per

cycle, the phits are 256 bits = 32 bytes = 8 data elements; the MGT clock speed is

75 MHz.

4.1.8 Simulation for Performance Estimation

We created a program to simulate the operation of a multi-node distributed matrix-

matrix multiply, and another program to calculate the time it would take, incor-

porating all of the details as discussed above. This second program works out the

times needed for communication and for local computation, then computes total time

based on the constraint that both need to finish before the next stage of the Cannon

algorithm can proceed.

47

To illustrate this by example: If the local blocks of data are 1024 × 1024 in

size, there are 1024× 1024× 4 bytes = 128× 1024 = 217 phits of A data to transmit

to the west while getting the same amount from the east. Using a single MGT,

the communication would take 217 clocks at 75 MHz, which is 1.7 milliseconds. The

system would be compute-bound if each FPGA has a 32×32 systolic array running at

the clock speeds considered earlier (7.0 or 3.8 msec of compute time). With a 64× 64

array, the local calculation would proceed 4 times as quickly (1.75 or 0.95 msec) and

so the system would be roughly evenly balanced if using the slower clock speed, or

communication-bound with the faster clock speed. We will elaborate more generally

on when the system is compute- or communication-bound in the next section.

4.1.9 Estimated Performance

In figures 4·7 through 4·7 are shown four corners of the HPC FPGA design space:

varying the on-chip computing capacity on the one hand, and communication capacity

on the other. Within each chart there are plots showing performance versus problem

size for three choices of the system’s grid size (i.e. the number of FPGA nodes in a

2-D torus network).

In figure 4·7 (a) there are 4096 DSP units and only 4 MGTs per grid direction in

the 2D grid. In all cases shown, the computational power of the systolic array is so

great that the whole system is communication-bound: It takes longer to transmit the

data from one node to the next than it takes for each node to do its local computation.

As the problem size increases (moving to the right on the graph) it takes 4 times as

long for nodes to transmit their share of A and B, and 8 times as many computation

operations need to be done. Since it is communication-bound, we are doing 8 times

as much computation in 4 times as much time, so the curves slope up at the rate

of doubling the TFLOPs for each doubling of matrix size. In the left-most part of

the graph, particularly for larger grid sizes, the amount of data being communicated

48

10

100

1000

1000 10000

TF
LO

Ps
/s

ec

matrix size

Performance by grid size and matrix size
using 4096 DSPs and 4 * 4 MGTs per FPGA

8x8 grid
16x16 grid
32x32 grid

(a)

10

100

1000

1000 10000

TF
LO

Ps
/s

ec

matrix size

Performance by grid size and matrix size
using 4096 DSPs and 4 * 16 MGTs per FPGA

8x8 grid
16x16 grid
32x32 grid

(b)

Figure 4·7: Effect of using more transceivers. (a) 4096 DSPs, 4 MGTs
in each direction. Most problem sizes are communication-bound. (b)
4096 DSPs, 16 MGTs in each direction. Larger problems now compute-
bound. In all cases the smallest problems are latency-bound.

10

100

1000

1000 10000

TF
LO

Ps
/s

ec

matrix size

Performance by grid size and matrix size
using 256 DSPs and 4 * 4 MGTs per FPGA

8x8 grid
16x16 grid
32x32 grid

(a)

10

100

1000

1000 10000

TF
LO

Ps
/s

ec

matrix size

Performance by grid size and matrix size
using 256 DSPs and 4 * 16 MGTs per FPGA

8x8 grid
16x16 grid
32x32 grid

(b)

Figure 4·8: These two charts consider using fewer DSP units. (a)
256 DSPs, 4 MGTs in each direction. (b) 256 DSPs, 16 MGTs in each
direction.

49

is relatively small. The communication time ends up being dominated by the initial

setup phase and by the communication latency. Thus the slope is steeper in that

region. It is more prominent in the larger grids because these require a greater

number of steps for the setup phase, and because with a larger number of FPGAs,

each FPGA’s share of the data is so small.

Moving to the far corner of the design space, in figure 4·7 (b) we have a much

smaller 16× 16 systolic array and a much larger communication bandwidth by using

16 MGTs for each direction on the grid. Almost all problem sizes are computation-

limited, and plateau at a TFLOPs/sec level that corresponds to all MGTs on all

FGPAs working full-time.

4.1.10 Comparison to Rival Architectures

Table 4.1 compares these results to a conventional HPC system and to a single node

with GPU.

Table 4.1: MMM Performance Comparison

System Nodes Matrix GFLOPs GFLOPs Theor. Utilization
Size /node Peak

Multi-FPGA 4K DSPs . 1024 32768 2.38× 106 2324 . . . 9200 25%

Multi-FPGA scaled 1024 32768 13000 12.7 13.6 93%
Multi-FPGA scaled 4096 32768 51900 12.7 13.6 93%

Blue Gene/P1024 30000 8800 8.6 13.6 63%
Blue Gene/P4096 30000 28700 7.0 13.6 51%

GeForce GTX 10801 10304 7500 7500 . . . 8300 90%

We compare the 1024- and 4096-node results from section 4.1.9 to the comparably-

sized results from (Schatz et al., 2016). In that work the authors use an IBM Blue

Gene/P system, citing a per-node theoretical peak computing rate of 13.6 GFLOP-

s/sec and networking bandwidth of 2.55 GB/sec per link.

Note that our results for Stratix 10 2800 FPGAs only utilize 25% of the manufac-

50

turer’s claimed peak GFLOPs. This is primarily due to the conservative assumptions

of section 4.1.6 : using a 300 MHz clock instead of 800 MHz; not using all of the DSP

units. It would likely be possible to get much closer to the theoretical peak.

For easier comparison to our proposal, the lines in the table labeled “Multi-FPGA

scaled” represent our FPGA design but using only 16 DSPs and 4 MGT links per

FPGA, with clocks adjusted so that the computing rate of the DSPs exactly matches

the Blue Gene/P node ratings. The table shows the results of that paper when using

the Stationary type C version of eSUMMA-3D, a version of the Scalable Universal

Matrix Multiply Algorithm that they optimized for use on the 3-D grid topology of

the Blue Gene/P.

The results show that performance is comparable when the FPGA nodes’ compute

and communication bandwidth are adjusted to match the Blue Gene/P, and also show

the performance gain that should be possible with our design.

The table also shows results from (Anders and Chrzȩszczyk, 2017), an Nvidia arti-

cle presenting source code for linear algebra operations using CUDA, along with some

benchmark results on a GeForce GTX 1080. That GPU has a theoretical throughput

of 8.3 TFLOPs/sec; the authors achieve about 90% of this on a dense matrix multiply

with N = 10304.

4.2 Sparse Matrix Multiplication and Transpose

Large graphs (possibly directed, and with edge weights) are most naturally stored

in sparse matrix form. Sparse matrix storage formats vary widely, see for example

(Kestur et al., 2012); most can be characterized as compressed rows (or columns)

possibly including non-compressed blocks of data in areas where the matrix is locally

dense, and formatted to facilitate practical stream decompression. For this discussion

we will assume that we wish to multiply two matrices A and B that are represented

51

as an explicit list of tuples (i, j, Aij) representing all nonzero elements.

For our purposes we are interested in exploring the problem of handling datasets

that are too large to fit on a single node, or where it is desirable to use multiple nodes

for gains in computing performance (in a multiplication or on other subsequent oper-

ations such as applying a nonlinear weighting function to each graph edge). Therefore

we will start by assuming that the data for matrices A and B are already distributed

fairly evenly among P nodes. Each node initially transfers its share of the A and

B data to its FPGA and asks the network to return its share of the product matrix

C = A×B.

The actual multiplication requires matching up all the elements of A in each

column i with the elements of B in the ith row. To get all such data localized onto

the same node, we want to transpose B and keep the data partitioned so that all data

from A and B with the needed matching indexes end up on the same node. Therefore,

the sparse matrix multiply solution depends on a solution for sparse matrix transpose.

4.2.1 Sparse Matrix Transpose

For the subproblem of transposing an n × m matrix B, the data consist of tuples

(i, j, Bij) representing all nonzero elements initially sorted in row-major order. It is

distributed roughly evenly among P nodes of the system: each node contains a set

of consecutive members of the sorted list. The task is to rearrange the data so that

it is sorted in column-major order.

In the initial ordering, the data are partitioned by P -quantiles according to the

row-major ordering. There are P − 1 quantile points each expressible as a pair of

values (ik, jk). These values could be used to quickly determine which node holds a

given datum. For example, the node with rank 3 holds the 4th quantile, which would

include all data from (i3, j3) up to but not including (i4, j4).

For the desired reordering, there are a different set of P -quantiles corresponding

52

to the partitioning of the set in column-major order. If these P−1 tuples were known,

each node could easily determine where each of its data needs to be sent using P − 1

local comparisons performed in parallel. The primary task is to determine these

quantiles.

We also want the A dataset, already sorted and not needed any rearrangement,

to be partitioned according to the same quantiles. In other words, for the purpose of

locating the P -quantiles, the distribution of both A and B data need to be considered

together. Hereafter it will be assumed that is the case.

4.2.2 Balanced Bucket Sort With Radix Search

Given unordered data and desiring to know the ith P -quantile, we suggest an algo-

rithm analogous to binary search. Start with a range [low..high] that covers all data

values. Choose a test value mid that is halfway between low and high. Perform a

single scan through all the data, counting how many are less than mid. If that count

is less than i/P times the total number of data, set the range to [mid, high], otherwise

set the range to [low,mid]; then repeat the process. Continue until the endpoints of

the range are identical; then they are equal to the ith P -quantile.

This process requires as many steps (full scans of all data) as the number of bits

of precision in the value that determines the ordering. In the case of transposing a

sparse matrix, the number of bits required to represent the row and column indexes

is dlog2(n+m)e for a sparse matrix of dimensions m×n. It would require this many

complete passes through the dataset for all P -quantiles to be found.

Each of these passes would consist of the P nodes streaming the entire dataset to

each other, in a ring communication pattern. As described in section 3.2.5, with at

least 8 MGTs per link, this is greater bandwidth than can be achieved on a single

node through a DDR controller.

In a radix search, the same algorithm is used, except that some larger number of

53

comparators are used to simultaneously compare the data to each of a larger number

of candidate mid values. After all data have been counted, the range is set to the

two compare-points whose counts straddle the desired quantile point. If the number

of comparators employed is r − 1 (where r is the radix, originally 2 in the case of

binary search), then the number of passes through the whole data set reduces to

dlogr(n+m)e.

The overall algorithm is a distributed bucket sort, but maintaining balanced

bucket sizes. The part just described, determining the ranges for each bucket, has

algorithmic complexity O(nlogn) where the logarithm is to base r.

To utilize a 2D grid rather than a simple ring, consider this modification of the

radix search for P nodes arranged in a 2 × P/2 2-D torus. Each row holds half of

the full A and B data, and the communication occurs only east-west as before. The

two nodes in a column share the same [low,mid1,mid2, ..., high] comparison values,

and both count the data falling in each bin; then combine their totals via a short

communication to each other, to determine the new smaller [low, high] ranges for

each quantile. This allows the complete determination of all N -quantile points to be

done twice as quickly, because the same number of MGT links are being used in the

east-west direction, but each only has to carry half as much data during each step

of the radix search. For more performance increase the number of rows, until the

additional latency of the north-south synchronization approaches the saved time to

send all data east-west.

Once the N -quantiles are known, transmit all data around the ring one more time,

and each node keeps its share of the data, being those data that fall in its bucket. In

the 2×P/2 modification of the previous paragraph, each pair of nodes must work in

pairs, using the north-south links to exchange data destined for each other’s buckets

The design can include a little extra memory, so that each of the P nodes can

54

hold a bit more than their 1/P share of the dataset; in that case it will be possible

to begin the local sorting of the buckets before the P -quantiles have been determined

precisely. Each P -quantile will definitely be somewhere within its [low, high] range at

the end of each step of the radix search algorithm, and so the entire dataset needed by

node i will be somewhere between lowi and highi+1. Once this range is small enough

so that the data in that range fit in local BRAM, that data can be sorted locally.

Each node will have extra data that can be discarded once the exact quantiles are

known.

A local sorting hardware design is a bit beyond the scope of this thesis, but there

are many results applicable to our situation. Refer to (Chen et al., 2015) and (Matai

et al., 2016) for examples.

Once matrix B has been transposed to column-major order and its elements com-

pletely sorted, the multiplication C = A × B can be done in a single pass by each

node without further communication and in a highly parallel manner, with the result

C in row-major order.

4.2.3 Performance Comparison to a Single Node

The sparse transpose on a single node will be a sorting problem requiring O(nlogn)

memory accesses limited by the bandwidth of the memory holding the data, and

perhaps about half of the sorting algorithm’s passes will have enough spatial locality

to use the cache efficiently. As described here, a multi-node sparse transpose requires

O(logn + logm) passes through the entire N data limited by the bandwidth of the

communication along one edge of the network topology graph. As described in section

3.2.5, if each network link is using 8 or 16 MGTs, this bandwidth will compare

favorably with the hard DDR4 controller on an FPGA. Using a rectangular grid

instead of a ring, the multi-node implementation has a great bandwidth advantage.

Though we have not explored this algorithm in sufficient detail to produce accurate

55

performance comparisons, we suggest that it is an area worthy of further research.

Chapter 5

Summary, and Future Considerations

Given the limitations and constraints of communication latency and bandwidth on

high-performance computing, we have identified a need for a more robust and com-

prehensive Compute in Network capability. We have described a design model for

HPC incorporating computing logic at every node in a way that provides for com-

putation tightly coupled with switching, and allowing interior nodes to altruistically

perform computations that might otherwise need to occur after input data are deliv-

ered to leaf nodes. Central to our model is the use of the FPGA as the provider of all

communication and switching, so that the amount of hardware devoted to altruistic

computation can be varied as is suitable for each application.

We show how a few broadly useful types of distributed computation can be effi-

ciently executed by a gridlike network of FPGAs with greatly enhanced interconnec-

tion links.

5.1 Impact of Future Products

We now note that planned future products such as Stratix 10 MX (Intel Corporation,

2017a) include a large amount of DRAM, using multiple dies within a single package.

These provide a much higher memory bandwidth than can be achieved with a current-

generation FPGA with a single DDR memory channel. Such a product would be a

good choice in the type of design we are proposing, a D” system with each node

including a standard CPU. The greater local memory in the FPGA would allow

56

57

larger datasets to be processed in the ways we described and broaden the range of of

applications suitable to optimization via AC and CiN.

There have been multiple reports, e.g. (Williams, 2016), of future products that

integrate a CPU and an FPGA within a package. If and when such products are

available, the effect will be similar to the FPGA with integrated DRAM. The closer

connection to CPU will make it even easier to offload some computing functions to the

network processor. The core advantage of our Compute in Network thesis remains:

the ability of nodes to altruistically compute on data that is in transit between two

other (source and destination) nodes.

In section 4.1.10 we showed a single-node result using a single Nvidia GPU with

peak TFLOPs about the same as our FPGA. Nvidia GPUs can be connected with a

scalable interconnect called NVLink; at this writing it is possible to connect up to 16

GPUs in a single-node server configuration with each GPU having up to 300 GB/sec

bandwidth through the links (Nvidia, 2018). For some applications, this or its likely

successors will rival or surpass many HPC alternatives.

5.2 Areas for Future Research

In this thesis we have provided only outlines of designs and estimates of relative

performance. It is appropriate to develop these ideas further by creating actual

FPGA designs and testing them in simulation.

If such tests yield promising results, it would then be appropriate to perform real

tests on FPGA hardware with multiple nodes and many high-speed communication

links over cable lengths like those in large-scale HPC systems.

Further development of these ideas should occur in parallel, and when possible

exchange design decisions with, ongoing development of the next version of the MPI

standard.

References

Agron Design (2013). Argon Design announces groundbreaking results for high
performance trading with FPGA and x86 technologies. Industry press release,
www.thetradingmesh.com/pg/newsfeeds/argon/item/124341.

Altera (2017). Intel Stratix 10 clocking and PLL user guide. www.altera.com

/en US/pdfs/literature/hb/stratix-10/ug-s10-clkpll.pdf.

Anders, J. and Chrzȩszczyk, A. (2017). Matrix computations on the GPU – CUBLAS,
CUSOLVER and MAGMA by example. developer.nvidia.com/sites/default

/files/akamai/cuda/files/Misc/mygpu.pdf.

Arista Networks (2013). 7124FX application switch data sheet. www.arista.com/

assets/data/pdf/7124FX/7124FX Data Sheet.pdf.

Baxter, R., Booth, S., Bull, M., Cawood, G., Perry, J., Parsons, M., Simpson, A.,
Trew, A., McCormick, A., Smart, G., et al. (2008). Maxwell–a 64 FPGA super-
computer. Engineering Letters, 16(3).

Caulfield, A., Chung, E., Putnam, A., et al. (2016). A cloud-scale acceleration
architecture. In Proceedings of the IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 13–24. IEEE/ACM.

Chang., K. K. (2017). Understanding and Improving the Latency of DRAM-Based
Memory Systems. Ph.D. dissertation, Carnegie Mellon University.

Chen, R., Siriyal, S., and Prasanna, V. (2015). Energy and memory efficient mapping
of bitonic sorting on fpga. In Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 240–249. ACM.

Chiu, M. and Herbordt, M. (2009). Efficient filtering for molecular dynamics simu-
lations. In Proceedings of the IEEE Conference on Field Programmable Logic and
Applications.

Chiu, M. and Herbordt, M. (2010). Molecular dynamics simulations on high per-
formance reconfigurable computing systems. ACM Transactions on Reconfigurable
Technology and Systems, 3(4):1–37.

58

59

Chiu, M., Herbordt, M., and Langhammer, M. (2008). Performance potential of
molecular dynamics simulations on high performance reconfigurable computing
systems. In Proceedings High Performance Reconfigurable Technology and Ap-
plications.

Chiu, M., Khan, M., and Herbordt, M. (2011). Efficient calculation of pairwise
nonbonded forces. In Proceedings of the IEEE International Symposium on Field
Programmable Custom Computing Machines.

Conti, A., VanCourt, T., and Herbordt, M. (2004). Flexible FPGA acceleration of
dynamic programming string processing. In Proceedings of the IEEE Conference
on Field Programmable Logic and Applications.

Dally, W. and Towles, B. (2004). Principles and Practices of Interconnection Net-
works. Elsevier.

DOE (2011). CoDEx: CoDesign for Exascale. United States Department of Energy
Offic of Science, Advanced Scientific Computing Research.

Gara, A., Blumrich, M. A., Chen, D., Chiu, G.-T., Coteus, P., Giampapa, M. E.,
Haring, R. A., Heidelberger, P., Hoenicke, D., Kopcsay, G. V., et al. (2005).
Overview of the Blue Gene/L system architecture. IBM Journal of research and
development, 49(2.3):195–212.

Geijn, R. A. V. D. and Watts., J. (1997). SUMMA: Scalable universal matrix multi-
plication algorithm. Concurrency—Practice and Experience, 9(4):255–274.

Geng, T., Wang, T., Sanaullah, A., Yang, C., Xuy, R., Patel, R., and Herbordt, M.
(2018). Multicore versus fpga in the acceleration of discrete molecular dynam-
ics. In Proceedings of the IEEE International Symposium on Field Programmable
Custom Computing Machines.

George, A., Herbordt, M., Lam, H., Lawande, A., Sheng, J., and Yang, C. (2016).
Novo-G#: A Community Resource for Exploring Large-Scale Reconfigurable Com-
puting Through Direct and Programmable Interconnects. In Proceedings of the
IEEE High Performance Extreme Computing Conference.

Gokhale, M., Lloyd, S., and Macaraeg, C. (2015). Hybrid memory cube performance
characterization on data-centric workloads. In Proceedings of the 5th Workshop on
Irregular Applications: Architectures and Algorithms, page 7. ACM.

Google Cloud (2017). An in-depth look at Google’s first tensor processing unit
(TPU). cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-
googles-first-tensor-processing-unit-tpu.

60

Gropp, W., Lusk, E., and Skjellum, A. (1998). Using MPI: Portable Parallel Pro-
gramming with the Message-passing Interface, Volume 1, The MPI Core, second
edition. The MIT Press.

Gu, Y. and Herbordt, M. (2007). FPGA-based multigrid computations for molecular
dynamics simulations. In Proceedings of the IEEE International Symposium on
Field Programmable Custom Computing Machines, pages 117–126.

Gu, Y., VanCourt, T., and Herbordt, M. (2005). Accelerating molecular dynamics
simulations with configurable circuits. In Proceedings of the IEEE Conference on
Field Programmable Logic and Applications.

Gu, Y., VanCourt, T., and Herbordt, M. (2008). Explicit design of FPGA-based
coprocessors for short-range force computation in molecular dynamics simulations.
Parallel Computing, 34(4-5):261–271.

Gunnels, J., Lin, C., Morrow, G., and van de Geijn, R. (1996). Analysis of a
class of parallel matrix multiplication algorithms. IPPS (IEEE Parallel Processing
Symposium) 1998, as “A flexible class of parallel matrix multiplication algorithms”.

Herbordt, M. (2018). Towards production HPC with FPGA-centric clouds and
clusters. In SIAM conference on Parallel Processing in Scientific Computing.

Herbordt, M., Gu, Y., VanCourt, T., Model, J., Sukhwani, B., and Chiu, M. (2008).
Computing models for FPGA-based accelerators with case studies in molecular
modeling. Computing in Science and Engineering, 10(6):35–45.

Herbordt, M., Khan, M., and Dean, T. (2009). Parallel discrete event simulation
of molecular dynamics through event-based decomposition. In Proceedings of the
International Conference on Application Specific Systems, Architectures, and Pro-
cessors, pages 129–136.

Herbordt, M., Model, J., Sukhwani, B., Gu, Y., and VanCourt, T. (2006). Single pass,
BLAST-like, approximate string matching on FPGAs. In Proceedings of the IEEE
International Symposium on Field Programmable Custom Computing Machines.

Herbordt, M., Model, J., Sukhwani, B., Gu, Y., and VanCourt, T. (2007a). Single
pass streaming BLAST on FPGAs. Parallel Computing, 33(10-11):741–756.

Herbordt, M., Olin, K., and Le, H. (1999). Design trade-offs of low-cost multicom-
puter networks. In Proceedings of the 7th Symposium on the Frontiers of Massively
Parallel Computation, pages 25–34.

Herbordt, M., VanCourt, T., Gu, Y., Sukhwani, B., Conti, A., Model, J., and DiS-
abello, D. (2007b). Achieving high performance with FPGA-based computing.
IEEE Computer, 40(3):42–49.

61

Hillis, W. D. (1984). The connection machine: A computer architecture based on
cellular automata. Physica D: Nonlinear Phenomena, 10(1-2):213–228.

Humphries, B., Zhang, H., Sheng, J., Landaverde, R., and Herbordt, M. (2014). 3D
FFT on a Single FPGA. In Proceedings of the IEEE International Symposium on
Field Programmable Custom Computing Machines.

Intel Corporation (2015a). Hyper-Pipelining for Stratix 10 designs.
www.altera.com/en US/pdfs/literature/an/an715.pdf.

Intel Corporation (2015b). Intel Xeon processor E7-4830 v3.
ark.intel.com/products/84678.

Intel Corporation (2016). Designing for Stratix 10 devices with power in mind.
www.altera.com/en US/pdfs/literature/an/an767.pdf.

Intel Corporation (2017a). Intel Stratix 10 MX devices solve the memory bandwidth
challenge. www.altera.com/content/dam/altera-www/global/en US/

pdfs/literature/wp/wp-01264-stratix10mx-devices-solve-memory-

bandwidth-challenge.pdf.

Intel Corporation (2017b). Intel Stratix 10 variable precision DSP blocks user guide.
www.altera.com/documentation/kly1436148709581.html.

Intel Corporation (2017c). Intel Xeon Silver 4116 processor.
ark.intel.com/products/120481.

Intel Corporation (2018). External memory interface spec estimator.
www.altera.com/support/support-resources/support-centers/

external-memory-interfaces-support/emif.html.

Kestur, S., Davis, J. D., and Chung, E. S. (2012). Towards a universal FPGA matrix-
vector multiplication architecture. In IEEE 20th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 9–16. IEEE.

Khan, M. and Herbordt, M. (2011). Parallel discrete event simulation of molecular
dynamics with speculation and in-order commitment. Journal of Computational
Physics, 230(17):6563–6582.

Khan, M. and Herbordt, M. (2012). Communication requirements for FPGA-centric
molecular dynamics. In Symposium on Application Accelerators for High Perfor-
mance Computing.

Kogge, P. M. (1994). EXECUBE–a new architecture for scaleable MPPs. In ICPP
(International Conference on Parallel Processing), 1994., volume 1, pages 77–84.
IEEE.

62

Li, J., Skjellum, A., and Falgout., R. D. (1993). A poly-algorithm for parallel dense
matrix multiplication on two-dimensional process grid topologies. Center for Com-
putational Sciences and Engineering 50, page 316.

LinuxGizmos (2017). ARM/FPGA module runs Debian on Arria 10 SoC.
linuxgizmos.com/arm-fpga-module-runs-debian-on-arria-10-soc/.

Liu, Y., Sheng, J., and Herbordt, M. (2016). A Hardware Prototype for In-Brain
Neural Spike-Sorting. In Proceedings of the IEEE High Performance Extreme
Computing Conference.

Mahram, A. and Herbordt, M. (2012). FMSA: FPGA-Accelerated ClustalW-Based
Multiple Sequence Alignment through Pipelined Prefiltering. In Proceedings of
the 20th International Symposium on Field Programmable Custom Computing Ma-
chines, pages 177–183.

Mahram, A. and Herbordt, M. (2016). NCBI BLASTP on High Performance Recon-
figurable Computing Systems. ACM Transactions on Reconfigurable Technology
and Systems, 15(4):6.1–6.20.

Matai, J., Richmond, D., Lee, D., Blair, Z., Wu, Q., Abazari, A., and Kastner, R.
(2016). Resolve: Generation of high-performance sorting architectures from high-
level synthesis. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 195–204. ACM.

NSF (2006). Simulation-Based Engineering Science. NSF (National Science Foun-
dation) Blue Ribbon Panel on Simulation-Based Engineering Science.

Nvidia (2018). NVLink Fabric—a faster, more scalable interconnect.
www.nvidia.com/en-us/data-center/nvlink/.

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C.,
Thomas, R., and Yelick, K. (1997). A case for intelligent RAM. IEEE Micro,
17(2):34–44.

Pawlowski, J. T. (2011). Hybrid memory cube (HMC). In 2011 IEEE Hot Chips 23
Symposium (HCS), pages 1–24. IEEE.

Pres. (2005). Computational Science: Ensuring America’s Competitiveness. Presi-
dent’s Information Technology Advisory Committee, National Coordination Office
for Information Technology Research and Development, www.nitrd.gov.

Putnam, A. et al. (2014). A reconfigurable fabric for accelerating large-scale data-
center services. ACM SIGARCH Computer Architecture News, 42(3).

63

Salapura, V., Bickford, R., Blumrich, M., Bright, A. A., Chen, D., Coteus, P., Gara,
A., Giampapa, M., Gschwind, M., Gupta, M., et al. (2005). Power and perfor-
mance optimization at the system level. In Proceedings of the 2nd Conference on
Computing Frontiers, pages 125–132. ACM.

Sanaullah, A. and Herbordt, M. (2018). FPGA HPC using OpenCL: Case Study
in 3D FFT. In Proceedings of the International Symposium on Highly Efficient
Accelerators and Reconfigurable Technologies.

Sanaullah, A., Khoshparvar, A., and Herbordt, M. (2016a). FPGA-Accelerated
Particle-Grid Mapping. In Proceedings of the IEEE International Symposium on
Field Programmable Custom Computing Machines.

Sanaullah, A., Lewis, K., and Herbordt, M. (2016b). Accelerated Particle-Grid
Mapping. In Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis – Supercomputing.

Sanaullah, A., Yang, C., Alexeev, Y., Yoshii, K., and Herbordt, M. (2018). Real-Time
Data Analysis for Medical Diagnosis using FPGA Accelerated Neural Networks.
BMC Bioinformatics, In Press.

Schatz, M. D., Van de Geijn, R. A., and Poulson, J. (2016). Parallel matrix multipli-
cation: A systematic journey. SIAM Journal on Scientific Computing, 38(6):C748–
C781.

Sheng, J. (2017). High Performance Communication on FPGA-Centric Clusters.
PhD thesis, Department of Electrical and Computer Engineering, Boston Univer-
sity.

Sheng, J., Humphries, B., Zhang, H., and Herbordt, M. (2014). Design of 3D FFTs
with FPGA Clusters. In Proceedings of the IEEE High Performance Extreme
Computing Conference.

Sheng, J., Xiong, Q., Yang, C., and Herbordt, M. (2015a). Hardware-Efficient
Compressed Sensing Encoder Designs for WBSNs. In Proceedings of the IEEE
High Performance Extreme Computing Conference.

Sheng, J., Xiong, Q., Yang, C., and Herbordt, M. (2016a). Collective Communication
on FPGA Clusters with Static Scheduling. Computer Architecture News, 44(4).

Sheng, J., Yang, C., Caulfield, A., Papamichael, M., and Herbordt, M. (2017). HPC
on FPGA Clouds: 3D FFTs and Implications for Molecular Dynamics. In Pro-
ceedings of the IEEE Conference on Field Programmable Logic and Applications.

Sheng, J., Yang, C., and Herbordt, M. (2015b). Towards Low-Latency Communica-
tion on FPGA Clusters with 3D FFT Case Study. In Proceedings of the Interna-
tional Symposium on Highly Efficient Accelerators and Reconfigurable Technologies.

64

Sheng, J., Yang, C., and Herbordt, M. (2016b). Application-Aware Collective Com-
munication on FPGA Clusters. In Proceedings of the IEEE International Sympo-
sium on Field Programmable Custom Computing Machines.

Sheng, J., Yang, C., and Herbordt, M. (2018). High Performance Dynamic Com-
munication on Reconfigurable Clusters. In Proceedings of the IEEE International
Symposium on Field Programmable Custom Computing Machines.

Skjellum, A. (2017). personal communication.

Song, Y. and Parihar, R. (2012). DRAM memory controller and optimizations (class
project report, University of Rochester). www.hajim.rochester.edu/ece/

parihar/pres/Pres DRAM-Scheduling.pdf.

Sukhwani, B. and Herbordt, M. (2008). Acceleration of a Production Rigid Molecule
Docking Code. In Proceedings of the IEEE Conference on Field Programmable
Logic and Applications, pages 341–346.

Sukhwani, B. and Herbordt, M. (2009a). Accelerating CHARMM Energy Minimiza-
tion Using Graphics Processors. In Proceedings of the Symposium on Application
Accelerators in High Performance Computing.

Sukhwani, B. and Herbordt, M. (2009b). FPGA-Acceleration of CHARMM En-
ergy Minimization. In Proceedings of the Third International Workshop on High
Performance Reconfigurable Computing Technology and Applications. ACM.

Sukhwani, B. and Herbordt, M. (2010). FPGA Acceleration of Rigid Molecule Dock-
ing Codes. IET Computers and Digital Techniques, 4(3):184–195.

Sukhwani, B. and Herbordt, M. (2014). Increasing Parallelism and Reducing Thread
Contentions in Mapping Localized N-body Simulations to GPUs. In Kindratenko,
V., editor, Numerical Computations with GPUs. Springer Verlag.

VanCourt, T., Gu, Y., and Herbordt, M. (2004). FPGA acceleration of rigid molecule
interactions. In Proceedings of the IEEE Conference on Field Programmable Logic
and Applications.

VanCourt, T. and Herbordt, M. (2004). Families of FPGA-based algorithms for
approximate string matching. In Proceedings of the International Conference on
Application Specific Systems, Architectures, and Processors, pages 354–364.

VanCourt, T. and Herbordt, M. (2005a). LAMP: A tool suite for families of FPGA-
based application accelerators. In Proceedings of the IEEE Conference on Field
Programmable Logic and Applications.

65

VanCourt, T. and Herbordt, M. (2005b). Three dimensional template correlation:
Object recognition in 3D voxel data. In IEEE International Workshop on Com-
puter Architectures for Machine Perception, pages 153–158.

VanCourt, T. and Herbordt, M. (2006). Rigid molecule docking: FPGA reconfigura-
tion for alternative force laws. Journal on Applied Signal Processing, v2006:1–10.

VanCourt, T. and Herbordt, M. (2007). Families of FPGA-based accelerators for
approximate string matching. Microprocessors and Microsystems, 31(2):135–145.

VanCourt, T. and Herbordt, M. (2009). Elements of high performance reconfigurable
computing. In Zelkowitz, M., editor, Advances in Computers, volume v75, pages
113–157. Elsevier.

Williams, C. (2016). Here’s what an Intel Broadwell Xeon with a built-in FPGA
looks like. www.theregister.co.uk/2016/03/14/intel xeon fpga/.

Xiong, Q. and Herbordt, M. (2017). Bonded Force Computations on FPGAs. In
Proceedings of the IEEE International Symposium on Field Programmable Custom
Computing Machines.

CURRICULUM VITAE

67

