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ABSTRACT

Designing photonic-plasmonic nanostructures with desirable electromagnetic proper-

ties is a central problem in modern photonics engineering. As limited by available

materials, engineering geometry of optical materials at both element and array lev-

els becomes the key to solve this problem. In this thesis, I present my work on the

development of novel methods and design strategies for photonic-plasmonic struc-

tures and metamaterials, including novel Greens matrix-based spectral methods for

predicting the optical properties of large-scale nanostructures of arbitrary geometry.

From engineering elements to arrays, I begin my thesis addressing toroidal electrody-

namics as an emerging approach to enhance light absorption in designed nanodisks

by geometrically creating anapole configurations using high-index dielectric materials.

This work demonstrates enhanced absorption rates driven by multipolar decomposi-

tion of current distributions involving toroidal multipole moments for the first time.

I also present my work on designing helical nano-antennas using the rigorous Sur-

face Integral Equations method. The helical nano-antennas feature unprecedented

beam-forming and polarization tunability controlled by their geometrical parameters,
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and can be understood from the array perspective. In these projects, optimization of

optical performances are translated into systematic study of identifiable geometric pa-

rameters. However, while array-geometry engineering presents multiple advantages,

including physical intuition, versatility in design, and ease of fabrication, there is

currently no rigorous and efficient solution for designing complex resonances in large-

scale systems from an available set of geometrical parameters. In order to achieve this

important goal, I developed an efficient numerical code based on the Greens matrix

method for modeling scattering by arbitrary arrays of coupled electric and magnetic

dipoles, and show its relevance to the design of light localization and scattering res-

onances in deterministic aperiodic geometries. I will show how universal properties

driven by the aperiodic geometries of the scattering arrays can be obtained by study-

ing the spectral statistics of the corresponding Greens matrices and how this approach

leads to novel metamaterials for the visible and near-infrared spectral ranges. Within

the thesis, I also present my collaborative works as examples of direct and inverse

designs of nanostructures for photonics applications, including plasmonic sensing,

optical antennas, and radiation shaping.
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Chapter 1

Introduction

”Light is, in short, the most refined form of matter.” (de Broglie, 1955) The deeper

understanding of light and its interaction with matter through electromagnetic fields

has not only laid the foundation to the two most important theories of the twentieth

century, the theory of relativity and quantum mechanics, but also provided important

insights to our universe through unifying fundamental forces of the nature using

quantum electrodynamics as a prototypical framework. On the other hand, although

physicists have developed accurate and advanced theoretical models describing light-

matter interactions, controlling light and manipulating matters’ optical properties

continue to present challenging engineering problems as researchers in the realm of

photonics seeks to replicate the success of twentieth-century electronics in the new

millennium.

Indeed, designing nanostructures with desirable electromagnetic properties is a

central problem in modern research and device engineering in optics and photonics.

Apart from discovering new types of optical materials through material engineering

at molecular or atomic level, designing novel electromagnetic properties is largely on

optimizing the shape of elements or array geometries of nanostructures, in order to

manipulate light-matter interactions. Eventually, the observable electromagnetic field

that can be excited and enhanced define the optical properties of the nanostructure

or metamaterial of interest.
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Figure 1·1: Interaction between light and metal nanoparticle through
induced oscillation of electrons by electric field component of light.

1.1 Photonic-plasmonic nanostructures and metamaterials

Light interacts with ordinary materials through electromagnetic interaction, and a

simple model for the dielectric properties of a material can be obtained by considering

the motion of bound electron in the presence of an applied electric field. As shown

in Fig. 1·1, the simplest example is the interaction between metal nanoparticle’s

electrons with the electric field component of light. As the electric field of light

oscillates, the electrons in the metallic nanoparticle also oscillates with the same

frequency, in analogy to the response of a spring by an external mechanical force.

With this analogy in mind, a simple model for the dynamics of the displacement

x(t) (as a function of time t) of the bound electron in the atoms of a nanoparticle can

be expressed as:

d2x

dt2
+ γ

dx

dt
+ ω2

0x =
q

m
Ẽ, (1.1)

where ω2
0x is a spring-like restoring force due to binding of electrons to atom’s
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nucleus, based on the resonance frequency ω0 of the atomic spring; the term γ dx
dt

is

analogous to damping of mechanical oscillation due to friction; q is the charge; m is

the mass of electron; and Ẽ is a time-dependent sinusoidal electric field Ẽ = Ee−iωt.

As a result, one can solve Eq. 1.1 and obtain the displacement as:

x =
qE
m

ω2
0 − ω2 + iγω

, (1.2)

From perspective of material’s optical properties, the polarization per unit volume

P (Jackson, 1999) can be expressed as:

P = Nqx =
Nq2

m

ω2
0 − ω2 + iγω

E = ε0χE, (1.3)

where χ is the frequency-dependent electric susceptibility, ε0 is the free-space dielectric

permittivity, N is the number of electrons.

Similarly, the electric displacement field D (Jackson, 1999) can be expressed as:

D = ε0E + P = ε0εrE, (1.4)

where εr is the relative dielectric permittivity of material, and the refractive index,

n, for material in the visible is typically defined as n =
√
εr. (This often valid because

the relative magnetic permeability of ordinary optical materials is µr ' 1.) As a

result, we can obtain from microscopic interactions between light and matter the

macroscopic optical properties of the material.

However, in nature, the materials available are limited, while the theory of elec-

trodynamics (e.g. Maxwell’s equations (Jackson, 1999)) permit far more possibilities

for novel optical applications from a theoretical point of view. As a result, methods

for engineering materials with unprecedented optical properties is of great importance

to modern technology.

One promising paradigm for creating such novel optical materials is through meta-
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materials. Metamaterials are artificial engineered materials with subwavelength build-

ing blocks as a novel approach to manipulate electromagnetic fields. With modern

fabrication techniques, bulks of metamaterials can be created in the visible spectrum

to realize novel optical phenomena, such as achieving negative refractive index (Figs.

1·2(a),1·2(e), 1·2(g), 1·2(h), and 1·2(j)), optical chirality (Figs. 1·2(b) and (1·2(c))),

as well as hyperbolic metamaterials (Fig. 1·2(d)). Enabled by this new class of

designed optical materials, we can new engineer device applications such as energy

squeezing (Edwards et al., 2008), scattering control (Alu and Engheta, 2008; Alù and

Engheta, 2009), optical nonlinear effects (Ciattoni et al., 2010; Ciattoni and Spinozzi,

2012), and imaging (Silveirinha and Engheta, 2009).

Currently, metamaterials with controllable effective material parameters (Zhang

and Wu, 2015; Zheludev and Plum, 2016; Menzel et al., 2008; Alu, 2011; Ou et al.,

2013) have been studied and developed. However, these examples are largely limited

to periodic arrangements, and lack efficient methods for large scale modeling.

From perspective of optical functionalities, numerous works have been also carried

out in controlling various properties of light (Fig. 1·3), including the polarization (Li

et al., 2015; Gordon et al., 2004; Yu et al., 2009) and direction (Rodrguez-Fortuo

et al., 2013; Kosako et al., 2010; Pakizeh, 2012; Liu et al., 2012) control, as well as

absorption enhancement (Xiong et al., 2015; Wang et al., 2012; Tan et al., 2013).

In particular, as shown in Fig. 1·3, gratings (Yu et al., 2009) and arrays (Liu

et al., 2012) are often used for controlling optical polarization and directivity, while

surface morphology (Wang et al., 2012) and cavities (Ou et al., 2013) are engineered

to trap light and effectively changing optical properties of the material. From these

studies, we can see that most of the structures used are either inspired by antenna

theory (Kosako et al., 2010; Novotny and van Hulst, 2011; Bharadwaj et al., 2009) or

well-known geometries (Yu et al., 2009; Pakizeh, 2012; Liu et al., 2012; Wang et al.,
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Figure 1·2: (1)Double-fishnet negative-index metamaterial with sev-
eral layers. (b)Stereo or chiral metamaterial fabricated through
stacked electron-beam lithography. (c)Chiral metamaterial made using
direct-laser writing and electroplating. (d)Hyperbolic (or indefinite)
metamaterial made by electroplating hexagonal-hole-array templates.
(e)Metaldielectric layered metamaterial composed of coupled plasmonic
waveguides, enabling angle-independent negative n for particular fre-
quencies. (f) SRRs oriented in all three dimensions, fabricated using
membrane projection lithography. (g)Wide-angle visible negative-index
metamaterial based on a coaxial design. (h)Connected cubic-symmetry
negative-index metamaterial structure amenable to direct laser writ-
ing. (i)Metal cluster-of-clusters visible-frequency magnetic metamate-
rial made using large-area self-assembly. (j)All-dielectric negative-index
metamaterial composed of two sets of high-refractive-index dielectric
spheres arranged on a simple-cubic lattice. (Soukoulis and Wegener,
2011)
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Figure 1·3: (a) Polarization control of semiconductor laser beam
through metallic grating and subwavelength aperture (Yu et al., 2009).
(b) Broadband unidirectional forward beaming achieved through array
of core-shell nanoparticles made with silver core and silicon shell (Liu
et al., 2012). (c) Engineering of silicon ultrathin film with grating at
both sides to enhance light absorption for solar cell applications (Wang
et al., 2012). (d) Dielectric reconfigurable metamaterial changing opti-
cal reflectivity and transmission by changing the resonant near-infrared
optical field trapped in the structure (Ou et al., 2013).
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2012; Tan et al., 2013; Zheludev and Plum, 2016; Ou et al., 2013). As a result, there

is a need for rigorous and efficient method to optimize the performance of photonic-

plasmonic nanostructures or to engineer the material properties with arbitrary optical

properties. Therefore, engineering novel optical properties from direct and inverse

designing of complex resonances at both element and array level will be the focus of

this thesis.

1.2 Structure of the thesis

As engineering photonic-plasmonic behaviors of nanostructures is largely engineering

the resonance of single nanoparticles or collective resonances of the whole nanos-

tructure, I’ll divide my works into three categories in this thesis, from engineering

the resonances of single nanoparticle element, to engineering collective resonances

of nanostructures, and finally to a more rigorous model for understanding collective

resonances using the Green’s matrix method.

In Chapter 2, I will first review my works on engineering the element of photonic-

plasmonic nanostructures. First I briefly review two of my works on designing and

understanding the effect of single nanoparticle shapes for indium tin oxide (ITO) disk

and gold nanorod. In particular, with the novel ITO plasmonic material developed

in my group, I show that micrometer-size ITO disk can be designed to have tunable

resonances in the mid-infrared spectral range by simply changing the diameter of

the disk. I also show that gold nanorod with two major plasmonic resonance modes

can be used to enhance the quantum efficiency of silicon nanocrystals in the vicin-

ity of the gold nanorod. With these examples, where both the geometric shape and

resonance nature are simple, it is important to address two questions in designing

nanoparticles with optimal optical functionalities. The first question is about the

optimal geometric shape of single nanoparticles, and the second is about the nature
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of resonances. In particular, using surface integral equation coupled with efficient

optimization algorithms from the University of Utah, I show an example for optimiz-

ing surface field enhancement of plasmonic nanoparticles by parametrizing a general

shape using the so-called ”superformula”. On the other hand, using multipolar de-

composition of induced electric current involving toroidal multipoles, my work shows

how the geometrical shape of an element can be engineered to provide novel optical

functionalities with simple dielectric nanodisks and nanopixles. This project investi-

gates the non-radiative mode through employing multipolar decomposition method

of current distributions induced by external electromagnetic field inside a nanostruc-

ture. Based on the internal field distribution directly calculated using finite-difference

time-domain (FDTD) method, I created a routine for computing various multipole

moments and their contribution to the far-field radiated power. Because of the new

type of multipolar decomposition includes a third family of multipoles, the toroidal

multipoles (will be introduced in Chapter 2), non-radiating modes in nanostructures

can be analyzed and engineered. Based on the model, we have found that high-index

dielectric nanostructures can be used to design non-radiating elements for absorption

rate enhancement, which are highly relevant to photodetector and applications based

on the trapping of the electromagnetic energy.

The following chapter, Chapter 3, serves as an intermediate step towards array-

geometry engineering. I first introduce my collaborative work on broadband elec-

trodes made of gold nanofiber in random arrangement and multiband Cesaro-type

fractal plasmonic nanoantennas. In the first case, gold nanofibers, modeled as plas-

monic half-shells of different sizes have different resonance peaks, and the overall

effect is a broadband resonance. In the second case, fractal plasmonic nanoantennas

have well-defined resonance elements at each fractal generation, contributing to an

overall collection of discrete peaks in the transmission and reflection spectra. In both
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works, the nanostructures as a system, i.e. array, of different resonance elements is

important for the understanding of the overall optical behavior in each case. More-

over, I also discuss my work on metal nanohelices to show that collective resonance

can also be achieved using array of identical elements, and how the geometry of the

array affect the collective optical behavior of nanostructures. This work involves

designing gold (Au) nanohelices with unprecedented beam forming and polarization

control capabilities, through systematically investigating the effect of four geometric

parameters of a helix, namely the pitch, radius and number of turns of the helix, as

well as the thickness of the wire forming the nanohelix. In this work, we have pro-

vided simple design rules for achieving perfect circular polarization in the optical to

near infrared spectral range, and discovered quasi-axial modes with prevalent forward

beaming capabilities. To a large extent, these optical properties of Au nanohelices

can be understood by decomposing a helix into a linear array of identical single-coil

helices. The project is carried out mainly with a surface integral equation code based

on the method of moments, which will be explained in more detail in Section 2. The

results of this project provides the basis for novel applications in sensors, lasers, and

optical filters. From the example of gold nanohelices, which points to the emergent

resonant behavior through collective resonances at the array level, it becomes clear

that understanding array geometry holds the key to engineering more complex optical

functionalities in nanostructures and metamaterials. I show in addition an inverse

design example on optimizing the array geometry of Vogel spirals made of identical

plasmonic nanospheres. In this example, we model the complex array geometry with

coupled electric dipoles and show results for optimized cases for absorption and scat-

tering efficiencies. In particular, this project reveals the importance of understanding

complex point patterns under the theoretical framework of multiple scattering. Nat-

urally, this leads to understanding how real-space array geometry affects the spectral
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properties of the vectorial Green’s matrix, which is the kernel of the coupled-dipole

multiple scattering problem, describing the propagation of electromagnetic waves from

the coupled dipolar elements in the array. Therefore, I will use the following chapter,

Chapter 4, for a more rigorous and detailed introduction for the method based on

understanding vectorial Green’s matrix, and apply it to complex aperiodic media.

While individual scattering elements can be designed through varying their ge-

ometries to manipulate light-matter interactions, they are limited by the materials

available. There is also a difficulty in designing from scratch a geometry or configu-

ration for optimal optical performance. In Chapter 4, I introduce my work on a novel

approach that employ Green’s matrix and multiple scattering theory to understand

and design aperiodic nanostructures and metamaterials. This is potentially a more

rigorous and physically intuitive approach, which is also faster compared to numerical

methods, such as FDTD and finite elements. In particular, the study of classical and

quantum waves in complex and disordered scattering media using Green’s matrix un-

veiled fascinating capability of the method, and provided predictive understanding to

phenomena such as Anderson localization (Lagendijk et al., 2009). To our knowledge,

all existing theories of such kind deal with random systems, while we believe that the

same set of equations should equally be applicable to aperiodic systems of scatterers.

In this thesis, I present my works using the Green’s matrix approach to study aperi-

odic arrays and compare them with known results of random systems. In particular, I

use work on complex-prime-based arrays, and one-dimensional aperiodic systems, to

show the relevance of the Green’s matrix method in designing complex nanostructures

and topological metamaterials. Interestingly, in one-dimensional systems, I show that

Green’s matrix is also useful for the theoretical study of photonic topological edges-

tates that exist in energy bandgaps. At the end of the chapter, I discuss extension of

the existing Green’s matrix method to include magnetic dipoles, which is important
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to many applications that need understanding of both effective electric and magnetic

behavior of the nanostructures, especially for high-index dielectrics.

Finally, I will conclude my thesis in Chapter 5, and provide a brief outlook on

potential directions for future works. My developed codes for simulation and analysis

will be in the appendices.
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Chapter 2

Engineering Individual Resonances

Through Shapes of

Nano-elements

Understanding and engineering single-element resonance through designed shapes of

nanoparticles can be useful for many applications, including biosensing and bioimag-

ing applications. I divide my work relevant to this chapter into three parts. I di-

vide the first section into two examples and first introduce my work in collaboration

with Dr. Yu Wang and Prof. Nanfang Yu’s group at Columbia University on reso-

nance tunability of engineered indium tin oxide (ITO) plasmonic disks at mid-infrared

(MIR) spectral range (Wang et al., 2017). In this example, novel plasmonic mate-

rial, ITO, provide possibility of achieving plasmonic resonance with low losses at

MIR spectral range. Given this material platform, my work shows how the geome-

try affect single-element resonances through changing the size of ITO disks. I then

show my work providing numerical and simulation understanding to the experiments

by Dr. Hiroshi Sugimoto and Prof. B. M. Reinhard’s group at Boston University

on emission-rate enhancement of silicon nanocrystals with gold nanorod (Sugimoto

et al., 2015). In this case, single-element resonance of gold nanorods changes the en-

vironment of silicon nanocrystals and improve the quantum efficiency of the system.

In both examples, the resonances providing useful applications are due to plasmonic

resonances of simple geometries. Relevant sections from published results of both

works have been modified and included (Wang et al., 2017; Sugimoto et al., 2015).
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While simple geometries can often provide satisfactory optical performances, such

as surface field enhancement, there is a lack of theoretical justification of restricting

to ordinary geometrical shapes for engineering single-element resonances. In addition,

the nature of such resonances may vary from electric to magnetic, and even toroidal

(Zel’dovich, 1957; Dubovik and Tugushev, 1990; Nanz, 2016; Miroshnichenko et al.,

2015). I devote the next two sections to separately address these two problems.

In the second section, in order to answer the question on optimal geometry of

a resonant single-element, I use my work on a novel method for optimizing surface

field enhancement as an example. Through parameterizing a general smooth three-

dimensional shape based on superformula, my collaborator find optimal solutions that

are beyond conventional geometrical shapes. Relevant materials are extracted and

modified from the published results from this collaborated work with by Prof. Carlo

Foresteire and Prof. Robert M. Kirby’s group at University of Utah (Forestiere et al.,

2016).

Finally, In the third section, I focus on my work using multipolar decomposition

to understand scattering properties of high-index dielectric nanodisks and nanopixels.

In particular, using the novel decomposition method involving toroidal multipoles, I

show that we can better understand scattering minima through cancellation between

electric and toroidal dipoles, and engineer anapole modes for enhanced absorption.

Relevant parts of my published work on this topic is modified and included in this

thesis (Wang and Dal Negro, 2016).

2.1 Engineering resonance of single elements

In this section, I first introduce my work related to designing single-element resonances

using the example of ITO disks (Wang et al., 2017), and then show how single-element

resonance can be useful through the example of quantum efficiency enhancement by
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nanorod (Sugimoto et al., 2015).

2.1.1 Engineering of resonant materials for plasmonics applications

Traditional plasmonic materials such as noble metals (e.g. gold, silver, and alu-

minum), have been widely used in plasmonic devices and applications, but suffer

high extinction losses in the visible and infrared spectra. In addition, most of these

conventional plasmonic metals are neither CMOS-compatible nor tunable, limiting

their application and integration with silicon-based technologies. In recent years,

transparent conductive oxides (TCOs) have emerged as novel alternatives to these

traditional plasmonic materials. These TCOs have the advantages including CMOS

compatibility, low losses, and tunability. A particular example of the TCOs my group

has been actively using in our researches is the group of indium tin oxide materials,

whose dielectric permittivity can be described by the Drude-Sommerfeld model (Kim

et al., 2013):

ε(ω) = ε∞ −
ω2
p

ω2 + iΓω
, (2.1)

where ε∞ is the high frequency limit of the frequency(ω)-dependent ε(ω), ωp is

the plasma frequency, and Γ is the charge carrier collision rate. Recently, my group

has fabricated as variety of ITO materials and well as disks of ITO materials showing

tunability of their plasmonic resonances in the mid-infrared range (Wang et al., 2017).

In particular, in order to demonstrate the shift in the resonances of designed

ITO disks, simulations based on the finite-difference time-domain (FDTD) method

is used to calculate reflectance spectra of micro-disc arrays. The intensity of the

reflected infrared light is computed under normal incidence condition. In Fig. 2·1(a),

I present calculated reflectance spectra with FDTD for ITO disks with diameters

ranging from 1µm up to 5µm. In Fig. 2·1(b), measured FTIR spectra by Prof.
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Nanfang Yu’s group at Columbia using Dr. Yu Wang’s fabricated samples are shown.

The results clearly indicate the excitation of a size-dependent plasmon resonance in

the ITO disks, with a shift of the plasmonic resonance peak that follows the theoretical

predictions. In particular, as the diameter of the ITO disks increases, the reflectance

spectral peak shifts to longer wavelengths. However, the simulation results for ITO

disks with diameters of 4µm and 5µm feature a larger peak shift and a broader

spectrum compared to the experimental results. These differences are attributed

to fabrication imperfections (residual ITO that covers the CaF2 substrates, over-

etching in the regions that are between adjacent four micro-discs). Furthermore, we

notice that the small dips in the calculated reflectance spectra (Fig. 2·1(a)) of disks

with diameters of 4µm and 5µm correspond to the excitation of grating resonances

in a perfectly periodic structure (FDTD simulations were conducted using periodic

boundary conditions), and cannot be expected in the fabricated finite-size samples.

In Fig. 2·1(c) and 2·1(d) we show two representative electric-field distributions

across the middle height of the disks at the peak of the simulated reflectance spectra

(Fig. 2·1(a)): λ = 6.1µm for ITO disks with 1µm diameter and λ = 12.0µm for

ITO discs with 5µm diameter. At λ = 6.1µm, the field distribution is predominantly

due to a dipolar response induced at a wavelength significantly larger than the disk

size. Compared to the distribution in Fig. 2·1(d), there is more field inside the disks

in Fig. 2·1(c) due to the smaller value of the imaginary part of ITO permittivity,

which makes ITO at this wavelength behave as a non-ideal metal. In contrast, as

shown in Fig. 2·1(d), a dipolar field distribution is induced at the edges of the

5µm disk at the peak wavelength of reflectance (λ = 12.0µm) where a much larger

imaginary part of the ITO permittivity makes the ITO material more metallic in

nature. These findings demonstrate that ITO thin films with engineered dispersion

support strongly confined plasmonic modes and are ideally suited for the fabrication
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Figure 2·1: (a) FDTD simulations of the reflectance spectra of ITO
disk arrays as a function of disk diameter: 1µm (black), 2µm (red), 3µm
(green), 4µm (blue), 5µm (cyan). All ITO discs have a height of 280nm.
(b) Measured reflectance spectra of ITO disk arrays patterned on CaF2
substrates with different disk diameters: 1µm (black), 2µm (red), 3µm
(green), 4µm (blue), 5µm (cyan). (c) and (d) are field distributions
inside and around the 1µm and 5µm ITO disks at λ = 6.1µm and
12.0µm, respectively (peaks of reflectance spectra). (Wang et al., 2017)
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of plasmonic structures with largely tunable spectral resonances across the mid-IR

range.

As a summary, the simulation results have demonstrated good agreement with

experimental measurements, and show that the plasmonic resonance of single ITO

disks (enhanced through nearfield coupling with neighboring particles) of changing

sizes contribute to the shift of resonances in the measured reflectance spectra.

2.1.2 Plasmon-enhanced emission rate of silicon nanocrystals in gold

nanorod composites

In addition to the cylindrical disk geometries shown in the above example, plasmonic

nanostructures such as nanospheres, and nanorods have also been tailored for various

device applications. In the following, I show my work using gold nanorod of spe-

cific size for controlling the emission properties of organic dyes and semiconductor

nanocrystals (NCs) (Pompa et al., 2006; Kinkhabwala et al., 2009). Significant light

emission enhancement has been previously demonstrated utilizing the enhanced local

field originating from localized surface plasmon resonance (LSPR) of metal nanos-

tructures. The combination of plasmonic nanoparticles and nanoscale emitters into

a single multifunctional colloidal platform has a large potential for the engineering of

novel active devices for biosensing and bioimaging (Jin and Gao, 2014; Ayala-Orozco

et al., 2014; Yao et al., 2014).

The enhancement of spontaneous emission rate is explained by the enhancement of

local density of states (LDOS) due to the LSPR of Au nanorods. To discuss the con-

tribution of the radiative and nonradiative rates as well as the quantum efficiency of Si

NCs-decorated Au nanorods, I performed theoretical calculations using the MNPBEM

code (Hohenester, 2012) which is based on the rigorous boundary element method.

The decay rates in the vicinity of a Au nanorod with a diameter of 60nm and a length

of 126nm have been simulated by placing point dipoles at fixed distances from the
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nanorod surface with tabulated dispersion data (Johnson and Christy, 1972). The

geometrical parameters are estimated from measured nanoparticle sizes. The results

are normalized by the emission rate of a dipole in water, and thus we use the term ra-

diative and nonradiative rate enhancements to describe the modification of decay rate

due to the presence of a Au nanorod. In Fig. 2·2(a), I demonstrate a good agreement

between the extinction spectra for Au nanorods obtained from experiment and the

simulation. Figure 2·2(b) shows both radiative and nonradiative rate enhancements

of a single dipole placed 10nm from the top and side of a Au nanorod as a function

of wavelength. The results are averaged over all dipole orientations. The largest

enhancement of radiative rate is observed when the dipole is placed at the top of the

nanorods. In contrast, when the dipole is positioned along the side of the nanorods,

its radiative rate is small and comparable to the nonradiative rate at 750nm. It is

also worth noting that the radiative and nonradiative rate enhancement values, which

determine the overall quantum efficiency of the plasmonic-coupled system,(Novotny

and van Hulst, 2011; Busson et al., 2012) strongly depend on the orientation of the

dipoles. To discuss the quantum efficiency of the dipoles with different orientations,

we compare the ratio of radiative to total decay rate enhancement, called the an-

tenna efficiency (Novotny and van Hulst, 2011; Busson et al., 2012). In Fig. 2·2(c),

we plot the results of a dipole oriented parallel (solid) and perpendicular (dashed) to

the major axis of the nanorods. For dipoles placed at the side of the nanorod (black

curves), the efficiency is comparable for both orientations. On the other hand, we

find a dramatic change in the efficiency when a dipole at the top is oriented parallel

to the major axis of the nanorod. This explains our experimental results of emission

polarization in Figure 4f of (Sugimoto et al., 2015). In the case of NCs attached at

the top of the nanorod, the PL intensity becomes much larger when the analyzer is

positioned parallel to the major axis of the nanorods. The polarization-selective PL
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enhancement may improve the sensitivity and performance of bioimaging.

In our samples, NCs are randomly located on the surface of the Au nanorod.

Therefore, we also took into account the relative effect of dipole positions around the

nanorod and obtained the positionally averaged decay rates shown in Fig. 2·2(c). We

notice that around the emission peak of NCs-750, the radiative rate enhancement is

about 2 times larger than the nonradiative rate enhancement. Therefore, in nanocom-

posite of NCAu nanorods, a significant quantum efficiency enhancement of the NCs

can be obtained. The nonradiative decay becomes dominant at wavelengths shorter

than 650nm, which corresponds to the excitation region of the transverse scattering

mode of the nanorods.

In order to provide an quantitative estimate of the quantum efficiency enhance-

ment, results from both experiments and simulations are combined. We focus on the

NCs-750 sample because the PL spectrum of NCs-750 fully overlaps with the LSPR

of Au nanorods. The intrinsic quantum efficiency (Q0) of Si NCs is expressed as

Q0 = γ0
r/(γ

0
r + γ0

nr), where γ0
r and γ0

nr are intrinsic radiative and nonradiative decay

rates of NCs in the aqueous solution, respectively. On the other hand, the quantum

efficiency of NCs-coupled Au nanorods (Qm) is defined by:

Qm =
Γr

Γr + Γabs + γ0
nr

, (2.2)

where Γr is the modified radiative rate, Γr/γ
0
r is the Purcell factor (Purcell, 1946;

Akselrod et al., 2014; Lu et al., 2014) with respect to the emission of a dipole in

water, and Γabs is the plasmon-induced nonradiative rate due to the absorption by the

metallic nanorods. In Eq. 2.2, we assume that only the radiative rate is modified by

the coupling with Au nanorods because the intrinsic nonradiative rate (γ0
nr)) arising

from material imperfections of Si NCs is not affected by the local electromagnetic

environment (Govorov et al., 2006; Bharadwaj et al., 2007). In fact, the decay rate



20

Figure 2·2: (a) Calculated extinction coefficient (solid line) of a Au
nanorod excited by plane waves with two different polarizations (red
and green curves) and measured extinction spectrum (dashed line). (b)
Calculated radiative (solid line) and nonradiative (dashed line) decay
rate enhancements of a dipole placed 10nm from the top (black) and
side (red) of a Au nanorod. The results are normalized by the radia-
tive rate of the dipole in water and orientationally averaged. (c) Ra-
tio between radiative and total decay rate enhancement of dipoles ori-
ented parallel (solid) and perpendicular (dashed) to the long axis of the
nanorods. Black and red curves represent the results of dipoles placed
10nm from the top and side of the nanorods, respectively. (d) Both
position- and orientation-averaged radiative (black) and nonradiative
(red) decay rate enhancements. (e) Quantum efficiency enhancement as
a function of separation between emitters and nanorods. (f) Quantum
efficiency enhancements as a function of intrinsic quantum efficiency.
Black and red curves represent positon-averaged results and the case
of a dipole placed at the top of the nanorod, respectively. (Sugimoto
et al., 2015)
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is almost unity at wavelengths that are detuned from the resonance of Au nanorods.

This confirms that the measured decay rate enhancement is due to Γr/γ
0
r (Purcell

enhancement) and Γabs/γ
0
r (absorption by Au nanorods) rather than modification of

the internal nonradiative rate of Si NCs by coupling with nanorods.

By combining the experimentally obtained total decay rate enhancement (Wtotal)

with Γr/γ
0
r and Γabs/γ

0
r values calculated from simulations in Fig. 2·2(c), Qm, Q0 as

well as the enhancement of quantum efficiency of Si NCs can be calculated. In par-

ticular, with measured Wtotal = 1.35 at λ = 750nm (the emission peak of NCs), and

simulation values Γr/γ
0
r = 3.77 and Γabs/γ

0
r = 2.23, we get Q0 = 7.4%. The quantum

efficiency enhancement is calculated to be 2.8, which is achieved only by engineer-

ing the radiative decay rate without the contribution from excitation enhancement

(pumping enhancement).

Finally, it is necessary to discuss the perspective of the NC-Au nanorod composite.

In this system, there are two determining factors for radiative rate enhancement,

which are the NC location on the nanorod and their separation distance from the

nanorod. In Fig. 2·2(e), we plot the quantum efficiency enhancement that can be

obtained considering the emission of NCs with Q0 = 7.4% (at 750nm) as a function

of their separation from the surface of a nanorod. The NC orientation and location

around the surface of the nanorod have been averaged. We found that there exists an

optimal separation distance in the range of 7.5 to 12.5nm, which is very similar to the

conditions of our samples. Figure 2·2(f) shows the quantum efficiency enhancement

factors as a function of the intrinsic quantum efficiency of NCs. We plot both dipole

position-averaged values as well as the case of a single dipole located at the top

of the nanorod. From the curves of the position-averaged result, we demonstrate

quantum efficiency enhancement in a wide range of values for the intrinsic quantum

efficiency. This means that even in the case of emitters with significantly larger values
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of intrinsic quantum efficiency, the proposed plasmonic-coupled composites give rise

to emission enhancement, especially when the emitters are located atop the nanorods.

The selective binding of active molecules on top of nanorods has been already reported

(Caswell et al., 2003; Fu et al., 2010; Chang et al., 2005). Although this work has been

limited to Si NCs with low intrinsic quantum efficiency, the results of our numerical

analysis demonstrate the applicability of the nanorod composite approach to other

emitting materials that feature larger values of intrinsic quantum efficiency.

2.2 Inverse engineering of metal nanoparticles’ shapes

In the previous two examples, conventional geometric shapes have been used for

controlling the resonances at single-element level. However, ordinary geometrical

shapes limit the space of engineerability of resonances at the single-particle level,

and are not likely to be the optimal design for desired optical properties. In order

to address this problem of optimal geometry, the inverse design of nanostructure

geometries is needed. However, currently, difficulty of dealing with a large number

of degrees of freedom prevents wide adoption of inverse designs in solving rigorous

electromagnetic problems. Here, I show my work in collaboration with Prof. Carlo

Foretiere, who’s a former member of our group, and Prof. Kirby’s group at the

University of Utah (Forestiere et al., 2016). In this work, a new method is proposed

for rigorous inverse design of the shape of metal nanoparticles, with the aim for

maximizing surface field enhancement. In particular, in order to parameterize the

geometric shape of a single nanoparticle, and reduce the number of degrees of freedom,

Gielis’ superformula in three dimension is used (Gielis, 2003).

2.2.1 The superformula

In order to parameterize the shape of a single nanoparticle, we describe the closed

surface Σ of the metal nanoparticle by using a simple and general equation, the
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superformula introduced by J. Gielis introduced about a decade ago (Gielis, 2003).

The superformula has been proved to be extremely effective to describe a variety of

forms and patterns occurring in nature, including cells, tissues, stems, flowers, shells,

starfish, galaxies, and DNA molecules (Gielis et al., 2005). It was first introduced

in Plasmonics by Rodrig uez-Oliveros and San chez- Gil to describe the shape of

3D plasmonic nanoparticles (Rodŕıguez-Oliveros and Sánchez-Gil, 2011) and, in its

2D form, was also used for the inverse design of translational-invariant plasmonic

cylinders (Tassadit et al., 2011; Maćıas et al., 2012). The Gielis superformula in

three dimensions has the mathematical expression:

x = ηr1(φ) cos(φ)r2(θ) cos(θ),

y = ηr1(φ) sin(φ)r2(θ) cos(θ),

z = ηr2(θ) sin(θ), (2.3)

where

r1(φ) = [|
cos(m

(φ)

4
φ)

a(φ)
|n

(φ)
2 + |

sin(m
(φ)

4
φ)

b(φ)
|n

(φ)
3 ]
− 1

n
(φ)
1 ,

r2(θ) = [|
cos(m

(θ)

4
θ)

a(θ)
|n

(θ)
2 + |

sin(m
(θ)

4
θ)

b(θ)
|n

(θ)
3 ]
− 1

n
(θ)
1 , (2.4)

and θ ∈ [π/2, π/2], φ ∈ [π, π]. From Eqs. 2.3 and 2.3 it is apparent that the

superformula can be completely described by 13 parameters, six of them, that is,

m(φ), n
(φ)
1 , n

(φ)
2 , n

(φ)
3 , a(φ), and b(φ) modulate the shape along the azimuthal angle φ,

while the parameters m(θ), n
(θ)
1 , n

(θ)
2 , n

(θ)
3 , a(θ), and b(θ) control the variation of the

shape along the altitude angle θ (zenith). The remaining parameter η controls the

scaling of the resulting shape. However, being interested in shapes compatible with

planar nanofabrication technology we keep fixed the altitude parameters:
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m(θ) = 2;

n
(θ)
i = 2(i = 1, 2, 3);

a(θ) = b(θ) = 1 (2.5)

Moreover, in order to exclude from the optimization space shapes with extremely

sharp edges we impose the following constraints on the azimuthal parameters:

1 ≤ m(φ) ≤ 8;

0.75 ≤ n
(φ)
i ≤ 6(i = 1, 2, 3);

0.25 ≤ a(φ) ≤ 2;

0.25 ≤ b(φ) ≤ 2.

Finally, in order to avoid excessively small or large particles we also set constraints

on the scaling factor η:

25nm ≤ η ≤ 75nm. (2.6)

As a result, we have reduced the inverse problem of designing the nanoparticle

shape to a constrained optimization with respect to only seven parameters.

2.2.2 Direct electromagnetic problem and surface integral equation

method

In order to perform the inverse design, a solver of the direct electromagnetic problem

is required. The desired solver should be at the same time fast, because it has to be

executed a large number of times in a standard global optimization algorithm, yet
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accurate. The latter requirement is particularly compelling since we are interested

in the accurate evaluation of electric field in the near-zone of a plasmonic particle,

which is usually not easy to achieve if compared to any far-field quantity (Forestiere

et al., 2012). For this case, the FDTD method, although widely used in the analysis

of plasmonic structures, appears to be inadequate when high accuracy required (Hoff-

mann et al., 2009; Smajic et al., 2009). The FDTD method, with a regular square

grid, not only poorly approximates arbitrary boundaries, but also suffers from stair-

casing effects, which drastically reduce its numerical accuracy (Smajic et al., 2009).

In addition, the poor performances of FDTD are exacerbated when strong field lo-

calization is present (Hoffmann et al., 2009). On the contrary, formulations based on

electromagnetic surface integral equations (SIE) (Harrington and Harrington, 1996)

are particularly efficient because they only require a surface discretization without

sacrificing the near-field accuracy. As a result, we reformulated the electromagnetic

problem given as in terms of Surface Integral Equations (SIE). In particular, we use i

and e to denote the domains inside the nanoparticle, Ωi, or outside Ωe. The scattered

fields in each domain satisfy:

∇× E
(t)
S = −jωµ0H

(t)
S ,

∇×H
(t)
S = jωεtE

(t)
S , (2.7)

where ES and HS are scattered electric and magnetic fields respectively, and t = i, e.

In addition, the fields on the surface Σ separating the two domains satisfy:

n× (He
S −Hi

S) = −n×H0,

n× (Ee
S − Ei

S) = −n× E0, (2.8)

where n is the outward normal to the surface Σ, E0 and H0 are electric and mag-

netic fields of external excitations, respectively. For this particular problem, we used
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the JMCFIE formulation (Yla-Oijala and Taskinen, 2005), and numerically solved

this formulation using the Method of Moments (MoM) with the Rao-Wilton-Glisson

(RWG) basis functions (Rao et al., 1982). We also managed the weak singularities

with the techniques described in ref (Graglia, 1993). A detailed analysis of the accu-

racy of the local fields in proximity of metal nanoparticles calculated by the JMCFIE

formulation can be found in ref (Forestiere et al., 2012).

2.2.3 Optimization and results

In this work, we measure the performance of a metal nanoparticle in terms of the

averaged electric-field enhancement on the surface Σ, namely:

g(λ) =
1

|Σ|

∫ ∫
Σ

|E
(e)

E0

|dS, (2.9)

where E(e) is the electric field on the external surface of the nanoparticle and E0 is

the incident electric field.

The averaged field enhancement g is a time-consuming quantity to evaluate accu-

rately even using the SIE solver. Unfortunately, many standard global optimization

algorithms, including genetic algorithms, particle-swarm optimization or simulated

annealing are designed for objective functions that are inexpensive to evaluate (Pin-

ter, 2002). Therefore, we need an efficient algorithm that requires less objective

function evaluations, and that carefully chooses where to evaluate it to maximize the

information gained at every step. In particular, the collaborating group at Utah used

the Efficient Global Optimization (EGO), which is a global optimization algorithm

based on response surface surrogates that satisfy both requirements (Jones et al.,

1998; Adams et al., 2016). The procedure of the EGO algorithm follows the steps

summarized in the flowchart shown in Fig. 2·3. First, we construct a tentative Gaus-

sian process (GP) model of the objective function g defined in Eq. 2.9, that will
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be refined during the subsequent iterative process. The GP is a model that closely

mimics the behavior of the average electric field enhancement g as a function of the

superformula parameters, being able to provide an estimate of the value of g and the

corresponding uncertainty with a reduced computational burden. We build it based

on a set of N = 36 sample points, called training points, belonging to the search

space spanned by the superformula parameters and on the corresponding real values

of g evaluated by the direct SIE solver. Then, we start the iterative process. At each

iteration, we maximize a quantity called Expected Improvement Function (EIF), us-

ing a deterministic global optimization algorithm. The function EIF is defined as

the expectation that any point in the search space will improve the current optimal

solution, and it is estimated based on the expected values of g and of the correspond-

ing uncertainties obtained by the GP model (Adams et al., 2016). Thus, we choose

the point at which the EIF is maximized as an additional training point for the GP.

Therefore, EGO balances between exploring areas of the search space where good

solutions have been found and area where the uncertainty is high to refine the GP

model. When the value of EIF is sufficiently small, the iteration process is stopped.

We employ the software DAKOTA (Adams et al., 2016) developed at Sandia National

Laboratories to implement EGO.

I now present the results of the inverse design of silver (Ag) nanoparticle within

the spectral range [200, 500]nm. We used the Ag permittivity obtained by interpolat-

ing the experimental data of Johnson and Christy (Johnson and Christy, 1972). The

parameters of the superformula defining the optimal scatterer obtained by the EGO

method are listed in Table 3 for several wavelengths; the corresponding |E|−field

distributions on Σ are shown in Fig. 2·4(a). Additionally, in Fig. 2·4(b), we plot the

achieved optimal values of g as a function of the optimization wavelength λ. In Fig.

2·4(c), we show the g spectrum of the found optimal shapes as a function of the inci-
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Figure 2·3: Flowchart of the EGO algorithm scheme for the solution
of inverse design problems. (Forestiere et al., 2016)

dent wavelength. At the deep-ultraviolet wavelengths, λ = 250 and 300nm, the opti-

mal shapes resulting from the optimization process are approximatively nanospheres,

as shown in the subpanels of Fig. 2·4(a) labeled with a red square and a blue circle,

respectively. Unfortunately, at these wavelengths the silver does not exhibit good

plasmonic properties and this is reflected in modest values of g, namely, 1.6 and 1.4,

respectively. In facts, we are in the tail of the plasmonic resonant curve, as appar-

ent if we examine the corresponding g spectra shown with red and blue curves in

Fig. 2·4(c). Increasing the wavelength to 350 nm the optimal shape is the nanorod

identified with a green triangle in Fig. 2·4(a), which features a much higher value

of g, that is 10. At 375nm the inverse design algorithm returns approximately a

prolate spheroids with g = 19, identified in Fig. 2·4(a) with a cyan diamond. Then,

the objective function reaches its peak at λ = 400nm, where the nanorod labeled

with a magenta star exhibits g = 22, which is the highest value that we are able to
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achieve for Ag, as shown in Fig. 2·4(b), and only slightly surpasses the maximum

value obtained for gold. Finally, at 450nm, the tetrapod identified with a yellow

inverted triangle in Fig. 2·4(a) maximizes the value of g. Moreover, it is apparent

that the g spectra of the optimal shapes, shown in Fig. 2·4(c), feature their peak

values at the prescribed optimization wavelength, in all but the first two cases. This

fact corroborates the EGO efficacy for the design of Ag nanoparticles. It is worth

noting that the scale factor η of the optimized particles, shown in Table 2.1, assumes

in most of the investigated scenarios the minimum allowed value prescribed by the

assigned constraint of Eqs. 2.6. This fact suggests that by relaxing the lower bound

of η we may obtain different optimal shapes with higher value of g. However, this

will results in particles too small to be fabricated with the current technology, and

therefore outside the scope of this study.

Table 2.1: Superformula Parameters Describing the Inverse-Designed
Ag Nanoparticles with Optimal g (Forestiere et al., 2016).

λ(nm) m(φ) n
(φ)
1 n

(φ)
2 n

(φ)
3 a(φ) b(φ) η(nm) g

200 1.01 4.43 4.26 2.00 0.50 0.73 25.0 1.6
250 1.01 4.04 4.26 5.43 0.82 0.70 25.0 1.6
300 3.32 2.50 3.68 0.76 0.72 0.51 32.7 1.4
325 3.32 0.93 4.26 1.34 0.50 0.50 25.0 1.8
350 1.01 3.66 4.26 1.90 0.50 0.50 25.0 10
375 3.80 4.43 0.76 3.76 0.50 0.50 25.0 19
400 4.38 5.71 0.89 6.00 1.39 0.50 25.0 22
450 7.58 6.00 3.68 3.27 0.52 2.00 26.0 16

As a summary, with the sample of integrating SIE with chosen optimization al-

gorithms, I have shown that it is possible to address the issue of finding the optimal

geometric shape for single nanoparticle resonance through inverse design. In the next

section, I show the nature of each resonances can be understood through the multi-

polar decomposition of induced currents, and demonstrate how nonradiating modes

can be engineered inside a single nanoparticle.
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Figure 2·4: (a) Inverse-designed Ag nanoparticles and corresponding
|E| distribution (V/m, linear scale) on Σ. The particles are excited
by a xpolarized plane wave of unit electric field magnitude (1 V/m),
propagating along the z-axis at wavelength (red square) 250 nm, (blue
circle) 300 nm, (green triangle) 350 nm, (cyan diamond) 375 nm, (ma-
genta star) 400 nm, (yellow inverted triangle) 450 nm. All scale bars
correspond to 25 nm. (b) Optimimum value of g as a function of the
incident wavelength. (c) g spectra calculated for the optimal shapes
as a function of the incident wavelength; each curve corresponds to
the particle of panel (a) labeled by the symbol of corresponding color.
(Forestiere et al., 2016)
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2.3 Engineering non-radiative anapole sources for broadband

absorption enhancement in dielectric nanostructures

Non-radiating sources are charge-current distributions that radiate no electromag-

netic fields outside the source region. When being pumped externally, induced non-

radiating current configurations produce strongly localized fields inside the source

region (Devaney and Wolf, 1973; Devaney, 2012), which provide the opportunity to

enhance light-matter interactions. It has been theoretically shown that, for certain

types of non-trivial current distributions, one can realize zero radiated power outside

the source region (Devaney and Wolf, 1973; Devaney, 2012; Marengo and Devaney,

2004; Kim and Wolf, 1986). Although it is arguable that totally non-radiating sources

may only be a theoretical idealism, one can define a small energy parameter e(ω) such

that a source radiating energy below this threshold can be considered as essentially

non-radiating (Devaney, 2012).

In order to find current distributions associated with essentially non-radiative

modes in nanostructures, one approach is through multipolar decomposition involving

toroidal multipole moments for current expansion in Cartesian coordinates (Radescu

and Vaman, 2002; Nanz, 2016; Afanasiev, 1994). Static toroidal moments are first

proposed by Zel’dovich to explain parity symmetry violation in weak interactions

(Zel’dovich, 1957), and extensively studied by Dubovik (Zel’dovich, 1957; Dubovik

et al., 1986; Dubovik et al., 2000; Dubovik and Tugushev, 1990; Afanasiev and

Dubovik, 1998). A typical way to visualize a current distribution with toroidal mo-

ment is through thinking of the toroidal current as the current following on a solenoid

wire bended into a toroid (Dubovik and Tugushev, 1990; Afanasiev and Dubovik,

1998; Afanasiev, 2001), and such a toroidal charge-current configuration can be ra-

diationless (Afanasiev and Dubovik, 1998; Afanasiev, 2001; Afanasiev, 1993). The

dynamic toroidal multipole moments are introduced in the electrodynamics as a result
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of splitting transverse multipoles of electric parity into two parts, namely the electric

and the toroidal, where the toroidal terms are higher order terms of an expansion of

the transverse multipolar coefficients of electric parity (Fernandez-Corbaton et al., ;

Nanz, 2016). In general, both electric and toroidal parts contain non-radiative com-

ponents due to the separation of terms of different order in the size of the source,

and cancel each other when summed (Fernandez-Corbaton et al., ). As are result,

toroidal multipoles are typically thought of as a third family of multipole moments

other than electric and magnetic multipole moments (Radescu and Vaman, 2002),

one can not separately determine the electric and toroidal parts by measuring the

radiation outside the source, or by measuring the coupling between the source and

external electromagnetic waves (Fernandez-Corbaton et al., ). However, this does not

preclude the usefulness of modeling the current distribution inside the source using

toroidal multipole moments in addition to electric and magnetic ones. Indeed, vari-

ous works (Kaelberer et al., 2010; Miroshnichenko et al., 2015; Liu et al., 2015; Dong

et al., 2012; Huang et al., 2012; Ogut et al., 2012; Basharin et al., 2015; Bao et al.,

2015; Dong et al., 2013) have recently demonstrated that by engineering the geometry

of nanostructures, one can artificially enhance the evasive toroidal moments associ-

ated with toroidal current distributions. In particular, it has been shown that one

can have significant toroidal response in purely dielectric nanostructures (Kaelberer

et al., 2010; Miroshnichenko et al., 2015; Liu et al., 2015; Basharin et al., 2015). On

the other hand, recent works have also demonstrated the relevance of analyzing an

induced current through multipolar expansion method involving toroidal multipoles

(Radescu and Vaman, 2002; Nanz, 2016; Afanasiev, 1994), and design non-radiating

modes (Kaelberer et al., 2010; Miroshnichenko et al., 2015; Bao et al., 2015). In par-

ticular this type of multipolar expansions (Radescu and Vaman, 2002; Nanz, 2016)

identifies part of the far-field scattering power by nanostructures as being from toroial
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moments (Kaelberer et al., 2010; Miroshnichenko et al., 2015; Liu et al., 2015; Dong

et al., 2012; Huang et al., 2012; Basharin et al., 2015; Bao et al., 2015).

In particular, the multipolar expansion (in the spherical basis) represents the

scattered electromagnetic fields Esca as a series of spherical wave harmonics with

coefficients explicitly determined by radial and angular distribution of induced charge

density ρ and current J (in the absence of magnetization) (Papasimakis et al., 2016):

Esca =
∑
l,m

(Ql,mΨl,m +Ml,mΦl,m + Tl,mΨl,m), (2.10)

where the multipole moments that characterize dynamic multipole strengths are de-

fined as:

Ql,m =
c√

l(l + 1)

∫
ρY ∗l,m

d

dr
[rjl(kr)]d

3r

Ml,m =
1

i
√
l(l + 1)

∫
(∇ · [r× J])Y ∗l,mjl(kr)d

3r

Tl,m =
k√

l(l + 1)

∫
(r · J)Y ∗l,mjl(kr)d

3r (2.11)

and Ψl,m and Φl,m are vector spherical wave harmonics, Yl,m are scalar spherical

harmonics, jl are spherical Bessel functions. As result, one can associate Ql,m to

electric multipole moments, Ml,m to magnetic multipole moments, and Tl,m to toroidal

multipole moments. The interaction energy and farfield radiation pattern of the lowest

multipole (i.e. dipole) moments in each of the three family is summarized below in

Table 2.2. In particular, from the interaction energy expression of the toroidal dipole

in Table 2.2, toroidal dipole interacts with the rotating part of the H field (since

∇ × H = (Ḋ + 4πJ)/c (in Gaussian units) where the ˙ denotes time derivative. A

further observation is that, although toroidal dipole dipole has the same radiation

pattern as the electric and magnetic counterparts, the strength of it is reduced by a

factor of (ω/c)2. This relative weakness of the toroidal dipole moment in the farfield
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has contributed partly to the difficulty in directly observing it in experiments (Nanz,

2016).

Table 2.2: Electric, magnetic, and toroidal dipole moments (p, m,
T), interaction energy (W ) with an electromagnetic field, and radiated
power (expressed as the radial component of the Poynting vector S) for
the three multipole families.(Papasimakis et al., 2016).

Dipole Interaction energy Far-field radiation patterns
moment W =

∫
(ρφ− 1

c
J ·A)d3r (r̂ · S)

p −p · E− ∂
c∂t

(p ·A) ω4

4πc3
|p|2(1− (r̂ · p̂)2)

m −m ·B ω4

4πc3
|m|2(1− (r̂ · m̂)2)

T −T · (Ḋ + 4πJ)/c ω6

4πc5
|T|2(1− (r̂ · T̂)2)

In Fig. 2·5, visual representations of lowest order multipoles of the three families

are shown. In particular, the lowest order toroidal dipole T (top panel in the 3rd

column of Fig. 2·5) can be seen as the result of the circulation of magnetic dipole

moment, which is itself a result of circulating electric dipole moment.

Since the lowest-order toroidal dipole moment is originated from the curl of in-

duced magnetization (Dubovik and Tugushev, 1990; Afanasiev and Dubovik, 1998;

Afanasiev, 2001), it can be parallel or anti-parallel to the electric dipole moment. This

helps to explain the origin of these essentially non-radiating modes in nanostructures

as situations where toroidal and electric dipole moments radiate out of phase and

destructively interfere (Radescu and Vaman, 2002; Kaelberer et al., 2010). The resul-

tant mode with essentially non-radiating character is termed as anapole mode, which

comes from the explanation of Majorana dark matter in particle physics (Ho and

Scherrer, 2013). Therefore, engineering essentially non-radiating anapole modes in

high-index dielectric nanostructures is a promising alternative to increase light-matter

interaction within nanostructures, and hence enhance absorbed power. Compared to

conventional approaches (Casadei et al., 2015; Cao et al., 2009), engineering anapole

modes in nanostructure provide an angularly and frequency broadband alternative for

making components of photo-detectors, which can be readily integrated into designs



35

Figure 2·5: Electric multipoles represent charge configurations (far
left column), whereas magnetic multipoles correspond to current
sources (second column from left). The (magnetic) toroidal multipole
family (second column from the right) corresponds to current distribu-
tions that cannot be represented by electric and magnetic multipoles.
Same order members of each multipole family have identical power ra-
diation patterns of corresponding oscillating multipoles (far right col-
umn). Electric and toroidal dipoles also have identical radiated field
patterns as indicated by the same colour (red) arrows. (Savinov et al.,
2014; Papasimakis et al., 2016)
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in (Michel et al., 2010; Tang et al., 2008).

In the following subsection, the application of the method of multipolar decompo-

sition is presented. Silicon (Si) and germanium (Ge) nanodisks and square nanopixels

with realistic dispersion (Palik, 1998) are used as examples to demonstrate the rele-

vance of multipolar decomposition method to engineering anapole-induced absorption

enhancement. The anapole mode can be also be excited by plane wave at oblique

incidence at large angles, and are robust against low-index coatings. Finally, the po-

tential for spectrally broadband photo-detector components is discussed by combining

nanodisks or nanopixels of different sizes into single absorbing unit cell.

2.3.1 Applying the method of multipolar decomposition and anapole

modes

Here, I show representative cases of current distributions induced by an external

plane wave, where the far-field scattering powers can be decomposed as the radi-

ated power by individual multipole moments and their interactions. In particular,

the existence of essentially non-radiating anapole modes are found not only in high-

index cylindrical nanodisks, but also in square nanopixels. The multipole moments

are directly computed from the electric field distributions for each frequency (Jack-

son, 1999; Radescu and Vaman, 2002; Nanz, 2016). A commercial-grade simulator

based on the finite-difference time-domain (FDTD) method was used to perform the

calculations (Lumerical Solutions, ).

In Fig. 2·6 (a), the geometry of a silicon nanodisk with diameter D and height

H is shown. A linearly polarized plane wave is used to excite the structure. For an

example structure with D = 350nm and H = 60nm, we show in Fig. 2·6(b) and

(c) the electric and magnetic field enhancements when the structure is in the anapole

mode at 710nm. The arrows overlapping the field plots indicate the field directions for

the electric and magnetic fields respectively (see Fig. 2·6 (b) and 2·6(c)). The electric
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Figure 2·6: For a single Si nanodisk in the anapole mode, (a) geometry
of nanodisk and excitation condition for anapole mode, (b) and (c)
are the E-field and H-field enhancement at anapole mode respectively,
the superimposed arrows indicates the direction of the fields. (d) The
full multipolar decomposition of the first contributing five multipole
moments: electric dipole (p), magnetic dipole (m), toroidal dipole (T),
electric quadrupole (Qe), magnetic quadrupole (Qm). The powers are
normalized with respect to the maximum value by electric dipole in
the investigated spectrum. (e) The far-field scattered power (green, in
arbitrary units) as a sum of all intensity contribution from multipole
moments in (d), as well and the actual scattering efficiency (blue) with
normalization with respect to the geometrical cross-section area. In
this case D = 350nm and H = 60nm. (Wang and Dal Negro, 2016)
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field distribution in Fig. 2·6(b) is typical to the anapole mode, where almost all of the

field circulates inside the square nanopixel. The magnetic field in Fig. 2·6(c) is also

mostly confined into the square nanopixel, and the vortex in the middle as a result of

rotation of the induced magnetic field is responsible for the toroidal dipole (Ho and

Scherrer, 2013; Casadei et al., 2015; Staude et al., 2013). Based on the computed

field distributions inside the structure, we can calculate the current distribution at

each frequency using (Jackson, 1999):

J(r) = −iωε0(n2 − 1)E(r), (2.12)

where J and E are current and electric field distributions at internal positions

r = (x, y, z) in a Cartesian coordinate system, ω is the angular frequency, ε0 is

the dielectric permittivity of the free space, and is the complex refractive index of

the structure. With the calculated current distributions in the nanodisk, we can

then compute the components of the first five multipole moments (see Table 2.3)

(Radescu and Vaman, 2002), where p, m, T, Qαβ, Mαβ are components of electric

dipole, magnetic dipole, toroidal dipole, electric quadrupole, and magnetic quadrupole

moments, respectively. c is the speed of light in the free space (Table 2.3). The

indices, α and β, take x, y, and, z. From the computed values of these radiating

multipole moments, we can calculate the decomposed far-field scattered power by

each multipole moment and their interactions (Radescu and Vaman, 2002). From

Ref. (Radescu and Vaman, 2002), the expansion of the far-field scattering power in

term of the contribution from multipole moments to the order of c−5 includes an extra

term, which is proportional to the interaction between the magnetic dipole and the

first-order mean radius of its distribution. In this case, this term is universally zero

and is therefore omitted.

In Fig. 2·6(d) we plot the far-field power scattered by each radiating multipole
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Table 2.3: Current multipoles and their far-field scattering powers
(Wang and Dal Negro, 2016).

Multipole Expression Far-field Scattering Powers
p = 1

iω

∫
Jd3r Ip = 2ω4

3c3
|p|2

m = 1
ic

∫
r× Jd3r Im = 2ω4

3c3
|m|2

T = 1
10c

∫
{[r · J]r− 2[r · r]J}d3r IT = 2ω6

3c5
|T|2

(p,T interaction) IpT = −4ω5

3c4
Re[p ·T]

Qαβ = 1
2iω

∫
{rαJβ + rβJα − 2

3
[r · J]δαβ}d3r IQ = ω6

5c5

∑
|Qαβ|2

Mαβ = 1
3c

∫
{[r× J]αrβ + [r× J]βrα}d3r IQ = ω6

20c5

∑
|Mαβ|2

moments for the representative geometry with D = 350nm and H = 60nm. From

Fig. 2·6(d), all five multipole moments contribute to the far-field scattered power at

shorter wavelengths, while electric dipole moments dominate at larger wavelengths.

The interesting region happens near 700nm, where electric dipole and toroidal dipole

are the dominating radiating multipole moments. From the definition of electric and

toroidal dipoles (Table 2.3), it is possible to have them destructively interfere and

even cancel each other. This can be identified as an anapole mode. Besides, the

partial cancellation between the electric and toroidal dipole near 500nm can also be

identified as a partial anapole response, although the overall mode (i. e. electric and

magnetic field distributions) is affected by other multipole moments. On the other

hand, contributions from other multipoles and interaction between p and T makes

the anapole not fully radiationless. In particular, the magnetic quadrupole moment

is responsible for non-zero overall far-field scattered power near 700nm (Fig. 2·6(e)).

Besides, as p and T are anti-parellel, the term IpT becomes positive. The total

scattering efficiencies normalized to the nanoparticles geometrical cross-section in

Fig. 2·6(e) confirms the essentially non-radiating feature with a significant minimum

at 700nm. It is also worth noticing that, although the anapole mode is not totally

radiationless, the scattering cancellation is angularly broadband as indicated by a

minimum in the overall scattering cross-section in Fig. 2·6(e). This is to be contrasted
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with cases where electric and magnetic dipole moments interfere to cancel only the

backward scattered light (Staude et al., 2013; Liu et al., 2012). Finally, as other

multipole moments decrease faster than the electric and toroidal dipole moments, the

anapole mode at longer wavelengths (near 700nm in this case) has a purer anapole

response than the one near 500nm. From Fig. 2·6, an important observation is that

the toroidal dipole moment is responsible for the essentially non-radiating behavior

of the structure, and it is induced circulation of the magnetic field, i.e. the magnetic

field vortex, is in the YZ-plane (Fig. 2·6(c)). Therefore, for a given dielectric material,

it is the aspect ratio (H/D in this case) rather than the geometric shape of the top

cross-section (XY-plane) that is responsible for the formation of the magnetic field

vortex and the essentially non-radiating mode. Indeed, while the study of anapole

Si nanodisk is pioneered by Ref. (Miroshnichenko et al., 2015), we found that, for

high-index dielectric nanostructures, it is not necessary to use cylindrical nanodisk to

realize anapole modes. In fact, we can realize in a variety of geometries. In particular,

we extend the circular cross-section of the nanodisk to a square, which we refer to as

a square nanopixel, and show that the anapole mode can be also engineered in the

same fashion.

Figure 2·7(a) shows the geometry of a square nanopixel, the normally incident

linear plane wave has its electric field along one of the sides of the square nanopixel.

In this particular example, we use the square nanopixel with the same height H and

side length D (diameter in the case of nanodisks) as the nanodisk case in Fig. 2·6.

Through multipolar decomposition, Fig. 2·7(b) demonstrates that the same origin of

the anapole mode in square nanopixels. In particular, the far-field scattering power

of both electric and toroidal dipole moments are similar in strength near 750nm (Fig.

2·7(b)), which give interfere destructively and give rise to the anapole mode (Figs.

2·7(c) and 2·7(d))similar to the nanodisk case. In the next subsection, we discuss how
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Figure 2·7: (a) Geometry of Si square nanopixel and excitation con-
dition for anapole mode, (b) The full multipolar decomposition of the
first contributing five multipole moments: electric dipole (p), magnetic
dipole (m), toroidal dipole (T), electric quadrupole (Qe), magnetic
quadrupole (Qm). The powers are normalized with respect to the max-
imum value by electric dipole in the investigated spectrum. (c) and (d)
are electric and magnetic field enhancements at the anapole mode. In
this case D = 350nm and H = 60nm.(Wang and Dal Negro, 2016)
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geometric and other relevant parameters affect the performance of anapole-induced

absorption rate enhancements.

2.3.2 Effect of geometry, incidence angle, dielectric coating and change

of material

In the previous section, it has been shown that the decomposition of multipole mo-

ments of a current source provides a robust approach to investigate the contributions

by various radiating current multipole moments, and can be used to engineer non-

radiating anapole modes. This section summarizes the results from systematically

studying of the effects of the geometry of silicon and germanium nanodisks (and

square nanopixels) on the multipole moments, especially the anaople modes. Then,

the study also includes the effect of oblique incidence, and low-index coating. In the

study, the absorption rate enhancements is defined by the ratio between the amount

of power absorbed by a single Si nanodisk or nanopixel to that by a segment of an

infinite Si thin-film with the same thickness and volume:

γabs =
Pabs
P 0
abs

, (2.13)

where Pabs is the power absorbed by the single Si square nanopixel, and P 0
abs is the

power absorbed by the reference thin-film case. In each case, since the structure has

no imaginary magnetic permeability, the power absorbed by the structure at each

wavelength is calculated using [79]:

Pabs =
ω

2

∫
εr”|E(r)|2d3r, (2.14)

where εr” is the imaginary part of the relative dielectric permittivity. The effects

of geometric sizes (D and H) on the wavelengths for the peaks of anapole-induced

absorption rate enhancements are summarized in Figs. 2·8 and 2·9.
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Figure 2·8: (a) and (b) are the change in the wavelengths of anapole-
induced absorption rate enhancement peaks depending on D and H
respectively for Si nanodisks. In each panel, three representative fixed
heights or diameters are shown. (c) and (d) are the similar study for
Si square nanopixels.(Wang and Dal Negro, 2016)
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In Fig. 2·8(a), the shift anapole-induced absorption rate enhancement peaks is

shown when the diameter of the nanodisk is increased, for three representative cases

of fixed heights for Si nanodisks. The wavelength for the anapole-induced absorption

rate enhancement peaks is found to follow an almost linear trend as we increase

the diameter. This is expected since the anapole is a resonant behavior, and the

wavelength of resonance should increase linearly with respect to the geometric size.

In Fig. 2·8(b), the shift anapole-induced absorption rate enhancement peaks when

is shown for varying height of the nanodisk, and for three representative cases of

fixed diameters for Si nanodisks. The trend is less linear as the wavelength increase

saturates when the height of the nanodisk increases. Fig. 2·8(c) and 2·8(d) are the

counterpart cases for Si square nanopixels with the same D and H values. Since the

volume for a square nanopixel is larger than a nanodisk with the same D and H, the

wavelengths at which the anapole-induced absorption rate enhancements occur are

slightly higher. Other than this, the general trend for the shift of anapole-induced

absorption rate enhancements peaks due to an increase in D or H is very similar to

the behavior found for the Si nanodisk case.

Figure 2·9 shows the cases where the material in Fig. 2·8 is replaced by Ge,

while keeping all other geometrical shapes and sizes constant. The general effects

of changing D (also for the cases of square nanopixels) and H are the same as the

cases for Si. Overall, the wavelengths at which the anapole occurs for the Ge cases

are slightly higher compared to the Si cases, due to higher refractive index of Ge.

From both Figures, by varying the geometric size shape of Si and Ge nanodisks

or square nanopixels, there is a wide tunability for the wavelength of the anapole-

induced absorption rate enhancements. In realistic situations, it is also important

to consider the effect of non-ideal incident angles. Fig. 2·10(a) and 2·10(b) shows

the effect by the angle of incidence for a Si nanodisk and a Si square nanopixel,
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Figure 2·9: (a) and (b) are the change in the wavelengths of anapole-
induced absorption rate enhancement peaks depending on D and H
respectively for Ge nanodisks. In each panel, three representative fixed
heights or diameters are shown. (c) and (d) are the similar study for
Ge square nanopixels.(Wang and Dal Negro, 2016)
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respectively. They both have the same D = 350nm, and H = 60nm. In this case,

because of the symmetry of the situation, we need to consider two different linear

polarizations. We show that, for both polarizations, the wavelength for the anapole-

induced absorption peak blue-shifts, as the nanodisks cross-sectional area decreases.

For p-polarized plane wave, the anapole modes are less affected in both nanodisk and

square nanopixel cases (blueshifts by about 10◦ as compared to 20◦ in the s-polarized

cases). We found that the quality of anapole modes in both nanodisk and square

nanopixel cases quickly deteriorate for the s-polarized plane wave, when the angle

of incidence moves away from normal incidence condition (0◦). The reason is that

s-polarized plane wave results in a stronger magnetic dipole response in the nanodisk,

and effects the purity of the anapole mode. As the incident angle increases, the

increases in scattering efficiency at the wavelength of the anapole mode also indicate

a less pure anapole response (more energy radiated). Nevertheless, the anapole mode

in Si nanodisk can be induced by obliquely incident plane wave with an angle as high

as 20◦ to 30◦ away from the normal incidence. The same conclusion can also be

extended to Ge nanodisks and square nanopixels.

The effect of dielectric coatings on the anapole mode is also investigated. The

representative cases is shown where low-index (n = 1.8) coating is attached to both

sides of a Si nanodisk (Fig. 2·10(c)) and Si nanopixel (Fig. 2·10(d)), both with

D = 350nm and H = 60nm (inset, Figs. 2·10(c) and 2·10(d)). Apart from negligible

shift in the peak of the absorption rate enhancement in both cases, the value of the

enhancement is also insignificantly affected (Figs. 2·10(c) and (d)). This shows that

non-radiating anapole modes and the anapole-induced absorption rate enhancements

are robust with respect to low-index coatings.
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Figure 2·10: (a) and (b) show the change in the wavelengths of
anapole-induced absorption rate enhancement peaks for two linear po-
larizations at varying incident angles with respect to the normal to the
surface, for Si nanodisk and square nanopixel respectively. Both have
D = 350nm, and H = 60nm. The scattering efficiency Qsca is ob-
tained by normalizing with the projected area of the square nanopixel
onto the plane of the wave front. (c) and (d) show the effect of ab-
sorption rate enhancement change for three representative cases with
different thicknesses d of ITO (n = 1.8) coatings on both side of the Si
nanodisk or square nanopixel (insets) with the same geometries as in
(a) and (b) respectively. (Wang and Dal Negro, 2016)
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Figure 2·11: The absorption rate enhancements for a surface element
formed by two Ge square nanopixels of side lengths 550nm and 700nm
respectively (H = 100nm). (a) The absorption rate enhancements of
each single Ge square nanopixel, and the inset show that they are to
be separated with distance d (center-to-center) in a surface element.
(b) shows the absorption rate enhancements for three different separa-
tions.(Wang and Dal Negro, 2016)

2.3.3 Absorption spectrum engineering using arrays of square nanopixels

with varying sizes

In this subsection, we demonstrate the opportunity of using array of nanodisks or

square nanopixels with different side lengths to broaden the bandwidth of anapole-

induced absorption rate enhancements. In this case, the inhomogeneous arrays are

formed using nanodisks or square nanopixels of different side lengths.

Figure 2·11(a) shows the absorption rate enhancements of single Ge nanodisks of

two different side lengths and the same height H = 100nm. The inset of Fig. 2·11(b)

shows a situation where each pair of the two square nanopixels form a unit base for

an absorbing surface. When we consider absorption rate enhancements (normalized

with respect to the total material volume) of the unit base, we can achieve a larger
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bandwidth for the absorption rate enhancement. Figure 2·11(b) shows the absorption

rate enhancements for three different cases of separations d = 3000nm, 4000nm, and

5000nm respectively. In particular, when the two Ge nanodisks are separated far

enough (5000nm in this case), we can clearly see two distinct peaks as a result of

anapole-induced absorption rate enhancement at different wavelengths. Because of

the fact that the normalization is with respect to the total (enhance larger) volume,

the maximum absorption rate enhancement (Fig. 2·11(b)) is lower than the highest

for individual cases (Fig. 2·11(a)). In Figs. 2·11 (c) and 2·11(d), we replace the

Ge nanodisks by Ge square nanopixels. Similar to the case with nanodisks, we are

able to use square nanopixels with absorption rate enhancement peaks at different

wavelengths (Fig. 2·11(c)) to engineer absorption rate enhancements in larger wave-

length rages (Fig. 2·11(d)). Comparing Fig. 2·11(b) and 2·11(d), we also notice

that the optimal distance of separation for nanodisks or square nanopixels are differ-

ent. For example, at the center to center separation of 3000nm, Ge nanodisks have

similar absorption rate enhancements for either nanodisk at its own absorption rate

enhancement peaks. For square nanopixels, the condition is achieved when separa-

tion is 4000nm. This different provide further optimization opportunities at the level

of using arrays of nano-geometries, and is beyond the scope of the current paper.

We also expect that when nanodisks or square nanopixels of more side lengths are

included, a further broadening of the bandwidth for the absorption rate enhancement.

2.3.4 Section summary

Based on rigorous multipolar decomposition method, we have shown that we can

enhance absorption rates through engineering angularly broadband non-radiating

anapole modes in high-index dielectric nanostructures. We have used Si and Ge

nanodisks and square nanopixels as examples for demonstration. In particular, we

have shown that the wavelength of the anapole-induced absorption enhancement peak
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is widely tunable by varying the diameter (or side length as in the case of square

nanopixels) D and height H of Si and Ge nanodisks and square nanopixels, and by

increasing either of the geometric parameters (D or H) we can increase the wave-

length of the anapole mode in an almost linear fashion. We also noticed that, by

increasing D while keeping H constant rather than the other way round, we separate

the anapole mode further away from other multipole moments, especially magnetic

dipole moment. The ideal aspect ratio for anapole modes is near H/D ∼ 0.2. We

have also shown that nanodisks and square nanopixels made with germanium have

more advantage of being used to engineer anapole induced absorption rate enhance-

ments, since its higher refractive index makes the anapole modes more separated from

other multipole moments compared to Si cases. We also found that the anapole mode

associated with absorption rate enhancement can be achieve not only by normally in-

cident plane wave, but also by obliquely incident plane wave. For oblique incidences,

the anapole mode is polarization sensitive, and the quality of the anapole mode dete-

riorates beyond 30◦ especially for s-polarization. Furthermore, the anapole-induced

absorption peak is robust against low-index coatings on both sides of the nanodisk

or the square nanopixel. With these results, engineering wide bandwidth absorb-

ing layers can be realized by mixing nanodisks or square nanopixels with different

side lengths. In particular, we have shown that unit cells formed by Ge nanodisks

or square nanopixels of two different side lengths can increase the bandwidth of the

absorption rate enhancement in the near-infrared spectral range.

2.4 Chapter summary

In this chapter, I reviewed my works related to direct and inverse design of single

nanoparticles for various applications. In particular, novel ITO disks are shown to

have tunable resonances in the mid-infrared spectral range, and resonant nearfield
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enhancement of nanorods made of gold provide an avenue for quantum efficiency

enhancement of silicon nanocrystals. However, in order to optimize single-particle

designs for general applications, it is important to answer two questions. In particu-

lar, in order to address the problem of optimal geometrical shape and size of single

nanoparticles, I have demonstrated how the inverse design paradigm by parameter-

izing a general geometric shape using superformua can be useful for optimizing the

surface field enhancement of plasmonic nanoparticles. In order to address the problem

on the nature of the modes, I have shown my work using multipolar decomposition

including toroidal moments, and used it for engineer anapole modes for enhanced

absorptions. At the end of this example, it has been shown that, for engineering

broadband spectral features such as absorption, arrays of more than one types of

elements are needed. Indeed, for many device applications, large device footprint and

complexity of functions require the engineering of nanostructure resonances beyond

the single-element level. Therefore, in the next chapter I will extend my discuss to

my works related to array-geometry engineering.
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Chapter 3

Engineering Collective Resonances

Through Geometry of

Nano-arrays

In the previous chapter, I have shown works related to engineering single-element’s

resonances, and addressed problems on the optimal shapes for resonance effect and

the nature of resonances. In this chapter, I show my work related to engineering

collective resonances of nanostructures.

In order to motivate the need for collective resonances I first introduce an ex-

ample based on nano-fiber ”forest”, which is a work I collaborated with Ran Zhang

in our group and Prof. Minteer’s group from the University of Utah(Chen et al.,

2016). In this example, nanofibers of different size and shapes are disorderly placed

on the surface of nanostructure to provide broadband resonance features. However,

collective resonances of disordered nanostructures are difficult to control as the com-

position and proportion of constituent resonant elements are mostly random. For

many applications, it is important to have controllable designs of collective reso-

nances. Therefore, in the third section I use my work in collaboration with Ekin

Aslan and Erdem Aslan on using fractal nanoantennas to provide controllability of

multiband resonances (Aslan et al., 2016).

The work on fractal nanoantenna points to a reductionist approach on engineering

and understanding collective resonance. While we can understand the fractal antenna

as a collection of different resonant elements, engineering collective resonances is
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also possible through exploiting the geometrical arrangement of identical resonant

units. In this approach, we are able to decouple the resonance effect of geometrical

arrangement and the property of single resonant units.

In order to show that collective resonance by arranging identical elements can in-

deed provide emergent optical properties, I introduce my work on helical nanoantenna

(Wang et al., 2015). In this case, novel polarization and beaming control of helical

geometry can be understood as collective properties of single helical turns arranged

periodically in the nanohelix.

In addition, our group has been pioneering in exploring the collective effect base on

quasiperiodic and aperiodic (see Chapter 4.1 for more detailed introduction) nanos-

tructures, and many of the works have been related to Vogel spirals (Trevino et al.,

2012a; Christofi et al., 2016; Pollard and Parker, 2009; ?; Liew et al., 2011; Dal Ne-

gro et al., 2012; Lawrence et al., 2012b). In the fourth section, I use my recent work

in collaboration with Prof. Kirby’s group at the University of Utah on optimizing

Vogel spiral arrays of plasmonic nanospheres for enhanced absorption and scattering

to show case how inverse engineering collective resonances is possible purely through

manipulation of geometrical arrangement of identical elements.

I will leave the part on rigorous understanding and engineering of such aperiodi-

cally arranged geometries to the next chapter.

3.1 Collective resonances of nano-forests and fractal nanoan-

tennas

3.1.1 Gold nanofiber-based electrodes for plasmon-enhanced electrocatal-

ysis

In this example, the role of light-induced resonant phenomena in electrocatalysis is

investigated. In particular, our group made random networks of gold nanofibers as a

novel type of electrode for enhanced electrocatalytic activities. The fabricated sample
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Figure 3·1: (a)Au nanofiber fabrication process. (b) SEMmicrograph
of a fabricated electrode. (c) Measured dark-field scattering spectrum
of a representative Au nanofiber sample. (Chen et al., 2016)

of a ”nano-forest” of gold half-shells by Ran Zhang is shown in Fig. 3·1, where he first

created dielectric cellulose fibers through electrospinning and removed the dielectric

part after deposition of gold (Fig. 3·1(a)). Figure 3·1(b) shows the SEM image of

the nanofiber-based electrode, where randomly arranged gold half-shells of different

sizes are displayed. A broadband characteristic scattering intensity spectrum of the

sample is shown in Fig. 3·1(c).

In order to better understand the origin of the broadband resonant peak in the

measured dark-field scattering data (Fig. 3·1(c)), it is not enough to attribute the

resonance behavior to individual gold(Au) fibers. In particular, in this case, collec-

tive resonance from Au fibers of different sizes contribute to the overall broadband

scattering spectrum of the measured sample. Therefore, I modeled a long (10µm) Au

half-shell structure placed atop an indium tin oxide (ITO) substrate, which reproduces

the actual morphology of the measured samples. Figure 3·2 shows the simulation ge-

ometry and the calculated results using 3D finite-difference time-domain (FDTD)

method. As shown in Fig. 3·2(a), I use a normally-incident and linearly polarized
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plane wave illumination with electric field in the transverse plane (x-y plane) as a

simple model for excitation. In the simulations I also included the ITO substrate

with a measured refractive index n = 1.8. The relevant geometrical parameters of a

single Au half-shell are the external diameter D and shell thickness h as shown in Fig.

3·2(a). The values of these two parameters are measurable and chosen to be consistent

with the values extracted from SEM data on the actual samples. Figure Fig. 3·2(b)

shows the electric field distribution in the near field of an Au half-shell responsible for

the observed peak in the dark field scattering spectrum (738nm). The computed field

distribution demonstrates the excitation of an electric multipole mode that resonates

along the length of the Au half-shell. Figure 3·2(c) shows the calculated scattering

efficiencies (scattering cross-sections normalized to the physical cross-sectional area

of the half-shell in the z-x plane), for structures with fixed h = 7nm and varying

D. As D increases, we observed redshift in the scattering peak, as expected for

nanofiber-based plasmonic systems 22. Moreover, Figure 2d shows that the peak of

the scattering efficiency redshifts as h decreases due to the excitation of coupled sur-

face plasmon modes. From the calculated scattering efficiency results,we can see that,

when considering a half-shell with D = 250nm and thickness of 7nm, the scattering

peak occurs around 738nm, which is in qualitative good agreement with the measured

dark-field scattering spectra (broad peak near 740nm) and fully compatible with the

measured geometrical parameters obtained from the SEM analysis.

From this example, it is evident that although such random structure enables

broadband engineering for certain applications such as electrocatalysis, the lack of

controllability on collective behavior of resonances makes such nanostructures not

ideal for many potential applications such as biosensing and multispectral detection.

As a result, a more common approach that has been adopted uses fractal nanoanten-

nas, which I will now discuss with the example of my collaborate work in the next



56

Figure 3·2: Simulation setup and results of Au half-shell using finite-
difference time-domain (FDTD) method. (a) shows the simplified
model of a Au half-shell with external diameter D and thickness h
on an ITO substrate (refractive index = 1.8), pumped by linearly po-
larized plane wave with transverse electric field at normal incidence.
(b) is a representative electric field plot of the mode at 738nm for a
structure with D = 250nm and h = 7nm. The color bar shows the
electric field enhancement, normalized to the amplitude of the incident
electric field. (c) shows scattering efficiency shift due to varying D, for
fixed h = 7nm. (d) shows scattering efficiency shift due to varying h,
for fixed D = 250nm. (Chen et al., 2016)
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subsection.

3.1.2 Multispectral Cesaro-type fractal plasmonic nanoantennas

Unlike in the case of electrolysis, many applications require controlled design of collec-

tive resonances. In the following example, Cesaro-type fractal plasmonic nanoantenna

serves as a platform for biosensing with engineered multi-resonant spectrum based on

carefully designed collective resonances.

Cesaro fractals, also known as PeanoCesaro triangle sweeps, are among the early

examples of space-filling continuous curves with topological dimension d = 1 and

fractal dimension DF < 2. Differently from the more famous Peanos space-filling

curve (Batty and Longley, 1994; Mandelbrot, 1977) whose fractal dimension is equal

to the Euclidean dimension of the embedding space, Cesaros curves are more irregular

and feature a hierarchical structure of self-similar pointed or spiky resonant elements

that repeat the same geometrical motif when filling the Euclidean plane with a con-

stant scaling factor (Cesàro, 1905). Cesaro fractal structures can be generated by a

recursive geometrical algorithm using a Lindenmayer system (L-system) implemen-

tation (Flake, 1998), which enables easy optimization and customization of desired

geometrical features. Moreover, differently from other examples of space-filling ob-

jects, Cesaro-type fractals scale inwardly; namely, their total size does not grow with

the fractal generation number n, but it is determined at the outset in order to cover

a prescribed area. This characteristic geometrical property is extremely appealing to

plasmonic antenna engineering since it provides a simple approach to enable a large

number of individual resonances with controllable log-periodic spacing on a small

device area. In this paper, different generations of Cesaro nanoantennas are ana-

lyzed, which are created using a turtle language interpretation of the custom-made

L-system. Here it suffices to say that an L-system is a deterministic approach to itera-

tively generate complex fractal objects starting from a finite alphabet of symbols and
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a collection of production rules. These rules are simple prescriptions, such as infla-

tions, that expand each symbol into larger strings of symbols starting from an initial

”axiom” that is considered the seed of the recursive construction. L-systems pro-

vide a computationally efficient and general method to produce many fractal shapes,

including Cesaro fractals. In particular, this work uses a turtle graphics implemen-

tation of the L-system in the SI that gives rise to the Cesaro antenna structures

shown in Figs. 3.1.2(a) to 3.1.2(e). for different generations of the algorithm. Turtle

graphics is an ideal tool to geometrically interpret L-systems, and it consists of a

series of simple moves prescribed by a command list executed by a cursor, called the

turtle, on a graphic screen. Typical examples are simple instructions such as move

forward 10 steps and turn by an angle of θ degrees. When combined with control flow

procedures and recursion, the idea of turtle graphics implementations of L-systems

becomes a powerful tool to generate fractal structures. In particular, the vertices

(x, y) of the Cesaro fractal structures displayed in Fig. 3.1.2(a) to 3.1.2(e) can be

easily obtained for each generation number n and imported directly into the FDTD

simulation software (Lumerical Solutions, ) for electromagnetic modeling. Figure

3.1.2 shows a top view of the first five generations of the designed Cesaro nanoan-

tenna. The geometry is obtained with 10◦ aperture spikes. Additional spikes are

added at each iteration step with a constant ratio of lengths, or scaling factor k.

The scaling factor is the ratio of the spikes lengths Ln/Ln1 and equals 0.46 in this

case. The maximum linear dimensions of the structure remain the same for all the

iterations, while Ln, the minimum size of the spikes for the nth generation, progres-

sively decreases. The Cesaro fractal is a deterministic fractal object with a fractal

dimension (Flake, 1998; Cesàro, 1905; Mandelbrot, 1977; Batty and Longley, 1994)

DF = limn→∞
lnN(n)
ln(1/rn)

= 1.7852 where N(n) is the number of elements needed to

cover it at each generation and rn = Ln/L0 = (0.46)n is the scaling ratio (Batty and
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Longley, 1994) where L0 = 9686nm in this case.

Cesaro-type metallic nanoantennas exhibit large and controllable spectral density

within a compact design that supports multifrequency operation capabilities. In order

to demonstrate this property, we investigate the scattering and absorption behavior of

the first five iterations of the antenna with a maximum linear size W = 6849nm. The

calculated scattering efficiency ηsc = σsc/A and the absorption efficiency ηabs = σabs/A

(cross sections normalized by the geometrical area A of the device) are shown in Figs.

3.1.2(f) and 3.1.2(g), respectively. These parameters are numerically computed using

the three-dimensional FDTD method (Lumerical Solutions, ) with perfectly matched

layers. Realistic Au dispersion data are considered as in Ref. (Palik, 1998), and the

Au thickness is fixed to 30nm. Unless otherwise stated, all simulations are performed

under x-polarization and using a uniform mesh size of 3nm across the structures.

The cross section and spatial distribution simulations are carried out without any

substrate, while the transmission and reflection simulations are performed with the

antennas atop the CaF2 substrate. As clearly shown in Figs. 3.1.2(f) and 3.1.2(g),

each generation of the antenna introduces additional resonant bands at higher fre-

quencies. In particular, the number of individual resonances in a Cesaro antenna sim-

ply equals its generation number n and does not depend on the total device footprint.

This characteristic behavior of Cesaro fractal structures can be better understood by

studying the electric field distribution and the corresponding charge density ρ for

the plasmon modes at each generation of the antenna, as shown in Fig. 3.1.2. The

spatial maps of near-field electric enhancements, |E|/|Ein| as well as the charge and

current densities at the resonant peaks unveil the role of local and global geometri-

cal symmetries of plasmonic structures and of the corresponding plasmon resonances

(Gottheim et al., 2015; Trevino et al., 2013). All these parameters are calculated from

the near-field distribution. Although, it is well known that there exists a red-shift
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between far-field and near-field responses of nanoantennas (Alonso-González et al.,

2013), in order to understand the fractal scaling effect on the spatial distributions,

we carried out these analyses for the far-field scattering peaks. In all correspond-

ing charge density maps, charge density values are normalized to ρ0 = 0.141C/m3

and Re[ρ/ρ0] is shown. Meanwhile, current density amplitudes are normalized to

J0 = 1.75× 106A/m2 and given as |J/J0| in all current density maps.

The results demonstrate the excitation of dipole-type modes that extend across

the entire structure. On the other hand, by increasing the fractal generation number

n the antenna exhibits smaller and smaller clusters of resonant features with the same

local geometry, resulting in additional plasmonic modes at higher and higher frequen-

cies, as shown in Fig 3.1.2. This mechanism provides a multiscale electromagnetic

hot-spot density that produces large values of electric and magnetic field enhance-

ment (Li et al., 2003). Electric field (E-field) distributions are illustrated in Fig. 3.1.2

for the modes corresponding to the scattering peaks from the longest to the shortest

wavelength in Cesaro nanoantenna of the fifth generation. For better visualization in

Figs. 3.1.2(e) to 3.1.2(h) we show the first quarter of the structure, while in Figure

Figs. 3.1.2(a) to 3.1.2(d) we display the field distributions over the entire structure.

As it can be noticed by analyzing the distribution of electric hot-spots in the left

panels of Fig. 3.1.2, the subclusters of the antenna structure at the smaller scales

resonate with shorter wavelength radiation, leading to multiscale hot-spot distribu-

tions with strongly enhanced local electromagnetic fields. This hierarchical cascade

of optical resonances at different length scales of the antenna can also be appreci-

ated from the charge density distributions displayed in the right panels of Fig.3.1.2.

These plots demonstrate clearly that the plasmonic resonances of the antenna for the

nth generation consists of nth subclusters of dipolar modes formed by the opposing

metallic spikes in the structure.
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Figure 3·3: Dependence of the scattering and absorption cross sec-
tions on the fractal generation. By each one-step increase of the fractal
generation with keeping the unit cell area constant, a new higher fre-
quency resonant mode emerges. Top view of the (a) 1st, (b) 2nd, (c)
3rd, (d) 4th, and (e) 5th iteration of inverse Cesaro fractals. Ln (n: iter-
ation number) indicates the smallest feature size for the corresponding
nth iteration, and W indicates the width of the fractal nanoantennas.
The spectral normalized (f) scattering cross section sc and (g) absorp-
tion cross section abs to the surface area of the nanoantenna for each
iteration. In scattering and absorption spectra, lines are labeled by
the smallest feature sizes of each iteration, which are L1 = 4470nm,
L2 = 2056nm, L3 = 946nm, L4 = 435nm, and L5 = 200nm. (Aslan
et al., 2016)
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Figure 3·4: Near E-field and charge density properties of 1st to 4th
order resonant modes for 5th generation fractal nanoantenna with L5
= 200 nm under x-polarized light. (a, c, e, g) E-field enhancement
|E|/|Ein| and (b, d, f, h) normalized charge density Re[/0] distributions
on the top surface of structure for (a, b) 1st (λ1 = 29µm), (c, d)
2nd (λ2 = 12.9µm), (e, f) 3rd (λ3 = 5.9µm), and (g, h) 4th (λ4 =
2.8µm) order modes, respectively. The antenna figures with zoom boxes
between the panels specify the spatial distribution region that panel
couples represent. Corresponding resonant wavelengths are given on
top of the E-field enhancement plot and charge density plot couples.
Electric field enhancement plots are given in log scale, and normalized
charge density plots are given in linear scale. (Aslan et al., 2016)
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3.2 Radiative properties of diffractively-coupled optical nano-

antennas with helical geometry

Metallic nanostructures with helical shapes feature a broad spectrum of interesting

radiation and polarization characteristics that can largely be controlled by varying

their geometrical parameters (Balanis, 2005). In the field of plasmonics (Brongersma

and Kik, 2007; Maier, 2007), there have been many studies focusing on the dichroic

properties of metal nano-helices excited using light with circular polarization (Song

et al., 2013; Gibbs et al., 2013; Kuzyk et al., 2012; Gansel et al., 2010; Radke et al.,

2011; Gansel et al., 2009). As the helix is a chiral shape, meaning that it cannot be

superimposed to its mirror image, plasmonic nano-helices have chiral properties that

make light-matter interaction sensitive to the handedness of circularly polarized radi-

ation. In particular, differential scattering and absorption of left- and right-circularly

polarized light, which is known as circular dichroism, have been demonstrated using

plasmonic nano-helices in the visible and infrared spectral range (Mark et al., 2013;

Liu et al., 2014). However, most of the structures mentioned in these studies have

sub-wavelength dimensions and their properties have been investigated only over a

limited range of geometrical parameters with respect to the optical wavelength. In

addition, the plasmonic behavior of nano-helices is often captured by considering their

optical transmittance or scattering/extinction cross-sections, which fail to reveal the

rich angular scattering and directivity properties that are unique to the nano-helices.

As a result, it is very interesting to systematically explore the directional scattering of

plasmonic nano-helices in the diffractive regime, where their geometrical features are

comparable to the wavelength of light. Using the rigorous Surface Integral Equation

(SIE) method (see 2.2.2), the far-field radiation characteristics of diffractively coupled

gold (Au) nano-helices is systematically studied in the optical regime. By doing so,

novel opportunities to achieve highly directional scattering along multiple directions,
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with controlled polarization states in the visible regime, can be demonstrated by en-

gineering of their geometrical parameters. General design rules is also established,

which can be utilized to engineer novel directional nano-antennas of great interest

for the development of sensors and filters with unprecedented beam forming and po-

larization capabilities. The study focused on the excitation with linearly polarized

plane waves that propagate along the helical axis. In this case, classical antenna

theory (Balanis, 2005; Kraus, 1949; Kraus and Marhefka, 2001), which is valid in

the limit of perfectly metallic (i.e., no losses) helical wires with infinitesimally small

r, provides general guidelines on the choice of the geometrical parameters that give

rise to different radiation patterns. However, due to the dispersive nature of the Au

material in the visible regime, the axial modes supported by nano-helices at optical

frequencies are qualitatively different from the classical antenna case (Balanis, 2005;

Kraus, 1949; Kraus and Marhefka, 2001) and no longer have a well-defined circular

polarization. Nevertheless, a class of thin-wire (r = 10nm) nano-helices is identi-

fied which support perfectly circularly polarized backward radiation lobes when their

pitch is equal to one wavelength. Moreover, when Au wires with larger r = 100nm

are used, highly directional modes can be formed in the optical regime resembling

the radiation patterns of the traditional (i.e., radio frequency) axial modes over a

wide range of R and P values. The term quasi-axial modes is used to designate this

class of highly directional (beaming) modes that are created in the optical regime,

with various degrees of elliptical polarization, beyond the standard thin-wire approx-

imation (Kraus, 1949; Kraus and Marhefka, 2001). The Surface Integral Equation

(SIE) method (Harrington and Harrington, 1996; Hoffmann et al., 2009; Smajic et al.,

2009; Forestiere et al., 2012) is used in the numerical study. In the SIE method the

electromagnetic properties of scattering materials are replaced by equivalent surface

electric and magnetic currents. The SIE method is computationally advantageous
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Figure 3·5: Definition of geometrical parameters of a helix. r is the
radius of the cylindrical wire that forms the helix, R is the radius of
the helix, and P is the pitch (separation between consecutive helical
turns) of the helix. In this case, the number of helical turns shown is
N = 4. The orientation of the nano-helix is such that its helical axis is
parallel to the x-axis. (Wang et al., 2015)

since only surface discretization is required, and it is accurate for both the near-field

and the far-field properties of general dielectric objects with realistic dispersions and

complex shapes, such as the plasmonic nano-helices. In particular, the implemented

SIE code used Poggio-Miller-Change-Harrington-Wu-Tsai formulation (PMCHWT)

(Yla-Oijala and Taskinen, 2005) using the Rao-Wilton-Glisson (RWG) basis functions

(Rao et al., 1982), and calculated the weakly singular integrals using the technique

described in (Graglia, 1993). Besides, tabulated data for the optical constants of Au

at each wavelength are used, as provided in (Johnson and Christy, 1972). In Fig. 3·5

the geometry of a representative nano-helical structure, which can be parameterized

by the radius R of the helix, the helical pitch P , and the radius r of the cylindrical

Au wire. The helix has a number of helical turns N, which together with R, P , and r

define the set of the basic geometrical parameters that will be studied in the paper.

As we will systematically discuss in this work, Au nano-helices feature vastly different

radiation patterns and polarization characteristics of scattered plane waves depending

on the values of their geometrical parameters with respect to the wavelength of light.
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3.2.1 Scattering and radiation modes of single Au nanohelices

By considering an Au nano-helices pumped with a plane wave traveling along the posi-

tive x-direction, and linearly polarized in the positive z-direction (Fig. 3·6), the analy-

sis by considering an incident wavelength across the visible spectrum (λexc = 600nm,

and also 400nm and 500nm as an extension) is presented. By focusing on these

representative wavelengths, a general picture is provided by this study to show how

diffractively-coupled Au nano-helices interact with light in the visible spectrum. From

classical antenna theory, helical antennas with sizes smaller than the wavelength pro-

duce isotropic radiation modes, called normal scattering modes, while larger helices

with sizes comparable to the wavelength support highly directional modes called axial

or beam modes (Kraus, 1949; Kraus and Marhefka, 2001). The formation of axial

modes can be qualitatively understood based on a simple model (i.e., the array model)

of a helical antenna. According to this picture, helical antennas are reduced to lin-

ear arrays of single-turn helical elements spaced by P. Axial modes then correspond

to the end-fire radiation modes of such equivalent linear arrays. The conditions for

the formation of normal and axial modes in radio frequency (RF) helical antennas

have been studied in detail by Kraus (Kraus, 1949), who summarized his results by

constructing a diagram, known as the Kraus diagram, which captures the effect of

different geometrical parameters on the radiation properties of helical antennas. This

diagram provides a sort of modal phase space that displays different radiation dia-

grams against the helical pitch Pλ and the circumference of the helical cross-section

πDλ (D = 2R), all scaled by the excitation wavelength λexc.

In Fig. 3·6, the calculated the Kraus diagram is shown, which corresponds to Au

nano-antennas of helical shape with realistic dispersion data (Johnson and Christy,

1972) at 600nm and for different geometrical parameters. The wavelength scaling

rules inspired by RF antenna theory are generally valid to approximate the scattering
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Figure 3·6: Representative radiation patterns of Au nano-helices and
their corresponding positions in Kraus’ diagram for RF helical antenna
radiation patterns (Kraus, 1949; Kraus and Marhefka, 2001). Plane
wave excitation at λexc = 600nm is used. The region under the black
dashed curve, where the length of one helical turn (L, where L2 =
(πD)2 + P 2) is smaller than half of the wavelength, corresponds to
radiation normal modes in Krauss diagram (Kraus, 1949; Kraus and
Marhefka, 2001). The region shaded blue corresponds to the region of
axial modes (Kraus, 1949; Kraus and Marhefka, 2001). Outside this
region, higher order modes exist, with more complex radiation patterns.
The Au nano-helices have N = 4, and: a) R = 20nm, P = 30nm,
r = 10nm; b) R = 300nm, P = 100nm, r = 10nm; c) R = 100nm,
P = 150nm, r = 10nm; d) R = 300nm, P = 600nm, r = 10nm; e)
R = 200nm, P = 300nm, r = 100nm; f) R = 200nm, P = 600nm,
r = 100nm; g) R = 600nm, P = 1000nm, r = 100nm; h) R = 200nm,
P = 1000nm, r = 100nm.(Wang et al., 2015)
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behavior of thin-wire (r = 10nm) nano-helices in the visible spectral range. On the

other hand, the results (λexc = 600nm) summarized in the diagram include cases

for both thin-wire (r = 10nm) Au nano-helices (Figs. 3·6(a)-3·6(d), circles) and

thick-wire (r = 100nm) nano-helices (Figs. 3·6(e)-3·6(h), crosses). The data clearly

demonstrate the wide range of radiation patterns that can be achieved using Au

nano-helices with different geometrical parameters. Moreover, we note that in the

case of thin-wire nano-helices, classical RF antenna theory (Kraus, 1949; Kraus and

Marhefka, 2001) qualitatively predicts the respective regions of the parameter space

for normal modes and axial mode formation (Fig. 3·6). In particular, it is shown in

Fig. 3·6(a), a calculated radiation diagram corresponding to a typical normal mode

region (labeled (a) in the Kraus diagram), while in Fig. 3·6(c) the radiation diagram

of a structure in a shaded region of the Kraus diagram where axial modes are predicted

to exist by antenna theory. The radiation diagram in Fig. 3·6(c) consistently features

a predominant radiation lobe in the forward direction. In addition, the radiation

diagrams shown in Fig. 3·6(b) and Fig. 3·6(d), which correspond to helical structures

with parameters outside the Kraus region of axial mode formation, do not feature

directional radiation modes, in agreement with the prediction of classical antenna

theory. Besides, the axial mode shown in Fig. 3·6(c) can simply be designed by

following the well-known rules (Kraus, 1949; Kraus and Marhefka, 2001):

2πR ∼ λexc, (3.1)

and

P ∼ λexc
4
, (3.2)

where λexc is the incident wavelength. However, marked deviations from the

classical antenna theory begin to appear when we look at the polarization properties

of the scattered radiation. The character of polarization for the radiated modes of
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helical antennas is captured by the axial ratio (AR), which is ratio of the semi-major

axis to the semi-minor axis of the polarization ellipse of the radiated field. By this

definition:AR ∈ [1,∞), with AR = 1 corresponding to perfectly circularly polarized

radiation and AR = ∞ corresponding to linear polarizations. In the case of an N-

turn helical antenna designed for increased degree of circular polarization in the axial

mode (as from Eqns. 3.1 and 3.2), RF antenna theory predicts a simple scaling of

the axial ratio given by (Kraus and Marhefka, 2001):

AR =
2N + 1

2N
. (3.3)

By applying this design rule to the radiation pattern in Fig. 3·6(c), nearly perfect cir-

cularly polarized light is expected in the forward direction, with AR = 1.125 (N = 4).

However, the actual value of AR, which we calculated numerically by considering the

realistic dispersion data for Au and the geometrical parameters of this Au nano-

antenna, is about 10.5 and the directionality of the radiation pattern of the axial

modes is very poor. Figure 3·6 also includes results obtained on a group of helices

with thicker Au wire radius of r = 100nm and have found that such helical structures

produce radiation patterns with very good directionality (Figs. 3·6(e)-3·6(h)). These

high-directivity modes are referred to as quasi-axial modes since they are obtained

in the optical regime using thick Au wires with realistic dispersion properties. Inter-

estingly such modes, which are qualitatively very similar to the axial modes of RF

antenna theory, cannot be obtained using thin wires in the optical regime. These

quasi-axial modes provides very good directionality even outside the axial mode re-

gion of Kraus diagram (see Fig. 3·6) and that they can be excited in a large range of

either R (Figs. 3·6(h)-3·6(g)) or P (Figs. 3·6(e)-3·6(f)) values. Finally we remark that

this group of nano-helices do not support normal scattering modes since, due to their

much thicker wire radius, their overall size is comparable to the wavelength of light
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(Collings, 2002). This study clearly demonstrates that classical antenna theory, even

when augmented by wavelength scaling arguments (Novotny and van Hulst, 2011),

can only serve as a qualitative guideline for the design of optical nano-antennas with

complex shapes and strongly dispersive materials. As a result, there is a compelling

need to embark in a systematic numerical study of the scaling properties of thin-wire

and thick-wire Au helical nano-antennas with geometrical parameters comparable

to the optical wavelength. In the next subsections the design rule to get circular

polarization is summarized.

3.2.2 Polarization control of Au nanohelices

In this subsection, the effect of the geometrical parameters on the polarization states

of nano-helices is presented. As discussed previously, quasi-axial modes with pro-

nounced forward lobes are obtained for a large range of geometrical parameters, R

and P , when the radius of the wire r is large (r = 100nm). However, the general

polarization state of quasi-axial modes is elliptical, with different degrees of eccen-

tricity. Similarly, the forward lobes of other cases of Au helical nano-antennas with

thinner wires are all found to be elliptical to various degrees. These behavior results

from the losses associated to the dispersion of Au in the visible regime. To overcome

this limitation, we consider thin-wire helical nano-antennas, and identify the special

conditions that allow us to obtain perfect circular polarization scattering.

We focus now on the radiation patterns that are supported by structures with

small r and a pitch equal to one wavelength, excited using linearly polarized plane

waves directed along the helical axis. In this particular case, backward lobes with

perfectly circularly polarized radiation can be obtained when P = λ. Moreover,

these structures feature radiation patterns with circularly polarized radiation in the

backward lobe, while showing elliptically polarized forward lobes. This interesting

phenomenon is analogous to the selective reflection of light by chiral liquid crystals,
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Figure 3·7: (a) The axial ratio (AR) of the forward lobe (blue) and the
backward lobe (red) by Au nano-helices with R = 300nm, P = 600nm,
r = 10nm, and of the forward lobe (green) and the backward lobe (pink)
by Au nano-helices with thicker wire of r = 50nm. The results are
plotted against increasing N. The black dashed curve is the theoretical
value of AR for axial mode helix, calculated as AR = (2N + 1)/(2N).
(b) The relative intensity of the backward lobe to the forward lobe as a
function of wavelength. Fixed R = 300nm, r = 10nm and N = 4. The
inset shows the wavelength and pitch at which the backward lobe with
perfect circular polarization is obtained, in the case of Au nano-helices
with fixed r = 10nm, R = 300nm, and N = 4. (Wang et al., 2015)
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which occurs when the pitch of the chiral liquid crystal is equal to the wavelength

of normally incident light (Collings, 2002; Warner and Terentjev, 2003). In Fig.

3·7(a), the calculated AR values are shown for both the back and forward scattered

lobes of this interesting class of nano-helices as a function of N for two different

wire thicknesses of Au nano-helices. In particular, the AR values of backward lobes

with r = 10nm (red) overlap with the corresponding cases with r = 50nm (pink),

and are identically equal to one. In the figure the theoretical AR values calculated

according to RF antenna theory for the axial-mode (black dotted line) are also plotted.

These results demonstrate that, for thin-wire Au nano-helices with pitch equal to

one wavelength, the AR of the backward lobe can be well-below the RF limit of

axial modes supporting perfectly circular polarization states. As shown in Fig. Fig.

3·7(a), even with a thicker wire of r = 50nm, there is still a reflection of circularly

polarized light in the backward direction. Therefore, significant reflection of circularly

polarized light can be achieved even with a thicker Au wire diameter (2r = 100nm),

which can easily be achieved using current fabrication techniques (Song et al., 2013;

Gibbs et al., 2013; Kuzyk et al., 2012; Gansel et al., 2010; Radke et al., 2011; Gansel

et al., 2009). Figure 3·7(a) also shows that the AR of the forward lobe decreases with

increasing number of turns, i.e., the polarization states in the forward direction are

more circular. However, as mentioned, for helical nano-antennas with realistic Au

dispersion data, the polarization states that can be achieved in the forward direction

are always far from ideal circular polarization. Furthermore, in Fig. 3·7(b), the

bandwidth of the circularly-polarized backward lobe is also shown. The wavelength

of the incident light is varied in the optical and near-infrared regime for Au nano-

helices with three different pitches equal to the wavelength of blue (400nm), green

(500nm) and red (600nm) light. The data clearly indicate that the circularly polarized

backward lobe can only be obtained when the wavelength is close to one helical pitch,
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with a bandwidth (Full Width at Half Maximum, FWHM) that is roughly 50nm

around the central wavelength. The calculated results agree well with the analogous

case observed in chiral liquid crystals, where a single reflection bandgap is created

when the wavelength equals one helical pitch . The inset of Fig. 3·7(b) demonstrates

that, for diffractively coupled Au nano-helices, the condition to obtain circularly

polarized backward lobe (P = λ) can be extended from the visible to the near-infrared

regime.

3.2.3 Section summary

Based on the rigorous SIE method, I have completed a systematic study of the radia-

tive properties of single diffractively-coupled Au nano-helices in the optical regime.

When the wire radius is small, we have found a variety of highly directional radiation

patterns depending on the ratio of P and R with respect to the incident wavelength.

For this class of Au nano-helices, RF antenna theory provides a good guide to find

the regions in the parameter space (Kraus diagram) for normal and axial modes.

However, due to the dispersive nature of Au in the optical regime, axial modes no

longer produce circularly polarized radiation. On the other hand, when P = λ, radi-

ation modes are found that support perfectly circularly polarized light. The radiated

intensity in both forward and backward directions become comparable when the wire

radius is thin. However, as the radius of the helical wire increase, radiation properties

start to deviate from the RF antenna theory. Au nano-helices with R and P compa-

rable to the incident wavelength are found to operate in the quasi-axial modes when

their wire radius is large (r ' 100nm). In quasi-axial modes, most of the radiated

energy is directed forward along the helical axis, and the polarization of radiation in

the forward direction are always elliptical with various degrees of eccentricity. Based

on these results, engineering nano-helical antennas in the visible regime with multi-

directional operation can be realized with thin-wire (r = 10nm) nano-helices with
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R and P comparable to the wavelength. In this case, the radiation pattern is very

sensitive to the values of geometrical parameters R and P , and the number of ellipti-

cally polarized forward lobes in the equatorial plane is proportional to Rλ. Besides,

when P is equal to one wavelength, the backward lobe at 180◦ is perfectly circularly

polarized with the same handedness as the nano-helix. These radiation properties can

be achieved with as little as 2 to 6 number of helical turns. This effect of diffractive

coupling of nearby identical elements shows the importance of modeling the radia-

tive properties of nanohelices as results of collective resonances in terms of arrays.

Also, we have found that we can achieve this behavior with a thicker wire of r up

to around 50nm. Furthermore, it is found that the resonant condition P = λ for

circularly polarized backward lobe is general and can be extended to near-IR regime.

A more detailed version of these results are presented in my publish paper (Wang

et al., 2015). These results are important as they provide novel opportunities for the

design of nano-helical antennas that can be used to engineer sensors, filters and plas-

monic components with unprecedented beam forming and polarization capabilities in

the optical and near-infrared spectral range. Furthermore, single metallic nanohelices

can be used as elements of more complex deterministic aperiodic arrays (see Chapter

4.1 for more detailed introduction) for novel optical properties.

3.3 Optimization of large-scale Vogel spiral arrays of plas-

monic nanoparticles

Although nanohelices feature a variety of radiation properties, its elements, single

helical turns, are both difficult to model and fabricate. On the contrary, complex

arrays formed by point patterns provide more simplicity and flexibility in design

through decoupling of complexcity of array and simplicity of elements. Our group has

been pioneering in the study of complex aperiodic arrays called Vogel spiral (Lawrence



75

et al., 2012a; Capretti et al., 2012; Lawrence et al., 2012b; ?; Christofi et al., 2016),

which is a family of distinctive 2D geometries. As will be introduced in more detail

in the next chapter, Vogel spirals are generated by only two geometric parameters,

but has complex rotationally symmetric diffraction pattern. As a result, the class of

Vogel spirals is ideal for optimization problems aimed to inversely engineer large-scale

devices. In the following subsections, I show how large Vogel spiral plasmonic arrays

are optimized for scattering and absorption efficiencies.

3.3.1 Motivation for the array optimization problem

Recent progress in plasmonics and metamaterials driven by the continuing advance-

ments in nanofabrication technology motivates the need to develop efficient and ac-

curate simulation approaches for the design of large-scale arrays of resonant nanopar-

ticles. However, the engineering of complex nanoplasmonic structures poses severe

difficulties due to the large number of degrees of freedom and the difficulties in solv-

ing the multiple scattering problem for a large number of resonant nanoparticles. In

particular, plasmonic inverse scattering requires the coupling of efficient optimization

codes with full-wave electromagnetic solvers of high numerical accuracy that enable

the evaluation of precisely-defined objective functions to achieve optimal designs.

Our previous work introduced a rigorous approach based on Surface Integral Equa-

tion (SIE) coupled to optimization codes, and used analytical formula to describe

different particles’ shapes and reduce the parameter space for the morphology opti-

mization (Forestiere et al., 2016). While in one of my previous work we targeted the

optimization of the near-field properties of individual nanoparticles (Forestiere et al.,

2016), the present work addresses the design of the far-field properties of large-scale

nanoparticle arrays. In order to improve the efficiency of the approach we consider

here the case of sub-wavelength nanoparticles that can be accurately described within

the limits of the coupled dipole approximation (CDA) (Zhao et al., 2003; Yang et al.,
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1995). This choice, applied to the vast category of structures known as Vogel spi-

ral arrays, enables efficient surveying of a large number of complex arrays and the

rapid identification of best configurations resulting in optimal scattering and absorp-

tion efficiencies. Vogel spiral arrays are a two-parameter class of two-dimensional

(2D) systems with vastly varying geometrical configurations, and have been shown

to manifest rich scattering properties of interest to a variety of device applications in

plasmonics and photonics (Pollard and Parker, 2009; Guo et al., 2017; Trevino et al.,

2012a; Trevino et al., 2012b; Lawrence et al., 2012a; Dal Negro et al., 2016; Christofi

et al., 2016; ?). An N -particle Vogel spiral is specified by only two scalar param-

eters, the scaling factor avs and the divergence angle αvs, that uniquely determine

the 2N coordinates (x and y positions) of the nanoparticles in the Vogel array. In

section, I introduce the study on Vogel spirals systems composed of sub-wavelength

gold (Au), silver (Ag), and aluminum (Al) nanospheres, and identify array geometries

for optimal scattering and absorption efficiencies using an efficient cyclic coordinate

minimization algorithm (Saha and Tewari, 2013) coupled to CDA electromagnetic

field computation (Trevino et al., 2012a). This work does not only demonstrate the

capabilities of the proposed approach, but it also provides applicable design rules for

the engineering of large-scale plasmonic structures with optimal absorption or scat-

tering properties that are relevant to the engineering of photonic-plasmonic devices

such as optical sensors, photodetectors, solar-cell components, random lasers, and

more efficient nonlinear optical elements.

3.3.2 The coupled-dipole approximation method

The coupled dipole approximation (CDA) is a framework for the efficient modeling

of the optical response of a collection of identical scatterers that are approximated

as vectorial electric dipoles. The method is equivalent to the rigorous self-consistent

solution of the multiple scattering equations for the case of nanospherical particles
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with small dimensions compared to the wavelength of the exciting radiation (Zhao

et al., 2003; Yang et al., 1995; Guerin et al., 2006; Christofi et al., 2016). Nonmagnetic

metallic nanospheres with sizes much smaller than the wavelength of light respond

primarily with an electric dipole component to the driving local fields. Moreover, as

long as the nanospheres in the arrays are not spaced too closely (this work constrains

their edge-to-edge separation to be larger than de > 25nm and validate this choice

using the more accurate multipolar theory (?)), the response of a plasmonic array to

electromagnetic radiation can be accurately determined by the self-consistent solution

of the local electric fields, Eloc(ri) of each ith sphere induced by the incident light

E0(ri) as well as the the scattered fields of the other particles in the array. Thus,

considering N metallic particles described by the same volumetric polarizability α(ω)

located at vector positions ri, we can express the local field Eloc(ri) as (Guerin et al.,

2006):

Eloc(ri) = E0ri +
αk2

ε0

N∑
j=1,j 6=i

GijEloc(rj), (3.4)

where E0(ri) is the incident field in vector form, k is the wavenumber in the back-

ground medium, ε0 is the dielectric permittivity of vacuum ( ε0 = 1 in CGS unit

system), and Gij is the 3× 3 block of the overall 3N × 3N Green’s matrix for the ith

and jth particles and the summation runs through all jth particles except for j = i.

In particular, the 3 × 3 Gij is a zero matrix when j = i, and is otherwise computed

as (Guerin et al., 2006; Christofi et al., 2016; Dal Negro et al., 2016):

Gij,i6=j =
exp(ikrij)

rij
{U− r̂ij r̂ij − [

1

ikrij
+

1

(krij)2
(U− 3r̂ij r̂ij)} (3.5)

where r̂ij is the unit position vector from jth to ith particle, and rij = |r̂ij| . U is

the 3× 3 identity matrix. Besides, the polarizability is computed using the retarded

Clausius-Mossotti relation

α = α0a
3F (3.6)
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with

α0 = εb
εr − 1

εr + 2
, (3.7)

where εb is the background medium’s relative dielectric permittivity, εr is the relative

dielectric permittivity of nanospheres with radius a, and F is the factor for Modified

Long Wavelength Approximation (MLWA) (Zeman and Schatz, 1987) that ensures

more accurate results in the presence of field retardation:

F = (1− 2k3α0

3
− α0k

2

a
)−1. (3.8)

Solving the 3N × 3N linear system of equations (3.4), the total local fields, Eloc(ri)

can be obtained and the local electric dipole polarizations across the array can be

directly constructed by Ploc(ri) = αEloc(ri). Once the polarizations are know, the

extinction and absorption cross-sections σext and σabs respectively, can be computed

using the well-known expressions (Zhao et al., 2003; Yang et al., 1995):

σext =
4πk

|E0|2
N∑
j=1

Im{(E0(rj))
∗ ·Pj} (3.9)

and

σabs =
4πk

|E0|2
N∑
j=1

{Im[Pj(α
−1
j )∗(Pj)

∗]− 2k3|Pj|2

3
}. (3.10)

Using the optical theorem, the scattering cross-section can be calculated as:

σsc = σext − σabs. (3.11)

Once the scattering and absorption cross-sections are computed, they are normal-

ized with respect to the total projected area of the array (i.e., sum of the areas of the

particles projected perpendicularly to the direction of the excitation beam) in order

to achieve the scattering (Qsc) and absorption (Qabs) efficiencies. These dimensionless

quantities can be compared for different arrays and provide the quantitative metrics
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for this optimization. Finally, dispersion data for realistic materials are used accord-

ing to references (Johnson and Christy, 1972) (for silver and gold) and (McPeak et al.,

2015) (for aluminum).

3.3.3 Optimization approach

The purpose of the optimization in the present work is to obtain the optimal Vogel

Spiral configurations that produce the maximum absorption (Qabs) or scattering effi-

ciency (Qsc) for a fixed number of dipolar nanoparticles. The optimization takes into

account the average of the scattering and absorption cross-sections calculated consid-

ering the two orthogonal linear polarizations of a normally incident plane wave. For

this purpose, a Fortran code was developed based on the coupled-dipoles approxima-

tion (CDA) theory and coupled to the optimization algorithm, which is performed at

Prof. Kirby’s group at the University of Utah. In this approach, the cost of compu-

tation scales with the number of scatterers. The design variables for the optimization

are the incident wavelength λ, the divergence angle αvs, and the scaling factor avs that

uniquely specify the Vogel spiral geometry for a fixed number of particles, according

to (Christofi et al., 2016; ?):

ρn =
√
navs, (3.12)

θn = nαvs, (3.13)

where ρn and θn denote, respectively, the radial distance and the polar angle of the

n-th particle in a Vogel spiral array.

In this optimization, the radius of the particles is set to be fixed at 25nm, which

guarantees the validity of the CDA approximation when additionally combined with

the constraint that the particles center-to-center separation (d) is restricted to be

larger than 75nm. In order to produce the optimal configurations with a reasonable

computational efficiency, a greedy optimization algorithm is used, which is known
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as cyclic coordinate optimization, uses one-dimensional particle swarm optimization

for each dimension (with all other variables being held fixed in each step) to find the

optimal value for all design variables in a step by step computational process. Next, a

pattern search strategy is used to optimize the array of particles configuration in the

direction of incrementation of all design variables from their old to new values. Then

the greedy loop is repeated again with the newly found values of the design variables

until the selected objective function (either f = −Qabs or f = −Qsc) minimum is equal

to the previous step minimum value within a specified tolerance (here ε = 10−3). It

should also be noted that the constraint of center-to-center distance d ≥ 75 nm is

imposed using a penalty step function, in order to avoid excitation of higher order

modes other than electric dipole moments in the nanoparticles (which destroy the

validity of dipole approximation).

Cyclic coordinate or block coordinate descent minimization approaches have been

used in different areas of science and engineering such as statistics (Breheny and

Huang, 2011), image processing (Bouman and Sauer, 1996; Ye et al., 1999), machine

learning (Hsieh et al., 2008), compressive sensing (Wu and Lange, 2008; Kyrola et al.,

2011) and dynamic programming (Zuo and Wu, 1989). The reason behind this broad

range of applications is its ease of implementation and numerical stability as well as

its reasonable convergence speed due to its low computational cost for each iteration.

In this context, Saha and Tewar have provided a convergence analysis for one of this

approach called cyclic coordinate descent method (Saha and Tewari, 2013). Under

Lipschitz continuity and strong convexivity assumptions for the objective function,

they proved that the convergence rate of this variant of cyclic coordinate minimiza-

tion to be of the order of 1
k
, for which k is the iteration count. Such a convergence

is ideal for dealing with the optimization problems of large dimension. This deduc-

tion has been confirmed in the work of Friedman et al (Friedman et al., 2010). A
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Figure 3·8: Optimal Vogel Spiral with respect to (a)Qabs (b)Qsc within
5 percent of highest found value; Silver(Razi et al., 2018)

comprehensive overview of the coordinate descent algorithms has been provided by

Wright (Wright, 2015). In the present work, a combination of a one-dimensional

heuristic approach with cyclic coordinate algorithm provides a cost effective tool to

study the optimal configurations of Vogel spirals with hundreds to thousands of par-

ticles, for which the computational cost of each sample data can be significantly high.

3.3.4 Results and discussion

The absorption and scattering efficiencies are important quantities in the study of

nanoparticle arrays and quantify their ability to efficiently couple with the incoming

radiation, which is a desired feature for a number of different engineering applica-

tions. In this section, we discuss the results of the optimization of Vogel spiral arrays

with respect to the absorption/scattering efficiency. The results of optimal configura-

tions will be provided in this section for three types of commonly utilized plasmonic

materials, namely silver, aluminum and gold. Moreover, the optimal arrays’ configu-

rations, which are shown in Figs 3·8, 3·10 and 3·12, are found for different numbers

of particles (N = {50, 150, 300, 500, 1000, 2500}).

It should be noted that these optimal arrays were selected among a small set of

arrays, which are all obtained as a design space local optima, with at most 1 to 5

percent variations in the values of absorption/scattering efficiency. In order to show



82

(a)

(b)

16.9 16.1
Q
abs

8.5 8.3
Q
sc

Figure 3·9: Set of optimal Vogel Spirals with respect to (a)Qabs (b)Qsc

within 5 percent of highest found value; Silver; N = 150 (Razi et al.,
2018)

the geometrical diversity of such set, a corresponding group of silver, aluminum and

gold arrays are illustrated in Figs 3·9, 3·11 and 3·13. Within these sets of configu-

rations, many geometrically different configurations can be found. Among them, the

most consistent configurations in the range of 50 ≤ N ≤ 2500 are selected as the

optimal configuration. As shown in Fig. 3·8(a), the optimal Qabs increases with the

number of particles for silver. In contrast, the optimal scattering efficiency appears

to be insensitive to the number of particles in the corresponding optimal Vogel spiral

arrays (see Figs 3·8(b)). This difference is due to the fact that the scattering cross-

section increases with overall area whereas the absorption cross-section increases with

the volume. Therefore, the scattering efficiencies are expected to weakly depend on

the number of particles since they are normalized to the total projected area of each

array, which compensates for the absolute increase in the scattering cross-sections.

On the other hand, we found that the absorption efficiencies follow a linear trend

proportional to the linear size of the system (i.e., the particle number). Besides, we

show that the optimal wavelength remains approximately constant among these op-

timal configurations for silver, indicating that the different optimal geometries only

slightly perturbs the scattering/absorption resonant wavelength of the individual sil-
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Figure 3·10: Optimal Vogel Spiral with respect to (a)Qabs (b)Qsc

within 5 percent of highest found value; Aluminum (Razi et al., 2018)
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Figure 3·11: Set of optimal Vogel Spirals with respect to (a)Qabs

(b)Qsc within 5 percent of highest found value; Aluminum; N = 150
(Razi et al., 2018)

ver nanospheres. We notice that, for Vogel spirals formed by silver nanospheres,

densely-packed arrays of similar geometrical configurations can be observed at dif-

ferent particle numbers. This is so because in this study we selected optimal array

configurations with similar morphology across a wide range of N . It is interesting to

note that among the selected optimal configurations, few arrays can be found with

a distinctive chiral structure, as shown for example in Figs 3·8(b). However, if

we consider the arrays geometries of all the optimal solutions illustrated in Fig. 3·8,

we can appreciate that Vogel spirals with approximately the same structure are ob-

tained across a large range of particles numbers, i.e., in the range of 50 ≤ N ≤ 2500.

Moreover, from these results one can learn that the optimal Vogel spiral arrays con-
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Figure 3·12: Optimal Vogel Spiral with respect to (a)Qabs (b)Qsc

within 5 percent of highest found value; Gold (Razi et al., 2018)
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Figure 3·13: Set of optimal Vogel Spirals with respect to (a)Qabs

(b)Qsc within 5 percent of highest found value; Gold; N = 150 (Razi
et al., 2018)
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sist of evenly distributed silver nanospheres. The underlying physical reason for this

behavior observed in arrays of silver nanospheres with 25nm radius, which are very

effective at scattering the incoming radiation, is that evenly distributed nanoparti-

cles separated by approximately the resonance wavelength produce the most efficient

scattering within a given circular region. The optimization is however very sensitive

to the geometrical parameters of the arrays. In fact, if we relax the optimal scatter-

ing/absorption efficiencies to be within 5% from the maximum, we obtain a larger

number of chiral geometries within the class of the best results. Figure 3·9 shows a

representative set of optimized arrays with 150 nanoparticles that are all within 5%

of the optimal solution for absorption/scattering efficiencies. In the case of aluminum

nanoparticles, shown in Fig. 3·10(a), the values of optimum Qabs exhibit a linearly

increasing trend as the number of particles is increased, whereas Qsca remains mostly

constant (see Fig. 3·10(b)). Similar to the case of silver nanoparticles, the optimal

incident wavelength, as shown in Fig. 4·15, remains almost constant and very close to

the value of the scattering/absorption peak of an isolated nanosphere. This situation

is consistent with the regime of photonic coupling of the arrays where each particle is

maximally excited by the coherent diffracted (far)-fields from all the other particles

with only a small perturbation due to the near-field coupling. As efficient scatterers,

optimal structures for both scattering and absorption efficiencies all feature very uni-

form particle distributions in the circular area occupied by each Vogel spiral. Being

a better scatterer than the same-sized silver nanospheres, aluminum Vogel spirals all

optimize to evenly distributed (over the wavelength scale) structures even when the

condition for optimization is relaxed to be within 5% of the best result (see Fig. 3·11).

Analogously to the case of silver and aluminum Vogel spiral arrays, optimal gold ar-

rays show increasing trends with respect to absorption efficiency, and almost constant

scattering efficiencies as the number of particles is varied in Fig. 3·12. However, the
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optimal values of absorption efficiencies for gold are much lower, and the scatter-

ing efficiencies show values that are constantly below unity. This behavior follows

from the more dissipative nature of gold material as opposed to silver and aluminum.

The characteristic material dispersion of gold produces some important differences

in the Vogel spirals optimization as compared to structures created using the other

two materials. For instance, for the absorption efficiency, while the optimal silver

and aluminum spirals provide evenly distributed structures over the wavelength scale

resulting in strong diffractive coupling, optimal gold arrays feature closely-packed

clusters of particles with sub-wavelength separation giving rise to stronger near-field

coupling effects. These effects perturbs more severely the resonant wavelength po-

sition of the optimized arrays compared to the one of the isolated gold particles, as

evident in Fig. 3·13. In addition, the presence of strong near-field coupling in gold

relaxes the importance of the geometrical array configuration leading to the appear-

ance of a broad distribution of optimal configurations that include chiral structures

as well. For instance, Fig. 3·13 shows a set of optimal solutions with opposite chi-

rality, while maintaining the important feature of closely-packed clusters of particles

on the sub-wavelength scale. Since we have enforced a lower bound on the edge-to-

edge distance in the optimization, the minimum separation between gold nanospheres

across the spiral arms approaches this limit. Therefore the study suggests that the

sub-wavelength coupling in gold arrays is the most effective strategy to maximize the

amount of scattering per unit area, resulting in continuum-like large substructures

(i.e., the arms of the spirals) that strongly couple diffractively. The interplay between

materials dissipation and plasmonic coupling results for gold in a much reacher space

of optimal structures as we increase the total number of particles in the arrays.

In summary, by comparing the optimized structures for the three investigated

materials we can infer some general rules: (a) the materials that most efficiently scat-
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ter radiation are optimized into evenly distributed Vogel spirals where the particles

are separated over the wavelength scale giving rise to strong diffractive coupling ef-

fects that drive optimal scattering and absorption; and (b) materials such as gold that

have large dissipation produce arrays of closely-packed particles at the sub-wavelength

scales that arrange into highly-diffractive spiral arms that drive optimal cross sections

with a strong perturbation of the single particle’s resonant condition.

3.3.5 Section summary

In conclusion, a greedy optimization algorithm based on cyclic coordinate minimiza-

tion has been used, and coupled it with CDA codes to find optimal solutions for

absorption and scattering efficiencies for the three most common plasmonic materi-

als, within the family of Vogel spirals. Due to the differences in material dispersions,

Vogel spirals made with these three materials optimize to very different array geome-

tries. The general understanding is that, for better scattering materials, more evenly

distributed arrays over the wavelength scale produce both better absorption and

scattering efficiencies. On the other hand, lossy materials such as gold lead to spiral-

armed Vogel arrays with closely-packed clusters of particles at the sub-wavelength

scale, strongly perturbing the plasmonic resonance of the individual particles.

Given the significantly reduced parameter space using Vogel spirals and the capa-

bility of CDA to deal with large particle clusters, the proposed optimization approach

can be utilized to design large complex systems up to 10000 particles. This is im-

portant for the engineering of large-scale photonic-plasmonic coupled devices, such

as plasmon-enhanced sensors, photodetectors, solar-cells, light sources, and more ef-

ficient nonlinear optical elements.
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3.4 Chapter Summary

In this chapter, I have shown how nanostructures based on the concept of arrays can

both improve our understanding of collective resonances of nanostructures and enable

designs for more complex resonance features. In particular, randomly arranged gold

nanofiber in the electrodes for electrocatalysis different sizes and result in broadband

reflectance. On the other hand, Cesaro-type fractal structures feature deterministic

and controllable resonance elements at different length scales, and provide the basis

for multiband sensing. While above two examples exploits resonances due to mixture

of different resonant elements in the array, the array effect enable gold nanohelicies,

which is modeled as periodic repetition of identical elements, to show emergent fea-

tures such as directionality and circular polarization. As motivated by the example of

gold nanohelices, as well as reasons for ease of fabrication and modeling, arrays made

of identical elements become the focus of my research. By designing and modeling

complex nanostructures using arrays of identical elements, we can decouple the un-

derstanding of single-element resonance from the effect of overall array geometries. In

the next chapter, I will introduce the Green’s matrix method as a tool to rigorously

understand effects of arrays.
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Chapter 4

Rigorous Engineering of Collectrive

Resonances and The Green’s Matrix

Method of Coupled Dipoles

In the previous chapter, I have shown the relevance of engineering the geometry of

arrays in order to achieve desired collective resonance that are not observed at single-

element level. Anderson localization of light (Lagendijk et al., 2009), which leads to

a breakdown of wave propagation in strongly scattering media, is probably the best

known example that requires understanding of complex and disordered scattering me-

dia beyond single-element. As I have previously discussed, the applications of random

media to optical engineering are presently quite limited due to the lack of simple de-

sign rules for deterministic optimization. As an alternative, aperiodic optical media,

including quasi-periodic crystals constructed by following deterministic mathemat-

ical rules (Senechal, 1995), recently attracted significant interest in the optics and

electronics communities because of their simplicity in design and fabrication, as well

as compatibility with current material deposition and device fabrication technologies

(Kohmoto and Kadanoff, 1983; Merlin et al., 1985; Kohmoto et al., 1987a; Maciá,

2006; Maciá, 2009; Maciá, 2012; Dal Negro, 2014). Indeed, a large amount of recent

theoretical and experimental investigations in the communities for nanophotonics,

plasmonics and metamaterials have focused on understanding structure-property re-

lationships in complex media with aperiodic order for the demonstration of novel

optical functionalities (Steurer and Sutter-Widmer, 2007; Dal Negro and Feng, 2007;
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Forestiere et al., 2009b; Forestiere et al., 2009a; Ostfeld and Pacifici, 2011; Dal Negro

and Boriskina, 2012; Vardeny et al., 2013; Barthelemy et al., 2008).

In particular, it has been demonstrated that deterministic aperiodic structures

support distinctive optical properties and collective resonances which are absent in

either periodic or random systems, such as fractal mode spectra with controllable

anomalous transport behavior (Abe and Hiramoto, 1987; Ketzmerick et al., 1997;

Dal Negro et al., 2003; Dal Negro and Inampudi, 2017), and a rich spectrum of

optical modes that show various degrees of spatial localization, known as critical

modes (Kohmoto et al., 1987b; Maciá and Domı́nguez-Adame, 1996; Boriskina and

Dal Negro, 2008a). Critical modes feature highly fragmented multi-fractal envelopes

with a power-law decay that found recent applications in aperiodic lasing, optical

sensing, photo-detection, and nonlinear optical devices (Yang et al., 2010; Boriskina

and Dal Negro, 2008b; Dal Negro and Boriskina, 2012; Albuquerque and Cottam,

2003; Dal Negro, 2014). Moreover, topologically protected edge-states were recently

discovered in the pseudo-gap spectra of quasicrystals (Bandres et al., ; Baboux et al.,

2017; Levy and Akkermans, 2017), significantly broadening our understanding of

topological phases in optical media. However, the vast majority of previous studies

focused on quasicrystalline structures that are constructed by local matching rules,

such as the Penrose lattice, or on deterministic scattering arrays generated by binary

inflation rules, of which the Fibonacci, Thue-Morse, and Rudin-Shapiro sequences are

the primary examples (Abe and Hiramoto, 1987; Gellerman et al., 1994; Dulea et al.,

1992; Bandres et al., ; Baboux et al., 2017; Levy and Akkermans, 2017; Dal Negro

et al., 2005; Yang et al., 2010; Boriskina et al., 2008).

In this chapter, I focus on introducing my works related to rigorous understand-

ing and engineering array-geometry effect on optical properties through the Green’s

matrix method of coupled dipoles. I first provide a brief overview of various classes of
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point patterns. Then, I introduce the Green’s matrix method in the second section,

and show how it can be applied to two dimensional systems in the third section. In

particular, I use Green’s matrix method to understand resonances in novel prime-

based arrays and show the richness of structural and spectral information one can

extract from studying the Green’s matrix eigen-properties.

In the fourth section, I show how the Green’s matrix method can be relevant

to understanding topological properties of optical systems as a result of collective

resonance. In particular, by using full electromagnetic interactions in the Green’s

matrix, we show that topological edge states are possible but with novel localization

properties beyond the widely used tight-binding models.

Finally, by recognizing the fact that the vectorial Green’s matrix is also the kernel

of Foldy-Lax equation for multiple scattering of coupled electric dipoles, it is natural to

ask the question on how Green’s matrix method can be extended to include magnetic

dipoles. From the point of view of designing metamaterial and optical nanostructures,

it is also important to consider both electric and magnetic properties. For large

nanoparticle as elements in the array, especially dielectric particles, induce magnetic

dipole moment also becomes important in fully modeling the design problem. As a

result, including magnetic dipoles in the coupled-dipole multiple scattering problem

naturally extends the validity limit of the existing Green’s matrix method from small

particles with only electric dipolar response. In the final section of this chapter, I

show how this can be done, and present a few representative results in comparison to

those of vectorial Green’s matrix with only electric dipoles.

4.1 Classification of point patterns

It has been shown from the previous chapter that modeling and designing optical

structures and media as arrays provides a powerful paradigm, as it decouples the
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engineering of single-element properties from the engineering of collective resonances

at the array level. Here, we use point arrays (or point patterns) to denote the union

of Dirac delta points (i.e. infinitesimal in size and featureless) in Euclidean space (e.g.

1D, 2D, or 3D). A general point pattern can be mathematically defined as a density

function (Baake and Grimm, 2013):

ρ(r) =
∑
n

δ(r− rn), (4.1)

where δ is the Dirac delta function, rn is the position vector of the n point in the

array.

Traditionally, point arrays have been classified as either periodic or aperiodic,

without the need of further distinctions. However, the word aperiodic envelops a very

wide range of concepts which are useful to characterize complex structures of varying

degrees of spatial correlations, ranging from quasiperiodic crystals to more disordered

patterns with diffuse diffraction spectra. As a result, a better understanding of ape-

riodicity of point patterns is pertinent to engineering desired optical properties for

nanostructures.

In order to distinguish various classes of aperiodic arrays it is informative to

compute the spatial Fourier spectrum of the point array which is related to the farfield

diffraction pattern of the point array (Baake and Grimm, 2013):

ρ̂(q) =
∑
n

exp(−2πirn · q), (4.2)

where q values are the spatial frequency coordinates. Based on the spatial Fourier

spectrum, the static structure factor (at each spatial frequency position q) of an N -

point array can be defined as (Baake and Grimm, 2013; Senechal, 1995):

S(q) =
1

N
|ρ̂(q)|2. (4.3)
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In general, the static structure factor spectrum in the spatial frequency space,

S(q), can have both discrete (pure-point) and continuous parts (which can be fur-

ther distinguished as singular continuous and absolutly continuous parts) (Queffelec,

2010; Senechal, 1995). From a more physical point of view, discrete spectral compo-

nents give rise to sharp diffraction peaks while absolutely continuous measures are

responsible for diffuse scattering. In particular, periodic and quasiperiodic arrays can

have discrete Fourier spectra, where disordered random arrays typically have abso-

lutely continuous spectra (Levine and Steinhardt, 1984; Shechtman et al., 1984). The

remaining singular continuous component does not have a simple physical interpre-

tation, has features in between discrete and absolutely continuous components.

In order to visually appreciate the different point arrays mentioned above, I show

three representative arrays and their corresponding static structure factors in Figs.

4·1(a) to 4·1(f), for a regular square lattice, a quasiperiodic Penrose point pattern

with decagonal rotational symmetry (Penrose, ; de Bruijn, 1981), and a random

array (single realization). In particular, Fig. 4·1(a) is a periodic square array, and

its structure factor is in Fig. 4·1(b) which is pure-point. Fig. 4·1(c) is a Penrose

array. Unlike square array, it does not repeat periodically in translational directions,

apart from a ten-fold rotational symmetry. Its structure factor in Fig. 4·1(d) is

also discrete, which is characteristic to quasiperiodic point patterns. In contrast, the

random point pattern consisting of uniformly distributed dipoles (without overlaps)

in Fig. 4·1(e) has an absolutely continuous spectrum in Fig. 4·1(f) (apart from the

central bright spot resulting from q = 0 in Eq. 4.2).

As aperiodic point patterns can be designed to accommodate arbitrary rotational

symmetries as well as more abstract types of group symmetries, studying of their

aperiodic Fourier space becomes particularly attractive to optical engineering appli-

cations where isotropic and polarization insensitive responses are of great interest.
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Figure 4·1: (a) N = 1024 square array, and its diffraction pattern
in (b). (c) N = 1108 Penrose array, and its structure factor in (d).
(e) N = 1000 pseudo-random 2D array, and its structure factor in (f).
The third root of the structure factor is plotted for better visualiza-
tion.(Dal Negro et al., 2016)
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Therefore, I show additionally the structural and spectral properties of aperiodic

spiral arrays.

Unlike Penrose array that has rotational symmetry but not translational symme-

try, spiral point patterns are interesting examples of long-range ordered systems where

both translational and orientational symmetries are missing. In particular, we focus

on the properties of the so-called Vogel spiral arrays, which have been investigated

by mathematicians, botanists, and theoretical biologists in relation to the fascinating

geometrical problems of phyllotaxis (Mitchison, 1977; Adam, 2009). Aperiodic Vo-

gel spiral arrays of nanoparticles are rapidly emerging as a powerful nanophotonics

platform with distinctive optical properties of interest to a number of engineering

applications (Trevino et al., 2012a; Christofi et al., 2016; Pollard and Parker, 2009;

?; Liew et al., 2011; Dal Negro et al., 2012; Lawrence et al., 2012b; Trevino et al.,

2012b; Lawrence et al., 2012a; Capretti et al., 2012). This fascinating class of de-

terministic aperiodic array pattern can be generated by simple mathematical rules

and features circularly symmetric scattering rings in Fourier space with a very rich

structural complexity.

In particular, as mentioned in the previous chapter, Vogel spiral point patterns

are defined in polar coordinates (r, θ) by the following equations:

ρn =
√
navs, (4.4)

θn = nαvs, (4.5)

where ρn and θn denote, respectively, the radial distance and the polar angle of the

n-th particle in a Vogel spiral array. avs is a positive constant called scaling factor,

and αvs is typically an irrational number known as the divergence angle (although

αvs can be any real number in general). This angle specifies the constant aperture

between successive point particles in the array. Since αvs is irrational, Vogel spiral
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Figure 4·2: N = 1000 µ-spiral array in (a), and its structure factor
in (b). N = 1000 π-spiral array in (c), and its structure factor in (d).
N = 1000 τ -spiral array (e), and its structure factor in (f). The central
maxima for structure factors are excluded to enhance details of higher
order diffraction features. (Dal Negro et al., 2016)

point patterns lack both translational and rotational symmetry. Furthermore, for a

given irrational number ζ, αvs = 2π(1 − frac(ζ)), where frac denotes the fractional

part of the irrational number.

In Fig, 4·2, I show three representative N = 1000 Vogel spiral point arrays with

three different irrational αvs, as well as their corresponding structure factors. In

particular, Fig. 4·2(a) is a µ-sprial array with ζ = (5 +
√

29)/2, Fig. 4·2(c) is a

π-spiral with ζ = π, and Fig. 4·2(e) is a τ -spiral with ζ = (2 +
√

8)/2. From the

structure factors (i.e. diffraction patterns) in Figs. 4·2(b), 4·2(d), and 4·2(f), highly

rotational symmetric features can be see from the singular continuous spectra. These
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spectra are neither point-like as in the cases of periodic (Fig. 4·1(b)) and quasiperiodic

(Fig. 4·1(d)) arrays, nor absolutely continuous as in the case of the random array

(Fig. 4·1(f)). As a result, Vogel spirals are described as deterministic aperiodic.

Calculating the structure factor provides a quick method for understanding the

structural symmetries and correlations in the underlying point array, but richer spec-

tral information in connection with electrodynamics needs more rigorous models. As

optical media and nanostructures are typically formed by small elements, it is realis-

tic to model point-array elements are interacting electric dipoles coupled through the

array geometry. In the next section, I introduce the Green’s matrix method, which

provides the theoretical ground work for the later chapters.

4.2 The Green’s matrix method of coupled electric dipoles

The Green’s matrix method is a powerful approach to study wave propagation in

random media. The method relies on the analysis of the spectra of the Green’s matrix,

which belongs to the important class of the so-called Euclidean random matrices that

appear in Random Matrix Theory (RMT) (Mehta, 2004; Goetschy and Skipetrov,

2011). The elements of a Euclidean random matrix are determined by a function of the

positions of pairs of randomly distributed points in Euclidean space. The interest on

non-Hermitian random matrices such as the Green’s matrix has significantly increased

in recent years due their applications in the theoretical description of open systems.

When applied to random media, the study of the spectra of Green’s matrices

unveiled important information about scattering resonances (Rusek et al., 2000; Pin-

heiro et al., 2004; Goetschy and Skipetrov, 2011). Moreover, an analytical theory has

also been developed for the eigenvalue density of random Green’s matrices, provid-

ing fundamental insights into light-matter interactions in disordered media (Goetschy

and Skipetrov, 2011). However, the applications of the Green’s matrix method has
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been mostly restricted to random media so far.

The Green’s matrix method relies on the analysis of the spectra of the vectorial

Green’s matrix for three-dimensional vector scattering systems and provides invalu-

able insights into their general physical properties. In fact, the vectorial Green’s

matrix also coincides with the kernel of the Foldy-Lax multiple scattering equations

used to model arbitrary systems of coupled dipoles (Guerin et al., 2006; Christofi

et al., 2016). The method has been extensively used to understand wave transport

in multiply scattering open random media (Goetschy and Skipetrov, 2011; Rusek

et al., 2000; van Tiggelen et al., 1996; Lagendijk and van Tiggelen, 1996) especially

in conjunction with Random Matrix Theory (RMT) (Mehta, 2004). My group has

recently applied this approach to understand the scattering properties of periodic,

quasiperiodic, and deterministic aperiodic arrays of small nanoparticles (Dal Negro

et al., 2016; Christofi et al., 2016). The elements of the 3N × 3N normalized Green’s

matrix sub-blocks are obtained from the relative positions of N scattering dipoles

(Lagendijk and van Tiggelen, 1996):

Gnm = (1− δnm)
1.5eikrnm

ikrnm
{[U− r̂nmr̂nm]− (

1

ikrnm
+

1

(krnm)2
)[U− 3r̂nmr̂nm]}, (4.6)

where Gnm is the 3 × 3 block element of the vectorial Green’s matrix, the integers

n,m ∈ 1, 2, 3, ..., N label particles’s positions, k is the optical wavenumber, U is

the 3 × 3 identity matrix, r̂nm is the unit vector position from the n-th to m-th

particle, and its magnitude is r. The Green’s matrix describes the coupling of each

scatterer to all the other scatterers in an arbitrary system through the propagation

of electromagnetic vector waves. The vectorial Green’s matrix in (4.6) is the sum of

three components, each describing electromagnetic interactions proportional to 1/rnm,

1/r2
nm, and 1/r3

nm corresponding to long-range, intermediate range, and short-range

coupling, respectively. Furthermore, it is important to note that the Green’s matrix
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in this form is normalized (i.e. unitless) and bounded by −1 in the real part of the

eigenvalues.

Since a Green’s matrix is non-Hermitian, its eigenvalues are complex and they

entirely characterize the scattering resonances of the system. Specifically, the real

and the imaginary parts of the complex eigenvalue Λα are related to the relative

decay rate (Γα − Γ0)/Γ0 and relative energy position (ωα − ω0)/Γ0 of a scattering

resonance, respectively (Rusek et al., 2000; Dal Negro et al., 2016; Christofi et al.,

2016) (α ∈ 1, 2, 3, ..., 3N).

4.3 Spectral Statistics and Scattering Resonances of Com-

plex Primes Arrays

4.3.1 Introduction

In this section, Green’s matrix is applied to array structures based on complex-primes,

and work is based on the my recently published paper (Wang et al., 2018a). I in-

troduce a new class of highly-diffractive arrays with non-crystallographic rotational

symmetries, based on the distinctive aperiodic distribution of prime numbers in com-

plex quadratic fields and quaternion rings, referred to as Complex Primes Arrays

(CPAs). In other words, these structures have spatial Fourier spectra that support

countably infinite discrete components. These structures also exhibit a rich interplay

between structural regularity, both locally and at the long-range level. Being based

on prime numbers also results in structural unpredictability due to the distribution

of prime numbers that has roots in the most fundamental questions of number theory

(Apostol, 1976; Hardy and Wright, 2006). Remarkably, as shown in the next sub-

section, the structured factor showing the Fourier transform of the structure reveals

a noise spectrum with self-similarity described by a power-law scaling (Wolf, 1997).

This behavior indicates self-organized critical states of dynamical systems that do not
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possess any characteristic length scale (Bak et al., 1987).

By applying the Green’ s matrix method, I will show a comprehensive investiga-

tion of the spectral statistics of scattering resonances in CPAs of electric dipoles, of

the Eisenstein, Gaussian, Hurwitz, and Lifschitz prime arrays. Specifically in these

structures, results from systematic studies are shown via analyzing the diffraction

spectra, the eigenvalue distribution of the Green’s matrix, the Density of States,

the level spacing distribution, the decay rate statistics, and the spatial extent of

the Green’s matrix eigenmodes. Several unique spectral properties are demonstrated

from these analyses, including the absence of level repulsion in the strongly scatter-

ing regime, critical level spacing statistics, and the existence of critical modes (i.e,

extended fractal modes with long lifetime). In addition, based on the spectrum of

the Green’s matrix, one can make predictions about the the existence of spectral

gaps in CPAs solely by analyzing the eigenvalue distribution in the complex plane.

This introduces novel gapped photonic media with far richer localization and spectral

properties compared to usual periodic and random structures.

This section is organized as follows. In the first subsection the structural prop-

erties of CPAs are analyzed whereas the spectra of the Green’s matrix that describe

light propagation in such structures is discussed in the second subsection. Level

statistics and the spatial properties of the eigenmodes are treated in third and fourth

subsections, respectively. The last subsection provides a summary of results.

4.3.2 The Structure of Complex Primes Arrays

This subsection provides more detailed introduction on the complex primes and prime-

based arrays, which are used as examples for applying the Green’s matrix method in

the following subsections. As will be explained, the number-theoretical characteristics

and derived properties make these geometric arrays interesting to study in the optics

domain.
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The aperiodic CPAs structures considered in this work are constructed based on

extensions of the familiar prime number concept from the natural integers to the

complex plane, where particles coordinates are made to correspond to the real and

imaginary parts of complex primes. Specifically, the focus is on the prime elements

of complex quadratic fields such as the Eisenstein and Gaussian integers as well as

on the irreducible elements of Hurwitz and Lifschitz quaternions. Eisenstein integers

are complex numbers of the form a + bω, where a and b are natural integers and

ω = (−1+ i
√

3)/2 is one of the cubic roots of one (i is the imaginary unit). Eisenstein

integers are members of the imaginary quadratic field Q(
√
−3) which is a commutative

ring often denoted Z[ω]. The field of Eisenstein integers has six units, namely ±1,

±ω, and ±ω2, which when multiplied by prime elements form the so-called prime

associates (i.e., equivalent primes). Gaussian integers are complex numbers of the

form a+ bi where a and b are integers. They are members of the imaginary quadratic

field Q(
√
−1) and form a ring often denoted Z[i] with units±1 and±i. The Eisenstein

integers form a triangular lattice in the complex plane while the Gaussian integers

form a square lattice.

Based on algebraic number theory, Eisenstein and Gaussian integers fields are

also unique factorization domains in which every non-zero and non-unit element can

be written as a product of prime elements (or irreducible elements), uniquely up to

rearrangement, complex conjugation and associates (i.e., unit multiples), analogously

to the fundamental theorem of arithmetic for the natural integers. As a result, one

can find Eisenstein and Gaussian primes and construct arrays by interpreting the

real and imaginary parts as two geometric coordinates. In particular, an Eisenstein

integer a + bω is an Eisenstein prime if and only if either of the following mutually

exclusive conditions hold: (i) z is equal to the product of a unit and a natural prime

of the form 3n− 1; (ii) |z|2 = a2 + ab + b2 is a natural prime. Similarly, a Gaussian
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Figure 4·3: (a) N = 1050 Eisenstein prime array, (b) N = 1068
Gaussian prime array, (c) N = 1093 Hurwitz prime array, and (d) N
= 1081 Lifschitz prime array. (e) and (h) are the diffraction patterns
(5th root taken to enhance contrast) of the corresponding array on top
of each panel. (Wang et al., 2018a)

integer a+ bi is a Gaussian prime when (i) one of a, b is zero and the absolute value

of the other is a prime number of the form 4n+ 3; (ii) both are nonzero and a2 + b2

is a prime number.

Now, I discuss in more detail the structural properties of the proposed CPAs. Fig-

ures 4·3(a) and 4·3(b) show a representative Eisenstein prime array with N = 1050

elements and a representative Gaussian prime array with N = 1068 elements. Since

multiplication by a unit and complex conjugation both preserve primality, the arrays

exhibit characteristic 6×2 = 12 fold rotational symmetry and 2×2 = 8 fold symmetry,

which are incompatible with translational symmetry (i.e., crystallographically forbid-

den). Moreover, the arrays display a regular structure that nevertheless coexists with

their complete lack of periodicity. The unique interplay between symmetry and ape-

riodicity in these systems is captured by a rigorous result recently established by Tao

(Tao, 2006). A second class of CPAs can be constructed based on two-dimensional

cross-sections of the irreducible elements of quaternions. Quaternions are numbers

of the form z = a + bi + cj + dk = (a, b, c, d) where j, j, k are symbols satisfying
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i2 = j2 = k2 = ijk = −1. Integer quaternions form a noncommutative ring that

unfortunately fails to be a unique factorization domain. However, Hurwitz (Hurwitz,

1919) realized that one can obtain a Euclidean domain when including half units, and

defined the Hurwitz integers as quaternions of the form (a, b, c, d) ∈ Z4 +1/2(1, 1, 1, 1)

with integer Euclidean norm N(z). Therefore, Hurwitz quaternions (or Hurwitz in-

tegers) are quaternions whose components are either all integers or all half-integers.

Moreover, Hurwitz primes are a subset of Hurwitz quaternions with an Euclidean

norm (N(z) = a2 + b2 + c2 + d2) that is equal to an integer prime number. Further-

more, the prime elements of the half-integers Hurwitz quaternions are referred to as

Lipschitz primes. Geometrically, Hurwitz and Lipschitz integers can be viewed as the

integer and the half-integer lattice points on a sphere of radius
√
N(z) in R4. A two-

dimensional section of the Hurwitz primes is shown in Fig. 4·3(c), consisting of the

1093-element array obtained by projecting Hurwitz primes into the complex plane

(considering only the coordinates a and b of each Hurwitz primes and associating

the real and imaginary components with the Cartesian coordinates of the scattering

dipoles). Similarly, a Lifschitz prime array is shown in Fig. 4·3(d) where only the

subset of Hurwitz primes with integer coordinates have been considered (Conway and

Smith, ).

In order to more rigorously characterize the diffraction properties of the CPAs their

spatial Fourier spectra are studied, which are obtained by computing the structure

factor, shown in Figs. 4·3(e-h), computed as (Dal Negro et al., 2016):

SN(k) =
1

N

N∑
n=1

N∑
m=1

e−jk·(rn−rm) (4.7)

where N is the total number of particles in the array. The high degree of structural

regularity of the CPAs is manifested in the rotational symmetry of the spectra in

Figs. 4·3(e-h), which is a consequence of the corresponding number of associates,
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as well as in the presence of sharp diffraction peaks. At a closer inspection, these

diffraction patterns reveal a hierarchical structure that encodes spatial correlations

at multiple length scales. A similar behavior occurs in traditional quasicrystals, e.g.

the Penrose lattice, where highly diffractive Bragg peaks densely fill the reciprocal

space in a non-periodic and self-similar fashion.

However, in addition to singular components, which are sharp diffraction peaks

in the diffraction spectra, Figs. 4·3(e-h) show the presence of a weaker continuous

component, or a diffuse background that is typically associated to structural disorder

in complex media. This is particularly evident for the Eisenstein prime array in Fig.

4·3(e) and for the Gaussian prime array in Fig. 4·3(f), whose structures are more

complex than the ones of Hurwitz and Lifschitz prime arrays shown in Figs. 4·3(g)

and 4·3(h), respectively. Aperiodic structures whose diffraction spectra display a

coexistence of singular and continuous spectral components are referred to as singular-

continuous, and the numerical results provide evidence that the proposed CPAs belong

to this category. Singular-continuous spectra are often discovered in complex systems

with chaotic dynamics, fractal structures, and are commonly observed in traditional

quasicrystals (Senechal, 1995).

The nature of the Fourier spectra of CPAs can be more accurately understood by

studying the behavior of the Integrated Intensity Function (IIF) (Maciá, 2009):

HN(k) =

k∫
0

k∫
0

|SN(k′x, k
′
y)|dk′xdk′y (4.8)

For two-dimensional arrays this function characterizes the distribution of the diffracted

intensity peaks contained within a 2D square region, centered at the origin, with max-

imum size 2k×2k in the reciprocal space. It should be realized that the exact nature

of the diffraction spectrum is only determined by the asymptotic limit of equation

(4.8) for a system of infinite size (N →∞) and only heuristic information can be ex-
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Figure 4·4: The H(k) of (a) Eisenstein prime, (b) Gaussian prime,
(c) Hurwitz prime, (d) Lifschitz prime.(Wang et al., 2018a)

tracted for finite-size structures. The behavior of the IIF can be understood as follows.

In both periodic and quasiperiodic structures there are regions where H(k) vanishes

due to the discrete nature of their spectra. Therefore, over those regions H(k) must

remain constant and it will present jump discontinuities every time an isolated Bragg

peak is integrated. On the other hand, for structures with continuous Fourier spectra

the function H(k) is smooth (i.e. continuous and differentiable). In the case of struc-

tures with singular-continuous spectra the Bragg peaks are no longer well-separated

but cluster into a hierarchy of self-similar contributions giving rise to a continuous

component in the spectrum that smoothly increases the value of H(k) in between

the plateaus. Fig. 4·4 show the calculated H(k) for each of the CPAs. The results

demonstrate a characteristic aperiodic staircase with a fractal behavior highlighted

by computing H(k) over a much smaller scale, as shown in the insets of Fig. 4·4. Fig.

4·4(a) show the H(k) of the Eisenstein prime array, which demonstrates clear jump
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discontinuities in correspondence of the bright diffraction peaks shown in Fig. 4·3(e).

Moreover, the presence of the continuous components is manifested by the varying

slopes that smoothly connect each plateau of H(k), unveiling the singular-continuous

nature of the spectra. Qualitatively similar features are also observed for all the other

CPAs. However, the respective contribution of the continuous components weaken

progressively from Eisenstein and Gaussian primes, shown in Figs. 4·3(a) and 4·3(b),

to Hurwitz and Lifschitz structures shown in Figs. 4·3(c) and 4·3(d). This behavior

is consistent with the much more regular structure displayed in real space by the

Hurwitz and Lifschitz arrays. This heuristic analysis leads to conjecture a surpris-

ing connection between the distribution of primes in complex quadratic fields and

the singular-continuous spectra of two-dimensional quasicrystals. This scenario can

be regarded as a two-dimensional generalization of Freeman Dyson’s conjecture on

the quasi-crystalline nature of the the Fourier spectrum of the zeta-function zeros on

the critical line, which encode information on the distribution of the natural prime

numbers (Dyson, 2009).

4.3.3 Green’s matrix spectral properties

By using the Green’s matrix method, spectral information of the complex-prime based

arrays can be analyzed. Figs. 3 and 4 show the eigenvalue distributions for differ-

ent values of the optical density ρλ2 (with ρ the number of particles per unit area

and λ the optical wavelength) for Eisenstein prime and Hurwitz prime arrays, re-

spectively. Qualitatively similar results are also obtained for Gaussian primes and

Lifschitz structures.

All the complex eigenvalues shown in Figs. 4·4 and 4·6 are color-coded based on

the log10 value of Inverse Participation Ratio (IPR) of the corresponding eigenvectors,
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Figure 4·5: Eigenvalue distributions of Eisenstein prime arrays with
ρλ2 = (a) 100, (b) 10, (c) 1, (d) 0.1, (e) 0.01, (f) 0.001. The color-
coding shows the log10 values of IPR for the eigenmode corresponding
to each eigenvalue.(Wang et al., 2018a)

defined as (Goetschy and Skipetrov, 2011):

IPRp =

∑N
i=1 |Rp(ri)|4

[
∑N

i=1 |Rp(ri)|2]2
, (4.9)

where Rp(ri) is the p-th normalized eigenmode of the Green’s matrix, and (ri) are

positions of scatterers. The IPR measures the degree of spatial localization of the

eigenvectors. An eigenvector that extends over all the N scatterers is characterized

by a low value of IPR ' 1/N , while an eigenvector localized at a single point has

IPR = 1.

We notice in Fig. 4·5(a) that when the optical density is the largest (i.e. ρλ2 =

100), the spectrum collapses around the region ReΛ = −1 which correspond to long-

lived modes (i. e., the decay rate Γ ≈ 0). Furthermore, we observe that the corre-

sponding eigenstates display larger IPR values, i .e. more spatial localization, towards

larger values of |ImΛ|. Among the eigenvalues with ReΛ ' −1, those with larger

absolute values in the imaginary part have increasingly higher IPR values. In ran-

dom systems proximity resonances (ReΛ ≈ −1, ImΛ� 1, and IPR = 0.5) spatially
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localized over pairs of particles very close together, may exist even for weakly scat-

tering systems, far from the regime of Anderson localization (Rusek et al., 2000). In

contrast, two-particle proximity resonances are generally absent in the investigated

aperiodic systems, where eigenstates localized over small clusters of particles, similar

to Efimov-type of resonances, occur more frequently due to locally symmetric par-

ticle clusters distributed across these structures. It is also interesting to notice in

Fig. 4·5(a) that a spectral gap opens in the complex plane between ImΛ = 0 and

100. This feature, which does not occur in random arrays, reflects the role of spatial

correlations in the Eisenstein prime array, and can also be observed in all the other

aperiodic arrays at large enough density.

On the other hand, when the optical density decreases the sub-radiant eigenmodes

at ReΛ ≈ −1 gradually disappear from the spectra as shown in Figs. 4·5(b) to 4·5(f)

and the complex eigenvalue distributions eventually evolve into a more homogeneous

domain in the complex plane centered near Λ = 0 (Fig. 4·5(d) to 4·5(f)). This spectral

evolution reflects the occurrence of an increasing proportion of short-lived eigenstates

with low IPR extending over a larger number of particles and characterized by a

larger decay rate. Besides, the IPR values are more uniformly distributed across the

different eigenvalues at low optical densities showing that these states are very similar

in both energy and decay characteristics.

Importantly, the low-density distribution of eigenvalues for all the investigated

CPAs does not approach a circular distribution in the complex plane, as it would

be the case for a uniform random medium (Rusek et al., 2000; Dal Negro et al.,

2016; Goetschy and Skipetrov, 2011; Skipetrov and Goetschy, 2011), even at very low

optical density of 0.001 particle per λ2. This indicates a persistent correlation effect,

which is present even at very small optical densities, where the average interparticle

separation is more than one order of magnitude larger compared than the wavelength.
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Figure 4·6: Eigenvalue distributions of Hurwitz prime arrays with
ρλ2 = (a) 100, (b) 10, (c) 1, (d) 0.1, (e) 0.01, (f) 0.001. The color-
coding shows the log10 values of IPR for the eigenmode corresponding
to each eigenvalue.(Wang et al., 2018a)

In Figs. 4·6(a) to 4·6(f), we summarize the evolution of eigenvalue distributions at

the six representative optical densities for a N = 1093 Hurwitz prime array. Unlike

in the case of Eisenstein prime array, the distribution of eigenvalues for the Hurwitz

prime array at ρλ2 = 100 does not feature large sub-radiant components, and it

exhibits two large circular gap regions in the high-density spectrum that originates

from its more significant structural regularity. This behavior is very similar to the

eigenvalue distribution of a periodic square array at such large optical density. As

the optical density decreases from Figs. 4·6(b) to 4·6(f), the eigenvalues eventually

cluster into a smaller region of the complex plane around Λ = 0. Similar to the

case of the Eisenstein prime array, the presence of correlation effects prevent the

eigenvalue distribution to approach, even at the smallest density values, the circular

disk distribution expected for uniform random systems.

We notice that in all the investigated CPAs the value ρλ2 ≈ 1 appears to separate a

highly structured eigenvalue distribution, where spatial correlations plays a dominant

role, from a diffuse eigenvalue distribution with weaker correlations at low density.
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The formation of spectral gaps in CPAs when increasing the optical density is

best demonstrated in Fig. 4·7 by the density of states (DOS) computed for all the

investigated structures based on the imaginary part of the Green’s matrix eigenvalues.

In Fig. 4·7, we plot the DOS for all the structures at three representative optical

densities, ρλ2 = 100, 10, and 0.001, and plot them versus the normalized energy. The

numerical study indicates opening of gaps at values of the optical density ρλ2 & 10.

This density regime corresponds to a linear particle separation approximately equal

to the wavelength, resulting in a strong diffractive response of the CPA structures.

In particular, in Fig. 4·7(e), Eisenstein prime array has a gap near (E −E0)/Γ0 = 1,

whereas in Fig. 4·7(h), Hurwitz prime array has multiple gaps near (E − E0)/Γ0 =

0, 1, and 2. On the other hand, at the lowest optical density ρλ2 = 0.001 the

scattering strength is too weak to open optical gaps in all the investigated structures,

as demonstrated in Figs. 4·7(i) to 4·7(l).

4.3.4 Spectral Statistics of Complex Primes

Level statistics provides important information about electromagnetic propagation in

both closed and open systems, and from RMT one can to identify the wave transport

regime (extended or localized) in closed systems. For open systems that are not

random, level statistics remains not very well understood especially at low optical

densities. In my previous work, the Green’s matrix method has been applied to study

open systems that are either random, or aperiodic, and have shown the transition

from the absence to the presence of level repulsion as the optical density decreases

(Dal Negro et al., 2016). In open systems the Green’s matrix is non-Hermitian, so

that for each Λi the nearest eigenvalue Λj is identified as the eigenvalue that minimizes

the distance between the two eigenvalues in the complex plane |∆Λ| = |Λi − Λj|

In closed random systems, an established result from RMT predicts the suppres-

sion of level repulsion in the presence of localizes states (Mehta, 2004; Haake, 2010).
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Figure 4·7: The DOS for (a) Eisenstein prime, (b) Gaussian prime,
(c) Hurwitz prime, (d) Lifschitz prime, at ρλ2=100; (e) Eisenstein
prime, (f) Gaussian prime, (g) Hurwitz prime, (h) Lifschitz prime, at
ρλ2=10.(i) Eisenstein prime, (j) Gaussian prime, (k) Hurwitz prime, (l)
Lifschitz prime, at ρλ2=0.001.(Wang et al., 2018a)

In this case two spatially separated, exponentially localized states hardly influence

each other, so that distinct modes with infinitely close energies are possible. In the

strong localization regime the distribution of level spacings is described by the Poisson

distribution (Haake, 2010):

p(s) ∝ exp (−s) , (4.10)

where we consider the nearest-neighbor level spacing normalized to the average spac-

ing as s = |∆Λ|/〈|∆Λ|〉. For inhomogeneous systems, as it is the case of CPAs, special

care needs to be exercised in order to eliminate degenerate energy states caused by

the geometrical symmetries inherent to the structure of the arrays.

In Fig. 4·8, we show the two most extreme cases (highest and lowest optical

densities) of level spacing statistics for each of the four CPA structures. In particular,

Figs. 4·8(a) to 4·8(d) show the first-neighbor level statistics of the Eisenstein prime,
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Figure 4·8: The 1st-neighbor level statistics of complex eigenvalues
for (a) Eisenstein prime, (b) Gaussian prime, (c) Hurwitz prime, (d) Lif-
schitz prime, at ρλ2=100; (e) Eisenstein prime, (f) Gaussian prime, (g)
Hurwitz prime, (h) Lifschitz prime, at ρλ2=0.001.(Wang et al., 2018a)

Gaussian prime, Lifschitz prime, and Hurwitz prime arrays, respectively, at ρλ2 =

100. The black lines in Figs. 4·8(a) to 4·8(d) are best fitting curves using a Poisson

distribution model. The results demonstrate that level spacing with Poisson statistics

has been achieved in the proposed CPAs for high optical densities, in complete analogy

with the localization regime observed in uniform random media.

In contrast, a well-known result of RMT is the phenomenon of level repulsion

in the extended regime of wave transport in closed systems (Mehta, 2004; Haake,

2010). In open systems, the concept of eigenvalue repulsion can be generalized to

non-Hermitian matrices. Indeed, for the Ginibre’s ensemble of random matrices, the

probability density function of normalized eigenvalue spacing is (Haake, 2010)

p(s) =
34π2

27
s3 exp(−32π

24
s2), (4.11)

which has been successfully applied to describe the statistical properties of eigen-

modes in random optical media (Skipetrov and Sokolov, 2015). For all aperiodic

media considered, we demonstrate the emergence of level repulsion, i .e.P(0 ) = 0 , at

low optical densities of ρλ2 = 0.001, as shown in In Figs. 4·8(e) to 4·8(h). However,

in contrast to random media, the distribution of level spacing predicted by the Gini-
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bre’s ensemble in equation (4.11) (represented by dashed lines in Fig. 4·8) does not

accurately describe the spectral statistics of CPAs. Instead, a good fit to the level

statistics can be obtained only using the derivative of interpolation function, called

critical cumulative probability, proposed in (Zharekeshev and Kramer, 1997):

I(s) = exp[µ−
√
µ2 + (Acs)2], (4.12)

where I(s) is the cumulative level spacing distribution function, µ and Ac are fitting

parameters. The fit of the data using this model is shown by the black lines in

Figs. 4·8(e) to 4·8(h). The critical statistics model has been introduced to account

for the level spacing at the Anderson transition in random media (Zharekeshev and

Kramer, 1997), where the wavefunctions feature multifractal scaling, and it has been

proposed as a third universal level statistics valid at the Metal Insulator Transition

(MIT) of aperiodic media. The findings demonstrate the applicability of critical

statistics to the weakly scattering regime of CPAs. Indeed, the critical nature of the

CPAs level spacing statistics can be traced back to their singular-continuous spectra

that support critically localized eigenmodes with self-similar scaling at all optical

densities. Differently from random media, where criticality is only achieved at the

localization threshold, which occurs for a specific optical density in 3D, the critical

behavior of CPAs occurs for a broader range of optical densities for planar, weakly

scattering systems, and it is inherent to the fractal nature of their geometries and

critical eigenmodes.

In Fig. 4·9 we show the decay rate statistics P (Γ) for different CPAs and for

for three distinct values of the optical density, where decay rates were obtained form

the Green’s matrix eigenvalues, Γ/Γ0 ≈ ReΛ + 1. (Rusek et al., 2000) In particular,

in Figs. 4·9(a-d) we plot the statistics of the normalized decay rates in a double-

logarithmic scale, for the four prime-based aperiodic arrays at the highest optical
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density ρλ2 = 100. In this regime, we have conclusively found that the data follow

a linear decay, which unveils an algebraic power law scaling P (Γ) ' 1/Γ. This

power law behavior of the decay rate statistics, which has been reported in disordered

systems (Pinheiro et al., 2004; Goetschy and Skipetrov, 2011), is a result of multiple

scattering (Goetschy and Skipetrov, 2011). Figures 4·9(a-d) indicate that the power

law of P (Γ) ∼ Γ−1 also occurs for more general open aperiodic systems such as the

CPAs for high optical densities (ρλ2 = 100). As it occurs in random systems (Pinheiro

et al., 2004), the range of this algebraic decay increases for increasing optical densities

for which multiple scattering effects are stronger, as it can be seen by comparing Figs

4·9(a-d) with Figs 4·9(e-h), for which the optical density is lower, (ρλ2 = 10).

Finally we note that, differently from uniformly random systems, the tails with

very large decay rate in the statistics of CPAs shown in Figs. 4·9(a) to 4·9(d) do not

feature any prominent peak due to Dicke superradiant modes, which would manifest

as a peak at P (Γ) at Γ = 2Γ0) with IPR=0.5 (Akkermans et al., 2008; Dicke, 1954).

This result, together with the absence of proximity resonances with small decay rates

unveiled in Fig. 4·5, show that collective effects involving pair of scatterers (subrandi-

ance and superradiance), do not occur in the investigated CPAs. We believe that this

behavior can be attributed to the highly correlated nature of CPAs, which prevents

the formation of such modes.

4.3.5 Spatial distribution of eigenstates

In order to further understand the spatial distribution of eigenmodes in aperiodically

ordered structures, in Fig. 4·10 we show the maximum IPR value among all CPA

eigenstates for different values of the optical density. For comparison, we also show the

results obtained for a uniform random array of dipoles as well as for periodic square

and triangular arrays. We have found that among all the investigated geometries

the uniformly random array support eigenstates with the largest IPR values for all



115

Figure 4·9: The decay rate statistics for ((a) Eisenstein prime, (b)
Gaussian prime, (c) Hurwitz prime, (d) Lifschitz prime, at ρλ2=100; (e)
Eisenstein prime, (f) Gaussian prime, (g) Hurwitz prime, (h) Lifschitz
prime, at ρλ2=10.(i) Eisenstein prime, (j) Gaussian prime, (k) Hurwitz
prime, (l) Lifschitz prime, at ρλ2=0.001.(Wang et al., 2018a)

optical densities considered, as shown in Fig. 4·10. Indeed, these modes with largest

IPR = 0.5 correspond to proximity resonances that involve only two neighboring

particles and, as Fig. 4·10 reveals, can occur even for weakly scattering systems (low

optical densities) (Rusek et al., 2000). Figure 4·10 demonstrates that these proximity

resonances cannot be supported by CPAs under the conditions investigated. Besides,

the largest values of IPR for CPAs are significantly larger than the corresponding ones

of periodic arrays of dipoles. Based on the value of maximum IPR, we can estimate

the number of particles over which the most spatially localized states are distributed.

In particular, at high optical densities, Efimov resonances (Efimov, 1970), typically

distributed over few dipoles, are more likely to occur in structures such as Eisenstein

prime and Gaussian prime arrays.

In Figs. 4·11(a) to 4·11(d) the statistical distributions of IPRs are shown for CPAs

in the strongly scattering regime, achieved at the largest optical density considered,

ρλ2 = 100. It can be seen that the IPR distributions for Eisenstein prime and
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Figure 4·10: A comparison of maximum IPR values among (1) Eisen-
stein prime, (2) Gaussian prime, (3) Lifschitz prime, and (4) Hurwitz
prime arrays, at each representative optical density. (5) square, (6)
triangular and (7) uniform random arrays are included for references.
The red dashed line indicate the proximity resonance of two particles
with IPR = 0.5.(Wang et al., 2018a)

Figure 4·11: The IPR statistics for (a) Eisenstein prime, (b) Gaussian
prime, (c) Hurwitz prime, (d) Lifschitz prime, at ρλ2 = 100; The mode
with the highest IPR values are for each of the structures at this density
are shown respectively from (e) to (h).(Wang et al., 2018a)
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Figure 4·12: At ρλ2 = 10, (a) to (d) are the most localized (highest
associated IPR value) eigenmode for Eisenstein prime, Gaussian prime,
Hurwitz prime and Lifschitz prime arrays, respectively. (e) to (h) are
corresponding structure’s critical mode, which has the lowest IPR and
small ReΛ (low decay rate). (i) to (l) are spectral-gap edge-modes of
each corresponding structure.(Wang et al., 2018a)

Gaussian prime arrays are considerably broader than the ones of the corresponding

Hurwitz and Lifschitz primes structures. This result reflects the fact Hurwitz and

Lifschitz prime arrays are much more regularly distributed in real space than the

Eisenstein and Gaussian prime arrays, consistent with the results for the Integrated

Intensity Function shown in Fig. 4·4. Figures 4·11(a) to 4·11(d) also confirm that the

probability of finding Efimov resonances, spatially localized over a small number M

of scattering particles (with corresponding larger IPRs ' 1/M), is smaller for more

regular CPAs, such as the Hurwitz and Lifschitz primes arrays. In Figs. 4·11(e-h)

we show the intensities of the eigenvectors with largest IPR at the positions’ of the

scattering particles at optical density ρλ2 = 100 for different CPAs. The spatial

distribution of the mode with largest IPR strongly depends on the particular spatial

structure of the CPA in the real space. For instance, in the Eisenstein and Lifschitz

prime arrays the mode with largest IPR is highly localized over a small cluster of

dipoles in the center of structure, as Fig. 9(e) and (h) reveal. On the other hand,
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Fig. 4·11(g) demonstrates that for the Hurwitz prime array the highest-IPR eigenstate

is symmetrically localized at the edge of the structure over T-shaped particle clusters.

In Fig. 4·12 we provide a more complete survey of the spatial extent of distinctive

eigenstates that can be supported by different CPAs, namely the one with highest-

IPR (Figs. 4·12(a) to 4·12(d)), the critical modes (Figs. 4·12(e) to 4·12(h)), and the

ones localized at the edge of the structures (panels (i) to (l)) at ρλ2 = 10. Again, the

spatial distribution of intensities of the highest-IPR mode crucially depends on the

particular structure of the CPA in the real space. Indeed, Figs. 4·12(a) to 4·12(d)

demonstrate that, for a given optical density, the highest-IPR mode may be either

extremely localized at the center of the array, as it is the case of Gaussian prime array,

or more radially spread around the center of the structure, as in the Lifschitz prime

array. The critical modes, which have been recently identified as the ones with long-

lived resonances (small decay rates) with low IPR values (Dal Negro et al., 2016), are

depicted in Figs. 4·12(e-f). These modes, which are spatially extended over the whole

array, are unique to deterministic aperiodic systems and cannot be supported by either

random or periodic systems. Figs. 4·12(e-h) unveil the very rich spatial distribution

and distinctive critical nature of eigenmodes for all CPAs considered. Finally, we also

discovered in the CPAs mode spectrum long-lived modes that are spatially localized

close to the edge of the structures, as shown in Figs. 4·12(i-l). Such surface-localized

modes appear to be analogous to the recently discovered topological edge-states in

quasiperiodic systems (Bandres et al., ). However, further studies beyond the scope

of this work are needed to established the exact physical nature of edge-states in the

investigated CPAs.

4.3.6 Section summary

In conclusion, this section investigates the structural, spectral and localization prop-

erties of aperiodic arrays generated from the distribution of prime numbers in complex
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quadratic fields (Eisenstein, Gaussian) and quaternion rings (Hurwitz, and Lifschitz

primes arrays) and studied their distinctive scattering resonances using the vector

Green’s matrix method. We systematically study the Fourier spectra, the eigenvalue

distribution of the Green’s matrix, the Density of States, level spacing distribution,

the decay rate statistics, and the spatial extent of eigenmodes in all these structures.

The findings demonstrate several unique spectral properties, such as the absence of

level repulsion for strongly scattering systems, critical level statistics, and the ex-

istence of critical modes, extended fractal modes with long lifetime that cannot be

supported by either random and periodic systems. From the distribution of eigen-

values of Green’s matrix in the complex plane, the existence spectral gaps can be

predicted. The results unveil the importance of aperiodic correlations for the engi-

neering of novel gapped photonic structures that support far richer spectral properties

compared to traditional periodic and random media.

4.4 Edge Modes of Scattering Chains with Aperiodic Order

In the previous section, I have shown the use of Green’s matrix method in understand-

ing complex prime-based arrays which can be useful to engineer novel metamaterials

and metasurfaces. In the current section, I present work on applying Green’s matrix

method to aperiodic chains. This section, adopted and modified based on my work

in review (Wang et al., 2018b), hints the potential of using Green’s matrix as a tool

to engineer topological metamaterial characterized by coupled radiating dipoles with

full electromagnetic scattering of vector waves.

4.4.1 Introduction

Analogues of topological insulating phases have been discovered in periodic photonic

structures and quasiperiodic systems with modulated short-range coupling (Rechts-

man et al., 2013; Noh et al., 2017; Levy and Akkermans, 2017; Verbin et al., 2015;
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Bandres et al., ; Xiao and Fan, 2017) in close correspondence with the transport of

quantum waves in electronic materials. However, topological effects in dissipative

(non-Hermitian) electromagnetic scattering systems that support long-range collec-

tive resonances have not been investigated.

In this section, by systematically studying the spectral properties of the vecto-

rial Green’s matrix for linear chains of point dipoles with aperiodic order, we dis-

cover and characterize topological band structures and edge-localized resonances in

open scattering systems. In particular, our work shows that edge modes with topo-

logical dispersion appear in the complex spectrum of the scattering resonances as

described by the vectorial Green’s matrix, beyond the tight-binding approximation.

Remarkably, we found that distinctive topological structures also appear in more

complex deterministic aperiodic systems with Thue-Morse modulated coupling. We

focus specifically on the optical analogues of the Su-Schrieffer-Heeger (SSH) and the

Harper models, and extend our analysis to Fibonacci and Thue-Morse chains, which

are primary examples of periodic, quasiperiodic, and deterministic aperiodic systems,

respectively. Our results extend the concept of topological states to open scattering

systems and provide an efficient tool for the predictive design of novel topological

effects in aperiodic photonic structures.

In the following sections, we will focus on the distribution of energy states of the

resonances of chains of dipole scatterers with different positional order, and retrieve

topological information directly from the eigenvalues of the Green’s matrix. Although

we present results on chains with optical density ρ = 10 (10 dipoles per wavelength),

our main conclusions remain valid even in lower density chains down to approximately

ρ = 1.
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Figure 4·13: (a) Dimer chain of identical dipole scatterers with alter-
nating distance modulation. (b) Topological band-structure from the
vectorial Greens matrix of a 500-dipole chain. (c) Energy spectrum for
d2/d1 = 1.25 (red line in (b)), and the inset shows the 6 edge modes
inside the band gap. Color-bar shows log10(IPR). (d) A representative
edge mode in the gap. (Wang et al., 2018b)

4.4.2 Topological bandstructure and edge states from the Green’s matrix

method

First we consider a doubly periodic dimer chain, which is the photonic counterpart

of the Su-Schrieffer-Heeger (SSH) model of a topological insulator (Asboth et al.,

2016). This model describes spinless fermions hopping on a one-dimensional lattice

with staggered hopping amplitudes. In our photonic implementation we identify the

SSH hopping amplitudes with two separate values of inter-particle separations, d1

and d2, which alternate along the chain as illustrated schematically in Fig. 4·13(a).

The periodic variation in the inter-dipole separations results in a modulation of the

electromagnetic interaction that gives rise to distinctive gaps and topological effects.

However, differently from the standard tight-binding description, in our photonic

implementation the vector dipoles interact not only through short-range coupling,

but also via the intermediate- and long-range contributions of the Green’s matrix. In

Fig. 4·13(b), the imaginary part of the eigenvalues, which is proportional to the energy
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position of the scattering resonances, is plotted for the dimer chain against the ratio of

the two inter-particle distances, d1/d2, which ranges from 1 to 5. In close analogy with

the case of the electronic SSH dimer case (Asboth et al., 2016), this quantity plays

the role of an effective topological parameter. As it is varied, there appear in Fig.

4·13(b) energy gaps that are traversed by band-gap states near ImΛ = 0. We will now

show that these band-gap states correspond to edge-localized modes. In particular,

we focus for concreteness on the spectrum of the dimer structure with d1/d2 = 1.25,

which is highlighted by the vertical red line in Fig. 4·13(b), and plot in Fig. 4·13(c)

the energies of its scattering resonances. We observe one clear band-gap around

ImΛ = 0 containing 6 states. The inset of Fig. 1(c) magnifies the energy region

around the band-gap states, which separate into 2 distinct energies. These band-

gap states originate from the 3 polarizations of the vectorial Green’s matrix and are

doubly degenerate. In order to better understand their spatial localization properties,

we compute the inverse participation ratio (IPR) for the eigenmodes defined in the

last subsection 4.9. The IPR measures the degree of spatial extent of each eigenmode

in the system. For example, an eigenmode that extends over all the N scattering

centers is characterized by a low value of IPR ' 1/N , while an eigenmode localized

at a single dipole of the chain has a large IPR = 1. Fig. 4·13(c) is color-coded to

reflect the value of the IPR for each eigenstate in a logarithmic scale, and demonstrates

that the modes residing within the gap region display the largest IPR values. We plot

in Fig. 4·13(d) the spatial distribution of one representative edge-state in the selected

gap region, which displays a large amplitude localized at both edges of the chain. The

remaining band-gap states have almost identical edge-localized profiles.

We now apply the same methodology to more complex structures with aperi-

odic order. Tight-binding models for deterministic aperiodic potentials based on the

Harper Hamiltonian or the Fibonacci quasi-periodic potential have attracted a con-



123

Figure 4·14: (a) Harper chain with distance modulation; (b) Topo-
logical band-structure obtained with with the vectorial Green’s matrix
for the Harper chain with 500 particles. The inset is a zoom-in around
the crossing of the edge states. (c) Energy levels for φ = 3.05, and
the edge-state in the gap. (d) Corresponding IDOS and labeling of
gaps by the two integers [p,q] as in Eq. 4.14. (e) and (f) are two edge
modes in the gap. The inset of (f) shows the log-log plot of the field
profile.(Wang et al., 2018b)
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Figure 4·15: (a) Schematic illustration of a Fibonacci chain of point
scatterers with binary distance modulation d2/d1 = 2; (b) Topological
band-structure for the energy levels for a 610-particle Fibonacci chain.
(c) Energy spectrum for the φ = 1 case showing an edge-state in the
gap. (d) Corresponding IDOS for the φ = 1 case. The inset plots the
singularity spectrum D(α) of the gap width distribution. (e) Edge mode
with power-law decay and (f) edge mode with exponential localization
(insets are in double-logarithmic scale).(Wang et al., 2018b)
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siderable interest in condensed matter theory (Macia, 2014; Hofstadter, 1976; Han

et al., 1994) and have also been recently studied in optics (Verbin et al., 2015; Lu-

cic et al., 2015). Here we address these systems using the vectorial Green’s matrix

method for the first time. We consider an optical scattering chain defined by the

inter-particle separations:

dn = d0

[
1− ε cos

(
2π

nτ
+ φ

)]
, (4.13)

where dn is interpreted as the n-th inter-particle distance, d0 = 1 is a scaling constant,

ε = 0.5 is the coefficient that controls the strength of the modulation, τ = (
√

5+1)/2

is the golden ratio, and φ is the topological parameter. Since τ is irrational, the

spatial modulation is quasiperiodic. Moreover, when φ varies continuously between 0

and 2π, Eq. (4.13) describes an adiabatic deformation of the chain. The modulation

defined in (4.13) is isomorphic to the Aubry-André or Harper model describing lattice

systems in the presence of a gauge field (Hofstadter, 1976; Macia, 2014). A schematic

illustration of a portion of the investigated Harper chain is shown in Fig. 4·14(a). In

Fig. 4·14(b), we display the computed topological bandstructure obtained by varying

the parameter φ from 0 to 2π. The bandstructure features a very rich distribution

of energy band-gaps in the scattering spectra that are crossed by different numbers

of edge-localized modes. In addition, at ImΛ ' 5 and when φ ' π we observe

a crossing between two band-gap states that gives rise to a crossing, similar to a

Dirac point (see magnified picture in the inset). The two crossing states are strongly

localized at the two opposite edges of the chain. In Figs. 4·14(c)-(f) we study the

energy spectrum for a Harper chain with φ = 3.05, which is near the crossing point

of two edge states. In Fig. 4·14(c), we plot the IPR color-coded imaginary part of

the scattering eigenvalues against their indices in the chain, and the inset shows four

strongly localized edge-states (doubly degenerate) inside the band-gap. Based on the
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imaginary part of the eigenvalues, we have also calculated the IDOS for the Harper

chain, which is shown in Fig. 4·14(d). The IDOS displays a characteristic staircase

structure where each plateau indicates the presence of an energy gap in the spectrum.

We have identified each gap by applying the gap-labeling theorem using the relation

(Baboux et al., 2017):

N = p+ qτ, (4.14)

where τ is the golden number, p and q are integer labels. Besides, q can be interpreted

as the topological Chern numbers of the labelled gaps (Baboux et al., 2017). In Figs.

4·14(e) and 4·14(f) we show the spatial profiles of two representative band-gap states

that are strongly localized at the two edges of the chain. However, unlike the dimer

case, the edge-localized states of the Harper chain display a characteristic power-law

amplitude localization (see log-log plot in the inset of 4·14(f)) attributed to the fractal

nature of the underlying eigenmodes.

We now discuss the scattering resonances of one-dimensional Fibonacci chains,

which have been widely investigated due to their unique light transport and localiza-

tion properties (Dal Negro et al., 2003). Moreover, such canonical structures recently

attracted significant attention in relation to the topological properties of short-range

coupled photonic waveguide systems (Levy and Akkermans, 2017; Baboux et al.,

2017). A one-dimensional Fibonacci chain can be obtained as a special case of the

Harper model equation (Kraus and Zilberberg, 2012; Baboux et al., 2017):

sn = sgn

[
cos

(
2nπ

τ
+ φ

)
− cos

(π
τ

)]
, (4.15)

where sgn denotes the sign operator of the argument that outputs only the binary

values ±1, and τ is the golden mean. The sn from Eq. 4.15 takes only two values, ±1,

and are interpreted as a binary sequence of two different interparticle distances, d1 and

d2. As a result, by varying the topological parameter φ, equivalent representations of
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Figure 4·16: (a) Greens matrix energy spectrum and band-structure
for a 512-particle Thue-Morse linear chain, with binary distance modu-
lation d2/d1 = 2. The inset shows a magnified view of a band-gap state.
(b) IDOS of the Thue-Morse chain, and edge-localized eigenstate inside
the band gap (inset).(Wang et al., 2018b)

the Fibonacci chains can be generated. In Fig. 4·15(a) we illustrate a portion of the

Fibonacci binary sequence. In Fig. 4·15(b) we vary the topological parameter φ from

0 to 2π and obtain the topological band diagram that features a rich distribution of

energy band-gaps and gap-localized states. However, unlike in the case of the Harper

chain, the structure of the Fibonacci chain flips abruptly when continuously varying

the topological parameter φ due to the effect of the sgn operation in Eq. 4.15. These

sudden structural transitions are known as phason flips (Levy et al., 2016).

By choosing the value φ = 1, we show in Fig. 4·15(c) the distribution of the

imaginary parts of the eigenvalues, and identify two edge-localized states residing

in the band-gaps circled (see inset). The corresponding IDOS is displayed in Fig.

4·15(d), and consists of a fractal staircase of band-gap widths. The fractal nature of

the gap-width distribution is demonstrated by the singularity spectrum shown in the

inset, obtained by using the Wavelet Transform Modulus Maxima (WTMM) method

described in (Dal Negro and Inampudi, 2017). In Fig. 4·15(e) we show the spatial

distribution of the edge state highlighted by the red circle in Fig. 4·15(c), while in

Fig. 4·15(f) we display the edge state inside the green circle in Fig. 4·15(c). It is

evident that both states are strongly localized on the edges of the chain. However,

we also notice that the amplitude in Fig. 4·15(e) decays as a power-law (see double



128

logarithmic scale in the inset) while the state in Fig. 4·15(f) is exponentially localized,

similarly to the dimer chain. Such a coexistence of two different localization regimes

in a single physical system is a novel phenomenon driven by the long range correlation

of the electromagnetic interactions, as captured by the vectorial Green’s matrix.

The results obtained so far demonstrate that the presence of edge modes is a

generic feature of electromagnetically coupled, one-dimensional chains with aperi-

odic order. However, topological parameters for more complex structures beyond

quasi-periodic order, such as one-dimensional Thue-Morse chains, have not yet been

reported. We address this challenge directly by computing the energy spectrum of the

Thue-Morse chain, which unveils the presence of edge-localized band-gap states. This

is achieved in Fig. 4·16(a) where the imaginary part of the Thue-Morse eigenvalues

for a linear chain with N = 512 dipoles. We observe the presence of a single state in

the band-gap near ImΛ = 0. Here, we are not able to obtain a full topological band-

structure due to the lack of a known topological parameter for Thue-Morse systems.

However, we report clear edge-localized states with power-law amplitude decay in the

Thue-Morse energy gaps, similar to the Harper or Fibonacci chains. Finally, in Fig.

4·16(b) we show the IDOS of the Thue-Morse chain, which also displays a complex

staircase structure. Further work beyond the scope of this contribution is needed in

order to understand the nature of edge-localization in Thue-Morse structures.

4.4.3 Section summary

In conclusion, through the study of the vectorial Green’s matrix spectra of electro-

magnetic scattering systems including analogs of SSH and Harper models, as well

as aperiodic Fibonacci and Thue-Morse chains, we have unambiguously identified

and characterized scattering edge modes. In particular, we have found crossing of

modes localized on opposite edges inside band gaps, analogously to the crossing of

edge states with opposite chirality in topological insulators. We have also discovered
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a novel power-law edge-mode localization in deterministic aperiodic one-dimensional

scattering systems. Notably, Fibonacci chains are found to support both power-law

and exponentially decaying edge states. Our work extends the concept of topolog-

ical states to open electromagnetic scattering systems and fully demonstrates the

potential of the vectorial Green’s matrix method for the engineering of novel topo-

logical phenomena in collectively coupled electromagnetic structures and aperiodic

metamaterials.

4.5 Vectorial Green’s Matrix with Both Electric and Mag-

netic Dipole

In the previous sections, I have presented results using vectorial Green’s matrix with

only electric dipoles. However, for more general problems in optical nanostructure

and metamaterial design, inclusion of magnetic dipole is crucial in order for a com-

plete modeling of both effective electric and magnetic behaviors. Besides, when the

size of the nanosphere is large, Mie theory predicts higher order multipoles contribut-

ing to the scattering problems (Bohren and Huffman, 1983). As a result, restricting

the multiple scattering model to include only electric dipoles limits not only the com-

plexity of single-elements but also our understanding of more general electromagnetic

response of complex aperiodic media.

In order to include magnetic dipoles into the Green’s matrix, it is important to

know how the multiple scattering problem of coupled electric and magnetic dipoles

is formulated. In particular, I use the next subsection to introduce the multiple

scattering formulism (Mulholland et al., 1994; Garcia-Camara et al., 2010).
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4.5.1 The coupled dipole approximation with both electric and magnetic

dipoles

The electric and magnetic fields (in S.I. unit system) at the ith particle (Ei and Hi

respectively) resulting from the electric (p) and magnetic (m) dipole moments at the

jth particle are:

Ei = aijαEEj + bijαE(Ej · nji)nji − dij(
µ0

ε0
)1/2αH(nji ×Hj), (4.16)

Hi = aijαHHj + bijαH(Hj · nji)nji + dij(
ε0
µ0

)1/2αE(nji × Ej), (4.17)

where Green’s matrix terms are:

aij =
1

4π

eikrij

rij
(k2 − 1

r2
ij

+
ik

rij
), (4.18)

bij =
1

4π

eikrij

rij
(−k2 +

3

r2
ij

− 3ik

rij
), (4.19)

dij =
1

4π

eikrij

rij
(k2 +

ik

rij
), (4.20)

In particular, dij is new and accounts for the cross interaction between the electric

and magnetic part of the equations.

In order to solve practical problems involving coupled electric and magnetic dipoles,

it is important to also specify material properties. For high-index dielectric nanospheres

of sufficiently large size, induced currents in the nanosphere can create not only effec-

tive dielectric permittivity but also magnetic permeability (Mulholland et al., 1994;

Bohren and Huffman, 1983). As correctly pointed out in Ref. (Lumme and Rohola,

1994), the electric and magnetic polarizability volumes are:

αE =
3i

2k3
a1, (4.21)
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and

αH =
3i

2k3
b1, (4.22)

and k is the wavenumber of the background medium. The polarizability volumes

have units of volume (e.g. m3).

In Equations 4.21 and 4.22, a1 and b1 are the Mie coefficients for electric and

magnetic dipoles (Bohren and Huffman, 1983), respectively. The νth order Mie coef-

ficients can be expressed as (Bohren and Huffman, 1983):

aν =
nψν(nkr)ψ

′
ν(kr)− ψν(kr)ψ′ν(nkr)

nψν(nkr)ξ′ν(kr)− ξν(kr)ψ′ν(nkr)
, (4.23)

and

bν =
ψν(nkr)ψ

′
ν(kr)− nψν(kr)ψ′ν(nkr)

ψν(nkr)ξ′ν(kr)− nξν(kr)ψ′ν(nkr)
, (4.24)

where r is the radius of the spherical scatterer, and n is the relative refractive

index of the nanosphere with respect to the background medium. ψν(x) and ξν(x)

are Riccati-Bessel functions constructed from spherical bessel functions via ψν(x) =

xjν(x) and ξν(x) = xh
(1)
ν (x). In addition, jν(x) is the spherical bessel function of the

first type, and h
(1)
ν (x) is the spherical Hankel function of the first type.

From above, for N -scatterers, we can assemble linear system of equations for local

fields Ei and Hi with given (local) incident fields Ei,0 and Hi,0 as:

Ei = Ei,0 +
N∑
j 6=i

αE,iC̃ijEj − (
µ0

ε0
)1/2

N∑
j 6=i

αHi f̃ijHj, (4.25)

and

Hi = Hi,0 +
N∑
j 6=i

αH,iC̃ijHj + (
ε0
µ0

)1/2

N∑
j 6=i

αE,if̃ijEj, (4.26)
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where C̃ij is a 3× 3 matrix block: aij + bij(n
x
ij)

2 bijn
x
ijn

y
ij bijn

x
ijn

z
ij

bijn
y
ijn

x
ij aij + bij(n

y
ij)

2 bijn
y
ijn

z
ij

bijn
z
ijn

x
ij bijn

z
ijn

y
ij aij + bij(n

z
ij)

2


and f̃ij is also a 3× 3 matrix block 0 −dijnzij dijn

y
ij

dijn
z
ij 0 −dijnxij

−dijnyij dijn
x
ij 0


When writing into the total matrix form, the E and H fields are assembled as a

single column component-wise: 

E1x

E1y

E1z

H1x

H1y

H1z

E2x
...


and the full Green’s matrix will have 6N × 6N elements, in 6 × 6 blocks formed

by C̃ij and f̃ij.

Finally, based on the above formulation for coupled electric and magnetic dipoles,

it is possible to calculate cross-sections from p = αEE and m = αHH. In particular,

the extinction cross-section is (the aterisk ∗ denotes complex conjugation):

Cext =
4πk

|E0|2
N∑
i=1

Im[pi · E∗i,0 + mi ·H∗i,0], (4.27)

and the absorption cross-section is:

Cabs =
4πk

|E0|2
N∑
i=1

[|Ei|2(Im[αE,i]−
2

3
k3|αE,i|2) + |Hi|2(Im[αH,i]−

2

3
k3|αH,i|2)] (4.28)

and scattering cross-section is Csca = Cext − Cabs.
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In addition, the scattering cross-section can also be computed via integrating the

differential scattering cross-section over all solid angle Ω on a farfield sphere:

Csca =
k2

|E0|2

∫
|
N∑
i=1

e−ikn·ri{pi − [n · pi]n− n×mi}|2dΩ, (4.29)

where n is the unit direction vector to the observation point.

In order to appreciate the importance of including magnetic dipoles, Fig. 4·17 I

show the situation of a single Si nanosphere’s (radius being 150nm) scattering effi-

ciency. In particular, I have used realistic material dispersion (Palik, 1998) for silicon

and computed effective electric and magnetic polarizabilities from silicon’s dielectric

constants using Eqn. 4.21 and 4.22. In Fig. 4·17, I show that two peaks in scattering

efficiency due to the electric (p, dominating near λ = 1100nm, Fig. 4·17(f)) and

magnetic (m, dominating near λ = 900nm, Fig. 4·17(d)) dipole moments. Special

attention is directed to the crossing between the electric and magnetic dipoles’ scat-

tering near λ = 1200nm. In this case, one would expect cancellation of backscattering

(Staude et al., 2013; Liu et al., 2012). Indeed, as shown in Fig. 4·17(b), I plot the

forward to backward ratio of scattered power, based on Eq. 4.29, there is a minimum

point near λ = 1200nm. In the inset of Fig. 4·17(b), the backward part of the 3D

radiation diagram can be appreciated by noticing the ”dip” in the backward direction

(i.e. −z direction).

With this extended formulation of CDA including both electric magnetic dipoles,

I have also computed cross-sections in Fig. 4·18. In particular, I compute the scatter-

ing, absorption and extinction efficiencies for golden-angle Vogel spiral (ζ = (
√

5+1)/2

as defined in Chapter 3) in Fig. 4·18(a), and Penrose array (Penrose, ) in Fig. 4·18(b),

each with about 1000 identical Si nanospheres with the same size as in Fig. 4·17.

Again, the double-peak character of having both electric and magnetic resonances in

the spectra is demonstrated. Furthermore, in each case, I also plot the amplitude of
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Figure 4·17: (a) shows the scattering efficiency spectrum normalized
to radius (r = 150nm) of the silicon nanosphere. The electric (p) and
magnetic (m) dipole components are indicated. (b) shows the forward
to backward ratio of calculated radiation pattern (differential scatter-
ing cross-sections d/d). The inset shows the 3D radiation diagram at
the p-m crossing near 1200nm, where backward radiation is zero. (c)
to (f) shows 3D radiation diagrams at 800nm, 900nm, 1000nm, and
1100nm, respectively. In particular the radiation is dominated by mag-
netic dipole at900nm, and by electric dipole at 1100nm. The direction
of {E,H,k} vector triplets for excitation, in relation to the indicated
Cartesian coordinates are shown in the bottom-right corner.
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the electric field distribution at the peak of each spectra near λ = 1100nm, where

complex fractal-like physical modes upon plane wave excitation from the top of each

nanostructure can be seen.

4.5.2 The Green’s matrix with both electric and magnetic dipoles

The as shown previously, the vectorial Green’s matrix for electric dipole decouples

from the material properties (i.e. polarizability volumes α) of individual scatterers in

the array. Besides, the form of Green’s matrix of interest is normalized to be unitless,

so that the results depend only on optical density and are scaling invariant. With

theses in mind, the µ0 and ε0 in Eqs. 4.16 and 4.17 are set to be 1 (i.e. for relative

electric and magnetic fields of the coupled system with respect to given incident

fields).

As a result, the 6N × 6N electromagnetic vectorial Green’s matrix sub-blocks

describing interactions between the n-th and m-th particles can be sub-divided into

diagonal 3N × 3N and off-diagonal 3N × 3N blocks:

(
Gee
nm Geh

nm

Ghe
nm Ghh

nm

)
(4.30)

In particular, the diagonal blocks Gee
nm and Ghh

nm have the same form as Eq. 4.6, while

off diagonal terms Ghe
nm = −Geh

nm, and:

Ghe
nm =

1.5eikrnm

ikrnm
(1 +

i

krnm
)<, (4.31)

where < is:  0 −r̂znm r̂ynm
r̂znm 0 −r̂xnm
−r̂ynm r̂xnm 0

 (4.32)

and the superscripts x, y, z denote Cartesian components of unit directional vector

r̂nm = rnm/|rnm|.
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Figure 4·18: Scattering, absorption and extinction efficiencies cal-
culated for (a) N = 1000 golden-angle Vogel spiral array, and (b)
N = 1108 Penrose array (Penrose, ). Both arrays are made of silicon
nanospheres (Palik, 1998) with radius 150nm and minimum separation
(center-to-center) of 350nm in the array. In this coupled dipole method,
both electric and magnetic dipole moments induced in the nanospheres
are considered. The effective dielectric permittivity and magnetic per-
meability are computed using Mie coefficients for electric and magnetic
dipoles, respectively. Both insets show normalized electric field ampli-
tudes are 1115nm for each case (maximum of scattering cross-sections),
and the colorbar shows normalized scale for both insets.
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Figure 4·19: (a) to (c) are complex eigenvalues for N = 1000 golden-
angle Vogel spiral using vectorial Green’s matrix with only electric
dipoles, for optical densities ρλ2 = 100, 10, 0.5, respectively. (d) to (f)
are complex eigenvalues the same Vogel spiral using vectorial Green’s
matrix with both electric and magnetic dipoles, for optical densities
ρλ2 = 100, 10, 0.5, respectively.

In Fig. 4·19, I show a representative comparison between eigenvalue distributions

for the Green’s matrix with only electric dipoles and those for the Green’s matrix with

both electric and magnetic dipoles. In particular, Figs. 4·19(a) to 4·19(c) are complex

eigenvalues for N = 1000 golden-angle Vogel spiral, computed using vectorial Green’s

matrix with only electric dipoles, for optical densities ρλ2 = 100, 10, 0.5, respectively.

On the other hand, Figs. 4·19(d) to 4·19(f) are complex eigenvalues for N = 1000

golden-angle Vogel spiral, computed using vectorial Green’s matrix with both electric

and magnetic dipoles, for optical densities ρλ2 = 100, 10, 0.5, respectively. In general,

the main feature of spectral gap opening towards larger optical densities holds for

both formulations, while spectral gap in the complex plane is far more pronounced

in the cases where magnetic dipoles are included.



138

4.6 Chapter Summary

In this chapter, the Green’s matrix method of coupled electric dipoles is introduced

as a powerful tool to model and study complex aperiodic media. In particular, I

applied the Green’s matrix method to study complex-prime based 2D arrays, and

revealed insightful information regarding frequency localization and fractal modes.

In addition, with the examples of 1D aperiodic dipole chains, I demonstrate the

relevance of using Green’s matrix method in engineering topological metamaterial.

Finally, in order to extend the capability of the Green’s matrix method, I concluded

my work by including the effect of magnetic dipoles.
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Chapter 5

Conclusions

5.1 Summary of The Thesis

In this thesis, I have shown my works on direct and inverse designs of single nanopar-

ticles resonances as well as nanostructures that can be understood as collective reso-

nances.

In particular, I have addressed two questions for engineering single nanoparticle

element: (I) what is the optimal nanoparticle shape for a given optical functional-

ity? (II) what is the nature of a given resonance? To address the first question,

I have used my work in collaboration with the University of Utah on optimizing

the single plasmonic nanoparticle shape for optimal surface field enhancement. For

the second question, I used multipolar decomposition method including the toroidal

dipole moment to show the nature of resonances in high-index dielectric nanodisks

and nanopixels, and used the findings to engineer absorption through anapoles.

At the array level, various of my past works, including broadband gold-nanofiber

electrodes, multiband fractal-nanoantenna sensors, and gold nanohelix with polariza-

tion and direction control, have demonstrated the importance of understanding and

modeling collective resonances for the design of optical nanostructures and metama-

terials. On the other hand, these works point to a more controllable and theoretically

straightforward paradigm of designing complex optical media using the concept of

arrays. By decoupling the resonance engineering of single particle from that of the

array geometry, metamaterials and metasurfaces can be modeled and designed as
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point arrays formed by identical elements.

Motivated by this paradigm, the Green’s matrix spectral method is introduced as

a powerful tool to study coupled dipolar elements in arbitrary arrays. In particular,

I applied the Green’s matrix method to study complex-prime based 2D arrays, and

revealed insightful information regarding frequency localization and fractal modes. I

also show the relevance of using Green’s matrix method in engineering topological

metamaterial with the examples of 1D aperiodic dipole chains. Finally, in order to

extend the capability of the Green’s matrix method, I concluded my work by including

the effect of magnetic dipoles.

5.2 Outlook for Future Works

Green’s matrix method provides universal geometry-induced electromagnetic proper-

ties of complex aperiodic systems, and has been efficiently applied to understanding

and engineering of large-scale aperiodic media. Currently, I have extended the ex-

isting Green’s matrix method for coupled vectorial electric dipoles to include also

vectorial magnetic dipoles. This extension greatly expanded the validity limit of the

model, and makes it especially useful for modeling high-index dielectric nanoparticle

clusters. On the other hand, it would be desirable to as a future work explore the

possibility of including higher order multipole moments in the Green’s matrix. This

would not only make the Green’s matrix method more powerful, correspondingly,

the existing CDA will also be extended to model more general multiple scattering

problems with coupled-multipoles. Some existing studies that are useful for future

researches in this direction include Refs. (Yurkin and Hoekstra, 2007; Kallos et al.,

2012; Bourrely et al., 1992).

Besides, from an engineering point of view, it would be interesting to ask about

the potential to inversely engineer geometries for photonic-plasmonic applications
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from desired Green’s matrix spectra. One potential approach draws inspiration from

the mass-spring model where only nearest neighbor coupling is relevant. In this

case, inverse problems can be solved rigorously through Lanczos algorithms (Chu and

Golub, 2005), and coupling constants from a given Hamiltonian matrix can be found.

As described in the Chapter 4 of Ref. (Gladwell, 2004), starting from a diagonal

matrix A made of known eigenvalues, as well as one eigenstate, it is possible recover

the three-diagonal matrix that describes the interactions of a one-dimensional me-

chanical chain. Similarly, for Green’s matrix of simple one-dimensional scattering

system with weak coupling, we may approximate the system’s electromagnetic in-

teractions using a three-diagonal scalar Green’s matrix. In this case, with desired

eigenvalues, we can infer the terms in the Green’s matrix, which is computed based

on the inter-particle distance rij through gij =
exp(ikrij)

ikrij
. However, considering only

an approximated Green’s matrix in three-diagonal form does not fully describe the

electromagnetic interaction between all scatterer pairs, and greatly limits the system

to very weakly coupled regime. In addition, as I will discuss below, the set of recov-

ered rij from the Green’s matrix may not permit physically feasible geometries in 1D,

or even 2D or 3D.

Although beyond the scope of the this thesis, I would like to discuss the possi-

bility of solving inverse problems involving full Green’s matrix. To demonstrate this

point, we can assume a (scalar) Green’s matrix (Rusek et al., 2000) is given for two

particles, and the Euclidean distance between the two particles is r = |r1− r2|. First

of all, a physical scalar Green’s matrix for this system is 2× 2, symmetric, with zeros

diagonal elements and complex-valued off-diagonal elements g12 = g21. Therefore,

the problem can be further reduced to computing r from g12 = exp(ikr)/(ikr) (k

being the wavenumber). Fortunately, this problem has analytical solutions, known as

Lambert-W functions (Dence, 2013), and real r can be calculated analytically. Once
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r is found, by fixing the coordinate of one particle in the dimer system (a property of

geometrical invariance), the other scatterer’s position can be found. For a more gen-

eral complex array, solution will be the set of distances between each pair of scatterers

in the array. This is known as the distance geometry problem commonly encountered

in determining molecular structures (Lavor et al., 2017). Now, considering a hypo-

thetical 1D chain that is required to be described by an arbitrary 3 by 3 Green’s

matrix, from a given set of three eigenvalues. In this case, we can get three pair-wise

distance information, r12 = r21, r13 = r31, and r23 = r32 (assuming r12 ≤ r23 ≤ r13).

It is obvious from the geometry point of view, the likelihood of collinear condition

r13 + r23 = r13 is very slim. As a result, the general physical structure with 3 eigen-

values (i.e. 3 scatterers from the scalar Green’s matrix) is a triangle, which needs at

least 2 spatial dimensions to specify. From this, it is evident that an arbitrary set of

N eigenvalues will result in a Green’s matrix describing a point system that exists

in N − 1 dimensions in general. This implies that, eigenvalues of a Green’s matrix

cannot be arbitrary as one desires, while the method of interpreting Green’s matrix

inverse problem as a distance geometry problem is generally valid. This observation

is equally true if one is to assume an approximate three-diagonal scalar Green’s ma-

trix for weakly one-dimensional chain. Without additional information or constraints,

freely choosing eigenvalues will almost certainly results in geometric solutions that

contradict the one-dimensional assumption. For vectorial Green’s matrices, the in-

verse problem is likely more complicated, and researches in this direction is certainly

exciting and meaningful from a rigorous inverse engineering point of view.
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