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ABSTRACT 

Untreatable gonorrhea, caused by fully antimicrobial resistant Neisseria 

gonorrhoeae (GC), is a major global health threat. While a vaccine would greatly help 

address this crisis, development of a GC vaccine is complicated by the lack of lab models 

of symptomatic gonorrhea. We hypothesized that overt disease in animal models of 

gonorrhea is limited by the human-restriction of gonococcal virulence factors, and the 

impact of the reproductive hormone cycle (estrus and diestrus phases). We tested these 

hypotheses by examining the host response to infection in transgenic mice expressing 

targets of bacterial adhesion, human carcinoembryonic antigen-related cell adhesion 

molecules (hCEACAMs), in uterine versus vaginal infections, and in different phases of 

the reproductive cycle (estrus and diestrus phases). hCEACAM expression most 

impacted estrus phase infections, prolonging colonization in vaginal infection and 

inducing greater inflammation in uterine. Reproductive phase greatly influenced host 
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response to uterine infection as diestrus infection was more inflammatory than estrus. 

Phase differences in uterine infection were driven by greater activation of a chemokine-

centric common anti-gonococcal response and unique induction of type 1 interferons in 

diestrus. These findings suggest that symptomatic uterine and vaginal GC infection can 

be modeled by transcervically infected wild-type diestrus mice and transgenic, vaginally-

infected estrus mice, respectively. 

A novel approach to GC vaccine development is also needed. Mono-antigenic 

vaccines have failed to produce immunity suggesting a poly-antigenic antigen, like 

natural outer membrane vesicles (nOMVs) may be necessary. It has been shown that any 

GC vaccine must lack the bacterioprotective antigen, reduction modifiable protein 

(RMP), and no such nOMV has been previously described. Here we report successful 

isolation of RMP-deficient nOMVs through sequential size and weight restrictive 

filtration. Vesicle morphology, proteomics, and bioactivity was characterized via various 

methods. nOMVs were found to be consistent in size, shape and antigenic load. As 

antigens, nOMVs induced high serum titers and measurable vaginal levels of antigen and 

GC specific IgG that recognized several nOMV immunogens supporting the vaccine 

potential of GC nOMVs. These findings lay the groundwork for protective studies of 

nOMV vaccines in novel models of active gonorrhea moving the field closer to 

discovering the mechanism of protective anti-gonococcal immunity. 
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1 

Chapter 1: Introduction 

The History of Neisseria gonorrhoeae and Clinical Spectrum of Gonorrhea 

Gonorrhea, caused by Neisseria gonorrhoeae (GC or gonococcus), has a long 

history as a cause of human disease. The earliest known written description of a 

gonorrhea-like condition is found in an ancient Egyptian text known as The Ebers 

Papyrus that dates to at least 1500BCE (Bryan, 1930). The papyrus describes a multitude 

of diseases and their contemporary treatments including a purulent vulvo-vaginal 

inflammation that sounds strikingly similar to female gonorrhea. Perhaps the most well-

known early description of a sexually transmitted infection (STI), thought to be 

gonorrhea, comes from The Book of Leviticus 15:2-12 in the Old Testament: “Every man 

who is afflicted with a chronic flow from his private parts is thereby unclean” (The Bible, 

The New American Bible). It is thought that this is referring to the characteristic purulent 

discharge of gonococcal urethritis (Bingham, 2014). Of course, nearly all of these early 

texts describe human ailments only in the vaguest terms, and since most early texts were 

religious in nature, diseases, particularly those relating to the genitals, were presented as 

signs of moral corruption and deviancy. Until the medical revolution of ancient Greece, 

there were few attempts to meticulously describe, name or identify the many disorders of 

the human body. As such, it was one of the great ancient Greek physicians, Galen, who in 

the second century CE coined the term “Gonorrhoea”, meaning “flowing seed” in 

reference to the characteristic mucopurulent discharge (Bingham, 2014). 

The bacterium that causes gonorrhea, Neisseria gonorrhoeae, was finally isolated 

and described in an 1879 publication from Albert Neisser (for whom the genus of 
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bacteria “Neisseria” is named) in which he reported microscopic analysis of samples 

from 26 adults with classic urethritis, and 7 children and 2 adults with opthalmia 

(Neisser, 1879). Dr. Neisser described a “micrococcus” of standard morphology which 

stained with methyl violet that could be found in samples from all 35 patients. In his next 

publication he expanded upon his morphological study, and using the terminology of 

Galen referred to the etiological agent of gonorrhea as a “gonococcus” (Neisser, 1882). 

Modern microbiology has settled upon “diplococci” or “kissing kidney beans” to describe 

the cellular form of the pathogen. This description evokes an appropriate image since the 

gonococcus, as seen in Figure 1.1, tends to appear in cellular pairs and has an elongated 

notched ovoid shape.  

 

Figure 1.1: Characteristic “kissing kidney bean” morphology of the Neisseria 
gonorrhoeae diplococcus. Neisseria gonorrhoeae (strain MS11) from a liquid media 
growth heat fixed on a glass slide and visualized by Gram staining and imaged using 
100x oil immersion light microscopy 
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Today, gonorrhea is a laboratory confirmed disease with complex clinical 

presentations that differ based on sex and mode of transmission. Classically, gonorrhea is 

thought of in terms of male and female infection in the context of transmission by 

heterosexual sexual contact. In this case, infection of the male genitourinary tract is 

thought to be symptomatic in the majority of cases (John and Donald, 1978; Harrison et 

al., 1979). Recent population-wide studies however, cast doubt on this figure, suggesting 

instead that a larger proportion (~60%) of infected males may be asymptomatic 

(Handsfield et al., 1974; Klouman et al., 2000). Regardless of frequency, symptomatic 

cases in men have a very usual presentation characteristic of the underlying condition of 

gonococcal urethritis. Nearly all patients report copious mucopurulent discharge from the 

urethral meatus commonly accompanied by dysuria (pain on urination) (Sherrard and 

Barlow, 1996). While some infections in men can progress in the absence of treatment to 

cause inflammation of the epididymis (epididymitis) this is relatively rare in isolated GC 

infection (Holmes et al., 1979). 

In addition to the genitourinary tract, Neisseria gonorrhoeae can infect and cause 

disease in the anorectal cavity, a presentation typically found in men who have sex with 

men (MSM) (Kent et al., 2005; Schachter et al., 2008; Patton et al., 2014). Like in genital 

infection, rectal gonorrhea can be asymptomatic (Klein et al., 1977; de Vries et al., 2014). 

Symptomatic anorectal infections in men is termed proctitis, which presents with a 

constellation of symptoms that can include anorectal pain, tenesmus, mucopurulent 

discharge and bleeding (Klein et al., 1977). Additionally, researchers are starting to gain 

a greater appreciation for oropharyngeal GC colonization as a site of transmission via 
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oral sex (Wiesner et al., 1973), and as the likely site of horizontal transfer of 

antimicrobial resistance genes (Deguchi et al., 2012). Oropharyngeal colonization is 

found in both women (Kraus, 1979; Osborne and Grubin, 1979) and men (Patton et al., 

2014) and can cause pharyngitis (Komaroff et al., 1980). 

The natural course of infection in women is entirely different. While the exact 

proportion of symptomatic to asymptomatic cases of female gonococcal infection is a 

point of debate, most studies agree that the majority of female infections are 

asymptomatic (McCormack et al., 1977b). In both cases the typical site of bacterial 

colonization and growth is the cervix (Evans, 1977; Edwards et al., 2001). Symptomatic 

infected women most frequently have developed ether cervicitis or urethritis and present 

with the typical complaints associated with those conditions; mucopurulent vaginal 

discharge and dysuria respectively (Barlow and Phillips, 1978). In the absence of 

treatment, all infected women, symptomatic or not, are at risk of developing the most 

concerning manifestation of gonococcal infection, Pelvic Inflammatory Disease (PID). 

PID is a clinical condition defined as an infection of the upper female genital tract 

(UGT) including the uterus, fallopian tubes, and/or ovaries (Kasper et al., 2016). Several 

different pathogens are capable of causing PID, however Neisseria gonorrhoeae and 

Chlamydia trachomatis (Ct) combine to cause the majority of cases (Soper et al., 1994). 

The proportional breakdown of GC versus Ct associated PID tends to reflect the 

underlying relative frequency of the two pathogens in a given population (2014; 2017). 

Regardless of the underlying microbiology etiology, PID presents clinically in a similar 

way. PID is associated with a large spectrum of pathology, including subclinical damage 
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which is only discovered years later (Molander et al., 2003; Hebb et al., 2004). Most 

women with PID however, are symptomatic. The most common complaints at 

presentation are abdominal pain and tenderness (Ross et al., 2014; Workowski et al., 

2015). The characteristic physical findings are cervical, adnexal and uterine tenderness 

upon bimanual examination (Peipert et al., 2001; Wiesenfeld et al., 2005). Tubal 

infection can lead to the development of tubo-ovarian abscesses, which carry the risk of 

rupture and subsequent life-threatening peritonitis (De Temmerman et al., 2003; Powers 

et al., 2007). PID can even cause extra-genital disease. -FitzHugh-Curtis syndrome is a 

perihepatitis caused when the infection and subsequent inflammatory response of PID 

gains access to the peritoneal cavity. This results in inflammation of the hepatic capsule 

and can lead to the formation of peritoneal-adhesions and chronic pain (You et al., 2012). 

PID’s most tangible and lasting effect is its impact on fertility through inflammatory 

changes to the fallopian tubes (Kaproth-Joslin and Dogra, 2013). A recent study 

suggested that PID carries an 18% chance of resulting in infertility (Haggerty et al., 

2010). These serious complications of PID are made more concerning by the large annual 

incidence of gonorrhea.  

The most recent data from the World Health Organization (WHO) estimates at 

least 106 million cases of gonorrhea occur in the world each year (Rowley et al., 2012) 

and the Centers for Disease Control and Prevention (CDC) places the US figure at 

approximately 416,000 cases (2017). Due to the confounding effect of asymptomatic 

infection, actual numbers could be as much as three-times higher (Satterwhite et al., 

2013). Additionally, there has been a global increase in STI rates in recent years (Fenton 
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and Lowndes, 2004; 2017). This means that, although the most serious sequelae 

associated with infection are rare among the infected population, their incidence is 

significant. This consideration becomes even more important as Neisseria gonorrhoeae 

infections are becoming more common and much more difficult to treat. 

 

Antibiotic resistance in Neisseria gonorrhoeae 

Neisseria gonorrhoeae has a history of antimicrobial resistance that is nearly as 

old as the modern antibiotic era. The first anti-gonococcal antimicrobial, sulfanilamide, 

was discovered in the early 1900s (Oriel, 1994; Lewis, 2010). This drug was followed by 

several other derivatives all belonging to the Sulfonamide family; however nearly all GC 

isolates were resistant to every member of the drug family by the late 1940s (Dunlop, 

1949; Kampmeier, 1983). Penicillin, after its 1928 discovery by Alexander Fleming, 

started to replace sulfonamides in the early 1940s and was initially extremely efficacious 

against gonococcal infection (Mahoney et al., 1943; Van Slyke et al., 1943). Despite 

steadily increasing resistance, as measured by increasing minimum inhibitory 

concentration (MIC) of penicillin (Franks, 1946; Amies, 1967), the drug was effective at 

increasing doses until the 1960s (Reyn et al., 1958; Martin et al., 1970; Jaffe et al., 1976; 

Lewis, 2010; Unemo and Shafer, 2011) when treatment failures with penicillin started to 

occur (Willcox, 1970; Genco and Wetzler, 2010; Unemo and Shafer, 2011). Shortly 

thereafter plasmid based β-lactamase resistance became widespread (Ashford et al., 1976; 

Percival et al., 1976; Phillips, 1976), followed by chromosomal mediated resistance 

(Faruki et al., 1985; Faruki and Sparling, 1986) thereby rendering penicillin ineffective as 
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an anti-gonococcal antimicrobial. As shown by Figure 1.2, this pattern of antibiotic 

introduction, brief period of efficacy, era of waning efficacy/rising MICs followed by 

treatment failures and widespread loss of efficacy against Neisseria gonorrhoeae has 

been repeated over and over since penicillin (Unemo and Shafer, 2014). Thankfully, as 

one antimicrobial lost efficacy against GC, there was a new anti-gonococcal therapeutic 

that could take its place. This pattern, however, seems to have reached its conclusion.  

 
The current treatment guidelines for Neisseria gonorrhoeae infection call for dual 

therapy with both ceftriaxone and azithromycin (Workowski and Bolan, 2015). 

Figure 1.2: “Antibiotic Resistance Expressed by N. gonorrhoeae. History of 
discovered and recommended antimicrobials and evolution of resistance in Neisseria 
gonorrhoeae, including the emergence of genetic resistance determinants, 
internationally. During the pre-antimicrobial era (before the 1930s), treatment 
consisted of, e.g., a healthier lifestyle, copaiba, cubebs, urethral irrigations, potassium 
permanganate, silver compounds, mercury compounds, and hyperthermia. SUL, 
sulfonamides; PEN, penicillin; SPT, spectinomycin; TET, tetracycline; CIP, 
ciprofloxacin; OFX, ofloxacin; CFM, cefixime; CRO, ceftriaxone; AZM, 
azithromycin; DOX, doxycycline.” Recreated here with permission, in its entirety 
from (Unemo and Shafer, 2014).  
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Treatment failures with the macrolide, azithromycin started to appear in the late 1990s 

(Palmer et al., 2008; Chisholm et al., 2010; Katz et al., 2012; Unemo et al., 2014) and it 

hasn’t been used as monotherapy since then. Even with decreased usage and the benefit 

of dual therapy, elevated MICs to azithromycin continue to be observed and have even 

increased in recent years (Prevention, 2016). The third-generation cephalosporin, 

ceftriaxone is the primary anti-gonococcal agent in the therapy and has suffered from 

worldwide progressive loss of efficacy which in many populations recently reached the 

level of insensitivity and resistance (Lo et al., 2008; Hess et al., 2012; Li, 2012; Unemo 

and Nicholas, 2012; Bala et al., 2013; Dillon et al., 2013; Kirkcaldy et al., 2013; Lahra et 

al., 2013; Ndowa et al., 2013). As seen with azithromycin, GC treatment failures with 

ceftriaxone have been documented (Deguchi et al., 2003; Ison et al., 2011; Unemo et al., 

2011; Unemo et al., 2012; Allen et al., 2013; Lewis et al., 2013). It is at the intersection 

of these two trends toward resistance where the true public health emergency lies, as no 

other currently licensed antimicrobials have acceptable efficacy against GC. As 

ceftriaxone and azithromycin resistance spreads and co-occurs, fully drug resistant GC is 

the result. Such a strain was first isolated and characterized in Japan in 2011 (Ohnishi et 

al., 2011). Since then, several other fully drug resistant GC strains have been isolated 

worldwide (Unemo and Shafer, 2011; Camara et al., 2012) including a cluster of cases in 

Hawaii in 2017 (2016). The emergence and transmission of fully drug resistant Neisseria 

gonorrhoeae has led both the CDC (CDC, 2012) and WHO (Carmeli, 2017) to identify 

the development of new anti-gonococcal pharmaceuticals as “urgent” and “high” global 

health priorities.  
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The “call to arms” by these governmental and non-governmental health 

organizations has focused on the antibiotic resistance crisis by pushing for next 

generation antimicrobial development. As shown in Table 1, the gonococcus has 

demonstrated a remarkable ability to acquire diverse antibiotic-resistance adaptations (i.e. 

resistance genes, metabolic changes, mutations) through a variety of mechanisms 

(Unemo and Shafer, 2014). In addition, resistance to any one drug class has been 

achieved in several different ways. This genetic and metabolic flexibility as well as 

gonorrhea’s repetitive history of therapeutic failure suggests that, barring a transcendent 

discovery, any new therapeutic will likely eventually be rendered useless. The public 

health crisis represented by fully drug resistant Neisseria gonorrhoeae is best addressed 

by a long-lasting, broadly-reactive gonococcal vaccine. 
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Gonococcal Vaccines 

The ease with which gonorrhea could be treated and the relative lack of associated 

severe disease, as compared to other pathogens that produced a majority of infectious 

Table 1.1: “Resistance determinants and mechanism in Neisseria gonorrhoeae for 
antimicrobials previously or currently recommended for treatment of gonorrhea.” 
Recreated here with permission, in its entirety from (Unemo and Shafer, 2014).  
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cause deaths (i.e. S. pneumoniae, N. meningitidis, poliovirus), created a lack of urgency 

surrounding the development of a gonococcal vaccine until recently. Additionally, the 

complete lack of an immunological “blueprint” for protective immunity has left the field 

without clarity in correlates of protection or consensus on preferred antigenic targets 

leaving the field with little direction when designing a candidate vaccine. As basic 

microbiologists have made strides in characterizing the gonococcus, their findings have 

inspired intermittent gonococcal vaccine studies that, while ultimately unsuccessful, 

provide guidance for this new wave of investigation. Based on observations of its 

essential role in pathogenesis (Heckels et al., 1989) and in vitro ability to block 

gonococcal binding (Meyer and van Putten, 1989), early vaccine studies focused on the 

gonococcal pilus as the primary antigen. While small cohort studies showed desirable in 

vitro characteristics like strong heterologous and homologous antigenic binding and 

interference with bacterial adhesion to epithelial cells (McChesney et al., 1982), when the 

pili vaccine was tried in a large cohort human study it was unable to establish significant 

protection against infection (Boslego et al., 1991). Subsequent microbiological studies of 

the gonococcus determined that like many gonococcal antigens, the pilus is subject to 

significant phase and antigenic variation (Seifert et al., 1994), which likely contributed to 

the failure of the vaccine (Meyer and van Putten, 1989). Through this trial we have been 

able to determine that the impact of phase variation and antigen variation is substantial. 

This suggests that a successful anti-gonococcal vaccine will likely need to overcome 

these challenges either by using an expression stable antigen or by placing overwhelming 

pressure on the organism through a large poly-antigenic response. 
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Additional lessons can be derived from a vaccine trial focused on the major 

gonococcal outer membrane protein, a bacterial porin protein called PorB (Blake and 

Gotschlich, 1982). Using a vaccine containing an 85% pure preparation of gonococcal 

porin, researchers evaluated the ability of the vaccine to prevent experimentally induced 

urethritis in men (Tramont, 1989). The vaccine showed no protective efficacy and the 

study was initially labeled a complete failure and was only published as part of a review. 

Importantly, upon subsequent analysis of immune sera it was determined that the lack of 

bactericidal activity and anti-PorB antibodies could be explained by an interfering 

antigen that had contaminated the porin preparation. When the gonococcal protein RMP 

is introduced as an antigen, even as a minor component, it becomes the immunodominant 

immunogen and induces antibodies that disrupt the bactericidal activity of normally 

bactericidal antibodies recognizing other gonococcal antigens (Gulati et al., 1991; Rice et 

al., 1994). The effect of the bacterioprotective anti-RMP response is so great that it 

increases a person’s susceptibility to GC infection (Plummer et al., 1993). Based on these 

studies it is clear that any gonococcal vaccine must be entirely pure of RMP 

contamination. To this end, rmp deletion mutant strains of GC have been derived 

(Wetzler et al., 1989) and serve as the platform for antigen purification for use in 

vaccines (Wetzler et al., 1988; Blake et al., 1989; Wetzler et al., 1992b). 

While previous gonococcal vaccine trials have failed to define protective 

correlates or discrete goals for the next generation of vaccines, they have been 

instrumental in informing the theory behind our next steps of development. The most 

valuable lessons have been regarding the type(s) of antigen(s) that are needed to evade 
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the gonococcus’ characteristics that make it difficult to develop protective immunity 

against. Some GC studies, as well as the recently licensed group-B meningococcal 

vaccine, suggest that these challenges may be overcome by the use of outer membrane 

vesicles as complex antigens.  

 

Outer Membrane Vesicles 

Neisseria gonorrhoeae belongs to the family of bacteria known as Gram-

negatives, as demonstrated by its vivid red staining in Figure 1.1. Gram-negative bacteria 

share, by definition, a unique cellular envelope structure. The envelope is composed of 

three distinct layers; an inner lipid-bilayer, a “periplasmic” space populated principally 

by a thin peptidylglycan wall, and an outer lipid-bilayer (Bos et al., 2007) It is the 

safranin staining of this outer lipid bilayer that gives Gram-negatives their characteristic 

red coloration following Gram staining.  

As a Gram-negative bacterium, Neisseria gonorrhoeae undergoes a “blebbing” of 

the outer lipid bilayer to produce what are called outer membrane vesicles (OMVs) 

(Dorward and Judd, 1988). While there have been recent discoveries that suggest 

membrane blebbing may not be a uniquely Gram-negative phenomenon (Rivera et al., 

2010), we will focus on Gram-negative vesicles since they are most relevant to the 

bacterium of interest, Neisseria gonorrhoeae. OMVs were first described in a 1967 study 

of Vibrio cholera growth and were thought to be an artifact of laboratory culture 

(Chatterjee and Das, 1967). Since then, structures similar to these have been observed 

and characterized from a large array of Gram-negative bacteria, both commensals and 
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pathogens (Kulp and Kuehn, 2010). The frequency and repetition of these observations, 

as well as some common characteristics between vesicles of different bacteria has led to 

acceptance of the manufacture of OMVs as an active and conserved process in Gram-

negative bacteria (Kulp and Kuehn, 2010).  

 
The body of OMV literature remains thin, particularly for any one pathogen, 

however a general understanding of the role and function of vesicles can be appreciated 

by examining all findings together. It has been shown that OMVs are single lipid bilayer 

Figure 1.3: A graphical representation of Gram-negative bacterial envelope 
structure and outer membrane vesicle genesis. Gram-negative associated outer 
membrane vesicles (OMVs) are released naturally in response to an unidentified 
signal. As represented here, the vesicles carry a subset of outer membrane associated 
proteins as well as some periplasmic debris within their single-lipid-bilayer-bound 
lumen. 
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spheres which carry an array of outer membrane derived lipids, proteins, and LPS (Pettit 

and Judd, 1992; Vanaja et al., 2016), periplasmic peptidylglycan and proteins (Kaparakis 

et al., 2010), and finally cytoplasmic proteins and nucleic acids (Lindmark et al., 2009; 

Koeppen et al., 2016) (Figure 1.3). The exact composition of the vesicles, particularly 

proteomic composition, provides some of the most compelling evidence for the 

purposeful production of the vesicles. Several studies have examined the proteome of 

vesicles and compared it to both the bacterial proteome and outer-membrane proteome at 

the time of blebbing (Olofsson et al., 2010; McMahon et al., 2012; Zielke et al., 2014). In 

each of these studies, including Zielke and colleagues’ examination of GC OMVs, it was 

shown that OMVs contain a predictable subset of proteins in different relative 

concentrations from the source outer membrane and bacterium. This suggests active 

sorting of proteins to curate the OMV proteome, likely to facilitate their function.  

Selective enrichment of certain proteins in OMVs is illustrated by shiga-toxin 

producing E. coli which has been shown to increase secretion of shiga-toxin through both 

direct secretion into the extracellular space and release of toxin containing OMV 

(Yokoyama et al., 2000). This use of OMVs as a vector to deliver toxins or other 

virulence factors is one of the suspected functions of the vesicles. For several toxin-

producing bacteria, including shiga-toxin expressing enterohemorrhagic E. coli, it has 

been shown that toxin activity is greater when delivered in secreted OMVs than as 

soluble protein (Yokoyama et al., 2000; Wai et al., 2003; Kuehn and Kesty, 2005). 

Vesicles also seem to deliver and increase activity of virulence factors. OMVs derived 

from M. catarrhalis are known to be enriched with bacterial adhesions that facilitate the 
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binding and retention of bacterial colonies to host tissues (MacDonald and Kuehn, 2012). 

Vesicles can also be used by their parent bacterium to manipulate the host organism. The 

delivery of protein and non-protein pathogen associated molecular patterns (PAMPs) has 

been shown to induce high levels of inflammation and a non-specific host response, 

which may undermine a specific adaptive immune response (Ellis and Kuehn, 2010; 

Kaparakis et al., 2010; Winter et al., 2014). In addition to their anti-host function, OMVs 

also can also work in a defensive role as decoys. This hypothesized function is one that 

has proven to be difficult to test; however, it is known that both innate and adaptive 

elements of the host immune system have been shown to interact and respond to vesicles 

as if they were bacterial cells, thereby interfering with their anti-bacterial functions 

(Yanez-Mo et al., 2015). Finally, vesicles are thought to play a critical role in the 

formation and maintenance of large bacterial colonies through the transfer of metabolites, 

waste, and signal molecules (Mashburn and Whiteley, 2005). A possible role for OMVs 

in biofilms and dense cultures seems likely since blebbing occurs most frequently in high 

density growth conditions (Klimentova and Stulik, 2015).  

Even though the “when” of OMV formation has been extensively described, the 

“how” has yet to be determined. Since the process of blebbing appears to be conserved 

among Gram-negatives, it has been thought that there would be a common mechanism of 

OMV production. So far, the few productive studies of this process instead suggest 

diverse and unique processes for each step in OMV formation from stimulating signal to 

release (Pathirana and Kaparakis-Liaskos, 2016). The most compelling evidence for the 

stimulating signal for OMV production was described for P. aeruginosa, where curvature 
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of the outer membrane and eventual release of OMVs was induced by integration of the 

quorum sensing molecule, PQS, into the outer membrane (Mashburn and Whiteley, 2005; 

Lee et al., 2016). Unfortunately, the same studies showed that OMVs can form in the 

absence of PQS suggesting that there are likely several pathways that result in OMV 

production. Additionally, no other quorum sensing molecule has been shown to have the 

same direct effect on membrane blebbing suggesting this pseudomonal mechanism may 

be unique.  

One of the challenges that have slowed the investigation of OMVs, and 

extracellular vesicles in general, is the lack of strict defining characteristics (Yanez-Mo et 

al., 2015). Researchers define OMVs by the rough criteria of size and morphology (Kulp 

and Kuehn, 2010). Even now, after the advent of molecular biology, these descriptive 

characteristics rather than protein or molecular markers remain the defining 

characteristics of OMVs. The study of OMVs is only further complicated by the extreme 

difficulty associated with the pure isolation of the particles, especially in quantities large 

enough for experimentation (Yanez-Mo et al., 2015).  

Since no definitive definition of an OMV exists, methods of “OMV” isolation 

were developed based on their ability to produce intact structures bound by lipid-

bilayer(s) with a rough size between 20 and 300 nm containing some outer membrane 

proteins from the source bacterium. Based on this definition, the target of most of the 

developed methods of isolation was the bacterial lipid-bilayer. The most widely used 

method that was developed used a bile acid, deoxycholic acid, to chemically disrupt the 

lipid bilayers of the bacteria resulting in detergent derived vesicles (dOMVs) (Claassen et 
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al., 1996). Several others methods were also developed like the mechanical shearing of 

OMVs from cells by passing them through a narrow-gauge needle (mOMVs) (Zhu et al., 

2005), or using chelators to disrupt the association of the outer bilayer with the 

underlying cell wall thereby promoting vesicle (cOMVs) release (Keiser et al., 2010). In 

addition to these methods, some researchers continued to isolate and characterize vesicles 

that were naturally released by bacteria (nOMVs) (Post et al., 2005). 

As the field moved forward with the characterization of their “OMVs”, 

conflicting observations started to become commonplace (Yanez-Mo et al., 2015). 

Following the detailed molecular characterization and comparison of cOMVs, dOMVs, 

mOMVs, and nOMVs it became clear that these structures were very different from one 

another in composition (Post et al., 2005; Lappann et al., 2013; van de Waterbeemd et al., 

2013). These molecular studies allowed for a greater understanding of how these 

different classes of OMVs differ. It was shown that dOMVs contained much greater 

quantities of cytoplasmic compounds than the other vesicle forms (van de Waterbeemd et 

al., 2013). In contrast, cOMVs and nOMVs are both enriched with outer membrane 

lipoproteins but contain different cohorts in ratios distinct from each other (van de 

Waterbeemd et al., 2013). It has also been shown, though not as completely, that there is 

significant batch variability with all OMVs, especially when isolated through secondary 

mechanisms (cOMVs, mOMVs, dOMVs) (van de Waterbeemd et al., 2010; van der Pol 

et al., 2015). These multiple sources of variability in molecular composition likely are the 

cause of the conflicting results in early in vitro experiments of OMV function (Yanez-Mo 

et al., 2015). Like with any pharmaceutical, consistency in composition and effect are 
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characteristics required of a vaccine antigen. Variations in formulation can result in batch 

dependent differences in protection efficacy, or even unpredictable adverse events. The 

body of OMV literature suggests that nOMVs demonstrate the most consistency in 

composition, provided they are prepared under similar and reproducible conditions (Post 

et al., 2005; Kulp and Kuehn, 2010; van de Waterbeemd et al., 2010).  

While there is variability in described OMV formation, composition, and 

function, their potential as complex vaccine antigens are clear. The target of a 

neutralizing vaccine, like one that would prevent gonorrhea by blocking initial adhesion 

to the mucosal surface, is most frequently an externally-exposed membrane structure. In 

OMVs there are a broad array of outer membrane structures that are presented in their 

native form since they are derived from the outer membrane of the actual pathogen. This 

should ensure that the faces of antigens that the immune system initially comes into 

contact with should be externally exposed. This will hopefully ensure, following booster 

exposure, that the trained immunological memory is focused on the externally exposed 

epitopes of membrane bound structures. This will select for the type of antigen that 

typically mediates binding. As demonstrated by previous studies, the induction of a 

unidimensional immune memory does not result in protection against GC. OMVs, in 

addition to likely inducing some degree of neutralizing immunity, will induce a 

remarkably broad immune response due to their molecular diversity. It is possible that 

this broad immunological pressure could overwhelm the gonococcus and successfully 

induce protective immunity (van der Pol et al., 2015).  
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Host restriction of gonococcal binding factors 

As previously discussed, the gonococcus has likely existed as a human pathogen 

for over 3000 years (Bryan, 1930). During this microbiological eternity, the bacterium 

has adapted itself to human physiology, carving out a stable lifecycle of transmission, 

colonization/disease, and further transmission within human populations. The result of 

these single-species specific adaptations is that GC is unable to naturally colonize, let 

alone cause disease, in any organism besides humans (Johnson et al., 1977). This species 

restriction is often attributed to the inability of key gonococcal virulence factors to 

interact and carry out their function with any host target besides the human form. As 

demonstrated by the increased risk for neisserial infections in individuals with 

complement deficiencies (Figueroa and Densen, 1991), complement based bacterial 

killing is a crucial host defense against pathogenic Neisseria species. To undermine this 

protective host mechanism, the gonococcus has adapted to be able to bind both human 

Factor H (Ram et al., 1998a; Ram et al., 1998b; Ngampasutadol et al., 2008) and C4b-

binding protein (Ngampasutadol et al., 2005), inhibitors of the alternative and 

classic/lectin complement activation pathways respectively. When unable to exploit these 

natural complement inhibitors, GC loses a major immune-evasion mechanism and 

decreases its infectious fitness. It has also been shown that the ability of GC to acquire 

iron, a critical metabolic co-factor, is diminished in the context of non-human physiology 

due to its inability to interact with non-human forms of lactoferrin and transferrin (Lee 

and Schryvers, 1988). However, in the context of mucosal colonization and localized 
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infection, we believe it is the host restriction of bacterial adhesion targets, in particular 

the opacity (Opa) proteins, that most impacts the ability to model gonorrhea. 

Neisseria gonorrhoeae species can carry up to 11 different isoforms of the Opa 

protein (Muralidharan et al., 1987). As a class, these proteins target and bind to select 

members of the human carcinoembryonic antigen-related cell adhesion molecule 

(hCEACAM) family (Bos et al., 1997) without any cross recognition of non-human 

CEACAMs (Voges et al., 2010). These glycoproteins belong to the cell-adhesion 

molecule immunoglobulin superfamily. As such, each member contains at least one 

characteristic immunoglobulin-like domain (Vaughn and Bjorkman, 1996) which serves 

as the scaffolding to build a receptor structure. These domains are dense folds formed by 

two b-sheets. Within the superfamily of immunoglobulin cell adhesion molecules, these 

immunoglobulin folds have developed to recognize and bind other self-molecules 

typically from the same class (Crossin and Krushel, 2000). Through these interactions, 

CEACAMs mediate direct cell-to-cell recognition and are active in a very broad range of 

normal cellular processes. The relevant functions of the hCEACAMs targeted by 

Neisseria gonorrhoeae (CEACAMs 1, 3, 5, and 6) are related to their epithelial and/or 

leukocyte expression (Sadarangani et al., 2011). As shown in Figure 1.4 these molecules 

share the basic structural component of the Ig domain; however they differ in size, tissue 

distribution and signaling capability.  
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Based on in vitro characterization (Muenzner et al., 2000; Voges et al., 2010) and 

in vivo (Islam et al., 2018) studies of tissue expression distribution, it’s thought that 

Figure 1.4: “Opa protein-binding receptors of the human CEACAM family. 
CEACAM proteins consist of a 108-amino acid N-terminal domain homologous to the 
immunoglobulin-variable domain (shown in red), and between zero and six domains 
homologous to the immunoglobulin-constant domain of the C2 set (shown in blue) 
(Williams and Barclay, 1988). The IgC2 domains may either be of type A (93 amino 
acids) or type B (85 amino acids). There are two types of membrane anchorage 
observed among the CEA subgroup of CEACAM proteins. CEACAM1 and 
CEACAM3 contain a hydrophobic transmembrane domain, followed by a cytoplasmic 
domain ( ). CEA (also known as CEACAM5) and CEACAM6 are attached to the 
cell surface via a glycosylphosphatidylinositol moiety ( ) (Hammarstrom, 1999). 
represent the potential glycosylation sites (Yamashita et al., 1987; Yamashita et al., 
1989). CEACAM1 and CEACAM3 occur in different isoforms, derived by alternative 
mRNA splicing. The most important differences between these splice variants seem to 
be the cytoplasmic domain sequence, which determines the presence or absence of 
immunoreceptor tyrosine-based activation (CEACAM3) or inhibition (CEACAM1) 
motifs. In all forms, the N-domain is retained (Hammarstrom, 1999).” Recreated here, 
with permission in its entirety from (Sadarangani et al., 2011)  
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hCEACAMs 1 and 5 mediate gonococcal binding to the upper and lower human female 

genital tract (FGT) epithelium respectively. Interestingly, hCEACAM1’s role in GC 

pathogenesis may not be entirely passive. hCEACAM 1 can, depending on splice variant, 

have a cytoplasmic tail with an immunoreceptor tyrosine-based inhibitory motif (ITIM) 

which, upon activation, induces changes that counter the natural exfoliation of epithelial 

cells (Muenzner et al., 2005). In contrast, the binding target for GC in the lower FGT, 

hCEACAM5, has no signaling capability and is a passive component of pathogenesis 

serving only as an anchor for adhesion (Kuespert et al., 2006). The function of 

hCEACAM6 is not entirely clear. It is known to be expressed both on epithelial cells and 

leukocytes (neutrophils and monocytes specifically) and can be bound by neisserial Opas, 

but what role, either host detrimental or protective, it plays in GC infection is yet to be 

appreciated (Bos et al., 1997). 

The remaining GC-relevant hCEACAM, hCEACAM3, has a unique structure and 

function. Like hCEACAM1 it contains a signaling cytoplasmic tail. In this case however, 

the cytoplasmic tail has an immunoreceptor tyrosine-based activation motif (ITAM) that 

becomes phosphorylated when the receptor binds the bacterial structures that are its 

ligand (Hauck et al., 1998). Activation mediates the rapid engulfment of the bacterial cell 

by the hCEACAM3 expressing granulocyte. Interestingly, activation of hCEACAM3’s 

ITAM is also associated with activation of the GTPase Rac, which is central to the 

activation of oxidative burst (a key anti-bacterial function of the innate immune system) 

(Williams et al., 2000). These immune functions along with the failure to identify a 

natural human ligand for hCEACAM3 has led to it being labeled a “decoy receptor” 
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designed to take advantage of hCEACAM-binding pathogens (Kuespert et al., 2006). It is 

easy to appreciate how the absence of these various Opa-hCEACAMs interactions 

resulting in poor adhesion and an inability to induce epithelial retention could prevent the 

gonococcus from establishing colonization or infection in a non-human genital tract. 

 

Animal models of Neisseria gonorrhoeae infection 

Development of efficacious pharmaceuticals, antimicrobials or vaccines, is often 

dependent upon the laboratory models of disease. Over the centuries of co-existence, 

Neisseria gonorrhoeae has become so adapted to human physiology, that it is incapable 

of natural infection or even colonization in any other organism (Lee and Schryvers, 1988; 

Gray-Owen and Schryvers, 1993; Voges et al., 2010). This has made the in vivo modeling 

of gonorrhea extremely difficult. 

Early studies of infection and disease utilized human volunteers or chimpanzees; 

however, modern ethical standards, prohibitive cost, and experimental limitations have 

rendered them non-viable for modern research (Kraus et al., 1975; Arko, 1989; Gray-

Owen and Schryvers, 1993; Ramsey et al., 1994). The current standard for in vivo 

Neisseria gonorrhoeae experiments was introduced in 1999. This model, from here on 

referred to as the “estrus model”, is a female wild-type mouse arrested in the estrus phase 

of the reproductive hormone cycle through continuous b-estradiol treatment and with an 

antibiotic suppressed microbiome (Jerse, 1999; Jerse et al., 2011). Under these 

conditions, the mouse becomes permissive to vaginal colonization by Neisseria 

gonorrhoeae. The continuation of gonococcal colonization however is dependent upon 
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the continuation of the microbiome suppression and estrus arrest. Discontinuing either 

treatment leads to rapid clearance of the gonococcus (Jerse et al., 2011). 

In addition to being reliant upon a very restrictive biological state, the estrus 

model recapitulates only a portion of human gonorrhea’s natural history, specifically 

asymptomatic or subclinical colonization. Upon vaginal inoculation, the estrus model 

displays significant, but relatively mild, induction of pro-inflammatory cytokines and 

influx of neutrophils to the site of infection (Jerse, 1999; Song et al., 2008; Jerse et al., 

2011). While hard to quantify in mice, there seems to be little to no evidence of the 

hallmarks of active gonorrhea in humans (i.e. dysuria, purulent discharge), instead the 

estrus model seems to most closely recreate asymptomatic colonization. Unfortunately, 

the estrus model does not appear to allow the infection to ascend in the female genital 

tract and cause a PID like condition, as is seen in human colonization or infection. The 

model does, however, faithfully recreate the lack of adaptive immune engagement and 

education that is seen in humans. The mice can be infected without inducing a significant 

anti-GC adaptive response and no secondary adaptive system response is observed upon 

reinfection (Song et al., 2008). The estrus model has proven to be a powerful tool in 

microbiological and basic immunological studies of GC infection; however, with the 

critical need for next generation anti-gonococcal pharmaceuticals, it will become 

important to review and improve upon the model to increase the chances of identification 

of candidate products in the lab and successful transfer to humans. Early steps towards 

this goal have already been taken thanks to advances in genetic engineering. Transgenic 

science has progressed so that transgenes can be inserted with greater precision allowing 
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for the production of healthier poly-transgenic animals. Using these advances, groups 

have produced hCEACAM transgenic mice that could bring the biology of modeled GC 

infection closer to that of human infection (Chan and Stanners, 2004; Gu et al., 2010). 

Importantly, the goal is to produce products that prevent all manifestations of human GC 

infection. To that point, it will be important to have the ability to test candidate products 

in systems that reflect not just colonization, but symptomatic gonorrhea as well as UGT 

infection/PID. 

 

The Impact of the Female Reproductive Cycle on Gonorrhea 

It is possible that the key to modeling the different processes of gonorrhea may lie 

with the natural reproductive hormone cycle. The female genital tract undergoes 

significant physiological and structural changes during the ~28-day menstrual cycle 

(Verma, 1983; Dockery et al., 1998; Rosario et al., 2003). Some of these changes, like 

thinning of the cervical mucus or retrograde flow of blood during menses, can provide an 

avenue of access for gonococci to the normally sterile upper FGT. Epidemiological 

studies had in fact shown an impact of the menstrual cycle on gonorrhea. Symptomatic 

PID patients typically present within 10 days of the first day of menses (McCormack et 

al., 1977a). Progesterone levels were found to be higher in asymptomatic women from 

China (Wu et al., 2011). From these studies, as well as the in vitro characterizations of 

sex hormones’ impact on immune function, it is clear that the complex biology of the 

female menstrual cycle could significantly impact the course of gonococcal infection 

(Braude et al., 1978). 
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The dependence of the estrus model on exogenous b-estradiol shows that the 

murine equivalent to the menstrual cycle, the estrous cycle, also has profound effects on 

the gonococcal infection (Jerse, 1999). The estrous and menstrual cycles are very 

different; however, both are driven by the two major female sex hormones, estrogen and 

progesterone. The greatest difference between the two processes is their duration. The 

estrous cycle runs approximately 4 days from start to finish during which there are two 

general phases; estrus and diestrus phase (Figure 1.5). While the general pattern of 

reproductive hormone surges is similar between the estrous and menstrual cycle, the 

shorter duration of the estrous cycle results in less separation between the estrogen and 

progesterone surge (Figure 1.5).  

Figure 1.5: A comparison of sex hormone levels and uterine tissue structure 
during the human menstrual cycle and murine estrous cycle. Estrogen (burgundy 
line) and progesterone (mustard line) levels during the human menstrual cycle and 
murine estrous cycle are indicated in the upper left and right graphs respectively. The 
typical thickness of the uterine lining at various points of the menstrual or estrous 
cycle is shown in the bottom two graphs. The blue line represents thickness with the 
red marks indicating the process of menstruation. Figure based on (Staley and 
Scharfman, 2005; Hawkins and Matzuk, 2008) 
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These hormone surges have a significant impact on the structure of the uterine 

lining. The estrus phase is initiated by an estradiol surge, corresponds roughly with 

ovulation and induces a structural state characterized by a thinned cervical mucus and a 

thickened uterine lining (Corbeil et al., 1985). Diestrus on the other hand is a period of 

deconstruction and subsequent reconstruction of the uterine lining resulting from 

sustained elevated progesterone levels (Staley and Scharfman, 2005). The reproductive 

cycle also affects the vaginal lining. One early ultrastructural study described these 

changes and provided potential rationale for the estrus dependence of gonococcal 

colonization. Corbeil and colleagues (1985) observed that there was a relative loss of 

columnar cells, which mediate bacterial binding, in the vagina during the diestrus phase. 

The further exploration of the estrous cycle’s impact on the ability of mice to be infected 

by Neisseria gonorrhoeae, particularly in the context of functional adhesion targets 

(hCEACAMs), has yet to undertaken. 

 

Rationale, Specific Aims and Hypothesis 

Neisseria gonorrhoeae is a gram-negative human pathogen responsible for the 

sexually transmitted infection (STI) gonorrhea. In men, gonorrhea manifests as simple 

urethritis, however in women, the infection can ascend into the upper genital tract and 

cause Pelvic Inflammatory Disease (PID) (Ghanem, 2015). PID is a highly inflammatory 

clinical condition that can cause chronic pelvic pain, infertility, and increased incidence 

of ectopic pregnancy (Ross, 2015). Although most cases are currently treatable with 

ceftriaxone/azithromycin dual therapy, GC has repeatedly demonstrated an ability to 
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rapidly develop antimicrobial resistance (Willcox, 1970; Mayfield, 1989; 2007; 

Workowski and Bolan, 2015). In fact, there have been multiple cases of fully drug 

resistant gonorrhea worldwide in recent years (Kirkcaldy et al., 2011; Ohnishi et al., 

2011). As more treatment failures occur and fully resistant GC circulates, the relatively 

rare serious complications of infection will start to become much more common. To 

prevent this, there is a clear need for new anti-gonococcal pharmaceuticals. A vaccine 

that prevents colonization and transmission would be the most effective option as GC 

would be expected to eventually develop resistance to any new antimicrobial. Despite the 

threat of widespread completely drug resistant gonorrhea, logistical and biological 

hurdles have prevented the creation of such a GC vaccine (Zhu et al., 2011). 

In the pursuit of an anti-gonococcal vaccine, different researchers have 

demonstrated the immunogenic potential of various gonococcal antigens; however no 

vaccine has shown protective efficacy and some have even resulted in greater risk of 

disease (Wetzler et al., 1992b; Ngampasutadol et al., 2006; Price et al., 2007; Jerse and 

Deal, 2013). From these unsuccessful attempts, we have learned that GC’s high rate of 

antigen and phase variation allows for the bacterium to modulate the expression of an 

antigenic target, and that even if a vaccine induced antibody has a target to bind to, an 

anti-RMP response can undermine its bactericidal activity. These characteristics suggest 

a poly-antigenic vaccine may be needed so that the broad multi-target immune pressure 

applied would be too great for the gonococcus to avoid via expression changes, as well as 

the need for any vaccine to be pure of any RMP contamination. 



 

 

30 

A few studies have hinted at a protective anti-gonococcal response induced by 

vaccines using Outer-Membrane-Vesicles (OMVs) (Plante et al., 2000; Liu et al., 2018). 

These naturally occurring vesicles contain many outer membrane antigens in their native 

conformation in the context of potent immunostimulatory pathogen associated molecular 

patterns (PAMPs). These studies unfortunately utilized vesicles with high levels of 

contamination with cytoplasmic components and were not derived from an RMP lacking 

strain of GC. Additionally, the studies were carried out in the murine estrus model of 

infection. The estrus model requires β-estradiol and antibiotic treatment to create a 

permissive environment in the mouse vagina, allowing for a poorly inflammatory 

gonococcal colonization of the normally restrictive murine mucosal surfaces (Taylor-

Robinson et al., 1990; Jerse, 1999). It is possible that this model may not reflect the 

biology of human infection enough to serve as a reliable proving ground for anti-

gonococcal pharmaceuticals. 

It has previously been shown that the gonococcus is so remarkably adapted to 

human biology that it is rendered non-viable in other organisms (Lee and Schryvers, 

1988; Gray-Owen and Schryvers, 1993; Wang et al., 1998; Virji et al., 1999; Lee et al., 

2007; Youssef et al., 2009; Voges et al., 2010). One of the primary restrictive interactions 

is the adhesion reaction between human CEACAMs and gonococcal Opa proteins (Voges 

et al., 2010). Human CEACAMs 1, 3, 5, and 6 mediate the adherence of gonococci to the 

mucosal surface of both the upper and lower female genital tract, in addition to mediating 

both pro-host and pro-bacterial immune mechanisms (Muenzner et al., 2000; McCaw et 

al., 2003; Muenzner et al., 2005; Sadarangani et al., 2011). Recently, transgenic mice that 
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express a collection of the neisserial-relevant hCEACAMs have been created and shown 

to recreate the tissue expression pattern seen in humans (Chan and Stanners, 2004; Gu et 

al., 2010).  

Based on this body of literature we hypothesize that the natural reproductive 

cycle as well as human CEACAM expression determine the natural course of 

infection in murine upper and lower genital tract Neisseria gonorrhoeae infection, 

and that an OMV vaccine derived from an rmp deletion mutant Neisseria 

gonorrhoeae strain can induce a broadly reactive anti-gonococcal immune response. 

We tested this hypothesis through the following research aims: 

 

Aim 1: Determine the impact of estrous cycle phase and human CEACAM 

expression on Neisseria gonorrhoeae infection kinetics, progression, and host response. 

 

Aim 2: Isolate and characterize naturally released outer membrane vesicles from 

an rmp deletion mutant strain of Neisseria gonorrhoeae. 

 

Aim 3: Examine the murine host response to an RMP-deficient nOMV Neisseria 

gonorrhoeae vaccine 

 

We addressed these aims and underlying hypothesis through the following 

experiments. The studies of novel GC infection models were done in conjunction with 

Dr. Epshita Islam of Dr. Scott Grey-Owen’s group at the University of Toronto. They 
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infected hCEACAM expressing mice and we characterized the host response to GC 

infection in different combinations of estrous cycle phase, hCEACAM expression and 

site of gonococci deposition. Since the current standard model of GC infection is the 

vaginally infected wild-type female mouse in estrus phase, we first examined the host 

response in those conditions to set a baseline. Through this approach we hoped to observe 

and describe the spectrum of disease that could be induced with our modern modeling 

tools and highlight novel conditions that recreate the symptomatic phases of human 

gonorrhea. As OMVs have not previously been described from an rmp deletion mutant 

strain of Neisseria gonorrhoeae we had to first establish an isolation protocol, 

characterize the resulting material and compare it to particles known to be OMVs from 

wild type bacteria. The results of the studies undertaken to evaluate these aims can be 

found in Chapters 3, 4, and 5 with a discussion of the general implications of the results 

found in Chapter 6.  
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Chapter 2: Materials and Methods 

Chapter Three Methods 

Bacterial strains 

Neisseria gonorrhoeae used for experimental infection in studies involving only 

wild-type mice were low passage isolates originally collected during a longitudinal study 

of commercial sex worker in Nairobi, Kenya (Fudyk et al., 1999; Islam et al., 2016). For 

experiments utilizing hCEACAM expressing transgenic mice, all mice (even wild-type 

controls where applicable) were infected utilizing an MS11 strain of Neisseria 

gonorrhoeae that constitutively expresses Opa57. This Opa form is known to bind to 

hCEACAM1, 3, 5, and 6 (McCaw et al., 2004). This strain is maintained by periodic 

subculturing based on phenotype and confirmation of proper Opa expressing by western 

blot (McCaw et al., 2004). All strains used are known to be resistant to the antibiotic 

treatment given to mice during experimental infections (see below). For all strains, 

bacteria were grown on GC agar (Becton Dickinson, Sparks, USA) supplemented with 

IsoVitalex (Becton Dickinson, Sparks, USA) at 37°C in a humidified 5% CO2 

atmosphere and prepared for infections as detailed below. 

 

Animal strains 

Wild-type 6-week old FvB mice were purchased from Charles River (Canada) 

and acclimated for 1-2 weeks before entering the experimental protocols. 

The human transgenic hCEACAM1 (Gu et al., 2010) mice and CEABAC2 (Chan 

and Stanners, 2004) mice are both FvB background and were bred and housed in the 
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University of Toronto Division of comparative Medicine’s Centre for Cellular and 

Biomolecular Research. Mice utilized in the presented experiments were 6-10 weeks of 

age.  

All animal studies were reviewed and approved by the University of Toronto’s 

Local Animal Care Committee (Permit #200010551) which operates under the ethical 

and legal requirements of the province of Ontario’s Animals for Research Act and the 

federal Canadian Council on Animal Care (CCAC). Experiments were designed to reduce 

animal use and when unable to minimize or avoid suffering. 

 

Reproductive cycle arrest by hormone treatment 

Estrus arrest: Two days prior to infection, mice received a subcutaneous injection 

of water soluble b-estradiol (0.5mg/mouse, Sigma Aldrich, Oakville, Canada) to prolong 

estrus phase. 

Diestrus arrest: To arrest/synchronize female mice in diestrus phase, they received 

DepoProvera (2mg medroxyprogesterone acetate/mouse, Pfizer Canada Inc., Quebec, 

Canada) 5 days prior to infection. 

 

Reproductive cycle staging 

Beginning 5 days before infection, mice reproductive cycle phase was evaluated 

daily by cytological analysis of wet mounts (Caligioni, 2009). Slides were prepared from 

30 µl phosphate-buffered saline (PBS, Life Technologies, Burlington, Canada) vaginal 

washes and viewed under a 40x objective. 
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Vaginal infection 

Mice were observed for ~5 days to determine estrous cycle stage. Once mice were 

in diestrus (Day -2), hormone and antibiotic treatments were started. Mice received 

subcutaneous injections of 0.5mg b-estradiol on days -2, 0, and 3. Intraperitoneal 

antibiotics (2.4mg Streptomycin sulfate + 0.6mg Vancomycin HCl in 200µl PBS) were 

injected once on day -2, twice on day -1 and once a day on day 0-5. Starting day -2, mice 

also received Trimethoprim (0.04g/100ml) in their drinking water. On day 0 (day of 

infection), an overnight lawn of Neisseria gonorrhoeae was collected into 1 ml of 

supplemented PBS (0.9mM CaCl2, 0.5mM MgCl2) (PBS++, Life Technologies, 

Burlington, Canada). The concentration of bacteria in the resulting solution was 

calculated based on OD550 and additional PBS++ was used to achieve the proper 

concentration for infection. Just prior to infection, the vagina was washed 3x 30µl with 

PBS, and then 107 gonococci in 5µl was deposited in the vagina using a P10 pipette tip. 

Vaginal infections were performed on conscious mice. At the indicated time points after 

infection, mice were sacrificed by CO2 asphyxiation. Sera were obtained via cardiac 

puncture. Lower and upper genital tract tissues were removed and separated at the point 

where the cervix joins the uterine body. Collected tissue was frozen using liquid nitrogen 

and stored at -80oC until analyzed. 
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Murine transcervical Infection 

A single strain culture of Neisseria gonorrhoeae was grown overnight on a 

chocolate agar plate to produce a lawn of bacterial colonies. A full plate was collected 

into 1 mL of PBS supplemented with 0.9 mM CaCl2 and 0.5 mM MgCl2 (PBS++, Life 

Technologies, Burlington, Canada). The OD550 absorbance of the bacterial suspension 

was measured and used to calculate the concentration of gonococci. This initial 

suspension was then diluted with PBS++ to produce a 5x108 gonococci per milliliter 

suspension. Mice of known reproductive cycle phase were then anesthetized via 

inhalation of isoflurane. Infection was achieved as previously described (Islam et al., 

2016). Briefly, anesthetized mice were laid prone at a 45-degree angle and, using a 

blunted 25-gauge needle, 20 µl of the infection suspension (107 gonococci) was delivered 

directly into the uterine horns. Six hours after infection, the mice were sacrificed by CO2 

asphyxiation. Sera were obtained via cardiac puncture. Lower and upper genital tract 

tissues were removed and separated at the point where the cervix joins the uterine body. 

Collected tissue was frozen using liquid nitrogen and stored at -80oC until analyzed. 

 

Tissue processing 

Frozen tissue samples were thawed and divided evenly for protein or RNA 

extraction. Tissue processed for RNA was placed in TRIzol and homogenized using 

QIAshredder tissue homogenizer kits (Qiagen Cat#79654). RNA was extracted from the 

tissue homogenate using an RNeasy Mini kit (Qiagen Cat# 74104). Isolated nucleic acid 
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was initially analyzed for purity and integrity by 280/260 absorbance ratio via Nanodrop. 

Samples were then frozen at -80oC until ready for use.  

Tissue processed for protein was processed as follows. Individual tissue samples 

were pulverized using a scalpel blade, resuspended in 500 µl of tissue homogenization 

buffer (1X PBS containing 0.1% Triton, 5 mM EDTA, 1 mM PMSF, 2 µg/ml Aprotinin, 

and 1 µg/ml Pepstatin) then homogenized with a 5-mm stainless steel bead (Qiagen, 

Valencia, CA) at 500 oscillations/min for 15 min at 4°C using TissueLyser LT (Qiagen). 

Tissue debris was removed from solution by centrifugation for 10 min at 16,060 x g and 

4°C. Supernatant was collected and the total protein concentration was determined by 

Bradford assay (Bio-Rad, Hercules, CA) using BSA as standard. 

 

Cytokine ELISAs 

Tissue levels of Il-1a, KC, and MIP-1a were evaluated using commercial 

cytokine ELISA kits from R&D systems (Cat#DY400-05, DY453-05, and DY450-05 

respectively). For each ELISA, 100µg of extracted protein (as determined by BCA, see 

tissue processing methods) was evaluated for the concentration of a specific cytokine. 

Each sample was analyzed in duplicate. ELISAs were run following manufacturer’s 

published methods. Data was analyzed and graphed in Prism.  

 

LUMINEX Assay  

Fifty micrograms (50µg) of total protein in 50 µl, extracted from tissue as 

previously described, was analyzed to determine levels of cytokines and chemokines 
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using a 20-plex mouse cytokine Luminex panel (Novex® Life Technologies, Carlsbad, 

CA), as per manufacturer instructions. Plates were read on Bio-Plex MAGPIX multiplex 

reader (Bio-Rad, CA) using xPONENT software (Life Technologies). 

 

Microarray 

RNA expression was profiled by the Boston University Microarray and 

Sequencing Resource using Affymetrix Mouse Gene 2.0 ST microarrays. Samples were 

processed in two batches of nearly identical size and representation of experimental 

groups to reduce any batch effect. Biotin labeling was performed using the WT Plus 

reagent kit (Affymetrix, Santa Clara, CA) according to the manufacturer's protocol. The 

labeled, fragmented DNA was hybridized to the Affymetrix Mouse Gene 2.0 ST Array 

for 18 hours in a GeneChip Hybridization oven 640 at 45°C with rotation (60 rpm). The 

hybridized samples were washed and stained using an Affymetrix fluidics station 450. 

After staining, microarrays were immediately scanned using an Affymetrix GeneArray 

Scanner 3000 7G Plus. 

 

Quality assessment 

Prior to analysis of expressional data, the quality of the microarrays was assessed 

using two metrics: Relative Log Expression (RLE), which indicates whether the 

distribution of intensity values of a relatively dim array have been artificially skewed 

upwards by the Robust Multiarray Average (RMA) normalization algorithm, and 

Normalized Unscaled Standard Error (NUSE), which is a measure of the noise inherent in 
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the estimate of each probeset (gene). The median RLE values were relatively similar 

across 13 of the samples (range -0.05 to 0.05), as were the median NUSE values (range 

0.99 to 1.02). However, the remaining two samples (GC-infected estrus phase samples 6 

and 7) had higher median RLE (0.092 and 0.105, respectively) and NUSE (1.03 and 1.04, 

respectively) values, indicating that these two arrays may be of lower quality compared to 

the rest of the experiment. 

 

Assessment of and correction for array batch effect 

Because the arrays were processed in two separate batches, Principal Component 

Analysis (PCA) was employed to assess the strength of batch effect (Figure 2.1a). The 

samples cluster primarily by reproductive-cycle phase, but separate within each phase 

primarily by batch, indicating that a substantial batch effect is initially present. In order to 

correct for this effect, expression values were adjusted using the ComBat algorithm, and 

PCA was repeated (Figure 2.1b). Following batch adjustment, the samples again separate 

well by reproductive-cycle phase, but within the diestrus phase group, greater separation 

by treatment was seen. The GC-infected estrus samples 6 and 7, which had been 

identified as being of lower quality, still separated from GC-infected estrus samples 4 and 

5 along the PC2 axis, indicating that batch adjustment did not fully account for the 

relative difference in quality between these two pairs of samples. Despite persistence of 

moderate batch effect, samples 6 and 7 were retained for analysis, since their median 

RLE and NUSE values were not drastically higher than the rest of the arrays, and without 

them, batch one GC-infected estrus arrays would be unopposed by any batch two arrays. 
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The potential loss of array sensitivity due to remaining batch effect, is outweighed by the 

larger effect of an unopposed batch effect. In addition, the phenotypic differences 

described in this model suggests that there are major differences in induction of 

biological pathways that may still be identified even in a slightly less sensitive system. 

Indeed, significant transcriptional differences were identified indicating a non-critical 

impact by the residual batch effect following ComBat adjustment. 

 

Microarray analysis 

Mouse Gene 2.0 ST CEL files were normalized to produce gene-level expression 

values using the implementation of the Robust Multiarray Average (RMA) (Irizarry et al., 

Figure 2.1: Principal 
Component Analysis (PCA) 
before and after batch 
correction. All samples are 
plotted with respect to the first 
and second Principal Components 
(PC), computed using log2 
(expression) values z-normalized 
across all samples (to a mean of 
zero and a standard deviation of 
one). PCA was performed both 
prior to (A) and following (B) 
correction for array batch effect 
using ComBat. Light and dark 
colors indicate estrus-phase and 
diestrus-phase samples, 
respectively, and gray and green 
indicate PBS-treated and GC-
infected samples, respectively. 
Samples from array batches 1 and 
2 are plotted as circles and 
squares, respectively. N=4 for all 
groups except PBS Estrus N=3 
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2003) in the affy package (version 1.36.1) (Gautier et al., 2004) included in the 

Bioconductor software suite (version 2.12) (Gentleman et al., 2004), and an Entrez Gene-

specific probeset mapping (17.0.0) from the Molecular and Behavioral Neuroscience 

Institute (Brainarray) at the University of Michigan (Dai et al., 2005). Array quality was 

assessed by computing Relative Log Expression (RLE) and Normalized Unscaled 

Standard Error (NUSE) using the affyPLM package (version 1.34.0). The implementation 

of the ComBat algorithm in the sva package (version 3.4.0) was used to adjust the 

expression values for the batch in which the arrays were scanned, adjusting for phase, 

infection, and the interaction of the two (phase:infection) as covariates. Differential 

expression was assessed using the moderated (empirical Bayesian) t test implemented in 

the limma package (version 3.14.4) (i.e., creating simple linear models with lmFit, 

followed by empirical Bayesian adjustment with eBayes). Correction for multiple 

hypothesis testing was accomplished using the Benjamini-Hochberg false discovery rate 

(FDR). Human homologs of mouse genes were identified using HomoloGene (version 

68) (Coordinators, 2013). All microarray analyses were performed using the R 

environment for statistical computing (version 2.15.1).  

 

Gene Set Enrichment Analysis 

GSEA (version 2.2.1) (Subramanian et al., 2005) was used to identify biological 

terms, pathways and processes that are coordinately up- or down-regulated within each 

pairwise comparison. The Entrez Gene identifiers of the human homologs of the genes 

interrogated by the array were ranked by the t statistic computed between Ng and PBS 
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within each reproductive-cycle phase, or by the treatment or phase:treatment t statistic. 

Mouse genes with multiple human homologs (or vice versa) were removed prior to 

ranking, so that the ranked list represents only those human genes that match exactly one 

mouse gene. This ranked list was then used to perform pre-ranked GSEA analyses 

(default parameters with random seed 1234) using the Entrez Gene versions of the 

Hallmark, Biocarta, KEGG, Reactome, Gene Ontology (GO), and transcription factor and 

microRNA motif gene sets obtained from the Molecular Signatures Database (MSigDB), 

version 5.0 (Subramanian et al., 2007).  

 

Ingenuity Pathway Analysis (IPA) 

Canonical pathways were automatically identified using the 416 genes with FDR 

q < 0.25 for the phase:infection interaction t test (computed after removing genes that 

were not expressed above the median value of at least one array). Analysis was 

performed using IPA’s reference database and all Ingenuity-supported third-party 

databases, set to consider direct molecular relationships, allowing for experimentally 

observed and predicted relationships with high confidence, and restricted to mouse tissue 

and cell lines. Differential fold changes were calculated by computing fold changes 

(infected versus uninfected) within each reproductive cycle phase and then obtaining the 

ratio of the two (diestrus:estrus). The granulocyte adhesion and diapedesis pathway figure 

was built using IPA Path Designer with differential infection-induced fold change data 

overlaid. 
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Chapter Four Methods 

Neisseria gonorrhoeae growth 

 Briefly, MS11 strain N. gonorrhoeae (either wild-type or a Drmp mutant) was 

grown on chocolate agar plates (Remel, Cat#R01300) overnight at 37oC and 5% CO2. 

Bacteria was transferred from the plate to liquid GC broth (1.5% Protease peptone 3 w/v, 

22.96mM K2HPO4, 7.35mM KH2PO4, 85.62mM NaCl, 1% Isovitalex v/v) by a sterile 

nylon swab to obtain an initial OD600 of approximately 0.1 as measured by 

spectrophotometry (Biorad SmartSpec 3000, Cat#170-2501). Initially four, 20 mL liquid 

cultures, were grown in vented 50 mL conical tubes (Corning mini bioreactor, Corning, 

Cat#CLS431720; Corning, NY) in a shaking incubator set at 37oC and 180 rpm. After 

cultures reached an OD600 of approximately 0.6 (around 4 hours of growth) each 20-mL 

culture was used to seed a 125-mL culture to an OD600 of approximately 0.1. These 125 

mL cultures were allowed to grow in a shaking incubator at 37oC and 180 rpm until they 

reached an OD600 of approximately 0.6 (~4 hours growth). The cultures were then used to 

evenly seed 3000 mL of 1% isovitalex supplemented GC media separated into two sterile 

2800 mL bacterial culture flasks. This final growth volume was allowed to grow 

overnight in a shaking incubator set to 37oC and 160 rpm. 

 

Neisseria gonorrhoeae natural outer membrane vesicle (nOMV) isolation 

nOMVs were isolated from Neisseria gonorrhoeae using a modified version of an 

established Neisseria meningitidis nOMV isolation protocol (Pajon et al., 2013). All 

nOMVs, despite specific source strain used, were isolated using the same protocol. 
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Briefly, nOMVs were isolated from 3-liters of bacterial culture that had been maintained 

in log-phase growth over the course of 24 hours. To begin, the entire culture volume was 

collected and split evenly among six 500 mL sealable centrifuge tubes (Beckman Coulter, 

Cat#355607). Bacteria and large debris were removed from solution through 

centrifugation; 4,000 g for 30 minutes at 4o C (Rotor; Beckman Coulter JA-10 

Cat#369687) (Centrifuge; Beckman Coulter, Avanti J-E Cat#A20698). Following 

centrifugation, the low speed supernatant was carefully removed and filtered with a 0.45 

µl PES filter (CellTreat, Cat#229713) to sterilize and further remove large debris. 

Approximately 600 mL of sterile 5x nOMV buffer (15% Sucrose, 1M Glycine pH 8.0) 

was then added to the low speed supernatant to provide osmotic support for the vesicles. 

Sterility of the low speed supernatant was confirmed by overnight culture of 200 µL on a 

chocolate agar plate. The low speed supernatant was kept in a sealed sterile bottle(s) at 

4OC while sterility was confirmed. 

After confirming sterility of the low speed supernatant, vesicles were 

concentrated by stirred ultrafiltration. Solution was filtered through a 100,0000 NMWL 

membrane mounted in a 400 mL Amicon ultrafiltration cell (Millipore, Cat#UFSC40001) 

by constant 10 psi pressure from medical grade Nitrogen. Once the volume of low speed 

supernatant reached a volume of approximately 50 mL the filtration cell was 

depressurized, additional supernatant was added, and the cell was repressurized and 

filtration continued. This was repeated until all ~3600 mL of solution was concentrated to 

approximately 100 mL. of retentate. The concentrated nOMVs were then removed from 

the retentate by ultracentrifugation in reinforced high-speed ultracentrifuge tubes; 
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100,000 g for 2 hours at 4OC (Tubes; Beckman Coulter, Cat# 355631) (Rotor; Beckman 

Coulter, SW-28 Cat#342204) (Ultracentrifuge; Beckman Coulter, Optima XPN 100k 

Cat#A99846). Following centrifugation, the supernatant was removed from the nOMV 

pellet gently and discarded. A small volume of 1x nOMV buffer (3% sucrose, 0.2 M 

glycine, pH 8.0) was then placed on top of the nOMV pellet and the vesicles were 

allowed to enter solution while stored overnight at 4OC. The nOMV colloid was then 

consolidated into one sterile screw-top cryogenic vial and <0.001% Sodium azide was 

added to prevent fungal growth. The nOMV preparation was then stored at 4OC and 

maintained sterile during all subsequent uses. 

 

Evaluation of isolated nOMV size by Dynamic Light Scattering (DLS) 

Effective particle diameter was estimated by Dynamic Light Scattering, using a 

Brookhaven 90 plus Nanopartical Analyzer (Brookhaven Instruments, Holtsville, NY). 

Briefly, the analyzer was turned on and the laser was allowed to warm up for 

~15minutes. Brookhaven Instrument Corporation’s Particle Sizing Software was used to 

collect data. Approximately 1 mL of nOMV suspension was transferred to a cleaned, 1.5 

mL polystyrene cuvette (Fisher Scientific, Cat#14-955-127). Default parameters were 

used: Temperature: 25oC, Suspension: Water, Viscosity: 0.89cp, Ref. Index Fluid: 1.330, 

Angle: 90.00, Wavelength: 657nm, Dust cutoff: 90, Run duration: 30 seconds. A total of 

5 runs were completed and results were averaged. A table of observed effective diameters 

as well as a histogram were exported from the software. The sample was collected and 

the machine shut down. 
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Protein quantification 

Protein concentration of nOMV associated protein or any other protein source 

was determined by cold Acetate extraction/purification of protein followed by Pierce 

Modified Lowry protein assay (ThermoFisher Scientific, Cat#23240) per manufacturer’s 

instructions.  

 

Immunostimulation assay by Human embryonic kidney (HEK) cells 

The ability of nOMVs to interact and stimulate cells through the Toll-Like-

Receptor (TLR) homodimer TLR4/TLR4 and heterodimer TLR1/TLR2 was evaluated 

using HEK cells designed to overexpress those receptors in isolation and a control cell 

line that was transfected with a non-coding vector (pcDNA) (Chow et al., 1999). Briefly, 

cells of a given genotype were plated in a 24-well plate at a density of 0.5 x 105 cells per 

well and allowed to reach confluency (typically 24hrs). Once confluent, each well was 

treated for 24-hours with a single compound at a given concentration; 10µg/ml nOMV, 

1µg/ml nOMV, 0.1µg/ml nOMV, LOS 100ng/ml, P1B 10µg/ml, TNF-a 20ng/ml, and an 

untreated control. Following the 24hr stimulation, supernatants were collected and 

evaluated for Il-8 concentrations by ELISA (BD OptEIA, Becton Dickson) per 

manufacturer’s protocol. 
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Electron Microscopy Grid preparation and sample staining 

Formvar support films (in house preparation per Bullitt lab protocol) were 

adhered to copper transmission electron microscopy grids (EM Science, Cat.#0300-Cu) 

and then coated with atomized carbon from carbon rods using a vacuum evaporator 

(Denton Vacuum Evaporator, Model #DV502A) and stored until needed. Immediately 

prior to grid use, they were cleaned by two 30-second plasma discharges under a near 

vacuum (~0.08mBar) in a glow discharge apparatus (Balzers/Baltech Glow Discharge 

Apparatus, Model# CTA010) set at 180V. The grids were then immediately used for 

sample adhesion and staining. Briefly, a small volume of the sample of interest (OMVs 

from a single isolation) was diluted, if necessary, to obtain a protein concentration of no 

more than 2 µg protein per 1 µl of suspension. To adhere the sample to the grid, 4 µl of 

sample was placed upon the recently cleaned Carbon coated face of the grid and allowed 

to incubate for 1 minute. The drop of sample was then removed from the grid using filter 

paper gently placed perpendicular to the grid’s face along its side for approximately 5 

seconds or until the liquid is completely removed from the grid. The grid was then 

washed with a drop of 0.2 µm filtered ultra-pure deionized water that was then 

immediately removed via gentle suction from a pasture pipette. Without allowing the grid 

to completely dry, it was washed a total of 12 times with 12 drops of water. Any 

remaining water was then removed from the grid, using the same perpendicular blotting 

technique used above, with a clean piece of filter paper. The grid was then stained with 

one drop of a ~2% Uranyl-Acetate negative stain (Prepared in house from radioactively 

depleted powder (Tod Pella, Cat.#19481) in water and brought to a final pH of 4.4) for 



 

 

48 

one minute. Stain solution was removed from the grid with a clean piece of filter paper 

via the same perpendicular blotting technique described before, this time blotting for 10 

seconds. The grid was then allowed to fully air dry for approximately 3 minutes before 

being placed in a protective grid case for subsequent examination. 

 

nOMV Visualization by Transmission Electron Microscopy 

Negative stained samples were visualized by transmission electron microcopy 

using a Phillips CM12 Transmission Electron Microscope configured with a lanthanum 

hexaboride (LaB6) crystal electron source set to an accelerating voltage of 120 KV and 

liquid Nitrogen cold finger cooled chamber. Images were captured using either; TVIPS 

TEITZ (Gauting, Germany) 1Kx1K CCD camera using EMmenu software (Version 

4.0.9.83), TVIPS TEITZ TemCam F216 2Kx2K CCD camera using the same software, 

or by the built-in plate-camera (Phillips CM12) on electron image film (Kodak, SO-163 

Film) developed according to manufacturer protocol and solutions. Physical films were 

digitized by high definition scanning performed by Colortek (Boston, Massachusetts). 

 

Measurement of vesicle membrane thickness 

Vesicle membrane thickness was measured by ImageJ. Using a 43,750x UA-

negative stained TEM electron micrograph, thickness was measured in 4 places on 10 

vesicles with outer and inner membrane surfaces clear and in focus. The 4 measurements 

for each vesicle were then averaged to obtain that vesicles average membrane thickness. 
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Data from the 10 vesicles from both Drmp and wild-type vesicles were analyzed by 

unpaired t-test and graphed in Prism. 

 

Measurement of vesicle diameter 

Vesicle diameter was measured in ImageJ. For each vesicle isolation, two 43,750x 

UA-negative stained TEM electron micrographs, taken from separate grid-squares, were 

examined. Every vesicle in the micrographs that had clear, in-focus outer membrane 

frontiers, and did not demonstrate alterations in shape do to external structures (i.e. other 

vesicles or grid bars) was measured. For each vesicle, two perpendicular measurements 

from outer membrane limit to outer membrane limit in taken (forming an “X” across the 

vesicle). The two diameter measurements were averaged to estimate vesicle diameter. For 

the four isolations, between 53 and 67 vesicles fit the criteria outlined above and were 

measured. The data was analyzed by one-way ANOVA and graphed in Prism. 

 

Polyacrylamide gel electrophoresis separation of structures 

Protein/Lipooligosaccharide (LOS) was prepared for gel electrophoresis by initial 

concentration. Briefly, associated structures were extracted from samples by diluting it 

1:4 in cold acetate and incubating at -20oC for an hour. Following incubation samples 

were spun at 10000rmp for 10m at 4oC to pellet precipitated structures. The pellet was 

allowed to dry and then resuspended in 10µl loading buffer (5% b-mercaptoethanol, 

100mM Tris-Cl pH 6.8, 4% w/v sodium dodecyl sulfate (SDS), 0.2% w/v bromophenol 

blue). Samples were boiled for 5 minutes immediately before loading into wells of a 
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polyacrylamide gel. Gels were 15% polyacrylamide, 10% SDS. Samples were run at 60-

volts for 20 minutes to concentrate structures in the stacking gel, and then for 90 minutes 

at 120-volts to separate them in the resolving gel. Gels were then processed by coomassie 

blue staining to visualize proteins, or silver stain to visualize LOS. 

 

Staining of PAGE gels with Coomassie blue 

Coomassie blue solution was prepared according to the manufacturer’s 

instructions by mixing equal volumes dH2O and methanol, adding 10% acetic acid and 

dissolving 0.25% w/v Coomassie Brilliant Blue (Sigma). To facilitate dissolving the 

coomassie, the solution was sonicated and then remaining particles removed by filtration 

with Whatman 3MM filter paper (Whatmam, UK). 

Following gel electrophoresis, a gel was rinsed with dH2O, drained, then placed in 

enough Coomassie liquid stain so that it was completely covered. The gel was allowed to 

stain at room temperature for 4 hours on a rocker. After 4 hours, the coomassie was 

drained from the gel which was then washed 4 times with dH2O. The gel was then 

incubated in destaining solution (25% propanol, 10% acetic acid in dH2O) until 

background staining was removed and protein bands were clear (typically took an ~12hr 

overnight incubation). Gels were imaged using a Biorad Gel Doc XR imaging system 

(Biorad, USA) and then dried on a frame (Owl Separation System, NH) between two 

sheets of drying paper (Promega, WI, USA) per manufacturer’s protocol. For figure 4.6, 

the coomassie stained protein banding pattern was interpreted by ImageJ by selecting 

each lane individually using the “Select First Lane” and then “Select Next Lane” 



 

 

51 

functions. Lanes were selected from the bottom of the stacking gel to the edge of the 

loading dye frontier. Once all lanes were selected, the histogram was generated by the 

“Plot Lanes” function. The resulting histogram was annotated with ladder band masses in 

Adobe Illustrator. 

 

Silver staining of PAGE gels for LOS 

Gels with known amounts of nOMV protein (as well as a positive control with 

known quantity of LPS) were run through gel-electrophoresis as previously described. 

Following PAGE, the gel was placed in a glass petri dish along with 50 mL of fixative 

solution #1 (40% methanol, 10% acetic acid in dH2O) for 30 minutes. Fixative #1 

solution was then drained, replaced with 50 mL of fixative solution #2 (10% ethanol, 5% 

acetic acid in dH2O) and allowed to sit at room temperature for 15 minutes. The first 

volume of fixative #2 was then drained and replaced with another 50 mL and the gel was 

fixed for an additional 15 minutes. After the second incubation with fixative #2 was 

finished, the solution was completely drained and 50 mL of oxidizer solution (prepared 

following the Bio-Rad Silver Stain kit’s instructions) was place in the petri dish and 

allowed to sit for 5 minutes. After the 5-minute oxidizing step, the gel was rinsed with 

repeated 5 minute incubations in dH2O until the gel loses all of the yellow/orange 

coloration from the oxidizer solution. Once the final water wash was removed, 50 mL of 

Silver Stain reagent (prepared following Biorad kit instructions) was placed on the gel 

and allowed to react for 20 minutes. After the silver stain reagent step, the solution was 

poured off and the gel was quickly rinsed for a minute with dH2O. After the water rinse 
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was removed, ~25 mL of developer (prepared following Biorad kit instructions) was 

placed on the gel and then immediately removed after ~30 seconds. Fresh developer was 

then added to the dish only to be removed once it had become cloudy at which point it 

was removed and replaced with fresh developer solution. This process of developer 

solution exchange was continued until a strong visible band appeared in the positive 

control lane. Once bands were clearly visible, the last volume of developer was removed 

and replaced with a 5% acetic acid in water, stop-solution and the gel was allowed to sit 

for 5 minutes. The gel was then rehydrated by ~1-hour incubation in dH2O and then 

imaged and dried as previously described in the Coomassie blue methods section.  

 

Animals 

Wild-type 6-8-week-old female C57/BL6 mice utilized in nOMV vaccination 

experiments were purchased from Jackson Laboratories (Stock #000664). These mice 

were housed in Boston University School of Medicine’s Laboratory Animal Science 

Center (LASC); an Association for Assessment and Accreditation of Laboratory animal 

care internationally accredited facility. All experiments using animals were reviewed and 

approved by Boston University School of Medicine’s (BUSM) Institutional Animal Care 

and Use Committee (IACUC) (Protocol#AN-15593.2016.09). All efforts were made to 

reduce animal numbers and where possible to reduce and eliminate any pain or suffering. 

All animals were allowed to acclimate to the animal facility for 2 weeks after arrival 

before being used in experiments. 
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nOMV immunizations 

Following a 2-week acclimation period, 8-10-week-old female C57/BL6 mice 

were separated into cages based on treatment group (no more than 5 mice per cage, 

multiple cages per treatment group was used if necessary). On the day prior to the first 

immunization, blood and vaginal secretions were collected as follows. Mice were placed 

in a tailveiner restrainer and a small cut was made on the dorsal side of their tail as distal 

from the base as possible with a sterile blade. Approximately 200ul of blood was 

collected in a microcentrifuge tube containing 10µl 1000-Units/ml heparin sulfate. 

Pressure was maintained on the incision site with sterile gauze for ~15 seconds to 

encourage clotting and then the mice were returned to their cage. Whole blood was 

processed for sera by subsequent centrifugation for 10minutes at 10,000rmp at 4oC. Sera 

was then pipetted off the pellet, aliquoted and froze for future use. 

For vaginal secretions, mice were anesthetized with isoflurane. Induction was 

performed in an anesthesia induction box with 5% isoflurane O2 mixture. The mice were 

then maintained in anesthesia with a 2% Isoflurane mixture delivered through a nosecone 

at ~0.8L/minute. While under anesthesia, the body temperature of the mice was 

maintained using a covered chemical heating pad. To collect vaginal secretions, 

anesthetized mice were placed in a supine position and immobilized with gentle pressure 

on the tail. The vagina was then washed gently 3 times with 30µl sterile PBS containing 

1x protease inhibitors (Roche, cOmplete EDTA-free protease inhibitor cocktail, 

Cat#11836170001) delivered by a sterile P20 pipette tip. That initial 30µl wash was 

collected and using a new clean tip, another 30µl was used to wash the vagina in the 
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same manner. This was repeated for a grand total of 5 washes collecting ~150µl of 

solution. The mice were then allowed to recover from anesthesia alone in a clean cage 

before being returned to their home cage. 

The next day, mice were immunized according to their group. For nOMV 

vaccines, isolated sterile Drmp nOMVs were diluted in sterile PBS to the desired 

concentrations. Control mice were immunized with normal sterile PBS. Subcutaneous 

(SC) immunizations were performed as follows. Mice were immobilized using the 

tailveiner and injected with the desired dose of nOMVs in 100µl just below the skin 

along the back above the tail. Mice were then returned to their home cage. For intranasal 

(IN) immunizations, mice were anesthetized with Isoflurane exactly as described for 

vaginal washes. The anesthetized mouse was then gently immobilized in the hand by 

grabbing the skin at the neck and the lower body. As the mouse was held at a ~30O angle 

(head up) a P20 was used to deliver 10µl of nOMV vaccine into each nostril (20µl total 

per dose). The mouse was held at this angle until the solution had fully entered the nasal 

passages, it was then placed in a clean cage by itself to recover and then moved to its 

home cage. 

On days 13 and 27 after the first immunization, blood from all mice was collected 

exactly as previously described. On days 14 and 28 of the experiment, mice received 

either IN or SC vaccines, as appropriate for their treatment group, exactly as previously 

described. Finally, on day 42, serum and vaginal secretions were collected from all mice 

as previously described and mice were sacrificed by CO2 asphyxiation and cervical 

dislocation. 
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Antigen specific Immunoglobulin ELISA 

For both nOMV and Neisseria gonorrhoeae specific ELISAs, the same general 

protocol was followed as has been previously published with the following alterations 

(Liu et al., 2008; Platt et al., 2013). First, 4HBX hydrophilic treated flat-bottom 96 well 

plates (ThermoFisher Sci., Cat#3855) were coated. For both antigen specific ELISAs, an 

OD-value:IgG-concentration standard curve was constructed based on a full plate of 

standards. The standard plate was coated with 100µl of 10 µg/mL F(ab’)2 Fragment Goat 

anti-mouse IgG (Jackson ImmunoResearch, Cat#115-006-006) in carbonate buffer. For 

nOMV ELISAs, plates were coated with 100µl of nOMV associated protein at a 

concentration of 5 µg/mL in carbonate buffer. For GC specific ELISAs, wild-type MS11 

strain Neisseria gonorrhoeae was grown for 8 hours in GC-media (see bacterial growth 

methods for details). Cells were then pelleted, resuspended in carbonate buffer and 100µl 

were placed in each well of 96 well plates at a density of 5x106 gonococci/well. Plates 

were allowed to coat overnight at 4oC.  

Following overnight coating, the plates were washed 12 times by the placement 

and aspiration of ~250µl ELISA wash buffer (0.05% Tween in PBS). After aspiration of 

the final volume of wash buffer, each well was loaded with 200µl of blocking buffer (5% 

Bovine Serum Albumin, 0.05% Tween in PBS), plates were covered and placed on a 

plate shaker for 2 hours. After the blocking step, plates were washed as previously 

described, and then loaded with 200µl of known dilutions of experimental samples into 
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antigen coated wells and known concentrations of mouse IgG (Sigma, Cat#15318) into 

F(ab)2 coated wells. Plates were then covered and allowed to incubate overnight at 4oC. 

After overnight capture incubation, samples/standards were removed and wells 

were washed 12 times with wash buffer as previously described. Plates were then filled 

with 100µl per well of a 1:30,000 dilution of Alkaline phosphatase-conjugated Goat-anti-

mouse IgG antibody (Sigma, Cat#A3438), covered, and placed on a shaker for 3 hours at 

room temperature. Following the 3-hour incubation with secondary antibody, the wells 

were washed 12 times as previously described, plates were filled with 100µl/well 1-step 

p-nitrophenyl phosphate (PNPP) (ThermoScientific, Cat#37621), covered and placed on 

a shaker for 30 minutes. After 30 minutes, the reaction was stopped by adding 50 µl 2N 

sodium hydroxide to each well. Absorbance of 405nm light was then immediately read 

using an ELISA plate reader (BioTek Synergy HT, BioTek) and data was captured using 

BioTek Gen3 software.  

 

Western blotting (Immunoblot) 

Proteins associated with Drmp nOMVs were precipitated via cold acetone 

extraction as described in the PAGE methods section. Exactly 10µg nOMV associated 

protein was loaded and separated by PAGE as previously described on a 15% 

polyacrylamide gel. The gel was then placed in transfer buffer (1x TGS, 20% v/v ethanol 

in dH2O) to prevent drying while PVDF membrane was prepared. A section of PVDF 

membrane (GE Healthcare, Amersham Hybond 0.2µm membrane Cat#10600057) 

slightly larger than the polyacrylamide gel was cut and equilibrated in pure methanol for 
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5-minutes. While the membrane equilibrated, sections of whatman paper and western-

blot sponges were immersed in transfer buffer. After the membrane was equilibrated the 

full transfer cassette was assembled as follows: Positive cassette plate, sponge, whatman 

paper, PVDF membrane, polyacrylamide gel, whatman paper, sponge, negative cassette 

plate. The cassette was assembled while immersed in transfer buffer to prevent the 

formation of bubbles between layers. The cassette was placed in a transfer box full of 

transfer buffer and surrounded by ice. Proteins were transferred from the gel to the 

membrane at 200mA (60V) for 1-hour. 

After protein transfer, the membrane was equilibrated in TBS-T (0.01% Tween) 

for 5 minutes and then blocked (5% non-fat dry milk (NFDM) in TBS-T) for 1 hour. 

After blocking the membranes were probed with immune sera (pooled sera diluted 

1:1000 in 5% NFDM in TBS-T) overnight at 4oC on a rocker to prevent drying. The next 

day, primary antibody solution was removed and the membrane was rinsed three time for 

5 minutes with 5% NFDM in TBS-T. Following the last wash, the membrane was put in 

horseradish-peroxidase conjugated horse anti-mouse IgG (Cell signaling, Cat#7076S) 

secondary antibody solution (1:5000 dilution in 5% NFDM in TBS-T). Membranes were 

incubated in the secondary antibody solution for 1 hour on a rocker at room temperature. 

After an hour, the membranes were removed and washed 6 times for 5 minutes each. The 

first 3 washes were with TBS-T and the final three were in TBS. After washing, ECL 

(GE Healthcare, Cat#RPN2232) solution was placed on top of the protein side of the 

membrane and allowed to react for 5 minutes. Following the 5-minute period, the ECL 

was removed by blotting with whatman paper. The immunoblots were then exposed to 
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Amersham HyperfilmTM (GE Healthcare, Cat#28906837) for periods of time ranging 

from 10 seconds to 2 minutes. Films were then developed on a Kodak X-OMAT 2000A 

X-ray film processor. Images of the films were captured using a Biorad Gel Doc XR 

imaging system (Biorad, USA). 
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 Chapter 3: Murine estrous cycle phase and human-CEACAM expression 

moderates the magnitude of host response to Neisseria gonorrhoeae infection 

Introduction 

In response to the looming threat of wide-spread fully antimicrobial resistant 

Neisseria gonorrhoeae, both the CDC and the WHO have identified a critical-level need 

for the development of novel anti-gonococcal pharmaceuticals (CDC, 2012; Carmeli, 

2017). The successful development of these next-generation products will require in vivo 

testing that, at least initially, will need to occur in animal models.  

Since its introduction in 1999, the female lower-genital tract vaginal colonization 

model has been the primary tool for in vivo experimentation with GC (Jerse, 1999; Jerse 

et al., 2011). Notably, bacteria are rapidly cleared during the diestrus phase of the murine 

reproductive cycle which means the model mouse must be artificially arrested in the 

estrus phase, and GC viability is additionally facilitated by suppression of the natural 

vaginal microbiome using antibiotics (Jerse, 1999). This estrus infection model displays a 

significant, albeit mild, induction of pro-inflammatory cytokines and influx of neutrophils 

following infection (Jerse, 1999; Song et al., 2008; Jerse et al., 2011). This well-

established model is, therefore, reminiscent of the asymptomatic colonization in women 

rather than active lower genital tract infection or PID.  

As in humans, it is possible that the reproductive cycle could influence the natural 

progression of infection in mice. In the original estrus model publication, a resistance to 

infection was described in diestrus (Jerse, 1999) however it is impossible to determine if 

that was the result of diestrus-related physiology or due to the lack of viable virulence 
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factor targets. The mild pathology (compared to human infection) of the estrus model and 

resistance to infection in diestrus may be the result of Neisseria gonorrhoeae’s significant 

human specific adaptations (Lee and Schryvers, 1988; Gray-Owen and Schryvers, 1993; 

Voges et al., 2010). 

Work on the host-pathogen relationship of the gonococcus has identified the 

failure of its critical virulence factors to engage with and exploit the non-human forms of 

virulence factor targets as a major cause of its host specificity. As described previously, 

hCEACAMs are the target of the gonococcal adhesion mediating Opa proteins (Popp et 

al., 1999). In non-humans the bacterium cannot bind to CEACAMs and is unable to 

adhere to the mucosal epithelia and initiate the process of colonization and infection 

(Edwards and Butler, 2011). Additionally, hCEACAMs seem to mediate both active anti-

bacterial (Hauck et al., 1998; Williams et al., 2000) and host-detrimental processes 

(Muenzner et al., 2005) in GC infection. These substantial differences in physiology are 

not addressed and overcome by the current estrus mouse model of GC infection. This 

suggests that, even though the estrus model is permissive to colonization, its physiology 

may be different enough that the mechanisms underlying protective immunity in the 

model may not be the same mechanisms required for human protection.  

In an effort to better mimic human infection and responses to infection, several 

groups have started designing and creating transgenic mouse lines which express the 

human forms of molecules targeted by pathogen virulence factors. In the case of 

pathogenic Neisseria models, hCEACAM expressing mice have been produced. In the 

case of the hCEACAM1 mouse, the human gene, including the human promoter, was 
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introduced into the mouse genome. The resulting hCEACAM1 mouse demonstrated 

human-like expression of hCEACAM1 among the broad categories of tissues that were 

examined (Gu et al., 2010). A second, poly-transgenic, hCEACAM mouse was 

constructed by another group in an effort to recapitulate a greater portion of the 

hCEACAM dependent biology in infection (Chan and Stanners, 2004). This mouse, 

named CEABAC2 by its creators, expresses the hCEACAMs 3, 5, 6, and 7. Like the 

hCEACAM1 mouse, the CEABAC2 mouse demonstrated physiologic expression levels 

and each of the 4 genes were found to be generally expressed in tissues similar to humans 

(Chan and Stanners, 2004). Unfortunately, neither of these publications reported on the 

pattern of hCEACAM expression in the lower and upper FGT of the transgenic mice. 

Additionally, the natural human distribution of hCEACAMs in the human FGT wasn’t 

well known.  

Fortunately, our collaborators, the Gray-Owen lab, were able to elucidate not only 

the expression pattern in the transgenic mice, but compare it to hCEACAM expression in 

normal human FGT tissue (Islam et al., 2018). Figure 3.1 shows hCEACAM expression 

distribution in the hCEACAM1 mouse and the hCEACAM 3, 5, 6 expressing CEABAC2 

mouse by immunohistochemistry using an antibody that reacts only to hCEACAMs. As 

hCEACAM1 mice are only transgenic for this single human CEACAM, we can interpret 

the positive staining of the uterine epithelia as indicative of hCEACAM1 expression on 

the apical side of uterine epithelial cells. In the same publication, the Gray-Owen group 

reported the presence of hCEACAM1 on various leukocytes as well. This strongly 

reflects the expression pattern that was found in humans in the same study (Table 3.1) 
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(Islam et al., 2018). The CEABAC2 mice expressed both hCEACAM5 and 6 in the 

squamous epithelia of the vagina and ectocervix which mirrors the ectocervical 

expression of hCEACAM5 in humans (Table 3.1). This along with the hCEACAM1’s 

uterine restriction allows for the specific interrogation of epithelial hCEACAMs effect in 

upper or lower FGT infection. CEABAC2 mice also have hCEACAM3 expressing 

neutrophils which, at least in vitro, are known to have powerful anti-GC function due to 

this decoy receptor (Table 3.1)(McCaw et al., 2003; Sintsova et al., 2014). 

 

Table 3.1: Expression pattern of hCEACAMs in the FGT and leukocytes of 
transgenic mice reflect that of humans. This table is a summary of hCEACAM 
expression distribution within the female genital tract as reported in (Gu et al., 2010; 
Muenzner et al., 2010; Sintsova et al., 2014; Islam et al., 2018) 

Genotype
Vaginal 
epithelial 

cells 

Uterine 
epithelial 

cells
Neutrophils

Macrophages 
and T-cells

FvB - - - -
hCEACAM1 - hCEACAM1 hCEACAM1 hCEACAM1

CEABAC2
hCEACAM5 
hCEACAM6

-
hCEACAM3 
hCEACAM6

-

Humans hCEACAM5 hCEACAM1
hCEACAM1 
hCEACAM3 
hCEACAM6

hCEACAM1
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The exclusive expression of hCEACAM1 and hCEACAMs 5/6 in the upper and 

lower FGT respectively of the transgenic mice allows for the systematic evaluation of the 

impact of adhesion factors on natural GC infection in the context of different 

reproductive cycles. 

Figure 3.1: “Expression of human CEACAMs in the reproductive tract of 
transgenic mouse lines. Tissues from wild type and two different transgenic mouse 
lines were stained using a rabbit polyclonal antibody that recognizes human 
CEACAM1, CEACAM3, CEACAM5 and CEACAM6 (red-brown), but not any 
mouse CEACAM orthologues. Tissues depicted here were collected from mice at the 
estrus stage. Nuclei were counterstained with hematoxylin (purple). The lumen in each 
image is located by an asterisk; uterine glands are indicated by arrows. Images were 
obtained at a 20x magnification and are representative of at least 3 animals.” 
Recreated here with permission in its entirety from (Islam et al., 2018). 
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Results 

Expression of human CEACAMs does not significantly impact host cytokine response to 

intravaginal infection of mice during estrus phase 

In order to evaluate bacterial adhesion dependent differences in Neisseria 

gonorrhoeae infection of mice, we first examined the impact of hCEACAMs within the 

context of the established estrus model. Following this established protocol, we estrus 

phase locked 18 mice with b-estradiol, 6 each from each genotype; hCEACAM1, 

CEABAC2 and wild-type FvB mice. The natural microbiome of these mice was also 

suppressed by a poly-antimicrobial treatment (see methods for details). Once the mice 

were properly arrested in estrus and prepared for infection per the estrus model protocol, 

3 mice from each genotype (hCEACAM1, CEABAC2 and wild-type FvB mice) were 

infected vaginally with the standard infectious dose of 107 gonococci (hCEACAM1, 3, 5, 

and 6 binding Opa57 strain of MS11 GC). The remaining 3 mice from each genotype 

received vaginal deposition of sterile PBS of the same volume as the infectious dose. All 

mice were sacrificed 6 hours after infection at which time FGT tissue and serum was 

collected from each mouse. 

The hallmark of the estrus model is an anatomically restricted colonization of the 

vagina inducing proinflammatory cytokines and chemokines, with no previous 

description of distal tissue involvement (Packiam et al., 2010). Based on that, we 

examined vaginal levels of the proinflammatory cytokine Il-1a, and chemokines MIP-1a 

and KC. Surprisingly, we saw no significant induction of any of the three cytokines by 

infection let alone any genotype specific increases (Figure 3.2). As shown by figure 3.2a, 
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there was a weak trend towards higher Il-1a levels in the infected CEABAC2 mice as 

compared to the uninfected controls of the same genotype, however it was not significant 

by non-parametric paired t test (p=0.4). While slightly closer to significance, the same 

trend towards greater cytokine induction by infection in CEABAC2 mice was observed 

for the neutrophil chemokine KC (p=0.14) (Fig. 3.2b), and the monocyte chemokine 

MIP-1a (p=0.24) (Fig. 3.2c).  

 

Figure 3.2: The expression of human CEACAMs does not significantly increase 
the murine host response to vaginal Neisseria gonorrhoeae infection as measured 
by vaginal cytokines. Levels of vaginal tissue associated IL-1a (A), KC (B), and 
MIP-1a (C) 6 hours after treatment with either 107 gonococci or PBS were measured 
by ELISA. N=3 for each treatment group. Graphs show means and standard deviation 
for a given group 
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Unsurprisingly, given the lack of a host response in the vagina, there was no 

evidence of upper genital tract disease in any genotype, as measured by cytokine 

production in isolated uterine tissue (Figure 3.3). With the exception of MIP-1a in the 

CEABAC2 mice (p=0.14), we did not even observe the general trend of infection 

induction of the cytokines that was seen in vaginal tissue.  

 

Figure 3.3: The expression of human CEACAMs does not allow for the ascension 
of gonococcal infection to the female murine upper genital tract as measured by 
uterine tissue associated cytokines. Levels of uterine tissue associated IL-1a (A), 
KC (B), and MIP-1a (C) 6 hours after treatment with either 107 gonococci or PBS 
were measured by ELISA. N=3 for each treatment group. Graphs show means and 
standard deviation for a given group 
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These results suggest that, in this specific system, the expression of human 

CEACAMs does not entirely abrogate murine resistance to GC infection. In fact, the poor 

reactivity of the wild-type FvB mice indicated that these mice appear to be fairly resistant 

to the induction of GC-induced inflammation. These results are not entirely surprising as 

the estrus model has been shown to have extreme heterogeneity between different mouse 

genotypes (Packiam et al., 2010), and has never been described in FvB mice before. 

These mice are frequently utilized in construction of transgenic lines, due to the 

unusually large nuclei of their ovum, allowing for easier injection of genetic material. 

Additionally, there are other well characterized human-restricted virulence factors that 

the gonococcus cannot utilize in mice (Lee and Schryvers, 1988; Ram et al., 1998b). It is 

also possible that this early time point may not be entirely appropriate to evaluate the 

response in this specific mouse line. Despite these limitations it is clear that the lower 

FGT hCEACAMs did not result in a distinct host response phenotype from the classic 

estrus model. In particular, we saw no indication of ascending infection despite, as our 

collaborators have shown (Islam et al., 2018), increased length of GC carriage in the 

murine vaginal tract in the context of hCEACAM5 expression. Since uterine GC 

infection in mice has not been described at all before, we wanted to investigate whether 

or not such an infection was even possible. 
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Expression of human CEACAMs results in greater cytokine induction following estrus-

phase transcervical infection of mice 

The direct infection of the murine female upper genital tract is a method that has 

been utilized by Chlamydia trachomatis researchers to model upper FGT infection that 

can be caused by that pathogen (Gondek et al., 2012). Here we utilized this transcervical 

infection method to interrogate whether a host response is even observed during murine 

upper FGT infection and whether or not that response is affected by the presence of 

hCEACAMs. 

For this study, 36 mice (18 wild-type FvB, 9 CEABAC2, and 9 hCEACAM1) 

were prepared for infection by estrus phase locking them with b-estradiol treatments. It is 

important to note that these mice were not treated with antibiotics and had intact 

microbiomes at the site of infection, as the uterus is a sterile site and there was no worry 

that commensals would outcompete the pathogen and prevent infection, like with vaginal 

infection. Once the mice were estrus phase locked, 9 wild-type mice and all transgenic 

mice were infected via transcervical deposition of 107 gonococci directly into a uterine 

horn. The remaining 9 wild-type mice received transcervical deposition of sterile PBS as 

controls. At 6, 12 and 24 hours post infection, 3 mice from each group were sacrificed, at 

which point vaginal tissue, upper genital tract tissue and sera was collected separately 

from each mouse. To fully evaluate the immunological response of the host to uterine 

infection, we utilized a 20-plex mouse cytokine panel which measures quantities of a 

broad range of cytokines. 
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As shown in Figure 3.4, transcervical gonococcal infection induces a strong, 

genotype dependent, cytokine response in the upper genital tract (primary site of 

infection). Wild-type mice had a relatively modest response with strong induction of only 

IL-12 (11.8x fold increase over control) and only at the earliest time point. Other analytes 

did show induction at that same time point in the uterine tissue of infected wild type 

mice, however they were only very mild increases in VEGF (1.7x), IL-1a (1.7x) and 

Figure 3.4: Transcervical infection of hCEACAM expressing mice results in a 
stronger and more diverse cytokine response in infected tissue. Uterine-tissue-
associated protein levels of 20 mouse cytokines were measured by Luminex 6, 12, or 
24 hours after trans-cervical treatment with 107 gonococci or PBS. Protein levels are 
presented here as fold change over uninfected controls. N=3 mice per condition/time-
point, 36 total. 
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MCP1 (2.7x). The only cytokine to demonstrate prolonged induction was VEGF, which 

slightly increased from 1.7x at 6hpi to 2.5x fold induction at 24hpi.  

Interestingly, the cytokine response in infected transgenic mice was radically 

different.  In both transgenic mouse lines, there was robust induction over uninfected 

controls of several cytokines starting at 6 hours post infection (hpi) and, in the case of 

several analytes, persisting until final observations at 24hpi. Like with the wild-type 

mice, the greatest difference was seen in IL-12 levels. The induction of this classic Th1 

associated cytokine, was much more potent in the transgenic mice with CEABAC2 mice 

exhibiting an average fold induction of 137.3x over uninfected controls. The 

hCEACAM1 mice demonstrated ~62x greater IL-12 levels than that found in uninfected 

tissue. In addition to demonstrating a greater magnitude cytokine response to GC 

infection, the transgenic mice responded with a more complex cytokine profile. In 

particular there was a strong chemokine response. Both genotypes saw strong induction 

of the monocyte chemokines MIP-1a, MCP-1, IP-10 and the T-cell chemokine MIG. 

Once again, the response was slightly greater in the CEABAC2 mice than hCEACAM1 

mice. This is particularly interesting since, the CEABAC2 mice do not express 

hCEACAMs in the uterus so increased bacterial adhesion is not facilitating the greater 

response. Instead, it is possible that the hCEACAM3 decoy receptor expressed on the 

neutrophils of CEABAC2 mice might result in greater engagement and activation of the 

innate immune system during infection. This is supported by the greater induction of IL-

1b in CEABAC2 mice, which has been shown to be induced by GC engagement of 

hCEACAM3 on neutrophils (Sintsova et al., 2014; Islam et al., 2018). In addition to IL-
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1b, CEABAC2 mice showed unique or particular induction of IL-1a, TNF-a, IL-17, and 

IL-5. This complex cytokine response is suggestive of a highly inflammatory state, 

indicated by Il-1a/b, TNF-a, and to a point Il-17. This Th17 cytokine has a pleomorphic 

effect that can facilitate both (frequently detrimental) inflammation and mucosal surface 

immunity (Guglani and Khader, 2010). While the cytokine response of CEABAC2 mice 

to transcervical GC infection suggest a greater immune engagement and response, they 

also demonstrated relatively quick (compared to hCEACAM1 mice) resolution of that 

response. Both Il-12 and MIG levels remained highly elevated in hCEACAM1 mice at 

the 24hpi time point, while CEABAC2 mice had returned almost to baseline levels. This 

prolongation of the host response could be the result of greater retention of bacteria due 

to the presence of adhesion targets. In fact, our collaborators have shown greater 

gonococcal binding, retention and uterine tissue invasion following transcervical 

infection of hCEACAM1 mice (Islam et al., 2018).  
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As shown by figure 3.5, the cytokine response, and likely the infection, was 

relatively restricted to the upper genital tract. There was a significant induction of vaginal 

Il-1a and MIP-1a in the two transgenic mouse groups. This response was sustained in 

the hCEACAM1 mice which may be indicative of longer retention in the upper FGT and 

therefore prolonged bacterial shedding into the lower FGT. Interestingly, there was a 

measurable systemic response in CEABAC2 mice with particular induction of the 

neutrophil chemokine KC. Once again, this is likely due to neutrophil activation through 

hCEACAM3 particularly since this reaction was not described by our collaborators in 

hCEACAM5 expressing mice upon transcervical infection (Islam et al., 2018). 

Figure 3.5: A host response to GC, distal from the site of primary infection, is 
induced in mice that express hCEACAMs. Vaginal-tissue and sera associated 
protein levels of 20 mouse cytokines were measured by Luminex 6, 12, or 24 hours 
after trans-cervical treatment with 107 gonococci or PBS. Protein levels are presented 
here as fold change over uninfected controls. N=3 mice per condition/time-point, 36 
total 
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These results demonstrate that transcervical deposition of Neisseria gonorrhoeae 

is able to induce a robust cytokine response within the uterus itself. This suggests that the 

failure to observe upper genital tract disease in the classic estrus mouse model is likely 

due to a failure of the infection to ascend into the uterus rather than an inherent resistance 

to upper FGT disease. In addition to showing that upper FGT infection produces a robust 

host response, these results show that expression of hCEACAMs significantly impacts 

the process of GC infection in mice. Expression of the target of uterine bacterial 

adhesion, hCEACAM1, resulted in a more robust cytokine response in infected tissue, 

than that in wild-type mice. That response showed a strong recruitment of immune cells, 

particularly monocytes and T-cells, to the site of infection, an induction of the 

proinflammatory cytokines IL-1a and b, and finally the powerful induction of the T-cell 

regulating cytokine IL-12. Most interesting was the persistence of IL-12 and the T-cell 

chemokine MIG as it suggests a prolonged interaction between the bacteria and the 

immune system that was hypothesized in the context of upper FGT adhesion expression. 

Similarly, it was shown that in the context of hCEACAMs 3, 5, and 6 upper FGT 

infection induced even stronger cytokine induction and induced significant levels of the 

potent inflammatory cytokines TNF-a and Il-17. These results, in the context of our 

collaborators findings of mild pathology in hCEACAM5 expressing mice (Islam et al., 

2018), suggest hCEACAM3 expression in mice allows for greater immune system 

engagement with and response to the pathogen. The ability to measure the host response 

to uterine infection of transgenic mice, in the lower FGT and sera further suggests 

hCEACAM expression significantly increases the ability of GC to interact with the host 
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immune system and induce inflammation and immune cell movement into infected tissue, 

both of which are hallmarks of active gonorrhea in humans. 

 

Transcervical infection of female mice during diestrus results in a more robust cytokine 

response than during estrus 

It has been previously discussed that the natural female reproductive cycle seems 

to have a significant impact on the course of natural gonococcal infection in humans. The 

relative permissiveness or resistance of the murine lower FGT to gonococcal infection 

depending on the reproductive phase at the time of infection suggests that this process has 

a significant impact on murine GC infection as well. While the lower FGT of mice has 

been repeatedly characterized as being resistant to GC infection during diestrus, no 

studies have attempted to characterize uterine infection during diestrus. 

To evaluate estrous phase dependent differences in the host response to murine 

upper FGT Neisseria gonorrhoeae infection, 24 wild type mice were evenly separated 

into estrus and diestrus phase. Like with previous transcervical infection studies, these 

mice were not treated with any antibiotics. For this study, in order to evaluate the effect 

of the natural cycle, the mice were not treated with exogenous hormones either. The mice 

were instead separated into their natural reproductive-cycle phase based on vaginal 

epithelial cell morphology (see methods). Once an even population of mice were divided 

into their phases, 8 mice from each phase were infected transcervically as previously 

described and the remaining 4 were treated with transcervical PBS. At 6hpi, 3 uninfected 

estrus phase mice (1 mouse had to be sacrificed early due to injury and was excluded 
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from the study), 4 infected estrus phase mice, 4 uninfected diestrus phase mice, and 4 

infected diestrus phase mice were sacrificed and upper and lower genital tract tissue and 

sera were collected separately from each mouse. The remaining 4 infected mice from 

each phase were sacrificed and had tissue collected at 18hpi. Once again, the host 

response to infection was evaluated by the induction of a wide range of cytokines in 

primary infected tissue (the uterus), in the lower FGT, and finally systemically as 

compared to uninfected control tissue.  

 

Figure 3.6: Transcervical infection in diestrus is more inflammatory as measured 
by cytokine induction. Protein levels of 20 murine cytokines in uterine tissue, vaginal 
tissue and sera were measured by Luminex assay. Tissues were collected from wild-
type mice either at time 0, 6 hours or 18 hours after treatment with either 107 
gonococci or PBS (N=4 per condition except N=3 for PBS Estrus). Expression levels 
of each cytokine are presented as fold change over uninfected controls 
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Similar to what was observed in the studies of transcervical infection in estrus 

phase, the mice in this study that were infected in estrus demonstrated a mild induction of 

a range of cytokines with the greatest inductions being in IL-12 and IL-1a and IL-1b. 

While the heatmap appears to show greater induction of these and other cytokines in the 

estrus mice than what was previously observed, this is an artifact of the narrower 

induction range and subsequent heatmap gradient (0.5-50 here as compared to 0.5-137 

above). Likewise, the vaginal and serum cytokines, shown here to be induced in 

transcervical estrus infection, largely reflect what was previously described. 

In contrast, transcervical infection of mice in diestrus induced an extremely 

powerful host response that extended beyond the site of infection and involved the 

vaginal tissue and sera as well. The cytokine profile was essentially identical to that of 

estrus infection but the diestrus tissues exhibited greater magnitude induction, as well as 

longer duration increases. A few notable cytokines were uniquely or disproportionately 

induced in diestrus infection than estrus. The two most interesting of these cytokines are 

KC and TNFa. KC is the primary neutrophil chemoattractant in murine physiology (Lee 

et al., 1995). The recruitment to and activation of neutrophils at the site of infection is 

one of the most striking clinical characteristics of human gonorrhea. The fact that this 

chemokine is so potently induced both locally in the uterus and systemically suggests an 

induction of a purulent inflammation that may be reminiscent of active human infection. 

The particular induction of TNFa further supports the idea of a particularly potent 

inflammatory response when transcervical infection occurs in diestrus. 



 

 

77 

In addition to these cytokine differences, our collaborators described increased 

bacterial penetration into the uterine tissue, extreme inflammation of the uterine horns, 

and clinical signs of distress during transcervical diestrus infection (Islam et al., 2016). 

These observations of transcervical infection of diestrus mice describe a clinical and 

pathological picture that is reminiscent of human PID, particularly when compared to the 

relatively mild response of estrus mice to transcervical infection. This potential murine 

PID model could be invaluable in the development of next generation anti-gonococcal 

therapeutics however it must be more thoroughly characterized. 

 

Transcervical infection of female mice during diestrus more profoundly induces 

immunological transcriptional profiles 

To examine the transcriptional differences in host response underlying the 

strikingly distinct phenotypes induced by transcervical GC infection in the estrus and 

diestrus phases, we compared transcriptional profiles from uterine tissue extracted from 

mice in 4 distinct experimental groups; transcervical PBS treated mice during diestrus 

phase (4 mice), transcervical GC infected mice during diestrus phase (4 mice), 

transcervical PBS treated mice during estrus phase (3 mice), and transcervical GC 

infected mice during estrus phase (4 mice). Tissue collected 6 hours post infection was 

examined as it appeared to be closest to the peak of the previously described host 

response.  

To best examine the impact of our two variables (reproductive-cycle phase and 

infection state) and the interaction of the two on transcription, we modeled gene 
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expression as a linear function of reproductive-cycle phase, infection state, and the 

interaction between phase and infection state (phase:infection). For each model, 

moderated t tests were performed on the corresponding coefficient of the linear model to 

obtain a t statistic and p value for each gene. In order to account for multiple comparison 

testing error, Benjamini-Hochberg false discovery rate (FDR) correction was then applied 

to obtain corrected p values (q values) after removing genes that were not expressed 

above the median value of at least one array. This analysis identifies genes whose 

expression is significantly impacted by one of our variables, after correcting for the effect 

of the other; or in the case of phase:infection interaction, the t statistic generated 

measured the significance of a combined effect of the variables on a gene’s expression. 

 

Neisseria gonorrhoeae infection induces immune gene expression regardless of hormone 

cycle phase 

Using the previously described linear modeling approach, expression was 

modeled as a function of infection state. We identified a large population of genes whose 

expression was significantly associated with infection state after correcting for 

reproductive cycle effects (516 genes with FDR q < 0.1). The biological context of those 

516 genes was provided by pre-ranked Gene Set Enrichment Analysis (GSEA) performed 

using the infection t statistic (Subramanian et al., 2005; Subramanian et al., 2007), which 

identified 449 gene sets that showed significant (FDR q < 0.25) coordinate expressional 

regulation with respect to infection. Those gene sets that demonstrated the most 

significant positive coordination of expression (or upregulation in infected compared to 
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uninfected tissues) (FDR q < 0.001) were almost exclusively related to the host immune 

response, including the gene sets "chemokine receptors bind chemokines" (Reactome; R-

HSA-380108) and “cytokine cytokine-receptor interaction” (KEGG; HSA04060).  

The genes from each gene set that most contributed to the significance of the set’s 

infection effect, referred to as the leading-edge genes, exhibit an interesting expression 

pattern (Figure 3.7). The cytokine gene sets demonstrate clear phase-independent 

induction with expression in infected tissues being appreciably higher than their 

uninfected phase-matched controls. Several of the cytokines and chemokines found at the 

leading edge of these sets are suggestive of gonorrhea’s characteristic recruitment of 

leukocytes to infected tissues. These genes include the neutrophil chemokines Cxcl5, 

Ccl4 and Cxcl1, as well as the T cell chemokines Ccl5, Cxcl10 and Ccl17. Gonorrhea’s 

strong inflammatory reaction was also reflected in this phase-independent anti-GC 

response with classic proinflammatory mediators like Il1a and Il1b, Ltb (Lymphotoxin 

Beta), and Tnf (TNF-α) found among the leading-edge genes. The presence of immune 

function gene sets, driven by proinflammatory cytokine and chemokine expression 

induction, in the infection effect GSEA suggests an anti-gonococcal response common to 

all reproductive phases characterized by local inflammation and immune cell invasion. 

Despite the apparent universality of this response to GC infection, our previous 

descriptions of profound phenotypic differences, in these same pathways, between 

infection during estrus and diestrus phases suggests a more complex process at work. 
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These differences in infection phenotype may be at least partially due to 

differential magnitudes of activation of this common anti-gonococcal response. Evidence 

of this can be found in the same genes highlighted as the hallmarks of the general anti-

Figure 3.7: Leading edge genes 
from GSEA identified phase 
effect cytokine gene sets show 
phase-independent induction 
but phase-dependent induction 
magnitude. The infection 
dependent host response was 
evaluated by microarray analysis 
of mRNA extracted from 
infected uterine tissue collected 
6 hours after initial treatment 
with 107 gonococci or PBS. 
Expression levels of leading 
edge genes from for top gene 
sets identified by infection-effect 
GSEA are presented; “Cytokine-
Cytokine Receptor Interaction” 
(KEGG HSA04060) (A.) and 
“Chemokine Receptors Bind 
Chemokines” (R-HSA-380108) 
(B.). For each gene, expression 
values (log2(expression)) are 
normalized to a mean of zero 
and standard deviation of one (z-
normalized) for visual 
representation so that red and 
blue indicate z-scores of ≥ 2 or ≤ 
-2, respectively, and white 
indicates a z-score of 0 (row-
wise mean). Genes are presented 
in descending significance of 
infection effect t statistic (top to 
bottom). (N=4 per condition 
except N=3 for PBS Estrus) 
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GC response, as they display unequal induction by infection. This is particularly striking 

with the neutrophil chemokines. For example, Cxcl1, while upregulated in all infected 

tissues, expression in diestrus tissue is lower at baseline and greater in infection as 

compared to estrus. This larger magnitude in diestrus is found generally in both the 

chemokine and cytokine gene sets (Figure 3.7). These observations indicate that unequal 

activation of a common anti-gonococcal host response, characterized by inflammatory 

and cell recruitment processes, at least partially is responsible for phenotypic differences 

between infected estrus and diestrus tissue.  

 

Genes exhibiting significant reproductive-cycle-dependent infection responses separate 

into distinct expression patterns 

To evaluate reproductive-phase-dependent transcriptional differences in the host 

response to transcervical infection, we applied the same analytical approach as employed 

above for phase and infection effect. For this analysis however, the modeled linear 

function was expression as a function of the interaction between reproductive-cycle phase 

and infection state (phase:infection). Applying moderated t tests on the resulting 

coefficient of the linear model we were able to identify genes that had different 

expressional changes between the two reproductive-cycle phases, in response to 

infection. This analysis identified 416 genes (FDR q < 0.25) subject to significant 

phase:infection effect, which clustered into 6 distinct patterns of expression (Figure 3.8a).  

Genes with increased expression only in estrus-phase infection are found in 

cluster 1 and represent diverse biological functions (Figure 3.8b). Of the 64 genes in 
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cluster 1, only a few are potentially immunologically significant do not strongly suggest 

specific estrus-infection immune processes. The low affinity IL17 receptor, encoded for 

by IL17ra, is found in cluster 1. Since this cytokine has demonstrated a wide variety of 

functions and this specific receptor itself has been tied to cutaneous homeostasis, mucosal 

immune responses, and potentiation of antibody driven autoimmunity, it is difficult to 

interpret its presence in this cluster without additional members of any of those biological 

pathways (Scurlock et al., 2011; Ding et al., 2013; Ramani et al., 2014; Lombard et al., 

2016; Floudas et al., 2017). Similar ambiguity of function surrounds the other immune 

genes found in cluster 1. The activating receptor encoded for by Cd300lb can be found 

both in myeloid cell membranes or secreted, serving two distinct functions(Yamanishi et 

al., 2012; Borrego, 2013). While the lack of corroborating genes in cluster 1 obscures the 

role of this gene in the less inflammatory phenotype of estrus GC colonization, the 

literature may explain the increased Cd300lb expression as the result of increased 

neutrophil expression and secretion of the receptor in response to LPS by the previously 

described larger neutrophil population in the murine uterus during estrus (Yamanishi et 

al., 2012). Perhaps the most intriguing immune gene found in cluster 1 is Trem2. This 

gene encodes for an anti-inflammatory receptor expressed on innate immune cells that 

binds to and response specifically to LPS (Gawish et al., 2015). Like with the previously 

discussed genes, it is hard to comment on any broader biological impact of the increased 

expression of Trem2 without coincident increases in known co-mediators of a given 

pathway, however the strong anti-inflammatory function of the receptor could contribute 

to the dampened inflammatory response observed in GC infection during estrus.  
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The remaining genes in the cluster are associated with either non-

immunologically relevant pathways or broad non-specific functions with minor (if any) 

Figure 3.8: Genes with significant phase:infection interaction effect cluster into 
distinct expression patterns. Reproductive phase dependent elements of the anti-GC 
host response were evaluated through identification of phase:infection effected genes 
within microarray analysis of mRNA extracted from infected uterine tissue collected 6 
hours after initial treatment with 107 gonococci or PBS. Expression levels of (A) All 
416 genes with phase:infection FDR q < 0.25 were clustered based on their relative 
expression pattern across all samples. Clusters are indicated by colored sidebar and 
number. Rows represent genes, with log2(expression) values z-normalized (to a mean 
of zero and a standard deviation of one) across all samples. Colors are scaled so that 
red and blue indicate z-scores of ≥ 2 or ≤ -2, respectively, and white indicates a z-score 
of 0 (row-wise mean). (B) Enlarged view of Cluster 1, comprised of genes induced 
specifically in estrus phase. (C) Enlarged view of Cluster 2, comprised of genes 
induced specifically in diestrus phase. N=4 for all conditions except N=3 for PBS 
Estrus. 
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immunological implications. The latter is best exemplified by Pik3cb, which encodes an 

isoform of a regulatory protein in the phosphatidylinositol signaling system, an expansive 

system with some components active in immune processes. Other processes represented 

in cluster 1 include metabolism (e.g. Pfkfb4) and extracellular structure (e.g. P4ha3) 

which may reflect further increases in the baseline biologic functions in the estrus uterine 

tissue (buildup and maintenance of the thick uterine lining) within the context of mild 

physiologic stress caused by bacterial colonization. 

Cluster 4 encompasses transcripts upregulated only during diestrus-phase 

infection. In contrast to the estrus-restricted responses of cluster 1, this cluster is 

comprised almost entirely of immunologically active genes (Figure 3.8c). These include 

the previously discussed chemokines Cxcl1, Cxcl10, and Ccl5; the chemoattractant 

receptor Fpr2, which has an identified role in host response to some bacterial infections 

(Kretschmer et al., 2010); the endogenous antimicrobials beta-defensin 1 (Defb1) and 

reactive-oxygen-species (ROS) producing enzyme NOX2 (Cybb); and major regulators 

of general immune activation including a component of the classic pro-inflammatory 

transcription factor, Nuclear Factor kappa-B (Nfkb2). These findings lend transcriptomic 

context for the stark phenotypic differences observed in Neisseria gonorrhoeae 

transcervically infected mice during the diestrus and estrus phases of the reproductive 

cycle. The remarkable absence of immune genes induced exclusively in estrus infection 

suggests a lack of a unique anti-bacterial host response beyond the previously discussed 

common anti-gonococcal response. This stands in stark contrast to the diestrus infection 

specific induction of a cohesive set of genes that clearly indicate induction of specific 
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host response pathways including immune cell effector function and anti-bacterial action, 

in addition to the cell recruitment and inflammation of the common anti-gonococcal 

response. 

 

Infection in diestrus phase induces members of immunologically relevant gene sets 

In order to fully evaluate differences in biological processes associated with GC 

infection in different reproductive-cycle phases, we once again performed a pre-ranked 

GSEA, this time using the phase:infection interaction t statistic (Subramanian et al., 

2005; Subramanian et al., 2007). This GSEA identified 70 gene sets with significant 

(FDR q < 0.25) coordinate expression of genes displaying a pattern of greater 

upregulation (or less downregulation) in diestrus phase infection than in estrus phase 

infection (Table 3.1). Interestingly the significant gene sets included not only those 

suggestive of the inflammation and cell recruitment focused common anti-gonococcal 

response, but additional sets suggesting greater type I interferon signaling (Table 3.1 set: 

“Interferon alpha beta signaling”), pattern recognition receptor (PRRs) activity (Table 3.1 

sets: “TLR signaling pathway”, “NLR signaling pathway”, “Detection of a stimulus”), 

and immune cell activation/function (Table 3.1 sets: “CD40 pathway”, “NFKB pathway”, 

Myeloid cell differentiation”, “Leukocyte differentiation”, “Immune Effector Process”) in 

diestrus infection. The top sets in the GSEA indicated particular activation of interferon 

and chemokine activity. 
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Table 3.2: Gene sets significantly associated with positive phase:infection t 
statistics. The differential activity of biologic systems within the phase:infection 
interaction effected genes was evaluated by GSEA. Seventy gene sets were identified 
as significantly (FDR q < 0.25) coordinately up-regulated to a greater degree (or 
down-regulated to a lesser degree) during infection in diestrus phase than in estrus 
phase. Gene sets are ranked in descending order by Normalized Enrichment score, and 
are labeled according to the MSigDB sub-collection to which they belong. 
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To better evaluate gene expression patterns in top GSEA sets, we examined their 

leading-edge genes (Figure 3.9). The leading-edge genes of the chemokine activity gene 

set (GO term GO:0008009) (Figure 3.9a) repeat the same pattern that has been seen 

throughout the analysis: induction by infection over low levels of expression in 

uninfected tissue that is much greater in magnitude in diestrus phase. In fact, several of 

the cytokines seen here are the same neutrophil chemokines (Cxcl5, Ccl4, Cxcl1), T-cell 

chemokines (Cccl5, Cxcl10, Ccl17) that were highlighted in the infection effect analysis. 

This inclusion of similar gene sets containing the same genes reinforces the greater 

induction of the common anti-gonococcal response in diestrus. The chemokine with one 

of the greatest differences in estrus and diestrus infection dependent induction was Ccl20. 

This lymphocyte chemokine is active in the mucosal adaptive immune response in the 

gastrointestinal tract particularly in response to bacterial infection (Cook et al., 2000; 

Yamazaki et al., 2008) (Hoover et al., 2002; Ravindran et al., 2007). While we could not 

find any description of CCL20 induction by GC specifically, there is evidence that 

production of this chemokine can be induced by bacterial products (Radtke et al., 2012) 

and is suppressed by estrogen (Haddad and Wira, 2014), which together would explain its 

particularly potent induction in diestrus infection. 
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In contrast to the cytokine gene set, most of the leading-edge genes in the 

interferon alpha/beta signaling gene set (Reactome pathway R-HSA-909733) (Figure 

3.9b), displayed very little infection dependent induction in estrus but robust diestrus-

phase induction by infection. The leading-edge genes suggest a fully mature interferon 

response active in diestrus infected tissue with induction of positive regulators of type 

one interferon expression (Irf1, Irf7), signaling (Irf9, Stat1 and Stat2), effector function 

(Ifitm2, Ifitm3, Gbp2, and Ifi35), and members of negative feedback control pathways 

(Usp18, Irf2). The activation of a type 1 interferon response by GC infection is a 

Figure 3.9: Leading edge genes from top phase:infection interaction-effect gene 
sets. Transcript levels of leading edge genes, from GSEA identified top 
phase:infection interaction effect gene sets (both FDR q < 0.001) (A. Cytokine activity 
gene set [GO:0008009], B. Interferon alpha/beta signaling pathway [R-HSA-
909733]), as measured 6 hours after infection, are displayed by heatmap. Rows 
represent genes, with log2(expression) values z-normalized (to a mean of zero and a 
standard deviation of one) across all samples. Colors are scaled so that red and blue 
indicate z-scores of ≥ 2 or ≤ -2, respectively, and white indicates a z-score of 0 (row-
wise mean). Rows are arranged in descending order from top to bottom by 
phase:infection t statistic. N=4 per condition except PBS estrus N=3 
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relatively newly described phenomenon and its presence in our transcriptional study 

highlights its potential importance in the host response to gonococcal infection (Andrade 

et al., 2016). In the context of this study, increased activity of type 1 interferons only 

during diestrus infection suggests that these processes may be, in addition to the 

previously described differential activation of the common anti-gonococcal response, 

responsible for the profound phenotypic differences in GC infection at distinct 

reproductive cycle phases.  

 

GC infection in diestrus phase induces greater expression fold changes of molecular 

components of granulocyte trafficking 

We employed Ingenuity Pathway Analysis (IPA) to further evaluate the biological 

pathways represented in significant (FDR q < 0.25) phase:infection interaction effect 

genes. IPA identified, among other pathways, adhesion and diapedesis pathways for both 

granulocytes (neutrophils, basophils and eosinophils) and agranulocytes (lymphocytes 

and monocytes) as significantly differentially induced in diestrus infection compared to 

estrus infection. Since our current transcriptional analysis suggests a differential 

induction of a chemokine-centric common anti-gonococcal response may be partially 

responsible for the previously reported differences in granulocyte infiltration of infected 

tissue between diestrus and estrus phases, we chose to examine the granulocyte pathway 

more closely (Figure 3.10). 
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Figure 3.11: Chemokines are primarily upregulated to a greater degree during 
infection in diestrus phase than in estrus phase. The phase-dependent effect on 
infection induced chemokine expression is shown as differential fold change in 
transcript level after 6 hours of transcervical infection with 107 gonococci during 
diestrus versus estrus phase over phase specific controls (signed ratio of infection-
induced fold change in diestrus phase to that in estrus phase). Colors are scaled so that 
red and blue indicate differential fold changes of ≥ 2.5 or ≤ -2.71, respectively, and 
white indicates a differential fold change of 0 (no difference in fold change between 
phases). N=4 per condition except for PBS estrus N=3 
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The chemokine components of the granulocyte adhesion and diapedesis pathway 

showed some of the greatest differences in phase-dependent infection induction (Figure 

3.11), including the primary neutrophil chemokine Cxcl1 and the strong mucosal 

lymphocyte chemokine Ccl28 (Hieshima et al., 2003; Lazarus et al., 2003), which had 

differential fold change (DFC; i.e., ratio of fold change during diestrus-phase infection to 

fold change during estrus-phase infection) values of 3.8 and 3.9, respectively. In addition 

to classic chemokines, the gene Fpr2, which encodes a receptor for the potent neutrophil 

chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLPR) (Schiffmann et al., 

1975; Becker, 1987; Boulay et al., 1990; Bignold et al., 1991), is also upregulated by 

infection in a phase-dependent manner (DFC of 5.7). Similarly, genes involved in 

neutrophil rolling, adhesion (the selectins Sell and Selp and the adhesion molecules 

Icam1, Pecam1, and Vcam1) (Muller et al., 1993; von Andrian et al., 1993; Burns et al., 

1999; Yang et al., 2005; Lomakina and Waugh, 2009; Xie et al., 2015) diapedesis and 

transmigration (e.g., Cdh5 and Jam3) (Chavakis et al., 2004; Wessel et al., 2014) showed 

greater positive induction in diestrus than estrus infection, generating DFC values ranging 

from 1.2-2.5. Taken together, these observations describe a highly activated endothelium 

interacting with a large, chemokine-mobilized population of granulocytes, leading to 

increased movement of cells into infected tissues. These observations help to clarify 

elements of the driving mechanism behind the reproductive-cycle-phase-dependent 

phenotypic differences in host response to GC infection. 

In this study, we present evidence to suggest that the reproductive cycle has a 

profound effect on the transcriptomic response to uterine infection with Neisseria 
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gonorrhoeae. Although a chemokine focused induction of cytokine expression and 

function was observed in all infected tissue, the magnitude of this common anti-

gonococcal response was phase-dependent. There was significantly greater expression of 

immune cell recruitment molecules, particularly those that target neutrophils, when 

infection occurred in the diestrus phase. In fact, the granulocyte adhesion and diapedesis 

biological pathway demonstrated general greater activation in diestrus phase infection as 

compared to estrus phase infection. This differential response likely drives the greater 

tissue infiltration of neutrophils during diestrus infiltration that we described in our 

previous work. While neutrophil infiltration was perhaps the most striking difference 

between infection in diestrus and estrus phase, there also appeared to be greater 

inflammation and loss of mucosal integrity during diestrus. Although our work here 

cannot fully explain the molecular cause of these additional differences we were able to 

identify a diestrus infection specific activation of type 1 interferon pathways. These 

pathways have been implicated as host-detrimental in some anti-bacterial responses 

which raises the question of its effect in Neisseria gonorrhoeae infection. These findings 

help clarify the underlying biological processes that characterize the anti-gonococcal 

response, both protective and potentially destructive, in the wild-type murine 

transcervical Neisseria gonorrhoeae infection model. However, as has already been 

shown, hCEACAM expression is also capable of significantly altering the natural 

progression of GC infection in mice. 
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Expression of human CEACAMs does not significantly alter the murine host response to 

diestrus-phase transcervical infection 

Our previous studies demonstrate the significant impact of the natural 

reproductive cycle and expression of human CEACAMs on the characteristic and 

magnitude of the host response to Neisseria gonorrhoeae infection in mice. Since both 

hCEACAM expression and diestrus phase were associated with a greater inflammatory 

response to transcervical infection, we investigated the host response to infection in the 

context of both. For this experiment, 33 mice with an intact microbiome were phase 

locked in diestrus by DepoProvera treatment and infected or mock infected 

transcervically with tissue collected from mice at the indicated time points; 0hpi (baseline 

measurements on untreated mice at the time of infection), 6hpi, or 24hpi.  

 
Surprisingly, the observed cytokine profiles were remarkably similar in both 

magnitude and character between all three genotypes (Figure 3.12). Minor differences in 

magnitude are seen with a few cytokines however the overriding similarity is the most 

notable element of these results. This suggest that the potent inflammation that is 

observed in diestrus phase transcervical infection is induced by processes independent 

from bacterial adhesion, in the case of hCEACAM1 mice, or neutrophil interaction in the 

case of CEABAC2 mice. Our collaborators have described increased uterine tissue 

infiltration in diestrus transcervical infection that occurs in a hCEACAM independent 

manner. It may be that this mass tissue invasion is adequate to induce the strong 

inflammation of the diestrus transcervical infection. These results underscore that it is not 
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just the reproductive phase or the presence of gonococcal adhesion targets that dictate the 

pathological potential of an infection but a complex interplay between the two. 

 

Discussion 

For more than two decades, the primary laboratory model of Neisseria 

gonorrhoeae has been the intravaginal infected estrus mouse, which is permissive to 

colonization only during the estrus phase of the reproductive cycle. In this model, mice 

develop a mild inflammation of the vaginal cavity and allow bacterial persistence only as 

Figure 3.12: Host response to transcervical GC infection in diestrus phase, as 
measured by cytokine induction, is not impacted by hCEACAM expression. 
“Mice treated with DepoProvera were infected transcervically with OpaCEA-
expressing Ngo. Levels of cytokines in upper, lower genital tract homogenates, and 
sera samples were measured by LUMINEX multiplex assays at the indicated time 
points. Heat maps were generated to depict fold change normalized to uninfected PBS 
controls for 6 h. n=3 of each genotype per time point for infected groups, n=2-3 per 
genotype for uninfected PBS controls. Heat map was generated in Microsoft Excel.” 
Recreated with permission here, in part, from (Islam et al., 2016) 
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long as estrus phase is maintained through exogenous estradiol and the microbiome is 

suppressed by antibiotic treatment (Packiam et al., 2010). This model recreates much of 

the phenotype associated with asymptomatic human infection, including mild 

inflammation, along with a failure to induce an adaptive immune response and 

immunologic memory (Packiam et al., 2010; Jerse et al., 2011). Where this model falls 

short, is in the production of active infection. It is well characterized that Neisseria 

gonorrhoeae does cause symptomatic lower FGT disease as well as ascends to the upper 

FGT in a subset of all infected individuals, symptomatic or not (Barlow and Phillips, 

1978; Soper et al., 1994). The estrus model has not shown an ability to model either of 

these conditions in mice. A model able to recapitulate the biology and phenotype of the 

symptomatic phases of human gonorrhea is of increased importance with the push for 

new pharmaceuticals to treat or prevent these active pathologies. Based on human and 

non-human studies we identified the expression of bacterial adhesion targets and the 

natural reproductive cycle as variables that might impact the natural progression of GC 

infection in mice, and model symptomatic human gonococcal infections.  

The results presented here suggest a complex relationship between adhesion target 

expression, reproductive cycle, and site of primary infection. Our collaborators reported 

an increase in length of vaginal gonococcal carriage following estrus vaginal infection in 

FGT hCEACAM expressing mice (CEABAC2 mice) but this did not correspond with 

increased inflammation (Figure 3.3). In contrast, any hCEACAM expression resulted in a 

more active infection and inflammatory response in the context of transcervical estrus 

infection (Figure 3.4). Surprisingly, it was the expression of neutrophil receptor 
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hCEACAM3 rather than the presence of the upper FGT adhesion target, hCEACAM1 

that resulted in the greatest inflammation and immune activation. As opposed to the 

estrus model and the wild-type transcervically infected mice, hCEACAM expressing 

mice demonstrated proximal tissue inflammation in isolated vaginal tissue and the 

hCEACAM 3, 5, and 6 expressing CEABAC2 mice had a robust systemic chemokine 

response (Figure 3.5). These two studies show that the contribution of hCEACAMs to the 

development of inflammation in murine infection is not just as adhesion targets. The 

immunologically active hCEACAM3 appears to be a powerful inducer of inflammation 

within and beyond the site of primary infection. This response overwhelms the effect of 

adhesion expression, which is significant in its own right. Perhaps most importantly these 

studies show that upper FGT gonococcal infection in mice is possible, however is 

dependent upon the direct instillation of bacteria into the uterus. 

As mentioned, PID appears to have a significant connection to the human 

menstrual cycle. A similar effect was described here in mice and was found to be 

hCEACAM independent (Figure 3.12). Direct transcervical infection of the upper genital 

tract during diestrus induced a powerful proinflammatory cytokine and chemokine 

response (Figure 3.6). Upon examination of the tissue, our collaborators described an 

overt uterine pathology, including inflammation, granulocyte invasion, disruption of the 

epithelia and clinical signs of distress (Islam et al., 2016). Interestingly, the clinical and 

histological pathology was absent or significantly reduced in infection during estrus.  

A detailed analysis of the host transcriptional response to transcervical infection 

in estrus and diestrus phase showed identified induction of primarily chemokine 



 

 

98 

pathways as by GC infection. Due to the nature of our analysis, we were able to evaluate 

differential expression and therefore biological pathway activation due to the independent 

effect of just infection status, or due to a combined phase:infection interaction effect. It 

was through this analysis that we were able to show that a very similar profile of 

biological pathways is induced in response to GC infection regardless of during which 

reproductive phase infection occurs. This observation is significant in light of our 

previously described profound differences in infection phenotype during diestrus phase 

and estrus phase. This suggests that, despite the different natural histories of infection 

that have been described, a chemokine-centric induction of cytokines may be the 

foundation of a common anti-gonococcal host response. Reflecting this, leading-edge 

genes from the “Chemokine Receptors Bind Chemokines” pathway, identified by 

infection effect GSEA, demonstrate clear phase independent induction (Figure 3.7).  

Interestingly, this common anti-gonococcal program has greater activity in 

diestrus infection. Several of the same chemokines identified by infection effect GSEA, 

are found among the leading-edge genes of a top phase:infection interaction effect GSEA 

gene set, “Chemokine activity” (Figure 3.9a). Additionally, closer examination of the 

leading-edge genes of significant chemokine gene sets shows significant representation of 

neutrophil chemokines (Cxcl5, Ccl4 and Cxcl1) suggesting strong phase:infection 

interaction effect. Supporting this, the phase:infection effect clustering showed that 

several potent neutrophil chemokines demonstrated a diestrus specific induction 

expression pattern (Figure 3.8c). This would explain, at least in part, the significant 

differences in neutrophil recruitment during GC infection in different reproductive cycle 
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phases described by our collaborators (Islam et al., 2016). The model of granulocyte 

adhesion and diapedesis was able to confirm, not only greater activation of the pathway 

during diestrus infection, but that chemokines and endothelial mediators of diapedesis 

most contribute to this difference (Figures 3.10 & 3.11). This general anti-GC response, 

in addition to reflecting the human and mouse data found in the literature, is reminiscent 

of the clinical picture of PID, characterized by intense local inflammation and influx of 

granulocytes into infected tissue. 

In contrast to the common induction of chemokine activity during GC infection, 

the induction of interferon pathways appears to be largely unique to GC infection in 

diestrus phase. Although the activation of these pathways during GC infection has been 

reported before (Dobson-Belaire et al., 2010; Andrade et al., 2016), it is a phenomenon 

that is much less understood than the previously discussed cytokine response. Those 

studies that have examined the impact of type 1 interferons in GC infection have 

suggested, based on impaired bacterial killing in the context of IFN-β, that it has a 

detrimental effect on infection control and resolution (Andrade et al., 2016). A negative 

impact of type 1 interferon on an antibacterial response has been described for several 

other human pathogens including the genito-urinary pathogen Chlamydia trachomatis 

(Qiu et al., 2008). While the role of type 1 interferon signaling in GC infection is not yet 

fully understood, the significant and specific induction of related pathways in diestrus 

phase infection, where greater pathology is observed, suggests a possible detrimental 

effect on the host. The emergence of these immune processes in our transcriptional 
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analysis reinforces their potential importance and supports the further exploration of the 

role of type 1 interferons in human gonorrhea and the murine model of disease. 

Together, this body of work shows that the previous theory of murine 

susceptibility to GC infection was overly simplistic. Infection and the subsequent host 

response is strongly dependent on the time and site of infection. This is demonstrated by 

observations that the wild type vaginal tract is unresponsive to infection in diestrus and 

reactive in estrus while the uterus demonstrates the complete opposite pattern. 

Additionally, we show that the expression of hCEACAMs 1, 3, 5, and 6 play a significant 

role in the progression of estrus phase infection, both vaginal and uterine. Based on these 

results we suggest the further characterization of the transcervical diestrus infected mouse 

as a laboratory model of PID, as well as its use in parallel with the vaginally infected 

estrus CEABAC2 mouse as a new model of subclinical gonorrhea. 

 

Limitations of the studies 

In contrast to all other presented studies, the mice in the study that compared 

transcervical infection in estrus and diestrus were not arrested in their given reproductive 

phase by exogenous hormones. The intermittent use of these treatments may have 

unforeseen impacts on the observed responses to infection. The induction of estrus and 

diestrus phases by b-estradiol and DepoProvera respectively are well-established 

protocols thought to closely mimic the natural reproductive phases. Despite this, both of 

these hormones can influence immune function and their exogenous addition cannot be 

ruled out as a possible confounding variable without further study. A small experiment 
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comparing the infection induced cytokine/chemokine response in naturally cycling wild 

type mice with those in DepoProvera and b-estradiol induced reproductive phases would 

clarify any impact this variable had on our observations. 

As mentioned earlier, no antibiotic treatment is needed during transcervical 

infections because there is no risk of out-competition of GC by commensal microbes. For 

all vaginal infections however, mice are treated for an extended period with collection of 

broadly reactive antibiotics. While data is not available, this treatment must have wide 

sweeping effects not just on the microbiome of the FGT but of the gut and other body 

sites as well. These changes very well could have strong influences on the reactogenicity 

of the immune system. The field of microbiome immunology is expanding quickly and 

has repeatedly shown that host immune function is profoundly influenced by the 

composition and status of the microbiome (Koeberling et al., 2009; Belkaid and Hand, 

2014; Sherwani et al., 2018). As the models currently stand, this antibiotic treatment is 

still necessary for murine vaginal infection, however it must be recognized as a 

potentially serious confounding effect. 

Finally, these studies, along with those of our collaborators rely upon a largely 

phenotypic description of human gonococcal infection, particularly with regards to 

gonococcal PID, to guide the development of our disease models. Studies examining 

human gonorrhea have largely been limited to serum cytokines and the more 

comprehensive studies have looked only in men (McCormack et al., 1977b; Ramsey et 

al., 1994). The ideal in vivo lab model is one that recreates the biology of the system is 

meant to mimic. In this case, we don’t have a solid handle of the biology of human 
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gonorrhea and therefore must rely upon the recreation of its phenotype. The resolution of 

this limitation is exceedingly difficult because to better understand human gonorrhea 

would require the collection and study of tissue from actively infected individuals. To 

achieve this, while also fulfilling our responsibilities to the patient, would be difficult. A 

potential solution is to examine the gonococci in the context of infection rather than the 

host. Where a tissue sample is invasive and requires significant logistical support to 

collect, extracting microbial RNA from a simple swab of an infected site would provide a 

snapshot of the pathogen in its infectious form. This could be done in both humans and 

mice and by comparing the two microbial transcriptional profiles we could potentially 

determine if from the gonococcus’ perspective, our models of gonorrhea appear similar to 

the real thing. 
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Chapter 4: Naturally released outer membrane vesicles derived from an RMP-

deficient strain of GC, demonstrate consistent composition and are strong, poly-

immunogenic anti-gonococcal vaccine antigens 

Introduction 

Outer membrane vesicles derived from Gram-negative bacteria are not new to the 

field of microbiology (Chatterjee and Das, 1967), however, they have only recently 

become objects of intense interest in the fields of biomedical engineering and 

vaccinology (Zhu et al., 2005; van de Waterbeemd et al., 2013; Acevedo et al., 2014; van 

der Pol et al., 2015; Lee et al., 2016). It is easy to see the allure of OMVs from the 

perspective of vaccine antigen development. The vesicles, by definition, contain a large 

contingent of outer membrane structures in their native conformation (Kulp and Kuehn, 

2010). These structures are the typical antigenic targets of vaccine design since critical 

metabolite/waste exchange processes and bacterial adhesion mechanisms are mediated by 

extracellularly exposed structures embedded in the outer membrane. The targeting of 

these antigens by the immune system results in microbial inhibition and death by both 

disrupting necessary metabolic functions and through direct immune mediated 

bactericidal action (Jerse and Deal, 2013; Wetzler, 2014). In addition to their antigenic 

cargo, OMVs contain an array of PAMPs that could allow the vesicles to function as self-

adjuvanting antigens. This characteristic could possible eschew the need for an 

exogenous adjuvant, many of which are known to induce very unidimensional immune 

responses. For example, the adjuvant MPL-a induces a very strong Th1/cell-mediated-

immunity biased response, whereas alum salts produce a strongly Th2  biased humoral 
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immunity (Korsholm et al., 2010). Of course, when utilizing naturally produced OMVs 

(nOMVs) there is always the concern that the vesicles may have an immune-inhibiting 

endogenous function that, as a vaccine antigen would result in, at best, poor 

immunological memory and at worst greater susceptibility to infection and disease.  

Already, a GC-protective mechanism induced by an antigen has been identified in 

the anti-RMP response. As previously described, early trials of a GC porin vaccine were 

deemed to be non-protective (Tramont, 1989) and some evidence suggested that 

immunized individuals were more likely to subsequently develop disease (Plummer et al., 

1993). When samples from study participants were analyzed, it was determined that, 

while RMP was a minor antigen in the vaccine, it was the dominant immunogen. 

Unfortunately, the anti-RMP antibodies had no bactericidal activity and they also 

disrupted the bactericidal activity of the anti-porin antibodies (Gulati et al., 1991; Rice et 

al., 1994). The mechanism of this phenomenon is not entirely clear; however, it has been 

shown that the decrease in bactericidal activity in the context of anti-rmp antibodies, 

occurs despite increased deposition of C3b and C9 on the bacterial surface (Joiner et al., 

1985). These observations have led to the hypothesis that the anti-rmp antibodies 

somehow divert the activated complement components to “non-bactericidal sites” on the 

bacteria. For this reason, all GC vaccines must exclude RMP completely. This is 

particularly difficult with an OMV vaccine since RMP is a natural component of the 

outer membrane. As the selective extraction of RMP from the bacterial or vesicular 

membrane would prove impossible, we must isolate nOMVs from GC that don’t express 

RMP. Our group had previously constructed and described such a strain while optimizing 
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the purification of P1B (Wetzler et al., 1989). It is that strain, constructed in the MS11 

strain of GC, that will be used to explore the potential of RMP deficient nOMVs. 

Beyond a possible RMP-mediated bacterioprotective mechanism, little is known 

about the functions or effects of Neisseria gonorrhoeae nOMVs in vivo. In fact, GC 

nOMVs have yet to be identified in infection. There have been a few in vitro 

characterizations of wild-type GC nOMVs which show that they contain a diverse array 

of outer membrane proteins, several of which are likely critical for human virulence 

(Zielke et al., 2014). However, the best insights we may have into the potential in vivo 

effects of GC nOMVs is through studies on vesicles produced by Neisseria meningitidis 

(Nm). The capsular polysaccharide of group B Nm has a high degree of antigenic 

similarity to endogenous human molecules (Finne et al., 1983) necessitating a non-

capsule-conjugate vaccine. Researchers discovered that group B derived Nm OMVs 

successfully induced protective immunity against the strain and bypassed the potential 

risks of the capsular vaccine (Granoff, 2009). Through the studies of these Nm OMV 

vaccines we know that the vesicles are immunostimulatory, composed of a consistent 

array of critical outer membrane associated structures, and are highly stable (Granoff, 

2010). Most importantly, Nm OMVs are highly immunogenic and produce protective 

immunity against meningococcal disease. To fully evaluate the vaccine potential of GC 

nOMVs, we must examine the strength and characteristics of the in vivo anti-nOMV 

immune response. 

Protective adaptive immunity in the genitourinary tract, male or female, is 

mechanistically poorly understood. With mucosal surfaces, like with all externally facing 
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tissue, physical protection afforded by the epithelia is important. This is clear from the 

studies we presented in Chapter 3, where the simple, non-glandular uterine-lining of 

diestrus phase corresponded with increased gonococcal tissue penetration and subsequent 

inflammation. Beyond physical barriers, there is a significant role for secreted 

immunoglobulin in the protection of mucosal sites, particularly by luminal neutralization 

of pathogens. This has been appreciated since 1919 when Alexandre Besredka showed 

that protection of rabbits against dysentery following oral Shigella immunization was 

unrelated to serum antibody titers (Besredka, 1919). This phenomenon was then 

described in humans where anti-Shigella antibodies were measurable in stool before they 

were measurable in sera (Davies, 1922). Proof that these secreted immunoglobulins 

executed their effector functions in the lumen came from studies of newborn piglets 

showing that the dissemination of enteric commensals and subsequent septicemia was 

prevented by luminally restricted Ig (Rejnek et al., 1968).  

As the field has advanced we have come to recognize that the secreted mediators 

of this immunity are IgA, IgM and IgG (Brandtzaeg, 2013). The classic mucosal 

immunoglobulin (Ig), secreted IgA (sIgA), has been thought to be the primary effector 

immunoglobulin of mucosal immunity (Brandtzaeg, 2013). This designation, though, 

came during the early development of the field of mucosal immunology when the vast 

majority of studies focused on the gut. As mucosal immunologists work to develop our 

understanding other mucosal sites, there is growing evidence that the primary effector 

immunoglobulins in mucosal sites may depend on where and when you look. This is 

particularly true in the female genital tract (FGT) where protective mechanisms for some 
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pathogens have been shown to be IgG not IgA mediated (Parr and Parr, 1997), and where 

the relative levels of the different Ig classes are highly dynamic and linked to the 

reproductive cycle (Usala et al., 1989; Nardelli-Haefliger et al., 1999). Several 

publications even suggest that IgG is the dominant and most important Ig to FGT 

protection (Parr and Parr, 1997; Johansson and Lycke, 2003; Li et al., 2011). 

While our grasp of the mechanistic details of mucosal immunology lags behind 

that of the systemic immune system, our understanding of how to induce protective 

immune memory at specific mucosal sites is even worse. This could be because, while 

the idea that systemic and mucosal immunity are distinct from one another is not new, we 

don’t yet fully appreciate the implications of this distinction. For instance, despite the 

majority of vaccine preventable diseases being mucosal diseases or dependent upon 

mucosal transmission, most vaccines are given parenterally (IAC, 2018). It is well 

established that the route of exposure to an antigen heavily biases the site of induced 

memory; particularly with regards to mucosal exposure and mucosal immunity (Parr et 

al., 1988; Brandtzaeg, 2007). This would suggest that these systemic vaccines are capable 

of overcoming this barrier to mucosal protection following systemic exposure, the 

protection is dependent on systemic and not mucosal immunity, or that protection at 

mucosal sites is a case of luck rather than effective design. The reality is likely a mixture 

of all three, with the potent adjuvants used today, we know that the intense adaptive 

response that is induced by vaccination can spill over into the mucosal immune system 

like in the case of the HPV vaccine (Mariani and Venuti, 2010). 
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Unfortunately, many of the mucosal diseases for which we most need vaccines, 

have proven to be resistant to current standards of vaccine development including the 

modern array of adjuvants (Leroux-Roels, 2010). While new, mucosally-directed, 

adjuvants are being developed (Hasegawa et al., 2009; Fukuyama et al., 2015), it is 

important to also consider simple interventions that might increase the mucosal 

immunogenicity a vaccine, like route of delivery. Within the mucosal immune system 

there appear to be specific tissues that are more closely linked than others, which can 

impact the site and magnitude of immune response to a vaccine (Parr et al., 1988; 

Brandtzaeg, 2007). These studies have described a strong link within the common 

mucosal immune system between the naso-oropharyngeal and FGT mucosa (Belyakov 

and Ahlers, 2009). This link may open the door to effecting induction of tissue specific 

immunity in the FGT which is a major challenge to the successful development of an 

anti-gonococcal vaccine for women. Unsurprisingly since the anatomy is radically 

different, immunological protection of the male genital tract appears to be different from 

FGT (Russell and Mestecky, 2002). Primary protection appears to be from mechanical 

barriers (urine flow and epithelial shedding) as well as serum derived IgG and locally 

produced sIgA (Mestecky and Fultz, 1999). For the development of an anti-gonococcal 

vaccine, we focus on the induction of FGT immunity since as of now no male model of 

infection exists in which to test a potential male GC vaccine. 

Achieving strong, mucosal based anti-gonococcal immunity is a significant 

challenge. The mechanisms of protective against the pathogen are not known and the 

methods for inducing immunity in the mucosal tissues most critical for this STI are not 
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understood. However, as discussed above, there is evidence to suggest that a poly-

antigenic vaccine, like an OMV could overcome some of the obstacles and induce anti-

gonococcal protection. We believe that nOMVs derived from a Drmp mutant GC strain 

would best address the challenges of an anti-gonococcal vaccine. In the following studies, 

we demonstrate the isolation and in vitro characterization of Drmp GC nOMVs followed 

by the in vivo exploration of their immunogenicity and how it is influenced by vaccine 

dose and route of delivery. 

 

Results 

Naturally released outer membrane vesicles can be isolated from an rmp deficient strain 

of Neisseria gonorrhoeae 

Many researchers have previously isolated and utilized gonococcal OMVs 

(Evans, 1977), however, it is possible that the deletion of the RMP protein could affect 

the natural production of vesicles. This protein shares significant homology to the E. coli 

OmpA protein (UniProtKB ID#F8S842), which among other things, helps to anchor the 

outer membrane to the peptidylglycan wall (Wang, 2002). In fact, genetic deletion of the 

OmpA coding gene ompA is known to alter the production rate and composition of E. coli 

nOMVs (Sonntag et al., 1978). For this reason, we first examined whether nOMVs could 

be isolated from an RMP minus GC strain by a similar process as from wild-type strains, 

and whether they are structurally and physiochemically similar. 

In order to isolate RMP-deficient GC nOMVs we utilized sequential size 

restrictive filtration, to remove large debris and cells, and subsequent weight restrictive 
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stirred ultrafiltration to retain large molecular weight structures (nOMVs) from a large 

volume liquid culture of a rmp-deletion mutant strain of Neisseria gonorrhoeae 

(GCDrmp) (see methods for details). Initial characterization of the resulting material was 

done by Dynamic Light Scattering (DLS), a method that utilizes the theory of Brownian 

motion to predict particle size based on the scattering of incident light. Per DLS (Figure 

4.1) the isolated particles were largely one single population roughly normally distributed 

around a diameter of 47nm. Since DLS assumes particles are spherical and are suspended 

in an ideal liquid, definitive size and integrity must be investigated by a secondary 

method.  

 

Figure 4.1: nOMVs isolated from Drmp Neisseria gonorrhoeae appear to be a 
single population with a narrow range of diameters by dynamic light scattering. 
Approximately 1 mL of resulting material from a single isolation protocol, suspended 
in a sterile 3% sucrose, 0.2M glycine solution, was analyzed by dynamic light 
scattering (DLS). Based on light scattering, DLS predicted a single population of 
particles with a narrow normal distribution of diameters centered around ~45nm. d(nm) 
is diameters in nanometers, G(d) is relative percentage contribution of the size range, 
C(d) is cumulated percentage contribution. 
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To confirm isolation of vesicles, samples were visualized by uranyl-acetate (UA) 

negative stain transmission electron microscopy (TEM) (see methods for details). Wild 

type nOMVs were also isolated and used a reference for the Drmp nOMVs (Figure 4.2). 

The electron micrographs of both Drmp and wild-type nOMVs show a largely 

homogenous population of spherical structures that range in diameter from ~50-100nm. 

Figure 4.2: nOMVs derived from Drmp Neisseria gonorrhoeae have similar 
morphology to those derived from wild type GC. 10,000x (A. and C.) and 42,750x 
(B. and D.) images of concentrated large molecular weight structures isolated from 
Drmp (A. and B.) or wild-type (C. and D.) N. gonorrhoeae in late log phase growth. 
Samples were negatively stained with ~2% Uranyl-acetate and visualized via TEM. 
Images were captured with CCD camera (A.) or build in plate camera (B.). Color 
differences are due to differences in image capture. Images were processed and scale 
bars generated in ImageJ. 
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No obvious morphological differences can be seen between the two genotypes. All 

vesicles are single lipid-bilayer bound as shown by an average membrane thickness 

around 6nm (ImageJ, NIH) (Kutchel and Ralston, 1988). While there was a difference in 

average membrane thickness between Drmp (5.95nm) and wild type vesicles (6.67nm) 

this difference was non-significant as determined by unpaired t test (Figure 4.3). 

Interestingly, the vesicle diameters of wild-type and Drmp nOMVs were roughly 

normally distributed with means close to one another (87.5nm for wild type and 77. 8nm 

for Drmp) but statistically different (Figure 4.4). 

 

 

Figure 4.3: Vesicles derived from Drmp 
and wild-type Neisseria gonorrhoeae have 
similar thickness lipid bilayers. Membrane 
thicknesses of ten representative vesicles 
from each population were measured using 
ImageJ. Average thicknesses were compared 
by unpaired parametric t test using Prism by 
Graphpad. Whiskers indicate mean and 
standard deviation. Vesicles from one Drmp 
isolation and one wild-type isolation were 
compared. 

Figure 4.4: Vesicles isolated from wild-
type Neisseria gonorrhoeae are 
significantly larger than those isolated 
from Drmp GC. The diameters of 100 
vesicles released by either wild-type GC 
or Drmp GC during concurrent but 
separate isolations were measured from 
8,000x negative stained UA electron 
micrographs using ImageJ. Figure was 
generated and data was analyzed by 
unpaired t test in Prism. Figure whiskers 
indicate mean and standard error. 
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These results confirm that nOMVs can indeed be isolated from a Neisseria 

gonorrhoeae strain lacking the outer membrane anchor protein RMP. Isolated vesicles 

demonstrated a standard spherical morphology with a standard lipid bilayer. Despite a 

small but significant difference in vesicle diameter, there were strong similarities in other 

characteristics between the Drmp and wild-type vesicles further supporting the positive 

identification of these structures as nOMVs. Since these findings were all generated from 

a single isolation of Drmp nOMVs, and as discussed, consistency in these potential 

antigens is critical, a study of inter-batch variability is necessary. 

 

Gonococcal rmp deficient nOMVs demonstrate limited inter-batch variability 

To determine if there was any inter-batch variability in Drmp nOMV morphology 

samples from 8 separate growths and isolations were visualized by negative UA stain 

TEM (Figure 4.5a-h). These electron micrographs were taken an average of 4 months 

post isolation (range 0.5-7 months) and were mounted at varying concentrations ranging 

from 1 to 4 µg nOMV associated protein per µl of preparation. As shown by Figure 4.5a-

h, Drmp nOMVs have a standard spherical morphology that remains unchanged between 

isolations. Figure 4.5i, confirms that isolated vesicles are of a standard diameter. This 

consistency suggests that these structures are the actively produced nOMVs that we 

hoped to isolate. We would expect that, if we were instead isolating products of cellular 

degradation, the morphology and size would be more varied. 
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Figure 4.5: nOMVs isolated from Drmp GC have a consistent structure, 
morphology and size between separate isolations. Vesicles were isolated from large 
volume growths of Drmp Neisseria gonorrhoeae in late log growth phase. Electron 
micrographs (A-I) are representative images of vesicles each from a different isolation 
and growth. All samples were negative stained with ~2% UA and 43,750x EM images 
were captured by CCD camera (A, C, E, F, H) or built in plate camera (B, D, G). 
Images were processed and scale bars generated in ImageJ. I. The diameter of 53-67 
representative vesicles from 4 separate isolations were measured by ImageJ; data was 
analyzed and graphed in Prism. Plot whiskers indicate mean and standard error. 
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Figure 4.6: Protein composition of Drmp nOMVs appears to be consistent 
between isolations. Proteins (5µg as measured by modified Lowry protein assay) 
from Drmp nOMVs were separated by denaturing polyacrylamide gel-
electrophoresis (PAGE). Lane 1 contains the SpectraTM broad range protein ladder 
from ThermoFisher (Cat#26634). Lanes 2-6 each contain protein from a different 
nOMV isolation. A. Coomassie blue stained polyacrylamide gel. B. The protein 
banding pattern of each lane from the stained gel was evaluated by ImageJ and 
visualized by a histogram of pixel density. Moving left to right along the histogram 
corresponds with high to low molecular weight protein bands. 
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After successfully isolating Drmp nOMVs, characterizing their structure, and 

confirming their similarity to wild-type vesicles, we then examined their molecular 

composition. nOMV associated protein was extracted from 5 different isolations of Drmp 

nOMVs and 5µg from each was separated by molecular weight by denaturing gel 

electrophoresis (Figure 4.6). As can been seen in figure 4.6a the banding pattern is 

virtually identical between isolations. This is confirmed by the histogram representation 

of bands generated by ImageJ (Figure 4.6b). Both methods of visualization show the 

major protein component to be approximately 34kDa. Based on the protein size, and 

established gonococcal outer membrane protein literature, this band corresponds to the 

porin, P1B (Swanson, 1981; Blake and Gotschlich, 1982; Wetzler et al., 1988). In 

addition to demonstrating inter-batch consistence of protein components, figure 4.7 

shows that the protein composition of wild-type nOMVs and Drmp nOMVs are extremely 

similar outside the band seen at approximately 28kDa which corresponds to RMP’s 

known molecular weight (Lytton and Blake, 1986). 

These results show that Drmp nOMVs not only have structural and morphological 

consistency but their protein antigen profile is extremely consistent between isolations as 

well. This is an important characteristic in a potential vaccine antigen since it will limit 

vaccine batch related variation in the induced immunity by providing the same population 

of potential immunogens each time.  
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Gonococcal rmp deficient nOMVs contain bioactive pathogen associated molecular 

patterns  

The potential ability for OMVs to function as their own adjuvant in a vaccine 

preparation has already been discussed. Briefly, this capability could allow for the 

induction of a more complex immune response because it would allow for the exclusion 

of the largely immunologically unidimensional adjuvants that we have at our disposal. 

The immune stimulatory profile of nOMVs is extremely complex. Because they are 

derived from bacteria themselves, vesicles have been shown to carry a diverse array of 

known pattern recognition receptor (PRR) agonists like peptidylglycan (Kaparakis et al., 

Figure 4.7: The protein composition of nOMVs is not significantly altered by the 
exclusion of RMP. Protein extracted from Drmp Neisseria gonorrhoeae (Lane 2; 
10µg), 3 isolations of Drmp nOMVs (Lanes 3, 4, and 5; 10µg) and wild type nOMVs 
(Lane 6; 5µg) were separated by denaturing PAGE and visualized with coomassie blue 
stain. Protein band thought to correspond to RMP (based on weight) is indicated. 
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2010), nucleic acids (Koeppen et al., 2016), lipoproteins (Wetzler, 2010; van de 

Waterbeemd et al., 2013), and lipopolysaccharides (van de Waterbeemd et al., 2010). 

Most of these structures have been shown to be present in GC nOMVs (Kaparakis et al., 

2010; Zielke et al., 2014; Vanaja et al., 2016) and would contribute to the particle’s 

overall immunostimulatory profile. These PAMPs additionally are likely to be 

particularly potent as nano-structure associated PAMPs have been shown to induce more 

efficient antigen uptake, activation of immune cells and induction of an adaptive immune 

response than their components in their soluble form (Wetzler et al., 1992b; Zhu et al., 

2005; Kaparakis et al., 2010; Nicolete et al., 2011). 

Based on both literature and our studies presented here, we focused on two 

specific PAMPs due to their large quantities in the GC outer membranes and likely 

nOMVs: P1B and Lipooligosaccharide (LOS). This bacterial porin is, by quantity, the 

primary outer membrane protein in pathogenic Neisseria species and was shown to be 

present at high concentrations in our nOMVs (Figure 4.6a). This protein is a well 

characterized TLR1/2 heterodimer agonist capable of inducing a strong adaptive immune 

response to itself without an exogenous adjuvant (Blake et al., 1989; Wetzler et al., 

1992b; Zhu et al., 2005; Massari et al., 2006; Oliveira-Nascimento et al., 2012). The 

second PAMP, lipo-oligosaccharide (LOS – similar to gram-negative lipopolysaccharide 

[LPS], but with a shorter side chain), is a strong TLR4 agonist. The presence of LOS in 

the Drmp nOMVs was confirmed by silver stain (Figure 4.8). 
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It is evident from the silver stain in Figure 4.8 that there is a large quantity of LOS 

associated with Drmp nOMVs. A strikingly larger amount of staining is seen in the 

~10kDa region where neisserial LOS is known to be found than what is seen for the 

100ng E. coli LPS control. While this could potentially be concerning due to the toxic 

effect of high quantities of LPS, we first evaluated whether the large quantity of 

endotoxin corresponded to a high bioactivity. The ability of P1B and LOS as part of 

RMP-deficient nOMVs to bind and activate their corresponding PRRs was determined 

using human embryonic kidney (HEK) cells transfected with the genes expressing their 

respective TLRs. Three separate cell lines were used that had been transformed with a 

genetic construct containing either TLR1/TLR2, TLR4, or a stretch of non-coding DNA 

as a control. Since HEK cells do not naturally express TLRs, introduction of these 

constructs allows us to quantify the ability of a sample to act as an agonist of only the 

inserted PRR (by measuring induced cytokine production). 

Figure 4.8: Natural vesicles released from Drmp 
strain GC contain a large quantity of LOS. Structures 
from 5µg nOMV (associated protein) were separated by 
denaturing PAGE. One-hundred nanograms of E. coli 
derived LPS was run in an adjacent well as a positive 
control. Protein and lipopolysaccharides were visualized 
by silver stain as described in Chapter 2. 
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As figure 4.9 shows, RMP-deficient nOMVs were able to bind and activate both 

TLR1/2 and TLR4. The HEK cells that were transfected with non-coding DNA were only 

activated by the non-TLR simulant, TNF-a (Figure 4.9c). This allows us to interpret any 

observed induction of IL-8 in our two TLR-transfected cell lines as the direct result of 

TLR agonism. In both TLR4 and TLR2/1 cells (Figure 4.9a and b respectively), there 

Figure 4.9: Drmp nOMVs bind to and strongly activate TLR1/2 and TLR4 
signaling pathways. PRR activation was indirectly measured by secretion of IL-8 by 
HEK cells overexpressing TLR4 (A.), TLR1/TLR2 (B.) or control cells after a 12 hour 
stimulation with 10, 1 or 0.1 µg nOMVs, 100ng LOS, 10ug P1B, or 20ng TNF-a. 
Histogram shows mean with standard deviation, significance was calculated by one 
way ANOVA between each condition. * p<0.05, ** p<0.01, *** p<0.001, **** 
p<0.0001 by ANOVA. Data was analyzed and graphs were generated in Prism. 
Supernatant IL-8 levels were measured by ELISA (BD OptEIA Cat#555244). 
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was an nOMV dose dependent induction of Il-8. The high dose, 10µg nOMV was able to 

induce the greatest observed levels of Il-8 through both of the interrogated TLR 

pathways. For the TLR4 HEK cell stimulation, all three nOMV doses induced significant 

(p<0.05) levels of IL-8 (as determined by one way ANOVA against media). The high 

dose induced significantly higher levels than the 100ng LOS positive control. As 

expected, in the absence of TLR1/2, P1B did not induce Il-8 in the TLR4 HEK cells. 

These results suggest that even at 0.1µg/ml, nOMVs are able to induce non-inferior 

TLR4 activation as the standard dose of LOS/LPS we utilize as a vaccine adjuvant (Platt 

et al., 2013; Reiser et al., 2017). High dose nOMVs were able to powerfully activate 

TLR1/2, inducing over 7-fold greater levels of Il-8 than the standard 10µg adjuvant dose 

of P1B (Figure 4.9b). Both of the lower doses of nOMVs induced non-significant IL-8 

production from the TLR1/2 transfected HEK cells. These results suggest that activation 

of a poly-PRR agonist adjuvant mechanism will require nOMV dosing towards the higher 

end of the tested range.  

 

Gonococcal rmp deficient nOMVs are stable over long periods of storage 

In addition to the successful induction of immunity, practical characteristics of a 

vaccine can also greatly impact its success. Stability is an important characteristic in the 

evaluation of a potential vaccine antigen and is one of the factors that greatly impacts the 

cost of a vaccine, due to the effect on ease of its storage, handling and delivery (Plotkin et 

al., 2017). Detergent extracted Nm OMVs (dOMVs) have been shown to be remarkably 

stable maintaining structural and antigenic durability throughout long periods of storage, 
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freezing and thawing as well as lyophilization (Arigita et al., 2004). This stability of the 

Nm dOMV vaccine has aided its adoption and delivery worldwide (Granoff, 2010). We 

determined that GC nOMVs demonstrate the same structural stability. 

 
As seen in figure 4.8, vesicles had the same morphology following 1 year of 

storage in sterile conditions at 4oC (Figure 4.10c) as they demonstrated right after 

isolation (Figure 4.10a). Similarly, the protein banding pattern appears relatively 

unchanged following the same storage period (Figures 4.10b and d). These results reflect 

what has been previously reported regarding the Nm dOMVs (Arigita et al., 2004) and 

suggests that these GC nOMVs might display the same characteristics that have made 

these vaccines a global public health success (Granoff, 2010; Plotkin et al., 2017). With 

Figure 4.10: nOMVs lacking RMP, display stability for up to 1 year in standard 
4OC storage conditions. Vesicles were isolated from a Drmp strain of GC and 
evaluated at 2 weeks (A. and B.) and 12 months (C. and D.) after isolation for 
morphology by UA negative stain TEM (A. and C.) and protein composition by 
PAGE and Coomassie blue staining (B. and D.). PAGE was run using 5µg of nOMV 
associated protein (in indicted lanes). Images were processed and scale bars generated 
in ImageJ. Contrast differences are the result of different image capture methods 
(CCD camera versus film based Plate camera). 
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these encouraging in vitro results, we then started to investigate the in vivo response to 

Drmp GC nOMV as a vaccine candidate.  

 

Gonococcal nOMVs lacking RMP induce a dose dependent, systemic and mucosal, 

antibody response to intranasal or subcutaneous immunization 

As mentioned previously, the few gonococcal OMV vaccine studies that have 

been published utilized chemical- or detergent-extracted vesicles from WT GC strains, 

which are known to differ from the nOMVs derived from RMP minus GC that we are 

using. Additionally, all previous studies have investigated vaccine preparations that 

included exogenous adjuvants. As shown in chapter 4, Drmp nOMVs are potently 

immunostimulatory and likely do not need an exogenous adjuvant in order to be highly 

immunogenic. Since previous work could not be used to inform the optimization of our 

vaccine, we decided to examine the anti-nOMV response to a variety of vaccine dosages. 

Additionally, we believe that route of immunization will significantly impact the ability 

of the vaccine to protect the FGT, therefore we compared immune responses after 

intranasal and subcutaneous immunization. To determine dose and route effects, 38 wild-

type C57/BL6 female mice were divided into 2 groups based on route of immunization, 

subcutaneous (SC) or intranasal (IN). The 19 mice in each route group were then divided 

as follows: 4 mice received PBS, 5 mice received 0.1µg nOMVs, 5 mice received 1µg 

nOMV, and 5 mice received 10µg nOMV. All mice received 3 RMP-deficient nOMV 

vaccines (or PBS) of a given dose, via injection or intranasal deposition, each dose 
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separated by 2 weeks. Sera and vaginal secretions were collected the day before the first 

injection and 2 weeks following the final injection. 

 
The immunogenicity of each vaccine preparation was measured by nOMV ELISA 

to determine titers of IgG able to bind the vaccine antigen, in serum taken 2 weeks after 

the final vaccine. We first examined serum Ig, despite our belief that a mucosal response 

will be key to protection, because vaginal Ig concentrations can be low and hard to 

measure; and the secreted IgG profile is thought to reflect the systemic IgG profile (Li et 

al., 2011). Figure 4.11 shows that nOMVs are able to induce very high serum titers of 

Figure 4.11: Intranasal and subcutaneous immunization with Neisseria 
gonorrhoeae Drmp nOMVs induces high titers of serum anti-nOMV IgG in a dose 
dependent pattern. Mice (N=5 for each nOMV vaccine group, N=4 for each PBS 
control group) received either nOMVs or PBS via the indicated route three times 
separated each time by a period of 2 weeks. Sera was collected 2 weeks following final 
exposure. Serum titers of vaccine induced nOMV specific IgG were evaluated by 
nOMV ELISA. Data was analyzed by one way ANOVA and graphed in Prism. * 
p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 by ANOVA 
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nOMV-specific IgG, particularly when delivered subcutaneously. The mice that received 

SC immunizations all showed significant titers of nOMV-specific IgG that increased in 

magnitude in a dose dependent pattern. This particularly strong response following SC 

immunization is not surprising as SC is a parenteral vaccination that is known to 

efficiently induce systemic immunity. Intranasal immunization induced significant serum 

titers of anti-nOMV IgG only with the highest dose vaccine. This significant response 

induced greater titers than that of the SC 1µg vaccine but significantly less than the SC 

10µg dose. The strong induction of systemic immunity following IN immunization was 

not necessarily expected and may indicate a “spill over” from a particularly strong 

mucosal response.   

The mucosal response to nOMV immunization was evaluated by nOMV ELISA 

to determine IgG titers present in vaginal secretions 2 weeks after the final booster 

immunization. As previously mentioned, the low concentration of Ig in vaginal secretions 

makes it hard to absolutely quantify, so results are presented as the Optical Density 

absorbance of 405nm light (OD405 at 1:6400 titer) in the ELISA. In comparing the two 

routes of immunization, mice receiving the SC vaccines were more likely to have 

measurable anti-nOMV IgG in their vaginal secretions following 3 immunizations as 

compared to IN immunized mice (figure 4.12). This is somewhat surprising considering 

the body of literature suggesting a strong mucosal response is best induced by mucosal 

exposure to an antigen. Despite this, only two mice, both from the high dose group, 

showed measurable anti-nOMV IgG from the IN vaccinated mice. The 10µg SC vaccine 

had the best rate of inducing measurable antigen-specific IgG with 4 of 5 mice. The 
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greatest nOMV-specific vaginal IgG response was seen in a mouse from the 0.1µg SC 

immunization group. This mouse was the only one from its treatment group to have 

measurable anti-nOMV IgG in vaginal samples. This response is very surprising and a 

clear outlier within its treatment group. Interestingly, this mouse was the same mouse that 

demonstrated extremely high serum IgG titers (Figure 4.11). While this result is likely 

not indicative of the standard immune response to the 0.1µg SC vaccination protocol, it 

does confirm that a sufficiently robust systemic response can translate to a strong 

mucosal response. This means that while a mucosally directed immunity is preferred, if 

that proves unattainable, we may still be able to induce a strong FGT antibody response 

by inducing a powerful systemic response. 
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The poly-immunogenic response to immunization with RMP deficient nOMVs is dose 

and route dependent  

One of the unique characteristics of nOMVs as vaccine antigens is their poly-

antigenic composition. These vesicles offer dozens of potential immunogens to the host 

immune system (Zielke et al., 2014). It is our thought that a diverse immune response 

against several distinct gonococcal immunogens, could place overwhelming stress on the 

pathogen. We demonstrated in chapter 4 that our RMP-deficient nOMVs contain multiple 

Figure 4.12: Mice receiving subcutaneous nOMV vaccines are more likely than 
those receiving intranasal vaccines to have measurable anti-nOMV IgG in 
vaginal secretions after 3 vaccinations. Mice (N=5 for each nOMV vaccine group, 
N=4 for each PBS control group) received either nOMVs or PBS via the indicated 
route three times separated each time by a period of 2 weeks. Vaginal secretions were 
collected 2 weeks following final exposure. Graph depicts levels of vaccine-induced 
nOMV-specific IgG in vaginal secretions as measured by nOMV ELISA. No 
significant differences between groups were found. Data was analyzed by one way 
ANOVA and graphed in Prism 
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protein antigens, however we would expect that not all of them would be strongly 

immunogenic. To determine which of the nOMV antigens were immunogenic, we ran 

immunoblots where immobilized nOMV associated antigens were probed with immune 

sera from each of our treatment groups.  

 
Since only the subcutaneously immunized and high dose intranasally immunized 

mice had statistically significant levels of anti-nOMV IgG, we only examined the pattern 

Figure 4.13: The humoral response to nOMVs recognizes multiple immunogens 
in a dose and route dependent pattern. PAGE was used to separate standard 
proteins (first lane of each membrane) and structures in 10µg of Drmp nOMVs 
(second lane of each membrane) by molecular weight. Structures were then transferred 
to PVDF membrane and each membrane was individually probed with pooled immune 
sera (1:1000 concentration in 10% non-fat dry milk in PBS solution) from all mice in a 
given treatment group. The treatment group from which the probing sera was taken is 
indicated above each membrane. Bound vaccine-induced nOMV specific IgG was 
visualized using Horseradish peroxidase conjugated horse anti-mouse IgG (Cell 
signaling, Cat#7076S) and ECL chemiluminescent solution (GE Healthcare, 
Cat#RPN2232) and captured by Amersham HyperfilmTM (GE Healthcare, 
Cat#28906837). Film was exposed for 60 seconds. The suspected identities, based on 
molecular weight, of three strong immunogens are indicated to the right of the figure 
and are color matched to the highlighting oval. 
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of RMP-deficient nOMV antigen immunogenicity in those mice. The pattern of 

immunogen recognition, as shown by figure 4.13, was highly dependent not only on the 

vaccine dose given, but the route of immunization. All subcutaneously immunized mice 

developed a response against the same ~26kDa protein. For the 0.1µg subcutaneously 

immunized mice this was the only immunogen recognized. This same protein was the 

primary immunogen in the 1µg subcutaneous vaccine group as well as the primary 

protein antigen in the high dose SC group. While this protein cannot be positively 

identified here, its size suggests it may be an Opa protein (Swanson, 1978). While the 

low dose SC group was limited to this one immunogen, both the intermediate and high 

dose SC vaccine groups demonstrated the poly-immunogenic response that we expected 

to see from nOMV immunizations.  

The number of antigenic targets was directly related to dosage with the 

intermediate vaccine inducing a response against 3 antigens and the high dose have a 

complex response against at least 7 different immunogens. At least 2 immunogens were 

shared between the two groups, the ~26kDa immunogen and a high molecular weight 

structure that has a mass around 72kDa. Surprisingly of the subcutaneous vaccine groups, 

the major outer membrane protein P1B, which is highly immunogenic in its soluble form 

(Zhu et al., 2005), was only immunogenic (band around 34kDa) in the high dose group. 

The humoral response induced in the high dose SC group was dominated not by a protein 

antigen, but by LOS. The extremely large smear seen in the 10µg SC immunoblot 

appears to be caused by immune recognition of a small (~10kDa) structure that would 

correspond with gonococcal LOS. The majority of the immunogen recognition by the 
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10µg SC immune-sera was directed against LOS and the Opa-like protein. The other 

immunogens demonstrated significantly weaker signal in the immunoblot. 

The high dose intranasal immunization group displayed a very different response 

than what was seen in SC mice. At least 6 separate immunogens were recognized by the 

immune sera. The two primary immunogens were the ~26kDa protein and a ~34kDa 

protein that is most likely P1B. What makes the 10µg IN induced response different was 

that the minor immunogens were still recognized relatively strongly as compared to the 

minor immunogens of the 1 and 10µg SC mice. Additionally, the immunogenicity of 

LOS appears to be entirely abrogated by IN immunization. This may be a beneficial 

characteristic since gonococcal LOS can undergo significant modification depending on 

environmental conditions (Wetzler et al., 1992a; Yang and Gotschlich, 1996; Lewis et al., 

2015) which could allow the bacteria to avoid an anti-LOS response induced by the 

nOMVs.  

These studies were designed to help determine the optimal dose and route for 

nOMV immunization. We were able to determine that both of these variables have 

significant impact on the magnitude and targets of the induced humoral response. Our 

results show a dose dependent pattern in the magnitude, strength of immunogen 

recognition and number of immunogens in the RMP-deficient nOMV induced anti-

nOMV IgG response. Both 10µg vaccines, intranasal and subcutaneous, were able to 

induce a strong, poly-antigenic anti-nOMV immune response like what we hoped for. 

This is valuable information in the evaluation of the vaccine, however it is recognition 

and binding to the pathogen that is needed to possibly confer protection against infection. 
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Since the 10µg vaccine induced anti-nOMV responses differed in their specific 

immunogen profile by vaccine route, we chose to move forward with the evaluation of 

both IN and SC 10µg vaccines.  

 

nOMVs induce a strong anti-gonococcal humoral response 

One of the inherent benefits of an nOMV vaccine is thought to be the 

concentration of outer membrane structures in their native confirmation (van der Pol et 

al., 2015). This should result in the induction and subsequent boosting of immune 

responses directed towards these externally exposed antigens. Such a response would be 

expected to recognize the same immunogens in the source pathogen upon exposure. 

However, due to the lack of rigorous proteomic structural studies of nOMVs, it is 

possible that during the process of vesicle formation there are modifications made to its 

antigenic cargo that render the induced immune response unable to bind the cellular form 

of the antigen. Using the optimized 10µg dose RMP-deficient nOMV vaccine, we 

investigated the ability of the induced humoral response to bind gonococci. 

Through our previous studies we have shown that IN and SC immunization with 

RMP-deficient nOMVs results in strong but distinct immune responses. The 

subcutaneous immunizations were able to induce greater titers of anti-nOMV IgG in the 

sera and vaginal secretion than IN, however the SC response was dominated by an anti-

LOS response that is potentially non-protective. In contrast, the IN vaccine induced a 

diverse and more balanced response to an array of immunogens. As previously 

mentioned, these two vaccines each present unique benefits and drawbacks and will be 
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evaluated in tandem. Additionally, we decided to examine the response to a mixed route 

vaccine. There is some precedence in the literature that suggests a vaccine that is 

introduced systemically and mucosally in the same animal, can induce an immunological 

profile that contains characteristics of both a SC and IN only vaccine (Plante et al., 2000). 

To test that with our RMP-deficient nOMVs, we included a group of mice that were 

immunized with 10µg nOMV in an intranasal-subcutaneous-intranasal (IN-SC-IN) 

pattern for the 3-injection protocol. 

Using the same protocol as our previous study, 3 injections each separated by 2 

weeks, thirty 9-week old wild-type female C57/BL6 mice were separated into 6 different 

experimental groups as follows: 3 mice SC 3xPBS, 10 mice 3xSC 10µg nOMV, 3 mice 

3xIN PBS, 10 mice 3xIN 10µg nOMV, and 4 mice 10µg IN-SC-IN. Each of the two 

groups with 10 mice were separated into two cages each with 5 mice. Sera was collected 

from each mouse prior to each immunization and 2 weeks after the final injection. 

Vaginal secretions were collected prior to the first and 2 weeks after the final 

immunization. During the study, 3 mice from the subcutaneous 10µg vaccine group 

developed ulcerative lesions on their flank following the first immunization and had to be 

sacrificed on day 18 without receiving additional vaccines. All other mice remained 

healthy and completed the full protocol. To assess the ability of the anti-nOMV responses 

to the various vaccination protocols to bind whole gonococci, we measured binding of 

serum IgG from mice that received all 3 vaccinations in a whole cell ELISA. 
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Following 3 immunizations, there were extremely high serum levels of IgG able 

to recognize and bind whole gonococci (Figure 4.14). Similar to the anti-nOMV 

response, the SC immunization induced greater levels of GC-specific serum IgG than the 

IN immunization. Since the other groups had only one value to observe, statistical 

comparisons cannot be run, however it appears that the mixed immunization protocol 

induced non-inferior levels of GC-specific IgG as compared to SC and greater levels than 

the IN immunization. This suggests that this mixed immunization protocol may be able to 

Figure 4.14: Subcutaneous and mixed route nOMV vaccines induce high levels of 
GC-specific IgG after 3 immunizations. Mice (N=10 for IN nOMV vaccine group, 
N=7 for SC nOMV vaccine group, N=4 for IN-SC-IN group, N=3 for each PBS 
control group) received either nOMVs or PBS via the indicated route three times 
separated each time by a period of 2 weeks. Sera were collected 2 weeks following 
final exposure. Graph depicts concentrations of vaccine-induced GC-specific IgG as 
measured by whole bacteria ELISA. Sera from mice in a single cage was pooled in 
equal volume and evaluated for GC-specific IgG. Bars show mean and SEM for 
calculated GC-specific IgG concentrations in sera pooled from all animals in a 
treatment group or averages for treatment groups split into two cages. Plates were 
coated with wild-type MS11 strain Neisseria gonorrhoeae at a density of 5x106 
gonococci/well. Data was analyzed and graphed in Prism.  



 

 

134 

at least recapitulate the strong systemic immune response of the purely SC vaccination if 

not the mucosal elements of the IN vaccine. With the development of inflammatory 

lesions and early sacrifice of three 10µg SC mice, we were able to examine how the 

primary vaccine response develops beyond the point where we usually induce a 

secondary response. 

 
We were very surprised to see such high levels of GC-specific IgG in the SC and 

IN immunized mice after only 1 vaccine. Even more surprisingly, it appears that the 

adaptive response to the vaccine was still building rather than resolving at day 13 as the 

Figure 4.15: Subcutaneous immunization with nOMVs induces a robust anti-GC 
response even after only 1 immunization. Mice (N=1 PBS D13 and 10µg IN D13, 
N=2 10µg SC D13, N=3 10µg SC D18) were exposed to the indicated vaccine or PBS 
treatment via the indicated route (IN versus SC). On either day 13 or day 18 (as 
indicated in the figure) following exposur, sera was collected and evaluated for 
concentration of GC-specific IgG as measured by whole GC ELISA. Bars show mean 
and in the case of multiple samples, SEM. Plates were coated with wild-type MS11 
strain Neisseria gonorrhoeae at a density of 5x106 gonococci/well. Data was analyzed 
and graphed in Prism. 
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levels of GC specific IgG were even higher at day 18 (Figure 4.15). These results suggest 

that the vaccine induced humoral response is extremely robust without any secondary 

exposure. This may mean a single dose of nOMV vaccine could induce an adequate 

response, at least in magnitude, for protection. 

 

Discussion 

The development of an anti-gonococcal vaccine is a critical public health need as 

we enter an era of antimicrobial-resistant Neisseria gonorrhoeae. While there have been 

intermittent explorations of gonococcal outer membrane vesicles as vaccine antigens, 

none have utilized the necessary Drmp source strain to prevent a host-detrimental anti-

RMP response, and none have focused specifically on the naturally released vesicles 

(nOMVs). In the studies presented here, we report the first isolation, and subsequent 

preliminary characterization of Drmp GC nOMV structure, protein composition, and 

immunostimulatory capabilities that we are aware of. The findings of these studies 

suggest that these vesicles can be isolated with a consistent profile between batches and 

are highly immunostimulatory. Additionally, they are remarkably stable in their 

composition over long periods of storage. 

Through the work of Zielke and colleagues (Zielke et al., 2014), we know that 

nOMVs from any given strain, contain a vast array of antigens. They identified known 

vaccine candidate antigens including P1B, pilis components, iron acquisition molecules, 

drug efflux pumps and several others (Zielke et al., 2014). Although a detailed 

characterization of the Drmp nOMV has not yet been completed, we did show by PAGE 



 

 

136 

that their overall proteome did not appear to significantly differ from that of wild type 

nOMVs. We can then assume that some of these vaccine candidate proteins are present in 

our RMP-deficient nOMVs as well. While these in vitro findings are encouraging, the in 

vivo studies presented here offer the strongest evidence for the potential of Neisseria 

gonorrhoeae Drmp nOMVs as a promising anti-gonococcal vaccine.  

We demonstrated that these particles can induce an extremely robust systemic 

humoral response that not only recognizes the vaccine antigen but binds the whole 

gonococci as well. Additionally, we showed that the anti-nOMV humoral response 

demonstrates the poly-antigenic nature that we believe may be advantageous in inducing 

protective immunity against GC. Our studies did not, unfortunately seem to induce the 

strong mucosal immunity that we hoped. We showed that some mice, following 3 nOMV 

immunizations, had measureable anti-nOMV IgG in their vaginal secretions. Most of 

these mice received subcutaneous immunizations rather than intranasal. This suggests 

that the route of vaccine administration may not be as important to inducing mucosal 

tissue immunity as we had hypothesized. In fact, the greatest measureable level of 

vaginal anti-nOMV IgG was from a low dose SC vaccine hyper-responder. This would 

suggest that a systemic immune directed vaccine may be superior in the induction of 

vaginal IgG. 

The results of our initial optimization experiment are even more interesting in the 

context of our initial observations on the impact of mixed-route immunization protocols. 

In the initial experiment, IN only immunization induced not only a weak mucosal 

response but a weak systemic one as well. In the evaluation of the IN-SC-IN protocol we 
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showed that by including just a single SC immunization we could boost the magnitude of 

the systemic anti-nOMV response to the level of the SC only mice. If the weak anti-

nOMV response observed in the IN-only mice, is due to limited immune engagement 

when delivered via the nasopharynx, a systemic boost could overcome this obstacle. A 

mucosally influenced primary immune response would be preferentially expanded upon 

secondary exposure despite being via SC, and finally reinforced with a third and final IN 

vaccine resulting in strong systemic immunity directed towards mucosally active 

immunogens. This mucosal prime, systemic boost and mucosal finish approach is similar 

to a “prime and pull” method that has been investigated in the field of HIV vaccinology 

with moderate success (Tregoning et al., 2013). While the studies presented here showing 

the strong poly-antigenic immunogenicity of Drmp GC nOMVs are encouraging for the 

vaccine potential of an nOMV GC vaccine, further study of the anti-nOMV immune 

response is needed; particularly with respect to determining protective mechanisms.  

 

Limitations of presented studies 

A major limitation of these studies is the lack of regulation of antigens included in 

the nOMVs. While we show, via coomassie stained PAGE, that the protein banding 

patterns are consistent between isolations, this is far from definitive proof of antigenic 

consistency. The gonococcus is known to be extremely sensitive to changes in the 

environment and that these changes directly impact the expression profile of its outer 

membrane proteins. Even the slightest drop in atmospheric O2 leads to the insertion of 

anaerobic metabolism related membrane proteins into the outer lipid bilayer (Clark et al., 
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1987) and these proteins can be included in released nOMVs (Zielke et al., 2014). A 

similar effect has been described during growth in iron poor media (West and Sparling, 

1985). Of course this potential source of vesicle heterogeneity is minor compared to the 

stochastic expression pattern of the Opa proteins (Muralidharan et al., 1987). We have 

already mentioned the potential for LOS modification leading to alteration of exposed 

epitopes. The goal of this vaccine is to induce a poly-antigenic response, however the 

protective potential of this response is undermined if the majority of the immunogens 

represent transiently expressed proteins or modified forms of proteins. These limitations 

can be addressed first, by the systematic characterization of vesicle associated antigens 

by liquid chromatography mass-spectroscopy (LC-MS). Protein sequencing as well as 

LOS analysis by LC-MC are both well-established quantitative processes that would 

allow us to determine antigenic composition of Drmp nOMVs as well as quantify any 

variation between batches. 

With this knowledge, we would be able to identify whether there are potentially 

unproductive immunogens in the vesicles. For some of these antigens, we might be able 

to limit their impact through genetic modification of the Drmp strain of GC. In the case of 

the Opa proteins, the production of “Opa-locked” strains of GC has been previously 

achieved (Ritter and Genco, 2018). These strains are manipulated so that Opa expression 

is limited to a single isoform, or entirely repressed. In the case of LOS, there have been 

extensive studies on the genetic manipulation of neisserial LOS in order to prevent the 

full construction of the endotoxin (van der Ley et al., 2001). This approach sacrifices the 
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LOS-mediated immunostimulatory capability of the nOMVs however this is only a 

portion of their endogenous adjuvant activity.  

A second limitation to our studies, was incomplete assessment of the mucosal 

antibody responses. The goal of our potential vaccine, and any ideal anti-gonococcal 

vaccine, is the formation of long lived, broadly reactive, mucosally active immunological 

memory. The cornerstone of such a protective immunity is likely to be mucosally 

secreted antibodies. While we presented some data regarding the detection of nOMV-

specific IgG in vaginal secretions, we were unable to reliably quantify the ELISA results. 

An equivalent IgA ELISA was run but the assay had a near total lack of signal (Figure 

4.16).  
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The low or absent levels of antigen-specific antibodies in vaginal secretion may 

be due to protocol and assay insensitivity rather than true absence of a response. The 

process of sampling vaginal secretion by vaginal wash mandates the several hundred-fold 

dilution of secretions by the PBS wash solution. This takes the already relatively low 

concentrations of antibodies, compared to sera (Usala et al., 1989), and dilutes them to 

the point where they become exceeding difficult to accurately measure. There are 

Figure 4.16: Vaginal nOMV specific IgA could not be detected in most samples. 
Mice (N=5 for each nOMV vaccine group, N=4 for each PBS control group) received 
either nOMVs or PBS via the indicated route three times, separated each time by a 
period of 2 weeks. Vaginal secretions were collected 2 weeks following final exposure. 
Graph depicts levels of vaccine-induced nOMV-specific IgA in vaginal secretions 2 
weeks after the final immunization, as measured by nOMV ELISA (measured by 
OD405 absorbance caused by PNPP activation by AP conjugated rat-anti-mouse-IgA 
secondary antibody; Southern Biotech Cat# 1165-04). Samples from mice that showed 
no significant antigen specific humoral response in sera were pooled in equal volume 
while individual samples were evaluated for those treatment groups that showed 
significant antigen-specific sera IgG. Data was graphed in Prism. Limit of detection was 
provided by Southern Biotech. 
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methods of collection that limit the dilution of vaginal secretions, like the extended 

placement of a surgical sponge into the vaginal os. This method requires more time than a 

simple vaginal wash and quickly becomes impractical with large numbers of animals like 

what is needed in studies of vaccine induced host responses. There have been published 

methods that may help with the isolation and measurement of vaginally secreted Ig 

including the repeated extraction of proteins from vaginal mucus. Our failure to extract Ig 

from isolated mucus, instead focusing on Ig within the liquid phase of our wash samples 

likely negatively affected our ability to measure antigen specific Ig. The strong 

association of Ig with vaginal and cervicovaginal mucus is well documented (Fahrbach et 

al., 2013). The optimization of antigen specific Ig ELISAs using human genital secretions 

has been extensively studied (Donadoni et al., 2010) and these methods may help to 

increase the sensitivity of our murine assays. These alterations, along with utilizing a 

more sensitive assay like flow cytometry, Luminex assay or immunofluorescence may 

help us better evaluate and quantify the vaginal secretion of antigen specific IgG and IgA. 

As our work progresses and we are able to examine transgenic male mice and their 

response to GC infection, we may be able to start working towards the assessment of 

their mucosal immune response however there are major technical challenges with this 

approach. 

The development of an ulcerative lesion on 3/10 mice vaccinated SC with 10µg 

nOMVs in one of our immunization studies is concerning. These particles were shown to 

be extremely immunostimulatory. We view this as a potential asset as it eliminates the 

need for an exogenous adjuvant however it does carry the risk of causing destructive 
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inflammation by over stimulation of PRRs. The incidence of this adverse reaction needs 

to be investigated and if found to occur reliably with nOMV injection, an alternate 

formulation is needed. The detoxification of OMVs for use as a vaccine is well described 

with the Neisseria meningitidis vaccine. In that vaccine, the LOS content was determined 

to be too great for safe use in humans, therefore the vaccine was designed around 

detergent extract dOMVs which have significantly less LOS (Granoff, 2010). 

Additionally, the adjuvant, alum, was included which is known to abrogate the toxic 

effect of LOS (Kool et al., 2012). While we believe the use of dOMVs would lead to a 

less protective immune responses to their significant cytoplasmic contaminants, the 

detergent extraction of pre-isolated nOMVs could reduce LOS levels while maintaining 

the nOMV protein profile.  

Another limitation of these studies is that they were carried out in female wild-

type C57/BL6 mice. The transgenic mice presented in chapter 1 and in which in vivo 

protection studies will be carried out, were constructed on an FvB genetic background. 

Our collaborators are currently backcrossing these mice onto the C57/BL6 background 

however they will still be genetically distinct from pure wild-type C57 mice. The strain 

dependent variability in immune response to immunizations is a phenomenon that the 

field of vaccinology has struggled with for decades (Eisenstein et al., 1984). It is likely 

that the immune response to nOMV immunization presented here, will differ from that of 

the transgenic mice, partially due to their distinct genetic backgrounds, but also by virtue 

of their transgenes. We believe that these vesicles contain Opa proteins that are 

conceivably able to interact with the hCEACAMs of the transgenic mice. The 
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implications of this are entirely unknown. Following engagement with hCEACAM3 on a 

neutrophil, the vesicles would likely induce activation of the cell. It is possible that this 

could result in greater innate system response that leads to a more robust adaptive 

response. However, it is just as likely that this could induce a damaging non-specific 

inflammatory response. One possible benefit would be related to antigen uptake in the IN 

immunizations. There have been no studies looking at CEACAM expression in the 

nasopharyngeal epithelia that we are aware of. If they are expressed, it is conceivable that 

nOMV Opa engagement of the receptors could increase antigen uptake following IN 

immunization. 

Many of these limitations are inherent in early in vivo testing of novel vaccines. 

Without known mechanisms of protection, we are forced to make guided hypotheses on 

when, how, and where to look when evaluating the resulting immune response. As we 

move forward, we will refine our methods to overcome the technical problems limiting 

the evaluation of the mucosal response. We will be able to test the vaccine(s) in wild-type 

FvB and finally the transgenic lines themselves to evaluate the impact genetic 

background and hCEACAM expression has on the anti-nOMV response. We feel these 

limitations do not undermine our conclusions presented here, rather they show how much 

further there is to go as we try to understand these complex antigens and their in vivo 

activity. 
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Chapter 5: Implications and Future Directions 

Fully drug resistant Neisseria gonorrhoeae represents a clear and present danger 

to global public health (CDC, 2012). With resistant strains already spreading and causing 

disease (Ohnishi et al., 2011), we are behind in the race to develop a solution to this 

threat. Although new-generation antibiotics have been described and are making their 

way through the regulatory process, these therapeutics, like every other anti-gonococcal 

antimicrobial before them, likely will be rendered useless with time (Unemo and Shafer, 

2014). To adequately and definitively address this emerging “super-bug” a vaccine is 

needed. We feel that the studies presented in this body of work have moved the field 

closer to the realization of this goal. 

In presenting novel models of gonorrhea we have expanded the toolbox that can 

be utilized by the gonococcal vaccine field at large to more rigorously test their 

formulations. This alone marks a remarkable step forward. Perhaps the greatest hurdle to 

the development of an anti-gonococcal vaccine is the lack of understanding the necessary 

mechanisms for protection. The previous model exhibited little infection induced 

pathology and therefore was a poor model to quantify the prevention of that pathology 

(Packiam et al., 2010). Now that we have a model of infection with robust pathology and 

characterized host responses, we may be more able to measure and investigate protective 

mechanisms. Once any amount of protection is described (by quicker bacterial clearance, 

increases in ID50, decreases in inflammatory pathology or other indirect measurements 

of protection), the reverse-engineering of that response to identify a correlate of 

immunity will provide the roadmap for the next evolution of anti-gonococcal vaccines. 
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We think that this initial hint towards a protective mechanism might have already 

been described. It was mentioned previously in this work that an as-of-yet 

uncharacterized partial protection against GC infection was identified in New Zealand 

during epidemiological studies of that country’s recent nation-wide immunization 

program with the Nm group-B OMV vaccine (Petousis-Harris et al.). Although this 

protection is conservatively estimated to be only ~30% effective, this represents the first 

indication of any real-world protective immunity against GC. This immunity appears to 

result from an unintentional cross-reactive effect of the group B meningococcal outer 

membrane vesicle vaccine. Although there is some homogeneity between Nm and GC 

antigens, no such protective cross reactivity has been previously described despite the 

thorough investigation of several proteinaceous Nm vaccine antigens. This leads us to 

conclude that the protection is likely due to an unidentified antigen found in the OMVs. 

This is particularly exciting because this suggests that not only has a potentially 

protective antigen been found, but that a systemic intramuscular immunization is able to 

at least partially induce genitourinary protection.  

The obvious question that arises from cross-reactive response to the Nm OMV 

vaccine is what sort of protection can be induced by a GC OMV? To answer this 

question, first new tools were required. For GC vaccines, unlike Nm, the outer membrane 

protein RMP must be excluded from preparation or else the induced response could result 

in decreased bactericidal activity, which may lead to increased susceptibility to infection 

rather than protection. Prior to the work presented here, no one had reported the isolation 

of OMVs lacking RMP. Not only did we successfully isolate vesicles that lacked RMP, 
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but we optimized a protocol that isolated nOMVs which are known to be enriched for 

outer membrane proteins and relatively free from cytoplasmic components (van de 

Waterbeemd et al., 2013; Zielke et al., 2014). The composition of Drmp nOMVs sets 

them up to be powerful inducers of anti-gonococcal responses against outer membrane 

structures. In fact, we showed here proof of concept results for the immunogenic 

potential for Drmp nOMVs. 

Perhaps the most exciting part of the work that has been presented here, is that it 

represents early steps in a new direction. There will need to be extensive studies on the 

murine host response to GC infection in the context of hCEACAMs as well as other 

human restricted factors, like those that mediate bacterial iron acquisition and immune 

evasion. With greater advances in genetic manipulation of higher order mammals we 

hope to one day examine modeled GC infection in a mouse expressing all of these human 

factors. This would result in the creation of a true biological model of infection rather 

than a phenotypic model. Each of these studies will grow our understanding of how the 

immune system interacts with the gonococcus and how we might create an 

immunological memory that protects against it. Based on these results as well as a better 

understanding of the bacterial transcriptome during infection, we could curate the 

proteome of gonococcal nOMVs so that advantageous antigens are retained and 

extraneous ones excluded. This sort of genetic engineering of vesicles has already been 

done with Nm (Koeberling et al., 2009). Together, this body of work represents steps 

towards a process by which protective mechanisms elucidated in next generation murine 
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models of GC infection are deconstructed to inform and direct the design of the next 

generation of Neisseria gonorrhoeae nOMV vaccines.  
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