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1D valence bond solids in a magnetic field

Adam Iaizzi and Anders W. Sandvik

Department of Physics, Boston University, 590 Commonwealth Avenue, Boston,
Massachusetts 02215, USA

Abstract. A Valence bond solid (VBS) is a nonmagnetic, long-range ordered state of a
quantum spin system where local spin singlets are formed in some regular pattern. We here
study the competition between VBS order and a fully polarized ferromagnetic state as function of
an external magnetic field in a one-dimensional extended Heisenberg model—the J-Q2 model—
using stochastic series expansion (SSE) quantum Monte Carlo simulations with directed loop
updates. We discuss the ground state phase diagram.

1. Introduction
A valence bond solid (VBS) is a long-range nonmagnetic ordered state that can appear in
certain quantum spin systems. In a VBS (also called the spin-Peierls state) spins spontaneously
pair up to form singlets in some regular pattern, breaking lattice translational symmetry but
retaining spin rotation symmetry. Recent innovations in models and simulation techniques have
enabled large-scale numerical studies of this type of ground state and associated quantum phase
transitions. In one dimension, these studies have found evidence for the fractionalization of
triplons into deconfined spinons carrying spin S = 1/2 in the VBS phase [1]. Since lattice
translational symmetry is discrete, the VBS transition is allowed in one-dimensional systems at
zero temperature. We here add an external magnetic field and study its effect on the VBS.

The J-Q model is at its core a sign-problem-free system for studying valence bond solids,
associated quantum phase transitions, and other related phenomena using quantum Monte Carlo
(QMC) methods [2]. It supplements a standard Heisenberg J exchange term with a multispin
interaction composed of a product of two (or more) singlet projection operators,

Pij =
1

4
− ~Si · ~Sj . (1)

Several variants of the J-Q model have been studied extensively in two dimensions [2–7]. The
J-Q2 model has a Q term with two singlet projection operators; its one-dimensional realization
can be written as

H ≡ −J
∑
i

Pi,i+1 −Q
∑
i

Pi,i+1Pi+2,i+3 + h
∑
i

Sz
i (2)

where J,Q > 0 indicate antiferromagnetic interactions. In this paper we will fix J = 1 and use
the dimensionless parameters q ≡ Q/J and h ≡ hbare/J . At zero temperature and zero field the
1D J-Q2 model produces a VBS when q exceeds qc = (Q/J)c = 0.84831 [1].
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2. Methods
The primary computational tools we are using in this work are exact diagonalization of the
Hamiltonian for small systems and a stochastic series expansion (SSE) QMC method for larger
systems. Our QMC simulations are based on the directed loop algorithm for the anisotropic
Heisenberg model in an external field [8], with added procedures to account for the Q term.
Strictly speaking, this is a finite temperature method, but since any finite size system will have
a finite excitation gap, we can reach the zero temperature regime by using a temperature much
smaller than the gap.

3. Results
We begin by showing in Fig. 1 a schematic phase diagram based on previous work and our
own calculations (discussed in more detail below). Along the h-axis, with q = 0, we have the
standard Heisenberg chain in an external field, which undergoes a transition to a fully polarized
ferromagnet at h = hc. Along the q-axis for h = 0 we have the previously studied zero-field
J-Q2 chain, which for q < qc has a quasi-Néel ordered state with spin correlations decaying with
distance r as 1/r (up to logarithmic corrections) [9], and at q = qc undergoes a phase transition
to a VBS [1,10]. This transition is of the same type (similar to a Kosterlitz-Thouless transition)
as in the the well-studied frustrated J1-J2 chain.

Figure 1. Schematic preliminary
phase diagram of the 1D JQh model
in the plane of the coupling ratio q
and magnetic field h.

The area off of the axes of Fig. 1 has not been studied previously. We believe there are
three different phases: a fully polarized state, a partially polarized state with critical XY spin
correlations (like the Heisenberg chain in a magnetic field) and a VBS state. The critical
magnetic field, hc(q), can be quantitatively extracted from data such as those shown in Fig. 5.
In some cases we see clear magnetization jumps, i.e. a first-order transition, but it remains
an open question whether the transition is first-order along the whole line, or only above some
minimum value of q.

The qc line extends out from the known zero-field transition point; the rest of the line depends
on how the VBS is destroyed by the magnetic field. The elementary excitations of the h = 0 VBS
in one dimension are pairs of deconfined spinons. Each pair of spinons arises from breaking one
of the singlet bonds, creating a triplet which fractionalizes into two independently propagating
domain walls between the two possible VBS ordering patterns. We believe that an arbitrarily
low density of such deconfined spinons will destroy the VBS state (using arguments analogous to
the standard ones for breaking of a discrete symmetry by temperature in one dimension, e.g., in
the Ising chain). Thus, the magnetic field required to destroy the VBS should be simply related
to the spin gap.
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Figure 2. Scaled magnetization plotted as a
function of applied magnetic field with q = 1.2
for a wide range of sizes. Computed using
QMC with periodic boundary conditions.
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Figure 3. Scaled magnetization plotted as
a function of applied magnetic field for a
range of different values of q = Q/J . From
the left (solid blue), q = 0.0, 0.1, 0.2... 1.2.
Computed using QMC with L = 140 and
open boundary conditions.

Starting in the VBS phase (q = 1.2) and increasing the magnetic field we observe a jump in
the magnetization. In Fig. 2 we plot the scaled magnetization,

〈m〉 =
2

L

∣∣∣∑Sz
i

∣∣∣ (3)

for 0 ≤ h ≤ 3.2 for system sizes from L = 16 to L = 240. At every size we find the same
behavior: roughly linear response until m ≈ 1/6 followed by a sharp jump to the fully polarized
state. This resembles the so-called metamagnetic transition demonstrated in the anisotropic
J1-J2 chain [11–14].

In Fig. 3 we observe the magnetization jump developing from q = 0, the Heisenberg limit. For
q = 0, the ground state becomes fully polarized at h ≈ 2. There is no jump and m(q, h) should
be continuous in the thermodynamic limit. For small values of q > 0, m(h) becomes steeper,
but based on this data we cannot determine if there is a jump in the magnetization until larger
values of q. As q is increased the jump becomes more distinct and the maximum magnetization
before the jump asymptotically approaches mc(q) → 1/6. Fig. 3 was generated using open
boundary conditions in an attempt to ‘pin’ the structure of the ground state right before the
magnetization jump. No significant differences were observed between results generated with
open and periodic boundary conditions.

To get a better idea of the behavior around this phase transition, we have solved small chains
using exact diagonalization. In Fig. 4 we plot ground state energy of an 18 site chain for each
magnetization sector, E0(h,m) = Emin(q,m)− hm, for a selection of magnetic fields. For each
magnetic field, the black dot shows which value of m is the ground state. For h = 0, we can
see that there is a slight change in curvature at the high magnetization states; this is key to the
transition because it allows the fully polarized state to ‘outrun’ intermediate polarizations when
h is increased. A similar change in curvature was observed in the metamagnetic transition in
the J1-J2 model [12]. This change in curvature appears only for q > 0; it is not a feature of the
Heisenberg model. For h = 2.7, the ground state has a magnetization of m = 0.22; at just a
slightly higher field, h = 2.8, the ground state is fully polarized. The ground state jumps from
m = 0.22 to m = 1 without passing though any of the intermediate states.
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Figure 4. Ground state energy as a function
of magnetization for different values of h
showing either side of the magnetization
jump. Computed using exact diagonalization
for L = 18 and q = 1.2 with periodic
boundary conditions.
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Figure 5. Finite size scaling: critical
magnetic field for q = 1.2 plotted against
1/L. Plotting against inverse system size we
can extract hc in the thermodynamic limit
by taking the y-intercept of a linear fit. We
find hc(L → ∞) ≈ 3 with R2 < 0.999.
Computed using exact diagonalization with
periodic boundary conditions.
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Figure 6. Simulation time hysteresis for a
L = 30 chain with q = 1.2 and β = 8.
• corresponds to a field velocity of v1 =
2.5 × 10−7 in units of magnetic field per
Monte Carlo sweep, ◦ has a faster velocity
of v2 = 10−5. Computed using QMC data
with periodic boundary conditions.

We can also use exact diagonalization to examine the critical magnetic field; in Fig. 5 we plot
hc(q = 1.2, 1/L) for L = 6 to L = 18. From this we obtain a good linear fit which predicts that
hc(L → ∞) = 3 with R2 > 0.999, which is consistent with our QMC data. By repeating this
process over a mesh of q values we find a line consistent with the qualitative picture presented
in Fig. 1.

In Fig. 6, we present QMC data for q = 1.2 and L = 30. The system exhibits hysteresis
when the magnetic field is ramped up and back down, a hallmark behavior in QMC simulations
of a first-order phase transition. For clarity, only two different sweep velocities are shown here;
a finer mesh of sweep velocities revealed a consistent positive relationship between velocity and
the size of the hysteresis effect.
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4. Discussion
The magnetization jumps and hysteresis lead us to believe that the J-Q2 model produces a
first-order transition from a partially magnetized to a fully polarized state. The mechanism for
this transition is currently unknown and is the subject of an ongoing investigation. We suspect
it may bear resemblance to the metamagnetic transition.

We draw these preliminary conclusions from limited data. At low temperature and high values
of q and h our QMC method encounters difficulty reaching equilibrium, especially around the
magnetization jump. This often causes simulations to become stuck in metastable magnetization
states and produce poor estimates of statistical error. As a result, the magnetization curves in
Figs. 2 and 3 are not very smooth.

We are currently developing a replica exchange method (also known as “quantum parallel
tempering”) we hope will ameliorate this problem. Replica exchange was developed for
simulating classical systems with slow relaxation times [15] and has since been adapted for
use with quantum systems [16]. Despite equilibration issues, we are reasonably confident in our
preliminary results and the conclusions we have drawn from them, since repeated independent
simulations produce data that match to within small statistical noise.

This project is part of a larger plan to study the J-Q-h model in two dimensions. The
simulation methods developed for one-dimensional systems should work with few modifications
in two dimensions.
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