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ABSTRACT 

Surface-Enhanced Raman Scattering (SERS) has the potential to be a rapid 

disease diagnostic platform. SERS is a well-known ultrasensitive, label-free method for 

the detection and identification of molecules at low concentrations. The Raman cross-

sections are primarily enhanced by plasmonic effects for molecules close to (< 5 nm) the 

surface of nanostructured metal substrates. Due to the unique Raman vibration features 

that provide molecular signatures, we have shown that SERS can provide a rapid (< one 

hour), label-free, sensitive and specific diagnosis for a number of diseases. This work 

demonstrates the capability of SERS to be an effective optical diagnostic approach, in 

particular, for bacterial infectious diseases such as urinary tract infections (UTI) and 

sexually transmitted diseases (STD), and cancer cell identification. More specifically, this 

work demonstrates the ability of SERS to distinguish different vegetative bacterial cells 

with species and strain specificity based on their intrinsic SERS molecular signatures. 

With the exception of C. trachomatis - the causative agent of chlamydia - whose SERS 

molecular signatures are found to be aggregated proteins on the cell membrane, all 

bacterial SERS molecular signatures are due to purine molecules resulting from nucleic 

acid metabolism as part of the rapid onset of the starvation response of these pathogens. 
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The differences in relative contribution of different purine metabolites for each bacterium 

gives rise to the SERS strain and species specificity. The ability of SERS to distinguish 

cancer and normal cells grown in vitro based on changes of SERS spectral feature as a 

function of time after sample processing is also demonstrated. Furthermore, the 

difference of spectral features on the gold and silver SERS substrate of the same bacteria 

can be used as additional attribute for identification. This work demonstrate the potential 

of SERS platform to provide antibiotic-specific diagnostics in clinical settings within one 

hour when combined with a portable Raman microscopy instrument, an effective 

enrichment procedure, multivariate data analysis and an expendable SERS reference 

library with drug-susceptibility profile for each bacterial strain determined a priori, as 

well as the ability of SERS platform as a powerful bioanalytical probe for learning about 

near cell membrane biochemical processes.  
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1. Introduction 

Surface Enhanced Raman Scattering (SERS) arises from the resonant excitation 

of localized surface plasmons which enhance the local fields close to (< 5 nm) the surface 

of nanostructured metal surfaces. Raman scattering enhancements, typically of the order1 

of ~104 – 108  provided by surface plasmon resonance effects allow SERS to be a 

sensitive molecular spectroscopy for detection and identification of molecules at low 

concentrations (~ µM range) without the need of fluorescent labeling at least for 

molecules that are very near the metal surface. The electromagnetic and the chemical 

mechanisms that account for the SERS enhancement, which lead to the advantages of 

SERS as label-free, easy-to-use, sensitive and specific optical biosensor for biomedical 

applications, are summarized in this introductory chapter.  

 

1.1 – Theory of Surface Enhanced Raman Scattering (SERS) 

SERS was discovered, though not recognized at that time, by Fleischmann et al.2 

in 1974 who observed intense Raman scattering from pyridine adsorbed onto a roughened 

silver electrode surface, which couldn’t be explained simply by an increased molecular 

concentration on the roughened electrode. Since then SERS effect has been observed for 

many molecules adsorbed onto the surface of metals with a variety of morphologies and 

local chemical environments. Silver, gold and copper3 are the common choices of metal 

for SERS substrate. These metals contain lots of free electrons and we will see 

mathematically how this property lead to large enhancement of the Raman Scattering 

signal.  The large electric field enhancement results from metal surfaces that are 
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roughened on the nanoscale, which could be single or aggregated colloidal metal particles, 

etched metal surface, metallic nanoparticles deposited onto glass surface by evaporation 

or sputtering and arrays of nanoparticles created by lithographic techniques as examples.3  

SERS differs from normal Raman spectroscopy in several ways. For examples, 

there are no strong correlation between the Raman and the SERS spectrum of the same 

molecule as the Raman selection rule do not fully apply to SERS. It’s not uncommon to 

observe forbidden Raman modes in the SERS spectrum.  The intensity of bands observed 

falls off with increasing frequency, for example C-H stretches tend to be relatively weak 

in SERS.3 In addition, fluorescent background which is problematic especially in Raman 

spectrum of hydrocarbon molecules is effectively quenched by energy transfer to the 

metal surface.  

The signal enhancement mechanism of SERS was proposed independently by two 

groups of researchers Van Duyne et al.4 and Creighton et al.5. Van Duyne et al. proposed 

an electric field enhancement of the Raman Scattering for molecules in close proximity to 

the metal surface due to the presence of localized surface plasmon resonances, while 

Creighton et al. believed the broadening of the electronic state of the molecule due to the 

interaction with the metal surface resulted in the large Raman scattering cross-sections. 

As will be shown, both theories are correct conceptually but not in detail. 
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1.1.1 - The Electromagnetic Enhancement Mechanism of SERS 

 
Figure 1-1  Schematic representation of plasmonic oscillation (re-created based on6) 

 
In this theory the electric field of the incident and the scattered light are enhanced 

by the electromagnetic field from the plasmonic resonance.7 A plasmon is the collective 

oscillation of the electron cloud of a metal when excited by an incident electromagnetic 

wave. The excitation of the resonant oscillation of conduction electrons at the interface of 

the nanostructured metal surface is called a surface plasmon. This excitation can be 

propagating, such as on the surface of a grating, or can be localized, such as on the 

surface of a spherical metal nanoparticle. For a simple description of SERS, we will focus 

on the latter case. If the incident direction of propagation of the electromagnetic wave 

relative to the spherical nanoparticle is along the z-axis, as shown in Figure 1-1, then the 

electric field outside of the sphere Eout can be expressed as,  

𝐸"#$ = 𝐸&𝑧 − 𝛼𝐸&[
,⃑
-.
− /,

-0
(𝑧𝑧 + 𝑥�⃑� + 𝑦�⃑�)]                                                      Equation 1  

The first term is the electric field of the incident electromagnetic wave, and the second 

term is the dipole moment induced by the polarization of the electron cloud of the metal 

sphere. r is the radial distance and  𝑧𝑧, 𝑥�⃑�, 𝑦�⃑� are the Cartesian coordinates of the induced 
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dipole which can be neglected at a distance very close to the surface of the sphere. The 

polarizability of the electron cloud of the metal α is described as,  

𝛼 = 𝑔𝑎/ and 𝑔 = :;<:=
:;>?:=

                                                                                      Equation 2 

where a is the radius of the metal sphere, ε0 is the dielectric constant of the medium 

around the metal particle, and εi is the dielectric constant of the metal.  

 The displacement of the electron cloud from its equilibrium position is maximized 

when the frequency of the incident electromagnetic wave matches the intrinsic frequency 

of the collective plasmon oscillation, i.e. at the plasmonic resonant frequency. Excitation 

at near the plasmonic resonance wavelength greatly increases the local field experienced 

by a molecule adsorbed onto the metal surface. Mathematically, plasmonic resonance 

occurs when 𝑅𝑒(𝜀C) = −2𝜀&, which means Eout will be very large if α is large. This is the 

reason metals such as gold and silver are able to provide good enhancement to Raman 

Scattering with visible/near-infrared excitation, because they have free electrons that 

make the real part of εi a large negative value and the imaginary part to be very small.  

The value of the real part of εi will dictate the resonance frequency, while the imaginary 

part will apply to the loss of the resonance. As shown in Equation 2, the plasmonic 

resonance condition depends on the dielectric constant of the surround medium ε0, 

therefore the plasmonic condition of a metal nanoparticle can be modified by changing 

the dielectric of the external environment, e.g. addition of salt.  

It’s clear from Equation 1 that the electric field strength falls off with radial 

distance r from the metal surface as 𝐸"#$ ∝ 	
G
-.

 . The SERS intensity depends on the 
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absolute square of Eout2 evaluated on the surface of the sphere (r = a). From Equation 1, 

this is given as, 

𝐸"#$? = 𝐸&?[|1 − 𝑔|? + 3 cos? 𝜃(2𝑅𝑒(𝑔) + |𝑔|?)]                                             Equation 3 

θ is the angle between the incident field direction and the location r on the sphere surface.  

At resonance when |𝑔| is large, Equation 3 can be simplified as 𝐸"#$? = 𝐸&?|𝑔|?(1 +

3 cos? 𝜃). This means the field intensity is largest when the angle θ is either 0° or 180°, 

i.e. along the polarization direction. The ratio between the largest and smallest field 

enhancement as a function of θ is 4.  

It’s important to note that the surface plasmon will not only excite the incident but 

also the scattered field. A physical way to look at the field enhancement by plasmonic 

resonance is the metal particle acts as an antenna that amplifies both the incident and the 

scattered light. Therefore the overall electric field enhancement will need to consider 

both the incident and the scattered field enhancements,  

𝐺P =
QRSTU QRSTVU

Q=W
= 16|𝑔|?|𝑔Y|?                                                                              Equation 4 

where the primed symbols refer to fields for the scattered light. For Stokes shifts at lower 

frequency, |𝑔|? and |𝑔Y|? is maximized at approximately the same wavelength, then the 

enhancement will be about g4.4 This may also help to explain why SERS intensity 

typically fall off for highest frequency modes. At higher frequency the plasmonic 

resonance can excite either the incident or the scattered field but not both, resulting at 

lower overall SERS enhancement. 3   
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1.1.2 - The chemical enhancement mechanism of SERS 

 
Figure 1-2  The energy level diagram for a model adsorbed on a metal surface. The HOMO and 
LUMO molecular orbitals of the molecule are broadened by their interaction with the metal states. 
The charge-transfer excitation is indicated by the arrow. 3 

 The primary evidence suggesting the presence of a second SERS enhancement 

mechanism independent of the electromagnetic enhancement comes from the observation 

that nitrogen-containing molecules have stronger SERS intensities than other molecules 

under the same experimental condition. This observation is difficult to explain by the 

electromagnetic enhancement mechanism alone because this mechanism should be 

chemically nonselective. A second line of evidence supporting a second enhancement 

mechanism comes from the electric potential-dependence of Raman intensity as observed 

in Fleischmann’s experiment.2 The chemical enhancement mechanism suggested by 

Creighton et al. 5 offers an explanation for this chemical selectivity of SERS. In this 
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mechanism, the electronic states of the adsorbed molecule are broadened due to 

interaction with the metal surface and new electronic states can also be created by 

combining with the metal states (“charge-transfer”), causing a shift of the electronic 

transitions of the molecule  (usually from UV visible region).  Both processes are 

illustrated in Figure 1-2. As discussed above, both the electromagnetic and chemical 

mechanism offer partial explanation but neither theory offers a complete picture of SERS.  

  

1.2 – The Advantages of SERS 

It’s easy to see from Equation 4 why SERS is a sensitive method: a modest 

increase in the local electric field of 10 – 100 produces an overall Raman enhancement 

that scales as E4 or approximately a 104 – 108 amplification at the surface plasmon 

frequency. When SERS is coupled with the electronic resonance effect the combined 

enhancement can allow detection of a single molecule. 8  Additionally, the narrow Raman 

scattering spectral features make possible for precise determination of a molecular 

identity because vibrational motions are intrinsic markers of the molecule itself. Different 

molecules in a mixture can be simultaneously detected and identified because each 

molecule has unique narrow spectral signatures. As seen in later discussions, this 

multiplexing capability will allow us to accurately determine the composition and relative 

concentration of each component in complex biological samples to be determined. Since 

the localized plasmonic enhancement requires molecules to be at close proximity to the 

nanostructured metal surface, SERS is a useful tool for studying biochemical processes 

occurring at near-cell-membrane extracellular region as well as cell membrane 
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components when living cells are placed on a nanoparticle substrate. Potential 

interferences from water at near-infrared excitation frequencies have minimal impact on 

the SERS spectrum because water has a weak inherent Raman scattering cross-section.  

This is a particular beneficial property for studying biological systems especially relative 

to IR vibrational techniques. Since Raman depends on the inherent vibrational motions of 

samples for identifying characteristic signal, , no extrinsic labeling as often employed in 

fluorescence studies of biological systems is required. Furthermore, the fluorescent 

background which can sometimes be problematic in Raman spectroscopy, particularly for 

biological systems, is minimized as mentioned above by energy transfer to the metal 

surface.  

In the next few chapters, the advantages of SERS as label-free, easy-to-use, rapid, 

sensitive and specific disease diagnostic platform with multiplexing capability are 

demonstrated. Specifically, the potential of SERS platforms is demonstrated for urinary 

tract infection, sexually transmitted diseases and cancer diagnostic are discussed. These 

diseases are chosen for SERS study because they are some of the most common health 

concerns worldwide and result in billions of dollars in healthcare costs. It is shown that 

the SERS platform can find molecular biomarkers that identify the causative agents of 

bacterial infectious diseases and distinguish normal and tumorigenic cells which are 

grown in laboratory environment. At the same time we will also use SERS to study the 

biochemical process that lead to the observation of these biomarkers on the SERS 

spectrum. These proof-of-concept experiments show the ability of SERS as a novel 
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biosensor for these diseases as well as a powerful bioanalytical probe for studying 

extracellular metabolomics.  

 

2. SERS Diagnostic Platform: Urinary Tract Infections 

2.1 - Prevalence and Significance of Urinary Tract Infections 

Urinary tract infection (UTI) is one of the most common types of bacterial 

infection in human evident by the appearance of large amounts (≥ 105 cfu/mL, colony 

forming unit) of bacteria in mid-stream urine.9 UTI is among the leading reasons for 

primary care medicine treatments. 10, 11 Approximately 50% of all women will have UTI 

at least once in their lifetime, about 20% will have a recurrent UTI and large portion of 

this group will turn into chronic UTI. 11,12 UTIs pose a heavy burden to the health care 

system. In the US alone, UTIs are responsible for more than 7 million doctor’s office 

visits and over one million hospital admissions, at a cost of ~$1 billion per year. 13,14,15  

UTI is also one of the most common hospital-acquired infections, responsible for up to 

35% of nosocomial infections.16 

Among the causative bacterial strains for UTI, Escherichia. coli is the 

predominant bacterial species accounting for up to 70% of UTI clinical presentations.10  

Other common UTI pathogens include Staphylococcus saprophyticus (5-10%), Klebsiella 

pneumoniae (4-7%), Proteus mirabilis (4-5%), Pseudomonas aeruginosa, and 

Enterococcus faecalis.10,16,17  A mid-stream bacterial count of 105 cfu/mL (colonies 

forming unit/mL) in free collection urine is used as indication of UTI in symptomatic 
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patients and the recommended level for antibiotic treatment.9 Amid the growing concern 

of antimicrobial resistance, more drug-resistant bacterial strain are associated with UTI 

cases, such as the discovery of fluoroquinolone-resistant E. coli strains, extended 

spectrum beta lactamase (ESBL) E.coli, K. pneumoniae, and other Gram-negative strains 

as well as the increasing resistance to the combined trimethoprim/sulfamethoxazole 

antibiotic by many UTI strains.18,19,20 The number of antibiotics available for successful 

treatment has been significantly reduced due to these growing trends of drug-resistance.  

 

2.2 - Overview of Current UTI Diagnostic Methods 

The current UTI diagnostic method can be summarized into two categories: 

nonculture and culture methods.  Examples of non-culture methods are urine microscopy, 

the nitrite test and the leukocyte esterase test.21 In the urine microscopy method bacteria 

cells are counted after being fixed with Gram stain in the patient’s urine sample. The 

presence of bacteria in urine can also be detected indirectly by the amount of leukocyte 

cells in the urine sample which will increase dramatically in immune-response to an UTI 

episode.22 Both tests are simple and the cost per test is low.  However both tests are 

insensitive to low bacteria concentration (≤ 105 cfu/mL), and a first-void urine sample 

with two hours incubation time in the lab is required for both tests to work properly.23  

Alternatively bacteriuria can be detected through a nitrite test that measures the chemical 

conversion of nitrite to nitrate by bacterial activity in the urine sample. The nitrite test is 

the basis for commercially available dip-strip test. The nitrite test is susceptible for 

members of the Enterobacteriaceae family,22 but its usefulness is limited because nitrite 
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production is not associated with other common UTI-causing pathogens such as the S. 

saprophyticus and the Pseudomonas species.24 Moreover first-void urine and ~4 hours 

incubation time is necessary for bacterial conversion of nitrate to nitrite to reach 

sufficient level for detection.22 The leukocyte esterase test utilizes the hydrolysis of ester 

substrate by esterase released by neutrophils.25 The esterase test detects esterase from 

both the intact and lysed leukocytes, but the test can yield false positive results when the 

urine is contaminated with bacteria from the vaginal fluid which naturally contain 

esterase or containing eosinophils or the Trichomonas species.22 These non-culture tests 

are simple, inexpensive and easy-to-use, but they detect the presence of bacteria through 

indirect measurement and thus provide no information about the species or strain identity, 

essential for establishing the antibiotic susceptibility profile required for drug prescription, 

or the quantity of the causative pathogen which can help monitor drug efficacy and 

disease progression.  

The advances of genotyping-based techniques such as nucleic acid amplification 

tests (NAAT) allow more rapid molecular-based approaches and offer the advantage of 

high sensitivity and specificity compare to other non-culture detection methods. However, 

the high sensitivity and specificity of NAAT could mean false positive due contamination 

by exogenous sources of DNA.26,27 The need for matching genetic primers and the 

requirement of a laboratory setting can be problematic for NAAT as point-of-care 

diagnostic method.28,29 

Bacteria culturing, on the other hand, is the current gold standard method for UTI 

diagnosis. It remains the only method that provides information about bacterial strain 
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identity, quantity and antibiotic susceptibility simultaneously in patient urine sample.22  

However this method typically required 24-48 hours incubation time for bacterial growth, 

and even longer incubation required for antibiotic susceptibility determination. The long 

incubation time is the major drawback especially when recurrent or chronic infections are 

suspected and multiple urine samples from the patient are needed for definitive 

diagnosis.30 As a result of this long waiting period, physicians are often resort to 

prescribing broad spectrum antibiotics based on patient symptoms, which has 

significantly contributed to infective treatment, increased care cost and the rising 

occurrence of multi-drug resistant bacterial strains.18 Therefore, a rapid diagnostic 

method that provides microbial identification and drug susceptibility within the time 

frame of a patient presenting at a clinic (<1 hour) is urgently needed to allow appropriate 

use of narrow spectrum antibiotics. Rapid diagnostics is also cited as a critical need to aid 

the clinical development of new antibacterial drugs.31  

 

2.3 - Introduction of SERS-based UTI Diagnostic Platform 

SERS is an attractive candidate for bacterial diagnostics because it is a rapid, ease-

to-use, information-rich method that does not require additional labeling procedures for 

identification purposes. SERS arises from the well-known Raman cross-section 

enhancement effect on molecules close to (< 5 nm) the surfaces of nanostructured metal 

substrates. Since Raman vibrational features are uniquely dependent on molecular 

structure, precise determination of the molecular identity from a SERS spectrum is 

possible. It’s also possible to identify different molecular components in a mixture in a 
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single spectrum based on the unique narrow vibrational signatures of each component, 

which is essential for analyzing biological mixture.   

SERS spectra of laboratory-cultured bacterial cells have been reported over the 

past fifteen years.32,33,34,35,36 The use of SERS as a novel approach to rapid, growth free 

UTI diagnostics has been proposed in several previous studies.37,38,39,40,41,42 In these 

studies clinical isolates or bacterial species known to cause UTI are cultured in standard 

growth media and SERS signatures are obtained.  In a previous study it was shown that a 

group of six E. coli clinical isolates grown in bacterial growth media can be distinguished 

by their SERS spectra when combined with multivariate classification algorithm.38 This 

study also demonstrated that the potential of SERS to provide strain specificity. In nearly 

all of these bacterial SERS studies, the major vibrational bands of the observed bacterial 

spectra are attributed to components of the outer bacterial cell wall structures, such as 

peptidoglycan, lipids, lipopolysaccharides or membrane proteins and nucleic acids.  

Our efforts in the laboratory have been resulted in development of a SERS-based 

UTI diagnostic platform with the advantages of speed and ease-of-use with the potential 

to be a point-of-care diagnostic device. A crucial component of the SERS UTI diagnostic 

platform is a gold nanoparticle covered silica substrate which results from a metal ion 

doped sol-gel procedure which are used here for the acquisition of highly sensitive and 

robust SERS spectra of vegetative bacterial cells with 785 nm excitation.34 After the 

acquisition of the bacteria SERS spectra a multivariate analysis “barcode” procedure 

based on the sign of the spectral second derivative as a function of the scattered 

wavelength are applied to allow rapid determination of the bacterial strain identity.43 



 

14 

Furthermore, in contrast to the usually reported molecular origin of these SERS spectra 

being attributable to cell wall structures, we have shown that the dominant molecular 

species contributing to the 785 nm excited SERS spectra of bacteria are the metabolites 

of purine degradation: adenine, hypoxanthine, xanthine, guanine, uric acid and AMP44. 

These molecules result from the starvation response of the bacterial cells in pure water 

washes following enrichment from nutrient rich environments.  

  In contrast to previous SERS UTI studies described above, our primary objective 

is to determine if high quality SERS spectra can be obtained from UTI causative bacteria 

grown in human urine and to demonstrate these obtained SERS spectra can provide 

growth-free species and strain specificity when combine with multivariate classification 

algorithms. We show that our SERS-based UTI diagnostic platform can identify the 

bacterial strain grown in the urine sample at clinically relevant concentration (105 cfu/mL) 

in less than a one hour time frame.  Twelve UTI clinical isolates with previously 

determined antibiotic susceptibilities are used in this study, hence successful SERS-based 

classification will also provide growth-free determination of antibiotic susceptibility or 

resistance for this set of organisms. In addition, a prototype procedure for bacterial 

enrichment from urine is developed as part of the SERS UTI diagnostic platform. The 

molecular origins of the bacterial SERS signature will be discussed as well. The success 

of the rapid SERS UTI diagnostic platform will make possible the administration of 

appropriate narrow spectrum antibiotics, earlier initiation of appropriate therapy and 

better real time monitor of treatment efficacy for patients with UTIs.   
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2.4 - Methods and Materials 

Bacterial samples and preparation.  The twelve bacterial strains used in this study (see  

 and Table S-7-2) were donated by BD® Life Sciences and were all isolated from clinical 

urine specimens. Their antimicrobial susceptibility profiles were determined by the BD 

Phoenix™ Automated Microbiology System45 prior to these SERS investigations and are 

summarized for a range of antibiotics (See Table S-7-1 and Table S-7-2).  These samples 

include strains of two Gram-negative bacteria, Escherichia coli (6 strains) and Klebsiella 

pneumoniae (2 strains), and two Gram-positive bacterial species, Staphylococcus 

saprophyticus (2 strains) and Enterococcus faecalis (2 strains).  

All twelve bacterial strains were grown in freshly collected human urine that had 

been previously processed to remove solid materials. To prepare the processed urine, first 

or second urine of the day from anonymous healthy donor was collected (100 mL) into 

two 50-ml sterile centrifuge tubes and centrifuged at 10,000 rpm (Eppendorf® 5805) for 

20 minutes at (18 °C).  After centrifugation, the pellet at the bottom is discarded and the 

supernatant urine is transferred to sterile containers. The optical density (OD600nm) of the 

supernatant urine is recorded and is used to compare with the OD after spiking with 

bacteria to verify the urine collected is initially free of bacterial cells.  Then 10 mL of the 

supernatant urine are transferred from the container to a sterile test tube. Approximately 

three loops (~ 30 µL) of overnight bacterial culture grown in tryptic soy broth (BD®) are 

inoculated into this urine supernatant and allowed to grow to OD of 0.1. The bacterial 

concentration at this OD is determined by serial dilution to ~107 cfu/mL (See Appendix 

8.2). 0.5 mL of this ~107 cfu/mL urine culture are spiked into about 50 mL of the 



 

16 

remaining urine supernatant and incubated for 30 minutes at room temperature.  

To isolate the bacterial cells from the spiked urine sample, the urine sample is 

centrifuged at 10,000 rpm for 20 min and the resulting bacterial pellet is quantitatively 

transferred to a 2 mL micro-centrifuge tube. The bacterial pellet is then washed with 0.5 

mL of ice-cold distilled water four times and centrifuged for 1 minute at 10,000 rpm 

between each washing cycle. Washing in ice-cold water will ensure consistent 

synchronization of bacterial stress response for each experiment. This centrifuging-

washing procedure will result in a final enriched concentration of ~108 cfu/mL in a 

volume of ~50 µl. For the subsequent SERS spectra acquisition, 1 µL of the enriched 

sample is pipetted onto the SERS active substrate and allowed to air-dry for about 5 

minutes. This procedure was repeated for all twelve bacterial strains. The total time for 

sample enrichment to placement on the SERS substrate for Raman acquisition was ~40 

min.   

 

Figure 2-1 The overall workflow of the SERS UTI diagnostic platform for recovering E. coli 
BD6594 cells grown in spiked, unprocessed urine from anonymous healthy donor.  
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In another set of SERS measurements, bacterial cells from one of the twelve UTI 

bacterial strains, E.coli BD6594, were spiked into non-processed, i.e. non-centrifuged 

urine which thus contain natural sedimentary materials. The amount of the natural 

sedimentary material, which consists of whole cells and cell debris from the lining of the 

urinary tract and inorganic crystals,46 is approximately 1-2 mL in 50 mL urine from 

anonymous healthy donor and may be more in real UTI patient samples due to presence 

of white blood cells.22 Therefore, the centrifugation method mentioned above alone will 

not be sufficient to consistently recover all bacterial cells from the urine sample. Hence 

for this proof-of-concept experiment a differential filtration scheme was developed to 

remove these sedimentary materials while retaining the bacterial cells, as shown in Figure 

2-1. About 10 mL of the urine from anonymous healthy donor is inoculated using 

overnight E.coli BD6594 bacterial culture in tryptic soy broth and allow to grow to an 

OD of 0.1. Then 0.5 mL of the inoculated urine is spiked into 50 mL non-processed urine 

from the same donor to bring to concentration of bacterial to 105cfu/ml. Meanwhile, a 

four-stage gravitational filtration system with decreasing pore size is assembled as shown 

in the figure. The filters used in the system are 30, 10 and 5 micron Nylon mesh filter 

(Cole-Palmer®). Three sterile 50 mL conical centrifuge tubes are obtained and their 

bottoms are cut off. The mesh filter are capped at the bottom of the conical centrifuge 

tube and secured by tape and parafilm to prevent leaking. Then the three centrifuged 

tubes are stacked on top of each other in the order of decreasing pore size. In addition, 

~200 mg of glass wool is added to the bottom of the first tube to complete the four-stage 

filtration system. To use the four-stage filtration system to recover the bacterial cells, the 
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50 mL bacteria spiked urine sample is slowly pour into the system and the filtered urine 

is collected after the 5 micron mesh into a sterile 50 mL centrifuge tube. The subsequent 

steps of the bacterial enrichment procedure are identical to that for the processed urine 

samples described above. The total preparation time using this procedure is still around 

~40 minutes since the filtration step takes ~1-2 minutes. This procedure was not carried 

out for all twelve bacterial strains because a new four-stage filtration system needs to be 

re-constructed for each new sample. However an analogous re-usable 

filtration/centrifugation scheme like this can be developed for a SERS UTI diagnostic 

system for real-world clinical samples. This prototype apparatus is intended to 

demonstrate how bacterial cells can be enriched and recovered from un-processed urine 

for successful acquisition of SERS spectra at clinically relevant concentrations as shown 

below.  

SERS active substrate All SERS spectra are obtained using an in-situ grown, 

aggregated gold nanoparticle covered SiO2 substrate developed in our laboratory.34 

Characterization and performance of these SERS active substrate have been previously 

described and characterized.34, 43, 44,47,48,49,50 These substrates are produced by a two-stage 

reduction by sodium borohydride of an Au3+ ion doped sol-gel that results in small (1-10 

particles) aggregates of ~80 nm diameter gold nanoparticle covered SiO2 substrate.  

Figure 2-2 shows the SEM image of the gold SERS active substrate. Ag+ doped sol-gels 

can also be prepared by this methodology. 

SERS spectra acquisition Bacterial SERS spectra are acquired by an RM-2000 

Renishaw® Raman microscope employing a 50x (infinity-corrected, 0.75 numerical 
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aperture) objective and 785 nm excitation. Incident laser powers of ~ 0.45 mw and ~10 

seconds of illumination time are typically used to obtain the reported bacterial SERS 

spectra.  The illuminated Raman excitation field of view is ~30 µm x 2.5 µm. The 520 

cm-1 band of a silicon wafer is used for frequency calibration. Typically ten spectra per 

sample range from 200-1800 cm-1 were obtained for each experimentally reported 

bacterial spectrum. The peak frequency precision is ± 0.5 cm-1. Spectral acquisition took 

less than 10 min. The acquired SERS spectra are averaged and baseline-corrected with 

GRAMS® (Thermo®). The SERS spectra are normalized and plotted by MATLAB® 

(r2013b) and the spectra are displayed vertically offset for clarity.  

 

Figure 2-2 Scanning electron microscopy (SEM) image of the gold SERS active substrate 
showing the gold nanoparticle aggregate covering the surface of the substrate.  
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Data analysis  Classification by multivariate machine-learning algorithm is an 

important component of our SERS UTI diagnostic platform. Machine-learning algorithm 

allow rapid processing and information gathering from large amount of spectral data and 

can be used to identify unknown spectra based libraries built from previously collected 

data. In this analysis, a partial least square – discriminant analysis (PLS-DA) algorithm 

was used to achieve bacterial strain identification based on SERS spectra. The PLS-DA 

algorithm is part of the PLS toolbox (v7.3.1) developed by Eigenvector Research, Inc. 

(Seattle, WA) based on MATLAB® (r2013b) platform. A polynomial fitting function in 

MATLAB® was employed to remove broad variable baseline features from individual 

SERS spectrum. A previously developed barcode methodology43 based on the sign of the 

second derivative of the baselined SERS spectra as a function of scattered wavelength 

converts all baselined spectra into a barcode, a series of “1”’s or “0”’’s, which are the 

input vectors to the PLS toolbox. This combination of barcode and multivariate 

classification algorithm results in greater sensitivity and specificity for this SERS-based 

spectral classification technique.    

 

2.5 - Results and Discussion  

SERS spectra of bacterial strains grown in filtered urine  

SERS spectra of twelve bacterial clinical isolates grown in filtered urine and 

diluted with urine to 105 cfu/mL are shown in Figure 2-3. The shaded area indicates ± 

one standard deviation of the averaged intensity of each spectrum. Six strains of E.coli, 

and two strains each of S. saprophyticus, K. pneumoniae and E. faecalis are shown in this 
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figure and color coded by species. Each spectrum is an average of ~10 individual SERS 

spectra acquired on our gold SERS active substrate. All spectra exhibit excellent S/N as 

seen on this figure. As already indicated, the total time for acquisition of the SERS 

spectra of bacteria from spiked processed urine sample is ~40 minutes, and the bulk of 

this time is spent on the sample enrichment and centrifugation steps in this bench-top 

prototype procedure. Figure 2-3 demonstrates the ability of our SERS UTI diagnostic 

platform to obtain high quality SERS spectra from enriched bacteria sample which are 

grown in spiked urine within one hour time-frame. Furthermore, this figure shows that 

our SERS platform has the ability to report UTI cases with bacterial concentration below 

105 cfu/mL which is the current clinical definition.  
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Figure 2-3 SERS spectra of twelve UTI clinical isolate grown in processed urine.  The shaded 
area indicates the standard deviation for each spectrum.  

 As seen in Figure 2-3, with the exception of the two S. saprophyticus strains, the 

differences between the SERS spectra of the E.coli, K. pneumonia and E. faecalis strains 

are greater than the difference between the strains of a given species. A number of 

vibrational bands are common among these bacterial spectra, such as the strong band in 

the 725-735 cm-1 region in all spectra as well as the 660 cm-1, 960 cm-1, 1240 cm-1, 

1315cm-1, and 1450 cm-1 bands. The molecules contributing to these vibrational bands 
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will be discussed shortly. Comparing Figure 2-3 with the drug susceptibility profile in 

Table 4-1 and in Table S-7-2 shows that there are no clear correlation between the SERS 

spectra similarity and the drug susceptibility profile. However, a larger dataset is needed 

to definitively determine the relationship between SERS spectral similarity and the drug 

susceptibility.  

Molecular origin of SERS signal and species/strain specificity  

In our previous reports of SERS spectra of vegetative bacterial cells44, 48, 49, 50 we 

found that virtually all observed vibrational features could be assigned to the spectral 

contributions of six purines molecules: adenine, hypoxanthine, xanthine, guanine, uric 

acid and AMP. The presences of these molecular species in our bacterial SERS spectra 

are attributed to the nucleotide metabolic degradation pathway due to the rapid onset of 

the bacterial starvation response. These molecules are secreted by the bacterial cells to 

the extracellular regions near the outer cell membrane in rapid response to being in a 

nutrient-depleted environment. The identity of these molecular components have been 

determined by isotopic labeling, model compound studies, bacterial supernatant studies, 

gene knockout studies, enzyme reactant effects and mass spectrometry.44,51 In the UTI 

bacterial SERS spectra we also found that nearly all the vibrational bands can be assigned 

to these six molecules with the addition of another purine molecular component, 

guanosine, identified here. Each of the bacterial strain spectra in Figure 2-3 is best-fit by 

a linear combination of these seven purine components and is shown in Figure 2-4 and 

Figure 2-5. The linear coefficient of the best-fit for each strain is given in Table S-7-5. 

The normalized SERS spectra of the seven purine compounds are shown in Figure S-7-6 
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and are used for this best-fitting procedure. Nearly all vibrational features in the bacteria 

spectra are captured in the calculated, best-fit spectra. Each bacterial spectrum has 

different amount of these purine components and the different relative contributions of 

each purine molecule is the intrinsic biomarker for the identification of the bacteria via 

this SERS diagnostic platform. To visualize the relative contributions of these seven 

purine molecular components to each bacterial spectrum, a bar graph showing these best-

fit determined relative amounts (in Table S-7-5) is shown in Figure 2-6. This figure 

shows that each species has a different reproducible mixture of purine molecules 

contributing to its spectrum. For example, adenine and guanosine are the largest and 

second largest contributors respectively to the E. faecalis spectra, but for E. coli the two 

largest molecular components are hypoxanthine and xanthine. This difference in main 

purine contributors between these two species give rise to the species specificity observed 

with SERS. Furthermore, strains of a given species have similar composition of these 

seven purines, but the amount of each purine is not identical. For example, E.coli 

BD6594 spectrum has more hypoxanthine contribution than xanthine contribution, while 

for the E.coli BD6880 spectrum xanthine contributes more than hypoxanthine. The 

differing amount of these purine components within the same species give rise to the 

strain as well as species specificity of SERS, as well as a basis for the successful 

classification and diagnostic capability  by multivariate analysis methods.   
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Figure 2-4 best fits (red) resulting from a linear combination of various amounts of the seven 
purine molecule SERS spectra to the observed (blue) SERS spectra of the six E.coli bacterial strains.  
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Figure 2-5  best fits (red) resulting from a linear combination of various amounts of the seven 
purine molecule SERS spectra to the observed (blue) SERS spectra of each of S. saprophyticus, E. 
faecalis and K. pneumoniae strains. 
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Figure 2-6 the relative contribution of each of the seven purine molecules to each bacterial 
spectrum is summarized in this bar graph. The numerical value is shown in Table S-7-4 PLS-
DA classification sensitivity and specificity for twelve UTI bacteria SERS spectra. 
 
 
 

 

2.6 – Introduction to linear regression machine-learning methods for 

strain identification from SERS spectra of an unknown sample  

A partial least square (PLS) statistical method (Eigenvector Research Inc., Seattle, 

MA) was used to construct a predictive model based on the SERS spectra of the twelve 

UTI bacterial strains. A set of SERS spectra for a bacterial strain of an unknown identity 

grown in unprocessed urine (i.e. not centrifuged prior to spiking with bacterial cells) was  
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used  to test the predictive model to see if the model can correctly identify the strain and 

hence offer antibiotic-specific diagnostic capability.  

Introduction to Linear Regression  

Scientific research often involves using controllable and/or easy-to-measure 

variables (factors) to explain or predict the behavior of other variables (response). If there 

are only few factors which are not significantly redundant (collinear) and a well-

understood relationship exists between the factors and the response, a linear regression 

can be a good way to gather as much information from the dataset of interest as possible. 

Most of the time the primary objective for a researcher is merely identifying the most 

important factors and use them to construct a good predictive models. For example, the 

multiplexing capability of SERS allows the estimation of the amount of different 

chemical components in a UTI bacterial spectrum as shown in Figure 2-6. In this case the 

factors are the data-points that comprise the SERS spectrum; they are numbered in the 

thousands but are highly collinear. The response are the chemical components 

contributing to the SERS spectra of a particular UTI bacterial strain that we want to know 

and use as unique signature to indicate the presence of this strain in future samples.52   

Partial least squares (PLS) is a method for constructing predictive models when the 

factors are many but highly collinear. PLS was developed in the 1960’s by Herman Wold 

as an econometric techniques, but quickly found use in chemical engineers and 

chemometricians. In principle, linear regression can be used when the number of factors 

is very large. However, not every one of these factors are needed to construct a good 

predictive model; there are only few important underlying factors that account for most 
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of the variation in a set of SERS spectra. The goal of PLS is to try to extract these few 

important underlying factors, or so-called latent variables (LV) that account for as much 

variation in the spectral dataset as possible. In this sense PLS bears some resemblance to 

principle component analysis (PCA) since both methods aim to find the important 

variables to describe the spectral dataset.  

How does PLS works 

Figure 2-7 Schematic Outline of PLS method.52 

Figure 2-7 shows a schematic outline of the 

PLS method. In this application, the sample will be 

the SERS spectra of each of the twelve UTI 

bacterial strains and the population will be the 

SERS spectra acquired from an unknown urine 

sample. The overall goal (shown in the lower box) 

is to build a model that uses the most important 

factors (latent variables) gathered from the samples 

to predict the response when applying to the 

population. This goal is achieved indirectly by 

extracting latent variables T and U from the factors and response, respectively, in the 

sample. The extracted factors T (also known as X-scores) are used to predict the extracted 

factors U (also known as Y-scores) and the predicted Y-scores are used to construct 

prediction for the responses in the sample. After confirming the robustness of the 

constructed prediction through cross-validation, this prediction model can be used to 

predict the response from the population.53 
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The importance of the cross-validation process 

 Cross-validation is a very important and useful tool in the classification process 

which serves two critical functions: (1) to assess the complexity of a model, i.e. is the 

number of latent variable being utilized to build the model large enough to capture 

sufficient variance from the dataset and (2) to provide an estimate of performance when 

the model is applied to unknown data. In other words, the cross-validation process is a 

“quality-control” step for the classification model. For any given dataset the cross 

validation process is a series of experiments (called sub-validation experiments) that 

starts with the removal of a subset of spectra from the dataset to form a test set, then 

construction of a model using the remaining objects in the dataset and application of 

resulting model to the objects in the test set. In this way each validation experiment 

involves testing the model with objects that are not used to build the model. Typically the 

cross-validation process involves more than one sub-validation experiments.  

The success of any cross-validation process relies on unbiased selection of test sets 

objects. Therefore several different cross-validation methods are available depending on 

the size of the dataset, and these cross-validation methods differ in how the test set 

objects are selected.  Each cross-validation method has two most important parameters, 

the splits and the iterations. The split is the total number of test sets that will be created 

and the iteration is how many times the sub-validation experiment is performed. The 

value of splits must be smaller than half of the total number of objects in the dataset, i.e. 

the number of test objects per sub-validation experiment = total number of object in data 

set/splits. For the UTI bacterial spectra dataset which consist of 150 spectra from the 12 
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strains, we employed random subsets with 27 splits and 21 iterations. These numbers are 

chosen such that there are at least 2 spectra from each of the twelve strains that 

participate in the cross-validation process.  

Using barcoded spectra as input vectors improve sensitivity and specificity 

Using the spectral second derivative-based barcodes (curvature up = 1; curvature 

down = 0) instead of the first or the raw spectra as input vectors for multivariate 

classification has been shown to results in improved sensitivity and specificity for 

bacterial strain identification.43 In this study each individual UTI bacterial SERS spectra 

is converted into barcode, or an array of one and zero based on the sign of the second 

derivative at each wavenumber. The use of barcode effectively minimizes classification 

errors due to broad baseline contributions and intensity variability between individual 

spectra resulting from the SERS substrate and all sources of biological sample 

inhomogeneity.   

Building PLS-DA predictive model with twelve UTI bacteria SERS spectra 

The result of cross-validated PLS-DA classification is shown in Figure 2-8. The 

choice of 24 LV corresponds to a number after which additional LV does not improve 

classification quality, as evident from plotting the cross-validated root mean square error 

(RMSECV) against each LV as shown in Figure S-7-1. The corresponding confusion 

matrix is given in Table S-7-3 and the sensitivity and specificity for each bacterial strain 

is shown in Table S-7-4. The analytical sensitivity (true positive rate) and specificity (true 

negative rate), averaged over all 12 classes, is 95.8% and 99.3% respectively, for this 

classification model. The average classification error for the model is just 2.3%. This 
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result demonstrates the potential for SERS spectra bacterial strains grown in urine to 

serve as a rapid (less than one hour) diagnostic at clinical concentrations.   

 

Figure 2-8 Result of a cross-validated PLS-DA classification of the SERS spectra of the twelve 
bacterial strains grown in and enriched from processed urine. The horizontal dashed line is the 
model threshold.  

 

Application of constructed PLS-DA model for diagnostic test of unknown UTI 

strain in unprocessed urine 

To test the robustness of the PLS-DA classification model using the SERS spectra 

of these twelve UTI bacteria strain grown in processed urine, a set of SERS bacteria 

spectra for one of the UTI clinical isolate, E.coli BD6594 grown and enriched in non-

processed urine is supplied to the classification as unknown. As described previously the 

urine sample used for growing this bacteria strain was not subject to prior solid material 

removal via centrifugation. The bacteria grown in this urine is enriched with the four-
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stage filtration/centrifugation system described in Figure 2-1. The resulting SERS 

spectrum is shown in Figure 2-9 and is compared to the SERS spectrum that result from 

spiking this strain into processed urine which had solid material removed by 

centrifugation prior to inoculation. Two spectrum are nearly identical.  

 

Figure 2-9 SERS spectra of different growths of E. coli BD6594 grown and enriched from 
unprocessed and processed urine. 

However, when twenty SERS spectra of these bacteria grown in unprocessed urine were 

converted into barcode and inputted as unknowns into the PLS-DA classification model 

(Figure 2-8) developed with the spectra for the twelve strains of bacteria grown in 

processed urine, the classification correctly predict E. coli BD6594 as the most probable 

bacterial strain for all twenty spectra shown in Figure 2-10. The entire procedure from 

enriching bacteria grown in unprocessed urine to correctly classify is accomplished in ~ 

50 minutes. Thus with this successful identification and with the previously determined 

drug susceptibility for this strain, our rapid spectroscopic diagnostic platform would 
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allow the physician to know which antibiotics would be effective for this patient’s UTI 

condition within one hour. Such a result would have taken more than 48 hours via the 

gold standard, cell growth procedures.   

 

Figure 2-10    Using the PLS-DA model constructed with SERS spectra of twelve UTI bacterial strain 
grown in processed urine, a set of twenty spectra of an unknown bacterial strain grown in 
unprocessed urine is correctly identified as E. coli BD6594.   

 

2.7 - Conclusion 

The results shown in this chapter demonstrate the capability of the SERS platform 

to be a rapid (< 1 hour), growth-free technique for diagnosis of UTI, and when combined 

with an a priori developed library of antimicrobial susceptibility profile for each strain, 

our SERS platform can provide strain-specific identification at clinically relevant 

infection levels which is crucial for determining the best antibiotic treatment for the 

patient. UTI diagnosis with strain identification and antibiotic specificity at 105 cfu/mL 
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level can be achieved in less than an hour via the SERS platform accurately, 

characterized by >95% sensitivity and >99% specificity even in this relatively small 

library of 12 UTI clinical UTI bacterial isolates. The SERS spectra of these bacterial 

strains grown in urine are shown to be primarily due to purine components: adenine, 

hypoxanthine, xanthine, guanine, AMP, uric acid and guanosine. The species and strain 

specific SERS signatures are due to different amount of these purine components secreted 

by the bacterial cells to the surrounding extracellular region instead of cell wall 

components as reported in many literatures previously.  The observation of purine 

metabolite as main molecule contributing to the SERS spectra in these UTI clinical 

isolates is consistent with our previous report regarding SERS spectrum from vegetative 

bacteria88. The differences in relative contributions of these purine metabolites giving rise 

to the SERS strain specificity are resulted from the absence or presence of specific 

enzymes in the purine degradation pathway as previously reported.88  

While these proof-of-principle results shows promise for developing a low-cost, 

rapid optical approach for antibiotic-specific, strain-specific UTI diagnosis, several 

challenges needed to be addressed before clinical adoption. These challenges including 

development of a low cost or reusable device for bacterial cell enrichment and separation 

from other solid urine matters. The prototype filtration system needs to be rebuilt for each 

sample to avoid cross contamination. Also more bacterial strains with antibiotic 

susceptibility profile pre-determined are needed to be added to the SERS library to ensure 

sufficient range of potential UTI pathogens. In summary, the results discussed in this 
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chapter demonstrate the potential of a SERS based technology to be developed into a 

rapid, growth-free, low-cost UTI diagnostic with strain specificity.    

 

2.8 - Extended study: Time evolution of UTI bacteria SERS signature  

Figure 2-6 shows that purine metabolites secreted by the bacterial cells to the 

surrounding extracellular region are the molecular basis for the species and strain SERS 

specificity of the UTI causative bacteria. Therefore it would not be surprising that the 

relative contribution of different purine metabolites could have a post-washing time 

dependence, since the bacterial starvation response is a multicomponent dynamic process. 

For the SERS UTI diagnostic perspective it’s also important to know how these changes 

of relative contribution affect the spectroscopic features that allows the distinction 

between different bacterial strains. In other words, the timing at when the SERS spectra 

are acquired will be important post sample washing if there are time-dependent spectral 

features change. On the other hand, these time-dependent spectral feature changes can 

serve as additional identification of the bacterial strain. All the previously discussed UTI 

clinical isolate spectra were acquired at the same post-washing time (20 min).   

Figure 2-11 and Figure 2-12 show the SERS spectra as function of time post 

washing of two of the twelve UTI E. coli strains, E. coli BD6880 and E. coli BD7023. In 

both bacterial strains the SERS spectral features appear as early as 10 minutes post 

washing, but in both strains the contribution of guanine continue to increase as evident by 

the relative ratio between the  ~725 cm-1 and the ~665 cm-1 band, corresponds to the 

unique peak of hypoxanthine and guanine respectively. As shown in the bar plot in 
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Figure 2-6, the main difference that allow distinction between these two strains is the 

difference in the relative contribution of guanine (0.07 and 0.21, respectively).  

 
Figure 2-11 SERS spectra of E. coli BD6880 as a function of time post washing. The increasing 
contribution of guanine evident from the increasing intensity of the ~ 665 cm-1 band is indicated by 
the vertical dash line.  

 
Figure 2-12 SERS spectra of E. coli BD67023 as a function of time post washing. The increasing 
contribution of guanine evident from the increasing intensity of the ~ 665 cm-1 band is indicated by 
the vertical dash line.  
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3. SERS Diagnostic Platform: Sexually Transmitted Disease 

3.1 - Chlamydia and Gonorrhea – the Silent Killer 

Sexually transmitted diseases (STDs) continue to be a significant cause of 

morbidity in the US with ~ $15.9 billion spent annually on healthcare costs related to 

their diagnosis and treatment.54  Chlamydia, the most common sexually transmitted 

disease (STD) in the US, is caused by infection from the Gram-negative bacterium C. 

trachomatis.55 More than 1.5 million cases of Chlamydia were reported to the Center for 

Disease Control and Prevention (CDC) in 2015, an increase of nearly 6% over 2014, with 

twice as many cases reported for woman than men. Recent CDC data also demonstrate an 

increase of reported Chlamydia infections in Europe, rising from 191,000 in 2004 to 

385,000 in 2013.56  About 1 in 15 sexually active young women in the US between the 

ages of 14 and 19 have already been infected once with chlamydia.57 Although most 

patients with chlamydia are asymptomatic, and hence these numbers may underrepresent 

the prevalence in the population,58 long-term, untreated chlamydia infection can lead to 

severe consequences such as pelvic inflammatory disease, a major cause of infertility, 

ectopic pregnancies and chronic pelvic pain in women.57,59  Chlamydia has been shown to 

increase the risk of HIV transmission and infection60,61 and perinatal transmission may 

result in conjunctivitis, pharyngitis and pneumonia in newborns.62, 63 In addition, C. 

trachomatis is the cause of trachoma, a major cause of preventable blindness in 

developing countries in Asia and Africa.64,65  

The C. trachomatis organism is an obligate intracellular Gram-negative bacterium 

requiring an epithelium host cell to complete its life cycle.66 It lacks the enzymes for 
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many biosynthetic and metabolic pathways, including ATP production and degradation, 

and consequently, must rely on the infected host for many nutrients and energy.67 This 

bacterium has a complex bi-phasic developmental cycle which involves a metabolically-

active and noninfectious form called reticulated body (RB) and a metabolically-inactive 

but infectious form called an elementary body (EB). Following invasion of epithelial 

cells, the EBs are converted to RBs, the intracellular replicating form of this organism. 

Approximately 20 hours after infection and after multiple divisions by binary fission, the 

RB starts to differentiate into the EB developmental stage and 48-72 hours later the 

infectious EBs are released to initiate new rounds of infection.70 Like other Gram-

negative bacteria, the C. trachomatis cell membrane is comprised of an outer and an inner 

membrane separated by a peptidoglycan layer. However, uniquely to C. trachomatis is 

the presence of an unusually thin peptidoglycan layer that normally filled up the space 

between the outer and the inner membrane in other Gram-negative bacteria. Instead, a 

protein layer, termed major outer membrane protein (MOMP) is present in that space. 

MOMP is a highly disulfide cross-linked protein that provides additional structural 

reinforcement against osmotic pressure effects68,69,70 and also acts as an anchor for many 

“accessory” protein such as those for antigen recognition and entry to host cell.70,71,72,73 

Gonorrhea is the second most commonly reported STD in the US, with ~400,000 

cases reported in 2015 and results from infection by the Gram-negative bacterium N. 

gonorrhoeae. After decades of decreasing reported rates had reached an all-time low in 

2011, the prevalence of gonorrhea in the US has shown a steady increase in the last five 

years.55  Patients with gonorrhea are often asymptomatic until complications arise such as 
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pelvic inflammatory disease, ectopic pregnancy and infertility. Untreated gonorrhea can 

also lead to disseminated gonococcal infection (DGI) when N. gonorrhoeae spreads to 

the blood or other parts of the body. 74,75 In addition, as also found for C. trachomatis, 

gonococcal infections have been shown to facilitate the transmission of HIV infection.76 

The emergence and spread of multi-drug resistant N. gonorrhoeae strains is an 

increasingly recognized problem for effective treatment of gonorrhea.55,77 Furthermore, 

~30% of patients infected with N. gonorrhoeae are co-infected with C. trachomatis.78 

Consequently, patients treated for gonococcal infection are often routinely treated with an 

antibiotic regimen that is effective against C. trachomatis infection as well.79  

 

3.2 – Current Chlamydia and Gonorrhea Diagnostic Methods 

Direct detection of C. trachomatis and N. gonorrhoeae can be achieved by culture 

and non-culture methods. Cell culture method, long the reference standard for chlamydia 

and gonorrhea diagnosis, requires specialized culture medium and culture conditions, 

skilled staff for the technically-demanding procedures and is very slow (≥ 72 hours), 

making it virtually impossible for routine and point-of-care diagnostics.80,81 Similarly, N. 

gonorrhoeae is also a fastidious organism requiring enriched media in a CO2 atmosphere 

for lab cultured growth for ≥ 48 hours. Alternatively, non-culture methods include 

enzyme immunoassay (EIA) which detects the chlamydial lipopolysaccharide or the 

major outer membrane protein (MOMP), and direct fluorescent antibody stain (DFA) are 

available and had largely replaced the cell culture method as standard diagnostic methods 

for chlamydia and for gonorrhea.81,82,83 Nucleic acid amplification tests (NAAT) are the 
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current best technology recommended by the CDC for the detection of chlamydia and 

gonorrhea.81 NAAT is a growth-free diagnostic offering sensitivity and specificity 

comparable to culturing with a faster turnaround time.84 However, the susceptibility to 

cross-contamination from exogenous genetic material, cost, inability to distinguish 

bacterial viability (i.e. live vs. dead cells), the presence of inhibitory factors and the need 

for experienced technicians in laboratory settings, which necessitates a second clinical 

visit for some patients, are limitations for the NAAT approach.58, 85 , 86  Given the 

asymptomatic nature of many chlamydia and gonorrhea infections, screening is 

recognized as the most effective approach for reducing the societal and personal impact 

of these diseases.81,84 Thus, the development of alternative, low-cost, easy-to-use, rapid, 

point-of-care approaches for the detection and simultaneously differentiate C. 

trachomatis and N. gonorrhoeae in clinical setting and in a useful timeframe (≤ one hour) 

for narrow spectrum antibiotic drug prescription remains a critical strategy for improving 

reproductive and sexual health worldwide.  

Here, we report for the first time on the potential ability of SERS to provide rapid, 

growth-free, detection and identification of the Chlamydia and gonorrhea etiological 

agents, C. trachomatis (EBs) and N. gonorrhoeae. The SERS spectra of these bacterial 

cells are studied as a function of nanoparticle metal (Ag and Au), sample concentration 

and time from sample enrichment.  The molecular and biochemical origins of the SERS 

vibrational signatures of these two Gram-negative microorganisms are found to be very 

different reflecting their significantly distinct bacterial lifestyles.  These results will be 

compared and contrasted to our previous SERS studies, and in terms of our fundamental 
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understanding of the interaction of bacterial cells and metal nanoparticles.  The prospects 

for the development of a SERS based platform for rapid (< one hour), low-cost STD 

diagnostic are promising given the data presented here.   

 

3.3 – Materials and Methods 

SERS active substrate All SERS spectra reported here were obtained using in-situ 

grown, aggregated Au or Ag nanoparticle covered SiO2 substrates previously developed 

in our laboratory.34 Details concerning the production and description of these SERS 

active chips, and the characterization of their performance for providing reproducible 

SERS spectra of bacteria have been described in previously.34,43,44,47,48,49,50,87,88,89.  These 

nanostructured substrates result from a two-stage reduction of a metal ion doped sol-gel, 

producing small (2 – 15 particles) aggregates of monodispersed ~80 -100 nm Au or Ag 

nanoparticles covering the outer layer of ~1 mm2 SiO2 substrate.  The SEM images of the 

aggregated Au or Ag nanoparticles on the SiO2 substrate are shown in Figure 3-1 and 

Figure 2-2.  

 

 
Figure 3-1  SEM image of the aggregated Ag nanoparticles-covered SiO2 substrate. 
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In vitro cultivation of C. trachomatis C. trachomatis D/UW-3/CX (VR-885) was 

obtained from American Type Culture Collection (ATCC®, Manassas, VA). The McCoy 

cell line, CRL-1696, (ATCC®) was used as the host cell. McCoy cells are grown in 

minimal essential medium (MEM) containing 10% fetal bovine serum (ATCC®) in a 

humidified incubator at 37 °C and 5% CO2 until 90%-100% confluent. After the McCoy 

cells are infected a special maintenance medium is prepared with the following 

ingredients: 90 mL DMEM (Life Technologies®), 10 mL fetal bovine serum (ATCC®) 

and 1 µg/mL cycloheximide (Sigma®). Addition of cycloheximide inhibits the growth 

the host cell and allows nutrients to be directed to the proliferating C. trachcomatis cells. 

The procedure for C. trachomatis in vitro cultivation and harvest is described in 

Appendix 8.4. The harvest C. trachomatis are aliquoted and stored in Hank Balanced Salt 

Solution (HBSS) at -80 °C.  

Processing C. trachomatis cells for SERS spectral acquisition   To prepare C. 

trachomatis for SERS spectra acquisition, an aliquot (100 µL) is removed from -80 °C 

sample supply and quickly thawed at room temperature (< 30 seconds). The sample is 

then centrifuged at x23,000g (Eppendorf®) for 4 minutes at 4 °C and the HBSS 

supernatant is removed after centrifugation. The pellet at the bottom, which mainly 

consists of C. trachomatis EBs and a small amount of RBs, is washed four times with 10 

µL ice-cold deionized water each time. Between washes the sample is centrifuged at x 

23,000g (Eppendorf ®) for 4 minutes at 4°C.  The chlamydial EB has a layer of disulfide-

bonded protein at its membrane as compare to other Gram negative bacteria,68,69 while 

the RB has fragile cell membrane and will not be able to withstand the osmotic pressure 
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from pure water. Therefore the RB will be lysed and removed during the washing process, 

leaving only EBs behind. After the last wash, the pellet is dispersed in 5 µL ice-cold 

deionized water by pipetting and vortexing. For acquisition of SERS spectra, 1 µL 

sample is added to the SERS active substrate and air-dried for 5-10 minutes.  

Processing N. gonorrhoeae cells for SERS spectral acquisition    N. gonorrhoeae 

(FA1090) is obtained from ATCC®. The agar medium is chocolate II agar plate with 

IsoVitaleX® enrichment and is commercially available (BD®). The cultivation and 

harvest procedure for this bacterial strain is described in Appendix 8.3. To prepare the 

bacterial cells for SERS spectra acquisition, the harvested bacteria are placed in a 2 mL 

micro-centrifuge tube containing 0.5 mL ice-cold deionized water immediately after 

being stripped off from the plate. The bacteria are washed four times with 0.5 mL ice-

cold water and centrifuged at x4500g at 4 °C between each wash.  After last wash the 

bacteria pellet is dispersed in about 50 µL ice-cold water by vortexing. The amount of 

bacteria in this 50 µL sample is determined to be ~ 107 ifu/mL by serial dilution and 

overnight culture.  1 µL sample is added to the SERS active substrate and air-dried for ~ 

5 minutes before spectral acquisition.  

SERS spectral acquisition and data processing  All SERS spectra reported here were 

acquired with an RM-2000 Renishaw Raman microscope employing a 50x (infinity-

corrected, 0.75 numerical aperture) objective and 785 nm excitation. Incident laser 

powers of ~ 3.3 mw and ~10 seconds of illumination time were used to obtain the 

reported bacterial SERS spectra. Typically ten spectra per sample were obtained for each 

experimentally reported spectrum. Spectral acquisition took less than 10 min.  The 
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illuminated Raman excitation field of view was ~30 µm x 6 µm. The 520 cm-1 band of a 

silicon wafer was used for frequency calibration. Peak frequency precision is ± 0.5 cm-1. 

The acquired spectra are averaged and baseline corrected with GRAMS® (Thermo®). 

The SERS spectra are normalized and plotted via MATLAB® and the spectra are 

vertically offset for clarity.  

 
3.4 – Results and Discussion 

Differentiation of C. trachomatis and N. gonorrhoeae by vibrational signatures on 

gold and silver SERS active substrates 

SERS spectra of C. trachomatis and N. gonorrhoeae on the gold and silver 

nanoparticle covered SiO2 SERS substrates excited at 785 nm are shown in Figure 3-2.  

 
Figure 3-2   Compare C. trachomatis (top) and N. gonorrhoeae (bottom) SERS spectra on the 
gold and the silver substrate.  
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Three important points are illustrated in this figure. Firstly, N. gonorrhoeae and C. 

trachomatis can be clearly distinguished from each other through their spectral features 

on the gold and silver SERS active substrates right after sample washing (t = 0 min). This 

means these two bacteria can be distinguished as soon as a washed sample is placed on 

the substrate and a SERS spectrum is acquired on either the gold or the silver substrate. 

Secondly, this figure shows that the SERS spectra of the same bacteria can be quite 

different on different metal substrates. For example, the SERS gold spectrum of C. 

trachomatis is dramatically different from its SERS silver spectrum, and the overall 

intensity and S/N ratio for the silver spectrum is much weaker than the gold spectrum. On 

the gold spectrum three broad vibrational features center around ~1550 cm-1, ~1200 cm-1 

and ~ 900 cm-1 are observed. These three broad features are not observed on the silver 

spectrum; instead discreet, narrower vibrational bands are seen. On the other hand, the 

SERS gold and silver spectrum of N. gonorrhoeae is relatively similar. The overall signal 

intensity for the gold and for the silver spectra are also similar. Thirdly, N. gonorrhoeae 

and C. trachomatis display different time-dependent signal intensity and spectral feature 

changes on both metal substrates, which can be used as additional revenue to distinguish 

these two bacteria. On the gold substrate C. trachomatis shows a decrease of overall 

signal intensity by 80% over the course of one hour while on the silver the signal 

intensity remains relatively constant. On the other hand, prominent spectral feature 

changes can be seen on both the gold and the silver spectra for N. gonorrhoeae, example 

by the disappearance of the ~ 1030 cm-1 band at t = 60 min spectra and the blue shift 

from 733 cm-1 to 736 cm-1. These time-dependent signal intensity and spectral features 
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changes will be discussed below. Figure 3-2 powerfully demonstrates the prospect of the 

SERS methodology as a label-free, growth-free, rapid diagnostic method with potential 

in-clinic use when combining a portable instrument and an effective bacterial cell 

isolation and enrichment procedure from patient samples. Consequently, a physician can 

arrive to a diagnostic decision in ~40 min, with most of this time is spent on sample 

preparation in the current prototype procedure. In contrast the current non-culture 

genotype-based techniques required ~2-4 hours sample preparation time in laboratory 

setting before obtaining results.55,56,57,58 Moreover, the physician will also be able to 

distinguish a chlamydia infection from a gonorrhea infection through comparison of the 

SERS gold and silver spectral features from one isolated bacterial cell sample. This is 

valuable because up to 40% patients infected with chlamydia are also infected with 

gonorrhea, and the current diagnostic methods require the test for gonorrhea to be 

performed before test for chlamydia to avoid cross-contamination and false negative.55,58  

 The sensitivities for C. trachomatis and N. gonorrhoeae on the gold and silver 

substrates are shown in Figure S-7-2 and Figure S-7-3, respectively. Serial dilution on 

washed bacteria sample was performed to determine the sensitivity. Quantitation of 

bacterial cells in undiluted sample was determined through serial dilution and overnight 

cell culture growth and colony counting. For C. trachomatis the lowest concentration of 

EBs to yield a SERS signal on the gold and silver substrates was determined to be ~ 

5x104 ifu/mL and ~102 ifu/mL, respectively. For comparison, the chlamydial loads 

determined by genotype-based techniques in first-void urine specimens in infected patient 

range from ~101 to 105 EB/mL, and ~104 EB/mL for vulvo-vaginal swabs as reported in  
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clinical studies.90,91 Therefore the sensitivity of our SERS substrates for the chlamydial 

EB falls within the range of typical EB concentration found in patient samples. For N. 

gonorrhoeae the lowest concentration to yield a SERS signal on the gold and silver 

substrate is ~106 cfu/mL. For comparison, N. gonorrhoeae loads found in urine in 

infected patient range from ~104 - 106 in these studies. 92,93 Thus, our SERS sensitivity 

for N. gonorrhoeae is at the upper limit of the clinical concentration.  However ~106 is 

the concentration of enriched bacteria, and with effective enrichment procedure such 

concentrations can be achieved as demonstrated above for the UTI samples.   

In summary, we have demonstrated the advantages of ease-to-use, multiplexing-

capability, specificity and sensitivity with our SERS methodology for potentially point-

of-care diagnostic of C. trachomatis and N. gonorrhea, the causative agent for the two 

most common sexually transmitted diseases worldwide. The ability to distinguish these 

two bacteria using differences in the vibrational features on gold and silver SERS 

substrates is shown. In the next section we will discuss the molecular origins of these 

vibrational features as well as the observed spectral feature changes. Understanding 

molecular mechanism behind these is crucial not only to explain the SERS observations, 

but also to demonstrate the potential of SERS to be a powerful bioanalytical probe for 

understanding dynamic biological activity of these bacteria at the molecular level.   

 

The identities of the molecules contributing to the SERS spectra  

 The location (i.e. extracellular vs. intracellular) of the molecules contributing to 

the SERS spectrum provides information on the identity of possible molecular candidates 
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that are responsible for the observed SERS signal. To understand where these SERS 

molecular contributors are for the N. gonorrhoeae SERS spectrum, we compared the 

SRES spectrum on the gold and the silver substrate acquired from the cells and from the 

supernatant surrounding the cells. The sample are centrifuged at t = 0 min (immediately 

after washing), 30 min and 60 min post-washing and a portion of the supernatant is 

removed from the bacterial cells. The supernatant SERS spectra are compared to the cell 

spectra acquired at the same time point.  

 

Figure 3-3 Gold and silver SERS spectra comparing the signal from N. gonorrhoeae cell and 
from the unfiltered supernatant fluid around the cell as a function of time post sample processing.  

As shown in Figure 3-3, initially (t = 0 min) the molecules contributing to the N. 

gonorrhoeae spectra are located on the bacterial cell. At t = 30 min spectral features start 
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to appear in the SERS spectra of the supernatant. This implies that molecules are 

beginning to be secreted into the supernatant and providing the SERS spectrum of N. 

gonorrhoeae. At t = 60 min molecules contributing to the SERS spectrum are located on 

both in the supernatant and on the cell spectra, but the change of the spectral features, 

notably the disappearance of the ~1030 cm-1 band and the blue-shift 733 cm-1 to 735 cm-1, 

indicates that a different set of molecules are dominating the SERS spectrum at t = 60 

minutes, as compare to t = 30 minutes. The observation that SERS spectra are dominated 

by molecules secreted by bacterial cells has been previously reported by the Ziegler 

lab,34,47,48,49,50,87,88,89 Bacterial SERS spectra have been attributed  to seven purine 

metabolites secreted by the bacteria to the surrounding as a response to the stress or 

starvation conditions.  Best-fitting the observed bacterial spectra to a linear combination 

of these purine molecular component spectra44,88,89 is used to determine the relative 

contribution of these seven purine metabolites in each bacterial spectra. In this STD study 

we use the same best-fit calculation method to decipher the identity and relative 

contribution of the key SERS molecular contributor for each time point and for the gold 

and the silver SERS spectrum, as shown in Figure 3-4. Two purine metabolites, adenine 

and guanine, and a third molecule, nicotinamide adenine dinucleotide (NAD), are 

identified from the N. gonorrhoeae spectra. Their relative contribution at each time point 

and on the gold and the silver substrate are demonstrated graphically in Figure 3-4 as 

well as numerically in Table 3-1. The normalized SERS spectra of adenine, guanine and 

NAD used for the calculation are shown in Figure S-7-7. We note that there’s no 

distinction between the oxidized NAD form and the reduced NADH form, therefore we 
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denoted this component as NAD/NADH in the figure. The disappearances of the ~1030 

cm-1 band as well the blue-shifts of the 733 cm-1 is attributed to the change of relative 

contribution of NAD/NADH after 60 minutes post washing. N. gonorrhoeae is the first 

bacterial species that we have encountered that shows NAD/NADH vibrational features 

in addition to purine metabolites. It is also the first species we reported to display a time-

dependent change of spectral features due to change of relative contribution of the key 

SERS molecular contributors. Our next discussion will focus on why NAD/NADH 

appears at the earliest times but seemingly disappears from the SERS spectrum at later 

times and the possible molecular origin of this molecule.  

 

Figure 3-4 The gold and silver SERS spectra of N. gonorrhoeae as a function of time post 
washing are shown with their best-fit calculated by a linear combination of three purine components: 
adenine, nicotinamide adenine dinucleotide (NAD/NADH) and guanine. 
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 time  (min) adenine guanine NAD/NADH 

On gold 0 0.25 0 0.75 

30 0.43 0.02 0.55 

60 0.8 0.2 0 

On silver 0 0.85 0 0.15 

30 0.93 0.05 0.02 

60 0.95 0.05 0 

Table 3-1 Contribution of purine metabolite to gold and silver N. gonorrhoeae spectra at each 
time point determined by linear combination of the normalized component spectra.  

 To understand the disappearance of NAD/NADH at the later time point (t = 60 

min), a N. gonorrhoeae sample which had been left at room temperature for 60 minute 

following an initial wash with ice-cold water was washed with ice-cold water again and a 

SERS spectrum of the bacteria cells was obtained, as shown in Figure 3-5 (left). We see 

the re-appearance of NAD/NADH spectrum and the spectral features are nearly identical 

to the N. gonorrhoeae on gold spectrum at t = 0 min. This observation shows that 

NAD/NADH molecules are bound to the bacterial cell membrane and therefore should be 

seen in spectra of N. gonorrhoeae at all the time points. The NAD/NADH features seem 

to disappear from the t = 60 min because their features are masked by the more intense 

adenine and guanine SERS bands. Adenine and guanine are excreted to the surrounding 

supernatant as response to the low nutrient condition, therefore when the bacteria cell are 

dried onto the SERS substrate these molecules are close to the surface of the gold 

nanoparticles than NAD/NADH, which are bound to the cell membrane. In addition, both 

adenine and guanine have greater Raman cross-sections on the gold and silver SERS 
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substrates than NAD/NADH as shown in Figure S-7-8. Therefore the spectral features 

from NAD/NADH are not evident when the SERS spectrum is dominated by adenine and 

guanine at t = 60 min.  When adenine and guanine are washed away at t = 60 min, the 

NAD/NADH features reappear. This re-washing experiment also ensures that the 

NAD/NADH observed in the N. gonorrhoeae spectra are from these molecules bound to 

the cell membrane instead of being due to remaining material from the growth plate since 

the IsoVitaleX® supplement to the agar plate contains NAD. The appearance of 

NAD/NADH is unique to N. gonorrhoeae, at least in this limited comparison between 

Gram-positive S. aureus Newman and three Gram-negative E.coli clinical isolates89 

shown in Figure 3-5 (right). All the bacteria strains are grown on chocolate agar plates 

with IsoVitaleX® (BD) supplement. This shows the presence of NAD/NADH is a unique 

property of N. gonorrhoeae cell membranes.  

 NAD/NADH is a co-substrate for many membrane-bound enzymes that are 

critical for the growth of N. gonorrhoeae in the human body. Examples are NADH 

dehydrogenase (EC 1.6.99.3) and NAD(P)H oxidase (EC 1.6.99.1), which are enzymes 

that defend the bacteria against reactive oxygen species (O2-) in the mucosal surface 

environment and from the host local inflammatory response.94,95 The observed bounded 

NAD/NADH are the co-substrates for these enzymes. In addition, it’s also known that in 

vitro growth of N. gonorrhoeae requires two essential growth factors in addition to 

standard bacterial growth medium: lysed red blood cells and NAD.  The lysed red blood 

cells serve as the primary source of iron which is an essential metal for many enzymes. 

However, the oxidation state of iron is Fe3+ (hence the “chocolate” color of the agar plate) 
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which can form insoluble Fe(OH)3 under physiological condition. Therefore Fe3+ ion 

must be converted into Fe2+ which is soluble under physiological condition, and 

NAD/NADH can serve as the electron donor Fe3+ ion. 96 , 97  Thus the observed 

NAD/NADH signal could be the co-substrate for the enzyme that catalyzed the reduction 

of Fe3+. In the absence of an iron source some of the NAD/NADH may be released from 

the enzyme therefore explaining the presence of NAD/NADH features in the supernatant 

at t = 30 min. In summary, Figure 3-4 demonstrates the potential of our SERS 

methodology not only as a disease diagnostic platform but also a powerful bioanalytical 

tool for studying enzymatic processes at the outer cell membrane region of bacterial cells 

when the bacteria are placed in a low-nutrient environment. 
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Figure 3-5  (Left) Comparing the gold SERS spectra from N. gonorrhoeae from the cell and 
from the supernatant at t = 0 min (initial wash) and after re-washing at t = 60 min further show that 
the NAD/NADH molecules are bound to the bacteria cell membrane. 
 (Right) Comparing gold SERS spectra at t = 0 min from the cell of S. aureus Newman (Gram-
positive), N. gonorrhoeae (Gram-negative) and three E. coli (Gram-negative) strains grown on 
chocolate agar plat with IsoVitaleX® show that the appearance of NAD/NADH features is unique to 
N. gonorrhoeae only. All bacteria cells are re-washed with ice-cold water after left at room 
temperature 60 minutes and the NAD/NADH features re-appear only on N. gonorrhoeae.   

 On the other hand, comparing the SERS spectra from C. trachomatis cells with 

the spectra from the supernatant as shown in Figure 3-6 reveals that the molecules 

contributing to the SERS spectra are located on the cell but not in the supernatant. 

Furthermore, monitoring the supernatant spectra as a function of time post-washing 

shows that these SERS contributors are always on the cell immediately after washing up 

to an hour post washing on both metal SERS substrates as shown in Figure S-7-4. This 

means the molecules contributing to the C. trachomatis spectra are securely anchored 

onto the cell membrane.  This observation is thus consistent with the origin of these 
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molecules to be the bacterial cell membrane component or the ‘accessory’ molecules 

connected to the cell membrane.  

 

Figure 3-6 Comparing the SERS gold and silver spectra from C. trachomatis cell with the 
spectra from the supernatant reveal that the molecule contributing the spectra locates only on the 
cells. Compare with spectra from HSA and avidin show that protein molecules on the cell membrane 
are the major contributor to the SERS spectra of C. trachomatis.  

In order to determine the molecular origins of these C. trachomatis signal we first 

consider the structure of C. trachomatis cell membrane. As mentioned previously, unique 

to C. trachomatis is the presence of MOMP that fill up the space in between the outer and 

the inner cell membrane in addition to an unusually thin peptidoglycan layer. MOMP is a 

highly disulfide cross-linked protein that serves as an anchor for many “accessory” 

proteins such as those for antigen recognition and entry to host cell.71,72,73 Thus, we 

hypothesize that the main contributors to our C. trachomatis SERS spectra are protein 
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molecules on the C. trachomatis cell membrane. Because it’s very difficult and costly to 

isolate each of the protein components of the C. trachomatis membrane to acquire SERS 

spectra at this preliminary stage, we use commercially available protein molecules as 

models instead. Human serum albumin (HSA) and avidin from chicken egg white (avidin) 

are selected as protein model compounds. HSA, a three-domain protein consist of mostly 

alpha helices, is selected because HSA is a model protein molecule used in studying 

metal-protein interactions in literature. 133,134,135 Avidin is chosen because it has similar 

size (i.e. molecular weight) as HSA but is consists of mainly beta-sheets. Both proteins 

are available commercially as lyophilized powder. Solutions of both proteins are freshly 

prepared in deionized water prior to each SERS experiment. For the gold substrate the 

protein solution concentration is 100 µM.   However, we found that on the silver 

substrate lower protein concentration (1 µM or less) yields greater SERS intensities and 

larger S/N ratios. Therefore for the silver substrate the protein solution concentration is 

10 nM. Comparison of the SERS spectra of the two proteins and C. trachomatis cell 

spectra are shown in Figure 3-6. We can clearly see the similarity between the C. 

trachomatis cell and the two protein SERS spectra, indicating that the main SERS 

molecular contributors of C. trachomatis spectra are protein molecules on both 

nanostructure metals. However, C. trachomatis can still be distinguished from the two 

proteins on both metals. For example, the difference in relative peak intensity ratio 

between the three broad features on the gold spectra, as well as the presence/absence and 

the peak intensity of the ~610 cm-1 band on the silver substrate can be used to distinguish 

these samples.  
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 The three vibrational features (center around ~ 900 cm-1, ~1200 cm-1 and ~1550 

cm-1) on the gold spectra for C. trachomatis and the proteins are very broad (~ 150 cm-1), 

suggesting  that these features are due highly inhomogeneous molecular systems as might 

be expected for protein aggregates.  To investigate this hypothesis we acquired  dynamic 

light scattering spectra of the same HSA solution that show these broad SERS features, 

and the results (see Chapter 4) had lead us to conclude that these broad features are in 

fact due to protein aggregates created during the solution preparation process. More 

specifically, these protein aggregates are formed when their tertiary structure is perturbed 

due to the mechanical stress occurring when the protein solution is repetitively and 

vigorously pipetted.98,99,100,101 For C. trachomatis, this is happens when the centrifuged 

bacterial cells are re-suspended in water after each centrifugation step during the washing 

process. The re-suspension is achieved by pipetting to disperse the cell pellet which 

causes aggregation of the protein molecules on the outer layer of the cell membrane. This 

can also explain the decrease of overall signal intensity on C. trachomatis as a function of 

time post washing. Following the last washing step, the tertiary structures of the proteins 

at the outer layer are perturbed by pipetting and aggregations are formed.  However,   

when the sample is left undisturbed over time these protein molecules may re-arrange 

themselves back to their native tertiary structure, therefore the aggregated protein signal 

(i.e. the three broad features on gold spectrum) intensity decreases as a function of time. 

On the other hand, on the silver substrate, these broad aggregated protein vibrational 

features are not observed. Instead, discreet, more typically shaped vibrational features can 

be seen. The assignments for these bands on the silver substrate are listed in Table 3-2. 



 

59 

These features can be attributed to individual amino acids and molecular moieties, for 

example phenylalanine, tryptophan, the C-S stretch and CO2- and CH2 bending 

vibrational modes. We attribute this metal dependence of the protein signal to the more 

strongly perturbative nature of silver nanoparticles interacting with proteins.  

Band frequency on Ct 
silver SERS spectrum  

Band assignment 102, 103, 104, 105, 106, 107, 108, 109, 110, 

111* 
610 ν(CS) PH-T 
936 ν(C-COO-) 
1004 Phe (ν12) 
1035 In-plane C-H deformation of mono-substituted 

benzene ring**  
1385 ν(COO-) 
1450 δ(CH2)  
1600 Trpw1, Tyr, and/or Phe (ν8a) 

Table 3-2  Band Assignment for Silver C. trachomatis SERS spectrum.  
* References of the band assignments 

 From the results shown in Figure 3-4 and Figure 3-6 we can how the SERS results 

reflect the different “lifestyles” of these two STD causing bacteria. All bacterial strains 

studied in the Ziegler lab previously 34,43,44,47,48,49,50,87,88,89 had shown purine metabolites 

as main contributors to their SERS spectra. We generalized that bacteria release purine 

metabolites as a rapid response to low nutrient conditions, and their purine metabolism 

KEGG pathway for purine degradation can be used as guideline to predict what purine 

molecule will be produced.88 For example, the KEGG pathway for purine metabolism of 

N. gonorrhoeae is shown in Figure 3-7, and from the pathway we can see the bacteria can 

produce adenine and guanine when nucleotides are degraded.  This matches our SERS 

observation in Figure 3-4 which is just a linear combination of these two purine free 

bases and NAD/NADH. However, C. trachomatis is an exception to all previously 

observed SERS spectra. It shows membrane protein components instead of purine 
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metabolites as main contributor to the SERS spectra. C. trachomatis is an obligate 

intracellular pathogen which solely depends on the host cell for nutrient and energy 

supply,112,113 and its KEGG purine degradation pathway reflects its parasitic lifestyle. As 

shown in Figure 3-7 C. trachomatis lacks all enzymes for the appearance of AMP, GMP 

and INP, the key molecules to the purine degradation pathway. Furthermore, this species 

lacks the necessary enzymes for the degradation of these nucleotides to the free purine 

bases. This means C. trachomatis are unable to produce the purine metabolites through 

its KEGG degradation pathway, therefore no purine metabolites are observed from its 

SERS spectra.   

 

Figure 3-7  Comparing the KEGG purine degradation pathway for C. trachomatis and N. 
gonorrhoeae.  
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3.5  - Conclusion and Future work 

As a proof of concept for the development of SERS as a rapid STD diagnostic, the 

results discussed in this chapter demonstrate the potential of our SERS-based platform for 

label-free, growth-free, whole-cell diagnostic tool for rapid detection and differentiation 

of C. trachomatis and N. gonorrhoeae, which are responsible for the two most common 

underdiagnosed STDs that affect millions people and result in billions dollar healthcare 

cost annually. By compare and contrast the unique SERS vibrational signatures on our 

gold and silver substrates, we were able to distinguish these two bacteria based on their 

vibrational features. When combine with a portable instrument and an effective bacterial 

cell enrichment procedure, potentially the physician can obtain the rest in the clinical 

setting in ~40 min. We are able to decipher the main SERS molecular contributors to the 

observed SERS spectra and demonstrate the ability of our SERS-based platform as a 

novel analytical probe for studying metabolic activity near extracellular region. Our 

SERS-based platform can provide a rapid, ease-to-use, specific diagnostic methodology 

without the need of slow and technically-demanding cell growth or sample labeling.  

The details regarding the protein aggregation that was first observed in the C. 

trachomatis spectra are discussed in Chapter 4. The possible molecular origin of the 

broad spectral features on the gold substrate that seem ubiquitous across multiple protein 

samples will also be discussed in the subsequent chapter. Future work on this project will 

be directed toward expanding our SERS reference library with more STD related 

bacterial strains to test this methodology for strain specificity. Another important aspect 
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will be to work on an effective enrichment procedure to isolate bacterial cells from 

patient samples at clinically relevant concentrations.  

 

4. The SERS Vibrational Signature of Proteins 

4.1  - Introduction to SERS study of proteins 

Protein stability in aqueous solution is an increasingly important issue particularly 

in the pharmaceutical field as the number of therapeutic protein drugs has development 

increased dramatically over the past two decades. 114 Protein drugs provide critical 

treatments in numerous health conditions and diseases (e.g. diabetes, cancer, 

cardiovascular disease, autoimmune disease). However if the protein drug molecule is not 

stable in aqueous solution and forms aggregates, its biological activity and thus its 

therapeutic value diminishes.115 Moreover, accumulation of these aggregated proteins in 

body tissues can cause damage to the human body. Therefore it’s important to monitor 

the state of protein structure in aqueous solution for both treatment efficacy and human 

health concerns.  

  Vibrational spectroscopies such as IR and Raman spectroscopy are valuable tools 

for analysis of protein structure. Since the vibrational frequencies depend molecular 

structure, IR and Raman spectroscopy can provide a good estimate of the secondary 

structures of proteins in aqueous solution. The composition of secondary structures in a 

particular protein molecule may be determined by inspection of the frequencies of amide 

bands. Nine normal modes (A, B, and I-VII in the order of decreasing frequency) are 

allowed for amide bond of proteins. Table 4-1 lists the frequency and vibrational 
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assignments of the amide bands relevant to protein structure analysis by IR and Raman 

spectroscopy. Among them Amide I, II and III are the most recognizable amide bands in 

the spectrum when exited by visible light and therefore are frequently employed for 

determination of the secondary structures of protein molecules.116,117 Table 4-2 lists the 

typical frequencies of Amide I, II and III in different secondary structures. Additionally, 

the precise vibrational frequencies of the disulfide bride (500-550 cm-1 region) and 

aromatic amino acid residues tryptophan (Trp), tyrosine (Tyr), phenylalanine (Phe) and 

histidine (His) are useful for probing the local chemical environments around these amino 

acid residues and hence the microenvironment inside the protein molecule. 116, Thus IR 

and Raman are popular tools for studying the kinetic of protein aggregation formation. 122, 

118, 119, 120 Information provided by IR and Raman spectroscopy are complimentary to 

each other since some vibrational modes are IR-active and some are Raman-active, 

however a disadvantage of IR relative to Raman is the strong absorption of water at 

~1650 cm-1 which is at the frequency of the Amide I band.  In contrast, water is a 

relatively weak Raman scatter and especially so for SERS.  Water bands typically do not 

appear in SERS spectra of aqueous solutions. 

Name Frequency  (cm-1)  Vibrational motion Reference 
Amide A 3270 - 3310 >95% N-H stretch, part of a Fermi 

resonance doublet 
121,122 

Amide B 3030 - 3100 Intramolecular H-bonded N-H 
stretch, part of a Fermi resonance 
doublet, weaker than Amide A 

121, 123 

Amide I ~ 1650 80% C=O stretching 116,117 
Amide II  ~ 1550 60% N-H bend, 40% C-N stretch 116,117 
Amide III 1200 - 1400  40% C-N stretch, 30% N-H stretch 116,117 

Table 4-1 The frequency and vibrational assignment of Amide A, B and I-III relevant to the 
protein structural analysis by IR and Raman spectroscopy. 
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Conformation 
 

α-helix 
 

Antiparallel  
β sheet 

Parallel β 
sheet 

Turn Unordered 

Amide I  
(cm-1) 

1650 - 1657 1612-1640 
1670-1690 

(weak) 

1626-1640 1655-1675 
1680-1696 

1640-1651 

Amide II  
 

Centered on ~1550 cm-1, weak band and cannot be observed in the 
absence of resonance excitation. Not affected by side-chain 
vibrations.   

Amide III  
(cm-1) 

1270-1330 1229-1235 1243-1253 

Table 4-2 Frequencies of Amide I, II and III bands for different secondary structures.116,117   

The SERS spectra of proteins were previously discussed in Chapter 4 in order to 

understand the molecular origins of the SERS spectrum of C. trachomatis cells on gold 

nanostructured substrates. The similarity between the SERS gold and silver spectra of the 

bacterial cells and two proteins, human serum albumin (HSA) and avidin, lead to the 

conclusion that the main molecular contributor to the SERS spectra of C. trachomatis 

were the cell membrane proteins (Figure 3-6). The SERS spectra of these proteins and the 

C. trachomatis on gold were characterized by three broad spectral features centered 

around 1550 cm-1, 1150 cm-1 and 850 cm-1 while their silver SERS spectra display 

narrower vibrational bands assigned to vibrational motions of C-H, C-S, COO- and 

aromatic amino acid residues Phe, Trp and Tyr (Table 3-2). The broad spectral features 

on the gold SERS spectrum were shown to be attributable to aggregated protein 

molecules created during the sample preparation process. This chapter will describe the 

discovery process that leads to this conclusion in greater detail as well as providing 

additional explanation of why the gold and silver SERS spectral features of the same 

protein molecule are dramatically different. In addition to the SERS results, the presence 

of aggregated protein will be confirmed by dynamic light scattering (DLS) measurements. 
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4.2  - Materials and Methods 

SERS active substrate The SERS spectra reported here are obtained using in-situ 

grown, aggregated Au or Ag nanoparticle covered SiO2 substrate described extensively in 

the previous two chapters and prior publications from our laboratory.34,44,47,48,49,50,87,88,89 

For SERS spectral acquisitions, 1 µL of the protein solution was added to the SERS 

substrate (gold or silver) and allowed to air dry (~5 minutes) at room temperature.  

Protein solution preparation All protein molecules used in the study are obtained 

from Sigma® as lyophilized power and used directly. The lyophilized power are stored at 

4 °C or -20 °C according to manufacturer’s instruction. Unless otherwise indicated the 

concentration of protein solution used for SERS gold experiment is 50 µM and for SERS 

silver experiment is < 1 µM. The solutions are prepared by adding the solvent (water, 

saline, phosphate buffered saline (PBS)) to the lyophilized powder in 2 mL micro-

centrifuge tube. Rehydration of the lyophilized powder is accomplished by pipetting or 

inverting the micro-centrifuge tube. No sonication or vortex is used. All solutions are 

freshly prepared within one hour prior to the experiment and left at room temperature 

after preparation.  

SERS spectra acquisition  SERS gold and silver spectra are acquired with an 

RM-2000 Renishaw Raman microscope with 50x objective. A 785 nm excitation with 

incident laser power of ~3.3 mW over ~ 30 µm x 6 µm illuminated Raman excitation 

field of view and 10 seconds illumination time are used to obtain the protein SERS 

spectra. Ten spectra per sample are obtained. The peak frequency precision is ± 0.5 cm-1.  
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SERS spectra processing and baseline correction  The acquired SERS spectra 

are averaged and baseline corrected with GRAMS®. The SERS spectra are normalized 

and plotted with MATLAB® (release R2016) and displayed vertically offset for clarity.  

 In Figure 4-3 where the “generic” broad spectral features on the gold SERS 

spectrum are removed to show the weaker, narrower bands, the broad spectral features 

are treated as baseline and removed by the MATLAB function msbackadj. Msbackadj 

corrects baseline of signal with peaks that can’t be satisfactorily removed without altering 

the peaks via the more traditional polynomial fittings procedure of baseline 

corrections.124 The quality of baseline removal by msbackadj is monitored by over-

lapping the original SERS spectrum and the calculated baseline and the optimal 

parameters for msbackadj function are selected during this process.    

Dynamic Light Scattering Measurements (DLS)  The presence of protein 

aggregates in the solution upon vigorous agitation was identified and confirmed by 

making simultaneous SERS and a DLS measurements of the same protein solutions. The 

DLS measurements are performed on a DynaPro NanoStar 499DPN (Wyatt Institute®) at 

fixed 90° scattering angle. A 658 nm laser is used to illuminate the sample, and 10 

measurements with 5 seconds acquisition time for each measurement are obtained and 

averaged per sample. The hydrodynamic radius of the protein aggregates are estimated 

from the autocorrelation function and the relative amount of mass (%mass) at each radius 

is shown when plotting %mass against radius.  

 HSA was chosen as model protein molecule for this SERS and DLS experiment 

given its ubiquitous presence in human body fluids. Three HSA solutions are prepared in 
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three different solvent systems: water, PBS and 10% glycerol. Therefore the effects of 

ionic strength and viscosity, which are known to play an import role in protein 

aggregation formation,132,133 can be examined simultaneously by SERS and by DLS. 

Each solvent is double-filtered by a 0.22 micron syringe filter before protein solution 

preparation and the concentration of HSA is 1 mg/mL. The HSA solution is prepared by 

slowly adding 1mL of the solvent drop-wise to 1 mg lyophilized protein powder in a 2 

mL borosilicate glass container. Then the solution is left undisturbed for one hour at 

room temperature to allow thorough rehydration.  

 During the SERS and DLS experiments, a long gel-loading pipet tip (Corning®) 

is used to avoid bubbles during HSA solution preparation. Immediately preceding SERS 

and DLS measurements the glass container is gently inverted to ensure solution 

homogeneity. Extreme caution is taken to avoid any bubble formation during this 

inversion. 1 µL of the HSA solution is loaded onto a gold SERS substrate. Then 4 µL of 

the same HSA solution is added to a micro-cuvette (Wyatt Institute®) to perform the 

DLS measurement. Then the HSA solution is agitated by vigorous pipetting. The solution 

is left still for 5 minutes to allow the bubbles to float to the top, and using a long gel-

loading pipette tip 1 µL and 4 µL of the solution is obtained from the bottom of the 

container for SERS and DLS measurement respectively. To ensure the changes of %mass 

before and after agitation are not due to the presence of bubbles, DLS measurements are 

repeated on the same solution 15 minutes after agitation to confirm the result.  
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4.3 – Results and Discussion 

4.3.1 - SERS spectra of proteins on gold and silver substrates 

Five different proteins, apo-transferrin, avidin, HSA, insulin and ubiquitin, were 

studied by SERS. The Ribbon representation of their tertiary structures are shown in 

Figure 4-1. These five protein molecules are of different molecular weights and 

secondary structures which can be used to study the effect of size and shape, respectively, 

on the SERS spectral features. For example HSA (alpha-helical), avidin (beta-sheet) and 

transferrin (mix) are of similar size but have different secondary structures, while HSA 

and insulin have similar secondary structure but differ in size (see Figure 4-1). The effect 

of monomer vs multi-mer (avidin vs ubiquitin and HSA vs insulin) are also included in 

this protein group.  

 
Figure 4-1 Ribbon diagram representing the tertiary structures of five protein molecules 
studied by SERS. These five protein molecules has different tertiary and secondary structures, 
molecular weight, and number of amino acid residues.   
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However despite the difference in size and shape, Figure 4-2 shows the SERS 

spectra of these five proteins on the gold and the silver substrate exhibit very similar 

SERS spectral features. All of these proteins show the three characteristic broad spectral 

features on the gold substrate and narrow bands on the silver substrate. However, each 

protein molecule can still be distinguished from each other on both the gold and silver 

substrate resulting from the difference in relative band intensities. This figure shows that 

the size and shape of the protein does not cause dramatic differences on the SERS spectra. 

However, closer inspection of protein SERS spectra on gold substrates reveals that weak 

but recognizable narrow vibrational features can be seen after the three broad bands are 

removed through baseline correction as shown in Figure 4-3. The optimized baseline 

determine by msbackadj in comparing with the original SERS spectrum are shown in 

Figure 4-4. The most important point from this figure is that each protein shows a 

different signature on the baselined gold spectrum. However these same protein spectra 

on the silver substrates differ mainly by the relative intensity of the common vibrational 

bands. In addition, most of the silver spectral bands, such as the 936 cm-1, 1004 cm-1, 

1035 cm-1, 1385 cm-1, 1450 cm-1 and 1600 cm-1 are observed in the baselined gold 

substrate spectra and shared in all four proteins. The assignment for these silver bands 

has been given in Table 3-2. The contribution from the disulfide bond stretch (νS-S) from 

~500-550 cm-1 region104 are visible for each protein on the baselined gold spectrum but 

not visible on the silver spectra.  However, the ~615 cm-1 band which was assigned to C-

S stretch,102 is present in the gold baselined spectra of insulin and avidin but very weak in 

HSA and apo-transferrin.  
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In conclusion, all five studied proteins, regardless of size and shape, show similar 

SERS spectral features on gold and silver nanostructured substrates. However, weaker 

and narrower bands unique to each protein can be seen on the gold spectrum after the 

broad spectral features are removed. In addition, most of the silver spectral bands except 

the 615 cm-1 band are observed in the baselined gold spectrum. The molecular 

mechanism that causes the presence of the broad protein spectral features on the gold 

substrates is not evident for proteins on the silver substrate. Thus the silver spectrum of 

the protein is dramatically different from its corresponding SERS spectrum on gold. The 

observation of very similar SERS spectral features for all five protein molecules despite 

the large difference in size and shape of these molecules is surprising, given the well-

established ability of Raman spectroscopy to distinguish protein secondary and tertiary 

structures. Moreover, the three broad spectral bands on the gold substrate have not been 

previously reported for any of the five proteins studied here. The origin of these broad 

SERS spectral features and the mechanism of their formation on gold SERS spectrum 

will be discussed below. Since HSA is the most the abundant protein in humans, the 

studies described in the next two sections will focus on HSA.  
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Figure 4-2 SERS spectra of various protein molecule solutions in water on the gold substrate 
(left) and the silver substrate (right). On the gold substrate all protein molecules display three broad 
spectral features center around 1550 cm-1, 1200 cm-1 and 900 cm-1, but each protein can still be 
distinguish from each other from the relative intensity of the three broad features. On the silver 
substrate all protein display similar, narrower spectral bands but each protein can still be 
distinguished based on the difference in relative peak intensity.  

 

 
Figure 4-3 After removing the three broad spectral features by MATLAB function msbackadj 
distinct, narrower spectral features can be seen for each of the four protein molecules on the gold 
substrate. Each protein shows different gold spectral features, but many common bands can be 
found among them. Comparing with their silver SERS spectra (right) show that almost all silver 
spectral features (with exception to the ~610 cm-1 features) can be seen on the baseline gold spectra.  
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Figure 4-4 The optimized baseline determined by MATLAB function msbackadj is shown with 
the original spectrum.  

 

4.3.2 - Perturbing the SERS Protein Spectra 

Effects of ions and ionic strength 

 Ions have complex effects on the structural stability of proteins in solution. Ions 

can modulate the strength of electrostatic interactions by interacting with unpaired 

charged side chains on the protein surface, both within the protein and between protein 

molecules. Binding of multivalent ions can cross-link charged residues between two 

protein surfaces and leading to protein stabilization125,126 (salting-in effects), whereas 

intramolecular charge-charge interactions disrupt the conformational stability (salting-out 

effects).127 The net effect of salt on protein stability is thus a delicate equilibrium balance 

between intermolecular protein-salt-protein interactions and intramolecular protein-salt 
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interactions. The ability of ions to salt-out or salt-in proteins are classified by the 

Hofmeister series, first work out by Franz Hofmeister in 1827. He discovered a series of 

salts that had consistent solubility effects on chicken egg protein mixtures, which was 

extended to the stability of their secondary and tertiary structures in the salt solution as 

discovered later. The Hofmeister series ranks ions in the order of their ability to stabilize 

protein structure in aqueous solution.128 The Hofmeister series for cations is,  

NH4+ > K+ > Na+ > Li+ > Mg2+ > Ca2+ > guanidinium 

Anions usually have a larger impact on protein solubility than cations and the 

corresponding series is,  

F- ≈ SO42- > HPO42- > acetate > Cl- > NO3- > Br- > ClO3- > I- > ClO4- > SCN- 

Although some controversy about the mechanism of ion effects still persists, the 

Hofmeister series is commonly exploited in protein precipitation and purification 

procedures. For example the highest ranking cation and anion in the series (NH4)2SO4 is 

used extensively for bulk protein precipitation from a cellular lysate mixture. At 

sufficiently high salt concentrations the protein components precipitated out. By 

increasing ammonium sulfate concentration stepwise the precipitated protein components 

in the mixture is recovered between each step.    

 In this section, the effects of cations and anions as well as ion strength to the 

broad SERS spectral features on the gold substrate are described. Particularly, the 

perturbation of SERS spectra of HSA on gold by 100 µM of Na+, K+ cations and Cl-, 

NO3- anions are explored. All these ions are early members of the Hofmeister series and 

thus expected to destabilize the protein structure in solution. In addition to these four ions, 
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the effect of Ag+ (in the form of AgNO3) is studied on the gold substrate. As shown in 

Chapter 4, the same protein displays very different SERS spectral features on gold and 

silver nanostructured SERS substrates (Figure 4-2) and thus adding Ag+ ions to the 

protein may help to understand the origin of such sharp differences.  

 Figure 4-5 shows the SERS spectra of HSA in 100 µM of KCl, NaCl, NaNO3 and 

AgNO3 on the gold substrate. These are compared to the HSA SERS spectrum in pure 

water as a reference at the bottom of this figure. Except for HSA in AgNO3 which shows 

only a weak SERS spectrum with few bands, the HSA SERS spectra in the other three 

salt solutions display the three characteristic broad bands on the gold substrate. Also the 

differences between the HSA SERS spectrum in these three salts is relatively small and 

mostly due to differences in relative peak intensities.  For example, note the relative 

intensity of the 1150 cm-1 band in Figure 4-5. Thus, the broad spectral features on the 

gold substrate are largely not affected by protein size, shape or the presence of ionic 

species. Moreover, the broad SERS features of HSA on gold don’t seem to be affected by 

the concentration of salt as shown in Figure 4-6. Relatively few spectral changes are 

observed for the HSA SERS spectrum on gold as the NaCl concentration ranges from 1 

µM to 100 µM. However given that Na+, K+, Cl- and NO3- are earlier members of the 

Hofmeister series and thus tend to destabilize the protein structure in solution, one may 

conclude that the observed broad gold spectral features are related to the destabilized 

protein structure. One simple test of this hypothesis is to study the protein SERS spectral 

changes upon dilution.  Also comparing the dilution dependence of both the gold and 

silver SERS spectrum of the same protein may help to understand the mechanism that 
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causes the very different spectral features observed on these two substrates.   

 
Figure 4-5 SERS gold spectra of HSA in 100 µM salt solutions: silver nitrate (AgNO3), sodium 
chloride (NaCl), potassium chloride (KCl) and in water as reference. The three broad gold spectral 
features are observed in all the salts except in silver nitrate.  

 
Figure 4-6 SERS gold spectra of HSA in NaCl of different concentration to study the effect of 
ion strength to the three spectral features. SERS spectra of HSA in water is shown at the bottom.  
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The effect of protein concentration on SERS gold and silver spectral features 

 
Figure 4-7 Dilution of HSA and avidin, two protein molecules of similar size but having alpha-
helix and beta-sheet respectively, as main secondary structure on the gold SERS substrate. The three 
broad spectral features intensity decrease with dilution in water.  

 

 
Figure 4-8 Dilution of HSA and avidin in water on the silver SERS substrate. The intensity and 
the S/N ratio of the SERS spectral features of both protein molecules on the silver substrate increase 
with dilution.  
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Figure 4-7  shows the dilutions of the aqueous solutions of HSA and avidin, two 

protein molecules of similar sizes but different secondary structures, on the gold substrate. 

The three broad spectral features are evident for both proteins. What’s more important is 

that there are few changes of the relative peak intensities and narrow, fine spectral feature 

on the broad spectral features as a function of dilution. In other words, dilution only 

causes the decrease of overall spectral intensity due to the lower molecular concentration, 

but the chemical species that cause the three broad spectral features remain intact during 

dilution.  A good hypothesis of such chemical species is protein aggregates in the 

solution created during the solution preparation process, since the protein structural 

changes during aggregation formation are both irreversible and thermodynamically 

stable.129  Therefore if protein aggregation is the cause of the broad spectral features, 

dilution will not cause major structural change on these aggregation and will only result 

in decrease of the overall signal intensity. 130 

Furthermore, Figure 4-8 shows that the dilution of HSA and avidin display 

different behaviors on the silver substrate compare to the gold substrate. The three broad 

spectral features disappear on the silver substrate and the narrower bands attributed to 

amino acid residues (Table 3-2) appear. Interestingly, the intensity and signal-to-noise 

ratio of these narrow bands increase with dilution. The appearance of spectral features 

from individual amino acid is attributed to the known strong interactions of the silver 

nanoparticles with the protein molecules.131, 132, 133, 134  Treuel et al. demonstrated via 

SERS that there are strong interaction between sulfur-containing groups (serine, cysteine 

and methionine) in bovine serum album (BSA) and uncoated silver nanoparticle.135 This 
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is consistent with our protein silver SERS spectrum on Figure 4-8. The ~ 615 cm-1 band 

which is assigned to C-S stretch becomes evident for avidin at lower concentration. In the 

same study135 it’s also shown via circular dichroism that BSA loses its α-helix features 

when interacting with the silver nanoparticles. In other words, silver nanoparticles have 

the ability to denature protein molecules. These silver nanoparticles-protein interactions 

are the cause of the cytotoxicity of silver nanoparticles in vivo and have been known and 

exploited as an antimicrobial agent. For example, silver staining is a common technique 

to visualize the protein bands on polyacrylamide gel after electrophoresis, and an aqueous 

solution of 1% silver nitrate is used to prevent bacterial conjunctivitis in newborn babies. 

Based on these observation, we attribute the dramatically different spectral features of the 

same protein on gold and silver substrates are due to the strong interactions between the 

protein and the silver nanoparticles which disrupt the aggregated protein molecules and 

allow the observation of features from individual amino acids on the silver substrate. The 

reason why the silver SERS signal intensity increases upon dilution is because dilution 

lowers the ratio between protein aggregates and silver nanoparticles, i.e. more silver 

nanoparticles are available to interact on a per aggregate basis, resulting in better SERS 

signals on the silver substrate upon dilution.  

This dilution experiment suggests that protein aggregates may be the chemical 

species that cause the broad spectral features observed on the gold substrate. Also 

discussed in this section, the reason for the difference between the gold and the silver 

protein spectral features is attributed to the more perturbative nature of the silver 

nanoparticles. However, additional evidence is needed to confirm the presence of protein 
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aggregation as well as understand how the aggregates are form. In the next section, 

dynamic light scattering (DLS) in conjunction with our SERS measurements will be 

described in the next section to confirm the presence of aggregates. The comparison 

between the SERS and DLS results will not only allow the understanding of the unique 

gold SERS spectral features but also adds SERS to the list of rapid, ease-to-use optical 

technique for protein aggregates studies.  

 

4.3.3 - Origin of the Protein SERS Signature 

In this section the results from dynamic light scattering (DLS) will be compared in 

conjunction with the gold SERS spectrum of HSA to confirm the hypothesis that the 

three broad spectral bands observed on the SERS spectrum are caused by protein 

aggregates in the solution. The question of how these protein aggregates are formed in 

the solution will also be addressed. Three solvent systems are chosen to be studied by 

SERS and by DLS: water, PBS and 10% glycerol. Thus the effects of ionic strength125, 126 

and viscosity136 which are known to play important roles in protein aggregation formation 

will be studied simultaneously by SERS and by DLS.  

DLS is a powerful technique to determine the size distribution of small particles 

suspended in solution. DLS measures the intensity fluctuation of scattered light resulting 

from the Brownian motion of small particles (<250 nm) in solution. Since the distances 

between molecules in solution are constantly changing, the scattered light from one 

molecule can undergoes either constructive or destructive interference with the scattered 

light from its neighboring molecule and information can be obtained about the time scale 
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of movement of the scatters. The dynamic information of the particles is derived from an 

autocorrelation of the changing intensity recorded in the experiment. An exponential 

decay of the autocorrelation function will thus indicate the particle is in motion, and the 

rate of motion is related its diffusion coefficient. Since the diffusion coefficient is 

inversely related to the radius for small spherical particles, the autocorrelation function 

will thus provide an estimation of the hydrodynamic radius of the molecule, or the radius 

of an equivalent hard sphere diffusing at the same rate as the molecule under observation, 

in solution.  

 Protein aggregation can be induced by a wide variety of conditions, such as 

temperature, pH, freezing and/or thawing and mechanical stress such stirring, pipetting 

and shaking.98,99 Since in our previous SERS protein experiments the solutions are 

prepared at constant temperature and our efforts with varying salt and ionic strength of 

the solution doesn’t cause significant change of the gold SERS spectral features of the 

protein, this experiment will focus on the effect of mechanical stress on the induction of 

protein aggregation.  

The shearing stress during agitation, such as stirring, pipetting and shaking, are 

known to induce protein aggregation.98, 137 In addition, agitation can cause cavitation, or 

the formation of voids or bubbles within the protein solution which rapidly collapse and 

sends shock waves that can perturb the tertiary structure of the protein.138  HSA solutions 

were initially prepared at 1 mg/mL concentrations as gently as possible to minimize 

aggregation formation.  Then aggregates are induced by vigorous pipetting to generate 

both shearing stress and cavitation. Simultaneous comparison of the SERS and DLS 
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measurement before and after pipetting confirms our previous hypothesis that the protein 

SERS spectral features on gold are caused by protein aggregation in the solution (See 

Figure 4-9). This is evidenced by the increase in % mass of particles with larger radius 

after agitation which is coincident with the increase of the overall signal SERS intensity. 

The magnitude of increase in % mass for larger particles is roughly correlated to the 

increase in SERS signal intensity, with 10% glycerol shows the greatest increase. In 

addition, narrower bands such as the ~1000 cm-1 and ~1030 cm-1 begin to appear on the 

SERS spectra for the un-perturbed protein solution. This observation is in agreement with 

results shown in Figure 4-3 that after the broad spectral features are removed the 

contribution from individual amino acid residues appear.  

From these SERS and DLS experiments the molecular origin of the broad protein 

SERS on gold spectral features that are observed for all proteins we have studied are 

established to result from protein aggregation, which is probably created by agitation 

during the protein solution preparation process. We note that these protein aggregates are 

not affected by the presence of ions or ionic strength (Figure 4-5 and Figure 4-6) with the 

exception of silver nitrate. This is probably because silver ions can bind to and interact 

strongly with the protein aggregates thus allowing the appearance of vibrational features 

from individual amino acid residues to appear in the SERS spectrum.  
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Figure 4-9 Simultaneous comparisons between SERS (bottom) and DLS (top) measurements of 
HSA solution in three solvent systems before and after agitation confirm the molecular origin of the 
three broad spectral features on the gold SERS spectrum of HSA as protein aggregation in the 
solutions.  

 

4.4  - Conclusion  

The results demonstrated in this chapter shows that protein aggregation can be 

observed by our SERS method. Previous literature reports of proteins SERS studies have 

been focused on the observation and identification of features from individual amino acid 

residues by utilizing the strong interaction between the protein molecules and silver 

nanoparticles. Few previous protein SERS studies reports have employed gold 

nanoparticles and, as far as we are aware of, the ubiquitous characteristic broad protein 

aggregation gold spectral features we observe have not been reported in prior studies. 

Since protein aggregation has significant impacts in many areas such as in understanding 

disease progression in Alzheimer’s and Parkinson’s Diseases, and in therapeutic 
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development where the stability of a protein drug is paramount to patient safety and 

treatment efficacy, the ability of SERS to observe characteristic signatures of protein 

aggregations offers a new and powerful bioanalytical probe. More importantly, since it 

has been shown that the SERS vibrational signature of protein aggregates are universal 

regardless of the size and the secondary and tertiary structure of the protein, ionic 

strength and solution viscosity, SERS would be a valuable and ease-to-use tool for 

identifying the presence of protein aggregates under complex conditions such as those in 

body fluids and during disease progression. An essential remaining question is how does 

protein aggregation result in the three broad vibrational features observed on gold 

substrates. Understanding the underlying molecular origins of this robust protein 

aggregate structure will be of great value because it will reveal the mechanism of protein 

aggregation and such knowledge may help understanding protein-misfolding more 

generally especially in the context of human diseases.  

 

5. SERS Diagnostic Platform: Cancer Cell Detection 

5.1  - Basis of Metabolomic-based Cancer Identification 

Cancer is responsible for nearly 1 in 6 death globally in 2015 and an increase of 70% 

new cases is expected in the next two decades.139 For all cancer types, early diagnosis is 

crucial for effective treatment, higher survival rate and improved quality of life. 

Therefore screening tests to identify cancer cells are paramount for early diagnosis of 

cancer. Given that cancer is a highly complex disease and screening tests are to be 

applied to a large population, such tests must be cost-effective, multiplexing, ease-to-use, 
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sensitive and specific.139, 140   

Metabolomics or the analysis of the complete metabolites from a cell, organ or 

organism focus on quantifying the concentrations of low-molecular weight metabolite 

molecules that can be detected by various analytical methods.141 Metabolomics analysis 

is particularly useful for identifying biochemical pathways that are perturbed in a 

particular pathological process, such as tumorigenesis.142 Metabolomic analysis has been 

successfully employed in the field of cancer biology.141 Cell metabolism is known to be 

altered in tumor cells. The first tumor-specific metabolic alternation was reported in 

1930s by Warburg, who demonstrated that cancer cells rely on an increased dependence 

on glycolysis, a metabolic pathway normally used by anaerobic organisms for ATP 

generation, even in the presence of sufficient oxygen. 143,144 This switch from oxidative 

phosphorylation to glycolysis has been considered as a main hallmark of a cancer cell. 143, 

145  Other biological capabilities acquired during tumorigenesis process have been 

discovered and attributed as indicators for cancer as described by Weinberg et al.142 

including sustained growth signaling, evaded growth suppressor, resistance to aptosis, 

replicative immortality, angiogenesis and activated invasion and metastasis. Mutations 

occur during tumorigenesis at the “upstream” genomics and proteomics, i.e., genetic or 

enzymatic activity/concentration changes, are reflected in the “downstream” change in 

cellular metabolism. However, measurements of the change in the overall metabolite 

concentration is a much more sensitive approach than measuring the change in gene 

expression or enzymatic activity/concentration, because changes in the metabolic flux 

(the rate of change of total amount of material passes through a given metabolic pathway) 
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have a significant impact on the overall metabolite concentrations.146 

 

5.2  - Current Analytical Techniques for Cancer Metabolomic Study 

and Introduction of SERS-based Cancer Identification 

Metabolomics analysis of cancer cells is a powerful approach to identify 

biomarkers to use for diagnostics, treatment efficacy evaluation and identification of 

novel therapeutic targets.141,147 Currently nuclear magnetic resonance (NMR) and mass 

spectrometry (MS) are the two dominant experimental methodologies for this purpose. 

Examples of metabolic biomarkers of tumors identified by NMR or MS approaches 

include alanine, 148  saturated lipids,149  glycine,150  lactate,151  and nucleotides. 152  NMR, 

particularly MRI, is used extensively for metabolomic study in intact human tissues.153 

The non-invasive nature of NMR is valuable for in vivo monitoring of tumor progression. 

However, the disadvantage of NMR-based approaches is that only limited types of 

molecules can be identified in a simple one-dimensional spectrum. Co-resonance 

between two metabolite molecules can make quantification of metabolite concentrations 

difficult as well.141 On the other hand, MS-based approaches are used extensively for a 

full-spectrum proteomic and metabolomics analyses with good sensitivity.141 MS-based 

approaches can be further classified based on the sample separation method (GC-MS, 

LC-MS, HPLC-MS, etc.) and the type of ionization used (ESI, MALDI-TOF, etc.).148 

The metabolites are separated at the initial chromatographic stage first and then separated 

based on their mass to charge (m/z) ratio. MS-based approaches are far more sensitive 

than NMR-based approaches and more metabolite molecules can be identified from a 
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single measurement. However, the major problem is that not all metabolites can be 

readily ionized which potentially bias the metabolite identification result and limit the 

ability for quantitative measurements. Moreover, the presence of ions in the sample 

significantly impacts the ionization process and this problem is particularly prominent 

when the metabolite concentration in the sample is low.150 Additional treatment is 

required to remove ion sources from the sample, which usually involves extensive 

dialysis or solid-phase extraction. Finally, the hardware requirement and the high 

maintenance expense makes MS-based approaches less affordable to be used in a large 

scale in clinical settings.  

The advantages of SERS as rapid, label-free, sensitive and specific approach for 

disease diagnosis has been described in details in the previous chapters. The use of a 

SERS-based methodology for detection and identification of cancer has been investigated 

particularly over the last decade.154, 155, 156, 157, 158, 159, 160 The attributes of speed, ease-of-

use, sensitivity and specificity makes SERS an attractive analytical approach that could 

be used for real-time cancer diagnostics. Most of the previous SERS-based approaches 

for cancer identification center on the use of antibody-labeled metal nanoparticles that 

bind to cancer cell surface biomarkers and subsequently allow specific cellular imaging 

due to the bright SERS reporter molecules. The advantages of this approach are the high 

sensitivity and specificity associated with the selectivity of the antibody. However, this 

imaging approach is dependent on the identification of unique antigens that are over-

expressed on the cancer cell surface and the successful production of antibody-

conjugated nanoparticles with SERS reporter molecules. Alternatively, SERS spectra of 
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in vitro cultured cancer cell or blood plasma from cancer patient have been examined and 

shown to offer vibrational signatures that, when couple with multivariate data analysis 

techniques, can distinguish cancer and normal cells. 161, 162, 163, 164  In these reports the 

identities of molecules contributed to the SERS vibrational feature that allows the 

distinction between cancer and normal cells are assigned to anomalous cell surface 

features or alternated level of nucleic acids, proteins, saccharides  or lipids in the blood 

plasma. It’s interesting to note that in most of these studies a vibrational band of 

anomalous intensity around ~725 cm-1, which is attributed to adenine or to the C-N bond 

of quaternary ammonium groups in the membrane lipid bilayer components,161,162,163,164 is 

reported.  

 In this early stage of expanding the SERS methodology as a label-free cancer cell 

detection and identification diagnostic platform, this work will demonstrate, at least 

phenomenologically, the ability of SERS to distinguish in vitro grown non-tumorigenic 

and cancer cells based on their unique SERS vibrational signatures as well as their time-

dependent spectral dependence that can be used as an additional characteristic to identify 

cancer cells. We will also identify the main molecules contributing to these spectra which 

give rise to the ability to distinguish cancer and non-tumorigenic cells via SERS, as well 

try to understand the biochemical origins of these SERS molecular contributors.  

 

5.3  - Materials and Methods 

SERS active substrate   The SERS substrates used in this study are the gold SERS 

active substrate synthesized in our laboratories and described in details in the previous 
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chapters. 1 µL cell samples in Dulbecco’s phosphate buffered saline (DPBS, Life 

Technologies®) is added to the substrate and air-dried before spectral acquisition. 

Cancer/non-tumorigenic cell lines  Two epithelial cell lines, MCF10A (M1) and 

MCF10ACA1h (M3) representing non-tumorigenic mammary gland cells and invasive 

breast cancer cells respectively, are generously provided by Dr. Douglas Faller at the 

Evans Center for Interdisciplinary Biomedical Research at Boston University School of 

Medicine (BUSM). The M1/M3 combination is a breast cancer cell line model system for 

studying the mechanism of aberrant epigenetic DNA methylation pattern. 165  The 

advantage of using the M1/M3 cell system to demonstrate the ability of the SERS cancer 

diagnostic platform is both cell lines were derived from a common genetic background 

(MCF10A) and the genetic/epigenetic alternation on M3 compare to M1 is a good 

representation of the gradual progression from non-tumorigenic to carcinogenic state in 

vivo. In addition, both M1 and M3 cells will be cultured using the same growth medium 

formulation, therefore the possibility of observed SERS vibrational signature difference 

due to two cell lines being cultured in different growth media is eliminated.  

The general procedure for cell culture is summarized in Section 8.5 while details 

regarding specific cell lines are discussed below. All cell lines are grown in triplicate in a 

humidified 37 °C incubator with 5% CO2 by adhering to the surface of a TTP® tissue 

culture flask (T25, Corning®). The surface area is 25 cm-2 which corresponds to ~105 

cells/mL as determined by cell counting with hemocytometer at ~90% confluence (i.e.  

90% area of the flask surface are covered by cell monolayer), and the working volume 

(i.e. the volume of growth medium to be added to a cell monolayer) for the T25 flask is 5 
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mL. Cell growth was monitored daily via an inverted microscope and the growth medium 

was refreshed every two to three days. Only cells after at least two passages were used in 

these experiment to ensure robustness.  

Specific cell culture instruction for M1 and M3 cells 

Reagent: both M1 and M3 cells are grown with the same reagent with the following 

composition. DMEM-F12, Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12. 

HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.  DDwater, sterilized and 

double-filtered water by 0.22 micron syringe filter.  

Medium Final 
concentration Stock concentration 

Vol needed  
for 100 mL 

medium 
DMEM-F12 medium (Life 
Technologies®, with HEPES)   95 mL 

Filter the below items together, then add to DMEM-F12 
Heat-inactivated horse 
(equine) serum (ATCC®)  5%   5 mL 

Cholera Toxin (Fisher®, 1 
mg) 100 ng/mL 

1 mg/mL 
(Add 1 mL Ddwater) 

store at -20 °C, 10 
µL/tube 

10 µL 

Epithelial growth factor (Life 
Technologies®, 100 µg)  20 ng/mL 

50 µg/mL 
(Add 2 mL Ddwater) 

store at -20 °C, 40 
µL/tube 

40 µL 

Hydrocortisone (Sigma®, 
powder) 0.5 µg/mL 

500 µg/mL 
(measure 10 mg + 1 mL 
100% ethanol + 19 mL 
DMEM-F12) store at – 

20 °C, 100 µL/tube 

100 µL 

Insulin solution (Sigma®, 10 
mg/mL) 10 ng/mL 

10 mg/mL 
(Store at 4 °C, 100 

µL/tube) 
100 µL 

Harvest Time: 72 hours for M1 cell, 48 hours for M3 cell.  
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Sample Handling Each of the three T25 flasks was harvested individually using 

trypsin-EDTA following the procedure described in Section 8.5. The harvested cells are 

spun down at 1000g for 5 minutes before transferring the cell pellet to a 2.0 mL micro-

centrifuge tube. Cells in each micro-centrifuge tube are washed four time with 1 mL of 

DPBS at room temperature. After the last wash, all supernatant is removed and 5-10 µL 

DPBS is added to the tube without disturbing the cell pellet. The cells are left at room 

temperature and SERS spectra are acquired as a function of time post washing.  

SERS spectrum acquisition and Data processing   All SERS spectra are 

acquired with an RM-2000 Renishaw® Raman microscope employing a 50x (infinity-

corrected, 0.75 numerical aperture) objective and 785 nm excitation. Incident laser 

powers of ~ 0.45 mw and ~10 seconds of illumination time are used to obtain the 

reported bacterial SERS spectra.  The illuminated Raman excitation field of view is ~30 

µm x 2.5 µm. Ten SERS spectra per culture flask are acquired and data from all three 

flasks (30 spectra) are inspected to ensure robustness within the same flask and 

reproducibility between different flasks. Then the ten spectra with highest S/N ratio are 

selected and averaged. The averaged spectrum is baseline corrected and plotted in a 

spectral region from 400 – 1800 cm-1 with MATLAB®. 
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5.4  - Results and Discussions 

Time-dependent SERS spectral feature change is the key to distinguish non-

tumorigenic and cancer cells 

The SERS spectra as a function of time post-washing for non-tumorigenic 

mammary gland epithelial cell (M1, red) and for invasive breast cancer cells (M3, blue) 

are shown in Figure 5-1. The M1 and the M3 cells can be distinguished immediately after 

washing (t = 0 min) in which the M1 cells shows broad and weak spectral features that 

resembles an aggregated protein spectrum (Chapter 4), but the M3 cells shows narrower 

bands such as the 736 cm-1, 965 cm-1 and 1030 cm-1. Within 30 minutes the M1 cells 

begin to show stronger SERS signal and very distinct vibrational bands with the most 

intense band centered around 735 cm-1. However, a notable time-dependent red-shift of 

this band from 733 cm-1 to 725 cm-1 are observed on the M1 cells after 30 minutes. This 

red-shift from 735 cm-1 to 725 cm-1 is accompanied by a slight decrease of the overall 

intensity. On the contrary the M3 cells show no such red-shift of its most intense band as 

demonstrated in the zoom-on view on the right, and the overall intensity increases with 

time. Also SERS signals intensities from the M3 cells are considerably stronger than the 

M1 cells after 30 minutes as evidenced from the signal-to-noise ratio. Both cells show a 

decrease of the 1030 cm-1 band intensity after ~60 minutes.  These vibrational bands have 

been previously reported in our bacteria SERS spectra (Chapter 2 and Chapter 3) and 

have been assigned to features from purine metabolites. The 1030 cm-1 band has been 

determined to be due to nicotinamide adenine dinucleotide as described on our N. 

gonorrhoeae spectrum (Figure 3-4). As discussed in Chapter 3 since the oxidized and 
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reduced form of nicotinamide adenine dinucleotide can’t be distinguished from their 

SERS spectra, we will denoted as NAD/NADH.  

 To determine the relative contribution of each molecular components to the M1 

and M3 spectra we will use the best-fit method discussed in Chapter 2. The best fits are 

shown in Figure 5-2 and the contributions are shown as bar graph on the top. Almost all 

spectral features in each spectrum are captured by its best-fit with minor difference in 

relative intensity. It’s evident from the bar graph that the red-shift of the ~733 cm-1 to 

~725 cm-1 band on the M1 cell spectra corresponds to the change of ATP to 

hypoxanthine as the largest molecular contributor to the SERS spectrum. On the other 

hand, the contribution of each molecular component to the M3 SERS spectra remain 

relatively constant throughout the experiment, with adenine and ATP making the largest 

and second largest contribution to each spectrum. Hence no time-dependent shift of the 

most intense band is observed on the M3 spectra. We noted that the consistent 

discrepancy between the M3 experimental spectra and best-fits of the 735-to-965 cm-1 

band ratio, and this discrepancy has been attributed to the local acidic pH environment 

near the cell surface (See   The contribution from NAD/NADH decreases with time in 

both cell lines as evidenced by the decreasing intensity of the 1030 cm-1 band.  
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Figure 5-1  Side-by-side comparison of the SERS spectra of non-tumorigenic M1 cells (red) and 
invasive breast cancer cell M3 (blue) as function of time post-washing. The time-dependent red-shift 
of the 733 cm-1 band on M1 cells is contrasted with the M3 cells which show no red-shift in the zoom-
in view on the right.  

 

 
Figure 5-2 Best fits (black) resulting from linear combination of SERS spectra of four purines, 
NAD/NADH and protein for M1 and M3 cells at each time point are shown. The relative 
contributions of each molecular components are shown as bar graph on the top.  
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 Although a larger database of cancer/normal cell combinations is needed to 

confirm the generality of this dynamical SERS effect, Figure 5-1 and Figure 5-2 

demonstrate the new possibility of using a SERS platform to distinguish non-tumorigenic 

and cancer cells. From the data presented in Figure 5-1 it can be seen that two key SERS 

phenomena are the basis for distinction between non-tumorigenic and cancer cells. The 

first is that non-tumorigenic cells exhibit weak and broad spectrum which resemble 

features from protein aggregations (Chapter 4) initially after washing while the cancer 

cells always show relatively stronger and narrower spectral features. The second is that 

non-tumorigenic cells exhibit a time-dependent red-shift of the most intense band from 

centered on ~733 cm-1 to ~725 cm-1 while the cancer cells don’t exhibit such time-

dependent shifts. This red-shift corresponds to a change of ATP to hypoxanthine as the 

largest contributor to the SERS spectra. This time-dependent change occurs within 60 

minutes post sample washing.  Thus, monitoring SERS spectra of cells isolated from a 

biopsy sample for up to one hour after washing SERS can provide evidence of a 

distinction between cancer and normal cells without the need for antibody labeling.  

 In the next section, the possible biochemical origin of the presence of these purine 

metabolites is discussed. Specifically, the appearance of these purine metabolites as well 

as the observed time-dependent spectral change is related to the known purinergic 

signaling cascade that occurs at near-cell membrane extracellular region.  

Extracellular purine molecules are purinergic signaling molecules  

 The action of purine and purine nucleosides/nucleotides as extracellular signaling 

molecules has long been recognized and appreciated. Burnstock et al. first described the 
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release of extracellular ATP as transmitter between non-adrenergic inhibitory nerves.166 

Burnstock’s hypothesis was initially met with skepticism primarily because as the key 

energy source molecule, it seem unlikely for such important molecule to be present 

extracellularly for cell signaling purpose. Nevertheless, three decades later, following 

cloning and characterization of the ATP receptors expressed on cell membrane, 

purinergic signaling has been a well-established concept and has been applied to cancer 

research as well.167 The role of extracellular ATP and adenosine, and purinergic signaling 

cascade in tumorigenesis progress has been extensively studied.168, 169, 170 Purines can be 

released by any cell types to the extracellular region,171  but the concentration of 

extracellular purines increase dramatically from nano-and pico-molar to micro-molar 

level when cells are under stress condition such as damage, inflammation, hypoxic and 

apoptosis.172, 173, 174  Thus it seems possible for the presence of extracellular purine 

molecules at concentrations detectable by SERS when the cells are placed in a nutrient-

depleted environment which pose immense stress to the cells. Figure 5-3 summarized the 

typical routes of ATP release to near-cell membrane extracellular regions.  
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Figure 5-3 Summary of the non-lytic mechanism for release of ATP to extracellular region. 175 

Since ATP and adenosine are powerful cell growth stimuli, their activity and extracellular 

concentrations are regulated by a series of ecto-nucleotidase on the cell outer membrane 

by either directing the import of these two molecules back to the cytoplasm or by 

subsequent conversion to purine bases such as hypoxanthine. 175   The inactivation 

mechanism of purinergic signaling cascade by the actions of ecto-nucleotidase is 

illustrated in Figure 5-4. Thus it seems possible that time-dependent ATP-to-

hypoxanthine shift observed on the non-tumorigenic M1 cell (Figure 5-2) reflect this 

normal inactivation process when ATP are converted to hypoxanthine and subsequently 

xanthine. Furthermore, it can be anticipated that in cancer cells this inactivation 

mechanism is mutated or non-functioning,168, 169, 170 therefore the M3 cells are able to 

maintain relatively constant extracellular [ATP] concentration as evident from the bar 

graph on Figure 5-2. Hence the M3 cells can sustain constant growth signaling, one of the 

six hallmarks of cancer as described by Weinberg.142  
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Figure 5-4 The inactivation mechanism of ATP purinergic signaling cascade by membrane-
bound nucleotide converting-ectoenzymes.175  

 

5.5  - Conclusion and Future work 

The results described in this chapter demonstrates the ability of the SERS platform 

to distinguish in vitro grown cancer and normal cell lines as well as the potential of SERS 

as novel bioanalytical probe for studying the purinergic signaling processes occurring at 

near cell membrane extracellular region. Two cell lines, non-tumorigenic mammary 

gland epithelial (M1) cells and invasive breast cancer (M3) cells, are studied using the 

gold substrate. These cells show similar spectral features as the bacterial spectra reported 

previously in our laboratories, and the main molecular contributor to the SERS spectra of 

these cell lines are found to be four purines, adenine, ATP hypoxanthine, and xanthine, 

and nicotinamide adenine dinucleotide (NAD/NADH). However several distinct SERS 

characteristics are found to be unique to these non-tumorigenic/cancer cells. These 
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includes the presence of the ~1030 cm-1 band which is associated with the presence of 

NAD/NADH known to be elevated in cancer cells176 and had only been previously 

observed on the fastidious bacterial species N. gonorrhoeae, and the decreasing 

contribution of NAD/NADH as a function of time post-washing. The most unique SERS 

characteristic to these normal/cancer cell lines are the red-shift of the most intense band 

from ~733 cm-1 to ~725 cm-1 which had not been observed previously in any of our 

bacterial SERS spectra or reported in the literature. This red-shift is due to the change of 

ATP to hypoxanthine as the largest SERS molecular contributor as a function of time 

post-washing. This time-dependent change is related to the conversion of ATP to 

hypoxanthine by the action of a series membrane-bound nucleotide converting-

ectoenzymes. Moreover, this ATP-to-hypoxanthine time-dependent change is the most 

important SERS characteristic to distinguish non-tumorigenic M1 cells and cancerous M3 

cells. The M1 cells display this ATP-to-hypoxanthine time-dependent change within 60 

minutes post washing while the M3 cells don’t show such a time-dependent change. By 

monitoring the SERS spectra of a sample for up to one hour after washing our SERS 

platform could provide a distinction between the M1 and M3 cells. The biochemical 

origin of these purine molecules is proposed to result from the molecules involved in 

extracellular cell signaling pathways. The purinergic signaling cascade is activated in 

cells are under stressful condition, and by placing the cells in a nutrient-depleted 

environment the cascade is activated and the concentration of extracellular purines 

increase dramatically. Since purine molecules especially ATP and adenosine are potent 

growth factor, their concentrations are regulated by series of ecto-nucleotidase on cell 
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membrane which can inactivate them by converting them to hypoxanthine and 

subsequently other free purine bases. Therefore it’s possible the time-dependent ATP-to-

hypoxanthine change observed on the SERS spectra of the M1 cells reflects this 

inactivation process, while in M3 cells the inactivation mechanism of the purinergic 

signaling cascade is defected or non-functioning and thus no such time-dependent change 

is observed. The results in this chapter demonstrate at least phenomenologically the 

ability of SERS to detect and identify in vitro grown cancer cells as well as the potential 

of the SERS platform for studying cancer metabolomics.  

 

6. Conclusion 

The results described here demonstrate the potential of SERS of living cells as a 

molecular disease diagnostic platform and as a probe for studying metabolomic activities 

that take place at near-cell extracellular region. When compounded with appropriate 

sample preparation and enrichment procedure, multivariate classification model for 

unknown prediction and portable instrument, SERS could provide rapid (<1 hour), 

sensitive and specific diagnostic of bacterial infections in body fluid and cancer cell 

identification without the requirement for the slow cell growth step. The basis of the use 

of SERS for rapid diagnostic is the multiplexing capability which allows simultaneous 

identification of different purine metabolites from the same spectrum. With the exception 

of C. trachcomatis in which aggregated proteins are found to be key contributor to their 

SERS spectra, purine metabolites release to extracellular regions by the bacteria as 

response to starvation are the key SERS biomarker and serve as basis for strain 
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identification in unknown sample. In cancer cells, these purine are found to be release by 

the cells to extracellular as part of purinergic signaling cascade.  The spectral differences 

on the gold and the silver SERS substrate of the same molecules as well as the time-

dependent changes provides additional basis for bacteria and cancer cell identification. 

The ability of SERS to observe protein aggregates extends the applicability of SERS 

platform beyond disease diagnostics as a novel, powerful bioanalytical probe for the 

dynamic of protein structure in solution, which may be of value in protein therapeutic 

research for both safety and treatment efficacy reasons.   
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7. Supplementary Figures and Information  

7.1 – SERS Diagnostic Platform: Urinary Tract Infection  

 
a Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneu) 
bS = susceptible, R = resistant 
Table S-7-1 Gram-negative UTI Clinical Isolates a,b  
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a Staphylococcus saprophyticus (S. sapro), Enterococcus faecalis (E. faecalis) 
bS = susceptible, R = resistant, I = indeterminate 
Table S-7-2 Gram-positive Clinical Isolates a, b 
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Table S-7-3 PLS-DA classification confusion table results for the cross validation model 
treatment of the SERS spectra of 12 UTI causative clinical isolates. 

 

 
Table S-7-4 PLS-DA classification sensitivity and specificity for twelve UTI bacteria SERS 
spectra. 
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ad = adenine, hx = hypoxanthine, xan = xanthine, gu = guanine, ua = uric acid, AMP, gs 
= guanosine 
Table S-7-5 Relative contribution of purine components to UTI bacteria SERS spectra 

 

 

Figure S-7-1  Plot of the PLS-DA classification cross validation root mean square error 
(RMSECV) as a function of the number of latent variables (LV) selected.  24 LVs was selected for 
this treatment because this number corresponded to a minimum in the RMSECV. 
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7.2  - SERS Diagnostic Platform: Sexually Transmitted Disease 

 
Figure S-7-2           Sensitivity of C. trachomatis (Ct) on gold and silver SERS substrate at t = 0 min 
(right after sample processing). The initial concentration of elementary body is determined by titer to 
be ~105 ifu/mL. The lowest concentration of EB to yield SERS signal on gold is determined to be 
~5x104 ifu/mL and ~102 ifu/mL on silver.  

 

 
Figure S-7-3 Sensitivity of N. gonorrhoeae (Ng) on gold and silver SERS substrate at t = 60 
minutes post sample processing. The initial concentration of Ng is determined by serial dilution and 
overnight cell culture to be ~ 107 cfu/mL. The lowest concentration of bacterial cell to yield SERS 
signal is ~ 106 cfu/mL on both metals.    
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Figure S-7-4 Gold and silver SERS spectra comparing the signal from C. trachomatis cell and 
from the unfiltered supernatant fluid around the cell as a function of time post sample processing. 
On both metals the SERS molecular contributors are always found on the cell, hinting the identity of 
the SERS molecular contributors to be of cell membrane components.  

 

7.3  - SERS Diagnostic Platform: Cancer Cell Detection 

 
Figure S-7-5 SERS spectral features are strongly affected by the local pH environment on the M3 
cells. Comparing the best-fits calculated using adenine in DPBS (pH 7.0 – 7.6) vs adenine at acidic pH 
as compared to the experimental data for the M3 60 minutes and 180 minutes spectra show 
improvements on the 735-to-965 cm-1 ratio as well as the features from 1300-1400 cm-1 region.  
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Table S-7-6 Relative contribution of molecular components to M1 and M3 SERS spectra at each 
time point. 

 

7.4 -  Modeling compound SERS spectra 

In water 

  
Figure S-7-6  Normalized SERS spectra on gold substrate for seven purine compounds found 
contributing to the twelve UTI bacterial spectra. The vertical dash line correspond to a unique peak 
in the SERS spectrum of each purine that help to identify this molecular contribution to the bacterial 
SERS spectrum.  
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Figure S-7-7 Normalized SERS gold (red) and silver (blue) spectra of the three purine molecules 
found to be the components of the SERS spectra of N. gonorrhoeae.  

 

 
Figure S-7-8 The absolute intensity of adenine, NAD/NADH and guanine found in N. 
gonorrhoeae spectra are shown here on the gold and the silver substrate.  
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In DPBS 

 
Figure S-7-9 Normalized (left) and baselined (right) SERS spectra on gold substrate of molecular 
components (four purines, protein and NAD/NADH) found contributing to the SERS spectra of M1 
and M3 cells.  

 

8. Appendix 

8.1  - General laboratory cultivation guideline for vegetative bacteria 

Agar medium  most bacteria can be cultured easily on trypticase soy agar, nutrient 

agar, or LB agar from frozen culture. It’s recommended the agar medium to be prepared 

according to manufacture instruction fresh before bacterial culture and stored at 4 °C for 

no more than one week. The bacteria should be plated and allowed to grow on the agar 

plate overnight at 37 °C. 

Broth medium common broth media for bacterial culture include trypticase soy 

broth (TSB), nutrient broth (NB) or Luria broth (LB) unless otherwise specified. It’s 

recommended the broth medium to be prepared in sterile 100 mL flask and autoclaved at 

121 °C for 30 minutes before use. The prepared broth medium can be stored at 4 °C for 
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up to two weeks. 10-20 mL broth medium in sterile test tube covered by aluminum foil is 

used to culture bacteria that have been grown on the agar medium. One to two bacteria 

colonies are aseptically removed from the agar plate by sterile loop and add to the 

medium. The medium should be incubated overnight at 37 °C. After that 10-20 µL 

overnight growth is inoculate into 10-20 mL fresh broth medium and incubate at 37°C for 

5-6 hours or until specific optical density (OD600 nm) is reached. This allows the bacteria 

population to reach vegetative state during which they are most metabolically active. The 

optimal duration of incubation should be determined for each strain vial serial dilution 

(see next section).  

Frozen sample preparation  skim milk is used as medium to prepare frozen 

bacterial sample. The skim milk should be prepared fresh and stored at 4 °C for up to one 

week. Cryogenic tubes (Corning®, 1.5 mL) should be sterilized at 121 °C before used. 

After the bacteria have grown to vegetative state, the broth medium is spin down at 

10,000 rpm for 5 minutes to collect all bacterial cells. The cell pellet is re-suspend in 1 

mL skim milk in the cryogenic tube and vortex vigorously to ensure bacterial cells are 

well-mix with skim milk. The cryogenic tube is stored at -80 °C or vapor phase of liquid 

nitrogen.  

 

8.2  - Quantitation of Bacterial Cells by Serial Dilution  

Overnight cell culture is the only method to quantitatively determine the amount of 

live bacterial cells in a sample (in the unit of colony forming unit, cfu/mL). Serial 

dilution of the bacterial sample is needed before inoculate onto plate medium. The 
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procedure is following 

1. Starting with 1 mL bacterial sample, dilute the sample 10-fold each time with 9 

mL freshly prepared, sterilized, double-filtered saline aseptically until reaching 

10-6 original concentration, i.e. perform dilution six times.  

2. Transfer 0.5 mL 10-6 on agar plate with sterile pipette. 

3. Spread the bacteria evenly on the plate with sterilized glass beads. Discard the 

beads in 10% bleach afterward and incubate the agar plate at 37 °C overnight. 

4. Count the number of colonies on the agar plate after incubation.  

# of colonies on the plate x 106 (dilution factor) / 0.5 mL = cfu/mL 

 

8.3  - Special Laboratory Cultivation Guideline for Neisseria 

gonorrhoeae 

Neisseria gonorrhoeae are fastidious Gram-negative bacteria that require 

supplementary nutrient in addition to conventional bacteriological medium. In addition, 

Neisseria gonorrhoeae also needs to be grown in 5% CO2 with constant shaking.  

Material:  

Agar medium: BD® BBLtm Prepared Chocolate II Agar (GC II agar with hemoglobin 

with IsoVitaleX®) purchased from Fisher Scientific®.   

Broth Medium: Prepare Solution A and Solution B separately in clean, sterile flask. 

Autoclave Solutions A and B separately at 121 ºC for 20 minutes. Allow both solutions to 

cool to 50 ºC in water bath. Aseptically add Solution B to Solution A and mix very well. 
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Rehydrate 2.0 mL IsoVitaleX® according to package instructions and add aseptically to 

the mixture. After preparation the broth medium can be stored at 4ºC for up to one week.  

Solution A contents Amount (grams) 
Proteose Peptone #3 3.0 
Corn Starch 0.2 
Dipotassium Phosphate (K2HPO4) 0.8 
Monopotassium Phosphate (KH2PO4) 0.2 
Sodium Chloride (NaCl) 1.0 
DI water 100 mL 
Solution B contents Amount (grams) 
Dried Bovine Hemoglobin 2.0 
DI water 100 mL 

The bovine hemoglobin is soluble in water, however they aggregate after autoclave. 

Therefore the growing bacteria will bind to the protein aggregates and makes separation 

difficult. As such it’s recommended to follow the cultivation steps below.  

Preparation of stock sample of N. gonorrhoeae from lyophilized sample:  

1. In a sterile flask, aseptically transfer 20 mL broth medium. Add the lyophilized 

bacteria pellet to the broth medium. Allow rehydration for 48 hours.  

2. After 48 hours, inoculate three GCII plates with 10 uL broth medium each. Incubate 

for 20 hours with 5% CO2 at 37 ºC.  

3. Prepare skim milk storage medium according to the manufacturer instruction. 

Autoclave for 20 minutes at 121 ºC. Prepare three Corning® cryopreservation tubes 

with 1 mL sterilized skim milk.  

4. Aseptically strip off all bacteria colonies from the plate and transfer to the 

cryopreservation tube (One plate per tube) with skim milk. Vortex the 

cryopreservation tubes vigorously for about 10 seconds. Store the tubes at liquid 

nitrogen vapor phase.  
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Laboratory cultivation of N. gonorrhoeae from stock sample 

N. gonorrhoeae (FA1090) is obtained from ATCC®. The broth medium to grow 

this bacteria strain is 814 broth medium supplement with bovine hemoglobin and 

IsoVitaleX® (BD®). However, we found that the hemoglobin in the broth medium 

aggregates and precipitate out of the broth medium after sterilization. When using this 

broth medium to grow the bacteria, it’s almost impossible to completely separate the 

bacterial cells from the hemoglobin aggregation by centrifugation. To solve this problem 

we decided to grow the bacteria on the GC II agar and harvest them by stripping them off 

the plate with sterilized loop. After several rounds of trial and error we develop a reliable 

procedure to yield log-phase N. gonorrhoeae that produce robust signal on our SERS 

substrate using combination of the broth medium and the GC II agar. First the bacteria 

are grown on a GC II plate from frozen stock sample overnight at 37 °C with 5% CO2. 

Then three to four colonies from the plate is removed with sterilized loop and inoculate 

into a sterile flask containing 20 mL broth medium. The bacteria is allowed to grow in 

the broth medium with constant shaking for 20 hours at 37 °C and 5% CO2. After that, 

one loop (~ 10 µL) is used to inoculate onto a fresh GC II agar plate and incubate for 18 

hours at 37 °C and 5% CO2. The bacteria cell are harvested from the agar plate by 

stripping the colonies off the plate with sterilized loop.   
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8.4  - In vitro cultivation for non- LGV serovar Chlamydia trachomatis 

Introduction 

Chlamydia species are Gram-negative, obligate intracellular bacteria which 

require a mammalian epithelial cell for proliferation and survival. Therefore, it cannot be 

cultivated with conventional bacteriological broth medium. This property of Chlamydia 

species is the reason why laboratory cultivation for this species is expensive, difficult and 

labor-intensive. Up until 1965, Chlamydia species cultivation is done through passage in 

the yolk sack of the embryonated hen egg. Since then several mammalian epithelial cell 

lines are found eligible for Chlamydia trachomatis proliferation, making possible for 

cultivation and isolation of large quantity of Chlamydia possible. The procedure 

describes here use McCoy cell (ATCC® CRL-1696) as host cell line.  

Chlamydia trachomatis species is consisted of 15 serovars dividing into three 

different biovars. All Chlamydia trachomatis serovars are Biosafety Level 2 pathogen, 

with the exception of the LGV serovars which requires Biosafety Level 3 facilities. 

Serovars Biovars/diseases causing 
Ab, B, Ba, C Trachomatis – the leading cause of preventable blindness in 

developing countries64 
D, E, F, G, H, I, J, K Causing sexually transmitted diseases, including pelvic 

inflammatory disease, infertility, ectopic pregnancy, neonatal 
pneumoniea and neonatal conjunctivitis60,63 

L1, L2, L3 Lymphogranuloma venereum (LGV) 
 

As different serovar requires different incubation time as well as dilution ratio, it’s up to 

the researcher to determine the ideal ratio for each serovar. This protocol describes 

procedure for Chlamydia trachomatis Serovar D (ATCC® VR-885). Description for 
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cultivation of the LGV serovars will be included at the end of this section. For more 

general information, please refer to ATCC® guideline and literature [177].  

 In vitro Cultivation of Chlamydia trachomatis is consisted of three main stages: 

the growth of host cell, infection by Chlamydia, and isolation and storage of elementary 

body (EB). For Serovar D, this process takes approximately eight days, with 72-96 hours 

of infection time depends on the concentration of EB inoculated. It’s worth-noting that 

the inclusion bodies cause by Serovar D are much smaller than those by the LGV strains, 

and a much higher (some protocol reported 10:1) inoculum to host cell ratio is required to 

create a decent yield of EB. Therefore it’s up to the researcher to determine the exact 

harvest time depends on the growth and size of inclusion body.  

Material - Stage 1 

Minimal Essential Medium (MEM) supplemented with 10% fetal bovine serum (FBS), 

Dulbecco Phosphate Buffered Saline (DPBS), trypsin-EDTA, T75 cell culture flask. 

Low-speed bench-top centrifuge. Additional sterilized centrifuge tubes or micro-

centrifuge tubes 

- MEM can be purchased from various vendors such as ATCC® or Life 

Technologies®. However the FBS MUST be purchased from ATCC®, as they are 

certified to not containing any inhibitory factors for Chlamydia growth. The 

researcher also need to vigorous monitor the growth of Chlamydia to ensure the 

absence of inhibitory factors.  

- Since Chlamydia is a bacteria, Penicillin-streptomycin (Penn-Strep) or any 

antibiotic SHOULD NOT be added to the growth medium.  
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Material - Stage 2 

Dulbecco’s Minimal Essential Medium (DMEM) with 10% FBS supplement with 1 

µg/mL cycloheximide, Sucrose/phosphate/glutamate buffer (SPG) or Hass Balanced Salt 

Buffer (HBSS), low-speed bench-top centrifuge. Intermediate (x30,000g) centrifuge with 

refrigerated unit (located on EBR701 or LSEB 6th floor), 10x Diethylaminoethyl-dextran 

(DEAE-Dextran) in HBSS buffer (final concentration needed, 45 µg/mL). Platform 

rocker. Inverted microscope (10x and 25x objective), Sterilized Nalgene® centrifuge tube 

and micro-centrifugation tube, pipette tips. 

- HBSS is commercially available and can be used in exchange of SPG. The receipt 

for SPG is attached at the end of this section.  

Material - Stage 3 

Sterilized Nalgene® centrifuge tube, 50 mL centrifuge tube and 0.5 mL micro-centrifuge 

tube, ice-cold HBSS buffer, ice, 1 liter 10% bleach and 70% ethanol in spray bottle.   

Procedure 

*  Stage 1 procedure is essentially the growth and maintenance of the McCoy cell. Refer 

to Appendix 8.5  - Common tissue culture protocols 

Stage 1 - Day 1  

1. Seed one McCoy cell stock sample (usually contain ~106 – 107 cell/mL) in two T75 

flasks. Use 7 mL of DMEM with 10% FBS on each flask. Incubate the flasks at 

humidified 37 ºC incubator with 5% CO2.  

Stage 2 - Day 2 

1. Replace the medium with 7 mL fresh complete growth medium.  
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2. Check confluency under microscope, trypsinized the cell layer to prepare a frozen 

sample if necessary. Label name, date and cell count results on the container.   

Stage 3 - Day 3 

1. Check confluency. The desire coverage is 90% - 95%. Trypsinize the cell layer and 

re-seed back to the flask. 

- This ensure the cell are most viable and metabolically active during infection. 

2. Prepare for infection tomorrow. Prepare MEM with 10% FBS and 1 µg/mL 

cycloheximide. Prepare and sterilized SPG or use HBSS. Prepare 10x DEAE-dextran 

in HBSS (i.e. 450 µg/mL). Kept all reagents, medium and centrifuge tubes cold. 

Stage 2 - Day 4 

1. Final check of cell confluency and viability. Make note of anything unusual.  

2.  Warm up HBSS and 10x DEAE-dextan in 37 ºC water bath. Keep the cap away from 

the water to avoid contamination. Diluted 10x DEAE-dextran to final concentration 

(45 µg/mL) with HBSS.  

3. Remove growth medium from flask. Rinse the cell layer twice with 10 mL HBSS.  

4. Add 5 mL diluted DEAE-dextran to the cell layer. Incubate at room temperature for 

fifteen minutes.  

- Treating the cell layer with the positively-charged DEAE-dextran can neutral the 

negative charges on the cell surface, allowing EB to enter easier. As such it’s 

normal that after the treatment some cells (especially on the edges of the flask) 

fall off from the container wall.  
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5. Remove the DEAE-dextran. Rinse the cell layer with 10 mL HBSS.  

6. Remove one Chlamydia stock sample (100 µL) from the -80 ºC freezer. Quickly thaw 

at 37 ºC water bath.  

- Chlamydia EB lost viability rapidly at warm temperature. Thaw in < 1 minute.   

7. Transfer the stock sample to 7 mL DMEM/10% FBS/cycloheximide. Gently lay the 

medium over the cell layer.  

- All contaminated disposable container and pipettes must be treated with 10% 

bleach overnight before disposed in biohazard waste box. Make sure to coat all 

surfaces with bleach.  

8. Place the cell flask on the platform rocker. Rock the cell flask for three hours at room 

temperature at minimal speed.  

- To avoid contamination, cap the flask tight and seal it with parafilm. Make sure to 

cover the filter opening.  

9. Incubate the cell flask at humidified 37 ºC incubator with 5% CO2. 

Stage 2 - Day 5-7 

1. Monitor formation and size of inclusion body daily under microscope. Pay close 

attention to anything unusual (medium color, turbidity, etc). In general the harvest 

window for this serovar lies between 72-96 hours. (Insert cell image from 24 hrs, 

48 hr, 72 hrs). 

2. Preparation for harvest ( done by the night before harvest)  

- Check all necessary reagents. They must be stored in cold until use. 

- Sterilize necessary containers: pipette tips, centrifuge tubes, micro-centrifuge 
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tubes and glass beads. Kept sterilized containers sealed and cold until use. 

Stage 3 – Day 8 (harvest) 

Preparation: Pre-cool bench-top centrifuge and intermediate centrifuge (ERB) to 4 ºC. 

Obtain ice in Styrofoam box. Prepare 500 mL 10% bleach and set aside. Spray in two 50 

mL centrifuge tubes, two sterilized Nalgene® centrifuge tubes, dozen sterilized micro-

centrifuge tubes, glass beads and 50 µL pipette tips.  

* Since Chlamyida EB lose viability at room temperature without host cell, it’s 

recommended that total harvest time (exclude the centrifuge time) should be less than 10 

minutes.  All reagents and containers in contact with the EB should be cold or kept in ice 

until use, and coat with 10% bleach thoroughly and left overnight before disposal.  

1. Remove cell flask from incubator. Final check cell condition and inclusion body 

size under microscope.  

2. Transfer 10-15 glass beads to one of the 50 mL centrifuge tube.  

3. Add the beads to flask. Shake vigorously.  

- Most host cells will rupture and detached from the flask wall under the mechanical 

forces of the glass beads.  

- The presence of FBS in the medium will cause formation of large amount of foam in 

the container. Pay extreme caution not to cross-contaminate as the foam contains EB.  

4. Transfer the content in the flask to the 50 mL centrifuge tube (including the foam). 

Immediately submerge the centrifuge tube in ice.  

5. Using a new pipette each time, wash the glass beads and the container wall with 5 

mL HBSS. Add the content to the other 50 mL centrifuge tube.  
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6. Centrifuge both 50 mL centrifuge tubes at x 500g for 15 minutes at 4 ºC. Make 

sure to balance by adding HBSS.  

7. Decant the liquid to a sterile Nalgene® centrifuge tube. Careful not to disturb the 

cell debris at the bottom of the tube. Submerge the Nalgene® tube in ice in the 

Styrofoam box. Fill the other Nalgene® tube with HBSS for counterweight. 

8. Bring the Styrofoam box to ERB701.  Centrifuge at x 30,000 g for 30 minutes 

with breaks off.  

9. Carefully remove the centrifuge tube from the instrument. Note the small white 

pellet near the bottom of the tube. This is the EB/RB mixture. Submerge the tube 

in ice and brought back to the lab. 

- Since this is a shared facility which is highly prone to cross-contamination, it’s not 

recommended to open the container even under the bio-hood there.   

10. In the hood, carefully decant the liquid to 10% bleach without disturbing the 

pellet.  

11. Using a new pipette, add 1 mL ice-cold HBSS to the side opposite to the pellet. 

Gently tilt the tube several times so pellet can be washed by the HBSS.  Decant 

the HBSS and use a 50 µL pipette to remove any remaining HBSS. 

12. Depends on the size of the pellet, add 200 – 500 µL ice-cold HBSS to the tube. 

Use a 50 µL pipette to disperse the pellet. Can vortex in addition.  

13. Aliquot into 0.5 mL micro-centrifuge tubes with 100 µL each. Label date and 

name. 

14. Store the micro-centrifuge tubes in -80 ºC freezer.  
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15. Coat all containers and pipettes with 10% bleach and left overnight. Wipe down 

the hood surface with 70% ethanol.  

Stage 3 – Day 8 (re-infect) 

 If subsequent growth is required to obtain more EB, Step 7-14 can be omitted. 

Instead, at Step 5 use 5 mL ice-cold DMEM/10%FBS/cycloheximide instead of HBSS to 

wash the glass bead and the container wall and add to 50 mL centrifuge tube. Centrifuge 

at x500g for 15 minutes. Use the liquid to infect a fresh layer of McCoy cell follow the 

procedure in Stage 2 – Day 4. Note that the working volume limit for T75 flask is 15 mL.  

Procedure for cultivation of the LGV serovars 

 The cultivation of the LGV serovars is essentially the same as described above 

except two notable difference. First, pre-treatment of the host cell with DEAE-dextran is 

not needed because the infectivity of LGV serovars are much higher than the non-LGV 

ones. Cycloheximide may not be needed. Second, the incubation time for EB is much 

shorter – 28-36 hours instead of 72-96 hours. The inclusion body size is also much larger 

than the non-LGV ones.  

 

8.5  - Common tissue culture protocols 

Contrast to cultivation of vegetative bacterial cells which can happen through suspension 

in liquid broth medium, almost all mammalian cell must anchor on a suitable surface for 

proliferation. Cell suspension in liquid medium is indication of cell lysed and death. 

Therefore agitation or shaking should be avoided to prevent cells from detach from the 

cell culture container surface. It’s recommended to use tissue cell culture flask with non-



 

122 

wettable, vented filter cap instead of well plates to prevent contamination. Containers and 

workspace for tissue culture and for cultivation of vegetative bacteria must be separated. 

If not an option, the area must be thoroughly dis-infected with 70% ethanol spray or 10% 

bleach between two culture experiments.    

TISSUE CULTURE REAGENTS 

Phosphate Buffer Solution (PBS) – Can be prepared by adding appropriate number of 

PBS tablets (Sigma-Aldrich®) to appropriate volume of distilled water and sterilize by 

autoclave (121 ºC for 20 minutes) or can be purchased directly. Un-open PBS can be 

stored at room temperature until expiration specified on the package. Open PBS is 

recommended to aliquot into several Corning® medium storage bottle and stored at 4 ºC.  

Trypsin-EDTA – is recommended to purchase from Gibco® or Sigma-Aldrich instead 

prepared in the lab. Avoid repeat freeze-thaw. Aliquoted Trypsin-EDTA should be stored 

at -20 ºC until expiration date specified on the package.  

Serum – Choice of serum should be based on product sheet provided by the 

manufacturer or as guided by literature. The most common choice of serum is fetal 

bovine serum (FBS). It’s recommended FBS to be purchased from American Type Cell 

Collection (ATCC®) as the quality is vigorously and routinely checked and guaranteed 

high quality. The FBS are used directly without heat-inactivation. Other type of serum I 

had used includes heat inactivated donor equine serum (DES) and heat inactivated donor 

calf serum (DCS), both are commercially available. ATCC® also provided detailed 

instruction for heat-inactivation treatment of serum if needed.  
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Complete growth medium – The receipt for the complete growth medium should 

always refer to ATCC® product information or guided by literature. Generally complete 

growth medium for tissue culture are consisted of the following components: 

90 mL base media (DMEM, MEM, RPMI, etc, as specified by ATCC® product 

information or literature guidance). It’s best to purchase the base media from ATCC® or 

Gibco® instead of attempt to prepare on in the lab. I always choose the base media with 

high glucose and with L-glutamine.  

10% (or 10 mL) Fetal Bovine Serum (or other serum specified by ATCC® product sheet 

or literature guidance)  

Any other additional component specified by the product sheet. 

Most tissue culture guideline suggests adding 1% Penicillin-Streptomycin to 

prevent bacterial growth in the growth medium. However, under special circumstance (eg. 

cultivation of Chlamydia trachomatis) antibiotic should not be used. I found that 

antibiotic is not always necessary with strict application of aseptic techniques. It’s up to 

the individual researcher to evaluate the risk and benefit of using antibiotic for specific 

cell lines. It’s important to note that regardless adding antibiotic or not, the prepared 

complete growth medium must be stored aseptically in 4 ºC and used up or discarded 

within 14 days. Sterile Corning® medium storage bottle with air-sealed O-ring should 

always be used when preparing the complete growth medium.  

STERILIZING TECHNIQUES 

 Strict sterilization techniques must be implemented at all times especially when 

addition to antibiotic to complete growth medium is not an option (e.g. during cultivation 



 

124 

of Chlamydia trachomatis). The first rule of thumb is to treat every surface outside of the 

biosafety hood as un-sterile. The second rule of thumb is to always wear personal 

protection when performing experiment – the PPT is to protect the cells being 

contaminated. The third rule of thumb is to discard everything associated (disposable 

equipment, media, buffer solution, etc) as soon as a contamination event is discovered 

and thoroughly clean all surface that had contacted during the contamination event. The 

biosafety hood must be operated as instructed and wiped down with 70% ethanol before 

experiment starts. The UV lamp must be on at all time unless for an extended period of 

inactivity with the biosafety hood. All items enter the biosafety hood must be wiped 

down with 70% ethanol. Whenever possible, use individually wrapped, disposable 

containers and pipettes instead of glass ones. After experiment the biosafety hood must 

be wiped down with 70% ethanol.  

 Another main “hotspot” for contamination is the incubator since it’s a warm, 

humid environment all the time. Therefore, it’s recommended the incubator should be 

clean with 10% bleach regularly. The frequency of cleaning depends on the usage of the 

incubator but minimally once every months. Condensation near glass door and on top 

racks must be removed as often as possible. The water used to create the humid 

environment are placed in a stainless tray at the bottom rack. The water must be sterilized 

for three hours at 150 ºC and leave in the biosafety hood with UV lamp on overnight 

before putting into the incubator. Sodium hydroxide pellets are added to the water in the 

tray to prevent any micro-organism growth in the water while in the incubator.  

 A waste container with 10% bleach should be always available to collect any 
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discarded liquid. Never leave the waste container un-capped – micro-organisms from the 

air can fall into the waste container and starts to proliferate. By the same token never 

waive your hand over open media container even with glove on, as air turbulence can 

bring micro-organisms into the containers. Always insert sterile pipette into container 

bottom to transfer media and buffer instead of pouring off the container because the 

container edge may be contaminated especially there are liquid left from previous transfer.  

THAWING CELLS 

1. Aseptically transfer 5 mL of completed growth medium to a sterile 15 mL 

centrifuge tube.  

2. Quickly thaw the frozen vial of cells in 37 ºC water bath for 1 minutes. The 

principle is to thaw quickly so cells are not recovering in the DMSO-containing 

storage solution.  

3. Dried off water from the vial. Spray and wipe the vial with 70% ethanol.  

4. Transfer the cells/media to the 5 mL completed growth media. Gently re-suspend 

the cells.  

5. Spin down the cell at 750-1000 rpm at room temperature for 5 minutes. 

6. While centrifuging, transfer appropriate volume of complete growth medium to 

tissue culture flask. The volume  for different size container is summarized below 

Container size Working volume (mL) 
6-well plates 2 mL per well 
25 cm2 flask 5 – 10 mL 
75 cm2 flask 10 -15 mL 
225 cm2 flask 50 – 75 mL 
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7. Aspirate off supernatant.  

8. Re-suspend the cell pellet in 4 mL fresh growth media and evenly divide it into all 

tissue culture flasks containing appropriate amount of complete growth medium.  

Square-shake (north-south twice follow by west-east twice) the flask to distribute 

cell evenly the entire surface.  

9. Allow cells to grow at 37 ºC with 5% CO2 with humidity. 

10. Check confluency in 24-48 hours. Change media or split the cell if near confluent 

(want at least 80% confluent). It’s recommended to change media 24 hours prior 

to splitting to ensure highest viability.  

SPLITTING CELLS 

1. Warm up the complete growth medium, PBS buffer and trypsin-EDTA solution in 

37 ºC water bath. Spray and wipe with 70% ethanol. For cells grow in serum-free 

media, a trypsin-inhibitor solution is necessary to neutralize the enzymatic action 

of trypsin.  

2. Remove the complete growth medium from the culture flask. 

3. Rinse cell layer once with 5 mL PBS. This is important as it’s necessary to 

remove leftover proteins from the complete growth medium prior to introduction 

of trypsin. 

4. Trypsinize cells with 1-3 mL trypsin-EDTA. The volume used depends on the 

size of flask but generally should be enough to cover the entire cell layer. Do not 

over trypsinize or the cells will die. It’s recommended to monitor the process 

under inverted microscope if first time working with the cell line. Trypsin works 
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best when warmed to 37 ºC. Therefore hard to detach cells can be incubated with 

trypsin in 37 ºC to facilitate the trypsinization process.  

5. Add equal volume of serum-containing growth media or trypsin inhibitor solution 

to neutralize the trypsin. The neutralization is thought to be instantaneous.  

6. Spin down the cell at 750-1000 rpm for 5 minutes.  

7. Aspirate off the trypsin-containing media.  

8. Prepare for frozen vial or continue cultivation. Transfer desired amount to newly 

labeled tissue culture flask (NOT the old ones), label cell line name, date, passage 

number dilution factor and type of media.  

FREEZING CELLS 

 Freezing cells ensure future supply of the cell line as well as particular passage. 

However, the freezing process is considered one of the most stressful procedure to the 

cells and therefore should be carried out only during log phase when majority of the cells 

in the population is vital and metabolically active. Cell freezing procedure can also act as 

inherent selection process whereas the less-healthy cells will not be able to survive. 

Contrary to the thawing process, freezing cells should be carried out slowly and with 

gradual decrease of temperature to minimize the formation of ice crystal in the cell. Some 

delicate cell line require special freezing procedure and extra care during freezing.  

DMSO is used in all freezing procedures to reduce ice crystal formation. All frozen cells 

should be permanently stored in the vapor phase of liquid nitrogen.  

1. Prepare the following two sterile stock solutions fresh, sterile filtered and place in 

ice prior to freezing.  
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Solution A:  40% serum, 60% growth medium (DMEM, MEM, etc), 10 mM HEPES 

Solution B: 10% DMSO, 90% growth medium (DMEM, MEM, etc), 10 mM HEPES 

2. Label sterile cryogenic vials (Corning®, total volume 1.5 mL) with name of the 

cell line, passage number, cell counts and date freezing with permanent marker 

and pre-cool in ice.  One T75 cells of healthy, confluent adherent cell layer = two 

vials = one mL Solution A+ Solution B per vial. 

3. Trysinize cells. While spinning down the cells, perform cell counts with 

hemocytometer (see next section).  

4. After spinning down, remove supernatant and re-suspend cell pellet in 1 mL 

Solution A into the vial. Pipet up and down gently. 

5. Slowly add 1 mL Solution B to the vial, turning the tube to mix as Solution B is 

added, pipet up and down gently and ensure thorough mixing.  

6. Place vials at upright position in styrofoam tray and place in -80 °C for at least 24 

hours, then place in the vapor phase of liquid nitrogen for permanent storage. 

Some delicate cell lines (usually the normal cell lines and those that are hard to 

grow) may need to be placed in -20 °C for several hours prior to transfer -80 °C to 

ensure maximum recovery when thawed. 

7. Always leave one test vial to make sure the freezing was successful especially 

when first working with the cell line.   

COUNTING VIABLE CELLS WITH HEMOCYTOMETER 

1. In a clean microcentrifuge tube, combine 1:1 dilution of cells in media and 

Trypan Blue Stain (Sigma®). Quickly mixing with pipet. 
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2. Load 15-20 µL to the space between a hemocytometer and hemocytometer cover 

slip. Count numbers of unstained (viable) cells in 1 – 5x5 square field.  

 

Trypan Blue is toxic and will stain viable cells if left for long time at room 

temperature. Therefore results beyond one minutes after mixing should be discarded.  

(# viable cells)*1x104 * dilution factor = viable cell / mL 

When using 1:1 mixture, the dilution factor is 2. Sometimes when cell number is 

large (> 50 cells per counting grid) further dilution is needed to accurately determined 

the cell number.  
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Image source: http://www.ruf.rice.edu/~bioslabs/methods/microscopy/cellcounting 

 

8.6  - Receipt for Common Buffer System 

1. DEAE-dextran, 10X 

180 mg DEAE-dextran (Sigma-Aldrich®) adjust volume to 400 mL with HBSS buffer 

(450 µg/mL concentration)  

Sterilize by filtration with 0.2 micron syringe filter (Do not autoclave as the concentration 

may change due to evaporation)  
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Dilute 1:10 for pretreatment of tissue culture monolayer prior to infection (final 

concentration 45 µg/mL). The volume of DEAE-dextran used and culture condition are 

summarized below 

Size of plate or 
flask 

Cell concentration 
(cells /mL) 

DEAE-dextran 
(mL) 

Final culture 
volume (mL) 

6-well plate 4.0 x 105 2 3 
75 cm2 flask 2.0 x 106 5 8-10 
150 cm2 flask 1.0 x 107 10 40-50 
225 cm2 flask 5.0 x 108 15 75-100 

 
The 10x buffer can be stored at -20 °C for 6 months. The diluted buffer should be 

discarded after experiment.  

2. K-36 buffer, 10X 

87.1g K2HPO4 68.0g KH2PO4 74.5g KCl 8.7g NaCl 
 
Bring volume to 1L with deionized water. Adjust pH to 7.0 with 1M KOH. 

Autoclave at 121 °C for 20 minutes.  

Store up to 1 year at 4°C 

3. Sucrose-phosphate-glutamate buffer 

7.5g sucrose 0.467g Na2HPO4 • 7H2O 0.0312g NaH2PO4 0.072g L-glutamic acid 
 
Bring volume to 100 mL with deionized water. Adjust pH to 7.4 with 2M NaOH 

Autoclave at 121 °C for 20 minutes 

Store up to 1 year at 4°C. 

4. Renografin solutions, 30% 40%, 44% 54% 

Prepare the following in a biological safety cabinet to maintain sterility: 
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30, 40, 44, 54 mL Renocal-76 or Hypaque-76 (for 30%, 40%, 44% 54% solutions 

respectively  

10 mL 10X K-36 buffer (see recipe) 

Adjust volume to 100 mL with sterile, double-filtered water 

Can be stored up to 6 months at 4 °C. 

5. Dulbecco’s phosphate buffered saline (DPBS), no calcium, no magnesium  

* DPBS are commercially available through many vendors. The formulations between 

different vendors are pretty similar. List below is the formulation of DPBS from Gibco®. 

KCl, 200 mg/mL KH2PO4, 200 mg/mL NaCl, 8000 mg/mL Na2HPO4 • 7H2O, 
2160 mg/mL 
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