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ABSTRACT 

This dissertation develops computational models to address outstanding problems in the 

domain of expectation-related cognitive processes and their neuroimaging markers in 

functional MRI or EEG. The new models reveal a way to unite diverse phenomena within 

a common framework focused on dynamic neural encoding shifts, which can arise from 

robust interactive effects of M-currents and chloride currents in pyramidal neurons. By 

specifying efficient, biologically realistic circuits that achieve predictive coding (e.g., 

Friston, 2005), these models bridge among neuronal biophysics, systems neuroscience, 

and theories of cognition. 

Chapter one surveys data types and neural processes to be examined, and outlines 

the Dynamically Labeled Predictive Coding (DLPC) framework developed during the 

research. Chapter two models hippocampal prediction and mismatch, using the DLPC 

framework. Chapter three presents extensions to the model that allow its application for 

modeling neocortical EEG genesis. Simulations of this extended model illustrate how 
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dynamic encoding shifts can produce Mismatch Negativity (MMN) phenomena, 

including pharmacological effects on MMN reported for humans or animals. 

Chapters four and five describe new modeling studies of possible neural bases for 

alpha-induced information suppression, a phenomenon associated with active ignoring of 

stimuli. Two models explore the hypothesis that in simple rate-based circuits, information 

suppression might be a robust effect of neural saturation states arising near peaks of 

resonant alpha oscillations. A new proposal is also introduced for how the basal ganglia 

may control onset and offset of alpha-induced information suppression. Although these 

rate models could reproduce many experimental findings, they fell short of reproducing a 

key electrophysiological finding: phase-dependent reduction in spiking activity correlated 

with power in the alpha frequency band. 

Therefore, chapter five also specifies how a DLPC model, adapted from the 

neocortical model developed in chapter three, can provide an expectation-based model of 

alpha-induced information suppression that exhibits phase-dependent spike reduction 

during alpha-band oscillations. The model thus can explain experimental findings that 

were not reproduced by the rate models. The final chapter summarizes main theses, 

results, and basic research implications, then suggests future directions, including 

expanded models of neocortical mismatch, applications to artificial neural networks, and 

the introduction of reward circuitry. 
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ROC ..................................................................  Receiver Operator Characteristic 

RP  ..................................................................................... Repetition Positivity 

S  ..................................................................................................... Standard 

SNr ....................................................................  Substantia Nigra Pars Reticulata 

SOCRATIC .............................................  Sequences of Condensed Representations,  

                                                                  Autocorrected, Theta-Gamma Coded, in context 

SSA ......................................................................... Stimulus Specific Adaptation 

TC  ......................................................................................  Thalamo-Cortical 

TMS  ............................................................... Transcranial Magnetic Stimulation 

TRN  ........................................................................ Thalamic Reticular Nucleus 

V1      ................................................................................ Primary Visual Cortex 
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CHAPTER ONE: INTRODUCTION 

 
This dissertation introduces a proposed dynamic neural code-switching mechanism that is 

compatible with the predictive coding hypothesis (a framework typified in Friston, 2005). 

The physiology of this mechanism explains many experimental findings in the realm of 

predictions, expectations, and attention. To introduce this novel encoding mechanism, I 

will first provide a brief overview of: the predictive coding hypothesis; M-currents and 

KCNQ channels; shifts between spike firing modes in neocortical pyramidal cells; and 

relevant previously-proposed encoding mechanisms, including one of the earliest neural 

encoding proposals, labeled line encoding. Then I will explain how the physiological 

interaction of M-currents and Cl- currents enable a new type of labeled line encoding – 

one that is labile and dynamically negotiated – and situate such encoding within the 

framework of a modified Predictive Coding Hypothesis. 

 

The Predictive Coding Hypothesis 

The predictive coding hypothesis, an approach typified by Clark (2013) and Friston 

(2005), is an extension of the hierarchical predictive processing theory of the brain (often 

abbreviated PTB), which primarily consists of the ideas that brains are effectively 

hierarchical prediction testers, and that brains are constantly attempting to minimize 

prediction errors, e.g., via learning processes that improve predictions. The extension 

endorsed by Friston consists primarily of defining an encoding strategy wherein the 

feedback from "higher" to “lower” brain areas predicts features of inputs to lower areas, 

and inhibits them. The resultant subtraction of predictions from inputs leaves only 
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unpredicted features (unpredicted “residuals” that may be regarded as error signals) to be 

transmitted up the hierarchy via feedforward pathways from lower to higher areas. 

Predictive Coding is most often implemented in a Bayesian framework with little regard to 

neural constraints, but neurally plausible implementations of predictive coding have 

recently received some attention (e.g., Wacongne, Changeux, & Dehaene, 2012). 

 

Predictive Coding proposals often come with broader claims that it offers a grand unified 

theory of perception and cognition arising from the interplay of top-down predictions and 

bottom-up error signals.  I want to stress that the detailed neuronal processing framework 

that I am developing here is agnostic about, and not dependent on, any of these grander 

claims. 

 

KCNQ and the M-current 

Membrane biophysicists and neurochemists have characterized the M-current as an 

outward potassium current via channels constituted by KCNQ proteins, often heteromeric 

KCNQ2/KCNQ3 proteins (Fedorenko et al., 2008). Originally discovered in sympathetic 

ganglion neurons of bullfrogs (Brown and Adams, 1980), it is non-inactivating and 

voltage-dependent, being activated by depolarization of the membrane to a level greater 

than approximately -60mV. Because of these properties, both sub-threshold 

depolarizations and those large enough to generate action potentials reliably also activate 

the M-current. However, this is subject to muscarinic neuromodulation.  Indeed, the M-

current is so named because KCNQ channels are closed by activation of mAChRs 

(muscarinic acetylcholine receptors).  Such closure effectively disables the current. The M-
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current mechanism is found in neurons throughout the nervous system, including the 

pyramidal cells that are the principle neurons of the cerebral cortex (reviewed in Jentsch, 

2000; Marrion, 1997) and the medium spiny cells that are the principle neurons of the 

striatum (reviewed in McCarthy et al., 2008). 

 

Another key feature of the M-current is that the KCNQ channel has a variable time 

constant: the speed with which it opens and closes is dependent upon the membrane 

voltage. This is illustrated in Figure 1.1 by plots of the time constants resulting from four 

simulated voltage clamps, and as will be shown in chapters two and three this property 

allows a “plateau” of KCNQ conductance to develop during sustained spiking, which when 

high enough can end the spiking behavior entirely, transforming a tonic response into a 

phasic one. 
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Figure 1.1: Simulated voltage clamps demonstrating a voltage-dependent time constant for the KCNQ channels 
that mediate M-currents.  Abruptly instating and clamping new transmembrane voltages  (blue: -50 mV; green: -
40 mV; red: -30 mV; light blue: -20 mV) between 200 ms and 700 ms show the dependence of the KCNQ 
channel’s time constant on voltage.  Details of the mathematical simulation can be found in chapter 2. 

 

Phasic-Tonic Mode Switching 

The M-current is usually thought of as a rate-modulating current, which contributes to the 

oft-observed slow adaptation in spike rate during prolonged excitation (Madison and 

Nicoll, 1984). Under certain circumstances, however, it can act quite differently, as 

illustrated in Figure 2. Notably, Prescott et al. (2006) showed that the M-current can, via 

an interaction with Cl- currents, reliably cause a shift from regular (tonic) spiking to onset 
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(phasic) bursting. This was demonstrated both in computational models (similar in 

structure to our proposed model below) and in dynamic clamp recordings of pyramidal 

neurons from the CA1 part of the hippocampus.   

 

Figure 1.2: An example of CA1 pyramidal neurons switching between tonic and phasic modes of firing under 
different injected currents (y-axes) and shunting conductances (the two columns).  Increased shunting produced a 
change from tonic to phasic firing, and increased the amount of stimulation (pA) required to produce even phasic 
firing. 

 

 

Labile Encoding 

As defined by Perkel & Bullock (1968), labile encoding is the use of different kinds of 

representations and transformations by a given individual at different times under 

different circumstances. Later, the ability of neurons to switch between tonic and phasic 

modes is proposed as a key basis for labile encoding by neural circuits.  Labile encoding has 
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been shown to operate in the central nervous system at the neuronal level.  For example, 

changes in encoding/representation (as determined by regression models correlating 

neural activity to load and posture during a loaded reaching/holding task) by motor cortical 

(presumed pyramidal) neurons were observed within the course of a single trial (Kurtzer, 

Herter, & Scott, 2005). 

 

The phenomenon of labile encoding highlights the general information processing 

principle that successful encoding, and decoding for effective use, is not just about how 

information is sent.  It's also about how it is received. A rate-based code is useless if the 

time constant of the next-stage integrator is too fast; and precise spike timing with single 

spike signaling is not helpful if the target neuron requires a rapid spike train to depolarize 

it enough to fire. 

 

Rate Based Encoding 

As Perkel and Bullock wrote in 1968, frequency or rate is not by itself an adequate 

specification for encoding, so it is best thought of as one defining property of a class of 

codes. For our purposes, we will use rate-based encoding to refer to integration-and-

reset-based encoding. Here, the rate of spikes is what matters, and it is decoded via neural 

integration, such that the net impact on the post-synaptic neuron is (at least for a viable 

range of rates) proportional to the presynaptic spike rate over a brief time period. 

 

It is important to recognize both that some neuronal modes may lie outside the rate-based 

domain, and that remaining within this rate-based domain does not mean changes in 
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encoding are not occurring. For instance, anything that alters the encoded rate without 

also altering the representation of the encoded feature (e.g. habituation to a constant-

intensity visual edge) may require a coordinated adjustment of the decoder, and exemplify 

labile encoding. 

 

Labeled Line Encoding 

In labeled line encoding, the presence of electrical activity in particular lines (here 

meaning axons, nerve fibers or groups of fibers), but not elsewhere, is what conveys most of 

the information to the rest of the nervous system about events that have transpired. 

Originally proposed by Muller (1838) in "On the specific energies of nerves", it has been 

observed repeatedly, such as in optic nerve fibers, where a particular fiber indicates where 

in the retinotopic map visual stimulation occurred. Historically, it has been assumed that 

the "label" for a given fiber was generally static and pre-existing (Perkel & Bullock, 1968). 

This assumption has caused labeled line encoding to be dismissed when it comes to regions 

of the central nervous system such as the cortex, because detailed representation of the vast 

variety of possible perceived stimuli would require an enormous number of pre-labeled 

lines, most of which would be quiescent at most times. For instance, if each level of 

pressure felt on a fingertip required an individually pre-labeled line passing through each 

brain region that processes pressure-related information, the necessary brain mass would 

rapidly become unsustainably large. 

 

In the early stages of sensory processing in the neocortex we often face a combination of 

rate-based and labeled line encoding, where some aspects of a stimulus are encoded via 
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labeled line (as in retinotopy in vision). Other aspects are represented via rate-based 

features, like the intensity of the oriented edge detected at a particular retinotopic location 

in V1. 

 

However, imagine that labile encoding is in play, and that neural representation of say, 

visual feature intensity can switch between a rate-based encoding scheme and labeled line 

encoding via a process that falls under the rubric of "priming". Primed neurons are 

modulated by top-down input to act as though they are in a labeled line, hence able to 

represent a value simply by responding, without needing a lengthy spike train. What value is 

being encoded by this primed line? That is where the expectations driving the top-down 

priming come into play, with the priming effectively setting up, or dynamically negotiating, 

a labeled line specifically for the brain’s predictions. Provided that expectation-based 

priming can be learned, this mechanism obviates the need for a massive battery of labeled 

lines, most of which are rarely active, and sets up short-lived labeled lines only for the most 

likely outcomes in a given situation. Each such dynamically labeled line can fire a single 

brief (“phasic”) burst to confirm whatever expectation caused its priming in the first place, 

and convey detailed information on an exact stimulus. Neither a rate nor precise spike 

timing are required for effective coding, which is also highly efficient. In terms of 

information theory, one could say that a single bit is sufficient to confirm a complex string 

of expected information. 

 

If, however, an unlabeled (i.e., unprimed) line is activated, then the neuronal system will 

respond using rate-based encoding, allowing detailed communication of the exact features 
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not expected, albeit with two costs: increased communication time (due to use of rates and 

integration), and higher metabolic activity in support of tonic-mode firing. 

 

In awake animals, principal neurons of the cerebral cortex are often observed to be in what 

is called a high conductance state (Destexhe et al., 2003). In this state, neurons display a 

sustained depolarized membrane potential and irregular, desynchronized firing activity.  In 

the model presented below, the primed state mentioned in the prior paragraph is made 

possible by such a high conductance state.  

 

Dynamically Labeled Predictive Coding 

As enabled by the M-current, labile switching between rate-based and dynamically 

negotiated labeled line encoding allows for a new, non-subtractive, non-Bayesian 

implementation of predictive coding. I will call this Dynamically Labeled Predictive Coding 

(DLPC), for ease of distinguishing it from the non-labile predictive coding 

implementations previously discussed by Friston and others. 

 

DLPC is a novel reinterpretation and implementation of the predictive coding hypothesis.  

DLPC uses M-currents to achieve labile encoding. Notably, a pyramidal neuron’s ability to 

switch from tonic to phasic mode provides a key basis for a circuit’s ability to switch from 

rate-based encoding to dynamically negotiated labeled line encoding.  Cholinergic signals 

that are sufficient to inhibit M-currents can quickly return neurons to tonic firing mode, 

and thereby enable those neurons’ embedding circuit(s) to return to rate-based encoding. 
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Predictive coding is based on the idea that codes are changed when comparison mechanisms 

detect differences between predicted and actual inputs.  The mode shift in DLPC offers 

several benefits, most notably that there is no requirement that the channels for 

information processing be distinct from the channels constituting the comparison 

mechanism.  This makes the DLPC circuitry more efficient than that described in other 

proposed neural implementations of predictive coding (e.g., Wacogne et al., 2012).. 

 

Each area classifies patterns in its inputs from other areas, and each area tends to feature 

reciprocal connections feeding back to the areas that provided its inputs.  These feedback 

connections tend to originate in the lower layers of a neocortical area and terminate in the 

upper layers of the areas acting as its input providers (Barbas & Rempel-Clower, 1997).  

Hebbian learning ensures the reinforcement of only those feedback projections connecting 

an active representation in one area with the representation which will be active in the other 

area immediately following (modulo any conduction delay, or possible delay via cerebellar 

mechanisms).  By terminating on layer 2/3 neurons in their target area, these selected 

feedback connections then serve to convey a prediction about what lower-level 

representations can be expected to follow the activation of a higher-level representation. 
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Figure 1.3: Representation activation and circuitry (inset) mediating cortical predictions.  Note that a single 
representation being active does not necessarily correspond to a single cell being active, and many cells/columns 
might instantiate a particular representation via anything from vector encoding to Hebbian cell assemblies. 

 

Figure 1.3 depicts how lower-level representations drive a higher-level representation via 

feedforward connections.  The reciprocal connections (with delay) then project to the next 

set of lower-level representations to be active.  In the case of a match between active 

feedback and lower-level activity, the neural circuitry proposed in chapters 3 and 4 

provides the ideal conditions for Hebbian learning to occur, reinforcing the feedback 

connections which have matched, and which are effectively predicting the next pattern of 

lower-level representations.   It should be mentioned that while this is activating a single 

representation in the higher level, this does not necessarily correspond to a single cell (i.e. 

grandmother cell). 

 

The linked hypotheses that constitute DLPC provide a framework for explaining a number 

of apparently paradoxical, or at least counter-intuitive, results, and suggest common 
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underlying mechanisms for prediction and attentional control. They also highlight ways in 

which rarely examined ideas about coding have led to measurement practices that may have 

missed key processes by which the brain transfers and learns from information. 

 

The specific applications of this novel hypothesis will be treated in depth in the following 

chapters.  

 

Chapter two models hippocampal prediction and mismatch, using the DLPC framework. 

Chapter three presents extensions to the model that allow its application in modeling 

neocortical EEG genesis. Simulations of this extended model illustrate how dynamic 

encoding shifts can produce Mismatch Negativity (MMN) phenomena, including 

pharmacological effects on MMN reported for humans or animals. 

 

Chapters four and five describe new modeling studies of possible neural bases for alpha-

induced information suppression, a phenomenon associated with active ignoring of 

stimuli. Two models explore the hypothesis that in simple rate-based circuits, information 

suppression might be a robust effect of neural saturation states arising near peaks of 

resonant alpha oscillations. A new proposal is also introduced for how the basal ganglia may 

control onset and offset of alpha-induced information suppression. Although these rate 

models could reproduce many experimental findings, they fell short of reproducing a key 

electrophysiological finding: phase-dependent reduction in spiking activity correlated with 

power in the alpha frequency band. 
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Therefore, chapter five also specifies how a DLPC model, adapted from the neocortical 

model developed in chapter three, can provide an expectation-based model of alpha-

induced information suppression that exhibits phase-dependent spike reduction during 

alpha-band oscillations. The model thus can explain experimental findings that were not 

reproduced by the rate models.  

 

The final chapter summarizes main theses, results, and basic research implications, then 

suggests future directions, including extended models of neocortical mismatch, 

applications to artificial neural networks, and the introduction of reward circuitry. 
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CHAPTER TWO: HIPPOCAMPAL MISMATCH DETECTION  

A significant body of evidence has accumulated to support the hypothesis (e.g., Hasselmo et 

al., 1995; Lorincz and Buzsaki, 2000; Lisman and Otmakhova, 2001; Vinogradova, 2001; 

Meeter et al., 2004; Lisman and Grace, 2005; Kumaran and Maguire, 2007; Duncan et 

al., 2009) that the hippocampus includes a comparator, i.e., a neuronal circuit that 

enables it to compare two signal streams, one carrying predictions/expectations about 

sensory inputs, the other carrying actual inputs.  While these streams match, the 

hippocampus can continue making predictions based on what was learned from past 

experiences.  When these streams mismatch, the hippocampus generates a response that 

constitutes a “prediction error signal.”  Such signals serve to switch brain circuits into a 

learning mode that encodes the novel, unpredicted information, and stores it for use in 

future predictions.     

 
The Functional Anatomy of CA1 as a Comparator  

 
Within the hippocampus, area CA1 exhibits both the anatomical connectivity and the 

signaling that would be expected of a comparator that serves as a mismatch detector, i.e. a 

comparator that sends a positive signal for a mismatch but little or no signal for a match. 

The anatomical connectivity and signal convergence that characterize CA1 are summarized 

in Figure 2.1 (adapted from Lisman & Grace, 2005).  Notably, the dentate gyrus (DG) and 

CA3 zones of the hippocampus receive sensory streams from layer 2 of entorhinal cortex 

(EC2), whereas area CA1 receives sensory streams from layer 3 of entorhinal cortex (EC3).  

Then, sparse recoding and recurrence within DG-CA3 enable context-dependent 

associative retrievals of past experiences to inform predictions about upcoming sensory 
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input.  These predictions are conveyed to CA1 via the synaptic weights of the Schaffer 

collaterals, i.e., those collaterals of CA3 fibers that project to CA1. These weights effectively 

store associations between current CA3 states and formerly present CA1 states.  CA1 can 

therefore perform a comparison between the predictions arriving from CA3 and actual 

sensory inputs from EC3.  Physiological studies strongly support this view.  For example, in 

human fMRI studies, there is much greater CA1 activation during an associative mismatch 

than during a match (Kumaran and Maguire, 2006).  Likewise, CA1 shows strong activity 

to unexpected inputs but habituates rapidly as inputs become predictable, but this 

habituation vanishes if CA3 input to CA1 via Schaffer collaterals is eliminated 

(Vinogradova, 2001) while EC3 input to CA1 is preserved.  Such evidence (see reviews in 

Duncan et al. 2009, and Lisman & Grace, 2005; but also reports by Buzsáki et al. 1979, 

Vinogradova, 1984, Otto and Eichenbaum, 1992, Knight, 1996, Dolan and Fletcher, 

1997) indicates that it is the learned predictions from CA3 that are causing a reduction in 

CA1 activity as the associations form and increase in certainty.  

 

In summary, hippocampal processing in the CA1 zone is now widely considered to be 

exemplary of a computation that compares memory-dependent sensory 

predictions/expectations with actual sensory inputs.  Whereas comparators can be built to 

respond more in the match, or more in the mismatch, the comparator in CA1 serves as a 

mismatch detector, in the sense that it habituates as learning-updated expectations come to 

match inputs, but sends a strong signal whenever inputs mismatch expectations. 
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Figure 2.1: Hippocampal mismatch circuitry, adapted from Lisman, (1999).  Recurrent connectivity between the 
dentate gyrus and CA3 helps to create representations of current inputs that are sensitive to the recent stream of 
inputs. The predictions represented by synaptic weights between CA3 and CA1 can therefore be highly context 
dependent. 

 

 
Existing CA1 Comparator Models 

 
To date, there are no fully implemented computational models of CA1 Mismatch 

Detection.  Katz et al. (2007) presents a model of CA1 function. Although this model does 

not approach the hippocampus from a framework of episodic memory and sensory 

mismatch –  instead it deals in context and spatial information –  the model can arguably be 

reinterpreted, without requiring any change in the simulation or their results.  Effectively, 

CA1 place cells can be interpreted as comparing an abstract sensory representation of 

current location (computed by the neocortex from sensory input) with a predicted location 
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provided as a corollary of CA3 playback of recollected place sequences.  Katz et al. note that 

CA3 pyramidal neurons’ axon (Schaffer) collaterals target the proximal zone of CA1 

pyramidal neurons’ apical dendrites, whereas “perforant pathway” axons from EC3 to CA1 

target the distal zones (see Figure 2.1) of CA1 pyramidal neurons’ dendrites.  This 

arrangement allows the model to perform a sort of subtractive/inhibitory mismatch 

detection, because the more proximal inputs (carrying predictions) can, when present, 

block the postsynaptic effects of the more distal inputs.  However, the authors did not 

propose the model in Katz et al. (2007) under this interpretation, and have not to date 

promoted it as a model of hippocampal mismatch. 

 

Lisman and Otmakhova (2001) presented a partial computational implementation of the 

SOCRATIC (Sequences of Condensed Representations, Autocorrected, Theta-Gamma 

Coded, In Context) model, which detailed the encoding and retrieval of sequences in the 

CA3 region and the role of CA1 as a decoder and mismatch detector.  However, CA1 was 

not computationally implemented in that paper. 

 
A Biologically Detailed Comparator that Uses Pyramidal Mode Switching 

 
In this section we specify biological bases for a detailed model of a feature-rich CA1 

comparator.  This model emerged from the simulation of often-overlooked features of 

CA1 pyramidal neurons, and is based on the ability of these features to dynamically alter 

neural properties that have traditionally been considered “intrinsic”.  A clue to the 

existence of dynamic properties is that so-called intrinsic properties can markedly vary 

between reports based on slice experiments versus in vivo recordings (Prescott et al., 
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2008), especially when the in vivo reports come from awake, behaving, animals rather than 

from anesthetized animals.  Whereas neurons have previously been sorted into types, e.g., 

excitability classes (per Hodgkin’s classification in Hodgkin, 1948) based on “intrinsic  

properties”, such properties may in fact be dynamically determined by external factors, 

such as afferent neural activity that is absent in slices, or during anesthesia.  For example, 

Wolfart et al. (2005) showed that even afferent noise can determine the transfer function 

of thalamic neurons, a feature often used for “intrinsic” typing. 

 

 

Prescott et al. (2008) called out two of these features in particular, specifically the M-

current and its interaction with Cl- currents.  The M-current, which is mediated by 

KCNQ channels, is an inward potassium current, originally discovered in sympathetic 

ganglion neurons of bullfrogs by Brown & Adams (1980). It is non-inactivating and 

voltage-dependent, being activated by depolarization of the membrane above approximately 

-60mV (Brown & Adams, 1980). Because of this, depolarizations large enough to generate 

action potentials reliably also activate the M-current.  M-currents are so named because 

KCNQ channels are closed by activation of adjacent Muscarinic ACh receptors.  M-

currents are found in neurons throughout the nervous system, including pyramidal cells of 

the cerebral cortex and hippocampus (reviewed in Jentsch, 2000; Marrion, 1997). 

 

The M-current is usually thought of as a rate-modulating current, contributing to slow 

adaptation in spike rate during prolonged excitation. Under certain circumstances, 

however, it can act quite differently.  Prescott et al. (2006) showed that the M-current 
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interaction with the chloride leak current can reliably cause a shift from regular (tonic) 

spiking to onset (phasic) bursting. This was demonstrated both in computational models, 

similar in structure to our proposed models below, and in dynamic clamp recordings from 

CA1 hippocampal pyramidal cells.  However, these properties were discussed with respect to 

low frequency resonances, not with respect to CA1 as a comparator. 

 

When in the mode described (equivalently) as “regular firing” or “tonic firing”, the cell 

responds to an input with proportionate output for as long as the input persists.  When in 

the mode described (equivalently) as “phasic firing” or “onset burst firing”, the cell 

responds only transiently, with a single spike or short burst of high-frequency spikes, at the 

onset of the input, but does not sustain above baseline firing, and may even become 

quiescent, for the remaining duration of the input.  The new model developed and 

simulated here is based on the hypothesis that the ability of single pyramidal neurons to 

switch modes enables them to operate as mismatch-detecting comparators.  As shown in 

Figure 2.2, this allows for the construction of comparators using more efficient circuitry 

than in prior proposals. 
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Figure 2.2: A) A standard predictive coding comparator, where a stimulus elicits predictions which inhibit a 
population, reducing the frequency of its output when the predicted stimulus occurs.  B) A standard habituative 
comparator, which fires at a reduced rate due to afferent habituation when a recently experienced stimulus is 
repeated.  C) A mode-shifting comparator, wherein a stimulus elicits predictions which prime a population, 
placing it into a high-conductance state and causing a shift from tonic to phasic firing. 

 

This mode shift allows a neural population to dynamically switch from encoding detailed, 

rate-based information about an unexpected stimulus to quick, efficient phasic reporting 

of the onset of expected stimuli, and back again. Predicted stimuli do not require detailed 

information transmission, since a single “byte” of confirmation can tell the rest of the 

brain to act as though its expectation were confirmed for all practical purposes.   

 

We will show below that mode switching in the model depends on intact NMDA currents.  

This allows the model to be used to explain data that indicate that NMDA blockade disrupts 

mismatch computations in some common experimental paradigms (Farley, Quirk, 

Doherty, & Christian, 2010; Kreitschmann-Andermahr et al., 2001; Leung, Croft, 

Baldeweg, & Nathan, 2007).  Furthermore, given the ubiquity of M-currents and KCNQ 

channels in CNS neurons, it can be expected that aspects of the model should be applicable 

to non-hippocampal comparators and even beyond mismatch detection per se.  Recently, 

dysfunctions of KCNQ channels, which come in several variants, have been implicated in 

transient drug-induced psychoses as well as in chronic syndromes including schizophrenia 

(e.g., Sotty et al. 2009), depression (e.g., Friedman et al., 2016), and epilepsy (e.g., 

Gunthorpe et al, 2012).   In addition, novel pharmaceuticals that act via KCNQ channels 

are being explored for possible therapeutic values.  Therefore, we report several 

simulations below that further illustrate the new comparator model’s operation, and 

illustrate its compatibility with recent reports regarding drug effects on KCNQ functions.  
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Materials and Methods 

 
The proposed model’s biophysical and neuroanatomical details, including strongly 

nonlinear interactions between the excitation-driven habituation and inhibition-driven 

subtraction, allow it to address limitations found in the alternative comparator models, 

with a much greater economy of circuitry, as noted in the caption of Figure 2.2. The model 

was constructed by combining the range of receptors and channels included in prior 

models of pyramidal cells (Prescott et al., 2006) and synapses (e.g. Brunel & Wang, 2001).  

However, the model also includes further receptors and interactions needed to realistically 

model ACh-dependent M-currents, which play a fundamental role in our treatment of 

cortical comparison processes. In particular, a voltage-dependent M-current was added, 

based on the mathematical modeling in Mainen & Sejnowski (1996).  We use simulations to 

assess and document the model’s explanatory power vis-à-vis existing data from CA1 

mismatch experiments and current theories of CA1 comparator function (such as Lisman’s 

SOCRATIC model). 

 

Our simulations can be grouped into two major investigations.  The first demonstrates the 

ability of a simulated CA1 pyramidal cell to differentiate between expected and unexpected 

input.  The second is a pharmacological investigation designed to offer predictions 

regarding learning and disordered processing associated with psychosis.  In this case, we 

simulate the effects of NMDA and KCNQ blockade on the neuron, then demonstrate the 

ability of the model to capture the effect of a KCNQ agonist, such as retigabine, following 



 

 

23 

NMDA blockade.  In the model, it can rescue the cell’s ability to mode switch, and thus 

distinguish matches from mismatches.  

Proposed Model 

 
In documenting our proposed model here, we employ the standards recommended by 

Nordlie, Gewaltig, & Plesser (2009), which proposed that the specification of 

computational neural models be broken down into the architecture, network connectivity, 

neural and synapse models used, and the input to and measured output from the simulated 

system. 

Architecture  

 
The architecture is extremely simple. A single neuron representing a CA1 pyramidal cell 

performing sensory comparison is the core of the model, as it is a single-neuron 

comparator. 

Network Connectivity 

While there are a high number of synaptic connections in our model, they form a very 

simple pattern.  The sensory comparator is innervated by 600 synapses: 200 driving 

synapses (presumed to be from layer 3 entorhinal cortex (EC3) pyramidal neurons), 200 

basal priming synapses (presumed to be from CA3 neurons), and 200 basal inhibitory 

priming synapses (presumed to be from priming-driven feed-forward inhibitory 

interneurons within CA1).  All synapses have weights that are randomly selected using a 

Gaussian distribution with µ  of 1.0 and σ  of 0.1. The weights are of the form 

gauss( , )w µ σ⋅ , where the value of w  is 16 for driving synapses, 12 for excitatory priming 
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synapses, and 8 for inhibitory priming synapses.  Whether these synapses were active or not 

was directly controlled in the simulation: neither EC3 pyramids, CA3 pyramids, nor CA1 

inhibitory interneurons, as such, were simulated. 

Membrane and Synapse Equations 

 

Each comparator neuron is made up of two, coupled, point models, one representing the 

apical portion of the cell, and the other the basal.  The membrane voltage V of each point 

model is conductance-based, following the general convention of  

 1 2 ... n
dV I IC I
dt

= + + +   

where I  is a current of the form max ( )proportion E mVg g V−⋅ ⋅  , where maxg  is the maximum 

conductance of the channels carrying that current, proportiong  is the proportion (from 0 to 1) 

of the max conductance currently engaged (or the proportion of membrane channels 

currently open and non-inactivated), and E mV V−  is the driving voltage differential 

between the Nernst equilibrium of that particular current's ion ( EV  ) and the current 

membrane voltage ( mV  ). These values, and their published sources, are specified for each 

channel type in Table 2.1. 

 

In our model, the complete membrane equation is  

Na AMPA NMDA GABA K M Cl

dVC I I I I I I I
dt −= + + + + + +  
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The currents involved are as follows, each with their own proportiong  function: 

• NMDA (Na) 

2 0.0621 [ ]exp
3.57

open
proportion

m

g
g VMg +

=
−

+
 

1
( )

eC
open NMDA

j j
j

dg
w s

dt =

= ⋅∑  

(1 )
NMDA NMDA
j j NMDA

j jdecay
NMDA

ds s
x s

dt
α

τ
= − + −  

( )j j k
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kNMDA
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t t

dt
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τ
= − + −∑  

  

 

• AMPA (Na) 

 
1
( )

eC
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j j
j

dg
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 ( )
AMPA AMPA
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j
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t t
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τ
= − + −∑   

• GABA (Cl) 

 
1
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• Inactivating Voltage-Based Na 
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 0.07 ( )
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m
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1

30( ) 1
10

n
mVexp

β =
+

+
  

 (1 )h n
dh h h
dt

α β= − −   

 

• Potassium 
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dg
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• Cl Leak Current 

 
1proportiong =

  

  

 

• M-current, from (Mainen & Sejnowski, 1996) 
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And the parameters used in our baseline simulations are as follows: 

Table 2.1: Model Parameters 

Parameter Value Citation 
C   

22 F
cm
µ   (Prescott, Ratté, De Koninck, & Sejnowski, 2006) 

max
Nag  

220 mS
cm

 (Prescott et al., 2006) 

NaV  50mV  (Prescott et al., 2006) 

1V  1.2mV−  (Prescott et al., 2006) 

2V  23mV  (Prescott et al., 2006) 

w  28  (Fernandez, Mehaffey, Turner, & Fernando, 2005) 

CV  64mV−   (Fernandez et al., 2005) 

A  232   (Fernandez et al., 2005) 
max
Kg  

220 mS
cm

  (Prescott et al., 2006) 

KV  100mV−   (Prescott et al., 2006) 

φ  0.15   (Prescott et al., 2006) 

wβ  2mV−   (Prescott et al., 2006) 

wγ  21mV   (Prescott et al., 2006) 
max
Mg   

24 mS
cm

  (Prescott et al., 2006) 

max
AHPg   

21 mS
cm

  (Prescott et al., 2006) 
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zβ   35mV−   (Prescott et al., 2006) 

zγ   10mV   (Yamada, Koch, & Adams, 1989) 

T  36ºC   (Yamada et al., 1989) 

AHPα  0.005   (Prescott et al., 2006) 

AHPβ  0mV   (Prescott et al., 2006) 

AHPγ  5mV   (Prescott et al., 2006) 

shuntV  70mV−   (Prescott et al., 2006) 

shuntg  
22.0 mS

cm
  (Prescott et al., 2006) 

2Mg +   1 3e −   (Brunel & Wang, 2001) 
max
AMPAg   

27.5 3e mS
cm

−   (Brunel & Wang, 2001) 

max
GABAg   

27.5 3e mS
cm

−  (Brunel & Wang, 2001) 

max
NMDAg   

22 3 me S
cm

−  (Brunel & Wang, 2001) 

 AMPAτ   2ms   (Brunel & Wang, 2001) 

 GABAτ   10ms   (Brunel & Wang, 2001) 

rise
NMDAτ  2ms   (Brunel & Wang, 2001) 

decay
NMDAτ  100ms   (Brunel & Wang, 2001) 

NMDAα   0.5ms   (Brunel & Wang, 2001) 

 

 

The bridge current between the apical and basal portions of the neuron is computed based 

on their relative voltages, the axial resistance of the apical dendrite, and the distance 

between the apex and the base: 

 apex base
bridge

axial

V V
I

dr
−

=   
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In the above equation d  represents the distance between the apex and base (i.e. the height 

of the pyramidal cell) in cm, V  is the voltage at one of the two points, and axialr  is the axial 

resistance.  In our model CA1 pyramidal cells, 0.0003d =  and 200axialr cm= Ω . 

Input     

 
Each of the hundreds of input synapses is driven by a Poisson process whose lambda 

variable changes over time, going from 0.0001 at rest to 0.01 during activation. Activation 

lambda values and onset/offset timing are specific to each population of inputs, and to 

whether or not we were simulating an expected (primed) stimulus, or an unexpected 

(unprimed) stimulus. 

 

Regardless of expectations, driving inputs (presumed to be from EC3) are activated at 350 

ms into the simulation, with lambda switching to a value of 0.01 for a duration of 350 ms 

(stimulus duration), whereupon the driving inputs returned to the resting lambda. During 

primed stimulation, the excitatory priming inputs are activated at 150 ms, switching to a 

lambda value of 0.01 for a duration of 550 ms, returning to a resting lambda (0.0001) at 

the same time as the driving inputs.  

 

During primed stimulation, the inhibitory (I) priming inputs are activated at 175 ms, also 

at a lambda value of 0.01, and return to a resting lambda at the same time as the excitatory 

(E) priming inputs. During unprimed stimulation, the priming inputs (both E and I) will 

not activate at all, remaining at rest lambda throughout the entire simulation. 
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Output 

 
The membrane voltage and extracellular current were measured for analysis at both the 

apex and the base of all neurons, along with the net KCNQ-mediated M-current. 

Pharmacological Manipulations 

Each of our pharmacological manipulations was set to produce either a 25% increase (for 

agonists) or a 25% decrease (for antagonists) of the maximum value of an affected channel’s 

conductance.  To examine the impact of various pharmacological agents, the basic 

match/mismatch simulations were performed under the following conditions: 

• NMDA activity decrease (e.g. via PCP; (Anis, Berry, Burton, & Lodge, 1983)) 

• KCNQ activity decrease (e.g. via high doses of a Cholinesterase inhibitor; 

(Riekkinen et al., 1997)) 

• KCNQ activity increase (e.g. via retigabine; (Sotty et al., 2009)) 

• NMDA activity decrease and KCNQ activity increase combined 

Data Analysis 

 
Spike detection was performed on the simulated membrane voltage data by recording, as a 

spike time, each crossing from below -10 mV to above 10 mV. 

 

Each neuron’s sequence of spikes was then classified as phasic or tonic by dividing the time 

up into two segments.  The first, the onset segment, consisted of the first 100ms after the 

onset of driving (not priming) synaptic activity.  The second, sustained segment consisted 

of the time between the end of the onset segment and the offset of driving activity.  The rate 
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in spikes/second was calculated for each segment, and if the onset rate was at least three 

times the sustained rate, as well as the sustained rate being below 5 spikes/second, the 

neuron’s firing pattern was classified as phasic.  Otherwise, the neuron’s response was 

classified as tonic. 

 

Results 

Investigation 1: Match/Mismatch 

The results confirmed our prediction that a realistic model of CA1 neurons can perform 

comparison, and mismatch detection, between a priming input (presumed to be from 

CA3) and a driving input (presumed to be from EC3).   When the two inputs coincided, a 

mode switch was observed and the neural response became phasic, as seen in Figure 2.3.  

This results from the M-current in the unprimed case (as seen in Figure 2.3c’s red trace) 

having a lower magnitude of deviation from baseline (zero) as indicated by a higher plateau 

than that of the primed case (Figure 2.3c’s blue trace, which shows a larger deviation below 

baseline).  This unprimed plateau is not negative enough to prevent continuous spiking, 

and thus allows the tonic response to unprimed stimulation.  The primed plateau is 

sufficiently negative to prevent sustained spiking; however, a high-frequency burst of spikes 

is seen before the plateau is reached. 
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Figure 2.3: A and B) Simulated voltage trace (in millivolts membrane potential) of primed (blue) and unprimed 
(red) conditions.  C) Net M-current (in micro-amps) observed in primed (blue) and unprimed (red) conditions.  
Panel C clearly shows a greater sustained amplitude of M-current in the primed condition, which prevents the 
simulated neuron from firing. 
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Figure 2.3: A and B) Simulated voltage trace (in millivolts membrane potential) of primed (blue) and unprimed 
(red) conditions.  C) Net M-current (in micro-amps) observed in primed (blue) and unprimed (red) conditions.  
Panel C clearly shows a greater sustained amplitude of M-current in the primed condition, which prevents the 
simulated neuron from firing. 
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Investigation 2: Pharmacological Manipulations 

NMDAR Blockade 

As can be seen by comparing Figure 2.4, row 3 with row 1, reducing NMDA max 

conductance by 25% prevents the mode switch to a phasic response.  This mode switch is 

required for the system to reveal that it has learned an expectation and has used it via 

priming to compute a match. NMDA blockade would prevent match computation in any 

circuit using a comparator as modeled here, so it would appear in an experiment that all 

stimuli are treated as mismatches.  This might lead an experimenter to infer that this is 

because NMDA blockade blocks the learning of any new expectations.  Though such might 

also be pertinent in vivo, note that the result shown here is entirely due to an effect of 

NMDA currents on neuronal responses to weighted synaptic inputs that would be sufficient 

to serve the priming function (as in row 1, left column) in the absence of the NMDA 

blockade.  Hence the effect depicted does not depend on well-known roles of NMDA 

currents in plasticity mediated by long-term synaptic strength changes.  Rather, the 

mechanism by which partial NMDA blockade prevents the mode-switch is a reduction in 

sodium conductance that would otherwise be produced by excitation of NMDARs on the 

modeled CA1 pyramidal cell. 
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Figure 2.4: Primed and unprimed comparator responses to pharmacological manipulation.  The 
panels on the left represent simulated membrane voltage (in mV) responses to primed (aka 
expected) stimuli, and the panels on the right represent the corresponding unprimed responses.  
From top to bottom, the rows represent responses under a baseline condition, under 25% reduction 
in KCNQ conductivity (simulating elevated ACh), under 25% reduction in NMDA conductivity 
(simulating an NMDA antagonist like PCP), and under a combination of 25% reduction in NMDA 
conductivity and a 25% increase in KCNQ conductivity (simulating the ability of retigabine to reduce 
the symptoms of NMDA blockades like PCP). 

  

 

ACh Agonists 

Increasing ACh sufficiently to reduce the M-current’s maximum conductance by 25% is 

another way to prevent the mode switch to a phasic response, as can be seen by comparing 

Figure 2.4, row 2 with row 1.  Like the results under NMDA blockade, the tonic spiking in 

both primed and unprimed conditions indicates that a real neural circuit described by our 

comparator model would not exhibit match-detection, thus treating all stimuli as 

mismatches.  The spike rate is drastically increased in our simulation, but a more 

reasonable spike rate might be achieved with more nuanced modulation of maximum 

KCNQ conductance.  Again, this effect is achieved with no change in synaptic weights, and 

thus represents a direct effect of the simulated ACh boost, not an ACh-dependent learning 

effect.   

 

NMDA antagonism combined with retigabine rescues comparator function 

In line with the findings of Sotty et al. (2009), simulation of a retigabine effect taking the 

form of a 25% increase in maximum KCNQ conductance rescues the comparator 

functionality from a 25% NMDA antagonism, such that the mode switch is once again 

observed under coincidental priming inputs (from CA3) and driving inputs (from EC3).  
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This would allow for restoration of CA1 discrimination between expected and unexpected 

experiences, and thus may point to one mechanism by which retigabine has anti-psychotic 

effects. 

 
Discussion 

 
These results indicate that a realistic CA1 neuron model can simulate a number of 

phenomena known from the literature on hippocampal function, and specifically data that 

provide evidence that CA1 serves as a mismatch detector.  The mode switch allows a brief 

phasic response to an expected stimulus to be supplanted by a sustained tonic response to 

an unexpected (novel) one.   We hypothesize that this bears a direct relation to reports 

(Kumaran and Maguire, 2006) that the same CA1 region exhibits both small CA1 fMRI 

signals to expected events and huge fMRI signals to unexpected events.  Both phasic and 

tonic modes of CA1 pyramids were also simulated in Prescott et al. (2006), and in Prescott 

et al. (2008), but they were not discussed in the context of mismatch detection.  In the 

current, more complete, model, additions allowed simulation of a number of additional 

effects, notably pharmacological effects that can eliminate either the match (phasic mode) 

response or the mismatch (tonic mode) response.  These simulations revealed that 

dysfunctions can arise from either too much or too little ACh stimulation of muscarinic 

receptors that control KCNQ channels.  The simulations also revealed that a dysfunction 

caused by administration of an NMDA antagonist could be rescued by simultaneous 

administration of a KCNQ channel agonist, such as retigabine.  Finally, simulations 

revealed that a primed CA1 neuron’s response to a driving input has a lower latency (is 

faster) than an unprimed CA1 neuron’s response to the same driving input. This conforms 
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to the general observation that priming confers the advantage of faster responses to 

expected events. 

 

Limitations of the model.  A truly complete model, and understanding, of CA1 pyramidal 

neurons remains a task for the future.  For example, Prescott and Sejnowski (2008) notes 

that M-currents and AHP currents impact the two modes differently, offering important 

benefits that would improve reliability of each mode by itself, but might interfere with the 

other mode.  For instance, the M-current can provide for precise onset responses below a 

certain mode-switch input level, and beyond that level (when intensity overrides the 

expectations), whereas AHP introduces some reduction in reliability at a given firing rate, 

but also increases the range of inputs over which reliability remained high (Prescott and 

Sejnowski, 2008).  Some of these effects, and new ones, have been further explored in 

subsequent models, but, again, without regard to the issue of mismatch detection. 

 

Potential applications of the comparator model.  It is important to note that this model is 

above all a model of mode switching by a pyramidal neuron.  Therefore, the results may be 

generalizable to many pyramidal neurons that exist outside CA1, e.g. in various parts of 

neocortex.  Indeed, although CA1 mismatch signals are unmistakable in fMRI studies, 

evidence has long existed from other types of studies, notably EEG/ERP studies, that many 

areas of cortex react much differently to matches than to mismatches of expectations.  

Indeed, one of the best studied phenomena in cognitive neuroscience is the mismatch 

negativity, i.e. the MMN, which emerges when averaged ERPs to expected stimuli are 

subtracted from averaged ERPs to stimuli that violate expectations.  The present results may 
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help explain such phenomena, either because hippocampal predictions are sent to 

neocortical areas (not just to CA1), or because a priming relationship exists between any 

higher order cortical area and the lower order cortical areas to which it projects (Barbas 

and Rempel-Clower, 1997; Markov et al., 2014), and because mismatch detection is 

needed to guide learning in all such instances, at least at some phases of development.  

Indeed, such an assumption is fundamental in predictive coding models of the cerebral 

cortex (see recent reviews in Shipp, 2016 and Spratling, 2017).  In such contexts, as earlier 

noted in Figure 2.3, our model offers a more efficient neural architecture than alternatives 

(e.g., Wacongne et al. 2012). 

 

 

CHAPTER THREE: A BIOLOGICALLY REALISTIC SINGLE-CELL 

COMPARATOR MODEL OF THE MISMATCH NEGATIVITY 

 
Abstract 

 
 
Leading models of the well-established ERP phenomenon known as mismatch negativity 

(MMN) have advanced two partially conflicting interpretations: predictive coding and 

afferent habituation.  Wacongne et al. (2012) uses top-down inhibition, based on a 

hierarchy of predictions, to reduce the response to sensory inputs, whereas  May & Tiitinen 

(2010) relies on afferent habituation to reduce the driving input to neurons.  Despite the 

clear differences between these approaches, both of the alternative processes are subtractive, 
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in that they feature an approximately linear reduction of activity in response to graded 

effects of previous events (either via predictions or via habituation). 

  

To overcome limitations of prior models that rely on such subtractive mechanisms, we 

propose a new class of predictive coding model, based on the highly nonlinear properties of 

the principal neurons of the cerebral cortex, pyramidal neurons.  These properties, which 

depend on the inclusion of realistic KCNQ channels and M-currents, provide a robust 

mechanism by which top-down priming creates conditions that enable single neurons to 

compare inputs and expectations. The same properties enable on-the-fly switching between 

two distinct firing modes and linked encoding schemes.  One mode/scheme rapidly flags 

and reacts to confirmed expectations, whereas the other mode/scheme conveys more 

detailed information about an unexpected stimulus. 

  

Importantly, the same neurons that perform comparisons mediate bottom-up sensory 

processing, so the model overcomes a key shortcoming of prior models such as Wacongne et 

al. (2012), which required extra, parallel circuits devoted solely to computing prediction 

errors. When KCNQ channels are activated by a top-down subthreshold depolarization, 

the induced M-current switches the state of the cell membrane.  When the neuron is then 

driven by a sufficient bottom-up input to cause suprathreshold depolarization, the 

expectation-induced state enables the neuron to exhibit a phasic burst at the onset of 

bottom-up input, followed by depolarized quiescence.  This response is radically different 

from the tonic firing that the neuron would exhibit in the absence of the M-current 

induced by top-down priming.   
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After we demonstrate that such model neurons can serve as comparators capable of 

differentiating between match and mismatch events, we then embed them in a model local 

circuit and show that it can produce signal deflections of the two types that underlie MMN 

phenomena. We also show that the new model, unlike linear-subtractive models, allows 

downstream neurons to classify different levels of bottom-up input regardless of the level of 

expectation.  Because of its biophysical realism, the model can simulate known effects of 

pharmacological manipulations, including NMDA blockade and the abolition of the MMN 

in PCP-based animal models of schizophrenia.  In doing so, our model becomes the first 

to predict the possible dissociation of the scalp-measured MMN from underlying neural 

comparison processes.  It also makes new predictions regarding: classes of antipsychotics 

that can rescue the MMN; how strong modulation of muscarinic acetylcholine receptors 

will disrupt the MMN; and an observable dynamic shift in the encoding of information 

based on top-down representation of expectations. 

 
Introduction 

To evaluate and revise its learned internal models, the brain must compare expectations to 

reality and generate mismatch signals if sensory input deviates from expectations. Many of 

these mismatch signals are associated with learning and redirections of attention. We focus 

on one phenomenon from studies of such attention-redirecting mismatch signals, the 

mismatch negativity, or MMN, and then propose a novel model of the comparison 

mechanism underlying MMN phenomena. In this section, we first provide background on 

the MMN, its origins, the experimental and pharmacological properties that will be used to 
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constrain the proposed model, as well as the state of existing models. Then we review the 

cellular mechanisms that we propose interact to produce the dynamic coding shifts that 

mediate distinctive processing of expected versus expectation-violating stimuli. 

The MMN 

The MMN (see Figure 3.1) is a deflection found in a difference wave taken between two 

electroencephalogram (EEG) or magnetoencephalogram (MEG) measurements, and is 

believed to capture the processing of a cortical mismatch event (Winkler, 2007). The 

averaged response to many stimulus events demonstrates deflections or event related 

potentials (ERPs) that wax and wane over many hundreds of milliseconds after event-onset. 

Expected events induce different ERP waveforms than events that violate expectations. 

When the waveforms of expected events are subtracted from those of events which feature 

the same stimulus but which violate expectations, a prominent difference has been observed 

in EEG (Garrido et al., 2009) and MEG (Yabe et al., 1998) traces at about 100-200 ms 

post-event. This difference is called the MMN. 

 

 



 

 

42 

 

Figure 3.1: A cartoon example of a mismatch negativity.  The dashed line represents the average electric field 
generated in response to oddball stimuli, the solid line represents the average electric field generated in response 
to standards, and the difference is shaded grey.  Negative voltages are plotted above the zero voltage line in this 
plot, in accord with the tradition used in earlier MMN reporting.  In this plot, with tick marks representing 10 ms 
intervals, the MMN emerges around 80 ms, and lasts until 150 ms, post-event. 

 

The prototypical experimental method for eliciting an MMN is the oddball paradigm 

(Näätänen et al., 2007; Winkler, 2007). In this paradigm, illustrated in Figure 3.2, the 

unexpected events are violations of stimulus patterns that have been experientially 

established by repeated presentations. Events that exemplify the pattern are called 

standards. Those that violate it are called deviants or oddballs. 
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Figure 3.2: Three examples of stimulus sequences from the oddball paradigm.  Top: a series of ascending digits 
ending with a letter, this breaks both the pattern of digits and the pattern of ascending order.  Middle: a series of 
ascending musical tones, followed by a larger descending step.  This breaks both the pattern of ascending order 
and the pattern of consistent step size.  Bottom: A series of colored squares which abruptly change color from 
green to red.  This breaks the pattern of consistent color. 

In its simplest (auditory) form, the oddball paradigm is as follows: 

1. Short duration tones of the standard frequency are repeatedly presented with a 

fixed ISI (inter-stimulus interval) between tones. 

2. Much more rarely, a tone of a fixed alternate frequency is presented, after some 

pseudo-random number of standard tones. This alternate frequency tone is termed 

the oddball. 

3. A difference is computed between the average oddball-induced ERP waveform and 

the average standard-induced ERP waveform. As shown in Figure 3.1, in this 

difference waveform the MMN is the prominent negative deflection (here plotted 

upward) whose amplitude peaks between 100-200 ms after stimulus onset. 
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There are many variants on the paradigm. The repeating pattern can exemplify an abstract 

structural rule, such as a fixed relationship between successive tones in a tone sequence 

(Paavilainen, Simola, Jaramillo, Näätänen, & Winkler, 2001; Tervaniemi, Saarinen, 

Paavilainen, Danilova, & Näätänen, 1994; Vuust et al., 2005). There are also variants in 

multiple modalities, such as visual (Pazo-alvarez, Cadaveira, & Amenedo, 2003), tactile 

(Kuchenbuch, Paraskevopoulos, Herholz, & Pantev, 2014), and olfactory (Sabri, 

Radnovich, Li, & Kareken, 2005). When examined before the subtraction, certain 

variations end up evoking a P3a instead of, or in addition to, the MMN, such as the 

global/local paradigm (Basirat, Dehaene, & Dehaene-Lambertz, 2014). Finally, some 

variants elicit a MMN via omission of the stimulus instead of via substitution of an oddball 

stimulus (H. C. Hughes et al., 2001). This MMN to omission will be discussed in detail in 

a later section. 

A Controversy 

There are competing hypotheses regarding MMN “genesis”.  Predictive coding (Garrido, 

Kilner, Stephan, & Friston, 2009) is an evolution of the original memory trace (or 

“model adjustment”) hypothesis first put forward in Sams, Paavilainen, Alho, & Näätänen 

(1985), updated in line with the hierarchical predictive coding framework (Clark, 2013; 

Friston, 2005). It proposes that top-down predictions come from “higher” brain regions 

(such as the superior temporal gyrus), and are passed to “lower” levels (such as primary 

auditory cortex) to “explain away,” i.e., predict and filter out, predictable components of 

bottom-up inputs. Any unexplained input is treated as an error signal, and is propagated 

to a higher level, e.g. the inferior frontal gyrus. 
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The sensory-specific adaptation (SSA) hypothesis emerged as a direct challenge to the 

predictive, memory-based models. SSA is a well-established phenomenon in which a 

neuronal population that responds to a given stimulus exhibits a reduced response 

following repeated exposure to that stimulus (Figure 3, right panel).  Jääskeläinen et al. 

(2004) argued that the MMN could be generated entirely within the temporal (sensory) 

cortex, due to SSA. Similarly, May & Tiitinen (2010) argued that the MMN is a result of 

SSA at neural sites responsible for the N100 (or N1) ERP component. If sufficient, the 

SSA hypothesis would explain MMN with no cognitive machinery required.  

 

For further reviews covering the arguments being made between these two schools of 

thought, see May & Tiitinen (2010), and Garrido et al. (2009). 

 

Constraints on MMN Models 

Any successful model of the MMN must reproduce most of its key properties, while making 

no predictions contrary to fact. The first set of properties we consider here depend on the 

stimulus parameters. First, the MMN magnitude depends on the strength of the 

expectation and the deviance of the unexpected events, as well as attentional and other 

variables (Kujala & Näätänen, 2003). The latency to the MMN’s peak, within the 100-200 

ms after the oddball’s onset, depends on multiple factors. Tone deviants that differ from 

the standard in pitch have a different MMN latency than deviants that differ only in 

duration or intensity (Kujala & Näätänen, 2003). Furthermore, for a given standard tone, 

MMN latency declines as a function of the difference in Hz between the oddball and the 
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standard (Naatanen & Alho, 1995). The MMN peak’s amplitude of a few microvolts is a 

linear function of the oddball’s deviation from the standard (Kujala & Näätänen, 2003). 

 

In addition to stimulus-based features, the MMN has been studied in both humans and 

animal models under a variety of pharmacological manipulations, as tabulated below: 

 
Receptor 
Type 

Studies Agonist MMN Results Antagonist MMN 
Results 

NMDA (Ehrlichman, Maxwell, 
Majumdar, & Siegel, 2008; 
Farley et al., 2010; Heekeren et 
al., 2008; Javitt, Steinschneider, 
Schroeder, & Arezzo, 1996; 
Umbricht, Koller, Vollenweider, 
& Schmid, 2002)  

No Studies Dose-dependent 
reduction or 
abolition of the 
MMN 

Muscarinic 
ACh 

(Klinkenberg, Blokland, Riedel, 
& Sambeth, 2013; Pekkonen, 
Hirvonen, Jääskeläinen, 
Kaakkola, & Huttunen, 2001; 
Riekkinen et al., 1997)  

Cholinesterase inhibitor 
reduces MMN in 
Alzheimers populations, but 
not in non-clinical 
population 

Mixed results: one 
study shows 
abolition, two 
show no effect 

Nicotinic 
ACh 

(Engeland, Mahoney, Mohr, 
Ilivitsky, & Knott, 2002)  

Increased Amplitude   

 

Table 3.1: Summary of pharmacological manipulations of the MMN.  Particularly relevant effects are the dose-
dependent reduction in MMN amplitude under NMDA blockade and the reduction in MMN amplitude in 
Alzheimer’s populations under a cholinesterase inhibitor. 

   
NMDA antagonists, administered prior to the oddball paradigm, have been repeatedly and 

reliably shown to reduce and then abolish the MMN in both humans and animal models 

(Ehrlichman et al., 2008; Farley et al., 2010; Heekeren et al., 2008; Javitt et al., 1996; 

Umbricht et al., 2002). Models have begun using this as a constraint, and some existing 

models (May & Tiitinen, 2010; Wacongne et al., 2012) feature abolition of the MMN in 

response to simulated NMDA blockade. Results are mixed, however, with regard to 
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muscarinic ACh agonist effects on MMN. Dose-dependent reduction/abolition has so far 

only been found in patients with Alzheimer’s disease (AD), not in young, healthy 

individuals.  This does not necessarily imply that the effect is absent in healthy subjects. 

Instead, evidence from other studies suggests that the effects of elevated ACh levels would 

be particularly enhanced in AD patients, due to their chronically reduced levels of ACh and 

the correspondingly elevated ACh receptor counts (Overk et al., 2010), including type 1 

muscarinic (M1) receptors, which control key transmembrane ionic currents, such as the 

M-current. If so, much larger agonist doses might produce an MMN reduction in non-AD 

subjects. 

 

In addition to the MMN itself, there is a positive deflection before the negativity, the 

amplitude of which corresponds to the number of standard stimulus repetitions preceding 

the oddball. This was first analyzed by Baldeweg (2007), and named the Repetition 

Positivity (RP).  It is shown in Figure 3.3. 

 

 
Figure 3.3: The Repetition Positivity (RP), adapted from Baldeweg, 2007.  (A) The standard ERP at Fz after 2, 
6, and 36 repetitions, recorded in a roving standard experiment of Haenschel et al. (2005) during passive 
listening. The inset indicates the time window for early ERP components (P30 and P50) shown in (C). (B) RP is 
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the difference wave between the standard ERPs after 36 and 2 (black line) and 36 and 6 (dashed line) 
repetitions, respectively. 

  
This positivity can be taken as an electrical index of the strength of expectation-based 

priming, and as such should be accounted for by expectation-based models of the MMN. 

 

It should be noted that many MMN modelers emphasize the ability of their models to 

produce a mismatch to omission.  As stated before, some variants on the experimental 

paradigm elicit an MMN not only to presentation of an oddball stimulus but also to 

omission of any stimulus at the expected time of the standard. However, evidence suggests 

that this “MMN to omission” obeys different laws and so may be regarded as a distinct 

phenomenon. In particular, it is elicited only by protocols with short ISIs. Reports of the 

longest ISI to produce an MMN to omission range from 140 ms (Tervaniemi et al., 1994) 

to 800 ms (Halgren et al., 1995), whereas the MMN to a deviant is reliable at ISIs up to 10 

seconds (Bottcher-Gandor & Ullsperger, 1992).  Two explanations for a response to 

omission have emerged (Oceák, Winkler, Sussman, & Alho, 2006). These base the MMN 

to omission on either loudness summation or a window of integration.  Thus neither of the 

currently competing explanations attribute the omission effect to the same mechanism used 

to explain MMN responses to deviants. Therefore, while many neural mechanisms such as 

the gated dipole (Banquet & Grossberg, 1987) could reproduce this response to omitted 

stimuli, , we will not be requiring that our model of MMN genesis include such 

mechanisms or be capable of producing an MMN to omission. 
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Existing Models 

Computational neural models of the MMN have a history dating back to Banquet & 

Grossberg (1987). As stated above, the most complete model to date under the predictive 

coding hypothesis is Wacongne et al. (2012).  

 
 

Figure 3.4: The network architecture of Wacongne et al. (2012), designed for a simulated experiment with two 
sounds. It consists of an abstracted higher-level memory trace, and then two cortical subpopulations for each layer 
(layer 2/3 and layer 4), as well as two subpopulations of thalamic input.  Adapted from Wacongne et al. (2012) 

Wacongne et al. (2012)’s model neurons are based on Izhikevich (2003), with synaptic 

currents taken from the Brunel & Wang (2001) model. The model uses the simple 



 

 

50 

subtractive logic of most neural comparator models to generate an MMN as follows: as a 

stimulus sequence is presented, a memory trace learns the pair-wise associations. When the 

first stimulus of a pair occurs again, the memory trace activates inhibitory neurons in the 

second stimulus’s column. These neurons inhibit the response of L4 excitatory cells to the 

second stimulus of the pair. If the predicted second stimulus occurs, L4 exhibits a reduced 

response. If a different stimulus occurs, a non-inhibited column is stimulated, producing 

a full-scale response. Those two responses, when compared by subtraction, produce a non-

zero difference, and a resultant deflection from zero in a plotted ERP (difference) wave. 

This model was able to reproduce an MMN, an MMN to omission, and MMN abolition 

under NMDA blockade.   

 

The model of May & Tiitinen (2010) simulates multiple areas of auditory cortex using 

simple non-spiking models.   They use an extremely simplified model at the column level, 

describing an average depolarization and average firing rate for the pool of all excitatory 

cells in a cortical column.  They do not explicitly model inhibitory neurons, but do include 

a general inhibition term that is based on local and neighboring column activity.  They 

model stimulus specific adaptation (SSA) as a temporary reduction in afferent synaptic 

weights, as noted in Figure 3.5. 
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Figure 3.5: May and Tiitinen’s adaptation model.  In the adaptation model, the standards and deviants activate 
overlapping neural populations. The repetitive standard leads to cells tuned to the standard to become adapted. 
When the deviant is presented, nonadapted “fresh afferents’’ contribute to an enhanced response.  Also shown is 
the beginning of a stimulus sequence, four standards (S) followed by a deviant (D), and the event-related 
responses produced by the neural population pictured at the top.  Adapted from May & Tiitinen, (2010) 

 

Lateral inhibition was simulated between core area neurons, with an onset time constant of 

10ms.  Lateral excitation was also included, without a divisive time constant term in the 

equation.  This fast lateral excitation and slow lateral inhibition creates a nonlinear 

oscillator. 



 

 

52 

 

Their model successfully produces an activity pattern that mimics the MMN, which they 

suggest implies that MMNs can be explained by SSA. It is also capable of producing an 

auditory MMN to omission, which strongly depends on the properties of its nonlinear 

oscillator circuitry.  In particular, the repeated stimulation provided by the standard starts 

the core oscillating with a peak response at roughly 100ms post-stimulus-latency.  It is this 

peak, they claim, that constitutes the “MMN to omission”. 

 

Limitations of Existing Models 

Despite some successes, both these approaches to MMN modeling have notable limitations.  

Wacongne et al., (2012) follows in the tradition of earlier psychological models of the 

MMN (Naatanen, 1990, Winkler, 2007), which rely on the existence of separate circuitry 

dedicated to stimulus feature processing and to detecting mismatches and generating the 

MMN (for an overview and critique of this trend, see May & Tiitinen, (2010)), but not 

both. 
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Figure 3.6: The architecture of a traditional memory-based conception of the MMN, with separate modules 
performing the feature detection and the comparison and MMN generation.  Adapted from May & Tiitinen 
(2010). 

 

Requiring a separate comparison module for each feature detection system in the neocortex 

is extremely inefficient, however.  As implemented in Wacongne et al., (2012), the 

comparison module contains the same number of neurons as the feature detectors. Thus, 

this model requires a doubling of the size of the neocortex relative to any model that uses a 

single circuit to perform both functions.  

 
 
The model proposed by May & Tiitinen, (2010) has an equally significant limitation. It 

lacks all top-down feedback. This is somewhat defensible, because the whole point of their 

construction is to explore a way to explain the MMN with only a bottom-up process.  
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Nevertheless, top-down input is a highly prominent feature of the neocortex (e.g., Barbas 

and Rempel-Clower, 1997; Markov et al., 2014), and of thalamo-cortical circuits, and it 

remains to be seen whether their MMN model would survive the incorporation of realistic 

top-down feedback. Such feedback must eventually be incorporated in order to advance any 

serious model of cortical computations. 

 

We address the limitations of both the existing predictive coding and habituative theories by 

introducing aspects of the May and Tiitinen model to a predictive coding framework; in 

particular we model mismatch computations and the MMN via adaptation in the same 

neurons that perform sensory feature processing.  However, rather than rely on purely 

afferent adaptation, we introduce predictive adaptation driven by top-down feedback, in 

accordance with the predictive coding framework and neuroanatomical principles.  This 

approach, detailed below, produces a model that mitigates both of the above-noted 

limitations of prior computational models. 

 
Moreover, there is one other key limitation shared by both Wacongne et al.’s and May & 

Tiitinen’s models: both of them use subtractive comparators.  Specifically, the output 

firing rate as a function of prediction (or of habituation) strength varies along a mostly 

linear downward trajectory (as demonstrated in Figure 4.7), which presents several 

problems for any recipient neurons attempting to decode this output. 

 

• Any decoder will experience potential confusion between an unexpected weak 

stimulus and an expected strong stimulus.  Recall that an oddball with a mere 
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change in intensity can elicit an MMN.  In the extreme, both models predict that a 

perfectly expected stimulus will be indistinguishable from an absent stimulus, which 

is clearly not the case. 

• Graded lowering of spike rates implies lengthening times needed by recipient cells 

to exceed threshold.  Greater delays would be incurred during processing of better 

expected stimuli, which is in opposition to evidence from electrophysiological, 

EEG, and psychophysical studies (Noonan et al., 2016). 

• The constant modification of the firing rate means that either extensive circuitry 

must be in place to reconstruct the original signal, or the mismatch comparison 

must be performed on a copy of the signal, which entails redundant circuitry. 

  

Figure 3.7c illustrates the principle, implied above, that linear subtractive comparators 

suffer from an ambiguity, specifically an inability to differentiate in their output between a 

predicted strong input and a weak or absent input.  In fact, any given rate of output from 

the comparator could indicate any number of different input intensities, all predicted with 

varying levels of success.  
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Figure 3.7: a) The nearly linear habituative reduction in membrane voltage of the comparator in May 
and Tiitinen (2010), with the output spike rate on the Y-axis and the amount of habituative inhibition 
on the X.  As inhibition increases the spike rate is smoothly reduced.   b) The linear response of the 
comparator in Wacongne et al. (2012).  Output spike rate is again on the Y-axis, with the amount of 
inhibition (per Izhikevich (2003)’s quadratic integrate-and-fire model) coming from expectations on 
the X-axis.  In this model the reduction in spike rate is almost perfectly linear.  c) Confusability 
between a weak, unexpected input and a stronger, more expected input in the Wacongne 
comparator.  Because the model expectations simply scale down the spike rate, a given spike rate 
could indicate a wide variety of stimuli under different expectations, making it difficult to decode.  d) 
The same confusability illustrated with neuron voltage traces, showing how different strengths of 
inputs can result in the same spike rate. 

   

Proposed New Model 

   The above-mentioned limitations can be effectively addressed by a model of mismatch 

detection that is surprisingly simple at the circuit level, once we grant the criticality of 

accurately modeling how pyramidal dendrites process both top-down and bottom-up 
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signals.  The model’s circuit-level simplicity also critically depends on the incorporation, 

and functional reinterpretation, of prominent yet overlooked features of single neocortical 

pyramidal neurons. Notable among these features are the M-current and its interaction 

with Cl- currents. 

 

The M-current, a current mediated by KCNQ channels, is an inward potassium current, 

originally discovered in sympathetic ganglion neurons of bullfrogs by Brown & Adams 

(1980). It is non-inactivating and voltage-dependent, being activated by depolarization of 

the membrane above approximately -60mV (Brown & Adams, 1980). Because of this, 

depolarizations large enough to generate action potentials reliably also activate the M-

current.  KCNQ channels are closed by Muscarinic ACh receptors, and are found in 

neurons throughout the nervous system, including pyramidal cells of the cerebral cortex 

(reviewed in Jentsch, 2000; Marrion, 1997). The M-current’s function is usually 

interpreted from the perspective of rate-modulation: it contributes to slow adaptation in 

spike rate during prolonged excitation. However, under readily achieved physiological 

conditions, it can act quite differently, and serve other functions.  Prescott, et al. (2006) 

showed that the M-current interaction with the chloride leak current can reliably cause a 

shift from regular (tonic) spiking to onset (phasic) bursting. This was demonstrated both in 

computational models, similar in structure to our proposed models below, and in dynamic 

clamp recordings from CA1 hippocampal pyramidal cells. 
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Figure 3.8: A) A standard predictive coding comparator, where a stimulus elicits predictions which 
inhibit a population, reducing the frequency of its output when the predicted stimulus occurs.  B) A 
standard habituative comparator, which fires at a reduced rate due to afferent habituation when a 
recently experienced stimulus is repeated.  C) A mode-shifting comparator, wherein a stimulus 
elicits predictions which prime a population, placing it into a high-conductance state and causing a 
shift from tonic to phasic firing. 

 

In the new comparator model proposed here, this mode shift allows a neural population to 

dynamically switch from encoding detailed, rate-based information about an unexpected 

stimulus to quick, efficient phasic reporting of the onset of expected stimuli. These stimuli 
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will not require detailed information transmission, since a single “byte” of confirmation – 

a phasic, high-frequency burst followed by quiescence – can enable recipient neurons to act 

as though the brain’s expectation was confirmed. Thus the same circuit may suffice for 

purposes of feature processing and mismatch detection.  This process is illustrated in figure 

3.8. 

 

Furthermore, the limitations of linear comparators are all at least partially addressed by our 

proposed model. 

1. The nonlinearity of response means that confusability is reduced, although not 

eliminated. 

2. Reporting matches by brief phasic bursts – just a few high-frequency spikes – 

allows for very fast processing of expected stimuli by recipient neurons, without 

incurring the delays associated with graded lowering of spike rates. 

3. A perfectly expected stimulus is still reported via a phasic burst, differentiating 

it from a stimulus omission. 

4. Because expected stimuli are not reported in a rate-based code, success does not 

depend on a preservation of the original sensory signal's firing rate.  

Unexpected stimuli preserve the original firing rate, and induced release of 

ACh removes any bias from top-down priming, allowing the original, unaltered 

rate-based information to be passed on. 
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Materials and Methods 

Although the new model shares some features with the Wacongne et al. (2012) model, 

unlike Wacongne et al. and other predictive coding treatments, it explores the hypothesis 

that the comparison process does not require full parallel circuitry. Instead it uses both 

excitation-based and inhibition-based priming within the main stimulus processing 

channel, to allow synaptic inputs that mediate top-down expectations to activate 

traditionally "habituative" currents before neurons are driven by any event-related bottom-

up (“driving”) inputs. Such priming, which occurs only after expectation-development, 

induces a qualitative change in firing mode (Figure 4.8C). Thus, the proposed comparator 

reacts in qualitatively different manners to driving input, depending on whether or not it 

has recently received priming input. When primed, it responds to a range of driving inputs 

with a single spike (or transient burst) just at the onset of the sustained input. This suffices 

to confirm, to recipient brain areas, that expectations were met. If unprimed, the same 

“comparator” neuron generates a train of spikes whose frequency varies to reflect the 

intensity of driving input. This provides detailed encoding of stimulus features.  It should 

be noted that our particular parameter set produces a high frequency response, which may 

be closer to firing saturation than would be optimal, but tests have shown that the mode 

switch operates under a broad range of parameters, so long as the basic ratios of priming 

and driving weights are maintained. 

  

The proposed model’s biophysical and neuroanatomical details, including strongly 

nonlinear interactions between the excitation-driven habituation and inhibition-driven 

subtraction, allow it to address limitations found in the alternative comparator models, 
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with a much greater economy of circuitry, as noted. Appendix A formulates mathematically 

a neuronal biophysical model that can be used to simulate these conditions. As specified 

there, the model incorporates the range of receptors and channels included in prior 

models of pyramidal cells (Prescott et al., 2006) and cortical synapses (e.g. Brunel & Wang, 

2001), but also adds further receptors and interactions needed to realistically model ACh-

dependent M-currents, which play a fundamental role in our treatment of cortical 

comparison processes. In particular, a voltage-dependent M-current was added, based on 

the mathematical modeling in (Mainen & Sejnowski, 1996).  We use simulations to assess 

and document the model’s explanatory power vis-à-vis all the phenomena noted and 

tabulated above as constraints on MMN models. 

 

Our simulations can be grouped into five major investigations.  The first demonstrates the 

ability of a simulated layer 2/3 cortical pyramidal cell to differentiate between expected and 

unexpected input.  Layer 2/3 pyramidal cells were selected as our model comparator for 

reasons explained previously in chapter 2.  The second investigation examines the impact of 

the strength of priming (as a placeholder for strength of expectation) on the repetition 

positivity. The third is a pharmacological investigation, simulating the effects of NMDA 

and KCNQ blockade on the neuron, along with a KCNQ agonist, such as retigabine.  The 

fourth investigation tested robustness to the presence of noise and to changes in input 

weights.  Finally, the fifth investigation focused on the ability of the comparator to avoid 

the regions of confusion found in the firing state space of linear comparators. 
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Proposed Model 

In documenting our proposed model here, we employ the standards recommended by 

Nordlie, Gewaltig, & Plesser, 2009, for specifying the architecture, network connectivity, 

neural and synapse models used, and the input to and measured output from the simulated 

system. 

  

Architecture  

For the first four investigations, the architecture is extremely simple. A single neuron 

representing a layer 2/3 pyramidal cell performing sensory comparison is the core of the 

model, as it is a single-neuron comparator.  For investigation five, we simulated two 

neurons, one representing a sensory-area layer 2/3 comparator, and one representing a 

pyramidal cell located in an association area, which receives its inputs from the sensory 

comparator. 

  

Network Connectivity 

While there are a high number of connections, they form a very simple pattern.  The 

sensory comparator is innervated by 600 synapses: 200 basal driving synapses (presumed to 

be from excitatory layer IV neurons, which were not simulated), 200 apical priming 

synapses (presumed to be from higher cortical regions), and 200 basal inhibitory priming 

synapses (presumed to be from priming-driven feed-forward cortical interneurons). All 

synapses have weights that are randomly selected using a Gaussian distribution with µ  of 

1.0 and σ  of 0.1. The weights are of the form gauss( , )w µ σ⋅ , where the value of w  is 16 
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for driving synapses, 12 for excitatory priming synapses, and 8 for inhibitory priming 

synapses.  

Neuron and Synapse Models 

 
Neuron Model 

Each comparator neuron is made up of two point models, one representing the apical 

portion of the cell, and the other the basal.  The membrane of each point model is 

conductance-based, following the general convention of  

 1 2 ... n
dV I IC I
dt

= + + +   

where I  is a current of the form max ( )proportion m Eg g V V−⋅ ⋅   , where maxg  is the maximum 

conductance of the channels carrying that current, proportiong  is the proportion (from 0 to 1) 

of the max conductance currently engaged (or the proportion of membrane channels 

currently open and non-inactivated), and m EV V−  is the driving voltage differential 

between the current membrane voltage ( mV  ) and the Nernst equilibrium of that particular 

current's ion ( EV  ).  

 

In our model, the complete membrane equation is  

Na AMPA NMDA GABA K M Cl

dvC I I I I I I I
dt −= + + + + + +  

with Na AMPA NMDAI I I+ +  representing the summed synaptic currents. The remaining, non-

synaptic currents are detailed in the appendix, along with the parameters used. 
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Synapse Model 

  
Synaptic connections addressed by fibers coming in from outside the scope of the model 

are driven by Poisson point-process spike generators associated with the assumed fibers. 

The Poisson function behind each one varies as a function of time, with an onset and offset 

time.  The details of this change over time are provided in the “Input” section, below.  

When a synapse is hit by one of these Poisson-generated spikes it activates postsynaptic 

conductances in accordance with either the AMPA and NMDA or the GABA membrane 

conductance equations from part two.  The effect depends on whether or not the synapse 

has a positive (excitatory, and therefore AMPA and NMDA) or negative (inhibitory, and 

therefore GABA) weight. The synapse equations are also detailed in the appendix. 

 

The equations put forward by Brunel & Wang (2001)  were used to specify each particular 

synaptic conductance.  The precise equations used are described in the appendix. 

  
  

Input     

Each of the hundreds of input synapses is driven by a Poisson process whose lambda 

variable changes over time, going from 0.0001 at rest to a given value during activation. 

Activation lambda values and onset/offset timing are specific to each population of inputs, 

and to whether or not we were simulating an expected (primed) stimulus, or an unexpected 

(unprimed) stimulus. 
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Regardless of expectations, driving inputs are activated at 350ms into the simulation, with 

lambda switching to a value of 0.01 for a duration of 350ms (stimulus duration), 

whereupon the driving inputs returned to the resting lambda. During primed stimulation, 

the excitatory priming inputs are activated at 150 ms, switching to a lambda value of 0.01 

for a duration of 550ms, returning to a resting lambda (0.0001) at the same time as the 

driving inputs.  

 

During primed stimulation, the inhibitory priming inputs are activated at 175 ms at a 

lambda value of 0.01, and also return to a resting lambda at the same time as the driving 

inputs. During unprimed stimulation, the priming inputs (both excitatory and inhibitory) 

will not activate at all, remaining at rest lambda throughout the entire simulation. 

  

Output 

The membrane voltage and extracellular current were measured for analysis at both the 

apex and the base of all neurons, along with the net KCNQ-mediated M-current. In 

addition, for each neuron we calculated the quasi-static electric field using the methods 

provided in the Appendix. 

 

Data Analysis 

This field was then low-pass filtered with a cutoff of 14Hz to remove individual spike 

artifacts which do not come through in scalp EEG.  The resulting field trace represents the 

first physically accurate modeling of the electrical fields in any model of the mismatch 
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negativity. Spike detection was performed on the simulated membrane voltage data by 

recording as a spike’s time each crossing from below -10 mV to above 10 mV. 

 

Each neuron’s sequence of spike times was then classified as phasic or tonic by dividing the 

time up into two segments.  The first, the onset segment, consisted of the first 100ms after 

the onset of driving (not priming) synaptic activity.  The second, sustained segment 

consisted of the time between the end of the onset segment and the offset of driving activity.  

The rate in spikes/second was calculated for each segment, and if the onset rate was at least 

three times the sustained rate, as well as the sustained rate being below 5 spikes/second, the 

neuron’s firing pattern was classified as phasic.  Otherwise, the neuron was classified as 

tonic. 

 

Investigation 1: Match/Mismatch 

The first investigation simply involved simulating a primed and an unprimed condition as 

detailed above in order to demonstrate that the primed condition produced phasic firing 

while the unprimed condition produced tonic firing.  No further analysis was performed in 

this baseline investigation. 

 
Investigation 2: Repetition Positivity 

As mentioned previously, the amplitude of the repetition positivity has been found to vary 

with the strength of expectations (Baldeweg 2007).  To determine whether our model 

could reproduce this effect, a “match” condition was simulated three times, once as in 

investigation 1, once with the lambda for both excitatory and inhibitory priming synapses 
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reduced by 33% (simulating a weaker expectation), and once with it reduced by 66% (for an 

even weaker expectation).  Per Baldeweg (2007), we then plotted the simulated electric 

field responses to just the standards, to look for a reduction in amplitude as the priming 

signal became weaker. 

 
Investigation 3: Pharmacological Manipulations 

Each of our pharmacological manipulations was set at either a 25% increase (for agonists) 

or a 25% decrease (for antagonists) of the maximum channel conductance value.  To 

examine the impact of various pharmacological agents, the basic match/mismatch 

simulations were performed under the following conditions: 

 

• NMDA activity decrease (e.g. via PCP; (Anis, Berry, Burton, & Lodge, 1983)) 

• KCNQ activity decrease (e.g. via high doses of a Cholinesterase inhibitor; 

(Riekkinen et al., 1997)) 

• KCNQ activity increase (e.g. via retigabine; (Sotty et al., 2009)) 

• NMDA activity decrease and KCNQ activity increase combined 

 

Investigation 4: Robustness To Noise 

For this investigation, a single comparator neuron was simulated with injected white noise 

currents added to the apex and the base.  The simulation was repeated 20 times each (10 

primed and 10 unprimed) at 30 different levels of noise amplitude.  For each simulation, 

the response of the neuron to driving input was classified as either phasic or tonic, per the 

ratio of the onset spike rate (the spike rate during the 100ms following the onset of driving 
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input) to the sustained spike rate (the rate during the remaining 250ms of the driving 

input).  If this ratio was higher than 3:1 and the sustained spike rate was lower than 5 then 

the neuron was classified as phasic.  This was then treated as a binary classifier, with true 

positives occurring when a neuron was primed and responded in a phasic manner, false 

negatives when a neuron was primed and responded in a tonic manner, false positives when 

a neuron was unprimed but responded in a phasic manner, and true negatives when a 

neuron was unprimed and responded in a tonic manner.  These four values were then 

plotted for each noise level simulated. 

 

Investigation 5: Confusability Testing 

We defined a discriminability metric as the difference between sustained firing rates (as 

defined above in the Robustness Evaluation section) of two conditions.  This is useful in 

that it means that two perfectly phasic responses (with a sustained spike rate of zero) are 

highly confusable (i.e. difficult to discriminate), a phasic and tonic response are easy to 

discriminate (i.e. this metric will have a high value), and two tonic responses can vary in 

this metric based on their relative firing rates. 

 

Our confusability testing involved the simulation of a single comparator neuron over the 

space of three different driving input weights and nine different predictive priming weight 

sets (since priming involves both an excitatory and an inhibitory connection, both weights 

must be scaled by a single scalar value). The discriminability metric was evaluated for each 

simulation and its value was plotted along the predictive priming scalars for each of the 

three driving inputs. 
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Results 

Investigation 1: Match/Mismatch 

Our simulations performed as expected, and the results confirmed our predictions. A 

mode switch was indeed observed between the primed and unprimed conditions, as seen in 

figure 3.9A.  

 

 
 

Figure 3.9: Baseline mismatch negativity.  A) A rapid tonic firing from the unprimed comparator.  B) A brief 
phasic burst from the primed comparator.  C) The negative deflection of an unprimed comparator.  D) The 
positive and slight negative deflection of the primed comparator.  Note that the priming deflection begins before 
the spiking in B, due to the subthreshold influence of priming synaptic currents.  E) The difference between the 
two electric fields, showing a negative deflection, or MMN.  Negative is plotted downward in the electric field 
panels. 

 

Investigation 2: Repetition Positivity 

The electric fields, plotted in Figure 3.10, showed a strong positivity, with a corresponding 

reduction in “match” as the expectational priming is reduced.  This finding makes our 
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model of the MMN the first to produce a realistic repetition positivity, which is reliably 

found in the standard trials of experimental MMN data. 

 

 

Figure 3.10: The simulated repetition positivity scales with priming strength.  As the lambda was reduced from 
100% of investigation 1 (darkest blue line) to 33% (lightest blue), the amplitude of the simulated repetition 
positivity dropped.  Negative is plotted downward. 
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Investigation 3: Pharmacological Manipulations  

NMDAR Conductance Decrease 

 

Figure 3.11: The model under an NMDAR blockade, as under PCP.  A) The unprimed comparator voltage trace 
shows extremely rapid tonic firing.  B) The primed comparator voltage trace shows fitful firing throughout the 
stimulus, failing to achieve a full mode shift.  C) The deflection in the electric field for the unprimed comparator 
is reduced.  D) There is a similar reduction in the negative deflection of the primed comparator’s field.  E) The 
MMN is reduced compared to baseline (c.f. investigation 1). Negative is plotted downward in the electric field 
panels. 

 

As shown in Figure 3.11, reducing NMDA max conductance by 25% prevents the mode 

switch to a phasic response.  Under the view that processing based on standard formation 

relies on this mode switch, this blockade would prevent such processing from occurring in a 

model based on our comparator, causing all stimuli to be treated as mismatches.  This is an 

effect of NMDA currents on neuronal responses to un-modified synaptic weights.  Hence 

it does not depend on well-known roles of NMDA currents in plasticity mediated by long-

term synaptic strength changes.  Instead, the mechanism by which partial NMDA blockade 

prevents the mode-switch is a reduction in excitatory sodium conductance. 
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KCNQ Conductance Decrease 

 

Figure 3.12: The model under reduced KCNQ conductance, as would be produced by increased ACh.  A) A rapid 
tonic firing from the unprimed comparator.  B) A similar rapid tonic firing from the primed comparator.  C) 
The transmembrane (external) currents of the apical (green) and basal (blue) sections of the unprimed 
comparator. D) The transmembrane (external) currents of the apical (green) and basal (blue) sections of the 
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primed comparator. E) The negative deflection of an unprimed comparator.  D) The positive and slight negative 
deflection of the primed comparator.  E) The difference between the two electric fields, showing a negative 
deflection, or MMN.  Negative is plotted downward in the electric field panels. Note that while the neural voltage 
trace in panel B is clearly distinguishable from the corresponding trace in the baseline figure, the MMN remains 
undiminished.  This is due to the electrical field being derived from the difference in apical and basal 
transmembrane currents, unlike the basal voltage trace (which determines spike output).  A more complete 
explanation is found below. 

 

Increasing ACh sufficiently to reduce the M-current’s maximum conductance by 25% also 

prevents the mode switch to a phasic response (Figure 3.12, panel B).  Similar to the results 

under NMDA blockade, these results indicate that a circuit consistent with our comparator 

would be rendered incapable of processing based on standard formation, instead treating 

all stimuli as mismatches, during epochs with sufficiently elevated ACh. 

 

How can this happen?  The key factor is that the simulated electric field (defined in the 

appendix) is defined by the relative transmembrane current flow in the apical verses basal 

regions of the cell (see figure 4.12, panels C and D), whereas the spike output is 

determined by the transmembrane currents in the basal section combined with the axial 

current from the apical dendrite.  This means under certain conditions, the electrical field 

can be modulated independently of the spike output, which is seen in the figure above.  

This unaltered MMN fits the findings on cholinesterase inhibitors in healthy subjects, 

while challenging any assumption that the lack of modulation in the MMN means ACh is 

unimportant to mismatch detection.  In doing so, our model also becomes the first theory 

of MMN generation to propose that the difference wave ERP signature is dissociable from 

the spike-communicated results of the underlying comparison/mismatch detection process. 
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KCNQ Conductance Increase 

 

Figure 3.13: The model under increased KCNQ conductance, as would be produced by retigabine.  A) A single 
phasic onset spike from the unprimed comparator.  B) A similar phasic onset firing from the primed comparator.  
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C) The transmembrane (external) currents of the apical (green) and basal (blue) sections of the unprimed 
comparator. D) The transmembrane (external) currents of the apical (green) and basal (blue) sections of the 
primed comparator. E) The negative deflection of an unprimed comparator.  F) The positive and negative 
deflection of the primed comparator.  G) The difference between the two electric fields, showing a diminished 
negative deflection, or MMN.  Negative is plotted downward in the electric field panels.  Note that in this case the 
MMN is extremely diminished, in accordance with the failure of the spiking output of the comparator to 
distinguish between primed and unprimed conditions. 

 

KCNQ activity increase: In a shift from the other manipulations, KCNQ agonism 

(reducing KCNQ max conductance by 25%) prevents the mode switch to a tonic response.  

This suggests that a circuit consistent with our model comparator would be incapable of 

mismatch, treating unexpected inputs as though they were predicted and primed.  Unlike 

the previous increased ACh condition (figure 4.12), this condition shows a corresponding 

reduction of the MMN, to near extinction.  To our knowledge, no studies have been 

performed on the impact of retigabine or other KCNQ agonists on the mismatch 

negativity, as well as none on the behavioral markers of mismatch detection (such as 

reaction time), making this a novel testable prediction.  Our model predicts that 

differences in behavioral markers between standards and oddballs will be reduced, along 

with a reduced mismatch negativity.   
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NMDA Conductance Decrease and KCNQ Conductance Increase 

 

Figure 3.13: The model under both an NMDA antagonist and a KCNQ agonist.  A) A rapid tonic firing from the 
unprimed comparator.  B) A similar rapid tonic firing from the primed comparator.  C) The transmembrane 
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(external) currents of the apical (green) and basal (blue) sections of the unprimed comparator. D) The 
transmembrane (external) currents of the apical (green) and basal (blue) sections of the primed comparator. E) 
The slight negative deflection of an unprimed comparator.  F) The slight positive and negative deflection of the 
primed comparator.  G) The difference between the two electric fields, showing an extremely diminished negative 
deflection, or MMN.  Negative is plotted downward in the electric field panels. 

 

In line with the findings of Sotty et al. (2009), simulating the joint effects of a 25% 

reduction in NMDA currents and of a 25% increase in maximum KCNQ conductance 

shows how a KCNQ agonist such as retigabine rescues the basic comparator functionality 

compromised by deficient NMDA currents.  Figure 3.13 shows that the mode switch is once 

again observed under coincidental priming and driving inputs.  This would allow for 

neocortical discrimination between expected and unexpected experiences, and, combined 

with the hippocampal retigabine findings from chapter two suggests a mechanism of action 

for retigabine’s antipsychotic effects.   

 

Also notable is that the simulated MMN did not fully recover under retigabine; it remained 

reduced, as in the NMDA blockade investigation.  This extends our novel testable 

prediction, allowing us to predict that schizophrenics (or subjects on PCP) will benefit 

behaviorally and cognitively from the restored mismatch detection (and possibly even 

reduced distractibility, if the KCNQ alpha hypothesis put forward in chapter five is 

correct), but will still display a reduced MMN consistent with untreated schizophrenics.  

This is non-obvious, and to our knowledge this has not been tested. 
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Investigation 4: Robustness to Noise 

The model turned out to be extremely robust to the presence of noise in its inputs, with the 

white noise parameter able to increase to more than 1000 mA before a significant falloff in 

classification sensitivity occurred.  Specificity remained extremely high regardless of noise 

levels, as sufficient injected noise prevented the mode shift to phasic firing, which in turn 

prevented classification of a stimulus as a “positive”, or expected stimulus. 
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Figure 3.14: Classification performance as a function of noise.  As injected white noise increases, the rate of true 
positives (green) falls and that of false negatives (cyan) rises.  True negatives (red) and false positives (blue) 
remain unchanged.  In this figure the true positive rate is the proportion of expected stimuli which evoke phasic 
firing, which would correctly be decoded to indicate an expectation was matched.  The false negative rate is the 
proportion of expected stimuli which evoke tonic firing, as though they were unexpected.  Likewise, the true 
negative rate is the proportion of unexpected stimuli which correctly evoke tonic firing, and the false positive rate 
is the proportion of unexpected stimuli which evoke phasic firing. 

 



 

 

81 

Investigation 3: Confusability Testing 

 

Figure 3.15: The robustness of our proposed model to confusability.  A) The output spikes per second of our 
model under different levels of expectational priming input for three different stimulus intensities (represented 
by driving inputs with weights 24, 30, and 36, respectively).  The highly nonlinear response (compared with 
other models in figure 4.7) helps to keep the three stimulus intensities distinct.  B) Furthermore, upon mismatch, 
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ACh is released (Ranganath and Rainer, 2003), which drastically reduces the effect of expectational priming 
(here simulated as a 25% reduction in M-current conductance), allowing a target neuron to decode the intensity 
of a stimulus without bias due to expectations. 

Discussion 

Our comparator robustly tags primed verses unprimed inputs by switching between phasic 

and tonic firing modes.  This behavior makes it a good candidate for inclusion in future 

expectation/prediction-based models of the MMN.  Unlike other comparators, it generates 

a faster response along with less activity on a primed “match”, consistent with behavioral 

patterns observed in studies such as  (Noonan et al., 2016).  Beyond regular mismatch 

generation, the comparator’s tagging is appropriately disrupted by NMDA blockade.  

Realistic membrane currents also allow our comparator to predict MMN disruption in a 

healthy population under high doses of KCNQ agonists but not antagonists.  

 

The proposed model bears some similarity to, but is at the same time remarkably different, 

from one previous MMN model in particular. That model was based on an application of 

Adaptive Resonance Theory (ART) to the MMN (Banquet & Grossberg, 1987).  In that 

rate-based formulation, matches produced increased and sustained activity even after 

asymptotic learning of top-down expectations, whereas in our model, such matches are 

indicated by brief bursts that are followed by drastically reduced spiking while the input 

remains on.  This is quite an important difference, since “resonance in the match” was a 

defining feature of ART.  Each model features a reset mechanism for mismatch, and a 

“goodness of fit” threshold wherein no match is reported if none of the predictions are 

matched closely enough by the input. 
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Limitations of the New Model 

Of course, this model only addresses one of the metabotropic roles of ACh, so there is 

much work still to be done investigating the ionotropic, and other metabotropic, impacts 

of ACh.  As always, it remains to be seen whether computational principles derived from a 

partial model, which simplifies dendritic morphology and lacks some known conductances, 

and others yet to be discovered, will survive greater realism. 

  

 

Prediction and Observation 

There exists a recent trend in neuroscience to think of the brain as a prediction machine, 

applying hierarchical sets of rules to predict the next input from the outside world. Other 

neuroscientists think of the brain as an observing and categorizing machine, taking in 

input, filtering it, and classifying it. 

 

We propose that each area of the brain can act in either of those roles, and in fact they are 

interconnected and emerge from a single neural substrate. In order to generate a 

framework for thinking about the brain in this manner, we consider the constraints for 

each role found in the literature, and the way it interacts with the other role. We then 

examine fundamental units such as neurons and glial cells, and the properties they have 

which might cause these different roles to emerge.  
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We view prediction as a common cortical trait which primes a given area of the brain in 

anticipation of future inputs. New inputs can either be directly relayed from sensory areas, 

from subcortical areas of the brain such as the amygdala, or relayed from other cortical 

areas. EEG, single-cell recording, and behavioral experiments have all examined the 

difference between expected input and unexpected input, and found several constraints. 

This prediction role appears to emerge from the M-current, which helps convert a neuron 

from a rate-based coding mechanism to a spike timing-based mechanism. This current, 

which is not in most existing neural models, appears to be governed by the level of 

acetylcholine (ACh) in a given region of the brain.  Thus, in our model, a low level of ACh 

is proposed to bias the brain towards predictions and generalizing new inputs into already 

existing categories, and a high level discounts the effect of the predictions and causes each 

part of the brain to simply observe its inputs as though they were novel, seeking out new 

patterns. We propose that this is a major component of attention, and is the reason for 

ACh's association with attentional focus. In the high-ACh state, we shift roles from 

prediction to observation. 

 

Future Directions 

 
 
In addition, studies have suggested important interactions between other pharmaceuticals 

and the MMN, including Norepinephrine (NE).  Investigation of this interaction in the 

proposed model will require its extension, but they remain feasible. 



 

 

85 

Appendix 

Elements of the Model 

 
This neural comparator model currently consists of two point (single compartment) 

models with realistic synapses, bridged by a resistor. Each point model consists of all of the 

membrane equations in section 2, and the bridge current is computed based on their 

relative voltages, the axial resistance of the apical dendrite, and the distance between the 

apex and the base. 

 

Membrane Equations 

The membrane voltage model is conductance-based, following the general convention of  

1 2
...

ncurrent current current
dvC I I I
dt

= + + +    (1.1) 

  where 
ncurrentI   is a current of the form ( )max

percentcurrent E mg g V V⋅ ⋅ −  , where curre
x

nt
mag   

 is the maximum conductance of the channels carrying that particular current, percentg
  

 is the percent of the max conductance currently achieved due to open, non-inactivated 

channels, and ( )E mV V−   is the driving voltage differential, between the Nernst equilibrium 

of that particular ion ( EV ) and the current membrane voltage ( mV ). 

 

In total, the equations cover 
Na AMPA NMDA GABA K M CaK

dvC I I I I I I I
dt

= + + + + + +
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The currents involved are as follows, each with their own percentg  function: 

• NMDA (Na) 

2(1 [ ] ( 0.062 ) / 3.57)
open

percent
m

g
g

Mg exp V+=
+ −

 

1
( )

eC
open NMDA

j j
j

dg
w s

dt =

= ⋅∑  

(1 )
NMDA NMDA
j j NMDA

j jdecay
NMDA

ds s
x s

dt
α

τ
= − + −  

( )j j k
jrise

kNMDA

dx x
t t

dt
δ

τ
= − + −∑  

  

 

• AMPA (Na) 

 
1
( )

eC
percent AMPA

j j
j

dg
w s

dt =

= ⋅∑   

 ( )
AMPA AMPA
j j k

j
kAMPA

ds s
t t

dt
δ

τ
= − + −∑   

• GABA (Cl) 

 
1
( )

iC
percent GABA

j j
j

dg
w s

dt =

= ⋅∑   

 ( )
GABA GABA
j j k

j
kGABA

ds s
t t

dt
δ

τ
= − + −∑   
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• Inactivating Voltage-Based Na 

 1 20.5(1 (( ) / )) (1 )percent mg tanh V V V h= + − ⋅ −   

 0.07 ( )
20

m
h

vexpα =   

 
1

30( ) 1
10

n
mVexp

β =
+

+
  

 (1 )h n
dh h h
dt

α β= − −   

 

• Potassium 

 ( ) /percent
inf percent w

dg
w g

dt
φ τ= −   

 0.5(1 (( ) / ))inf m w ww tanh V β γ= + −    

 1

( )
2

w
m w

w

Vcosh
τ β

γ

=
−
⋅

  

 

• Cl Leak Current 

 percent Clg = Γ   

  

 

• M-current, from (Mainen & Sejnowski, 1996) 
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1

1 ( )z m
percent

percent z

z

Vexp gdg
dt tau

β
γ
−

+ −
=   

 
3.3 ( ) ( )

20 20

peakz
z

m z z

tau
tau Vexp expβ β=

− −
+

   

 
36( )

10

1000

2.
peakz Ttau

e
−=   

Parameters 

Parameter Value Citation 
C   

22 F
cm
µ   (Prescott et al., 2006) 

max
Nag  

220 mS
cm

 (Prescott et al., 2006) 

NaV  50mV  (Prescott et al., 2006) 

1V  1.2mV−  (Prescott et al., 2006) 

2V  23mV  (Prescott et al., 2006) 

w  28  (Fernandez et al., 2005) 

CV  64mV−   (Fernandez et al., 2005) 

A  232   (Fernandez et al., 2005) 
max
Kg  

220 mS
cm

  (Prescott et al., 2006a) 

KV  100mV−   (Prescott et al., 2006) 

φ  0.15   (Prescott et al., 2006) 

wβ  2mV−   (Prescott et al., 2006) 

wγ  21mV   (Prescott et al., 2006) 
max
Mg   

24 mS
cm

  (Prescott et al., 2006) 

max
AHPg   

21 mS
cm

  (Prescott et al., 2006) 
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zβ   35mV−   (Prescott et al., 2006) 

zγ   10mV   (Yamada et al., 1989) 

T  36ºC   (Yamada et al., 1989) 

AHPα  0.005   (Prescott et al., 2006) 

AHPβ  0mV   (Prescott et al., 2006) 

AHPγ  5mV   (Prescott et al., 2006) 

shuntV  70mV−   (Prescott et al., 2006) 

shuntg  
22.0 mS

cm
  (Prescott et al., 2006) 

2Mg +   1 3e −   (Brunel & Wang, 2001) 
max
AMPAg   

27.5 3e mS
cm

−   (Brunel & Wang, 2001) 

max
GABAg   

27.5 3e mS
cm

−  (Brunel & Wang, 2001) 

max
NMDAg   

22 3 me S
cm

−  (Brunel & Wang, 2001) 

 AMPAτ   2ms   (Brunel & Wang, 2001) 

 GABAτ   10ms   (Brunel & Wang, 2001) 

rise
NMDAτ  2ms   (Brunel & Wang, 2001) 

decay
NMDAτ  100ms   (Brunel & Wang, 2001) 

NMDAα   0.5ms   (Brunel & Wang, 2001) 

 

Simulating electrical field effects generated by pyramidal neuron dynamics 

A key portion of the literature on event related potentials (ERPs) pertains to the study of 

mismatch signals generated within the neocortex, such as the mismatch negativity, hereafter 

the MMN (Näätänen et al., 2007; Winkler, 2007), which follows sensory inputs that are 

rare enough to mismatch current expectations for sensory input. Most studies of the MMN 

have been conducted via EEG.  In order to fit our comparator model to the pertinent 
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experimental findings, we must first expand the cellular model to simulate the quasi-static 

electrical fields being measured in EEG studies. 

 

The term “dipole” is frequently used to refer to the sources of electrical activity being 

measured in EEG.  What this normally refers to is the second (dipole) term of the 

multipole expansion of a series of current sources and sinks, describing the component of 

the total field which is equivalent to one generated by exactly one source and one sink, 

separated in space.  This component is the focus of our EEG analysis because it is the one 

which contributes the most to the measured fields at the distances encountered in scalp 

recordings. 

 

The simplest model of a neuron capable of generating a realistic dipole field will consist of 

two points, separated in space.  It should be noted that this is far simpler computationally 

than a compartmental model (even one with only two compartments), since there is no 

integration of space required.  In this section, we develop a two-point model of a cortical 

pyramidal cell. 

 

Rall (1962) plotted the dipole fields of more detailed compartmentally modeled pyramidal 

neurons, and demonstrated that one of the poles in the dipole term localizes to the apical 

section of the pyramidal cell, and the other one localizes to near the soma.  In keeping with 

this, one point in the neuron developed here will represent the electrical activity of the 

apical portion of the cell and the other will represent the soma and basal dendrites. 
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Figure 3.16: Two point neurons, one representing the basal pole and one the apical. In this particular instance, 
the apical is depolarizing, which will produce a current sink, indicated by the negative sign, at the apical pole. 
 

Each of these two points in our model is governed by a set of equations.  All that is required 

to be able to complete the prediction of scalp voltage is an equation which offers /dv dt  

for each point.  This, combined with the positions of each point within the 3D space of a 

cortical region (which will later be mapped to a source voxel), is sufficient to precisely 

calculate the dipole field.  However, accurate and useful predictions will rely heavily on 

accurate representation of the change in voltage at each point.  In addition, defining the 

transmembrane currents in the membrane equation is helpful in simplifying later steps, 

although these can in theory be derived from /dv dt  and a cell’s capacitance, if necessary.  

In the interest of demonstrating best practices, we here use a generic conductance based 

model.  The membrane equations for each point are defined in terms of three currents, 

specifically an excitatory current, a rectifying current, and a shunting current: 

excite rectify shunting
dv I I I
dt

= + +    
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Having established the voltage change over time at each point on its own, we must now 

modify the equations to include a current flowing between the points, otherwise our dipole 

effectively remains two neurons instead of representing the two regions of a single neuron.  

Adding this current to the above equation, we arrive at: 

 

i i i

i
excite rectify shunting ij

dv I I I I
dt

= + + ±    

 

where i  is the point in question, and j   is the opposing point of the dipole.  The current 

ijI  will be added if i  is the second point, and subtracted if it is the first point.  Although 

that is just an artifact of the definition of ijI  below, and could validly be reversed if the 

current was defined in terms of the second point, rather than the first. 

 

As mentioned above, without some sort of bridge these are effectively just two point 

neurons.  What is needed to make them into a single dipole neuron is the axial current 

which connects the apical point to the basal point.  This is electrically equivalent to 

bridging the two points with a resistor.   
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Figure 3.17: A dipole model neuron bridged with a resistor, apically depolarizing as in Figure 3.16. 
 

For two points separated by a distance d  in meters, the specific axial resistance per unit 

length ( ˆiρ  ) is constant regardless of position (.  Since resistance sums, the resistance for a 

cell with axial length x∆  is ˆi xρ ⋅∆ .  For layer 2/3 neocortical pyramidal cells, the total 

volume resistance can be assumed to be 100k cmΩ at an apical dendrite length of 400 

micrometers, per Larkman et al. (1992).  This gives us 250,000  / cmΩ .  Therefore for a 

300 micrometer apical dendrite, the axial current between location x  and location 

( )x x+ ∆  is then the voltage difference times the inverse axial resistance of the neurite 

connecting the two points, per the following equation from Niebur (2008). 

( ) ( )( )
ˆi

v x v x xI x x
xρ

− + ∆
+ ∆ =

⋅∆
   

Substituting ( )ijI I x x= + ∆  , ( ) iv x V=  , ( ) jv x x V+ ∆ =  , and the distance x d∆ = , the 

current flowing into the basal point j  will be: 

 
ˆ

i j
ij

i

I
V V

dρ
−

=    
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Having defined the primary (intracellular) current, we must now define the secondary 

(extracellular) currents.  These are called secondary because they are indirectly evoked 

outside the cell (in the intracellular medium) by the primary currents.  When a 

transmembrane current sends a flow of ions either into or out of the cell, the extracellular 

region experiences a negative or positive current, depending on the charge of the ions and 

the direction of the flow.  Conservation of charge dictates that other currents flow either 

toward or away from this extracellular region, preventing a local buildup of charge in this 

space.  As a result, large curls of extracellular current are evoked by the transmembrane 

currents.  These secondary currents are the currents which drive the quasi-static electric 

field being measured in EEG. 
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Figure 3.18: The extracellular currents (pictured as arrows) due to the source sink formed as a result of the 
previously pictured apical depolarization. 
 

The secondary current we are defining is driven by the relative difference in 

transmembrane current between the two points.  Thanks to having employed a 

conductance-based model, we can now simply remove the axial current term from each of 

the two point membrane equations to get their respective transmembrane currents: 

 

 Ii i i itransmembrane excite rectify shuntingI I I= + +    

Unless the two points have exactly equal transmembraneI  values, one point will act as a current 

source, and the other will act as a sink.  The amplitude of this current dipole source/sink (

s ), once again defined relative to the first point, will be equal to the difference between 

this equation evaluated for each of the two points. 

 

 ( )i jtransmembrane transmembranes I I= −   

Alternatively, if we did not have a conductance-based model, because micro-faradays, 

micro-volts, and micro-amps are in play, /dv dt I= , so the /dv dt  of whatever 

membrane equation was used can be substituted, with ijI  subtracted from it to produce the 

transmembrane current. 

 

Now, having defined the extracellular currents, we are in a position to be able to calculate 

the quasi-static electric field.   
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Figure 3.19: Equipotential lines for the quasi-static electric field produced by the extracellular currents which 
result from the apical depolarization.  Red indicates positive voltage, and blue negative. 

 

Full spherical coordinates are not necessary, because a dipole field is rotationally 

symmetrical, which allows us to express the voltage measured by an electrode in the field in 
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terms of polar coordinates r  and θ .  Per equation 3.7 of Nunez and Srinivassen (2006), 

for two point currents of equal and opposite magnitude ( s ), separated in space by a 

distance of d  meters, the equation is as follows: 

 2
0

cos( )( , )
4

sdr
r
θθ

πε
Φ ≅    

With θ  being an angle measured clockwise from the “top” of the polar coordinates, and r  

being the radial distance from the center of the two-point system.  0ε  is a constant known 

as the permittivity of empty space, and is here assigned the value 12 18.854187817 10 F m− −× ⋅

. 
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CHAPTER FOUR: A MECHANISTIC MODEL OF ALPHA-INDUCED 

INFORMATION SUPPRESSION  

 
Significance Statement 

In EEG, assorted functions have been ascribed to oscillations depending on their frequency 

and location, with a common suggestion that coherence between oscillators in two different 

brain regions indicates communication between those regions. However, alpha (8-14 Hz) 

oscillations increase in amplitude when information transfer is inhibited, raising the 

possibility that coherent alpha oscillations suppress communication. In this paper we 

propose a model of such alpha suppression. We show via computer simulations that when 

circuits are driven to oscillate near their 8-14Hz resonances neural activity can be 

unresponsive to stimuli, instead dominated by large amplitude oscillations. Such saturating 

oscillations suppress communication as measured by mutual information between a signal 

and downstream activity, offering the first successful mechanistic model of alpha 

suppression. 

 
  

Abstract 

Suppression of information transfer by alpha (8-14 Hz) oscillations, a phenomenon 

known as “alpha induced information suppression”, has been demonstrated in both 
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correlative and causal experiments. However, despite extensive experimental work, an 

explanation for alpha suppression in terms of cortical activity and neural responses has yet 

to be established. Here we propose such an explanation based on the behavior of simulated 

models of coupled resonant neural circuits. When constant drive causes the thalamic 

resonant frequency to match the 10 Hz resonance of the cortical oscillator, the amplitude 

of oscillations in the coupled thalamo-cortical circuit increases. This increase causes the 

cortex to transition from occasional input-correlated, information-rich bursts of activity 

into periodic, uninformative suprathreshold activity. Alternating saturation and inhibition 

of the high-amplitude oscillations, as in the Inhibition Timing Hypothesis (Jensen & 

Mazaheri, 2010; Klimesch, Sauseng, & Hanslmayr, 2007), reduces the impact of incoming 

signals on cortical excitatory population activity. The ensuing reduction in 

communication, measured by mutual information between sensory input and cortical 

response, when cortical oscillations are in the alpha range, agrees with results of 

transcranial magnetic stimulation. The significant phase-dependence of mutual 

information when oscillations are in the low alpha/high theta range, replicates EEG and 

behavioral results from Busch, Dubois, & VanRullen, (2009). Finally, we address an 

implicit assumption underlying many functional network studies, that coherence implies 

communication between cortical regions. We find that relative phase, as well as coherence, 

determines communication between two modeled cortical regions that are oscillating in the 

theta range, whereas high-amplitude alpha oscillations are reliably detrimental to 

communication. 
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Introduction 

Intentional suppression of task-irrelevant stimuli during sustained attention is associated 

with increased oscillations in the 8-14 Hz cortical alpha band (Freunberger, Fellinger, 

Sauseng, Gruber, & Klimesch, 2009; Payne, Guillory, & Sekuler, 2013; Worden, Foxe, 

Wang, & Simpson, 2000). It is thought that such attentional processes entail not only a 

decrease in alpha activity over regions of active encoding, but also an increase in regions 

whose function needs to be reduced. In this view, alpha oscillations reflect an active 

inhibitory mechanism (Foxe & Snyder, 2011; Klimesch et al., 2007). 

 

In 2007, Klimesch et al. proposed the Inhibition Timing Hypothesis, a modification of 

the alpha suppression hypothesis that includes specific phases at which alpha would 

enhance, rather than suppress, information processing. In accordance with this hypothesis, 

the particular phase of stimulus onset was found to be important in the reliability of target 

detection (Busch et al., 2009; Mathewson, Gratton, Fabiani, Beck, & Ro, 2009) and the 

reaction time in perceptual discrimination tasks (Vanrullen, Busch, Drewes, & Dubois, 

2011). 

 

Romei and colleagues subjected the alpha suppression hypothesis to a direct test, using 

transcranial magnetic stimulation (TMS) to induce pre-stimulus oscillations in the right or 

left parietal-occipital cortex. By varying the frequency of oscillations during a near-

threshold target detection task, they found that target detection was impaired by oscillations 

in the alpha band, but not by oscillations in other frequency ranges (Romei, Gross, & 
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Thut, 2010). This provided evidence of a causal link between alpha oscillations and 

information suppression. 

 

The most commonly discussed mechanism of alpha information suppression is pulsed 

inhibition (Jensen & Mazaheri, 2010). This takes evidence implicating GABAergic 

interneurons in alpha production (S. R. Jones, Pinto, Kaper, & Kopell, 2000; Lorincz, 

Kékesi, Juhász, Crunelli, & Hughes, 2009) and uses it to explain the apparently phase-

dependent nature of alpha information suppression (Busch et al., 2009; Mathewson et al., 

2009; Vanrullen et al., 2011). In this paper, we offer a mechanistic computational model 

consistent with this mechanism. 

 

Our mechanistic model is motivated also by theoretical studies on coupled nonlinear 

oscillators. The effect of any interaction between coupled oscillators depends strongly on 

their relative phase, due to phase resetting (Rinzel & Ermentrout, 1998), making 

communication between oscillators phase-dependent. Moreover, for nonlinear oscillators, 

responses to perturbations—such as ones arising from interaction with another oscillator or 

from sensory input—typically depend on the amplitude of oscillation, which itself depends 

on the oscillation frequency. In particular, as thalamo-cortical neural circuits possess a 

resonance in the alpha range (Gutfreund, Yarom, & Segev, 1995; Herrmann, 2001) and 

neural responses to input require a balance of excitation and inhibition (Bell, Mainen, & 

Sejnowski, 1994), we expect that the neural response to input will be increasingly impacted 

by saturation/inhibition when the neural circuit is driven to oscillate in the alpha range. 
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Finally, a growing number of recent studies have attempted to define coherence-based 

networks of “functional connectivity” in the brain. These studies have identified coherence 

networks in the alpha, beta, and gamma bands (Hipp, Engel, & Siegel, 2011; Palva, Monto, 

Kulashekhar, & Palva, 2010). In this paper, we extend our model to include two cortical 

regions, in order to examine an implicit assumption underlying such studies, that greater 

oscillatory coherence implies greater information transfer. 

 

Materials and Methods  

We propose a mechanism of alpha information suppression that is based on alpha-band 

resonance of the thalamo-cortical circuit (Herrmann, 2001; VanRullen & Macdonald, 

2012). To simulate the thalamo-cortical resonance, we used a simple model excitatory-

inhibitory feedback circuit, which oscillates with a natural frequency of 10 Hz. The model 

thalamus receives variable tonic drive that we consider as frontal input from higher order 

cortical areas (per Guillery and Sherman, 2002). Nonlinearities in the system cause the 

oscillation frequency of the thalamic circuit to vary with the tonic external drive.  We use 

this result to adjust thalamic oscillation frequency across its observed range from 2-13 Hz 

(S. W. Hughes & Crunelli, 2005).  In our model, this range emerges from a rapid 

exponential rise in the amount of frontal input required to shift the frequency. The 

coupling of thalamic and cortical oscillators in a loop makes the frequency of cortical 

oscillations also depend on the tonic drive to the thalamus. The coupled circuit possesses a 

resonance, which appears when the tonic drive to the thalamus causes the thalamic circuit’s 

oscillatory frequency to match the 10 Hz natural frequency of the cortical circuit. We 

investigate the consequence of such an alpha resonance by simulating three tasks, which we 



 

 

103 

summarize below. Details of the model’s implementation and the task-specific inputs 

follow the brief description of each task. 

 

Our first investigation tested how the mutual information between a cortical input signal 

and the cortical activity depended on the frequency of thalamo-cortical oscillations. A 

continuously varying signal was sent to the cortex while the thalamus was driven with 

different levels of frontal input. The frontal input to the thalamus was systematically varied 

in order to move the thalamus through its natural range of bursting oscillations (2-13 Hz, 

per Hughes & Crunelli, (2005). At each level of input (and therefore frequency), mutual 

information was evaluated between the signal and the cortical spike rate.  

 

In the second investigation, we assessed how cortical responses depended on the phase of an 

input, aiming to reproduce the experiment reported in Busch et al., (2009). Our model 

was simulated with continuously varying noise input to the cortex, while sufficient frontal 

input to the thalamus drove the system into the high theta range. In addition to the varying 

noise, a 12 ms pulse was injected at various phases of the thalamo-cortical oscillation.  This 

pulse simulated the presentation of a brief threshold-level visual stimulus. The model’s 

response to the stimulus pulse was determined by a simple threshold classifier (see 

Analysis), and behavioral statistics were calculated as in Busch et al.’s original work. 

 

The third investigation examined the role of coherence and the relative phase of 

oscillations in communication between two connected instances of our model thalamo-

cortical loop. This arrangement was meant to represent two separate but connected 
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thalamo-cortical regions that processed incoming information. In both the alpha and theta 

frequency bands, the model thalamic nuclei were driven so as to oscillate either coherently 

or incoherently (at different frequencies within the band). In the coherent condition, the 

thalamic oscillations were simulated with varying phase delays relative to each other, 

allowing us to examine the impact of these two parameters on communication of a 

continuously varying signal between two oscillating cortical circuits. Finally, the conduction 

delay between the two model systems was varied, and the optimum phase for 

communication was found for both short and long delays. 

 

Model 

In describing our model, we follow the standards proposed by (Nordlie et al., 2009), 

documenting the network architecture, the connectivity, the neuron and synapse models 

used, the input (stimuli), and the output (data recorded). Our model was implemented in 

two forms: one for investigations one and two, and the other in an expanded form for 

investigation three. 

Network Architecture 

The basic modeled network (Figure 4.1) consists of one thalamo-cortical loop, with the 

thalamus and cortex each containing two populations of neurons.  
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Figure 4.1: Our model circuitry. Two brain regions (the thalamus and cortex) are modeled, each with populations 
of excitatory and inhibitory neurons. Arrows represent excitatory connections, circles inhibitory. 

 

 

 

The model thalamus consists of an excitatory thalamic relay nucleus (a population of 

thalamic relay cells) and its corresponding section of inhibitory thalamic reticular nucleus 

(TRN, consisting of a population of reticular nucleus cells). The model cortical area 

contains a population of excitatory projection neurons and a population of inhibitory 

interneurons.  
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For our third investigation of this model (investigation descriptions to follow), we 

expanded the model by duplicating the network architecture in full, creating two distinct 

thalamo-cortical loops, to be linked via a cortico-cortical connection from the excitatory 

projection neurons in Area I to the equivalent population in Area II. (Figure 4.2) Feed-

forward inhibition was omitted from the model, because the inhibitory cells that are targets 

of long range cortical connections do not generally have reciprocal connections with the 

excitatory neurons we are modeling (Apicella, Wickersham, Seung, & Shepherd, 2012). 

 
Figure 4.2: The expanded model used in investigation three. Two copies of the first model were connected via a 
unidirectional excitatory connection between the cortical excitatory populations. The “signal” entering the second 
population is considered noise, for purposes of mutual information calculation. 
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Network Connectivity 

This model defines synapses between neurons via a pair of parameters: a weight 
ijW , and a 

conduction delay 
ijd .  These are enumerated for each simulated neural group in Table X. 

 

Connection Weight 
ijW  Conduction Delay 

ijd  

Sources 

Thalamic projection 

neurons to TRN 

interneurons 

12 0.25 ms 

Jones, 2002 

Thalamic projection 

neurons to cortical 

excitatory neurons  

3.5 4 ms 

Sherman and 

Guillery, 2004 

The thalamic projection 

neurons’ calcium current 

self-excitation 

1.0 0 ms 

Huguenard, 1996 

TRN interneurons to 

thalamic projection 

neurons 

-7.0 0.25 ms 

Sherman and 

Guillery, 2004 

TRN interneurons to 

TRN interneurons 
-1.75 0.25 ms 

Destexhe et al., 

1998 

Excitatory cortical to 

cortical inhibitory 
5.0 0.25 ms 

Destexhe et al., 

1998 
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Excitatory cortical to 

excitatory cortical 
8.0 0.25 ms 

Destexhe et al., 

1998 

Excitatory cortical to 

thalamic reticular nucleus 
2.75 4 ms 

Jones, 2002 

Excitatory cortical to 

thalamic projection 

neurons 

2.0 4 ms 

Destexhe et al., 

1998 

Inhibitory cortical to 

excitatory cortical 
-7 0.25 ms 

Destexhe et al., 

1998 

Inhibitory cortical to 

inhibitory cortcial 
-0.75 0.25 ms 

Destexhe et al., 

1998 

Inter-area cortical 

excitatory to cortical 

excitatory 

1.0 12 ms or 60 ms 

Apicella et al., 2012 

Table 4.1: Model weights and conduction delays, with evidence for each type of connection. 

 

Neuron and Synapse Models 

Our model is constructed out of rate-based populations of neurons whose responses track a 

sigmoidal firing rate vs. input (f-I) curve and are described by a simple differential 

equation. Synapses are current-based. With the exception of the thalamic excitatory 

population, the equations for each neural population i  in the model are as follows: 

 



 

 

109 

( )iji j ij
j

t dI r W−=∑  

0
0

( )/

( )
(1 )

sigmathreshold
i i i

max
i i

i i I I I

r rr r
e

∞

− −

−
= +

+
 

 

( )i i i

i

dr r r
dt τ

∞ −
=  , 

 

where I  is the summed current-based input to the population across all inputs i , 

( )j ijtr d−  is the firing rate of each input source at a time delay of 
ijd , and 

ijW  is the weight 

of input i  to population j . In the second equation, ir
∞  is the steady-state population 

activity rate if inputs were held constant, 0
ir  the minimum possible, and x

i
mar  the 

maximum possible firing rate. thre
i

sholdI  represents a soft threshold (the current required to 

reach the midpoint of the f-I curve), and a
i
sigmI  is inversely proportional to the slope of the 

sigmoidal f-I curve. Finally, ir  represents the instantaneous firing rate of the population, 

which chases ir
∞  at a rate determined by the time constant iτ . These values are set for the 

different simulated neural groups as listed in Table 2. 

Population i   0
ir   x

i
mar   threshold

iI  sigma
iI   

Thalamic Excitatory 0 70 50 10 

Thalamic Inhibitory 0.025 200 100 10 

Cortical Excitatory 0 70 95 25 
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Cortical Inhibitory 5 200 175 15 

Table 4.2: Population parameters 

 

The thalamic excitatory population uses the following equations, modified to account for 

the self-excitation of the calcium currents found in projection neurons: 
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The terms are defined as in the other populations above, except that iI  now 

represents the combination of the synaptic input current summed with the calcium 

current. in
iI  represents the summed synaptic input current, ca

iW  represents the 

weight of the self-exciting thalamic calcium current, and ca
iτ  is the time constant of 

the thalamic calcium current. For thalamic excitatory populations, 1i
caW =  , and 

0.015ca
iτ = . The combination of the above equations and the parameter values 

found in Table 2 produces the following f-I curves for the 4 types of neuron involved 

in our simulation, as shown in Figure 4.3. 
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Figure 4.3: Response curves and saturation of different model neuron types. A-D) f-I curves for the four neural 
populations, showing firing rate as a function of input current. E) Oscillation amplitude and cortical response as 
a function of frequency. The colored background indicates the steady state cortical excitatory response amplitude 
when it is driven by input of a given frequency (x-axis) and given peak amplitude (y-axis). The actual peak 
amplitude of thalamic drive as a function of frequency is represented by the white line. 

 

Input (Stimuli) 

The model system has two input sources. The first is a signal input to the cortical pyramidal 

population. This represents information coming either from sensory sources or other 

brain regions. The second source of input is frontal drive to the thalamic projection 

nucleus. The magnitude of this latter input largely determines the frequency and amplitude 

of the thalamo-cortical oscillations. We use different relative onset times of the frontal 

drive to the two thalamic regions to alter the relative phase of the oscillators in the third 

investigation (below). 

For the first investigation, the signal consisted of a pseudo-random continuous current 

input, generated by an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930), and 

varying from roughly -50 to 50 mA. The specific equation used was as follows: 
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( )i i ijx dtdx dWθ µ σ= − +  

 

The parameters of the process were 10θ = , 0µ = , and 90σ = , and the final result was 

scaled by a factor of 50 to achieve the desired current range. The frontal drive in this 

investigation was a constant level of current input over each simulation, with the amplitude 

varying systematically between simulations from 45 to 330, with the onset delay of the 

frontal input being held at zero. 

 

The second investigation used an identical pseudo-random continuous input as noise, 

summed with a single 25 amplitude square “pulse” 6 ms in duration.  The pulse was 

delivered at varying phases of the thalamo-cortical oscillation. For this investigation, 

frontal drive was fixed at 170 mA, which produced oscillations in the high-theta range. The 

onset delay of the frontal input was once again held at zero. 

 

In the third investigation, two pseudo-random continuous inputs were generated for each 

simulation. One served as the signal input for the first system, and the second one served as 

“irrelevant” or “noise” signal input to the second system, representing input it was 

receiving from other areas beyond the scope of the model. The parameters for these two 

Ornstein-Uhlenbeck processes were the same as above. The two frontal drives in this 

investigation were varied between 140 (low theta), 170 mA (high theta), 200 mA (low 

alpha), and 300 mA (high alpha), and for each of these input amplitudes, the onset delay 

of frontal input to the second system was varied in 36 steps between the duration of one 

and two cycles of the oscillation (with one cycle being the minimum in order to allow the 
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system to relax from its initial conditions). This provided 36 relative phases separated by 10 

degrees. 

 

  

Output (Data Recorded) 

Spiking rate data was recorded from the excitatory population of cortical projection 

neurons, as well as from a simulated virtual electrode recording the local field potential 

(LFP) generated by the summed synaptic inputs to these same neurons. In the third 

investigation, there were two virtual electrodes simulated, one for each of the thalamo-

cortical systems involved. Each electrode was simulated through the simple method of 

summing excitatory and inhibitory current inputs to each cell population, and multiplying 

by -1 so that excitatory inputs produce a negative deflection in simulated voltage. 

 

Analysis 

Data analysis was conducted in Matlab 2012a (The MathWorks, Natick, MA).  For all three 

investigations, we used a fast Fourier transform to analyze the cortical excitatory 

population’s local field potential (i.e. summed synaptic input) to determine oscillatory 

power over a time-frequency spectrum. We also classified the thalamic oscillations based on 

mean distance between peaks. 

 

For the first investigation, at each 10 second step of frontal drive to the thalamic nucleus, 

the impact of the signal input on the spiking rate output data was computed via mutual 
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information (Dayan & Abbott, 2001). Mutual information (MI) allows us to determine 

how much variability in the receiver’s response is due to the activity of the sender. 

Mathematically, MI is equal to the receiver’s full response entropy minus its noise entropy.  

2
[ | ][ ] [ | ]
[ ]m

p r sI ds dr p s p r s log
p r

 
=  

 
∫ ∫  

 MI can be thought of as a measure of how well variations in the sender are correlated with 

variations in the receiver, beyond the ability of the receiver to predict its own variability 

We evaluated mutual information by binning our signals into discrete sender and receiver 

states, using a number of bins determined by Scotts Normal Reference Rule (Scott, 1979), 

a rule originally designed for optimizing bin count in histograms. It suggests bins of width 

1/3

ˆ3.5
n
σ

, where σ̂  is the standard deviation of the sample, and n  is the number of data points 

in the sample. We then approximated the above integrals by sums over bins ir  and 
js , with 

([ | ])i jp r s  being estimated by 
ijN , which is the number of occurrences of rate i  given 

stimulus j , divided by the number of occurrences of stimulus j . This evaluation was 

repeated over a range of time delays up to 40 ms, and we selected the delay that yielded the 

largest MI value. 

We also corrected for the number of samples, since a less than infinite number of samples 

can cause bias in the mutual information estimation. This was corrected for by determining 

the number of elements in the response space R  and the number of data points n , then 

subtracting 
1

2 log(2)
R

n
−

  . (Panzeri, Senatore, Montemurro, & Petersen, 2007). 
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The simulation was repeated 10 times under new random seeds. A Lilliefors test showed 

that the mutual information measurements during alpha oscillations were not normally 

distributed. We therefore ran a nonparametric Wilcoxon rank sum test in order to check 

for a significant difference in means between mutual information measured during alpha 

and theta oscillations.  

 

We also defined a responsiveness metric, designed to capture how well the oscillating 

cortical neurons responded to changes in input. It is equal to the average of the variance in 

extracted peak heights across all runs, divided by the variance in the input signal. As with 

mutual information, we investigated the normalcy of our responsiveness results. A 

Lilliefors test showed that the alpha responsiveness measurements were not normally 

distributed. We therefore again ran a nonparametric Wilcoxon rank sum test. 

For the second investigation, mutual information was not calculated, and instead a 

threshold classifier sorted trials into hits, where activity during the cycle when the stimulus 

pulse occurred surpassed or equaled the threshold level of 40 Hz; and misses, where activity 

during the cycle did not reach 40 Hz. Hit and miss rates were calculated for each phase 

angle of stimulus presentation. False positives obviously could not be sorted based on 

stimulus phase, since there was no stimulus during these trials. False alarm rates were, 

however, calculated for all non-target trials. 

 

In the third investigation, mutual information was once again calculated, as above, but 

between the input signal to a first cortical oscillator and the second cortical oscillator’s 
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excitatory firing rate trace. This was repeated for each relative phase, at each frequency or 

pair of frequencies, and for each conduction delay. 

 

Results 

Investigation 1: Mutual Information, Single Thalamo-Cortical Loop 

The results from the first investigation show a clear frequency-dependent reduction of 

mutual information when the thalamo-cortical circuit oscillates in the alpha range (10Hz). 

When the amplitude of periodic drive to the cortical pyramidal cells increases, the cortical 

activity transitions from a sequence of bursts correlated with its input signal into a regular 

oscillatory mode, drastically reducing the available information about the signal.  

The rank-sum test rejected the null hypothesis of equal medians (
8 6.80p e−= ), 

demonstrating a significant difference between mutual information in the 6.1 Hz group 

(representing oscillations at theta frequencies) and the 10 Hz group of trials. Our 

responsiveness metric had a mean of 2.4 across the ten runs of the simulation driven at 

alpha frequencies, and a mean of 4.3 across the ten runs driven in theta. The rank-sum test 

run on responsiveness metrics also rejected the null hypothesis of equal medians (

8 6.80p e−= ). 

Additionally, the results demonstrate the behavior we had hypothesized at each stage of the 

process. Higher frontal input to the thalamus produces a higher frequency oscillation in 

the thalamus as well as greater thalamic peak amplitude. This oscillatory thalamic behavior, 

when combined with the Ornstein-Uhlenbeck input signal, causes a switch from mostly 

subthreshold (but occasionally suprathreshold) cortical oscillations, whose amplitude is 
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largely determined by the amplitude of the signal, to saturated suprathreshold cortical 

oscillations, which are largely invariant with regard to the signal amplitude. The switch to 

saturated suprathreshold cortical oscillations leads to a significantly lower mutual 

information.  

 

The frequency of oscillation in our model thalamo-cortical loop depends on the level of 

frontal input (Fig. 4.5A). The dependence is weak—only slightly stronger than logarithmic 

(note the log-scale of the abscissa in Fig. 4.5A)—so as the frontal input varies in strength 

across two orders of magnitude, the range of bursting frequencies produced in our model 

matches the range observed in rat LGN slices, where increased depolarization leads to 

increasing frequencies between 2 and 13 Hz (S. W. Hughes & Crunelli, 2005). 

 



 

 

118 

 



 

 

119 

Figure 4.4: Simulation Results demonstrating A) the Ornstein-Uhlenbeck-generated input signal, B-C) the 
thalamic activity at roughly 10 and 6 Hz, respectively, D-E) the cortical activity driven by a combination of the 
input signal and the thalamic activity, and F) the significant difference in mutual information between the 6.1 Hz 
and 10 Hz conditions.  

 

In addition, the mutual information varies non-monotonically, in an inverted-U, as a 

function of the oscillation frequency (Fig. 4.5B) and thus as a function of the level of 

frontal input. Communication (as measured by MI) is low when the thalamic oscillations 

are below the theta range, with an amplitude so low as to render the cortex nearly 

unexcitable by the signal. As it enters the theta range, thalamic amplitude is in a state of 

balance near the firing threshold, allowing for improved communication between signal 

and cortex. And finally, across the full alpha range the thalamic amplitude is too high and 

the entire cortical response is functionally saturated, drastically reducing MI once again. 

 

 

Figure 4.5: Particular properties of the model system. A) The thalamic frequency saturated as frontal input to the 
relay nucleus cells increased. B) The mutual information varied with frequency, increasing in the theta range and 
falling to very low levels below theta and in alpha. 
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Investigation 2: Discrimination Threshold in a Single Thalamo-Cortical Loop 

As shown in Figure 4.6, results of our second investigation were in close agreement with 

those reported by N. A. Busch, Dubois, & Vanrullen, (2009). For example, Fig. 6B shows 

that the deflection in cortical activity produced by a single stimulus pulse is strongly 

dependent on the phase of stimulus presentation with respect to the ongoing cortical 

oscillation As can be seen in Figure 6a, when multiple phases of impulse were applied using 

the same (frozen) background noise, both the initial and later oscillatory impact of each 

stimulus impulse varied with the phase, some of them falling below the threshold of the 

classifier (40 spikes/sec), and others surorrpassing the threshold. Also, the threshold 

classifier demonstrated extremely strong phase dependence. When the hit rate (rate of trials 

classified “stimulus present” out of all trials with a stimulus impulse) is plotted as a function 

of phase as in Figure 4.6B, the preference for an impulse just preceding the onset of the 

cycle (a peak in the oscillation) becomes clearly visible. 
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Figure 4.6: Deflection and hit rate by phase. A) Cortical deflection from baseline during a cycle, as a 
function of impulse phase. B) Experimental normalized hits ratio by aligned stimulus onset phase 
(reproduced from Busch et al., 2009). C) Model normalized hits ratio by aligned stimulus onset phase. 

 

Investigation 3: Mutual Information between Two Thalamo-Cortical Loops 

In our third investigation, simulation of two coupled thalamo-cortical oscillators offered 

unique insights into the interpretation of coherence-based functional network analysis of 

EEG. We first attempted to establish the preferred relative phases between two thalamo-

cortical oscillators, as measured by MI. The model did not exhibit a significantly preferred 

phase for the alpha band, as shown in Figure 4.7A, but Figure 4.7B shows that the model 

exhibited a preferred phase in theta.  
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Figure 4.7: The results of investigation 3, using two coupled thalamo-cortical loops. A) The mutual information 
by relative phase angle at roughly 10 Hz, demonstrating the lack of a preferred phase in the alpha band, with all 
MI values below 0.023. B) The mutual information by relative phase angle at roughly 6 Hz, demonstrating the 
strongly preferred phase. C) Mean mutual information is reduced by a lack of coherence in the oscillations, and 
the reduction is much greater (-0.022) in theta, where there is more best-phase MI to lose than in alpha (-
0.002). D) The preferred phase from B can be altered by increasing the conduction delay from 12ms to 60ms 
between the two regions. 

 

We then measured the impact of coherence vs. incoherence between the two oscillators. 

Coherent mutual information was measured at the optimum phase found in the first 

analysis, whether or not it was significant. The incoherent case, obviously, did not have a 

consistent phase. As expected, we observed a significant reduction in mutual information 

in both the alpha and theta bands, suggesting that coherence is necessary for 

communication. However, the reduction in MI was much higher in theta. This is not 

because MI dropped lower in theta, but rather because when coherence was in place theta 

exhibited superior communication. Finally, we examined the impact of conduction delay 

on the preferred relative phase of coherent oscillations. Figure 4.7D shows that there is an 

obvious dependence of preferred phase on conduction delay, with a shift from 1 radian to 

4.5 radians being observed when the conduction delay changed from 12 ms to 60 ms. 

 

Discussion 

Our three modeling investigations produced the first full computational account of alpha 

information suppression. Other computational models of alpha have focused on the 

mechanism of generation (S. R. Jones et al., 2009), but to date none have examined 

communication (by any metric), or demonstrated frequency-dependent suppression of 

communication specifically within the alpha band. By producing a computational model, 

our investigation has allowed us to concretely test the feasibility of proposed mechanisms of 
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alpha suppression, as well as to provide novel, testable predictions.  These include the 

proposition that alpha impacts cortico-cortical communication, and not just the thalamo-

cortical communication, which is what has been experimentally examined to date. Our 

model also suggests that alpha oscillations should produce an oscillation not just in the 

LFP/scalp field, but also in the spike rate. Theta oscillations, on the other hand, should be 

predominantly subthreshold, simply controlling the timing of spikes. 

 

Our model is based on a cortical resonance in the alpha range, which combines with 

nonlinearities in neural firing-rate response curves to produce two effects. First, as frontal 

input to the thalamo-cortical loop increases, the oscillation frequency increases. As the 

oscillation frequency approaches the alpha band, the amplitude of the oscillation—and thus 

measured power—increases. Second, because neural firing rates saturate, when the 

oscillations are high amplitude, the ability to change activity in response to inputs is 

diminished—that is, when the oscillations take up the complete dynamic range of the 

neurons, there is no further possibility to change the range of firing rates in response to 

inputs. By contrast, when oscillations are weaker, even subthreshold, transient inputs can 

produce a large response—beyond that observed in the absence of input—and thus 

information is conveyed. 

 

The high-amplitude alpha oscillations in our model comprise saturating excitation with 

intervening periods of high inhibition, which similarly prevent input-dependent 

responses, in accordance with the pulsed inhibition hypothesis (Jensen & Mazaheri, 2010). 

While the pulsed inhibition hypothesis does not itself envision all of the details and features 
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of our model, the model does provide all the features proposed by pulsed inhibition. 

Particularly, it produces a series of pulses in the activity traces of cortical inhibitory 

interneurons. In addition, it displays a phase preference for communication when 

operating in the high theta range, as observed by Busch et al., (2009). (Mathewson et al., 

2009) observed the same type of phase preference at 10 Hz. However, they measured alpha 

power and phase only at 10 Hz, and theta power and phase were not examined. This leaves 

open the possibility that the peak oscillatory power in this target detection task (which 

requires focused attention) was in fact still in high theta. What they described as an alpha-

phase dependence may have been equally well or better described as a theta-phase effect, 

which is observed in our model as phase-dependent changes in communication, which 

would cause phase-dependent changes in performance during a recognition task.  

 

A potential objection to our model is the validity of our assumption of a single mechanism, 

based on a thalamo-cortical loop, which produces either alpha or theta oscillations. The 

notion that theta might be thalamically driven is literally as old as the term “theta” itself. 

The name was chosen to represent the thalamus, which was supposed to be the origin of the 

newly discovered band of low-frequency oscillations. In time, theta oscillations were 

discovered in the hippocampus, and in recent years these have garnered much attention 

from researchers. However, a cortical theta does exist as well and is distinct from 

hippocampal theta. Frontal-midline (F-M) theta is different from hippocampal theta, 

usually oscillates around 6 Hz, and is the most representative form of neocortical theta 

(Mitchell, McNaughton, Flanagan, & Kirk, 2008). There is evidence that F-M theta is not 

generated hippocampally (Mitchell et al., 2008). Furthermore, there is evidence that the 
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thalamus is involved in F-M theta, in a synchronized (entrained) manner (Sarnthein, 

Morel, Von Stein, & Jeanmonod, 2005). Ishii et al., (1999) suggested that the thalamus 

might be driving F-M theta. Even if F-M theta is influenced by hippocampal theta, Kirk & 

Mackay, (2003) proposes that the influence might be via the anterior thalamic complex. 

Finally, the mechanism for generation of thalamic bursts in the theta range seems to be the 

same as the mechanism for the generation of thalamic bursts in the alpha range (S. W. 

Hughes & Crunelli, 2005). Taken together with the strong evidence that cortical alpha 

oscillations are driven by a thalamo-cortical loop (Contreras & Steriade, 1995; S. W. 

Hughes & Crunelli, 2005; Suffczynski, Kalitzin, Pfurtscheller, & Lopes da Silva, 2001), 

these results suggest that at least one type of cortical alpha and theta share a common 

generative mechanism. 

 

Although coherent oscillations between two brain regions are sometimes interpreted as 

indicative of communication between the two regions, it is important to note that 

oscillations can also strongly inhibit the transfer of information between the two regions. 

In particular, when considering mutual information between coupled oscillating neural 

circuits, the strongest predictor of the firing rate of a receiving population is the relative 

phase within a cycle. If the phase relationship is not conducive to communication, 

inhibition will dominate in the receiver at the moment of greatest input from the sender, 

so that the sender’s signal is unable to effectively excite the receiver.  

 

At best, one could consider “packets” of signal, one per cycle, and assess how the peak 

firing rate of a receiver depends on the signal during the previous cycle. If the “packet” is 
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sent at just the right time—such as if the two oscillators are not only coherent, but have an 

optimal phase relationship—the amplitude of signal from a sender could have a reliable 

effect on the following peak firing rate of the receiver. The optimal phase difference would 

depend on the conduction delay between the two regions as well as the impulse response 

curves of the oscillator, so may be hard to establish in practice. Moreover, if the receiver’s 

peak firing rate is already near saturation, its value is weakly correlated with any incoming 

signal, so communication by this method remains weak. Information could also be 

transferred via a phase shift produced in the receiver’s oscillation, but it is unclear how a 

neural circuit could extract such information. These factors contribute in our model to 

reduced information transfer when the thalamo-cortical loop undergoes strong, albeit 

coherent, oscillations.  
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CHAPTER FIVE: TOWARD A MORE REALISTIC MODEL OF ALPHA-INDUCED 

INFORMATION SUPPRESSION 

 
Introduction 

 Following the initial research on alpha-induced information suppression (not to be 

confused with alpha suppression, which is the suppression of alpha oscillations, as in 

(Lima, Singer, & Neuenschwander, 2011) that was reported in chapter five, opportunities 

for extending and improving the model were identified. Many of these opportunities 

focused on incorporating additional biological realism into the model, e.g. a realistic T 

Current in the thalamocortical projection neurons. We reworked our neural model to a 

voltage-based rate model capable of incorporating specific currents, and specified more 

realistic circuitry in our model thalamus (including ACh-inactivated gap junctions in the 

thalamic reticular nucleus). This new realism allowed us to address additional issues, such 

as the control mechanism which initiates alpha oscillations in the thalamo-cortical loop. 

We also improved upon the investigations in chapter four, offering more specific 

requirements and more realistic classification systems when replicating Busch et al., 

(2009). As a result of this process, however, we realized some potential limitations of the 

saturation model, and began a preliminary exploration of an alternate model of alpha-

induced information suppression, based on the predictive coding framework and the same 

interaction of M-currents and Chloride leak currents which provided the mode shift in 

earlier chapters.  
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Basal Ganglia Control of Thalamo-Cortical Alpha 

There are many computational models of the thalamo-cortical system involved in the 

control and initiation of alpha oscillations. The model of Destexhe et al. (1998) treated 

spindling, which is a phenomenon observable during non-REM sleep that involves waxing 

and waning of an oscillation at alpha frequency. Several subsequent alpha-generator 

models extended and modified the Destexhe model, including a series of related efforts by 

McCarthy et al. (2008), Ching et al. (2010), Vijayan & Kopell (2012), and Vijayan et al. 

(2013). The last of these reports combined modeling ideas from the other reports to 

propose that an anteriorization of alpha that occurs during propofol-induced 

unconsciousness involves a shift of the source for elevated alpha power in scalp EEG, from 

an occipital-thalamic generator, which depends on HTCs, i.e., specialized high-threshold 

bursting thalamo-cortical neurons, to a frontal-thalamic generator, which does not 

depend on such HTCs. The proposal of distinct frontal and occipital models with opposite 

responses to propofol was defended on the basis that HTCs have only been reported in the 

vision- and occipital cortex-associated geniculate nucleus of the thalamus. Unfortunately, 

the Vijayan et al. (2013) report omitted a cortical component for the occipital generator, 

even though such a component was included in Vijayan & Kopell (2012). Therefore it was 

unclear whether propofol’s disconnection of the HTC generator might actually leave a 

residual occipital-thalamic circuit that would, like the frontal one (that lacked HTCs) 

become a stronger alpha generator under propofol. In addition, although the experimental 

data on propofol dosage increases show progressive failure to process stimulus input, there 

was never any simulation of the decline in stimulus processing, even at the thalamic level. 

Moreover, none of these reports addressed either of two issues that are central concerns of 
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this report:  First, how is it possible for a subject to learn to increase alpha for the purpose 

of ignoring distractors, and by what circuit is this control over alpha effected in a wide-

awake, eyes-open subject?  Second, what is the effect of synchronous high amplitude alpha 

on cortico-cortical information transmission?   The only remarks found in Vijayan et al. 

(2013) about normal control of alpha is a pointer to the fact that the occipital generator 

depends on activations of mAChRs and/or mGLuRs. But no learning process that could 

mediate strategic deployment of alpha is described or simulated. And the only remarks in 

these papers about reduced information transfer pertain to a difficulty (presumed but not 

simulated) for trans-thalamic transmission of sensory information when the system is in 

alpha-mode. 

 

In contrast, a recent paper by Hwang et al. (2014) does speak to the control issue, at least 

with respect to frontal-parietal alpha. They describe the need for alpha-induced 

information suppression in a sensory-motor context, namely that of the anti-saccade task 

in humans. In this task, subjects must suppress their tendency to make a saccade to the locus 

of a stimulus (and instead saccade to an imagined, mirror-image, location), and Hwang et 

al. found (using MEG) that successful suppression trials showed enhanced beta-power in 

DLPFC, enhanced alpha power in FEF, and a non-significant tendency toward enhanced 

alpha in LIP, a parietal area that relays sensory inputs to FEF. Furthermore, there was 

evidence that the DLPFC changes were causal to the FEF changes. They also cite primate 

electrophysiological studies (review in Munoz & Everling, 2004) indicating enhanced pre-

cue inhibition, and depressed cue-induced activations in FEF on successful anti-saccade 
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trials, relative to error trials. Thus there is evidence from this paradigm of coexistent 

enhanced alpha and depressed stimulus-induced activations in FEF.  

 

In their discussion, Hwang, Ghuman, Manoach, Jones, & Luna (2014) consider two 

(possibly non-exclusive) paths by which DLPFC might control FEF alpha: via a cortico-

cortico link involving supragranular drive, or via a cortico-basal-ganglia(BG)-thalamus 

circuit, which may also provide the supragranular drive believed to be important for 

widespread cortical alpha synchrony. With respect to the latter, Hwang et al. note that beta 

is often a signature of cortico-striatal linkage, and there are experimental and 

computational models (see Munoz & Everling, 2004; Brown et al., 2004; Aron, 2011) in 

which the BG mediates learned suppression of cue reactivity in FEF. Our hypothesis is that 

learning occurs in the cortical-striatal projection on error trials, on which reactivity to 

distractor cues interferes with accurate performance. Error trials lead to non-reward, and 

depressed post-response dopamine release. Across several such trials, this causes a 

significant, task-dependent potentiation of cortico-striatal synapses onto D2-MSPNs, the 

neurons that give rise to the indirect pathway through the BG, which is depicted in Figure 

5.1. On future trials in the same task, enhanced D2-MSPN activity inhibits GPe. This will 

have effects on the thalamus via two branches. First the reduced GPe output will mono-

synaptically disinhibit TRN, which will then increasingly inhibit TC (thalamo-cortical) 

cells. Second, reduced GPe output disinhibits STN and GPi/SNr. The disinhibition of 

STN increases excitation of GPi/SNr. The resultant greater activation of GPi/SNr also 

increases inhibition of TC cells. These effects oppose tonic, specific-signal-driven, i.e. 

“relay”, firing of TC cells, and thus reduce excitation of cortex. Equally important, the 
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much deeper inhibition of TC cells serves as a powerful inducer of thalamic alpha. In 

biophysically detailed models, this occurs because thalamic alpha strongly depends on 

intrinsic (non-synaptic) hyperpolarization-activated currents that are normally inactive 

due to tonic partial depolarization during the wake state. Enhanced inhibition of TC 

neurons by TRN and GPi/SNr, conditional upon learned activation of the BG indirect 

pathway, is therefore a prime candidate for reinforcement-guided recruitment of frontal, 

and perhaps frontal-parietal, alpha in the antisaccade task.  

 

 

Figure 5.1: The pathways by which learned excitation of D2-MSPNs in the striatum can control alpha generation. 
Blue arrows represent excitatory connections, red circles represent inhibitory connections, and green bars 
represent ACh-releasing connections. Thicker lines denote stronger connections.  A comparison of the left panel 
(before learning) with the right (after learning) shows that the learned cortical excitations of D2-MSPNs in 
striatum has the effect of changing three inputs to TC (thalamo-cortical) neurons: enhanced inhibition from 
TRN (thalamic reticular nucleus) and GPi (internal/medial globus pallidus) and reduced cholinergic input from 
nucleus basalis.  D2-MSPNs are striatal medium spiny projection neurons that express D2-type dopamine 
receptors. 
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The model schematized in Figure 5.1 is consistent with, and provides a mechanistic 

explanation of, several other key results, including the earliest report of learning-based 

enhancement of alpha. As reviewed in Sterman & Egner (2006), alpha power enhancement 

was discovered as a reliable “side effect” of learned suppression of a previously rewarded 

cup-press response for food in cats. This fits well the emergence of alpha in anti-saccade 

tasks, in which subjects must learn to suppress one of the most highly rewarded responses 

made by sighted mammals. Another fit is provided by the paradigm used in Buschman et al. 

(2012). They trained monkeys in a rule-switching task, which required monkeys to 

periodically switch between using orientation or color as the decision-making criterion. 

Both orientation-rule-coding (ORC) ensembles and color-rule-coding (CRC) ensembles 

in DLPFC showed beta-band coherence when their respective rule was in force. However, 

when the monkey had to suppress application of the prepotent rule – orientation – the 

ORC ensemble oscillated at alpha frequency whereas the CRC ensemble exhibited beta 

synchrony. The reverse was not true:  there was no alpha oscillation in the CRC ensemble 

when the ORC ensemble was oscillating in beta. Once again, frontal alpha appeared when 

the prepotent strategy had to be suppressed, but not otherwise. In this case, monkeys had 

made many errors by attending to orientation when color attention was needed. By our 

hypothesis, this would have led to strong potentiation of cortico-striatal synapses that 

recruit indirect pathway suppression of orientation processing. 

 

Also shown in Figure 5.1 is yet another path by which BG indirect path activation could 

significantly boost the ability to instate alpha mode during waking. Although the Vijayan & 

Kopell (2012) model of occipital-geniculate alpha assumes that activation of mAChRs can 
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promote a specialized type of alpha in which HTC neurons are active but TRN neurons 

quiescent, there are reasons to doubt the generality of such a mode. First, the mechanism 

hypothesized above for control of frontal alpha utilizes hyperpolarizing inhibition of 

thalamus by combined GABAergic inputs from GPi/SNr and TRN. Second, there are 

several published reports indicating that wake-active neuromodulators including ACh, NA, 

and 5HT have anti-oscillatory effects. This is pertinent because a major source of ACh, the 

nucleus basalis magnocellularis (NBM) in the basal forebrain, receives its major GABAergic 

input from D2-MSPNs of ventral striatum (Sarter et al., 2006). Thus, learned 

recruitment of the indirect pathway’s ventral striatal D2-MSPNs would inhibit AChNs in 

NBM and thereby reduce release of the anti-oscillatory neuromodulator ACh in the 

cortico-TRN-thalamic circuit. Such recruitment of D2-MSPNs in ventral striatum is 

consistent with current interpretations of distributed contributions to response promotion 

and demotion (Gruber & McDonald, 2012). Overall, Figure 5.1 summarizes how learned 

recruitment of striatal D2-MSPNs can promote alpha via three synergistic paths: two that 

enhance inhibition of thalamus, and one that reduces ACh release in TRN.  

 

Methods 

Similarly to Chapter four, we propose a mechanism of alpha-induced information 

suppression that is based on alpha-band resonance of the thalamo-cortical circuit 

(Herrmann, 2001; VanRullen & Macdonald, 2012). We did not simulate the cortico-

striatal learning controlling alpha genesis, however, because to simulate key effects of 

learned activation of the basal ganglia’s indirect pathway, it sufficed to modify three 

parameters of the thalamus-TRN-cortex circuit: 
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1. Reduce ACh concentration in TRN. 

2. Increase inhibition from GPi to the thalamic relay nucleus. 

3. Decreased inhibition from GPe to TRN. 

The oscillation amplitude and frequency varies with these parameters. We used this to 

adjust thalamic oscillation frequency across its observed range from 2-13 Hz (S. W. Hughes 

& Crunelli, 2005). 

 

The coupling of thalamic and cortical oscillators in a loop makes the frequency of cortical 

oscillations depend on the frequency of the thalamus, and therefore indirectly on the 

activation of the basal ganglia’s indirect pathway. The coupled circuit possesses a resonance, 

which appears when the tonic drive to the thalamus causes the thalamic circuit’s frequency 

to match the 10 Hz natural frequency of the cortical circuit. We investigate the consequence 

of such an alpha resonance by simulating three tasks, which we summarize below. Details of 

the model’s implementation and the task-specific inputs follow the brief description of 

each task. 

 

Our first investigation tested how the mutual information between a cortical input signal 

and the cortical activity depended on the frequency of thalamo-cortical oscillations. A 

continuously varying signal was sent to the cortex while the thalamus was controlled via 

different levels of indirect pathway activation. This was manipulated to place the thalamus 

into both alpha (10 Hz) and theta (6 Hz) oscillations. At each level of input (and therefore 

frequency), mutual information was evaluated between the signal and the cortical spike 

rate.  
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In the second investigation, we assessed how cortical responses depended on the phase of an 

input, aiming to reproduce the experiment reported in Busch et al., (2009). Our model 

was simulated with continuously varying noise input to the thalamus and cortex while under 

three input regimes. In two, sufficient activation of the indirect pathway drove the system 

into theta or alpha range, and in the third no pulse of indirect pathway activation was 

administered, leaving the system in a non-oscillatory state. In addition to the varying noise, 

a 12 ms pulse was injected to the thalamic relay neurons at various phases of the thalamo-

cortical oscillation. This pulse simulated the presentation of a brief threshold-level visual 

stimulus. The model’s response to the stimulus pulse was determined by a simple threshold 

classifier (see Analysis), and behavioral statistics were calculated as in Busch et al.’s original 

work, along with ROC curves for each of the phases. 

Model 

In describing our model, we follow the standards proposed by (Nordlie et al., 2009), 

documenting the network architecture, the connectivity, the neuron and synapse models 

used, the input (stimuli), and the output (data recorded).  

Network Architecture 

The basic modeled network (Figure 5.2) consists of one thalamo-cortical loop, with the 

thalamus containing four populations of neurons, and the cortex containing two 

populations of neurons. The model thalamus consists of two excitatory thalamic relay 

nuclei (each a population of thalamic relay cells) and their corresponding section of 

inhibitory thalamic reticular nucleus (TRN, each consisting of a population of reticular 
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nucleus cells). The model cortical area contains a population of excitatory projection 

neurons and a population of inhibitory interneurons. Feed-forward inhibition was 

omitted from the model, because the inhibitory cells that are targets of long range cortical 

connections do not generally have recurrent connections from the excitatory neurons that 

we are modeling (Apicella et al., 2012). 

 

Figure 5.2: Our model circuitry. Two brain regions (the thalamus and cortex) are modeled, each with populations 
of excitatory and inhibitory neurons. Blue arrows represent excitatory connections, red circles represent 
inhibitory connections, and green triangles represent gap junctions. The basal ganglia inputs shown are from the 
GPi. Also, modeled, but not shown are two further inputs from the basal ganglia/forebrain: an inhibitory input 
from GPe to TRN, and a cholinergic input from NBM toTRN cells. 
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Network Connectivity 

This model defines synapses between neurons in the two populations via a pair of 

parameters: a weight, iW , and a conduction delay iτ . Gap junctions are defined with a 

weight iW  that varies between a min and max weight depending on ACh release by the 

projection from NBM to TRN. These are enumerated for each synapse or gap junction in 

Table 6.1. 

 

Connection Weight iW  Conduction Delay 

iτ  

Sources indicating 

pathway is present 

Thalamic projection 

neurons to TRN 

interneurons 

12 0.25 ms 

Jones, 2002 

Thalamic projection 

neurons to cortical 

excitatory neurons  

20 4 ms 

Sherman and 

Guillery, 2004 

TRN interneurons to 

thalamic projection 

neurons 

-14 0.25 ms 

Sherman and 

Guillery, 2004 

TRN interneurons to 

TRN interneurons 
-0.2 0.25 ms 

Destexhe et al., 

1998 

Excitatory cortical to 

cortical inhibitory 
15.75 0.25 ms 

Destexhe et al., 

1998 
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Excitatory cortical to 

excitatory cortical 
12.0 0.25 ms 

Destexhe et al., 

1998 

Excitatory cortical to 

thalamic reticular nucleus 
20 4 ms 

Jones, 2002 

Excitatory cortical to 

thalamic projection 

neurons 

20 4 ms 

Destexhe et al., 

1998 

Inhibitory cortical to 

excitatory cortical 
-8 0.25 ms 

Destexhe et al., 

1998 

Inhibitory cortical to 

inhibitory cortical 
-0.01 0.25 ms 

Destexhe et al., 

1998 

TRN gap junction Min: 0 

Max: 2000 
N/A 

 

Table 6.1.  Parameter values in the mathematical model. 

Neuron and Synapse Models 

Our model is constructed out of rate-based populations of neurons whose mean voltage is 

simulated via a simple differential equation and translated into a firing rate via an 

exponential function and basic differential equation: 
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Where maxr  is the maximum firing rate r  , set to 100 for cortical pyramidal and thalamic 

relay cells, and 200 for cortical interneurons and TRN cells. halfV  is the voltage v   at which 

half of the maximum firing rate is achieved, sigv  is the steepness of the sigmoid, and rτ  is 

the time constant at which the firing rate changes. 

 

The mean voltage changes via the dynamical system below: 
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Where I  is the total input current to the neuron, 0I  is the base external excitation (set at 

100 for thalamic relay cells, varied from 5-40 for TRN cells, set at -20 for cortical 

interneurons, and set at 0 for cortical pyramidal cells), noiseI  is a noise input, which in 

both investigations was generated via the Ornstein-Uhlenbeck process mentioned below. 

The summed terms jw  and jr  represent the weight and conduction-delay-offset firing rate 

of synapse j , respectively.  

 

The thalamic relay cells also include the rebound current rbdI  in their summation of input 

currents, making the equation: 
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The rebound current rbdI  is defined by the following functions: 
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Where 
halfrbdh  and 

sigrbdh are the half-max and sigmoid steepness terms for rbdh , with their 

m  equivalents playing analogous roles for rbdm . The two τ  terms are time constants, and 

maxrbdI is the maximum self-excitation achievable by the rebound current. 
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Thalamic Reticular Nucleus neurons also included gap junction input gapI , which altered 

their base membrane voltage equation to be: 

2
0Ge noise gap

j
j jI II C I w r=

 
+ + + 

 
∑  

gapI was calculated as   

 igap
i

w V∑   

The summed terms gapw  and iV  represent the gap junction weight and the membrane 

voltage of the adjacent neuron I  , respectively.  

Input (Stimuli) 

The model system has three direct input sources, and one modulatory input. The first is a 

signal input to the cortical pyramidal population. This represents information coming 

either from sensory sources or other brain regions via cortico-cortical connections. The 

second source of input is from the GPi to the thalamic projection nucleus. This input is 

inhibitory and is increased as the indirect pathway is activated. The third direct input 

source is the indirect pathway’s input to the TRN via the GPe, which is inhibitory and is 

reduced as the indirect pathway is activated, disinhibiting the TRN neurons. While these 

three input sources largely determine the frequency (and therefore amplitude) of thalamic 

oscillations, the modulatory effect of diffuse ACh release on gap junction conductivity 

(modified directly in our investigations, but hypothesized to be from the indirect pathway 

via the Nucleus Basalis) can also enable or disrupt the synchrony of oscillations, depending 

on its level. 
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For the first investigation, the signal consisted of a pseudo-random continuous current 

input, generated by an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930), and 

varying from roughly -50 to 50 mA. The specific equation used was as follows: 

 

( )i i ijx dtdx dWθ µ σ= − +  

 

The parameters of the process were , , and , and the final result was 

scaled by a factor of 90 to achieve the desired current range. To elicit alpha oscillations, the 

direct inputs were set to 100 for the Thalamic Relay cells and 22 for the TRN as a baseline, 

with a pulse of indirect pathway activation from milliseconds 100 to 1100 changing them to 

-400 and 50, respectively. This pulse initiated the alpha oscillations. For theta oscillations, 

the same values were used except the TRN values were 35 at baseline and 63 during the 

pulse. 

 

The second investigation used an identical pseudo-random continuous input as noise, 

summed with a single 0.5 amplitude square “pulse” 12 ms in duration. The pulse was 

delivered at varying phases of the thalamo-cortical oscillation. For both Alpha and Theta, 

we used identical baseline and pulse parameters to the first investigation. For the non-

oscillating condition, the Alpha baseline parameters were used, but no pulse occurred, 

which prevents oscillations from beginning. 
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Output (Data Recorded) 

 

Spiking rate data was recorded from the excitatory population of cortical projection 

neurons, as well as from a simulated virtual electrode recording the local field potential 

(LFP) generated by the summed synaptic inputs to these same neurons. Each electrode was 

approximated through the simple method of summing excitatory and inhibitory current 

inputs to each cell population, and multiplying by -1 so that excitatory inputs produce a 

negative deflection in simulated voltage. 

Analysis 

Data analysis was conducted in Matlab 2012a (The MathWorks, Natick, MA). For all three 

investigations, we used a fast Fourier transform to analyze the cortical excitatory 

population’s local field potential (i. e. summed synaptic input) to determine oscillatory 

power over a time-frequency spectrum. We also classified the thalamic oscillations based on 

mean distance between peaks. 

 

For the first investigation, at each 10 second step of frontal drive to the thalamic nucleus, 

the impact of the signal input on the spiking rate output data was computed via mutual 

information (Dayan and Abbott, 2001). Mutual information (MI) allows us to determine 

how much variability in the receiver’s response is due to the activity of the sender. 

Mathematically, MI is equal to the receiver’s full response entropy minus its noise entropy.  
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 MI can be thought of as a measure of how well variations in the sender are correlated with 

variations in the receiver, beyond the ability of the receiver to predict its own variability. 

We evaluated mutual information by binning our signals into discrete sender and receiver 

states, with the number of bins determined by Scotts Normal Reference Rule (Scott, 1979), 

a rule originally designed for optimizing bin count in histograms. It suggests bins of width 

1/3

ˆ3.5
n
σ

, where σ̂  is the standard deviation of the sample, and n  is the number of data points 

in the sample. We then approximated the above integrals by sums over bins ir  and js , with 

([ | ])i jp r s  being estimated by ijN , which is the number of occurrences of rate i  given 

stimulus j , divided by the number of occurrences of stimulus j . This evaluation was 

repeated over a range of time delays up to 40 ms, and we selected the delay that yielded the 

highest MI value. 

 

We also corrected for the number of samples, since a less than infinite number of samples 

can cause bias in the mutual information estimation. This was corrected for by determining 

the number of elements in the response space R  and the number of data points n , then 

subtracting 1
2 log(2)

R
n

− , after Panzeri et al. (2007). 

 

The simulation was repeated 10 times under new random seeds. A Lilliefors test showed 

that the mutual information measurements during theta oscillations were not normally 

distributed. We therefore ran a nonparametric Wilcoxon rank sum test in order to check 
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for a significant difference in medians between mutual information measured during alpha 

and theta oscillations.  

 

For the second investigation, mutual information was not calculated, and instead a 

threshold classifier sorted trials into hits, where activity during the cycle when the stimulus 

pulse occurred surpassed or equaled the threshold level; and misses, where activity during 

the cycle did not reach the threshold level. Hit and miss rates were calculated for each phase 

angle of stimulus presentation. False positives obviously could not be sorted based on 

stimulus phase, since there was no stimulus during these trials. False alarm rates were, 

however, calculated for all non-target trials. Then, by varying the threshold of the 

classifier, receiver operator characteristic (ROC) curves were generated for each phase, and 

the area under each curve (AUC) was calculated. 

 

 

Results 

Investigation 1: Mutual Information 

The results from the first investigation show a clear frequency-dependent reduction of 

mutual information when the thalamo-cortical circuit oscillates in the alpha range (10Hz). 

When the amplitude of periodic drive to the cortical pyramidal cells increases, the cortical 

activity transitions from a sequence of bursts correlated with its input signal into a regular 

oscillatory pattern, drastically reducing the available information about the signal.  

The rank-sum test rejected the null hypothesis of equal medians ( 0.0013p = ), 

demonstrating a significant difference between mutual information in the 6 Hz group 
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(representing oscillations at theta frequencies) and the 10 Hz (representing alpha) group of 

trials. 

 

Additionally, the results demonstrate the behavior we had hypothesized at each stage of the 

process. Reduced baseline inhibition to the TRN produces a higher frequency oscillation 

in the thalamus as well as greater thalamic peak amplitude. This oscillatory thalamic 

behavior, when combined with the Ornstein-Uhlenbeck input signal, causes a switch from 

mostly subthreshold (but occasionally suprathreshold) cortical oscillations, whose 

amplitudes are largely determined by the amplitude of the signal, to saturated 

suprathreshold cortical oscillations, which are largely invariant with regard to the signal 

amplitude. The switch to saturated suprathreshold cortical oscillations leads to a 

significantly lower mutual information.  

 

The frequency of oscillation in our model thalamo-cortical loop depends on the level of 

baseline inhibition to the TRN, which is governed by the indirect pathway (Fig. 6.1). 

Without reducing the inhibition below zero, the range of bursting frequencies produced in 

our model matches the range observed in rat LGN slices, where increased depolarization of 

relay cells leads to increasing frequencies between 2 and 13 Hz (Hughes and Crunelli, 

2006). 
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Figure 5.3: Simulation Results demonstrating A) the Ornstein-Uhlenbeck-generated input signal, B-C) the 
thalamic activity at roughly 10 and 6 Hz, respectively. D-E) the cortical activity driven by a combination of the 
input signal and the thalamic activity, and F) the significant difference in mutual information between the 6.1 Hz 
and 10 Hz conditions.  

 

Investigation 2: Discrimination Threshold 

As shown in Figure 5.4, results of our second investigation were in close agreement with 

those reported by N. A. Busch, Dubois, & Vanrullen, (2009). For example, Fig. 6.4B 

shows that the deflection in cortical activity produced by a single stimulus pulse is strongly 

dependent on the phase of stimulus presentation with respect to the ongoing cortical 

oscillation. As can be seen in Figure 5.4A, when multiple phases of impulse were applied 

using the same (frozen) background noise, both the initial and later oscillatory impact of 

each stimulus impulse varied with the phase, some of them falling below the threshold of 

the classifier (40 spikes/sec), and others surpassing the threshold. Secondly, the threshold 

classifier demonstrated extremely strong phase dependence. When the hit rate (rate of trials 

classified “stimulus present” out of all trials with a stimulus impulse) is plotted as a function 

of phase as in Figure 5.4C, the preference for an impulse just preceding the onset of the 

cycle (a peak in the oscillation) becomes clearly visible. 
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Figure 5.4: Deflection and hit rate by phase. A) Cortical deflection from baseline during a cycle, as a function of 
impulse phase. B) Experimental normalized hits ratio by aligned stimulus onset phase (reproduced from Busch 
et al., 2009). C) Model normalized hits ratio by aligned stimulus onset phase. 

Discussion 

Limitations of the current model 

The introduction of a realistic mechanism through which alpha-recruitment could be 

controlled by a learning process extended the model to address a key problem neglected in 

most oscillation models:  How are switches between oscillatory modes made to serve 

cognitive goals?  However, the added realism of this extended model did not come without 

price. Additional parameters made tuning the model more difficult, and the redefined 

investigations also illuminated two other potential limitations to the model. As will be 

shown below, these potential limitations made it prudent to additionally explore a model 

that relied on subthreshold dynamics, rather than saturation. First, the saturated spiking 

rate in the model at peaks in the alpha cycle complicates comparisons with other 

experimental data. In Investigation Two, we aimed to reproduce Busch et al., (2009) by 

subjecting an oscillating thalamo-cortical system to an impulse (representing a roughly 

12ms visual stimulus), then using a threshold classifier to determine whether a given trial 

was a hit, miss (false negative), false positive, or correctly identified non-stimulus trial. 

However, using any linear or threshold classifier, there will be interference from the 

increased firing rate under alpha when attempting to detect the increased firing rate due to 

the stimulus. Alpha can be made, with sufficient tweaking, to perform roughly at chance 

compared to a better-than-chance classification during theta oscillations. This at-chance 

performance, however, is due to the alpha oscillating classifier marking every trial as a 

target trial, resulting in an extremely high number of false positives, and no misses. While 
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the AUC can be minimized this way, this is categorically not how alpha appears to operate 

in human tasks, such as the one in Romei et al. (2010). 

 

Second, and more conceptually, if saturation, as in the case of our previously presented 

model, involves rapid suprathreshold spiking, then we must consider the relationship 

between high-frequency spiking and high gamma oscillations in electric/magnetic fields. If 

the high-frequency spiking is synchronized, then high gamma should accompany alpha. 

However, some studies have demonstrated a marked reduction in gamma-band power 

during periods of high alpha power. This suggests that either the frequent spikes are not 

synchronized across a population, or that there is a reduction in the spiking activity during 

alpha. If the second of these is true then it would seriously call into question the saturation 

model. While there is no conclusive evidence, a few studies offer suggestive evidence. 

Haegens, Nácher, Luna, Romo, & Jensen, (2011) observed that cortical neurons in 

macaques fire at a reduced mean rate during alpha oscillations during attention to a target, 

rather than an increased mean rate. 
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Figure 5.5: Macaque medial prefrontal cortex neural firing rate (extracellularly recorded) normalized to average 
pretrial firing rate as a function of alpha power. Adapted from Haegens, Nácher, Luna, Romo, & Jensen, (2011). 

 

The same paper also observed that cortical neurons oscillating in alpha fire the most at the 

least depolarized moment of the alpha cycle. To the extent that the alpha peaks correspond 

to increased depolarizing currents in the neuron, this periodic reduction in firing rate 

seems to be the opposite of what is observed in our saturation model. 
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Figure 5.6: Macaque medial prefrontal cortex neural firing rate (extracellularly recorded) normalized to average 
pretrial firing rate as a function of binned alpha phase (derived from simultaneous LFP recordings). Adapted 
from Haegens, Nácher, Luna, Romo, & Jensen (2011). 

 

This agrees with a finding of Mirpour, Bisley, & Bisley, (2013), who observed both 

increased alpha power and reduced spike rates for ignored distractors.  In addition, Zhu et 

al. (2009), found that MEG deflections corresponded more closely to local field potentials 

than to multi-unit spiking activity, so it would seem plausible that subthreshold activity 

could account for observed alpha power. Unfortunately, both subthreshold activity and 

spike synchronization are difficult to examine in a rate-based model such as ours. 

 

A first step within the modeling realm was then to examine possible mechanisms that could 

impede information transfer in a subthreshold regime. Furthermore, as earlier chapters 

have shown, M-currents have a potentially large impact on neocortical pyramidal spiking 

activity, whether in the form of a mode shift or in their more traditionally acknowledged 

role in spike frequency adaptation (Peters, Hu, Pongs, Storm, & Isbrandt, 2005). The 

saturation model is incomplete without them, and we must at some point address the 
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question of whether it can survive the addition of the M-current. Therefore, it was decided 

that any further model being explored should also include the M-current.  

Furthermore, the observation by (Haegens et al., 2011) that spike rates are reduced at the 

peaks of alpha oscillations is reminiscent of a paradoxical observation from studies like 

(Kok et al., 2012), which find that (all else being equal) both reaction time and cortical 

activity decrease when a target is predictable (as in a cued condition).  

 

While reaction time cannot be defined with regard to an ongoing oscillation, the reduction 

in spike rate for a predicted stimulus was achieved in earlier chapters via the M-current and 

a shift in neural encoding. This suggested that an attempt to apply these M-current-based 

models to alpha-induced information suppression might be fruitful. Our explanation is 

detailed below. 
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Methods 

Model Overview 

The Predictive Coding Hypothesis 

The predictive coding hypothesis, an approach typified by Clark, (2013) and Friston, 

(2005), is an extension of the hierarchical predictive processing theory of the brain (often 

abbreviated PTB), which primarily consists of the ideas that brains are effectively 

hierarchical prediction testers, and that brains are constantly attempting to minimize 

prediction errors, e.g., via learning processes that improve predictions. The extension put 

forward by Friston consists primarily of defining an encoding strategy wherein the feedback 

from "higher" to “lower” brain areas predicts features of inputs to lower areas, and inhibits 

them. The resultant subtraction of predictions from inputs leaves only unpredicted 

features (a.k.a. error signals) to be transmitted up the hierarchy via feedforward pathways 

from lower to higher areas. Predictive Coding is most often implemented in a Bayesian 

framework with little regard to neural constraints, but neurally plausible implementations 

of predictive coding have recently received some attention (e.g., Wacongne, Changeux, & 

Dehaene, 2012). 

 

Predictive Coding proposals often come with broader claims that it offers a grand unified 

theory of perception and cognition arising from the interplay of top-down predictions and 

bottom-up error signals.  I want to stress that the detailed neuronal processing framework 

that I am developing here is agnostic about, and not dependent on, any of these grander 

claims. 
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KCNQ and the M-current 

Membrane biophysicists and neurochemists have characterized the M-current as an inward 

potassium current via channels constituted by KCNQ proteins, often heteromeric 

KCNQ2/KCNQ3 proteins (Fedorenko et al., 2008). Originally discovered in sympathetic 

ganglion neurons of bullfrogs (Brown and Adams, 1980), it is non-inactivating and 

voltage-dependent, being activated by depolarization of the membrane to a level greater 

than approximately -60mV. Because of these properties, both sub-threshold 

depolarizations and those large enough to generate action potentials reliably also activate 

the M-current. However, this is subject to muscarinic neuromodulation.  Indeed, the M-

current is so named because KCNQ channels are closed by activation of mAChRs 

(muscarinic acetylcholine receptors).  Such closure effectively disables the current. The M-

current mechanism is found in neurons throughout the nervous system, including the 

pyramidal cells that are the principle neurons of the cerebral cortex (reviewed in Jentsch, 

2000; Marrion, 1997) and the medium spiny cells that are the principle neurons of the 

striatum (reviewed in McCarthy et al., 2008). 

 

Another key feature of the M-current is that the KCNQ channel has a labile time constant: 

the speed with which it opens and closes is dependent upon the membrane voltage. This is 

illustrated in Figure 5.7 by plots of the time constants resulting from four simulated voltage 

clamps. 
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Figure 5.7: Simulated voltage clamps demonstrating a voltage-dependent time constant for the KCNQ channels 
that mediate M-currents.  Abruptly instating and clamping new transmembrane voltages  (blue: -50 mV; green: -
40 mV; red: -30 mV; light blue: -20 mV) between 200 ms 700 ms show the dependence of the KCNQ channel’s 
time constant on voltage.  Details of the mathematical simulation can be found in chapter 2. 

 

Phasic-Tonic Mode Switching 

The M-current is usually thought of as a rate-modulating current, which contributes to the 

oft-observed slow adaptation in spike rate during prolonged excitation. (Kim et al, 2012) 

Under certain circumstances, however, it can act quite differently, as illustrated in Figure 

2. Notably, Prescott et al. (2006) showed that the M-current can, via an interaction with 

Cl- currents, reliably cause a shift from regular (tonic) spiking to onset (phasic) bursting. 
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This was demonstrated both in computational models (similar in structure to our proposed 

model below) and in dynamic clamp recordings pyramidal neurons from the CA1 part of 

the hippocampus.   

 

Figure 5.8: And example of CA1 pyramidal neurons switching between tonic and phasic modes of firing under 
different injected currents (y-axes) and shunting conductances (the two columns).  Increased shunting produced a 
change from tonic to phasic firing, and increased the amount of stimulation (pA) required to produce even phasic 
firing. 

 
Under the predictive coding hypothesis, the best way to prevent something from 

propagating upward in the brain is to accurately predict it. In chapter three, I put forward 

the proposal that this is done via a top-down priming of layer 2/3 cortical pyramidal cells, 

causing a tonic-phasic mode shift, which in turn dynamically changes their output from a 

rate-based code to a dynamically negotiated labeled line scheme. 



 

 

160 

 

Unfortunately, when ignoring an entire modality, it is difficult to predict exactly what 

stimuli you will need to ignore. I propose that alpha oscillations represent a surprising way 

of circumventing this problem; they prime everything.  When all feature representations 

are primed, then it very nearly doesn't matter what features are presented. They will all 

register as expected, no mismatch or attentional orienting response will follow, and only 

single spikes will ascend.  If higher areas are not primed, either through top-down 

predictions or alpha oscillations, then the single spikes may be insufficient to drive 

activation, preventing further processing of the ignored stimulus. 

 

Network Architecture 

The architecture is extremely simple. A single neuron representing a layer 2/3 pyramidal 

cell performing sensory comparison is the core of the model, as it is a single-neuron 

comparator. 

Network Connectivity 

While there are a high number of connections, they form a very simple pattern. The 

sensory comparator is innervated by 600 synapses: 200 basal driving synapses (presumed to 

be arriving from sensory thalamus via L4, which are both beyond the scope of this model), 

200 apical priming synapses (presumably from non-specific thalamic neurons, per S. R. 

Jones et al., 2009b), and 200 basal inhibitory priming synapses (presumed to be from 

priming-driven feed-forward cortical interneurons). All synapses have weights that are 

randomly selected using a Gaussian distribution with µ  of 1.0 and σ  of 0.1. The weights 
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are of the form gauss( , )w µ σ⋅ , where the value of w  is 16 for driving synapses, 12 for 

excitatory priming synapses, and 8 for inhibitory priming synapses.  

 
 

  

Figure 5.9: A simplified subset of S. Jones et al., 2009, provided for reference to the inputs to L2/3, specifically 
apical and feedforward inhibitory inputs from higher order cortex (in the MMN model in Chapter Four) and 
non-specific thalamic neurons seen in C, and the sensory input to basal dendrites from Layer 4, as seen in B. 

 

There are three incoming connections in the model: 

• Apical excitation (presumably from non-specific thalamic neurons) 

• Basal Inhibition (presumably via L2/3 Interneurons) 

• Sensory input (presumably via specific thalamus/L4) 

 

Neuron and Synapse Models 

 

Input 

Each of the hundreds of input synapses is driven by a Poisson process whose lambda 

parameter changes over time. In a Poisson probability distribution, the lambda parameter 
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represents both the mean and the variance, and a higher lambda means that the Poisson-

governed event occurs more often. 

 

Nonspecific thalamic inputs (inhibitory and excitatory) feature lambdas with a simple sine 

wave pattern, oscillating at 10 Hz.The sensory input synapse lambdas go from 0.0001 at 

rest to a given value during activation. 

The phase of sensory input activation was varied throughout the 10 Hz cycle. 

Output 

The membrane voltage and extracellular current were measured for analysis at both the 

apex and the base of the neuron, along with the net KCNQ-mediated M-current. In 

addition, we calculated the quasi-static electric field of the neuron using the methods 

provided in Chapter Three. 

 

Results 

 
Only preliminary results are available, but the subthreshold alpha drive from thalamus to 

cortex has been shown to achieve a mode switch, drastically reducing the number of spikes 

fired in response to stimulus-driven input arriving during the peaks of alpha, but reducing 

the spike rate much less during the troughs. (Figure 5.10) 
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Figure 5.10: Upper Page One) the ongoing alpha drive, in the form of an oscillatory change in the priming 
lambda. Lower Page One) The cell membrane voltage trace, showing tonic firing when stimulus input arrives in 
the trough of alpha. Upper Page Two) The same ongoing alpha drive, reproduced for ease of comparison. Lower 
Page Two) The cell membrane voltage trace, showing phasic firing when stimulus input arrives at the peak of 
alpha. 
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These results suggest that the dynamically labeled predictive coding model of alpha 

proposed here is capable of reproducing the counterintuitive findings of Haegens et al. 

(2011), which observed not only a general reduction in firing rates as alpha power 

increased, but also an increase in firing during the polarized troughs of alpha.  

 

Discussion 

The thalamic connections to the cortex in this case feature supragranular connections 

which drive both excitation of the apical dendrites and their feedforward inhibition. So the 

pulsed inhibition proposed in (Klimesch et al., 2007) is present in the new model during 

alpha, but such pulsed inhibition is far from the whole story. The thalamocortical system’s 

resonance at ~10hz (Herrmann, 2001) is still relevant, in that it offers a mechanism by 

which this information suppression effect can be restricted to the alpha frequency range. 

Reducing the relative amplitude of theta and beta subthreshold oscillations can potentially 

prevent activation of the M-current, allowing neocortical pyramidal cells to respond to 

stimulus onsets with tonic firing, which generates sufficient prolonged activity to trigger an 

attentional orienting response. In contrast, the resonance would ensure that alpha 

subthreshold oscillations are of higher amplitude and therefore activate the M-current, 

priming the cells for a mode switch. This matches the finding of Haegens et al., (2011), by 

reducing the firing rate when the cortical cells are driven with suprathreshold input, such as 

a new stimulus onset. It also triggers the tonic-to-phasic mode shift, and so the cells 

oscillating in alpha will – for much of the alpha cycle, centered on the peak of the 

oscillation – respond only with phasic firing to stimulus onset. As described above, in a 

field of feature or object detectors, this effectively treats most possible inputs as expected. 
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This model also displays different firing rates at different phases of the alpha cycle, with the 

highest firing rates occurring in the trough, exactly as observed by Haegens et al. (2011) 

 

By causing the membrane of cortical pyramidal cells in Layers 2/3 to fluctuate near, but still 

below the threshold, as well as non-specific thalamic drive of inhibitory neurons in the 

upper layers (E. G. Jones, 2001), alpha oscillations in this model result from a priming of 

the entire field in an oscillating manner. This suggests that diffuse thalamic projections to 

superficial layers – typical from GPi-inhibited thalamus but not from CBM-excited 

thalamus – are still extremely relevant, consistent with the hypothesis (presented earlier in 

this chapter) that alpha can be recruited via learned activation of the indirect pathway 

through the basal ganglia. This is also consistent with results indicating that the system can 

move very quickly into (and out of) alpha-suppressive states under learned guidance by cues 

that signal intervals when distractors may appear. 

 

In conclusion, at this point there are two paths forward for the model. Either the higher 

areas are primed and ready to participate in the dynamically negotiated labeled line 

encoding scheme, in which case the information at stimulus onset that all is as expected 

continues up its chain in the cortical heterarchy, or else the higher areas aren't primed, in 

which case the single spikes coming in on what sensory cortex expects to be labeled lines will 

fail to elicit a suprathreshold response and the information will just die out. Either way, no 

attentional orienting response will be elicited, effectively allowing the owner of said alpha 
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oscillations to "ignore" the onset of a new stimulus for which the system has not been 

specifically primed. 

 
 

 

 
 

 CHAPTER SIX: DISCUSSION AND FUTURE DIRECTIONS  

This dissertation introduced the Dynamically Labeled Predictive Coding (DLPC) 
framework, a new proposal for the interpretation and modeling of expectation, 
comparison, and associative mismatch in the brain.  Key features of this framework 
include: 
 

• Code Switching at the level of individual neurons 
• Differing representation of expected and unexpected information 
• The use of dynamically established labeled line encoding 
• Single-cell, non-subtractive comparison 
• Efficiency in terms of spikes and downstream processing delay 

 
This framework was then applied and validated through the construction of several models.  
First, a model of CA1 hippocampal mismatch was developed, and shown to match 
experimental data.  This was then expanded to model the neocortical MMN, and several 
non-obvious novel predictions resulted, including the potential dissociation of the 
recorded scalp voltage from the underlying neural mismatch signal and a novel proposed 
mechanism of action for the antipsychotic retigabine. 
 

Non-DLPC models of alpha oscillations and alpha-induced information 
suppression were then explored, focusing on a saturation mechanism to suppress mutual 
information.  A new proposal was also introduced for how the basal ganglia may control 
onset and offset of alpha-induced information suppression. Although these rate models 
could reproduce many experimental findings, they fell short of reproducing a key 
electrophysiological finding: phase-dependent reduction in spiking activity correlated with 
power in the alpha frequency band.  To remedy this, a preliminary DLPC-based model of 
alpha-induced information suppression was introduced, suggesting a possible unification 
between mechanisms of anticipation and mechanisms of active ignoring.  
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In closing, the remainder of this chapter will be dedicated to a possible extension of the 
DLPC framework, specifically its interaction with reward circuitry and possible applications 
to musical neuroaesthetics. 
 
 

Expectations, Surprise, Resolution, and Reward: Sustainable Novelty 

Surprise is a common element in music, and has been for centuries.  There are many types 
of enjoyable musical surprise, from an unexpectedly loud note to a shift in instrument 
timbre.  Most musical surprises, however, habituate rapidly, producing what might be 
called “novelty tracks” in the modern recording industry.  An effective example of this 
might be 1958’s, “The Chipmunk Song”, which introduced America to the artificially 
sped-up, high-pitched voices of Alvin and the Chipmunks.  The surprise was immediate 
and intense for listeners who had not previously encountered such production effects, but 
the novelty also wore off quickly. 
 
Some musical passages, however, seem to resist habituation.  A well-crafted hook or key 
change can often contain an element of surprise that retains its effectiveness over an adult’s 
entire life, given that the passage or song isn’t simply played on repeat for a sustained 
period.  This suggests it is possible to shut down habituation and “sustain novelty”.  An 
explanation for exactly that sustainable novelty is what I am proposing as a future direction 
for my research. 
 

Down the Garden Path 

There are key steps that seem to be common in all forms of sustainable novelty I have 
examined: 

1. Expectations are built up 
2. Associative mismatch occurs 
3. A recontextualization resolves the surprise, creating a new, retroactive understanding 

These three steps are proposed to interact with known brain processes in order to reliably 
evoke reward and a positive emotional valence.  The processes involved in our proposal are: 

• Musical pattern recognition, such as key and scale degree, as found in Janata et al. (2002). 
• Intrinsic reward (preliminarily simplified to dopamine release) for successful prediction of 

recognized patterns, as shown in Satterthwaite et al. (2012). 
• Habituation of reinforcer effectiveness via striatal inhibition of the ventral tegmental area 

(VTA), as shown in Lloyd et al. (2014). 

Under this proposal, any novel music will elicit dopamine release when first heard, but as 
predictable patterns are recognized the striatum will inhibit the VTA, bringing it back 
down to baseline activity. 
 
Sustainable novelty is proposed to be achieved first by establishing this highly predictable set 
of expectations exactly as above, which as above will not normally elicit reward by the time 
recognition is reliably correct.  This is followed by step two, the associative mismatch, or 
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surprise.  This also does not elicit reward, but what it will do is suppress striatal habituation 
of reinforcer effectiveness, through a cholinergic reset signal that follows mismatch (Tan & 
Bullock, 2008).  Given the impact of ACh on DLPC comparators, this reset signal will 
remove expectational bias and the cue representations that could have acted via striatum to 
inhibit the VTA activation at the time of reward arrival.  This in effect opens a short 
window of opportunity where a new, unexpected pattern can be recognized and will elicit 
increased dopamine release without inhibition on the part of the striatum. 
 
As long as the musical piece’s global statistics can continue leading the listener “down the 
garden path” of false expectations, then the above pattern will be robust to repeated 
exposures, allowing, in effect, a sustainable novelty response. 
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