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THE IMPACT OF EXTREME STORM SURGES ON MID-ATLANTIC

COASTAL FORESTS

ARNOLD FERNANDES

Boston University Graduate School of Arts and Sciences, 2017

ABSTRACT

The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance

from storms associated with hurricanes and nor’easters. Using annual tree ring data,

we adopt a dendroclimatic and statistical modelling approach to understand the re-

sponse and resilience of a coastal pine forest to slow progressive climate change and

extreme storm surge events. Results indicate that radial growth of trees in the study

area is influenced by age, vigor, competition, microsite variability, and regional cli-

matic trends, but dominated periodically by disturbance due to storm surges. We

evaluated seven local storm surge events to understand the effect of storm surges

associated with nor’easters and hurricanes on radial growth. A general decline in

radial growth was observed in the year of the storm and three years following it, after

which the radial growth starts recovering. Given the projected increase in hurricanes

and storm surge severity with changing global climate, this study contributes to un-

derstanding declining tree growth response and resilience of coastal forests to past

disturbances. This can help predict vegetation response patterns to similar distur-

bances in the future.
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Chapter 1

Introduction

1.1 Background and Objectives

Hurricanes and Nor’easters are short-term disturbance events that frequently af-

fect coastal forests in North America. Damage from storm surges and wind associated

with these disturbance forces can influence the structure, development, species com-

position and diversity of forests (Lugo, 2008). In addition to short-term disturbances,

forests are also affected by long-term changes in regional climate (Panayotov et al.,

2010) and sea-level (Ross et al., 1994). Decreasing the vulnerability of coastal forests

to such disturbances requires that we understand the tree growth response to past

disturbances.

The Mid-Atlantic coastal region of the United States, which covers Delaware and

parts of New Jersey, Maryland, Virginia, and North Carolina, boasts complex ecosys-

tems comprised of wetland forests, saltwater marshes, freshwater marshes, bays and

estuaries (Najjar et al., 2000). Forests account for about 70% of the land cover in

this region (Jones et al., 1997). Climate projections indicate that sea level, temper-

ature, storminess, and streamflow will increase in the Mid-Atlantic coastal region in

response to global warming (Najjar et al., 2000; Rogers and McCarty, 2000). In ad-

dition, Atlantic hurricane activity is projected to increase due to a rise in sea-surface

temperatures (Goldenberg et al., 2001; Saunders and Lea, 2008), which may cause an

increase in intensity and frequency of storm surges in this region. Therefore, under-

standing the response and resilience of coastal forests to past environmental changes

can help predict their response patterns and manage these forests appropriately in



the future.

Coastal and estuarine landscapes form some of the most valuable and vulnerable

ecosystems globally.(Barbier et al., 2011; Lotze et al., 2006; Parker and Crichton,

2011). Sea level rise can lead to a progressive landward shoreline displacement along

the coast and cause the forest-marsh boundary to migrate inland (Kirwan et al.,

2016; Robichaud and Begin, 1997). Forests in these regions can also be dramatically

affected by other environmental drivers such as: variation in temperature and pre-

cipitation, extreme drought or flooding events (Mickler et al., 2012). These stressors

have been reported to cause reduced forest growth, failure in regeneration or dieback

events (Kirwan et al., 2016; Mickler et al., 2012). Coastal forests of South Carolina

suffered increased mortality in response to salt water infiltration from storm surges

and extreme wind damage that accompanied the 1989 Hurricane Hugo (Hook et al.,

1991). On the west coast of Florida, regeneration failure is observed in coastal forests

due to sea-level rise (Williams et al., 1999). Disturbances often interact with climate

and underlying landform characteristics to determine the composition, structure, and

function of forests. Given the variability in landform features and disturbances at

a local scale, further site-specific investigations are needed to understand how such

coastal and estuarine forests respond to environmental changes.

Dendrochronological and statistical techniques have been an effective tool to re-

construct the response of forests to changing environmental conditions over time,

including changes in sea level (Kirwan et al., 2007; Robichaud and Begin, 1997), and

temperature and precipitation (Byun et al., 2013; Harley et al., 2011; Kirwan et al.,

2007; McKenney-Easterling et al., 2000; Samuelson et al., 2013; Schofield et al., 2016;

Tipton et al., 2016). Annual tree ring widths are influenced by several factors includ-

ing the age and species of the tree, competition from neighboring trees, soil conditions,

climate, local or stand-wide disturbance pulses and annual variability among individ-
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ual trees (Cook et al., 1990; Fritts, 1976; Speer, 2010). In coastal environments, tree

rings have also been observed to respond to tropical storms and hurricanes (Conner

and Inabinette, 2003; Johnson and Young, 1992; Miller et al., 2006; Rodgers III et al.,

2006). The effects of these disturbance episodes on tree growth can be studied by

analyzing their resilience, i.e., the capacity of the trees to recover after disturbance

and regain their pre-disturbance structure and function (Folke et al., 2004; Scheffer

et al., 2001).

In this study, we postulate that trees in the Mid-Atlantic coastal forest in Vir-

ginia are episodically damaged through the direct influence of flooding and strong

winds during storm events. By adopting a dendroclimatic and statistical modelling

approach, this paper aims to a) Identify periods of declining tree ring growth follow-

ing storm surge events and b) to understand the response and resilience of vegetation

in the Mid-Atlantic coastal region on the Eastern Shore of Virginia National Wildlife

Refuge to slow progressive climate change and extreme storm surge events.

1.2 Thesis Outline

This thesis consists of five chapters including this introductory chapter. All chap-

ters are connected, and together they answer the main objective of this thesis, which

is to examine the response and resilience of vegetation at the study site to regional

climate trends and extreme storm surges. Chapter 1 provides a general background

and introduces the objectives and methodology of the research. Chapter 2 describes

the geographic setting, climate and storm history of the study area and outlines the

dendrochronological and statistical procedures used. Chapter 3 and 4 present the

results and discuss the influence of climate and storm surges on tree growth, and the

forest resilience at the study site. Chapter 5 provides a summary of the findings.
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Chapter 2

Methods

This chapter describes the methods used to characterize the influence of climate

and extreme storm surges on tree growth. It is divided into three subsections. The

study area section describes the geographic setting, regional climate trends, storm

history and species at the study site. The data section describes the procedures used

for preparing the tree-ring data including sampling, chronology preparation and age

estimation of the trees. It further outlines the climate data and criteria used to select

extreme storm surge events that affected the study site. The third section describes

the statistical methods employed to determine the climate-growth relationship of trees

and to characterize the response and resilience of trees to extreme storm surge events.

2.1 Study Area

2.1.1 Geographic Setting

The study site is a stand of Pinus taeda (L.) (loblolly pine) located on the East-

ern Shore of Virginia National Wildlife Refuge. It lies on the southern tip of the

Delmarva Peninsula, Virginia, USA, and is bordered by the Atlantic Ocean on the

East and the Chesapeake Bay on the West (Figure 2·1A). This site is adjacent to

the Virginia Coast Reserve (VCR) that exhibits a rich ecosystem comprising barrier

islands, lagoons, tidal marshes, and mainland watersheds (Brinson et al., 1995), and

is designated by the National Science Foundation as a Long Term Ecological Research

site (LTER). The Delmarva Peninsula formed when rising sea levels during the late

Pleistocene and Holocene filled the lower Susquehanna River valley, eventually form-



ing the Chesapeake Bay and isolating the area from the mainland (Colman et al.,

1990; Hobbs, 2004; Rice, 2004). Sea level fluctuations, climate, tidal energy, sand

supply, and sediment texture control the present-day morphology of the barrier is-

lands and marsh-lagoonal systems along the eastern side of this peninsula (Demarest

and Leatherman, 1985). Due to land subsidence and compaction of sediments, the

rate of sea-level rise in the Mid-Atlantic region (2.4 mm/yr to 4.4 mm/yr) are sig-

nificantly higher than the global average (1.7 mm/yr) (Williams et al., 2010). The

average rate of sea-level rise at VCR is approximately 4 mm/yr (NOAA, 2010), which

is about twice the global rate.

The vegetation in the study area is dominated by Pinus taeda (Rice, 2004). Some

other species found at this site include Ilex vomitoria (yaupon holly), Iva frutescens

(marsh elder), Baccharis halimifolia (groundsel tree), Myrica cerifera (bayberry),

and Smilax spp. (greenbrier). Over the last three decades, 40% of the land cover

in Virginia barrier islands, changed from grassland to shrub thicket accompanied by

approximately 10 cm rise in sea level and 29% reduction in upland area (Shiflett et al.,

2014). Two main factors controlling the vegetation patterns at VCR are the distance

from the shoreline and elevation above sea level (Young et al., 2011). The distance

from shoreline determines the extent of ecological succession which is controlled by

salt spray, burial due to sand, and disturbance, such as storm surges (Ehrenfeld,

1990). The availability of nutrients and groundwater is dependent on the elevation

above sea level (Brinson et al., 1995; Ehrenfeld, 1990). In addition to thresholds of

disturbance tolerance and landscape position (mainland, barrier island or lagoon),

long-term response of marshes to sea-level rise is thought to be related to complex

vegetation feedbacks (Erwin et al., 2006).
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2.1.2 Climate

The climate at the study site is warm during the summer (≈ 24oC) with cool

winters (≈ 6oC) and mean total precipitation of 91 mm per month (1095 mm per

year), distributed evenly throughout a year. Figure 2·2 shows the mean monthly

temperature and total monthly precipitation at the study site. The data was obtained

from PRISM gridded data products (PRISM, 2015) for a single centrally located

point at 37.1280 N, 75.9611 W for the period of 1903 to 2015. The mean temperature

during fall and spring is about 11 oC and 18 oC, respectively. Winter temperatures are

more variable than summer temperatures. The highest temperature and precipitation

values are found in July and August, although, unlike precipitation, temperature has

low variance in these months.

2.1.3 Recent Storm History

A storm surge can be defined as an abnormal rise of water generated by a storm,

higher than the predicted astronomical tides (NOAA, 2016). The study site is subject

to two major storm types - hurricanes and nor’easters (Parker and Crichton, 2011).

Hurricanes, which generally occur during the summer, are of a short-duration and

characterized by high wind speeds and large storm surges (Parker and Crichton,

2011). Figure 2·1A shows the regions in VCR that are subject to inundation by storm

surges during hurricanes based on its magnitude (Jelesnianski et al., 1992). Unlike

hurricanes, nor’easters generally occur during the fall, winter, and early spring, are

comparatively slower, have a longer duration, and can produce equally large storm

surges (Dolan and Davis, 1992). Figure 2·3 shows the height of extreme water levels

above monthly mean higher high water (MHHW) recorded at a nearby tidal station

and its association with the occurrence of various hurricanes and nor’easters. The

cause of high water levels observed in 1978 and 2000 is unknown, however, they may
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Figure 2·2: Mean monthly temperature and total monthly precipita-
tion at the study site. The data was obtained from PRISM gridded
data products (PRISM, 2015) for a single centrally located point at
37.1280 N, 75.9611 W for the period of 1903 to 2015.
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Figure 2·3: Monthly highest water levels relative to the Monthly Mean
Higher High Water (MHHW) recorded at the Chesapeake Bay Bridge
Tunnel water level station near the study site (NOAA, 2016). Demar-
cated extreme spikes in water levels correspond to the occurrence of
hurricanes and nor’easters. Black stars indicate high water levels due
to an unknown cause.

be associated with the 1978 Northeastern United States blizzard and 2000 North

American blizzard, respectively.

In addition to the complex storm activity in this region, location and distribution

of physical habitats and species on the Eastern Shore of Virginia National Wildlife

Refuge can be affected by: changes in sea level, air and water temperatures, and

variability in precipitation with changing global climate (Parker and Crichton, 2011).

Having a low impact from anthropogenic factors, this site serves as a promising region

to study the dynamics of changing vegetation patterns and predict the effects of

climate and abrupt disturbance events like storm surges on coastal regimes.

2.1.4 Species Description

Pinus taeda is a medium to large sized evergreen conifer native to North America.

It has a generally continuous range extending from Texas eastward to Florida and

northward to Delaware (Schultz, 1997). The main distribution of Pinus taeda, from
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latitude 39 o 21’N to 28 o N, can be well defined by isolines connecting similar rates

of annual evapotranspiration (1,050 mm of moisture on the south and 813 mm in

the north) (Schultz, 1997). Its northern range and western range are limited by low

temperatures and low rainfall, respectively (Wahlenberg, 1960). Pinus taeda is also a

leading commercial timber species and is useful for site restoration and forest manage-

ment due to its ability to reproduce and grow rapidly in various environments (Carey,

1992). This tree grows best on moderately acidic soils having a thick, medium tex-

tured surface layer and fine textured subsoil, with imperfect to poor surface drainage

(Baker and Langdon, 1990). Whereas, its growth is limited on waterlogged sites and

shallow, eroded soils (Fowells et al., 1965).

2.2 Data

2.2.1 Tree Ring Data

Sampling

Pinus taeda were sampled along a transect representing an increasing distance

from the forest-marsh boundary and elevation above sea level. Core samples were

collected from 43 trees with a 5 mm increment borer using standard procedures

outlined in Stokes and Smiley (1968). On average, two cores per tree (89 cores in

total) were collected at breast height (1.4 m). The cores were then preserved in

paper straws for transportation and allowed to air dry under room conditions. To

understand the response of trees to storm surges as a function of increasing distance

from the forest-marsh boundary, the sampled trees were divided into two groups:

trees closer to the marsh (<30 m from the forest-marsh boundary, n=16) and those

further inland (≥30 m from the forest-marsh boundary, n= 9), hereby referred to as

low and high elevation trees, respectively (Figure 2·1B).
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Core Preparations

At the Ecological Forecasting Lab, Boston University, general procedures outlined

in Stokes and Smiley (1968) were followed for drying, mounting, sanding, and polish-

ing the cores. Increment cores were mounted in grooved wooden holders and sanded

using increasingly finer grit sand paper to remove any burred edges and clearly ob-

serve and define the cell walls using a dissecting microscope. Digital images at a 1600

DPI resolution of the polished tree cores were acquired using a calibrated Epson Per-

fection V700 Photo scanner and analyzed using WinDENDRO software for tree-ring

analysis (Regent Instruments, 2012).

Chronology Preparation

The tree-rings were visually cross-dated using a variety of methods. First, skeleton

plots and marker rings (rings that are consistently narrow or have identifiable charac-

teristics consistent between different trees) were used to visually cross-date ring-width

series within trees and then among trees under a microscope. Ring-widths were

then measured using WinDENDRO software. The computer program COFECHA

(Holmes, 1983) was used to statistically confirm cross-dating. In COFECHA, the

ring-width series obtained from WinDENDRO were detrended using a cubic smooth-

ing spline and averaged to build a master chronology. The rigidity of the spline curve

was set to 32 years, which has been found to generally result in the highest interseries

correlation (Grissino-Mayer, 2001). COFECHA then verified the quality of measure-

ments by correlating each core statistically against the master chronology by dividing

them into 50-year segments with an overlap of 25 years (Speer, 2010). Samples that

cross-dated poorly upon initial inspection, were re-examined and re-measured. Given

the difficulty in cross-dating some of the cores due to very small ring-widths and the

color of the wood, the minimum correlation coefficient used in cross-dating was 0.235,
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which represents a 95% level of confidence when testing 50-year segments of the cores.

Cores below this threshold were excluded from further analysis. Thus only 25 trees

(46 cores) were used in this study (Refer to Appendix B). These trees were evenly

distributed along the sampling transect. The average mean sensitivity, a measure of

year-to-year variability in ring-width, and series inter-correlation, a measure of the

strength of the common signal between all trees, obtained from COFECHA were

0.342 and 0.394, respectively. The series inter-correlation was within the 0.35-0.6

range, while the mean sensitivity value was slightly higher than the 0.15-0.3 range

reported for similar Pinus taeda chronologies (Cook et al., 1998), indicating that the

trees are highly sensitive to yearly changes in growth-limiting factors.

Using the Dendrochronology Program Library in R (dplR) package (Bunn, 2008),

we compiled chronologies for the whole site (stand-level) and the site stratified by

distance from the forest-marsh boundary (group-level) as well as retained average

detrended ring width indices for each tree for analysis. First, ring-width series of

individual tree cores were detrended using a cubic smoothing spline function, having

wavelength equal to 2/3rd the length of individual ring-width series and a frequency

response of 50% to minimize any age-related trend (Cook and Peters, 1981). This was

done using the detrend function which divides each raw ring width measurement by

the corresponding value estimated by the fitted spline to compute a ring-width index

(RWI). The ring-width indices (RWI) of multiple cores of each tree were then averaged

using the treeMean function to obtain a single time series for individual trees. The

RWI of individual trees were then averaged together using the chron function that

applies a Tukey’s biweight robust mean (Cook et al., 1990) to build a mean chronology

for 25 trees (stand-level). Group-level mean chronologies for low and high elevation

trees were created using the above procedure and the RWI of individual trees were

also retained for analysis. The stand-level mean chronology in this study spans the
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period from 1904 - 2015.

Pith Estimation

Majority of the cores used in this study did not hit the pith. Thus, the pith year

was estimated following the method developed by Duncan (1989) to determine the

age of all sampled trees. This method assumes concentric ring-growth so that the ring

boundaries can be considered arcs of circumferences with pith in the center. First,

the length (L) and height (h) of the innermost arc and width of the five adjacent

rings to the arc (rw5) were measured as shown in Figure 2·4. The missing radius (d)

was then calculated using the following equation (Duncan, 1989; Rozas, 2003):

d =
L2 + 4h2

8h
(2.1)

The number of missing rings were estimated by dividing d with the mean rw5.

Figure 2·4: Illustration of pith year estimation following the method
developed by Duncan (1989). Here, (rw5) is the width of 5 adjacent
rings to the arc; (h) is the arc height, (L) is the arc length and (d) is
its true distance from the pith.

2.2.2 Climate Data

The climate data used in this study are monthly Parameter-elevation Regressions

on Independent Slopes Model (PRISM) AN81m time-series dataset (PRISM, 2015).

This dataset is modeled using climatologically-aided interpolation in which the long-
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term average datasets serve as the predictor grids. It uses all of the station networks

and data sources used by the PRISM Climate Group to provide the best possible

climate data estimates at a given time. From PRISM, we used mean monthly tem-

perature and total monthly precipitation for a single centrally located point at 37.1280

N, 75.9611 W for the period of 1903 to 2015.

2.2.3 Selection of Extreme Storm Surge Events

The water level data of monthly and hourly resolution were retrieved from the

nearest tidal station - 8638863 Chesapeake Bay Bridge Tunnel, Virginia (NOAA,

2016). Based on a combination of storm surge magnitude and duration, events with

extremely high water levels (≥ 1m above MHHW) (see Ezer and Atkinson, 2014)

and/or long flooding duration (≥ 30 hours above 1m NAVD88) obtained from tidal

records were identified as extreme storm surge events (Figure 2·5). Since the water

level records are only available from 1975, extreme storm surge events prior to 1975

were identified based on description from historical reports that display maximum

impact on Virginia. Only seven storms were identified that met these criteria be-

tween 1904-2015 namely, 1933 Chesapeake-Potomac Hurricane, 1962 Ash Wednesday

Nor’easter, 1998 Nor’easter, 2003 Hurricane Isabel, 2009 Nor’Ida, 2011 Hurricane

Irene, and 2012 Hurricane Sandy.

2.3 Statistical Analysis

In this study various statistical methods were employed to determine the factors

that limit tree growth at the study site: (1) Response function analysis: to determine

the influence of regional climate trends on stand-level mean chronology (2) General-

ized additive mixed modelling: to simultaneously model the effects of regional climate,

tree age, individual tree variability, and extreme storm events on radial growth of the

trees (3) Event year analysis: to identify low-growth episodes (if any) following the
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Figure 2·5: Selection of extreme storm events affecting the study site
based on (A) high water levels and (B) long flooding duration obtained
from tidal records. The red dashed line represents the threshold criteria.
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storm surge events (4) Superposed epoch analysis: to isolate growth response signals

to key events (in this case, storm surges) which may be difficult to detect in the pres-

ence of noise from other competing influences operating at similar time scales, and (5)

Resilience analysis: to analyze the resistance, recovery, and resilience of low and high

elevation trees towards extreme storm surge events. Due to the underlying statistics

of event year analysis, superposed epoch analysis and resilience analysis, the effect of

all seven extreme storm surges that affected the study site (Section 2.2.3) could not

be analyzed. Table 2.1 summarizes the extreme storm events and low-growth periods

analyzed using these methods to characterize the influence of storm surges on tree

growth. A detailed description of each method is provided below.

Influence of Storm Surges on Tree Growth

Storms Analyzed Distinct Low-Growth
Period

Event Year
Analysis

Superposed
Epoch Analysis

Resilience
Analysis

1933 Chesapeake-Potomac Hurricane 1933-1936 Yes Yes Yes

1962 Ash Wednesday Nor’easter 1962-1965 Yes Yes Yes

1998 Nor’easter 1998-2001 Yes Yes Yes

2003 Hurricane Isabel 2003-2006 Yes Yes Yes

2009 Nor’Ida* No data Yes Yes No data

2011 Hurricane Irene* No data Yes No data No data

2012 Hurricane Sandy* No data Yes No data No data

*Limited analysis could be performed due to insufficient tree ring-width data or overlap of low-growth periods between 2009-2015.

Table 2.1: Summary of the extreme storm events and low-growth
periods analyzed in this study using various methods to characterize
the influence of storm surges on tree growth.

2.3.1 Response Function Analysis

To examine how radial growth of trees in VCR is influenced by regional climate

variables, Response Function Analysis (RFA) was performed, using the dcc function

of bootRes package in R (Zang and Biondi, 2013) (Refer to Appendix A). Response

function analysis is a multivariate regression technique, where the mean ring-width
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chronology is regressed against the principal components of monthly climate data

(Fritts et al., 1971). This approach removes the effect of any interdependence amongst

climate variables.

Climate variables (mean monthly temperature and total monthly precipitation)

covering an 18-month period (April of the previous year to September of the current

year of radial growth) were used for RFA. The stand-level mean chronology was used

to study the growth response of trees to these climate variables as it is detrended to

remove effects of factors like age on radial growth. BootRes performs response func-

tion analysis by taking 1000 bootstrap samples from the original distribution. The

original climate variables are translated and rotated, and expressed in terms of a new

set of coordinates. For climate data containing 18 months of temperature and pre-

cipitation each, there are 36 eigenvectors. bootRes then uses the PVP criterion also

known as cumulative eigenvalues product (CEP) criterion (Guiot, 1991) to discard the

least important eigenvectors. Eigenvectors are first sorted according to descending

eigenvalues and only the eigenvectors whose associated eigenvalues have a cumulative

product greater than 1 are retained while the rest are discarded. The reduced eigen-

vectors are then used as predictor variables in an ordinary least squares regression

to estimate response functions. Given that RFA tests a large number of variables for

significant correlation, the Bonferroni correction was applied to reduce any spurious

results. Confidence intervals were thus computed at p-value < 0.001. Coefficients

that equaled or exceeded the confidence interval are considered significant.

2.3.2 Generalised Additive Mixed Model

A Generalized Additive Mixed Model (GAMM) allows simultaneous modelling of

linear and non-linear relationships between the response and predictor variables using

regression splines (Wood, 2006; Zuur et al., 2009; Zuur, 2012). The response of trees

to climate, microsite factors, abrupt disturbance events, and age are often non-linear
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in nature and can be modelled well using a GAMM. An advantage of GAMMs is

their ability to incorporate both fixed and random effects to account for repeated

measures (e.g. individual trees). A GAMM was built to characterize the effect of

climatic variables, age, tree group, storm occurrence and variations among individual

trees on their growth. The model was constructed using the gam function of mgcv

package in R (Wood, 2007) (Refer to Appendix A) using the following equation:

ln(RW) = I + s(temp) + s(precip) + tree group + s(age, by−− tree group) +

storm surge disturbance + treeIDre (2.2)

where (I ) is the parametric estimate of the intercept and (s) represents the in-

clusion of a cubic regression spline that detects and allows non-linear response of

raw ring width series of individual tree cores (RW ) to each predictor variable. The

climate was characterised using mean seasonal temperature (temp) and total an-

nual precipitation (precip). For each year, monthly temperature was averaged across

the following seasons: Spring (April to June), Summer (July to September), Fall

(October to December), and Winter (January to March) (see Kirwan et al., 2007).

Precipitation was summed across the whole year. A fixed categorical variable (tree

group) was included in the model to determine the contribution of tree groups (low

and high elevation trees) to variance in ring-width. The (age) predictor represents

the age of the trees estimated by the method developed by Duncan (1989). As the

mean age of low (81 years) and high (103 years) elevation trees in 2015 differed by

22 years, a (by = tree group) argument was included in the age predictor to model

potentially different trends over time in low and high elevation trees. The categorical

predictor (storm surge disturbance) was included as a logical class variable to rep-

resent whether or not an extreme storm surge event affected the study site during
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a given year. The climate variables (temp and precip), tree age (age), tree group

and storm occurrence (storm surge disturbance) were included in the model as fixed

effects. The variation among individual trees was incorporated as a random effect

(treeIDre) so that the model produces a random coefficient for each tree core, which

is modelled as a Gaussian random effect. Smoothing parameters of the spline, knots

and rigidity were decided using the generalized cross validation method such that two

knots were equally spaced per 3 oC change in seasonal temperature, 400 mm change

in precipitation, and 15 years increase in age.

2.3.3 Event Year Analysis

The year to year variation in tree-ring widths contain information about the re-

lationship of the tree with its environment. We define event years as years with a

remarkable increase or decrease in radial growth at an individual tree-level. Event

years were calculated on raw ring-width series of individual trees using the relative

growth change method (Schweingruber et al., 1990) to determine if there were low-

growth episodes following the storm surge events listed in Table 2.1. In this method,

relative growth change is measured as the ratio of ring width in the current year (rwt)

and the average growth in 4 preceding years (rwt−4) for individual trees. Figure 2·6

shows a representative ring width series to illustrate the variables used to calculate

the relative growth change. The percent relative growth change (RGC) was calculated

using the following equation:

RGC (%) =
rwt − rwt−4

rwt−4

× 100 (2.3)

The resulting relative growth changes were then used to identify event years for

the trees. A positive event year was defined as the year with at least 60% increase

in growth, whereas a negative event year was defined as the year with at least 40%
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Figure 2·6: A representative ring width series illustrating the variables
used to calculate percent relative growth change (RGC). rwt is the ring
width in the year for which RGC is calculated and rwt−4 is the mean
growth in the preceding 4 years.

decrease in growth as compared to the average growth in the preceding four years

following Schweingruber et al. (1990). The event year analysis was performed using

the pointer.rgc function of pointRes package in R (van der Maaten-Theunissen et al.,

2015) (Refer to Appendix A).

2.3.4 Superposed Epoch Analysis

Superposed Epoch Analysis (SEA) is a statistical method used to isolate response

signals to key events (in this case, storm surges) which may be difficult to detect in

the presence of noise from other competing influences operating at similar time scales.

The SEA method applies simple compositing to sort data into categories dependent

on 'key events' for synchronization and then compares the means of those categories.

Theoretically, a causal response to a disturbance event should emerge in the mean

(composite), while the noise from other sources in the data should cancel.

SEA was performed using the sea function of dplR package in R (Bunn, 2008) to

isolate growth response signals to extreme storm surge events (Refer to Appendix A).

SEA was conducted on RWI of individual trees, as well as, group and stand-level

mean chronologies. The ring-width index was averaged at 13 temporal lags centered

on the key dates thereby creating a composite of the tree-ring response in the year

of disturbance (lag year 0), and in each of the six years preceding and following the

disturbance. Our study involves five key dates representing a combination of highest
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storm surge magnitude and duration: 1933 Chesapeake-Potomac Hurricane, 1962 Ash

Wednesday Nor’easter, 1998 Nor’easter, 2003 Hurricane Isabel, and 2009 Nor’Ida.

Individual ring width indices in each key date window were normalized to minimize

the chance that a single anomaly may unduly influence the composite analysis. Ten

thousand bootstrap samples were used to compute 95% confidence intervals for the

scaled RWI for each year in the superposed epoch. The 2011 Hurricane Irene and

2012 Hurricane Sandy could not be included as a key date in SEA as ring-width data

for six years post-storm was not available.

2.3.5 Forest Resilience to Storm Surges

From the results of the superposed epoch analysis and event year analysis, a

4-year low-growth (disturbance) period was identified beginning at the year of the

storm surge events (Table 2.1) and three years following it. The characteristics of

each storm event differ in terms of proximity to the site, wind speeds, storm surge

height, and duration of flooding, and may thereby affect tree growth differently. To

characterize this effect, a two-way analysis of variance (ANOVA) was performed on

ring-width indices as a function of tree group, storm effect, and their interaction using

the aov function of stats package in R. The tree group factor was categorized into

two classes: low and high elevation trees. The storm effect factor was categorized into

seven classes: disturbance period associated with the 1933, 1962, 1998, 2003, 2009,

and 2011 storms, and no storm (the remaining years during the 1904-2015 period

when no extreme storm surge event affected the study site). In order to meet the

assumptions of normality and homogeneity of variances, the ring-width indices of

individual trees were log transformed. The two-way ANOVA was followed by Tukey’s

HSD post hoc test using the TukeyHSD function to localize the significant differences

among tree groups and storms, and view the pairwise comparisons at p-value <0.05.

Having concentrated solely on ring-width growth in the above mentioned method,
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we analyzed the resilience of the stand during disturbance periods associated with

four extreme storm surge events: 1933 Chesapeake-Potomac Hurricane, 1962 Ash

Wednesday Nor’easter, 1998 Nor’easter, and 2003 Hurricane Isabel. The resilience of

a system is defined as the extent of perturbation it can experience before it under-

goes a shift to an alternative state (Holling, 1973; Scheffer et al., 2001). In simpler

terms, it is the capacity of forests to reorganize while undergoing changes so as to

retain their original function, structure, identity and feedbacks (Folke et al., 2004).

We computed three metrics: resistance, recovery, and resilience, according to the def-

initions described in Lloret et al. (2011) to characterize how the trees respond to and

recover from disturbance due to the storm. These metrics were compared between

trees belonging to the low and high elevation groups to determine if the resilience of

the trees varied as a function of distance from the forest-marsh boundary.

Resistance can be defined as the inverse of radial growth reduction during distur-

bance and was estimated as:

Resistance =
RWIDr

RWIPreDr

(2.4)

Recovery corresponds to the ability of the trees to recover relative to the damage

experienced by them during the disturbance, and was estimated as follows:

Recovery =
RWIPostDr

RWIDr

(2.5)

Resilience corresponds to the capacity of the trees to reach their pre-disturbance

performance levels, and was estimated as follows:

Resilience =
RWIPostDr

RWIPreDr

(2.6)

Where, RWIDr, RWIPreDr and RWIPostDr, represent the mean ring-width indices

22



of each tree during the low-growth period, four years before the low-growth period

and four years after the low-growth period, respectively. The selected low growth

periods (Dr) were 1933-1936, 1962-1965, 1998-2001, 2003-2006. Hereafter we refer

to each of these according to the first year: 1933, 1962, 1998 and 2003, respectively.

Since the tree-ring record used in this study is only until 2015, the PostDr period

corresponding to the 2009 Nor’Ida, 2011 Hurricane Irene, and 2012 Hurricane Sandy

could not be defined and were therefore not used in this analysis.

Furthermore, one sample t-tests were performed to determine if the resistance,

recovery and resilience of low and high elevation trees were significantly different from

the base value 1 indicating a significant change in growth patterns at a 95% confidence

level. A two-way ANOVA was then performed on each of the three metrics (resistance,

recovery, and resilience) as a function of tree group, storm effect, and their interaction

to determine if there were significant differences in these indices between the two

tree groups and between different disturbance periods associated with extreme storm

surge events. The tree group factor was categorized into two classes: low and high

elevation trees. The storm effect factor was categorized into four classes: disturbance

period associated with 1933, 1962, 1998 and 2003 storms. Any significant results from

the two-way ANOVA were investigated further using Tukey’s HSD post hoc test to

localize the significant differences in resistance, recovery and resilience among tree

groups and storms, and view the pairwise comparisons at p-value <0.05.

23



24

Chapter 3

Results

This chapter presents the results showing the relationship of radial growth to

climate and extreme storm surge events on the Eastern Shore of Virginia National

Wildlife Refuge. This chapter is divided into two subsections. The first section

describes the variations in radial growth of the sampled trees over time, their age

and lists any growth suppressions observed. The second section describes the results

of statistical analysis used to determine the influence of climate and extreme storm

surge events on tree growth and to understand the overall forest dynamics.

3.1 Tree Growth and Age

Radial growth of the trees was found to be consistent over time with a few strong

growth suppressions. Figure 3·1 shows the stand-level mean chronology. Strong

growth suppressions were observed post-1917, 1933, 1955, 1963, 1979, 1999, 2002,

2009 and 2012. Similar growth suppressions were also seen in the group-level mean

chronologies (low and high elevation trees). The high variance at the start of the

chronology (Figure 3·1) may be due to low sample size prior to 1920.

Pith was present only in four of the sampled trees. The pith years for the remaining

trees were estimated as described in Section 2.2.1 to determine the age of the trees.

Figure 3·2 shows the results of pith estimation. The mean age of the stand, low, and

high elevation tree groups in 2015 were 89, 81, and 103 years, respectively. Overall,

the age of the 25 sampled trees ranged between 60 and 113 years, of which 11 trees

were older than 100 years.
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3.2 Influence of Climate and Extreme Storm Surges on Tree Growth

3.2.1 Response Function Analysis

Response function analysis showed no significant correlation between the stand-

level mean chronology and temperature and precipitation at p-value < 0.001 (Fig-

ure 3·3).
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Figure 3·3: Response coefficients of stand level mean tree-ring
chronology to temperature and precipitation from previous April (a)
to current September (S) for the period 1904 - 2015. The black solid
lines represent 99.9% confidence intervals.

3.2.2 Generalized Additive Mixed Model

Variations in radial growth of the trees was modeled by climate, age, storm surge

disturbance and individual tree variations, with the final GAMM explaining 49.80%

of deviance in radial growth. Spring, summer, fall, and winter temperature, total
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precipitation, tree age, storm surge disturbance and variation among individual trees

were found to be significant predictors of radial growth (p-value < 0.05) (Table 3.1).

Tree groups based on distance from the forest-marsh boundary was found to be a non-

significant predictor at a 95% confidence level. Overall, variation among individual

trees explained the highest proportion of deviance in radial growth (18.96%) followed

by tree age (14.54%). Total annual precipitation (1.65%) explained slightly more

deviance in radial growth as compared to the mean temperatures in spring (0.45%),

summer (0.38%), fall (0.35%), and winter (0.16%). Total annual precipitation and

mean seasonal temperature show variable influences on radial growth.The standard-

ized partial predictors of radial growth are shown in Figure 3·4. High precipitation

influenced radial growth negatively. High radial growth was observed in both low and

high elevation trees at a young age (< 20 years old) and a decline in radial growth

was observed as the trees grow older (> 90 years old).
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Predictors F-statistic Deviance p-value
Explained (%)

Winter temperature 3.117 0.16 0.020

Fall temperature 12.468 0.35 < 0.001

Summer temperature 14.533 0.38 < 0.001

Spring temperature 10.715 0.45 < 0.001

Precipitation 32.270 1.65 < 0.001

Tree age (High) 128.828 14.54 < 0.001

Tree age (Low) 70.002 < 0.001

Individual tree effects 31.215 18.96 < 0.001

Storm surge disturbance 58.701 NA < 0.001

Tree group (Low or high trees) 0.098 NA 0.754

Table 3.1: Model statistics of radial growth in Pinus taeda. The
approximate deviance explained by individual predictors and their cor-
responding F-statistic and p-values are listed. Predictors with p-value
<0.05 are considered statistically significant. Mean seasonal tempera-
tures, total annual precipitation, and tree age were modelled as fixed
effects using cubic regression splines. Storm surge disturbance and tree
group were included as fixed categorical variables and variations among
individual trees was modelled as a random effect. Total deviance ex-
plained: 49.80%, adjusted R2: 0.489.
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Figure 3·4: (A-G) Partial predictors of radial growth in Pinus taeda
estimated using cubic regression splines in GAMM. Dashed lines rep-
resent 95% confidence intervals.

3.2.3 Event Year Analysis

A relationship between decline in radial growth and storm surge events was ob-

served at an individual tree level. Almost all trees show a negative event year (≥ 40%

decline in growth compared to average growth in preceding four years) following the

major storm surge events of 1933, 1962, 1998, 2003, 2009, 2011, and 2012 in Virginia
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(Figure 3·5A). A relatively higher number of low elevation trees exhibit a decline in

growth as compared to high elevation trees, following the 1933, 1962 and 1998 storms

(Figure 3·5B and Figure 3·6).

An increase in the number of trees showing a negative event year was observed

for up to three years following the extreme storm surge events. Following the 1933

storm surge event, about 60% of low elevation trees and 50% of high elevation trees

showed a negative event year by 1936 (Figure 3·6). After the 1962 storm surge event,

about 70% of the low elevation trees and only 10% of the high elevation trees showed

a negative event year by 1965 (Figure 3·6). After the 1998 storm surge event, about

55% of the low elevation trees showed a negative event year by 2001 (Figure 3·6). For

the 2003, 2009, 2011 and 2012 storm surge events the percentage of trees showing

negative event years in three years post-storm is variable. Growth suppressions were

also observed between 1955-1957 and 1978-1980 (Figure 3·6).

3.2.4 Superposed Epoch Analysis

Superposed epoch analysis revealed a common growth response signal of declining

ring-width indices (RWI) to the five major storm surge events analyzed (Figure 3·7).

The decline in RWI starts in the year of the storm surge and a relatively large de-

crease in RWI is observed 3-4 years after the storm. At a stand level (i.e., using

the mean chronology of all trees), a declining trend in RWI is observed for up to

three years following the storm surge event, after which the RWI starts recovering.

A similar response is observed in high elevation trees. However, low elevation trees

show a decline in RWI for up to four years after the storm surge event, after which

it begins to recover. Because of the occurrence of storm surges associated with the

1998 Nor’easter, 2003 Hurricane Isabel, and 2009 Nor’Ida, within short intervals (¡

13 years) there is a bias introduced in the pre-storm lag years (-6 to -1).
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Figure 3·5: Relative growth change and event years for individual
trees with the major storm surge event years marked in red. (A) Dot
plot showing negative event years for individual trees at the study site.
(B) Panels I-V show gradual relative growth change post the 1933, 1962,
1998, 2003 and 2009 storm surge events, for time windows marked I-V
in Figure 3·5A. Majority of the trees show a negative event year (≥
40% decline in growth), three years post-storm.

32



0
5

1
0

1
5

S
a
m

p
le

 S
iz

e

1920 1940 1960 1980 2000

0
5

1
0

1
5

1920 1940 1960 1980 2000

Year

B.

A.

S
a
m

p
le

 S
iz

e

1
0
0

P
e
rc

e
n
ta

g
e
 o

f 
T
re

e
s

0
2
0

4
0

6
0

8
0

1
0
0

P
e
rc

e
n
ta

g
e
 o

f 
T
re

e
s

0
2
0

4
0

6
0

8
0

Figure 3·6: Percentage of trees showing negative event years among
the (A) low elevation trees and (B) high elevation trees at the study
site. Grey line indicates the sample size and red markers on the x-axis
represent the seven storm surge events considered in this study.
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Figure 3·7: Results of SEA conducted on mean chronology of (a) low
elevation trees (b) high elevation trees and (c) all trees, indicating the
response of radial tree growth for a 13-year window centred on dates
of five major storm surges recorded in Virginia (Refer to section 2.3.4).
Individual ring width indices in each key date window were normalized
to minimize the chance that a single anomaly may unduly influence the
composite analysis. Bars above and below the x-axis indicate above and
below average radial growth, respectively for the 13-year window. De-
clining growth trend across years is indicative of low-growth periods,
whereas, a growing trend across years indicates radial growth recov-
ery. Dark grey shading shows statistically significant (at a 95% sample
confidence) growth anomalies. (d) Summary of SEA conducted on in-
dividual trees. Dark grey shading shows the percentage of trees with
statistically significant (at a 95% sample confidence) growth anomalies.

34



3.2.5 Forest Resilience to Storm Surges

The mean RWI of low and high elevation trees during the low-growth (disturbance)

period corresponding to the 1933, 1962, 1998, 2003, 2009, and 2011 storm surge events

is shown in Figure 3·8. To determine if the mean RWI significantly differed between

the two tree groups and between disturbance periods associated with extreme storm

events, a two-way ANOVA was performed, the results of which are listed in table 3.2.

A statistically significant effect of storm surge events and the interaction between

tree groups and storm surge events on RWI was observed. Pairwise comparison

using Tukey’s HSD post hoc test indicated that mean growth of high elevation trees

was significantly lower (p-value <0.05) during the disturbance period associated with

the 1933, 2003, and 2009 storm surge events than that during the 1962 and 1998

storms. In addition, mean growth of high elevation trees during the disturbance

period associated with the 2011 storm surge event was significantly (p-value <0.05)

lower than that during the 1998 storm only. No significant differences in mean growth

of low elevation trees were observed between the analyzed storm surge events at 95%

confidence level. In addition, no significant consistent difference was observed between

low and high elevation trees during all the disturbance periods.
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Figure 3·8: Interaction plot showing the mean ring-width index for
low and high elevation trees during disturbance periods associated with
extreme storm surge events. Error bars represent one standard devia-
tion of the mean RWI estimate.

Factors df Sum Sq Mean Sq F-value p-value

Tree Group 1 0.0 0.038 0.157 0.692

Storm Event 7 19.3 2.764 11.358 <0.001

Interaction 7 6.8 0.965 3.966 <0.001

Table 3.2: Results of two-way ANOVA for logarithm of ring-width
index by tree group, storm event, and their interaction. df: degrees
of freedom, Sum Sq: Sums of Squares and Mean Sq: Mean squares.
Factors with p-value <0.05 are considered significant.

The radial growth of low and high elevation trees showed a mixed response to

storm surges in terms of resistance, recovery and resilience (Figure 3·9). Low eleva-

tion trees showed a significantly (p-value <0.05) low resistance and resilience towards
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the 1933 storm surge event. During the 1962 storm surge event, high elevation trees

showed a significantly (p-value <0.05) low mean recovery and resilience. Both tree

groups had good resistance to this storm surge event (mean ≈1 or higher). Both

tree groups also had good resistance and resilience towards the 1998 storm surge

event (mean ≈1 or higher). A significantly low (p-value <0.05) mean resistance and

resilience towards the 2003 storm surge was observed in high elevation trees. Ex-

cept for the difference in resilience of low and high elevation trees during the 2003

disturbance period, the two-way ANOVA and Tukey’s HSD post hoc tests indicated

no statistically significant differences in resistance, recovery and resilience between

the two tree groups, between the different disturbance periods analyzed or their in-

teraction at a 95% confidence level (Refer to Appendix C). Further details on the

magnitude of mean resistance, recovery, and resilience of low and high elevation trees

can be found in Table 3.3.
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Index Tree Group 1933 1962 1998 2003

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Resistance Low 0.72* 0.07 1.31* 0.52 1.04 0.24 1.17 0.87

High 0.98 0.25 0.97 0.21 1.25* 0.31 0.66* 0.33

Recovery Low 0.85 0.34 1.05 0.30 1.07 0.64 1.03 0.31

High 1.08 0.51 0.87* 0.14 0.89 0.44 0.80 0.39

Resilience Low 0.63* 0.29 1.33* 0.59 1.04 0.46 1.11 0.67

High 1.05 0.50 0.83* 0.16 1.09 0.57 0.45* 0.16

Table 3.3: Mean resistance, recovery, and resilience and the corre-
sponding standard deviation (S.D.) for low and high elevation trees for
the 1933, 1962, 1998 and 2003 disturbance periods. * Represents in-
dices that are significantly different (p-value <0.05) from the base value
1 as indicated by one-sample t-tests.
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Chapter 4

Discussion

Numerous studies have analyzed the effect of long-term trends in climate and sea-

level (Barber et al., 2000; Byun et al., 2013; Douglass, 1920; Kirwan et al., 2007) and

shown the potential association between low-growth episodes and disturbances from

storm events (Johnson and Young, 1992; Samuelson et al., 2013). In addition, given

the complex interaction between climate, disturbances, local landform characteristics,

and tree physiology, there is a need to better understand the factors affecting tree

growth in coastal forests at a site-specific level. In this study, dendrochronological

and statistical methods were employed to achieve two main objectives:

1. Identify periods of declining tree ring growth following storm surges.

2. To understand the response and resilience of vegetation in the Mid-Atlantic

coastal region, on the Eastern Shore of Virginia National Wildlife Refuge, to

extreme storm surge events.

The interpretation of the results presented in Chapter 3 are discussed below, in

the context of the two main objectives mentioned above.

4.1 Influence of Age, Individual Tree Variability and Climate

Tree age is an important variable that influences radial growth (Table 3.1). Ini-

tially, the low and high elevation trees show a reverse-J growth pattern, typical of

trees growing in an increasingly competitive environment. Both tree groups display

high radial growth prior to age 20 and lower radial growth after 90 years (Figure 3·4).



A possible scenario is that rapid radial growth occurred until canopy closure at the

age of 20 years, after which growth begin to decline due to increasing competition,

structural changes and shifts in carbon allocation associated with canopy closure and

maximum foliage (Smith and Long, 2001). This is consistent with the growth pattern

observed by Reams (1996) in Pinus taeda from the Virginia Coastal Plain. Bendtsen

and Senft (1986) also observed decline in radial growth of Pinus taeda from North

Carolina until the age of 12 years after which the ring-width remained relatively con-

stant till the age of 30 years. The drop in radial growth of both low and high elevation

trees post-90 years may be associated with the beginning of senescence.

Furthermore, variations among individual trees was found to be a significant pre-

dictor that explained the highest proportion of deviance in radial growth (18.96%)

(Table 3.1). This could be attributed to microsite variability, competition, and vari-

ations in tree vigor (Amateis and Burkhart, 2016; Bullock and Burkhart, 2005; Ryu

et al., 2013). Microsite effects include the heterogeneity in soil moisture levels and

nutrient availability across relatively small distances within the study site which

can affect the competition among trees (Amateis and Burkhart, 2016; Bullock and

Burkhart, 2005; Fajardo and McIntire, 2007). Competition involves the struggle be-

tween individual trees to acquire limiting resources like light, water, and nutrients

that together determine rates of carbon acquisition (Grimes, 2001).

Radial growth was also found to be influenced by mean seasonal temperature and

total annual precipitation, although the deviance explained by these predictors were

relatively low as compared to tree age and individual tree variability (Table 3.1).

Radial growth was found to be negatively associated with high precipitation (Fig-

ure 3·4). A plausible explanation to this could be water stress associated with an

increase in saturation of the soil and associated low aeration (Fowells et al., 1965;

Schultz, 1997).
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4.2 Influence of Storm Surges

A strong association is observed between the decline in radial growth and storm

surge events associated with hurricanes and nor’easters on the Eastern Shore of Vir-

ginia National Wildlife Refuge (Figure 3·5 and Figure 3·7). This decline in radial

growth of Pinus taeda was observed for up to four years following the seven extreme

storm surge events analyzed in this study (Figure 3·5 and Figure 3·7). Growth sup-

pression observed in both low and high elevation trees during the 1978-1980 period

(Figure 3·6) may be associated with the 1978 Northeastern United States blizzard.

While the cause of a strong growth suppression during the 1955-1957 period (Fig-

ure 3·6A) could not be analyzed as no local tidal records are available for that period,

we hypothesize this low-growth period to be associated with the 1954 Hurricane Hazel

and 1955 tropical storms Connie and Diane. The growth suppression following storms

observed from our study are in accord with several other works. Johnson and Young

(1992) observed a similar association between decline in ring-width of Pinus taeda and

occurrence of hurricanes and nor’easters on the Delmarva barrier islands. Samuelson

et al. (2013) and Robichaud and Begin (1997) also reported a similar 3 to 4 year

growth decline in ring-width following storm events.

We associate the growth reduction observed in Pinus taeda with flooding and/or

storm wind effects. Flooding affects the soil structure, salinity, decreases or elimi-

nates soil O2, accumulates CO2, produces potentially toxic compounds, reduces Fe

and Mn, and induces anaerobic decomposition of organic matter (Kozlowski, 1997;

Ponnamperuma, 1984). These changes in soil properties can affect the physiological

functions of Pinus taeda. Soil salinization due to flooding has been reported to cause

browning and loss of needles or leaves in Pinus taeda along with decrease in nutrient

use efficiency, nitrogen retention and physiochemical retention mechanisms (Blood

et al., 1991). Soil inundation can also reduce root growth of Pinus taeda (DeBell
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et al., 1984). The reduced supply of oxygen to tree roots and sedimentation during

flooding can further damage or injure the roots (Bratkovich et al., 1993; Kozlowski,

1985). Wind associated with the hurricanes and nor’easters have been reported to

affect the growth of Pinus taeda by increased salt spray (Levy, 1983), damage or loss

of branches and defoliation (Gresham et al., 1991; Negrón-Juárez et al., 2010; Brokaw

and Walker, 1991).

Major losses in leaf surface area due to the storm would result in reduced radial

growth of Pinus taeda until the leaf surface is replaced (Kuprionis, 1970). Wiley and

Zeide (1991) observed a reduction in diameter growth of Pinus taeda for 8 years after

the 1974 ice storm in southeast Arkansas that caused severe crown damage, bending

and breakage of stems; the following 6 years however showed similar or increased

diameter growth of broken trees relative to undamaged trees (See also Bragg and

Shelton (2010)). Belanger et al. (1996) also reported lack of recovery in diameter

growth of Pinus taeda with severe crown damage for a 5-year period following the

1983 storm in central Georgia. Similar effects resulting in reduced radial growth of

Pinus taeda were observed in our study for up to four years following the storms. The

decline in radial growth during the disturbance period can be further explained by

the allocation of carbohydrates to dormant buds, branch formation, and to add roots,

thereby giving precedence to the demands for restoring crown components and roots

in damaged trees over lower stem growth (Belanger et al., 1996; Bragg and Shelton,

2010; Shelburne et al., 1993; Waring and Pitman, 1985).

Radial growth usually begins to recover after the disturbance period depending

on the frequency of storms in the immediate future. High frequency of disturbances

is expected to accelerate environmental change and deplete individual tree reserves

needed to withstand and overcome stressful episodes, thereby reducing their resilience

(Lloret et al., 2011). One disturbance can increase the susceptibility of the forest
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to another disturbance (Oliver and Larson, 1996). The combined effect of successive

disturbances of different nature can lead to negative responses and slow forest-canopy

recovery (Dı́az-Delgado et al., 2002; Payette and Delwaide, 2003). Low elevation

trees, which lie closer to the marsh, are subject to low magnitude storm surges more

often compared to the high elevation trees, which are further inland. The increased

exposure of low elevation trees to storm surges, could be the reason for the relatively

higher number of low elevation trees exhibiting a decline in growth as compared to

high elevation trees, following the 1933, 1962 and 1998 storms as seen in the results of

event year analysis (Figure 3·5B and Figure 3·6). However, considering that decline

in growth of both low and high elevation trees was variable following the 2009, 2011,

and 2012 storm surge events, no definite conclusion about the impact of storm surge

events as a function of distance from the forest-marsh boundary can be made.

4.3 Forest Resilience

The resistance, recovery, and resilience to storm surges varied between low and

high elevation trees (Table 3.3). The forest resilience towards storm surge events

was found to be partially related to the timing of the storm, i.e., whether the storm

occurred during the growing season or the dormancy period. Flooding during the

growing season, especially in late spring, is found to be more detrimental to the

immediate tree growth than flooding during the dormant season (Bratkovich et al.,

1993). This is consistent with the results of two-way ANOVA on ring-width indices

as a function of tree group and disturbance period associated with storms which indi-

cated a significantly lower (p-value <0.05) mean growth in high elevation trees during

the disturbance period associated with the 1933 Chesapeake-Potomac Hurricane and

2003 Hurricane Isabel which occurred in the growing season than those occurring in

the dormancy period (1962 Ash-Wednesday Nor’easter and 1998 Nor’easter).
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Recovery of the trees is a function of the impact of the event inducing the dis-

turbance (Lloret et al., 2011). In our case, this impact which can be defined by the

magnitude of decline in ring-width during the disturbance period would be a function

of storm characteristics (proximity to the site, wind speeds, storm surge height, and

duration of flooding) as well as resistance of individual trees and overall stand dynam-

ics. Comparison of resistance versus recovery points towards an inverse relationship

as we expected (Figure 4·1). Strong resistance would indicate very low decline in

ring-width during the disturbance period. This can be interpreted as a low damage

fast recovery situation. This tradeoff between resistance and recovery after extreme

storm surge events could occur if both these components at least partially depend on

the amount of stored carbon reserves needed to withstand and overcome the stress

(Galiano et al., 2011). More resilient trees showed higher recovery (Figure 4·1) which

could be attributed to either high amount of stored reserves or increased availability

of resources due to a decrease in competition. In addition, we observe a very gentle

but positive linear trend between resistance and resilience for low elevation trees dur-

ing storms which occurred in the dormant season (Figure 4·1). This indicates that

if the impact during the storm events was large (low resistance), the trees do not

return to their original pre-disturbance state (low resilience). These could be signs

of a progressive decrease in resilience over time on account of constant exposure to

coastal inundation due to its proximity to the forest-marsh boundary.

Although multiple factors (tree age, competition, microsite factors, and to some

extent macroclimate) provide an explanation for variation in growth of Pinus taeda

over time, the focus of our study points towards how discrete occurrences like ex-

treme storm surge events could influence the growth pattern periodically. Carefully

controlled experimental data would be necessary to prove the cause and effect rela-

tionship with storm surge.
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Chapter 5

Conclusions

The projected increase in frequency and intensity of storm surges with changing

global climate is likely to affect the Mid-Atlantic coastal forests adversely in the

foreseeable future. This study aimed at identifying periods of declining tree ring

growth following storm surge events and understanding the response and resilience

of vegetation in this region following these disturbances. Results indicated episodic

suppressions in radial growth for up to four years after the storm surge events, after

which the radial growth starts recovering. The impact of these disturbance events on

tree growth was found to be at least partially associated with the timing, intensity,

and frequency of the storms. An inverse relationship was observed between resistance

of trees to storm surge events and their recovery. In addition, we also observe low

resilience in trees closer to the forest-marsh boundary during storms occurring in the

dormant season pointing towards failure to successfully recover to its original pre-

disturbance state. We hypothesize this decrease in resilience to be associated with

constant flooding in low lying regions. Although the growth at our site was found to be

influenced by age, vigor, microsite factors, competition, and regional climate trends,

episodic disturbances due to storm surges appear to control radial growth trend from

time to time. Carefully controlled experimental data is required to identify concrete

thresholds for impact parameters which in turn would help in better managing storm

affected coastal forests.



Appendix A: Formulae and Functions Employed in the Study using R

Version 3.3.0

A.1 Response Function Analysis (RFA)

RFA implemented in R using the bootRes package was conducted with the follow-

ing function:

library(bootRes)

library(dplR)

dcc(chrono, clim, method = "response", start = -4, end = 9,

boot = TRUE, ci = 0.05)

Where chrono is the stand-level mean chronology. clim is the dataset containing cli-

mate variables (monthly mean temperature and total monthly precipitation). method

is a string specifying the calculation method, i.e., response or correlation. The start

and end represent, the the first and last month to be used as a predictor in the

response function. boot is a logical flag indicating whether bootstrap resampling is

to be performed. ci is the numerical value to set the test level for significance test

according to which the confidence intervals are adapted. The Bonferroni Correction

was then applied and confidence intervals were recalculated at a p-value of 0.001,

manually.
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A.2 Generalized Additive Mixed Model (GAMM)

The GAMM implemented in R using the mgcv package was computed with the

following function:

library(mgcv)

library(dplR)

gam(ln(chrono) ~ s(WinterTemp, bs='cr', k=5) +

s(FallTemp, bs='cr', k=4) +

s(SummerTemp, bs='cr', k=3) +

s(SpringTemp, bs='cr', k=4) +

s(Precipitation_mm, bs='cr', k=5) + Tree Group +

s(Age, by=Tree Group, bs='cr', k=7) +

Storm Surge Disturbance +

s(TreeID, bs='re'), method = "GCV.Cp")

Where chrono is the ring-width series of individual tree cores. WinterTemp, FallTemp,

SummerTemp and SpringTemp are the mean seasonal temperatures. Precipitation is

the total annual precipitation. Age is the age of the trees estimated as described in

Section 2.2.1. Tree Group is a categorical variable for the two tree groups - low and

high elevation trees. Storm Surge Disturbance is a categorical variable representing

whether an extreme storm surge event affected the study site during a given year.

TreeID accounts for variations among individual trees. bs='cr' represents predic-

tors modeled using a penalized cubic regression spline. bs='re' represents predictors

modeled as a random effect. k represents the number of knots used to control the

smoothness of the spline. GCV.Cp is the method used for estimating the smoothing

parameters.
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A.3 Event Year Analysis

Event year analysis implemented in R using the pointRes package was conducted

with the following function:

library(pointRes)

library(dplR)

pointer.rgc(chrono, nb.yrs = 4, rgc.thresh.pos = 60,

rgc.thresh.neg = 40)

Where chrono is the ring-width series of individual trees. nb.yrs is the number of

preceding years used in calculating relative growth changes. rgc.thresh.pos is the

threshold above which the percentage relative growth change of a tree and year is

considered a positive event year. rgc.thresh.neg represents the threshold below which

the percentage relative growth change of a specific tree and year is considered a

negative event year.

A.4 Superposed Epoch Analysis (SEA)

SEA implemented in R using the dplR package was conducted with the following

function:

library(dplR)

keyevents<-c(1933,1962,1998,2003,2009)

sea(chrono, keyevents, lag=6, resample = 10000)

Where chrono is the ring-width chronology. keyevents is a vector that specifies the

key event years (in this case, storm surges) for the superposed epoch. lag speci-

fies the number of lagged years. resample specifies the number of bootstrap sample

for computing the confidence intervals. SEA was performed using stand-level mean

chronology (all trees), group-level mean chronology (low and high elevation trees) and

ring-width indices of individual trees.
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Appendix B: Ring Width Statistics for Each Core used in the Study

Core First year* Last year Total years Mean ring-width (mm) Standard deviation

VCR201B 1940 2015 76 0.78 0.458
VCR202A 1943 2015 73 1.45 0.784
VCR202B 1939 2015 77 1.99 1.067
VCR203A 1962 2015 54 0.89 0.505
VCR203B 1943 2015 73 1.12 0.663
VCR207A 1956 2015 60 1.67 1.304
VCR207B 1946 2015 70 1.91 1.468
VCR210A 1949 2015 67 1.58 1.328
VCR210B 1944 2015 72 2.15 0.976
VCR212B 1950 2015 66 2.09 1.112
VCR213A 1967 2015 49 1.21 1.163
VCR213B 1957 2015 59 1.73 1.262
VCR214A 1950 2015 66 1.28 0.711
VCR214B 1949 2015 67 1.5 1.155
VCR216A 1927 2015 89 1.04 1.229
VCR216B 1931 2015 85 0.82 0.888
VCR217A 1920 2015 96 1.7 1.091
VCR217B 1927 2015 89 1.99 1.359
VCR219B 1944 2015 72 0.91 0.794
VCR220A 1920 2015 96 1.74 1.153
VCR220B 1921 2015 95 1.69 0.952
VCR221C 1952 2015 64 0.7 0.538
VCR222B 1920 2015 96 1.13 1.14
VCR223A 1949 2015 67 1.27 1.12
VCR223B 1953 2015 63 0.99 0.878
VCR224A 1931 2015 85 1.47 0.787
VCR224B 1924 2015 92 1.72 0.998
VCR228A 1962 2015 54 1.35 1.318
VCR228B 1961 2015 55 1.22 0.91
VCR229A 1910 2015 106 1.66 2.269
VCR229B 1911 2015 105 1.24 2.499
VCR229C 1910 2015 106 1.3 1.694
VCR231A 1913 2015 103 1.56 1.547
VCR231B 1914 2015 102 1.67 1.361
VCR232A 1913 2015 103 0.85 0.684
VCR232B 1951 2015 65 1.56 0.681
VCR233A 1912 2015 104 0.85 0.948
VCR233B 1912 2015 104 0.85 0.877
VCR233C 1914 2015 102 0.73 0.5
VCR234A 1905 2015 111 2.28 3.543
VCR234B 1904 2015 112 2.35 2.764
VCR235A 1910 2015 106 1.34 0.913
VCR235B 1908 2015 108 1.25 1.16
VCR238A 1904 2015 112 1.9 1.959
VCR238B 1915 2015 101 1.37 0.958
VCR241A 1924 2015 92 0.8 0.402
*First year is indicative of the measured ring year and does not necessarily represent the pith year.
Pith years were estimated using the method described in Section 2.2.1.
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Appendix C: Results of Two-Way ANOVA and Tukey’s HSD Post Hoc

Tests

C.1 Resistance

Factors df Sum Sq Mean Sq F-value p-value

Tree Group 1 0.555 0.555 2.349 0.129

Storm Event 3 0.881 0.294 1.243 0.300

Interaction 3 2.188 0.729 3.086 0.032

Table C.1: Results of two-way ANOVA for resistance by tree group,
storm event, and their interaction. df: degrees of freedom, Sum Sq:
Sums of Squares and Mean Sq: Mean squares. Factors with p-value
<0.05 are considered significant.

Although, a statistically significant effect of interaction between tree group and

storm surge events on resistance was observed, pairwise comparison using Tukey’s

HSD post hoc test indicated this significant relationship to be associated with non-

relevant combination of explanatory variables.

C.2 Recovery

Factors df Sum Sq Mean Sq F-value p-value

Tree Group 1 0.329 0.329 1.862 0.176

Storm Event 3 0.066 0.022 0.124 0.946

Interaction 3 0.488 0.163 0.922 0.434

Table C.2: Results of two-way ANOVA for recovery by tree group,
storm event, and their interaction. df: degrees of freedom, Sum Sq:
Sums of Squares and Mean Sq: Mean squares. Factors with p-value
<0.05 are considered significant.
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No statistically significant effect of tree group, storm surge event, or their inter-

action on recovery was observed at a 95% confidence level.

C.3 Resilience

Factors df Sum Sq Mean Sq F-value p-value

Tree Group 1 1.412 1.412 5.574 0.021

Storm Event 3 1.077 0.359 1.418 0.244

Interaction 3 3.204 1.068 4.217 0.008

Table C.3: Results of two-way ANOVA for resilience by tree group,
storm event, and their interaction. df: degrees of freedom, Sum Sq:
Sums of Squares and Mean Sq: Mean squares. Factors with p-value
<0.05 are considered significant.

A statistically significant effect of tree group and interaction between tree group

and storm surge events on resilience was observed. Except for the difference in re-

silience of low and high elevation trees during the 2003 disturbance period, the Tukey’s

HSD post hoc test indicated no other significant relationship between relevant com-

bination of explanatory variables at a 95% confidence level.
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