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The ChIP-seq-Defined Networks of Bcl-3 Gene Binding
Support Its Required Role in Skeletal Muscle Atrophy
Robert W. Jackman*, Chia-Ling Wu, Susan C. Kandarian

Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America

Abstract

NF-kappaB transcriptional activation is required for skeletal muscle disuse atrophy. We are continuing to study how the
activation of NF-kB regulates the genes that encode the protein products that cause atrophy. Using ChIP-sequencing we
found that Bcl-3, an NF-kB transcriptional activator required for atrophy, binds to the promoters of a number of genes
whose collective function describes two major aspects of muscle wasting. By means of bioinformatics analysis of ChIP-
sequencing data we found Bcl-3 to be directing transcription networks of proteolysis and energy metabolism. The
proteolytic arm of the Bcl-3 networks includes many E3 ligases associated with proteasomal protein degradation, including
that of the N-end rule pathway. The metabolic arm appears to be involved in organizing the change from oxidative
phosphorylation to glycolysis in atrophying muscle. For one gene, MuRF1, ChIP-sequencing data identified the location of
Bcl-3 and p50 binding in the promoter region which directed the creation of deletant and base-substitution mutations of
MuRF1 promoter constructs to determine the effect on gene transcription. The results provide the first direct confirmation
that the NF-kB binding site is involved in the muscle unloading regulation of MuRF1. Finally, we have combined the ChIP-
sequencing results with gene expression microarray data from unloaded muscle to map several direct targets of Bcl-3 that
are transcription factors whose own targets describe a set of indirect targets for NF-kB in atrophy. ChIP-sequencing provides
the first molecular explanation for the finding that Bcl3 knockout mice are resistant to disuse muscle atrophy. Mapping the
transcriptional regulation of muscle atrophy requires an unbiased analysis of the whole genome, which we show is now
possible with ChIP-sequencing.
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Introduction

Skeletal muscle atrophy is the result of a metabolic shift that

increases the rate of proteolysis and/or decreases the rate protein

synthesis in the cells that make up muscle. The initiating triggers

for this shift are varied, but fall into two main categories: the result

of a disease or pathology such as cancer, diabetes, HIV, major

body burns, and sepsis, or the loss of muscle as a result of

immobilization, bed rest, diaphragm breathing assistance, or

decreases in gravity as in space travel [1,2,3,4]. Since the triggers

of atrophy differ it might be expected that there are differences in

the cellular processes that control disuse and disease-induced

muscle atrophy [5,6].

Investigations into the signaling pathways activated by muscle

disuse due to the removal of weight bearing (i.e., unloading)

discovered that nuclear factor-kappaB (NF-kB) activity was

increased early and continuously [7,8,9]. The NF-kB transcription

factors showing increased localization to the muscle cell nuclei

were p50 and Bcl-3, but not p65 [7,10]. Viable knockouts of genes

for these two proteins made possible the finding that the

elimination of either gene alone would block muscle atrophy due

to unloading [8]. To identify the genes regulated by p50 or Bcl-3

that produce the atrophied phenotype, global gene expression

analysis was used to compare wild type and the two knockout

strains of mice in response to unloading [10]. The genes

upregulated in wild type mice that were not upregulated in

knockout mice due to unloading were from several muscle atrophy

gene functional groups including proteolysis. However this analysis

cannot distinguish direct vs. indirect target genes.

In the present study, we focused on finding the direct target

genes of NF-kB transcription factors during muscle unloading in

order to identify the genes producing atrophy. We used chromatin

immunoprecipitation followed by next generation sequencing

(ChIP-seq), a recently developed method in which the location of

particular transcription factors is mapped to the whole genome

during physiological or pathological changes. The active molecules

of NF-kB consist of a protein complex with two or more subunits.

In the case of p50 and Bcl-3 the active molecule is thought to

consist of a homodimer of p50, which contains the DNA

recognition and binding activity, and a bound molecule of Bcl-3

which has two transactivation domains for the induction of gene

expression [11,12]. Using antibodies for p50 and Bcl-3 to

immunoprecipitate the muscle chromatin followed by high-

throughput sequencing and high-resolution genome mapping,

we identified the genes that are being directly targeted by these

NF-kB transcription factors in unloaded muscle. In addition, we

identified the ontology pathways containing the genes found,

providing evidence for the cellular functions organized by NF-kB

in the process of muscle atrophy. Bioinformatic analysis showed

that Bcl-3 is responsible for organizing the proteolytic genes that
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Figure 1. Distribution of Bcl-3 binding peaks around transcription start sites (TSS) determined by Nebula/Galaxy. Blue represents the
plot of Bcl-3 peaks from unloaded muscle and gray represents the plot from peaks found in the input chromatin from unloaded muscle. The y-axis is
the proportion of peaks relative to all genes in the genome. Peaks are plotted every 20 bases from 22500 to +2500 relative to the TSS.
doi:10.1371/journal.pone.0051478.g001

Figure 2. Plot of phylogenomic conservation for the 2,817 Bcl-3 peaks produced by unloading. The peaks and surrounding genome
regions (21500 bp to +1500 bp) were compared to a database of Phastcon alignment scores for 31 placental mammals on the Galaxy/Cistrome
server. Phastcon scores are higher for sequence similarity and are weighted higher for species farther removed from mice phylogenetically. A
Phastcon score of 1.0 would reflect perfect identity in all 31 species. Conservation is highest at the center of the peaks indicating that the centers
share sequence homology between species, a sign that the sites of Bcl-3 binding are important to function.
doi:10.1371/journal.pone.0051478.g002
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contribute to unloading atrophy. The pathways regulated by Bcl-3

also include those of the transition from aerobic to glycolytic

metabolism in atrophying muscle. We have identified for the first

time, gene target networks regulated by a transcription factor (Bcl-

3) that is required for skeletal muscle atrophy.

Methods

Animals and Hindlimb Unloading
For the gene expression array and for ChIP-seq, 7-week-old

female wild type mice (C57BL/6J) were purchased from the

Jackson Laboratory (Bar Harbor, ME). Animals were provided

with chow and water ad libitum and housed individually in Boston

University Animal Care Facility. After 3 days of acclimation, mice

were randomly assigned to weight-bearing (WB) or hind limb

unloaded (HU) groups. Mice in the HU group had their hind

limbs elevated off the cage floor for 5 days to induce unloading

induced muscle atrophy, as described previously [10]. We used

published time course data from our microarray study [13] to

identify an appropriate time point, when the most genes are

differentially regulated, to use in undertaking a ChIP-seq study,

and in this way to capture the time during the atrophy process that

would best represent the time for binding of NF-kB transcription

factors to the gene targets of the NF-kB transcriptional network.

For reporter activity measurements, 7-week-old female Wistar

rats from Charles River Lab (Wilmington, MA) were used. 40 mg

of wild type or mutant MuRF1-promoter reporters were

transfected into rat soleus muscle as previously described [14].

Twenty four hours after reporter injection, rats were randomly

assigned to either the weight bearing group or the HU group. The

HU group of rats had their hind limbs removed from weight

bearing for 5 days by elastic tail cast as described previously [14].

The use of animals in this study was approved by the Institutional

Animal Care and Use Committee of Boston University (protocol

number 12-012).

ChIP-seq
Gastrocnemius and plantaris muscles were isolated from weight

bearing (i.e., control) or 5 day hind limb unloaded mice. Freshly

dissected muscle was minced and cross-linked in 1% formaldehyde

for 15 minutes, quenched with glycine and then frozen in liquid

nitrogen. Tissues from four legs were pooled, homogenized, and

chromatin isolated as we detailed previously [10]. This material

was subjected to sonication to yield chromatin fragments that were

on average 250 bp. An aliquot of sonicated chromatin was put

aside to be used as the input fraction. The rest of the chromatin

was diluted in IP buffer and split into groups for each antibody

(Bcl-3 and p50) and one group without any primary antibody. The

antibody treatments were for 16 hrs at 4uC with constant low

speed mixing. The antibody-chromatin complexes were captured

with Protein G magnetic beads. The chromatin was eluted from

the beads and crosslinks reversed, followed by pronase/RNase

treatment and precipitation of the DNA. One tenth of the material

was used in PCR for genes already shown to give positive ChIP-

PCR in order to test the ChIP. The different DNA libraries

isolated from the ChIP with Bcl-3, p50, no antibody, and non-

ChIP input chromatin were labeled for high throughput sequenc-

ing using the Illumina ChIP-seq Library kit. An aliquot of each

library was examined by acrylamide electrophoresis and Sybr-gold

staining to estimate the quality by size and intensity of the product

which appears as a smear with average size of 250 bp. The

Figure 3. Distribution of Bcl-3 peaks by location in genes. (A) ChIPseeqer genomic annotation for the 2,817 peaks of increased Bcl-3 binding
found in unloaded compared to control muscle. (B) ChIPseeqer genomic annotation for peaks found in the sequence alignments from the unloaded
muscle input chromatin which was sheared and used to create a library without any further manipulation (no immunoprecipitation). The peak finder
in ChIPseeqer was set to the same parameters as for the 2,817 Bcl-3 peaks in unloaded muscle and found 1,594 random peaks.
doi:10.1371/journal.pone.0051478.g003
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libraries were sent to The Whitehead Institute (Cambridge, MA)

where they were cleaned of adapter dimers using Ampure XL

beads. The cleaned libraries were tested by Bioanalyzer and qPCR

quality control was performed in order to determine how much of

each library to use. The libraries were sequenced using Illumina

Solexa sequencing on a GA II sequencer. The resulting sequences

from control and unloaded samples were aligned to the mouse

genome (mm9 version) using ELAND. The sequences were sent to

our lab in the ELAND format.

For the Bcl-3 ChIP we pooled two separate ChIP-seq

experiments by combining.bam forms of the alignments. There

were 40 million sequence reads in the control samples, of which

20.4 million were unique, and there were 52 million sequence

reads in the unloaded samples of which 25.9 million were unique.

The aligned sequences converted to.sam format were uploaded to

the peak finder program in ChIPseeqer [15]. These alignment files

were used for all subsequent analyses.

Total RNA Isolation and RT-qPCR
Gastrocnemius and plantaris muscles harvested from anesthe-

tized wild type mice from control and HU groups (n = 6 per group)

were snap frozen in liquid nitrogen and stored at 280uC before

use. Total RNA was isolated using the Qiagen miRNeasy Mini kit

(Valencia, CA) according to manufacturer’s instructions. Extracted

total RNA was treated with RNase-Free DNase I (Qiagen,

Valencia, CA), quantitated by UV spectrophotometry, and quality

checked by a 1% denaturing agarose gel as previously described

[10]. Five micrograms of total RNA was converted to cDNA in an

100 ml PCR reaction using random primers and Multiscribe

reverse transcriptase (Applied Biosystems, Foster City, CA).

mRNA expression was assessed using TaqMan Gene Expression

Assays and master mix (Applied Biosystems, Foster City, CA)

detected by an ABI 7300 Real-Time PCR system as described

previously [10]. Gene expression values were quantified by

comparing CT values of the unknown sample to the gene-specific

standard curve and normalized to the expression of beta-actin.

Microarray Processing and Analysis
Whole-genome gene expression profiling experiments were

carried out by the Boston University Microarray Core Facility.

Each group (control and unloaded) included 4 independent total

RNA samples with a minimal RIN number 8.0 verified by

Bioanalyzer 2100 (Agilent Technology, Palo Alto, CA). Each total

RNA sample was amplified, labeled, and hybridized on a mouse

Affymetrix Gene 1.0 ST array (Santa Clara, CA) per manufacture

instructions to measure expression of 28,853 well-annotated genes.

A total of 8 array images were acquired by GeneChip Scanner

3000 7G and quality assessed by Affymetrix Expression Console

(Santa Clara, CA). Gene expression signals were generated by

robust multi-array analysis (RMA) [16] using Brainarray MoGene

1.0ST custom CDF files [17]. Differential gene expression was

computed using the Comparative Marker Selection module in

Genepattern database (Broad Institute, Cambridge, MA) which

compares mean differences between control and unloaded groups

by two-way parametric t-test. P-value #0.05 and q-value #0.05

were used to identify genes that were significantly differentially

expressed with hind limb unloading. The microarray data

Figure 4. GO terms enriched in genes with Bcl-3 peaks during unloading. iPAGE analysis identified 23 GO terms over-represented (red bar)
by genes with Bcl-3 peaks in promoters due to muscle unloading. Text labeling indicates the name of the GO term and the associated GO
identification number.
doi:10.1371/journal.pone.0051478.g004
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reported in this paper have been deposited in the NCBI Gene

Expression Omnibus (GEO) with accession no. GSE40578.

Plasmids and Site Directed Mutagenesis
The mouse MuRF1 promoter luciferase plasmid which contains

4.4 kb of the 59 upstream MuRF1 promoter region was a gift from

S. Shoelson [18]. In silico analysis of transcription factor binding

sites in this 4.4 kb MuRF1 promoter region was performed by

Clover [19] which identified 3 putative NF-kB sites in the 59 2 kb

of the cloned promoter fragment. The 2 kb MuRF1-luc deletion

construct was created by cutting the MuRF1-luc plasmid with

NheI and SmaI, and ligating blunted ends to remove the 59 2 kb of

MuRF1 promoter sequence. This produced a promoter without

the 3 putative NF-kB sites. Also using the 4.4 kb MuRF1

promoter, site directed mutagenesis was used to mutate all 3

putative NF-kB sites of MuRF1-luc using PCR primers designed

by the QuikChange Primer Design Program (Agilent, Santa Clara,

CA). The oligonucleotides were designed in our lab and then

made by Invitrogen (Carlsbad, CA). The target sequences are

listed with the NF-kB site underlined and the mutated nucleotides

capitalized: kB1 59-caa act ctc agg ttt ctg aaa agt GAG ttt tct agt

gac aat ccc aaa gag-39, kB2 59- ccc aaa gag cac aga ctt aCT Caa

gtt cca gcg cta cca g-39, kB3 59- ccg ccc atg tgg gaa ctt GAG cat

ctc acc ctt tga ctt-39. A reaction was performed by mixing 100 ng

of each phosphorylated primer, 100 ng MuRF1-luc, 1.25 U

PfuUltra High-fidelity DNA polymerase (Agilent), and 20 U Taq

DNA ligase (New England Biolabs, Ipswich, MA) and then the

PCR was carried out in a thermal cycler set as follows: 95uC for

2 min (denature), 30 cycles of 95uC for 50 sec, 60uC for 50 sec,

and 68uC for 5 min, and followed by a final incubation at 68uC for

5 min (extension). After DpnI treatment, amplified PCR products

were transformed into XL10-Gold Ultracompetent bacteria

(Agilent) according to manufacturer’s instructions. The DNA

sequences of the wild type MuRF1 reporter, MuRF1 deletant, and

the MuRF1 3 kB mutant constructs were verified by Genewiz

sequencing services (South Plainfield, NJ).

Luciferase Assay
Soleus muscles transfected with plasmid DNA were homoge-

nized in 1 mL passive lysis buffer (Promega, Madison, WI).

Homogenates were centrifuged at 5,500 g at 4uC for 20 min.

Supernatant was collected, diluted 1:20, and mixed with 100 ml

luciferase assay reagents (Promega). Luciferase activity was

measured by a TD-20/20 illuminometer (Turner Designs Inc),

which reflected total muscle luciferase activity.

Statistical Analysis
For RT-qPCR and luciferase activity, a two-tailed independent

t-test was performed to determine statistical significance between

WB and HU groups. A P value less than 0.05 was considered

statistically significant.

Table 1. The genes from iPAGE ontology analysis.

GO category Gene Name Function

Protein catabolism (11 GO terms) Adam17 Activates some membrane receptors

Arih2 E3 ligase

Ate1 Arginyl transferase

Cul2 Component of ECS ubiquitination

Fbxo6 E3 ligase

Hspa5 Hsp 70 family member

Itch E3 ligase

Ppt1 Lysosomal degradation

Psen1 Intramembrane protein cleavage

Rlim Ring finger protein

Sod1 Reactive radical destroyer

Trim63 Muscle E3 ligase (MuRF1)

Ubr1 n-recognin for N rule proteolysis

Usp22 Ubiquitin thioesterase

Development (7 GO terms) Apc Wnt antagonist

Psap Sphingolipid recognition in lysosomes

Tcf7l2 Wnt signaling glucose metabolism

Eya3 Essential for myogenin activity

Glucose metabolism (4 GO terms) Pfkl phosphofructokinase

Pygm Glycogen phosphorylase

Phosphatases (1 GO term) Dusp3 Phosphatase, MAPK inhibitor

Ppm1g phosphatase

Ppp1cb Phosphatase catalytic subunit

Ppp1r12a Regulation of Ppp1c

doi:10.1371/journal.pone.0051478.t001
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Results

Characterization of Bcl-3 ChIP-seq
Since transcriptional activation of the p50-Bcl-3 complex will

not happen without Bcl-3 [11] we reasoned that its binding is the

best for following the active NF-kB complex in unloaded muscle at

a genome-wide level. Bcl-3 ChIP sequences from unloaded muscle

were put through the peak finding algorithm of ChIPseeqer [15],

which identifies peaks with increased Bcl-3 binding compared to

weight bearing muscle. By using a low stringency peak height

cutoff, 49,000 Bcl-3 peaks were found. These peaks were evenly

distributed across the mouse genome (Figure S1). Using a web

based tool called Nebula [20,21] a component of the Galaxy suite

of programs, the distribution of Bcl-3 peaks from unloaded muscle

were compared to random peaks found from the input fraction of

chromatin (Figure 1). This showed that the Bcl-3 ChIP had

succeeded in enriching many Bcl-3 binding sites (i.e., peaks) near

the activation sites of transcription across the entire genome.

We then took the sequence alignments from unloaded muscle

Bcl-3 ChIP-seq and compared them to weight bearing muscle

sequences in order to find peaks that were at least 2-fold increased

using the peak finder in ChIPseeqer. By using this level of

stringency for peak finding we obtained 2,817 Bcl-3 peaks in

unloaded compared to weight bearing muscle. Phastcon analysis

using the Cistrome/Galaxy program [21] was used to show that

the peaks were located at phylogenetically conserved sites

(Figure 2). Annotation of the parts of genes associated with

unloading-induced peaks showed that they were mainly in

Figure 5. Bcl-3 binding profile at Ubr1 and Ate1 genes. (A) An assembly of ChIP-seq data for the Ubr1 (chromosome 2) and (B) Ate1
(chromosome 7) genes, visualized by IGV. In both A and B, the top line is a representation of genomic size and location of the region. Vertical ticks
are 500 bp apart. The next rows are labeled as follows: Gene, the graphic for the name, location, and orientation for the gene nearest to the ChIP-seq
alignment. The medium thick dark line is the 59 utr of the gene and the thicker dark region is the first exon followed by a thin line with arrows which
is intron 1; Conservation, the track of Phastcons for sequence similarity among placental mammals; ChIPseeqer peak, the black rectangular block is
the location of the statistically-qualified peak of sequencing alignments called by the ChIPseeqer algorithm; HU Bcl-3, a representation of the.sam
alignments for the Bcl-3 ChIPseq of the unloaded muscle; WB Bcl-3, a representation of the.sam alignments for the Bcl-3 ChIPseq of the weight
bearing muscle; Input, a representation of the.sam alignments for non-ChIP unloaded chromatin; NF-kB site, location of a NF-kB consensus site
identified by JASPAR.
doi:10.1371/journal.pone.0051478.g005
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promoters (Figure 3). We then focused on the peaks in the

promoters of the genes found, from 24 to +2 kb relative to the

TSS (n = 845).

Gene Ontology Terms Identified by Genome-wide
Increased Bcl-3 Binding to Promoter Regions in Unloaded
Muscle

To find the important functional groups of genes that show

increased Bcl-3 binding with muscle unloading, we evaluated the

peaks found in unloaded compared to control muscle for gene

ontology terms/pathways. To do this we used the iPAGE

algorithm, a module of the ChIPseeqer set of computational

programs (Figure 4). iPAGE was set up to restrict its analysis to the

845 peaks (out of the 2,817 total) which were found in promoters

(24 kb to +2 kb relative to TSS). As with any gene ontology (GO)

mapping algorithm, iPAGE identifies GO terms in which the

peaks found are statistically over-represented relative to calcula-

tions for random distribution. The 23 GO terms that were found

for genes containing Bcl-3 peaks in unloaded muscle were from

three biological processes: protein catabolism, development/

differentiation and sugar/glucose metabolism. There were 24

genes found in the 23 GO pathways and these are presented in

Table 1.

The most abundant group with 14 genes in 11 GO pathways

was for protein catabolism. The genes are ones that function in

several aspects of catabolism in muscle including several E3 ligases

of the ubiquitin proteasome pathway, and importantly, two genes

that contribute to the cell catabolism driven by the N-end rule.

Those genes are Ubr1/E3a, the N-end recognin E3 ligase, and

Ate1, the arginyltransferase responsible for modifying several

amino acid amino termini for Ubr1 recognition. The sequence

alignments and locations for the peaks for these two genes have

been visualized by use of Integrative Genomics Viewer (IGV) [22],

(http://www.broadinstitute.org/igv/) and are shown in Figure 5.

For both genes, a Bcl-3 peak due to unloading was identified at an

evolutionary conserved region close to the TSS and was in close

proximity to a JASPAR matrices defined NF-kB site. In addition,

data for ChIP-seq with p50 antibodies showed p50 binding at or

very near the peak sites of Bcl-3 binding (data not shown). Another

E3 ligase found was Trim63/MuRF1, a muscle specific protein

thought to target heavy myosin chains during atrophy [23,24].

Also found in the GO pathways and shown in Table 1 are genes

that function in the reduction of reactive oxygen species, including

SOD1, and several phosphatases. The other GO terms having

genes represented are those involved in regulating myogenesis,

particularly in the Wnt pathway, and those in glucose metabolism,

including glycogen phosphorylase and 7-phosphofructokinase,

genes that liberate glucose and control its glycolytic metabolism

respectively. Several of the genes, especially the E3 ligases found as

Bcl-3 targets by ChIP-seq were subject to qPCR to verify gene

activation during unloading and these data are shown in Table 2.

The advantage of iPAGE is that it can find the most important

functions of the overrepresented genes having peaks with

unloading in an unbiased fashion. However, there are other genes

with Bcl-3 peaks in the promoter region that are likely to be

important to atrophy. For example, several proteolytic pathway

genes not identified by iPAGE also show Bcl-3 peaks with

unloading (Psmc1, Psmb7, Ube2b, Ubb, Cul4a, Rnf135, Rnf13,

Atg3). For transcription factors, Foxo1, Foxo3, and Cebpa show

peaks as well as several translation initiating genes including Eif4b

and Eif3f. All of the genes with unloading-induced increased Bcl-3

binding in their promoters are listed in Table S1.

Direct and Indirect Targets of Bcl-3
Since we were interested in further describing direct and

indirect targets of the Bcl-3 transactivator at the genome-wide

level, we used the algorithms of ChIPArray [25] to bring together

our ChIPseq data on Bcl-3 binding to promoters with the genes

whose mRNA was upregulated as determined by global gene

expression array (28,853 transcripts) of control vs. unloaded

muscle (Figure 6). ChIPArray found 241 direct targets, 5 direct

targets with indirect targets (transcription factors) and 305 indirect

target genes of Bcl-3. The indirect target genes, according to this

analysis, are controlled by the direct Bcl-3 targeted transcription

factors Max, Zfp740, Nfic, Cux1 and Pou2f1. Max appears to

regulate the largest number of indirect target genes.

Testing a Bcl-3 Binding Region in Gene Activation
In a previous paper, we found genes to be direct or indirect

targets of Bcl-3 based on gene expression in unloaded muscle from

wild type vs. Bcl3 knockout mice. We selected several of these

genes for further study that were thought to be involved with the

atrophy process. We identified NF-kB sites in these genes in silico

and we found ChIP-PCR support for increased Bcl-3 binding [10].

One of these genes, MuRF1, had three in silico NF-kB sites in the

4.4 kb region of the promoter that had already been cloned into a

luciferase reporter [18]. The present study identified MuRF1 by

iPAGE as being a Bcl-3 target in the GO categories of proteolysis.

The data identified a peak at one of the in silico-identified NF-kB

sites of the MuRF1 promoter. The alignments for the Bcl-3

binding site in the MuRF1 promoter are shown in Figure 7. Data

for ChIP-seq with p50 antibodies are also presented, indicating the

associated binding of p50 and a location for a ChIPseeqer peak

very close to the peak of Bcl-3 binding.

In weight bearing and unloaded muscle, we compared the

MuRF1 promoter-reporter activity from the 4.4 kb promoter and

a smaller MuRF1 reporter in which the 59 end was deleted by

removing the 2 kb upstream region containing all 3 NF-kB sites.

We also compared a MuRF1 reporter in which site mutagenesis

was used to abolish the 3 NF-kB sites located at 23.1, 24.1, and

24.2 kb of the 4.4 kb promoter (Figure 8). From these plasmids

we found that removal of the entire region containing NF-kB sites

completely abolished the increase in reporter activity due to

unloading, and specifically, that the decrease in activity is

dependent on NF-kB sites. A further test of the NF-kB-dependent

Table 2. qPCR of selected proteolysis genes with increased
Bcl-3 promoter binding.

Gene Fold activation

Arih2 2.1

Ate1 1.5

Fbxo6 1.8

Itch 1.4

Rlim 1.6

Rnf13 1.5

Psmb7 1.9

Sod1 1.8

Trim63 2.0

Ubb 1.8

Ubr1 1.7

Fold change, control vs. unloaded.
doi:10.1371/journal.pone.0051478.t002
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effect of Bcl-3 on the activity of the MuRF1 promoter was carried

out in vitro. Although not as complete as the effect in vivo, it is

clear in cell culture that mutation of the NF-kB sites alone is

sufficient to reduce Bcl-3 induction of the MuRF1 gene (Figure

S2).

Discussion

The location of unloading-induced Bcl-3 binding in promoters

across the genome demonstrates a remarkable molecular genetic

association between this NF-kB transcription factor and the

atrophy process in unloaded muscle. The most impressive finding

is the degree to which protein catabolic pathways were targeted by

this Bcl-3 regulatory network. The impartial gene ontology

algorithm called iPage was able to indicate that the major part

of the over-represented genes with Bcl-3 peaks due to unloading

were involved in protein degradation or its signaling. Of the

23 GO terms found, 11 were catabolic. In those groups there were

14 genes. Six of these genes were E3 ubiquitin protein ligases. Of

interest is that one of the E3s is Ubr1, the gene also known as E3a
ligase. It is one of the major recognition ligases for ubiquitinating

proteins that have destabilizing amino acids at their N termini. It is

noted in the literature that the ubiquitination present in atrophy is

largely due to the activation of the N-end rule pathway [26,27]. A

knockout of Ubr1 shows muscle specific abrogation of N-end rule

ubiquitination [28]. Another target gene of Bcl-3 and the N-end

rule pathway is arginyltransferase, the enzyme encoded by the

Ate1 gene, which puts an arginine destabilizing amino acid on the

amino termini populated by aspartic and glutamic acids and by

oxidized cysteine [29]. In addition to the ChIP-seq data, the

Figure 6. Network of direct and indirect Bcl-3 target genes during unloading. Display of ChIP-Array data from a comparison of 2,817 Bcl-3
binding peaks increased in unloading over controls vs. 3,334 genes with increased expression in unloaded muscles. A blue circle indicates the
location of Bcl-3. Projections from Bcl-3 in yellow are the direct targets including 5 direct transcription factor target genes, which are indicated in pink
circles. Projections from pink targets are indirect Bcl-3 targets indicated in gray. Thus, ChIP-Array found 241 direct targets, 5 direct targets with
indirect targets (the transcription factors) and 305 indirect target genes of Bcl-3 in the gene expression array data. The direct targets are those from
the Bcl-3 ChIP-seq list with some not identified because of gene name terminology differences in the ChIPArray format. However the direct targets
with indirect targets yields important evidence for a hierarchy of gene regulation.
doi:10.1371/journal.pone.0051478.g006
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mRNA for these N-end rule genes was found to be upregulated in

unloading. The other catabolic proteins fall in all major families of

protein degradation including lysosomal (Ppt1) and oxidative

pathways (Sod1).

For one E3 ubiquitin ligase, MuRF1, we investigated the

importance of the NF-kB sites in the promoter region, found by

our ChIP-seq data and by in silico analysis, with MuRF1

promoter-reporter activity due to muscle unloading. Deletion of

the distal 2 kb region of the 4.4 kb MuRF1 promoter construct

contained all the putative NF-kB sites. Unloading induced

activation of MuRF1 was abolished in this deletant MuRF1

reporter. The remaining 2.4 kb of the proximal MuRF1 promoter

contains consensus sites for other factors such as Foxo (not shown)

suggesting that it is not required for unloading regulation of

MuRF1. We found that consistent with our ChIP-seq binding

data, the mutagenesis of NF-kB sites also eliminated unloading-

induced activation of the MuRF1 reporter.

A number of GO pathways identified in our results are involved

with glucose metabolism, and the genes include phosphofructoki-

nase, the rate limiting enzyme of the glycolysis pathway, and

muscle glycogen phosphorylase, the enzyme responsible for

liberating glucose from muscle glycogen stores. In a separate

study, phosphofructokinase was found upregulated in unloaded rat

muscles, reflecting a change to increased glycolysis and use of

glycogen stores with disuse [30]. Two other glycolytic genes, not

part of the iPage results, also showed Bcl-3 peaks in their

promoters due to unloading, hexokinase (HK2) and aldolase A

(AldoA). Finally, the GO terms include 7 involved in development

and morphogenesis. The genes from these pathways include two

affecting the Wnt pathway (Tcf7l2 and Apc). The interest in

Tcf7l2 (also known as Tcf4) is recently heightened as it is thought

to be significantly linked to type II diabetes, which is character-

ized, by insulin resistance and changes in glucose metabolism,

especially in muscle [31]. Apc, acts as a Wnt antagonist with direct

effects on Tcf7l2 [32]. Psap is a precursor of the saposins which

regulate lysosomal degradation of sphingolipids. Sphingolipids

appear to be directly involved in both muscle atrophy [33] and

insulin resistance [34].

In order to further explore the combination of our ChIP-seq

data and that from our extensive work on the changes in gene

Figure 7. Bcl-3 and p50 binding profile at MuRF1 locus. An assembly of ChIP-seq data visualized by IGV for the Trim63/MuRF1 gene. The top
line is a representation of the genomic size and location of the region of chromosome 4. Vertical ticks are 500 bp apart. The region of this gene
(MuRF1) labeled is 3.1 kb 59 of the TSS. The next rows are labeled as follows: Conservation, the track of Phastcons for sequence similarity among
placental mammals; HU Bcl-3, a representation of the.sam alignments for the Bcl-3 ChIPseq of unloaded muscle; ChIPseeqer peak for Bcl-3, black
horizontal bar indicates the location of the statistically-qualified peak of sequencing alignments called by the ChIPseeqer algorithm; HU p50, a
representation of the.sam alignments for the p50 ChIPseq of the hindlimb unloaded muscle; ChIPseeqer peak for p50, black horizontal bar indicates
the location of the statistically-qualified peak of sequencing alignments called by the ChIPseeqer algorithm; Input, a representation of the.sam
alignments for the non-ChIP unloaded chromatin; NF-kB sites, location for the 3 JASPAR identified NF-kB consensus sites in this region and in our
reporter construct.
doi:10.1371/journal.pone.0051478.g007

Figure 8. Luciferase activity of MuRF1 reporter constructs in
weight bearing vs. unloaded muscle. Reporter constructs were
electroporated into rat soleus and then unloaded for 5 days. MuRF1 is
4.4 kb promoter region of mouse MuRF1 driving expression of
luciferase. MuRF1 deletant is a plasmid containing the 4.4 kb of the
MuRF1 promoter but the distal 2 kb of the promoter was excised (from
the 4.4 kb promoter) thus removing all 3 kB sites, and MuRF1 3kBmut is
a plasmid containing the 4.4 kb of the MuRF1 promoter but the 3 NF-kB
binding sites were mutated. * indicates statistical difference compared
to weight bearing (WB) (P,0.05).
doi:10.1371/journal.pone.0051478.g008
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expression with unloading, we used the network-available algo-

rithms for ChIP and expression array analysis available from

ChIPArray [25] (http://wanglab.hku.hk/ChIP-Array). Previously

we postulated that our results from gene expression arrays for

unloading in wild type vs. Bcl3 knockout mice had indicated a set

of indirect and direct targets. We felt that the use of ChIP-seq

would determine, by showing binding of Bcl-3 to complexes on the

target genes, that these were direct targets. With that accom-

plished we knew that some of the direct targets of Bcl-3 should be

the factors that cause the gene expression array changes in the

indirect targets. This is difficult to determine by searching within

the results of ChIP-seq, but ChIPArray is able to show these

relationships. From the ChIP-Array results we have found 5 new

candidate transcription factors, most notably including Max, that

appear to extend the Bcl-3 gene activation network in muscle

atrophy.

We have provided, in the plots of sequence alignments and

peaks, the location of alignments for p50. It is thought that Bcl-3

binds to DNA by an association with p50 or p52 homodimers [35].

We have not determined the requirement for p52 in unloading

and although it is expressed in muscle, its localization to the

nucleus does not change with disuse [7]. On the other hand, p50 is

required for disuse atrophy [8], and, we found that an estimation

of the p50 gene targets in muscle unloading are a subset of those

for Bcl-3 [10]. Therefore, it is likely that there are some

associations of Bcl-3 and targets that are not due to p50 and

perhaps these are due to binding to p52 homodimers instead. A

simple evaluation of p50 peaks with unloading and weight bearing

did not produce the same iPage results as for Bcl-3 (not shown).

However this is not surprising for two reasons. First, the activity of

p50:Bcl-3 complexes resides in Bcl-3. Therefore it would not

matter to Bcl-3 activity whether p50 was increased or simply

present in both the weight bearing and unloaded conditions.

Second, the dimer between p50 and p65 would also be picked up

by our ChIP-seq when using the p50 antibody for ChIP. Therefore

when attempting to study gene ontology mapping for p50 we

would be looking at complexes with Bcl-3 and those with p65. We

know that p65 in the nucleus does not change with unloading [7]

and kB sites in promoters of 14 upregulated atrophy genes do not

showed increased p65 binding by ChIP-PCR [10], but it is likely

that there are p50:p65 heterodimers in the nucleus maintaining

homeostatic gene activities. Therefore the GO terms associated

with p50 peaks would be a list of pathways, many not having to do

with the atrophy under study.

Conclusion
With this first assay of the binding of Bcl-3 to promoter regions

of genes during muscle atrophy it is quite clear that Bcl-3 regulates

transcriptional networks of the genes involved in muscle catabo-

lism and metabolism. These data provide the molecular evidence

to explain why Bcl-3 knockout mice do not show unloading

atrophy. Our data describe Bcl-3 as a global regulator both of the

proteolysis and the change in energy metabolism that are essential

components of muscle atrophy due to disuse. We have identified

for the first time, gene networks that are determined by the

binding of a transcription factor (Bcl-3) that is required for muscle

atrophy. Gene networks of other transcription factors involved in

disuse and other causes of muscle atrophy are yet to be identified

but their study, using methods similar to the ones we have

pioneered here, will be of great interest in order to complete our

understanding of the molecular biology of skeletal muscle atrophy.

Supporting Information

Figure S1 Galaxy/Cistrome-found distribution of Bcl-3
peaks over the mouse genome for each chromosome.
Red vertical lines show the peak heights and indicate the low

stringency 49,000 Bcl-3 peaks that were greater in unloaded vs.

control muscle. The position of each peak is plotted from the

beginning to end of the chromosome with scale indicated in base

pairs by a ruler at the bottom of the graph.

(TIF)

Figure S2 A graph of the results of transfecting MuRF1-
luciferase reporter plasmids into Bcl32/2 fibroblasts
with and without addition of a Bcl-3 expression vector. A

cell line of fibroblasts was isolated from the gastrocnemius muscles

of a Bcl3 knockout mouse by enzyme dissociation. The cells were

transfected with Effectene (Qiagen) and luciferase activity was

measured after 48 hours. Luciferase activity is induced by 11 fold

when Bcl-3 is supplemented to the reporter-transfected cells, while

mutagenesis of the three NF-kB sites in that reporter reduces this

induction by 40%.

(TIF)

Table S1 A table of the 858 genes with ChIPseeqer-
defined Bcl-3 binding peaks in their promoter regions
(24 kb to +2 kb relative to TSS). The 845 peaks in promoters

from the 2817 total peaks of unloading vs. control Bcl-3 binding

map to 858 genes since some peaks are within guideline distances

of the TSS of two genes. A cursory assignment of gene categories

and functions was carried out using the Gene database of NCBI

(http://www.ncbi.nlm.nih.gov/sites/entrez?db = gene). The col-

umns are A, Functional Category (in the broad sense); B, Gene

Symbol; C, Gene Function Description; and D–H supplemental

and alternative functional information for some of the genes.

(XLSX)
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