
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2017

Ecological impacts of deforestation
and forest degradation in the peat
swamp forests of northwestern
Borneo

https://hdl.handle.net/2144/27185
Boston University



 

 

BOSTON UNIVERSITY 

GRADUATE SCHOOL OF ARTS AND SCIENCES 

 

Dissertation 

 

ECOLOGICAL IMPACTS OF DEFORESTATION AND FOREST 

DEGRADATION IN THE PEAT SWAMP FORESTS OF NORTHWESTERN 

BORNEO 

 

By 

 

HA THANH NGUYEN 

B.Sc. Mount Alison University, 2009 

M.A.Sc. Queen’s University, 2011 

 

Submitted in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

2017 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

HA THANH NGUYEN 

       2017 



 

 

 

 

Approved by 

 

 

 

 

 

 

First Reader  __________________________________________ 

   Lucy R. Hutyra, PhD 

   Associate Professor of Earth and Environment 

 

Second Reader __________________________________________ 

   Mark Friedl, PhD 

   Professor of Earth and Environment 

 

Third Reader  __________________________________________ 

   Curtis Woodcock, PhD 

   Professor of Earth and Environment 



iv 

 

ACKNOWLEDGEMENTS 

This dissertation would not have been made possible without the faith, generosity, 

support and patience that I have been fortunate to receive from many people. I owe my 

greatest gratitude to my parents and sister, who since I left home to study abroad 16 years 

ago have relentlessly stood by me and sacrificed tremendously to wait for this day. My 

father and mother have taught me to value scholarly pursuits, to follow my dreams with 

steadfast determination and integrity, and to honor my promise of making right their 

sacrifices. I would like to thank my supervisor Lucy Hutyra for her patience, guidance 

and dedication and for always upholding me for the highest quality of scholarly work. It 

has been an honor for me to have you fight for me and fight with me through the many 

challenges of this dissertation and to have been inspired by your knowledge and vision. I 

treasure every compliment you have given me and will always subject myself to the same 

scholarly standard you have ‘raised’ me in. 

I would like to thank my committee members for their patience, attention and 

guidance over the years. I also have many colleagues of the Earth and Environment 

Department who have brainstormed with me, shared insight from other fields, and offered 

constructive critique for this work. Much of this dissertation will not be possible without 

the outstanding work of Dr. Zhe Zhu and Chris Holden, who have opened the path for 

many people including me to seamlessly explore and analyze the Landsat archives. I am 

indebted to Dr. Steve Raciti, Dr. Brady Getson-Hardiman, Dr. Dan Short Gianotti, Dr. 

Josh Gray and Dr. Andy Reinmann, for their in-depth knowledge and invaluable 



v 

 

assistance throughout this dissertation. I am grateful to the many members of the PhD 

community in the department, my co-inhabitants of CAS 338 and members of the Hutyra 

Lab who have shared with me all the ups and downs of the PhD process and made my 

time here a process of continuous stimulation, profound inspiration and maturation. A 

special shout-out to Dr. Zhan Li, Dr. Sohaila Bastami and (soon to be Dr.) Bin Li, who 

have grown with me and always been my loyal, true and honest audience. Opa and Oma, 

Mr and Mrs. Hulsman, thank you for giving the familial warm, and so much care and 

faith during my years studying abroad. I must also thank Mr. Pham Ngoc Tu, Mr. Pham 

Cuong and Mr. Nguyen Minh Duc, whose support and guidance have helped me keep my 

hopes alive and carry on through this journey.  

Finally, I have to thank my partner Erwin Hilton who has always been by my side, 

offered confidence and advice and cheered me up as I strive towards the finish line. 

Behind a doctoral dissertation there is always a quiet co-writer and no one could have 

done a better job than you. 

 

 

 

 

 



vi 

 

ECOLOGICAL IMPACTS OF DEFORESTATION AND FOREST 

DEGRADATION IN THE PEAT SWAMP FOREST OF NORTHWESTERN 

BORNEO 

HA THANH NGUYEN 

Boston University Graduate School of Arts and Sciences, 2017 

Major Professor: Lucy R. Hutyra, Associate Professor of Earth and Environment 

 

ABSTRACT 

Tropical peatlands have some of the highest carbon densities of any ecosystem and 

are under enormous development pressure. This dissertation aimed to provide better 

estimates of the scales and trends of ecological impacts from tropical peatland 

deforestation and degradation across more than 7,000 hectares of both intact and 

disturbed peatlands in northwestern Borneo. We combined direct field sampling and 

airborne Light Detection And Ranging (LiDAR) data to empirically quantify forest 

structures and aboveground live biomass across a largely intact tropical peat dome. The 

observed biomass density of 217.7 ± 28.3 Mg C hectare
-1

 was very high, exceeding many 

other tropical rainforests.  The canopy trees were ~65m in height, comprising 81% of the 

aboveground biomass. Stem density was observed to increase across the 4m elevational 

gradient from the dome margin to interior with decreasing stem height, crown area and 

crown roughness. We also developed and implemented a multi-temporal, Landsat 
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resolution change detection algorithm for identify disturbance events and assessing forest 

trends in aseasonal tropical peatlands. The final map product achieved more than 92% 

user’s and producer’s accuracy, revealing that after more than 25 years of management 

and disturbances, only 40% of the area was intact forest. Using a chronosequence 

approach, with a space for time substitution, we then examined the temporal dynamics of 

peatlands and their recovery from disturbance. We observed widespread arrested 

succession in previously logged peatlands consistent with hydrological limits on 

regeneration and degraded peat quality following canopy removal. We showed that clear-

cutting, selective logging and drainage could lead to different modes of regeneration and 

found that statistics of the Enhanced Vegetation Index and LiDAR height metrics could 

serve as indicators of harvesting intensity, impacts, and regeneration stage. Long-term, 

continuous monitoring of the hydrology and ecology of peatland can provide key insights 

regarding best management practices, restoration, and conservation priorities for this 

unique and rapidly disappearing ecosystem. 
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CHAPTER 1 - INTRODUCTION 

Peatlands, ecosystems where soils are at least 30cm thick with more than 65% 

organic material (Rieley & Page 2005), play a very important role in the global carbon 

(C) cycle through both their vast carbon pools and their fluxes carbon dioxide (CO2) and 

methane (CH4) (Immirzi et al., 1992; Strack, 2008). Formed in low relief, waterlogged, 

and high precipitation areas, which impede organic material decomposition, peatlands 

represent a very space efficient way to store carbon. Covering less than 3% of the Earth’s 

land surface (Page et al., 2011), peatlands store one third of global soil carbon (Parish et 

al., 2008; Draper et al., 2014). In the tropics, peat deposits co-exist with peat swamp 

forests (PSF) which have very high net primary productivity and provide the inputs to 

build the peat, providing crucial ecosystem services through sequestering carbon, 

regulating water budget and climate, and supporting biodiversity (Anderson, 1983; Page 

et al., 2011). Forested peatlands in insular Southeast Asia account for 56% the area of all 

PSFs worldwide and 70% the volume of global peat (Page et al., 2011). In Northwestern 

Borneo, more than 12% of the coastal lowlands area is forested peatlands (Anderson and 

Muller 1975).  

Peatlands have a convex form, raising above the surrounding landscape, with a 

vegetation cover that is well adapted to waterlogged, nutrient poor soils (Anderson 1983, 

Anderson and Muller 1975, Dommain et al. 2010). In Borneo, peat deposits are often 

found between river valleys adjacent to maritime fringes, in coastal plains and isolated 

basins. With a wet tropical climate, annual rainfall generally in excess of 2500 mm, they 

http://onlinelibrary.wiley.com/doi/10.1111/gcb.13108/full#gcb13108-bib-0001
http://onlinelibrary.wiley.com/doi/10.1111/gcb.13108/full#gcb13108-bib-0059
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mainly derived their nutrients from rain and are referred to as ombrogeneous (“rain-fed”). 

In Borneo, the rainfall is largely aseasonal, with either a long ‘wet’ season of 9–10 

months alternating with a shorter ‘dry’ season of 2 or 3 months duration, or two 

‘monsoon’ seasons (October to March and April to August) interspersed by two short 

‘dry’ periods (Rieley and Page 2005). Periods are referred to as ‘dry’ if less than 100mm 

of rainfall is received. 

Anderson and Muller (1975) and Anderson (1983) described the peatlands of 

northwestern Borneo, in terms of species composition and dominance, as a catenary 

sequence of forest types occurring from the periphery to the center of tropical peat 

swamps, with the timber valuable species Shorea albida predominant across most 

community types. This sequence is characterized by (i) an almost complete change in 

species composition from one forest type to the next; (ii) an increase in stem density and 

(iii) decreases in average size of a species in terms of height, girth and crown area. These 

transitions in forest composition and structure have been hypothesized to reflect changes 

in water and nutrient availability in the peat and ultimately the dome structure (Anderson 

1983). Both the interdependence between belowground peat with aboveground vegetation 

(Page et al., 1999) and the relation between peat carbon with the groundwater level can 

be strongly modified by land use activities (Hirano et al., 2012; Carlson et al., 2015). 

These render tropical peatlands in Southeast Asia extremely sensitive to disturbances and 

represent a crucial source of uncertainty in the global carbon cycle (Limpens et al., 2008; 

Couwenberg et al., 2010; Hooijer et al., 2012). 
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The main carbon fluxes associated with peatland systems include photosynthesis by 

vegetation, peat accumulation, CO2 release from peat decomposition, litter decay, carbon 

release by fires, and particulate organic carbon and dissolved organic carbon exported via 

waterways (Abrams et al., 2016). There are CH4 fluxes from both anaerobic peat and 

dissolved organic matter decay, the magnitude of which is less than 1% of the CO2 

emission from peat (Shimada et al., 2016) and can be further reduced by drainage after 

logging (Jauhiainen et al., 2005, 2008; Melling et al., 2005, 2007; Couwenberg et al., 

2010). According to recent radiocarbon dating study results, over the past 6,500 years, 

long term C sequestration in tropical peatlands in Borneo and Sumatra varies from 0.313 

Mg C ha
-1

 year
-1

 to 6.0 Mg C ha
-1

 year
-1

 (Anderson 1964; Sieffermann et al., 1988; 

Neuzil 1997; Page et al., 2004; Dommain et al., 2011). Mean annual net ecosystem CO2 

exchange (± a standard deviation) has been estimated as 1.74 ± 2.03 ha
-1

 year
-1

 for an 

intact peat swamp forest in Indonesia (Hirano et al., 2012). The carbon density in 

Indonesian peatlands have been estimated to be 2,772 Mg C ha
-1

 (based on a best 

estimate peat thickness of 5.5 m), which was much higher than typical values for 

aboveground peat swamp forest carbon density of 100-150 Mg C ha
-1

 (Page et al., 2006). 

Given their enormous carbon reservoirs, peatlands in SE Asia can become substantial 

sources of carbon when harvested and/or managed for agricultural development. Peatland 

destruction in Southeast Asia is a relative recent phenomenon (Dommain et al., 2016). 

What started as cultivation schemes to boost national crop and rice production in 

undeveloped swamp areas in the 1970s, dramatically accelerated in the 1980s, and 

http://onlinelibrary.wiley.com/doi/10.1111/gcb.13108/full#gcb13108-bib-0035
http://onlinelibrary.wiley.com/doi/10.1111/gcb.13108/full#gcb13108-bib-0036
http://onlinelibrary.wiley.com/doi/10.1111/gcb.13108/full#gcb13108-bib-0048
http://onlinelibrary.wiley.com/doi/10.1111/gcb.13108/full#gcb13108-bib-0049
http://onlinelibrary.wiley.com/doi/10.1111/gcb.13108/full#gcb13108-bib-0014
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continues to the present day due to growing global demand for timber, palm oil and pulp 

(Gaveau et al., 2014, 2016; figure 1.1).  These anthropogenic disturbances have led to 

substantial peat losses through enhanced oxidation and combustion (Page et al., 2002; 

Hooijer et al., 2006, 2010; Hirano et al., 2012). During 2000-2010, PSF area in Borneo 

(comprising Brunei, Malaysia’s Sarawak and Sabah, and Indonesia’s Kalimantan) 

declined by as much as 2.2% yr
-1

 (Miettinen et al., 2011). Drainage and burning released 

 

Figure 1.1: Land use land cover change on Borneo Island between 1973 and 2015. 

This figure was adapted from Gaveau et al. (2016). The study area of this dissertation 

was indicated in the black box. 
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an estimated 3.28 ± 2.04 and 4.99 ± 0.72 Mg C ha
−1

 year
−1

, respectively (cf. Inubushi et 

al., 2003; Melling et al., 2005). Drainage results in a drying of the peat layer and oxygen 

availability within the peat, while logging increases the fuel load on the ground, both land 

use changes increase the susceptibility of PSF to fire. During the major 1997/98 and 

2015/16 El Niño events, drought enhanced peat combustion contributed to the steepest 

rises in annual atmospheric CO2 concentration since the beginning of the Mauna Loa 

record (Betts et al., 2016; IPCC 2011; Page et al., 2002) and contributed to 

approximately 20% of the annual global land use land cover change emissions (van der 

Werf et al. 2009). Moore et al. (2013) estimated that peatland disturbance since 1990 

have resulted in an additional 22% C loss through fluvial organic carbon. 

Compared to other major peatland areas in the world, peatland destruction in 

Southeast Asia is not only unprecedented in extent, speed and impact but also complex 

with various agents and drivers acting in the same area over time (Dommain et al., 2016; 

Gaveau et al., 2014, 2016; Bryan et al., 2013; Miettinen et al., 2011). Under a business as 

usual scenario of deforestation and forest degradation, SE Asian forested peatlands may 

vanish by 2030 (Hoojier et al., 2010), releasing the rest of its 86.5 PgC, the equivalent of 

approximately 12% of the current amount of atmospheric CO2 (Page et al., 2011; La 

Quere et al., 2015). In addition to emissions, land use land cover changes on PSF 

endanger the highly endemic flora and fauna (Posa et al., 2011; Sodhi et al., 2004), 

disrupt regional water regulation and global climate (Schrier-Uijl et al., 2013), and harm 

both human health and regional economy (Dommain et al., 2016; Koplitz et al., 2016; 
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Varma 2003). As the regional population continue to grow, peatland conversion is 

unlikely to abate in the near future (Dommain et al., 2016).  

While tropical peatland degradation is commonly associated carbon emissions 

(Hooijer et al., 2010; Miettinen & Liew, 2010), the ecological and other biogeochemical 

consequences of these disturbances are much less studied (Gandois et al., 2013; Moore et 

al., 2013). Southeast Asian countries are starting to recognize the need to reduce such 

emissions, developing restrictions on peatland conversions and restoration/conservation 

plans. For example, Indonesia enacted a Logging Moratorium from 2011-2015 and has 

established a Peat Restoration Agency in 2016. This dissertation explores the spatial and 

temporal patterns of peatland ecology with respect to harvesting and management 

practices through a combination of ground measurements, optical and microwave remote 

sensing imagery. Chapters 2, 3, and 4 are presented as self-contained scientific papers. 

The study sites for the dissertation are a pair of peat domes which are part of the Baram-

Belait peat complex in northwestern Borneo. 

The Baram-Belait complex is one of the most widely documented peat complexes in 

northwestern Borneo (Sarawak, Malaysia and Belait, Brunei), it is approximate 4,500 

km
2
 in size and 4,500 years in age and among the few peat domes that exhibited a full 

catena of vegetation (Wetlands International 2010, Staub and Esterle 1994, Anderson 

1983, 1964, 1961). This complex was formed approximately around 2,200 years before 

present on mangrove clay in the lower catchment of Sungai Belait. Present day tidal 

flooding can still reach north of the Damit dome (Caline and Huong 1992). The Baram-
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Belait peatland complex, has experience variable management and disturbance regimes 

and includes intact forests, logged only areas, and logged and drained regions.  

In chapter two of this dissertation, I combined direct field sampling and airborne 

Light Detection And Ranging (LiDAR) data to empirically quantify forest structure and 

aboveground live biomass (AGB) across the largely intact tropical peat dome at Ulu 

Mendaram. I quantified how forest structure parameters, including biomass, stem density, 

stem height, crown area, crown roughness, gap size, and frequency vary on a landscape 

scale across ~1,662 ha of PSF and 4m of elevational gradient. In chapter three, I 

developed and implemented a multi-temporal change detection algorithm to detect forest 

disturbance trends and events in an aseasonal tropical peatlands, and analyzed a time 

series of 208 Landsat images between 1991 and 2014 for Mendaram and Damit domes. 

The algorithm explicitly tracked changes in vegetation moisture over time assuming that 

(i) land cover disturbances were rare phenomena for a relatively large area within a short 

time period; and (ii) a change must warrant a substantial and detectable drop in 

vegetation moisture. Quantitative metrics, such as the magnitude, rate and time of forest 

cover change in each pixel, were derived from the resultant logistic equations. However, 

if such a trend fitting procedure could not work due to data scarcity, we then assessed 

whether a pixel was perceived as change from the statistical distribution of its neighbors. 

Finally, in chapter four, I examined the regrowth dynamics of PSF in terms of ecology 

and hydrology as a function of harvesting and management practices, output of chapter 

three, in both the short- and long-term. Specifically, I examined (i) regrowth dynamics 
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with respect to time since last disturbance (logging and pathogen); (ii) the mesoscale 

patterns of hydrology with respect to disturbance dynamics and (iii) how the co-

dependence between hydrology and forest structure determines the contrasts in structure 

and environmental conditions between intact and logged forests. 

Finally, in chapter five I summarize the main findings of this dissertation in the 

context of tropical peatlands in a time of global environmental changes and discuss future 

research direction. This research was supported by collaborative grant NSF 454111, the 

Evelyn Pruitt Dissertation Fellowship and the Arnold Arboretum Research Fellowship on 

Tropical Biology.
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CHAPTER 2 - CHARACTERIZING FOREST STRUCTURE VARIATIONS 

ACROSS AN INTACT TROPICAL PEAT DOME USING FIELD SAMPLINGS 

AND AIRBORNE LIDAR 

 

2.1 Introduction 

2.1.1 Tropical forests and global environmental changes 

High net primary productivity (NPP) and large carbon pools make tropical 

ecosystems particularly important within the global carbon cycle (Dixon 1994, Lewis et 

al., 2009; Malhi et al., 2014). Tropical peat swamp forests (PSFs) are among the most 

carbon dense ecosystems on the globe. Page et al., (2006) estimated typical aboveground 

biomass in PSFs to be 100 -150 Mg C ha
-1

, whereas belowground carbon storage as peat 

is ~2,772 Mg C ha
-1

 based on estimated peat thickness of 5.5m in Indonesia. Forested 

peatlands in insular Southeast Asia account for 56% of all PSFs worldwide (Page et al., 

2011), but comprise only 5% of the total regional forest cover (Miettinen et al., 2011). 

PSFs are undergoing extensive loss due to deforestation and conversion to oil palm 

plantations (Page et al., 2002, 2011). During 2000-2010, PSF area in Borneo (comprising 

Brunei, Malaysia’s Sarawak and Sabah, and Indonesia’s Kalimantan) declined by as 

much as 2.2% yr
-1

 (Miettinen et al., 2011). Both natural and anthropogenic disturbances 

within these tropical PSF can result in exceptionally large carbon losses to the 

atmosphere (Langner et al., 2007; Hirano et al., 2014). In the major 1997-1998 El Niño 
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event, estimated emissions from fires and logging in Southeast Asian peatlands were 

equivalent to 13-40% of mean annual global greenhouse emissions from fossil fuel 

combustion (Page et al., 2002).  Recent studies have raised concerns over the long-term, 

large-scale changes of tropical ecosystems caused by ongoing global environmental 

changes and the implications of such ecological changes (Lewis et al., 2009; Malhi et al., 

2014). The exceptionally high carbon density of PSFs’ and their sensitivity to land use 

land cover changes makes understanding the structure and function of these ecosystems 

particularly important in the context of global environmental changes. 

Despite demographic observations on the dominant species within Borneo’s PSFs 

since the 1960s (Anderson 1961, 1964), relatively little is known about the structure, 

spatial distribution of biomass, and interdependence between vegetation and peat depth 

within these forests (Page et al., 1999; Mirmanto 2010). Moreover, previous observations 

were based on relatively small field plots. Forest structure is directly tied to various types 

of disturbances, which function on different spatial and temporal scales (Palace et al., 

2008) and which drive the biomass turnover rate (Lewis et al., 2013). Forest structure is 

also closely related to light capture, which drives carbon gain (NPP), and the rate at 

which trees recruit into the upper canopy layers (Iida et al., 2011). Through its influences 

on carbon gain and loss (susceptibility to disturbances), forest structure determines 

aboveground biomass (AGB). PSFs also exhibit interdependence between aboveground 

vegetation structure and belowground peat (Page et al., 1999). An improved 

understanding of factors causing within-landscape variation in forest structure can 
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improve estimates of PSF carbon density and its spatial distribution across the landscape 

(Clark & Clark 2000).  

Large-scale natural disturbance events are thought to provide sufficient light to drive 

secondary succession and hence influence forest community composition and carbon 

storage rates (Hubbell et al., 1999; Chambers et al., 2013). Chambers et al., (2013) found 

that inclusion and adequate sampling of disturbance events of intermediate and large 

scales is particularly important for assessing the broad-scale tropical forest carbon 

balance. In contrast, Esparto-Santo et al., (2014) found that frequent, small-scale events 

account for the majority of AGB losses, however, large/infrequent disturbance events are 

poorly captured by small, long term monitoring plots (Clark 2004). Differences in gap 

derivation method (field based or remotely sensed), gap height, and study scale (plot 

scale or landscape scale) might explain the different gap size distributions and different 

conclusions for aboveground biomass patterns and forest dynamics (Lobo and Dolling 

2014). Further, existing gap definitions from the Neotropics might not apply for Borneo’s 

PSFs, which experience a unique cyclone and wind regime and have different soil 

structure (Whigham et al., 1999) which may affect rates of gap formation. To date, gap 

studies in Borneo’s PSF were carried out via stereoscope over aerial photos (Bruenig 

1968, 1973, 1989) and hence were limited in scope and in their linkages to other spatial 

characteristics. Light Detection and Ranging (LiDAR) is a powerful tool for studying gap 

dynamics (Lobo & Dalling 2014) and forest structure at the landscape scale (Clark & 

Clark 2000) and for scaling ecological results beyond the field plot scale (e.g. Kronseder 
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et al., 2012). Characterization of vegetation structure, biomass and its spatial distribution 

for a vast, intact tropical peat dome can help generalize our understanding of PSF’s 

ecology throughout northwestern Borneo. Improved ecological understanding also will 

inform the conservation priorities for the remaining intact peat swamp forest as well as 

the ecological consequences of previously disturbed PSF areas. 

2.1.2 Development and structure of tropical peat swamp forests 

Forested peatlands comprised 12.5% of the coastal lowlands in Northwestern Borneo 

(Sarawak and Brunei) (Anderson and Muller 1975). Tropical peat domes are 

characterized by convex topography due to massive peat accumulations that increase 

from the rivers towards the center of a dome. Profile studies suggested a steep elevational 

gain in the periphery of the swamp, which levels off to a rise towards the center of less 

than 1m km
-1

 (Anderson 1983; Page et al., 1999). The water table is typically close to the 

peat surface due to obstructed soil drainage arising from compacted, undecomposed or 

semi-decomposed woody material buried within the peat. Water table depth is more 

variable near the center of the dome (Ashton & Hall 1992).  

Anderson and Muller (1975) and Anderson (1983) described, in terms of species 

composition and dominance, a catenary sequence of forest types occurring from the 

periphery to the center of tropical peat swamps, with Shorea albida predominant across 

most community types. This sequence is characterized by (i) an almost complete change 

in species composition from one forest type to the next; (ii) an increase in stem density 
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and (iii) decreases in average size of a species in terms of height, girth and crown area. 

These transitions in forest composition and structure have been hypothesized to reflect 

changes in nutrient availability in the peat and ultimately the dome structure (Anderson 

1983). Previous studies have shown that compared to surface peat in the periphery of the 

swamps, surface peat in the center of the swamps had lower bulk density, lower mineral 

content and higher C/N ratio (Anderson 1983; Page et al., 1999; Gandois et al., 2013). As 

long as tree roots can reach the mineral soils underlying the peat and nutrients circulate 

between living plants and the peat, high biomass S. albida dominated forests has been 

found to grow. As the peat layer thickens and peat surface flattens, restricted drainage 

reduces root access to mineral soil and makes the soil more anaerobic and infertile 

(Momose & Shimamura 1992).  

2.1.3 Objectives & Hypotheses 

In this study, we combined direct field sampling and LiDAR measurements to 

characterize the structure of an intact tropical peat forest in Sungai Mendaram, Brunei, 

which is representative of the lowland peatlands in Northwestern Borneo (Anderson 

1983). We hypothesized that  

(i) From the dome margin to the center, stem height follows a concave pattern with the 

most stunted forests found on the top of the peat dome. Stem density increases while 

crown area and crown roughness decrease along successive vegetation communities. 
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These patterns in forest structure are expected due to decreased nutrient availability and 

increased water level fluctuations towards the dome center. 

(ii) The gap size distribution will follow a power law relationship on a landscape level, 

with more variation in gap size (very small gaps and very large gaps) in the forest 

occupying the dome interior.  

(iii) Aboveground biomass will decrease towards the dome interior as a function of 

decreasing tree height and diameter. 

To test these hypotheses we examined how forest structure parameters, including 

biomass, stem density, stem height, crown area, crown roughness, gap size and frequency 

vary on a landscape scale across ~1,662 hectares of forest within an intact peat dome. 

Using both field and remotely sensing observations we empirically quantified forest 

characteristics, estimated aboveground biomass, the spatial variations in each. We 

interpret the observed patterns and test the PSF-specific hypotheses put forth by 

Anderson (1961, 1964, 1983) and Ashton and Hall (1992) within a global context of 

tropical forests and their response to a changing environment.  

2.2 Materials and Methods 

Ecological study of the Belait peat swamp, located on the Mendaram peat dome in 

northwestern Borneo, began over 50 years ago (Anderson 1961, 1964, 1983; Bruenig 

1964, 1973; Whitmore 1984; Ashton and Hall 1992; Page et al., 1999). In this study, we 

combined field sampling with spatial analysis of LiDAR data to characterize vegetation 
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structure across the extent of the peat dome. Field observations of canopy structure and 

tree biomass were used to calibrate LiDAR observations and to scale from plot to 

landscape estimates of forest structure and biomass. 

2.2.1 Site description 

The Mendaram peat dome is located between the Baram River in Malaysia and the 

 

Figure 2.1: The canopy height model in 0.5m resolution for the Mendaram peat dome. The 

elevational gradient is steep near the river but levels off within 2km inland. Inset figure shows 

different types of disturbance.  
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Belait River in Brunei (114.35 E, 4.36 N; Fig.2.1).  The full areal extent of the dome is 

difficult to determine due to deforestation on the Malaysian side, but the intact dome area 

in Brunei is approximately 4,000 hectares. Aside from deforestation across the border on 

the Malaysian side of the dome, there is no record of contemporary anthropogenic 

disturbances in Mendaram. Mean monthly temperature is 27
o
C (Kumagai et al., 2004), 

with minimal seasonal variation in precipitation and temperature (Whitmore 1984). 

Although annual precipitation exceeds 3000mm, with mean monthly precipitation 

between 100 and 400mm, the forest does occasionally experience dry spells (Bruenig 

1969; Kumagai et al., 2004) where total monthly precipitation can drop to 60-100mm 

(Whitmore 1984). Overall the climate regime is classified as Koppen’s type A (perhumid, 

aseasonal) (Bruenig 1969, Whitmore 1984).  

Whitmore (1984) characterized forests in this area as having a 3-tiered stratification: 

(1) the canopy layer contains the largest trees which commonly emerge as isolated or 

grouped above a continuous layer; (2) the subcanopy contains trees in the building phase, 

some of which might mature to be the canopy trees; and (3) the understory contains 

young, short stature individuals. This structural layering not only reflects stratification by 

height, but also grouping of species and age classes (Whitmore 1984). For northwestern 

Borneo, the topmost layer is composed mostly of the Dipterocarpaceae and Leguminosae 

and can attain heights between 45 and 60m. Burseraceae and Sapotaceae are abundant in 

the subcanopy layer while the understory contains Euphorbiceae, Rubicaceae and many 

Annocaceae, Lauraceae and Myristicaceae species.  
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This forest experienced widespread fungal infection and moth defoliation in the 

1950s (Anderson 1961), but no evidence of this infestation could be identified in the 

2010 aerial photos. Lightning and wind throw are common causes for crown damage in 

the taller, uneven canopies of S. albida co-dominated marginal forests, while severe wind 

damage is prevalent where the canopy dominated species (including S. albida) turned 

pole-like towards the dome interior (Bruenig 1964, 1973; Anderson 1964). Lightning 

damage is also present in the pole-like forest but to a lesser extent due to the smaller and 

more even crowns. Gaps formed by wind throws can be identified from aerial photos, 

whereas the standing mortality associated with pathogens appears as leafless, moribund 

branches. Lightning gaps appear circular and wind throw gaps align themselves along the 

dominant wind direction (Fig.1 inset). 

2.2.2 Field measurements and biomass estimation 

A belt transect with an area of 20 m x 1000 m (2 ha) for biometric survey was 

established in a north-south orientation (Fig.2.1). The central point of this plot was 

located at 518804.87m latitude and 482619.88m longitude (UTM zone 49N). A 10m grid 

marked with PVC poles was laid out across the full transect. We surveyed all live and 

standing dead trees across the transect between April and October 2014. All live stems 

with a minimum diameter at breast height (DBH, measured at a height of 1.37m, or above 

the buttress) ≥ 5cm were tagged, measured, mapped (with ~1m), and identified to species. 

All trees were visually assigned a canopy status based on their canopy position using 

Whitmore 1984’s 3-tiered forest stratification (emergent/canopy; subcanopy; understory) 
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and any deformation in morphology was noted (Osunkoya et al., 2007). The tall and 

dense canopy made it difficult to obtain clear measurements of canopy height, so we 

established a subplot in a forest gap identified from the 2010 aerial photos and still easily 

locatable during the 2014 field survey. The stem frequency counts, stem location relative 

to the grid, DBH and height of canopy dominant trees bordering the gap were measured 

for use as validation data for automated extraction of stem density, tree height calibration, 

and biomass estimation from LiDAR.  

All standing dead trees (snags) greater than 5 cm in diameter and taller than 1m 

(height) were tagged, measured, and mapped (with ~1m).  The base (above the base 

swell, ~10cm) and DBH were measured (as above) and top diameter was measured or 

visually estimated if measurement was not possible.  The height of the snags was 

measured using a hypsometer.  

The Chave et al., (2005) allometric relationship for moist tropical forests was applied 

to estimate AGB from the field biometric survey. Other allometries could have been 

used, but the Chave et al., (2005) equation was developed from an extensive database 

containing several sites in Southeast Asian Dipterocarp forests and has been widely 

applied in pan-tropical studies, including several that we compared with. AGB (kg) was 

estimated using DBH (cm) and wood density (ρ; in g cm
-3

) such that 

AGB = S ∗  e−1.499+2.148 ∗ln(DBH)+ 0.207 ∗ (ln(DBH))2− 0.0281∗(ln(DBH))3
        (2) 
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Wood density of 0.619 g cm
-3

 was used for S. albida (Monda et al., 2015) and 0.6 g cm
-3

 

was applied for all other species (Osunkoya et al., 2007). To account for the very strong 

tendency of large S. albida individuals to be hollow, we multiplied their estimated dry 

mass from (2) by 0.577, using the average fraction of dense wood volume for S. albida in 

Sarawak, Malaysia observed in Monda et al., (2015).  

The volume of standing dead biomass was estimated as a frustum of a cone (Harmon 

and Sexton 1996) using a radius R measured at breast height and another, smaller radius r 

measured at the snag’s top height. When this smaller radius was not available, we 

approximated r as a function of R (Chambers et al., 2000), we then multiplied volume by 

an average wood density of the current snag’s decay class (Rice et al., 2004; Keller et al., 

2004) to estimate biomass. When both top radius and snag height were not available, we 

calculated the wood volume based on Chave et al., (2005), but replaced live wood 

density based on snag’s decay class. Wood density for decay class 2 (Rice et al., 2004) 

was higher than for live S. albida so we adjusted the decay wood density by a factor of 

0.6 to account for branch loss.  

2.2.3 LiDAR data pre-processing  

LiDAR observations covering approximately 4,000 hectares of Sungai Mendaram 

were acquired in 2010 with an airborne multi-pulse scanning laser altimeter (Optech 

ALTM Gemini, Optech, Inc., Ontario, Canada). The scan angle was 12
o
 from zenith, 

giving a total field of view of 24
o
. The average point spacing is 0.584m, with vertical and 
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horizontal accuracy of 0.15m and 0.20m, respectively. Returns were classified by the 

accompanying TerraScan software, with class 2 representing ground returns and classes 

1, 3, 4, and 5 corresponding to canopy returns. Class 5 (tall vegetation) accounted for 

more than 80% of total returns. The accompanying photo imagery was not ortho-rectified 

and was therefore only used for illustrative purposes.  

Ground and vegetation LiDAR returns were separated and interpolated to create a 

Digital Elevation Model (DEM) and a Digital Terrain Model (DTM), both at 0.5m 

resolution (Popescu and Wynne 2004, Vaukhonen et al., 2011) – both DEM and DTM 

were created in ArcMap (version 10.1).  The DEM was subtracted from the DTM to 

produce a Canopy Height Model (CHM). The CHM was subsequently filled for voids 

and iteratively Gaussian smoothed to reduce anomalies and data drop-offs (negative 

height or height value more than 2 standard deviations from the median height of 

neighboring pixels within a 3x3 window) (Popescu et al., 2002, Popescu and Wynne 

2004, Vaukhonen et al., 2011). The resulting CHM was a map of LiDAR top-of-canopy 

height (hereafter referred to as LiDAR height) at 0.5m resolution (Fig.2.1). 

We limited our analysis to exclude areas within 750m from the river since the riverine 

forest is more of an open mixed swamp forest (Bruenig and Huang 1989) and buffered 

500m from the Malaysian border to exclude the edge effect from deforestation (Gaveau 

et al., 2014). Filtering reduced the area of analysis from 3,800 to 1,662 hectares. Many 

existing theories about PSF structure and community dynamics are based on radial 

location within the dome. In the absence of peat depth measurements and a precise 
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location of the dome center, we used dome elevation as proxy for distance from the dome 

center and for peat depth (with higher elevations being closer to the dome center).  

2.2.4 Stem identification 

We utilized a local maxima filtering (LMF) with varying window sizes on the canopy 

height model for stem identification (Popescu et al., 2002; Popescu and Wynne 2004). 

We assumed that crown width varies as a function of tree height, so as the code ‘swept’ 

through the CHM, diameter of the search window varied as a function of the height of the 

central pixel and was equal to predicted crown diameter. The relationship between 

canopy height (H) and crown width (W2) for the Dipterocarp family calculated according 

to 

                           𝑊2 = 0.42 ∗ 𝐻0.79                                                         (4) 

with allometric scaling parameters for species at our site provided by Iida et al., (2011). If 

the value of the current pixel was not the maximum of all the pixels falling into the 

search window, no treetop was returned and the code moved on to the next pixel until all 

pixels were processed. Gaussian smoothing resulted in multiple pixels being flagged as 

tree top for every tree (Popescu and Wynne 2004). Hence, we used a simple hierarchical 

clustering procedure to group them into the same tree they correspond to. We compared 

the use of both square and circular search windows and found that, as expected, circular 

windows performed better due to their conforming to the shape of a crown in a 

continuous canopy.  
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2.2.5 Crown segmentation 

We used LMF-identified stem positions as priors for the crown segmentation 

procedure. In the absence of a standard crown segmentation methodology for closed 

canopy forests (Feret & Asner 2012), we tested several widely used approaches with the 

same set of centroids found through LMF process including k-means clustering on 3D 

cloud points, k-means clustering on CHM, and k-means clustering vs. Gaussian mixture. 

We then developed an algorithm for a seeded growing region, the results of which 

compared best to existing aerial photography of the transect. Following Solberg et al. 

(2006) and Vega et al. (2014), the final algorithm used the LMF identified tree positions 

as ‘seeds’ and ran sequentially from the tallest treetop to the shortest treetop. For each 

treetop, we first ‘grew’ the crown to an area predicted from the allometric relationships 

presented in Iida et al., (2011). We then compared each edge pixel’s value with its 

neighbors in a circular neighborhood to determine whether the crown should be 

expanded. If the height of an edge pixel was lower than at least half of its neighbors, the 

crown expansion stopped. We examined the histogram of height for all stems in our 

transect and found that pixels with height differences >10m from the tree top were either 

anomalies (e.g. when the LiDAR pulses reaches a branch below the canopy) or did not 

belong to that crown at all. Hence, if a given pixel was more than 10m lower than a local 

maximum, the pixel was not included in the segmented crown volume. Additionally, if a 

pixel was taller than at least half of its neighbors by at least 10m, the segmentation would 

not continue from that pixel. Finally, all adjacent crowns that either overlapped by at least 
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25% or that were located within a crown radius from each other in planar distance and 

within 2m difference in vertical height were merged. Crown shapes from the crown 

segmentation were compared with aerial photos to provide a qualitative validation while 

the number of crowns was compared with the number of canopy stems from the field 

survey. 

2.2.6 Crown roughness, crown area, and canopy gaps 

A number of crown structural characteristics were calculated from the CHM and 

segmentation procedures to test hypotheses for how vegetation structure varies across the 

peat dome.  Crown area was calculated from each segmented tree crown as the projected 

crown area based on the number of 0.5m by 0.5m pixels representing each crown. 

Canopy roughness for each detected crown was calculated as the standard deviation of 

heights of all pixels representing that crown following Parker et al., (1995) and 

Falkowski et al., (2008). The segmentation process described above prescribed that no 

pixels within one crown could be more than 10m apart vertically from the height of that 

crown. Thus, crown roughness cannot exceed 10m.  

Many different operational definitions for tropical forests gaps exist in the literature. 

We defined a gap as a vertical hole in the canopy that extends downward from the foliage 

at the gap edge to a height of 30m or less (or ~ ½ of the height of the emergent trees – 

Bruenig 1964), with minimum area of 40 m
2
, which is similar to gap size threshold in a 

PSF in Indonesia (Shimamura & Momose 2005). This minimum size threshold roughly 
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corresponded to mean crown area and is large enough to eliminate instances of partial 

crown (branch) mortality. The vertical threshold was included to guarantee inclusion of 

old gaps where trees have grown tall in the middle of the gaps. Partial gaps at the 

boundary of the LiDAR coverage were excluded from analysis. Using maximum 

likelihood estimation we fitted a discrete Pareto distribution to the gap counts where gap 

sizes were binned every 50m
2
 and used bootstrapping to estimate the shape factor (λ) 

within 95% confidence interval
 
(Lobo and Dalling 2014).  Gap coverage across the dome 

was calculated as the percentage of area per 1 ha that is within a gap and then inferred the 

distribution of gap coverage using kernel density estimation. This method does not 

assume any underlying distribution of gaps. As gap count per area and mean gap size 

changed with respect to size of the survey area unit and where the survey plot was 

spatially placed, the use of percentage gap coverage instead of gap counts and mean gap 

size enabled analysis of gap statistics over a large area from remote sensing in the 

absence of extensive gap survey from ground and in lieu of interpretation under 

stereoscope and hand digitization (Bruenig 1964, 1973). Further, this method allowed for 

assessment of the spatial distribution of forest gaps. The probability for a given 

percentage of gap coverage was the infinitesimal area under the density curve.  

2.2.7 Upscaling from the transect to the dome 

We used gaps which were present in the field sample transect and present in aerial 

photos four years prior to the survey as landmarks to aid in spatially registering live tree 

survey results with spatial data, especially with stem recognition results from LMF. Gap-
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edge trees identified in both field survey and LMF were used to position the survey grid 

with respect to a 10m by 10m grid that covers our DEM and CHM such that (i) the GPS 

measured central transect point lies on the central line and (ii) the transect completely lies 

over 200 pixels of this grid. 

We compared stem density of canopy trees identified in the field survey with that of 

canopy trees identified by local maxima filtering by dividing the transect into 20m x 60m 

subplots and summing the number of canopy trees found by field survey (Stall, field) and 

LMF (Slmf) within each subplot. The size of the subplot was chosen to allow for error in 

estimating stem position in the field and for the cases where the apex of the canopy is not 

the same with the position of the trunk. We developed a regression between Stall,field and 

Slmf and apply it on the number of LMF found canopy trees within each 1 ha to estimate 

the number of canopy trees. In the absence of additional ground survey data across 

different forest types, we assumed that ratio between density per hectare of the canopy 

trees (namely S. albida) and that of total live trees (including understory trees that the 

LiDAR could not detect) is the same across the dome as in the S. albida consociation 

(where the transect was located). We multiplied the estimated number of canopy trees in 

the field with this ratio to give the total number of live stems per hectare across the entire 

dome. 

To upscale field-measured biomass to the entire dome, we sought a relationship 

between mean LiDAR height (from the CHM) and field-measured biomass. We 

anticipated a power-law functional relationship between mean LiDAR height and AGB 
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(Mascaro et al., 2011; Kronseder et al., 2012; Jubanski et al., 2013, Englhart et al., 

2013). Using the Levernberg-Marquadt method we fitted such a relationship between 

mean LiDAR heights at a 20m resolution and the field-measured biomass. 

2.2.8 Statistical Analysis 

Statistical analysis was conducted using R Statistical Software 3.1.3. Unless 

specifically noted otherwise, all reported errors in the text and figures reflect 95% 

confidence intervals. Biomass sampling uncertainties and confidence intervals were 

calculated by bootstrap analyses (Efron and Tibshirani 1994) due to heteroscedasticity 

within the data distributions. Bootstrap samples were drawn 1000 times with replacement 

to estimate 95% confidence intervals around mean. Error estimates do not include 

allometric or spatial scaling errors. An alpha-value of 0.05 was used to denote 

significance.  For the non-linear fits, a pseudo R
2
 was calculated as 1 – residual sum of 

squares/ sum of squared variances while the root mean squared error (RMSE) was 

calculated as the squared root of the residual sum of squares divided by the number of 

samples subtracted by the number of equation parameters. 

2.3 Results 

2.3.1 Field biometric survey  

We surveyed 2064 trees across 2 ha, with 145 snags and 1919 live trees. The 

understory held 67.8% of total live trees surveyed, with 1282 stems in the smallest DBH 

classes (5-20cm; Fig.2.2). Understory and sub-canopy trees (5-40cm DBH) comprised 
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19.0% of the total AGB. Canopy trees (40-130cm DBH) made up only 7.8% of total 

number of live trees surveyed, but accounted for 81.0% of the total AGB. All of the 

canopy trees were identified as S. albida. We observed S. albida density to be 100 stems 

ha
-1

, suggesting the transect was located within the S. albida consociation (Anderson 

1975, 1983). 

LiDAR data indicated that the transect passed through several forest gaps and we 

found stem density within the closed canopy portions and within the gap portions of the 

forest followed a similar exponential decay with DBH (Fig.2.2A). The smallest size class 

(5-10cm) accounted for 60% and 40% of the total number of live trees in the forested and 

gap portions of the transect, respectively. However, gaps had a higher relative fraction of 

stems within the medium size bins (10-40cm), despite having similar stem density. The 

ratio between the forested (1.76 ha) and gap areas (0.24 ha) was 7.3, while the ratio 

between total number of live trees within the forested area (1107 stems) and that within 

the gap area (812 stems) was only 1.3. Therefore, while the stem density did not differ 

within DBH classes less than 50cm (stem density and DBH slope of -0.13 ± 0.007 and -

0.10 ± 0.012 or the forested and closed canopy portions, respectively), the overall stem 

density and biomass did differ due to the absence of larger diameter trees (Fig.2.2). There 

were no trees with DBH larger than 90cm within the gap areas.  

Sub-dividing the transect into 0.01 ha subplots, we found that biomass density in both 

the forested and gap subplots did not follow a normal distribution (Fig.2.2B), with a 

particularly long tailed distribution within the closed canopy forest. Mean observed field 
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live biomass density was 217.7 ± 28.3 Mg C ha
-1

 and with an additional 29.8 ± 13.6 Mg 

C ha
-1

 in standing dead biomass. For the gap portion, live and standing dead biomass was 

70.4 ± 27.3 Mg C ha
-1

 and 63.9 ± 49.7 Mg C ha
-1

, respectively.  

 

Figure 2.2: Forest structure within the forested and gap portion of the 2 ha field survey 

transect. A: Total live trees stem density as a log scale function of DBH size class. Shading 

represents the confidence intervals. B: A comparison between theoretical quantiles, assumed 

that subplots biomass density follow a normal distribution, and actual distribution of 

biomass density across 200 10m x 10m subplots.  
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Aggregated to 0.04 ha subplots, a comparison of biomass and height diverged from 

previous height-biomass relationships reported for SE Asia (Fig.2.3A). The outliers at 

40m and 50m heights with very low biomass density were likely the result of new gaps 

since the 2010 LiDAR observations. However, the variability in canopy height was ~3x 

less than biomass (stem diameter); the coefficient of variation for mean LiDAR height 

 

Figure 2.3: A: The relationship between mean LiDAR top-of-canopy height (m) and live 

biomass density over a 20m x 20m grid. Dashed lines indicate allometric curves that have 

been extrapolated outside their parameterized range (for illustration purposes only). Grey 

points with varying sizes indicate the number of S. albida trees present in field subplots 

(ranging between 1 and 7 trees per subplot). B: Live biomass density estimates across the 

dome as estimated by the locally derived height relationship in (A). 
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and DBH are 0.08 and 0.23, respectively, which is consistent with the low model R
2
 of 

0.28 and large overall RMSE was 80 Mg C ha
-1

. This model (Fig.2.3A), when applied 

across the peat dome, showed a strong decrease in biomass density as a function of dome 

elevation and tree height (Fig.2.3B). Within closed canopy forest areas, the biomass 

density followed a parabolic function and decreases towards the center of the dome 

(Fig.3B). Using the DBH-based allometry from Chave et al., (2005) with adjustment for 

S. albida hollow trees, biomass density estimate for the transect was 239.9 ± 26.3 Mg C 

ha
-1

.  Using our own Mendaram model mean biomass density for the entire forested (not 

gap) portion of the dome was 222.4 ± 40.4 Mg C ha
-1

 (Fig.2.3B). The gap areas of the 

dome had mean biomass density of 52.9 ± 18.4 Mg C ha
-1

. These differences highlighted 

both the high biomass density in a PSF and the spatial variation of biomass within this 

ecosystem.  

2.3.2 LiDAR derived stem density and crown characteristics 

A direct comparison of the stem counts produced from our local maxima filtering and 

the field survey found 155 and 150 canopy trees within the transect area, respectively. 

The LiDAR data was acquired in 2010 and field surveys were conducted in 2014. Tree 

heights (h2014) were measured from the ground for 12 trees in a 2014 gap. LiDAR height 

(h2010) was extracted from the same trees based on the local maxima filtering and the 

CHM. Despite inherent hypsometer error, presence of stems broken by lightning, treetops 

missed by the LiDAR footprint, and the difficulty of measuring true tree height in 
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lowland Dipterocarp forests (Englhart et al., 2013), mean h2010 and mean h2014 were nearly 

identical (53.2 ± 3m and 53.1 ± 2.5m, respectively).  

Tree height estimated with the CHM ranged from 32m in the dome interior to 60m 

near the river (Fig.2.4A). Tree heights decreased parabolically over the 4m dome 

elevation range. The mean crown size was found to vary from 150 to 80m
2
, decreasing 

 

Figure 2.4: (from top down, left to right): A: crown height as function of dome 

elevation; B: crown area as a function of dome elevation; C: crown roughness as a 

function of dome elevation; and D: stem density as a function of dome elevation. 

Each point in panels A-C represents a canopy individual while each point in panel 

D represents 1 ha. 
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linearly with dome elevation (Fig.2.4B). Crown roughness decreased as a parabolic 

function with dome elevation, indicating that tree crowns become more even in the more 

interior communities (Fig.2.4C). Finally, we found that stem density increased linearly 

with dome elevation, with stem density in the dome interior being 3-fold higher than that 

near the dome margin (Fig.2.4D). There were a few anomalies in stem density that 

corresponded to very large gaps (e.g. Fig.2.1 inset). 

2.3.3 Dome gap and biomass distribution 

Gaps covered 7.7% of the peat dome (128 ha out of 1,662 ha). The number of gaps as 

a function of gap size followed a power law distribution, which has been reported for 

other tropical forests (Kellner & Asner 2009; Lobo & Dalling 2014). The shape factor λ 

for our area was 1.76 ± 0.06. The power law relationship persisted with shape factor λ 

decreasing from 1.76 ± 0.06 to 1.89 ± 0.08 and 2.27 ± 0.08 as the gap height threshold 

was kept constant at 30m but the gap map resolution increased from 0.5m to 1m and 5m, 

respectively. Moving from the dome margin towards the interior, the kernel densities of 

gap coverage (the percentage of a 1 ha area that falls into a gap) persistently followed a 

Gamma distribution form with decreasing mode (Fig.2.5). Multi-modality appeared 

where we observed very large gaps (>1ha in area) near the dome interior where dome 

elevation was at least 6m (Fig.2.5 inset). The biggest gaps had very low biomass density 

(Fig.2.1 and Fig 2.3B), which contributed to the wide scattering around the mean in the 

distribution of live biomass density for gaps (Fig.2.3B).  
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2.4 Discussions 

2.4.1 Spatial patterns in forest structure  

 

 

Figure 2.5: Kernel densities for percentage of gap shows the variance in percentage of 

gap coverage increases towards the dome interior. Density is proportional to the 

probability of encountering a corresponding percentage of gap coverage. The inset 

shows the data that were used to generate the distribution curves. 
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We observed dramatic differences in canopy height, stem density, and crown 

roughness across a 1,662 ha tropical peat dome with a gain of 4m in elevation (Fig.2.1). 

Consistent with the catena characterization by Anderson (1975, 1983) and Whitmore 

(1984), the forest showed, from the dome margin to the dome interior, an increase in 

canopy stem density and in density of total live trees but decreases in average size of the 

canopy individuals in terms of height, crown area and crown roughness. These sequential 

characteristics have been qualitatively reported from field plots in PSFs elsewhere in 

Borneo (Page et al., 1999; Mirmanto 2010) and reinforce the hypothesized co-limiting 

factors of drainage condition and peat fertility on forest structure and productivity 

(Anderson 1983; Ashton and Hall 1992; Page et al.1999, Mirmanto 2010). Less soil 

aeration and lower nutrient and water availability combine to give rise to shorter interior 

stands and in particular, shorter stature for the canopy individuals (Anderson 1983). 

However, on the dome margin where nutrient supply is enhanced by water availability, 

trees were much taller with larger crown areas (Fig.2.4A, 2.4C). The fact that their 

density in the peripheral stands was lower than in the interior stands (Fig.2.4D) has been 

explained by individual mortality resulting from occasional droughts (Ashton & Hall 

1992). While these relationships have long been hypothesized, this LiDAR-based study 

allowed for robust quantification on a landscape level and direct correlation between 

forest structure and dome elevation as a proxy for drainage condition and peat fertility.  

We found that 7.7% of the forested peatland area was in gaps, consistent with the 

typical gap area fraction for tropical forests (Whitmore 1984). However, mean gap size in 
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the study area was 0.04 ha, whereas in nearby Sarawak mean gap size was 0.09 ha 

(Bruenig 1973). The overall gap frequency followed an expected power law distribution. 

Our shape factor λ ranged between 1.76 and 2.27 across increasing gap map resolutions 

(0.5m, 1m and 5m), which overlapped with the range of 1.70 – 2.45 found in Panama 

(Lobo & Dalling 2014) despite a gap height threshold three times higher (30m vs. 10m). 

Gap dynamics in PSFs are driven by spatial patterns in gap formation through 

lightning and wind throw, operating in opposing directions across the dome. Near the 

margin of a peat dome in Sarawak, where the forest was taller and co-dominated by S. 

albida, lightning that strikes several trees at once (group lightning) prevailed, with mean 

lightning gap size ranging from 0.19 and 0.33 hectare (Bruenig 1964). Percentage of 

lightning gap coverage was observed to decrease from between 0.5 and 2.6% in the 

periphery to as low as 0.1% in the dome interior (Bruenig 1964). At the same time, the 

gaps created by wind throw tended to be diffuse and quickly filled by expansion of S. 

albida crowns and regeneration under very high sunlight (Anderson 1964; Bruenig 1964). 

Hence, wind damage was more commonly observed within the less structurally stable 

interior forest and can be particularly severe (Anderson 1964). Percentage gap coverage 

in Mendaram’s marginal forest had a single mode between 15 and 19.1% (Fig.2.5), 

enough to cover a group of standing dead S. albida crowns (Fig.2.3C). The modal 

percentage gap coverage then decreased by a factor of 4 between the margin and the 

interior (Fig.2.5), which was a similar magnitude of difference reported by Bruenig 

(1973) and Bruenig and Huang (1989). If the several particularly large gaps in the dome 
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interior (more than 10 hectares) are excluded from the analysis, the distribution of 

percentage of gap coverage diminished towards the dome interior, with lightning damage 

dominating the marginal stands and wind damage dominating the interior stands (Bruenig 

1973; Bruenig & Huang 1989). On the other hand, the inclusion of these few large gaps 

doubled the mean gap coverage near the dome periphery from 27.5% to 50% (Fig.2.5) 

and lowered the biomass density of gap areas (Fig.2.3B). Hence, we find that the very 

large and less frequent gaps have a disproportionately large effect on forest structure and 

carbon dynamics.  

2.4.2 Comparison with other Neotropical and Paleotropical forests 

The observed transect carbon density at 217.7 ± 28.3 Mg C ha
-1

 reflected the current 

AGB for S. albida dominated peat swamp forest. This AGB was higher than van der 

Meer et al.’s (2011) estimation at 198 ± 5.71 Mg C ha
-1

 for the same forest type from 

Anderson's field samplings in Sarawak, Malaysia and higher than the remote sensing 

based predicted biomass density for this area (175 Mg C ha
-1

 according to Saatchi et al., 

2011 and 155 Mg C ha
-1

 according to Baccini et al., 2012). Given that neither of these 

remote sensing studies contained direct field observation from northwestern Bornean PSF 

and were at medium resolutions, our transect based and dome wide estimations of AGB 

met the IPCC Tier 3 standards in terms of spatial variation for reporting carbon stock 

values (IPCC 2006) and should help improve future efforts in pan-tropical biomass 

mapping (Langner et al., 2014).  
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A compilation of published field biomass observations from Dipterocarp forests in 

lowland northwestern Borneo, the flora of which distinguished it from the rest of Borneo 

(Ashton and Hall 1992; Potts et al., 2002; Slik et al., 2003), yielded an area weighted 

mean carbon density of 269.7 Mg C ha
-1 

(Table 2.1). There are several points to consider 

when comparing regional ecological and biometric studies. Firstly, although hollow and 

brittle trunks are common in tropical trees, sampling for such stem characteristics is rare 

and difficult (Anderson 1983, Monda et al., 2015). Our study accounted for hollow 

trunks and heart rot, both of which can significantly reduce wood density and hence AGB 

estimations compared to previous PSF studies. Allometric equations used in AGB 

estimation vary widely between studies (Table 2.1). The Chave et al., (2005) equation 

was updated in 2014 (Chave et al., 2014), wherein the DBH-only allometry had an 

environmental variable (E) added to account for temperature seasonality, climatic water 

deficit and precipitation seasonality. This revised Chave et al., (2014) allometry yielded a 

33% increase in biomass for this site, relative to Chave et al., (2005) equation. Given the 

aseasonal climate in northwestern Borneo and in order to be conservative, consistent, and 

comparable with previous works on tropical forests, this paper relied on the Chave et al., 

(2005) allometry. Secondly, the large values of the Ashton’s 1967 plots might be due to 

the fact that these plots are located on elevations higher than that for PSF. Finally, the 

high biodiversity in this region is such that the collective term ‘mixed Dipterocarp 

lowland forest’ is not always appropriate for ecological interpretations of forest types at 

local scales (Small et al., 2004). Peat swamp forests are an extremely variable forest type 
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where within the same co-dominant species Shorea albida, tree physiology and wood 

density varied across different phasic communities (Monda et al., 2015 and personal 

communication with P.S.Ashton). Our remote sensing-based results highlight the 

dramatic changes in the physiognomy of canopy individuals in an intact peat swamp 

forest whereas our transect study exemplifies structure and biomass density from the 

most carbon dense vegetation community within this PSF. More extensive sampling 

across forest types, elevational range, and allometric patterns are necessary to provide a 

more complete picture of stand structure and function in this ecosystem.  

Despite a large hollow stem volume (43.2% on average according to Monda et al., 

2015) compared to the Neotropics (1.7% hollow according to Clark & Clark 2000), our 

observed AGB estimates were still higher than the mean AGB across field plots in 

Amazonia, which ranged between 150 and 163.5 Mg C ha
-1

 (Malhi et al., 2006). The 

higher AGB on Borneo can be linked to the differences in abundance of large trees 

(Appendix 3 from Paoli et al., 2008) and the height characteristics between two regions 

(Paoli et al., 2008; Banin et al., 2014). Northwestern Borneo (Sarawak, Sabah and 

Brunei) had comparable total stem density with the rest of Borneo, but much higher stem 

density for larger DBH size classes (> 50cm). The higher densities of large trees on 

Borneo could reflect a higher productivity due to the warm, aseasonal insular climate 

(Banin et al., 2014). Alternately, differences in stature could be linked to historical 

biogeographical factors that favored the predominance of ectomycorrhizal 

Dipterocarpaceae on Borneo, but led to the family’s rarity in the Neotropics (Ashton 
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1982; Hart et al., 1989; Curran 1994). A third possibility was that a milder disturbance 

regime on Borneo has enabled biomass accumulation over longer periods, leading to a 

higher equilibrium biomass. Banin et al., (2014) suggested that the exceptional 

productivity of Bornean forests may be driven by floristic elements. The current paucity 

of data prevented further evaluation as to which of these factors (or combination thereof) 

explained higher aboveground biomass on Borneo (Paoli et al., 2008). 

The dominance of the Dipterocarpacae family in Southeast Asia, and of S. albida for 

the PSFs in northwestern Borneo, was clearly an important driver of aboveground live 

biomass and its spatial variation. In our study, canopy trees held more than 80% the 

aboveground live biomass, in contrast to ~33% in Panama (Chave et al., 2003) and 60% 

in West Kalimantan (Paoli et al., 2008).  Taken as a whole, this suggested that the same 

disturbances (deforestation, drainage and burning) in PSFs are likely to produce higher 

biomass losses with more severe ecological consequences (Bruenig 1977; Paoli et al., 

2008) than elsewhere. Investigations into the implications of land use changes in this area 

should pay particular attention to the impact of these disturbances on the ecology of S. 

albida. Types of disturbance should be evaluated in terms of their ability to alter the 

forest floor, which in turn will alter the nutrient and water availability to S. albida and the 

subsequent changes in aboveground biomass (Cole et al., 2014).  

2.4.3 LiDAR models in tropical forests 
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The methods and algorithms developed in this study focused on airborne small 

footprint discrete returns LiDAR in a broadleaf, closed canopy forests, in absence of 

other supporting remote sensing ancillary data (e.g. high resolution, orthorectified aerial 

photos and other high resolution satellite data). This data limited scenario is common in 

remote, wet tropical locations where clear sky satellite data acquisitions are rare.  We 

carried out stem identification and crown segmentation sequentially by identifying tree 

apices through the detection of local maxima on a CHM interpolated from raw LiDAR 

returns. The information loss associated with the reduction of the initial 3D point cloud to 

a single-layer CHM in this forest type was ameliorated by the dominance of the canopy 

layer, representing 81% of biomass and 80% of the LiDAR returns. We chose a very fine 

grid size (0.5m by 0.5m) for the CHM to optimize the quality of the CHM, significantly 

aiding in the identification of the crown apices and hence accurate crown segmentation. 

The difference between field surveyed canopy stems (150 trees) than those found through 

LMF (155 trees) might be due to a combination of the following: (i) LiDAR missing the 

top of the canopy and/or there may be more than one apex per tree; (ii) the LiDAR 

acquisition and survey were approximately 4 years apart; and (iii) LMF might be over 

sensitive to the inherent structural complexity of a closed canopy, broadleaved tropical 

forest (Vaukhonen et al., 2011, Vega et al., 2014). We found a strong correlation between 

field surveyed stem density and LMF-found tree density with an R
2
 of 0.7, comparable to 

the spatial regression between field-surveyed stems and aerial photo derived crown map 

on Barro Colorado Island (Garzon-Lopez et al., 2014).  
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With only canopy tree heights (from LMF), which comprise less than 10% of the total 

live tree stems but account for more than 80% AGB, we applied a moving region-of-

interest approach and developed a model to upscale mean LiDAR height to biomass over 

the entire peat dome. While the noisy fit between subplot biomass and mean LiDAR 

height (Fig.2.3A) is a long-standing problem when point-based estimates of biomass are 

correlated with moving region-of-interest based height statistics, this problem is 

particularly challenging for peat swamp forests where the R
2
 for previous regressions 

between mean LiDAR top-of-canopy height metrics and field estimated AGB ranged 

between 0.40 and 0.66 (Kronseder et al., 2012, Englhart et al., 2013). Several factors 

likely account for the different biomass density values. First, the range of mean LiDAR 

top-of-canopy height for Mendaram’s PSF was between 15 and 60m, twice the range 

observed in Panama (Mascaro et al., 2011) and Central Kalimantan (Kronseder et al., 

2012; Englhart et al., 2013) where the maximum canopy height was only 30m. Mascaro 

et al., (2011) also observed large scattering in biomass at the high end of the canopy 

height range. Secondly, although the SE Asia specific equation developed by Saatchi et 

al., (2011) had an R
2
 of 0.73, the height metric was weighted by basal area with the 

majority of the values concentrated in the range of 20-30m. Saatchi et al.‘s sample plots 

did not include any from northwestern Borneo, which was known to be floristically rich 

and distinct from the rest of the island (Slik et al., 2003). Finally, we scaled the field 

estimated AGB to account for hollowness, which was rarely accounted for in previous 
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ecological studies in PSF (Monda et al., 2015). These differences highlight the challenges 

of applying universal height-AGB models in upscaling AGB for carbon dense PSF.  

2.5 Conclusions 

Forested peatlands comprised 12.5% of the coastal lowlands in Northwestern Borneo 

(Anderson and Muller 1975) and account for 5% forest cover in insular Southeast Asia 

(Miettinen et al., 2011), but contain some of the highest forest carbon densities on the 

planet. In this study we combined direct field sampling and LiDAR to empirically 

quantify forest structure and aboveground live biomass across ~1,662 hectares of a large 

tropical peat dome. Across 4m gain in dome elevation, we observed an increase in stem 

density but decreases in height, crown area and crown roughness in the canopy. In peat 

swamp forests, nutrient and hydrological dynamics influenced the forest structure and 

stature of the dominant species, leading to reduced productivity towards the dome 

interior. In turn, forest structure and productivity influenced the extent of gaps and selects 

for the dominant gap formation factor. Rare but extreme disturbance events appeared to 

have a disproportionately large effect on gap dynamics and the spatial variation of 

biomass. Lower productivity combined with higher rates of gap-forming disturbances 

that are also more variable in size give rise to lower AGB towards the dome interior. It is 

currently unknown how anthropogenic disturbance events will interact with the local 

environments and the underlying gap dynamics. In this study we demonstrated the utility 

of LiDAR data in characterizing forest structure and exploring gap dynamics across a 

large tropical peat dome. LiDAR data, when acquired at high temporal resolution and 



 

43 

 
4
3
 

over long periods of times, can aid the detection of rare, but spatially extensive events as 

well as those with high turnover rates. 

Ground-based (2 ha sample) and dome-wide estimates of ABG were 217.7 ± 28.4 Mg 

C ha
-1

 and 222.4 ± 24.4 Mg C ha
-1

, respectively. The dome-wide estimated AGB was 

derived from mean top-of-canopy height. AGB and its spatial variability were dominated 

by the canopy individuals, suggesting that the ongoing disturbances (deforestation, 

drainage and burning) to a peat swamp forest, which target these canopy individuals, are 

likely to produce higher biomass losses with more severe ecological consequences than in 

other tropical regions.  
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Table 2.1: Carbon density across biometric plots in northwestern Bornean mixed Dipterocarp lowland forests. Results 

unpublished by Dr. P.S. Ashton and by Poulsen et al. (1996) were provided by Slik et al. (2010). 

Source 

 

Location 

 

Survey year 

 

Plot 

(ha) 

Carbon density 

Mg C ha
-1

  

Allometry Applied 

Ashton unpublished Brunei 1964 20.0 218.7 DBH-only Chave et al., 2005 

Poulsen et al., 1996 Brunei 1992 1 271.9 DBH-only Chave et al., 2005 

This study Brunei 2014 2.0 337.5 DBH-only Chave et al., 2005 

This study Brunei 2014 2.0 217.7 

DBH-only Chave et al., 2005 + hollow 

adjustment after Monda et al., 2015 

Lee et al., 2015 Brunei 2014 3.16 316.8 Basuki et al., 2009 

Ashton unpublished Sarawak 1967 2.4 176.2 DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

Ashton unpublished Sarawak 1967 6.0 309.2 

Ashton unpublished Sarawak 1967 9.0 277.1 

Ashton unpublished Sarawak 1967 9.0 292.4 

Ashton unpublished Sarawak 1967 18.0 270.6 

Ashton unpublished Sarawak 1967 6.0 365.5 
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Ashton unpublished Sarawak 1967 3.0 389.3 DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

DBH-only Chave et al., 2005 

Ashton unpublished Sarawak 1967 3.0 278.4 

Ashton unpublished Sarawak 1967 3.0 292 

Ashton unpublished Sarawak 1967 1.2 225.2 

Ashton unpublished Sarawak 1967 0.6 302.2 

Ashton unpublished Sarawak 1967 0.6 292.7 

Proctor et al., 1983 Sarawak 1983 0.95 325.0 Dawkins’ regression 

Kho et al., 2013 Sarawak 1992 1 234.8 DBH and height Chave et al., 2005  

DBH and height Chave et al., 2005 

 DBH and height Chave et al., 2005 

DBH and height Chave et al., 2005 

DBH and height Chave et al., 2005 

DBH and height Chave et al., 2005 

DBH and height Chave et al., 2005 

DBH and height Chave et al., 2005 

Kho et al., 2013 Sarawak 1992 1 259.2 

Kho et al., 2013 Sarawak 1997 1 207.2 

Kho et al., 2013 Sarawak 1997 1 270.2 

Kho et al., 2013 Sarawak 2003 1 216.0 

Kho et al., 2013 Sarawak 2003 1 250.2 

Kho et al., 2013 Sarawak 2008 1 227.4 

Kho et al., 2013 Sarawak  2008 1 263.4 

  Field survey area weighted mean           269.7 
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CHAPTER 3 – LAND USE DYNAMICS IN NORTHWEATERN BORNEO 

PEATLANDS DURING 1991-2015. 

 

3.1 Introduction 

CO2 emissions from land use land cover change (LULCC) accounted for 12.5% of the 

total annual anthropogenic emissions during 2000 – 2009 (Houghton et al., 2012) and as 

much as 25% of 2015 total annual anthropogenic emissions (Le Quere et al., 2015). 

LULCC fluxes are dominated by tropical deforestation with many uncertainties 

concerning (i) the true extent and rate of deforestation; (ii) biomass and soil carbon 

content of different forest types; (iii) the spatial distribution of these forest types (Achard 

et al. 2008) and; (iv) the inclusion of different feedbacks and management types 

(Houghton et al. 2012). Uncertainties in LULCC CO2 emissions are up to 50% of the 

actual estimates (Houghton et al. 2012). An improved understanding of the temporal and 

spatial patterns of tropical deforestation and forest degradation will help reduce LULCC 

uncertainties in estimates of emissions and better constrain the terrestrial C budget.  

Borneo, a key global biodiversity hot spot, has experienced substantial forest loss 

driven largely by shifting agriculture and demand for timbers (Bryan et al., 2013; Gaveau 

et al., 2014). During the 2000s, lowland mixed Dipterocarp forests in Southeast (SE) 

Asia, especially peat swamp forests (PSF), disappeared at twice the annual rate of other 

regional lowland evergreen forests (Miettinen et al., 2011a). PSF is a forest type that 
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develops on water logged, nutrient poor peat soil but supports a high degree of endemism 

in flora and fauna, and stores large amounts of carbon both above and belowground (Page 

et al. 2011, Nguyen et al. 2016). Accounting for less than 6% of global peatland area, but 

about 14% of global peat carbon, these PSF ecosystems become a large C source when 

disturbed.  The major El Nino events of 1997/1998 and 2015/2016 see fire emissions 

from peatlands accounted for between 13% and 40% annual anthropogenic CO2 

emissions (Page et al., 2002, van der Werf 2015). Under a business as usual scenario, 

these forests may vanish by 2030 with profound consequences to the emissions budget, 

ecosystem services, biodiversity and the global climate (Hoojier et al., 2010, Miettinen et 

al., 2011a).  

The environmental and societal impacts of peatland conversion underlie the 

importance of having continuous and accurate updates on the precise rate of conversion 

and the trends it shows. Previous efforts to map forest cover and forest activities have 

revealed the complex history of forestry practice in Borneo (Bryan et al., 2013; Gaveau et 

al., 2014) and highlighted it as a global deforestation hotspot (Miettinen et al., 2011b; 

Hansen et al., 2013). Most of the historical deforestation took place as early as the 1970s 

in the coastal lowlands (< 500m above sea level), where peat swamp forests grow 

extensively. An initial period of booming exploitation occurred between the 1970s and 

the 1990s, followed by a slower expansion into the remaining, more marginal forests in 

the 2000s and recently a steady move inland and upland (Bryan et al. 2013; Gaveau et al. 

2014). As a result, between 1972 and 2010, the forested area in Borneo dropped by 30%, 
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with the largest losses in Malaysian Sabah and Indonesian Kalimantan. By 2010, only 

22% of land surface in Sarawak and Sabah remained as intact forests, compared to 54% 

in Brunei.  

Approaches to map land use land cover change can be methodologically categorical 

or continuous (Bontemps et al., 2012). The categorical approaches include post-

classification comparison techniques and algorithms based on mathematical combinations 

of snap shots in time (e.g. 1990, 2000, and 2010) such as image differencing, image 

regression, change vector analysis, principal component analysis, and spectral mixture 

analysis. Classification-based techniques typically compare single-date classifications 

(‘wall to wall’) to identify diverging areas, and thus their efficiency depends on prior 

classification accuracy (Cardille and Foley 2003). An alternative approach to using 

categories considers change as a continuous variable, whereby change was detected 

through measurement of the degree or probability of change in the concentration, 

percentage, etc. of a variable (e.g. the forest cover) through time (Rogan and Chen 2004). 

For the Borneo region, several recent attempts have been carried out to map and 

assess rates of land cover change.  Bryan et al. (2013) used the Carnegie Landsat 

Analysis System (CLASlite) and assumed a 350m distance from roads as proxy for 

degradation level to develop a map of Borneo Land Use Land Cover Change for '2009' 

based on a mosaic of images from 2007-2009. A particular pixel was deemed to be forest 

or non-forest based on whether its end members exceeded prescribed thresholds. Gaveau 

et al. (2014) used ALOS PALSAR, Landsat, a 700m maximum buffer from main logging 
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roads and a MODIS based tree cover map in a supervised classification scheme to map 

deforestation on the island between 1973 and 2010. Both Miettinen et al. (2011b) and 

Langner et al. (2007) ran unsupervised classification of individual MODIS scenes and 

compared pairs of images across the period of analysis to map changes. Post 

classification comparison subjects the change maps to accuracy of single date LULCC 

maps. On a global level, errors in mapping where forests were and where deforestation 

took place can often be bigger than the expected land change rates (Bontemps et al., 

2012). 

The major constraint of the wall-to-wall, continuous approach to land cover change 

detection has been data availability, especially in tropical areas where cloud-free periods 

can be rare. The challenges of cloud cover necessitate the practices of mosaicking and 

compositing, thereby preventing a precise date to be determined (Langner et al., 2007). A 

sampling based approach (e.g. Stibig et al., 2014) could circumvent data scarcity but did 

not ensure the inclusion of all the deforestation hot spots in the sampling, which could 

result in the omission of significant changes (Bontemps et al., 2012). Another way to 

ensure spatial coverage and maximize the number of cloud free observations uses 

medium spatial resolution (250–1000 m) time series from the satellite Pour l'Observation 

de la Terre (SPOT; e.g. Bontemps et al., 2012) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS; e.g. Langner et al., 2007, Miettinen et al., 2011b) with daily 

coverage. However, the gain in temporal coverage is balanced, by the restricted range of 

spatial details that can be detected. 
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Using a continuous approach, Hansen et al. (2013) mapped global gross forest loss 

from all Landsat imagery between 2000 and 2012 using decision trees. The decision trees 

classified Landsat pixels by first defining classes based on relations between Landsat 

metrics and training data (e.g. Quick bird tree crowns, MODIS tree cover and previous 

Landsat based forest cover maps) and then predicting the class membership of the 

remaining pixels. Class membership of observations can be assessed by comparing the 

observed statistical distribution with the expected statistical distribution using such metric 

distance as the Mahalanobis distance. Bontemps et al. (2012) segmented SPOT images of 

Borneo into units (‘objects’) of homogeneous spectral reflectances across space and time 

and then computed Mahalanobis distance to assess the departure from the unchanged 

reference of each object. By setting a threshold on this distance metric, a set of ‘changed 

object’ can be identified. 

Previous studies using discrete and continuous approaches have been informative for 

estimating total area of forest (or deforestation) within a certain epoch or regions, but for 

areas with very high cloud cover and extensive ongoing deforestation, additional detail is 

critically needed. In Borneo, we still do not know exactly where intact, logged and 

degraded forests were on the ground for any given year, especially in the early 1990s, an 

epoch that has been largely neglected by remote sensing studies with particularly high 

uncertainties in regional LULCC (Kim et al., 2015). The condition of the post logging 

(non)forests or the drivers behind the disturbance-regrowth dynamics are also regionally 

uncertain (Bryan et al., 2013; deVries et al., 2015). Such knowledge on forest health, 
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degradation levels and regrowth dynamics is essential for the conservation of an 

ecosystem undergoing massive and rapid changes such as peat swamp forests. 

Recent efforts in LULCC mapping have shifted away from the conventional wall-to-

wall approaches and towards exploring the temporal evolution of land use/ cover as a 

continuous variable (DeVries et al., 2015; Dutriex et al., 2015; Zhu and Woodcock 2014; 

Kennedy et al., 2010). Through the opening of the Landsat archive, it is now possible to 

detect even subtle land cover changes, such as forest degradation, if they have a distinct 

temporal spectral signature that can be reliably identified (DeVries et al., 2015; Ahmed et 

al., 2014; Song et al., 2014; Zhu and Woodcock 2014; Broich et al., 2011; Kennedy et 

al., 2007, 2010). A focus on the temporal structure of the data is advantageous for 

monitoring near real time disturbance and post disturbance regrowth dynamics (Kennedy 

et al., 2010, DeVries et al., 2015). Kennedy et al. (2010) grouped these multi-temporal 

change detection algorithms by whether they seek trends or seek deviations. Deviation 

seeking algorithms capture persistent land cover changes that move the spectral signal 

away from a presumed stable condition, whereas trend seeking algorithms rely on time 

series fitting techniques to separate long lasting changes from year-to-year noise. Since 

human and natural disturbance and successional changes can be either abrupt or gradual, 

it is important that algorithms be flexible enough to capture both types of changes.  

In this chapter, we described a proof-of-concept needed for how a multi-temporal 

change detection algorithm can be applied to detect forest disturbance trends and events 

in a tropical peat dome, including strategies to address the challenges of cloud cover and 
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data gaps. The methods were built from the Continuous change detection and 

classification (CCDC) algorithm (Zhu and Woodcock 2014) and the Landsat-based 

detection of Trends in Disturbance and Recovery (LandTrendr) algorithm (Kennedy et 

al., 2007, 2010; Ahmed et al., 2014). Our method detected both durable changes, which 

required the temporal smoothing of spectral noise in long-duration signals in trend 

seeking approaches, and abrupt events, which called for the unsmoothed capture of 

spectral change in deviation seeking strategies. The detection scheme directly worked on 

the entire time series, without calibration with external higher resolution data (e.g. 

Hansen et al., 2013), in order to produce precise timing of disturbances and extract other 

information on the post disturbance recovery dynamics (Dutrieux et al., 2015). The 

strategy described here can be readily integrated into existing forest monitoring systems 

and extended to apply to more seasonal types of tropical forests, as well as other types of 

land use activities (e.g. agricultural expansion and fire). 

 

3.2 Methods 

3.2.1 Study area 

Forested peatlands comprised 12.5% of the coastal lowlands in Northwestern Borneo 

(Sarawak and Brunei) (Anderson and Muller 1975). Tropical peat domes were 

characterized by convex topography with peat thickness of at least 3m above sea level 

near the rivers and increasing towards the center of a dome. The water table was typically 
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close to the peat surface due to obstructed soil drainage arising from compacted, 

undecomposed or semi-decomposed woody material buried within the peat. The system 

is ombrotrophic with most nutrients coming from precipitation. The aboveground live 

biomass typically exceeds 200 Mg C hectare
-1

 with approximately 10 times additional 

biomass stored belowground (Nguyen et al., 2016; Page et al., 2011).  

By 2010, Brunei has maintained more than 80% of its forest cover (Bryan et al., 

2013), with the Belait peat swamp being the largest contiguous peat swamp complex in 

Figure 3.1: Geographical information about the Damit dome. Three Landsat snapshots 

(2001, 2009 and 2012) illustrated the spatial extent of logging and the quick recovery 

of the forest. 
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the whole of Borneo (Government of Brunei Darussalam 2009). The high forest cover is 

due to the country’s concentration on the petroleum and shale gas extraction and the 

1990s policy to reduce the national production of timber by half to 100,000 m
3
 year

-1
 

since 1990 (Siddique 1992). Our study region is a peat dome at (Sungei) Damit (4° 27’N, 

114° 21’E) (Figure 3.1). At 4,400 hectares, Damit accounts for 5% the area of the Belait 

peat swamp and was systematically logged between 1972 and 2010 (Government of 

Brunei Darussalam 2009). In contrast, the nearby Ulu Mendaram peat dome has remained 

intact until today (Nguyen et al., 2016). 

3.2.2. Overall processing flow 

This LULCCC analysis approach used individual pixel-level reflectances and 

vegetation indices for change detection. For each pixel, a time series of vegetation index 

values was built, screened for clouds and noise and assessed to determine whether there 

was a shift in its temporal trend or a change in the pixel’s value with respect to the scene-

wide statistical distribution during the analysis period (1991 – 2015; Fig.3.2). Our 

algorithm explicitly tracked changes in vegetation moisture over time assuming that (i) 

land cover disturbances were rare phenomena for a relatively large area within a short 

time period; and (ii) a change must warrant a substantial and detectable drop in 

vegetation moisture (Song et al., 2014). Outliers due to clouds and haze and candidates 

for changes were identified from the majority of unchanged pixels in two separate steps: 

first the cloud, cloud shadow and haze (section 3.2.3.3), and second, the true changes 

(section 3.2.4.4). Then for each pixel, the algorithm tracked continuous changes in 
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vegetation moisture over time by fitting one or more nonlinear curves to the cloud free 

time series of proxy values for vegetation moisture. Our goal was to capture the sigmoid 

or “S” shape of forest cover change using logistic functions which best described the 

actual physical process of land cover change on the ground (Viedema et al., 1997, 

Kennedy et al., 2010, Ahmed et al., 2014). Quantitative metrics, such as the magnitude, 

rate and time of forest cover change in each pixel, were then derived from the parameters 

of the resultant logistic equations. However, if such a trend fitting procedure could not 

work due to data scarcity, we then assessed whether a pixel was perceived as change 

Figure 3.2: Processing steps 
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from the statistical distribution of its neighbors, informed earlier in the process (section 

3.2.4.4). If and when that occurred, a disturbance event was again recognized, but this 

time without other disturbance metrics.  Disturbance events picked up by the adaptive 

outlier detection were tested against LiDAR derived canopy heights. The final map was 

validated with IKONOS high resolution imagery. 

3.2.3 Preprocessing 

From the Landsat Surface Reflectance Climate Record Data (CDR) we obtained 208 

Landsat Thematic Mapper (TM) 5 and Enhanced Thematic Mapper (ETM) 7 for row 119 

and path 57 that covered Damit and were acquired between 1991 and 2014. The imagery 

was atmospherically corrected and cloud screened using the standard Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS, NASA CDR Product Guide) and 

Fmask (Zhu and Woodcock 2012) algorithms, respectively. We also downloaded several 

vegetation indices including the Enhanced Vegetation Index (EVI), Normalized Burnt 

Index (NBR), and Normalized Difference Moisture Index (NDMI). 

3.2.3.1 Vegetation indices 

The choice of spectral band or index used in the disturbance-regrowth analysis was an 

important determinant of the method’s sensitivity to forest change dynamics. We 

excluded the Normalized Difference Vegetation Index (NDVI) from our consideration 

since it was shown to perform poorly as a measure of forest cover and structure (Freitas, 

Mello, & Cruz, 2005), and tended to saturate over dense forest (Gamon et al., 1995; 
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Huete et al., 2002). EVI was known to be more sensitive to succession, phenology, 

photosynthetic activity and productivity (Glenn et al., 2008), while NDMI was associated 

with canopy water content (Jin and Sader 2005) and hence was referred in the rest of the 

chapter as vegetation moisture. The sensitivities of EVI and NDMI to fluctuations in 

greenness and moisture, respectively, caused by logging made them suitable candidates 

for trend seeking algorithms to monitor forest changes (Kennedy et al., 2010, Ahmed et 

al., 2014). In addition, works by Dr. Sulla-Menashe (personal communications) showed 

that there was no bias in NDMI between Landsat 5 and 7, thereby eliminating the need 

for spectral normalization prior to the trend and deviation seeking steps. 

3.2.3.2 Adaptive outlier detection 

An adaptive outlier detection approach was applied for both cloud screening and land 

cover change identification. This method originated with the recognition that to detect 

outliers in a multivariate case, both the distance of an observation to the centroid of the 

data and the shape of the data should be considered. The shape and size of multivariate 

data can be quantified by the covariance matrix and a distance metric known as the 

Mahalanobis distance, which represents the distance from a data point to a statistical 

distribution and hence indicates class membership of that data point. Assuming that 

errors in repeated measurements of a variable of land use/ cover were independent and 

identically followed a normal distribution, then measurements of stable locations over 

time also followed a normal distribution while those of disturbed locations were outliers 

of that distribution. Therefore, the squared Mahalanobis distances of the pixels can be 
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expected to approximate a chi square distribution (Filzmoser et al., 2005). Compared to a 

standard chi square distribution, the observed data, including outliers, had a fatter tail and 

was skewed to the right. For outlier detection we implemented a deviation seeking 

procedure that adapts to sample size (Filzmoser et al. 2005). For every cloud free scene 

within the 208 images, we computed the theoretical chi square distribution of the 

Mahalanobis distances of all pixels given a covariance matrix of values of a chosen 

variable (e.g. spectral value or index) taking into account the size of the population. Next, 

we simulated the empirical distribution of the data by selecting half the population, 

computing the sample covariance matrix and the new Mahalanobis distance with respect 

to the sample covariance matrix, repeating for 1000 times. A critical value was computed 

as a function of the size and dimension of the data, which set the upper limit to the 

difference between the empirical distribution and the theoretical distribution for data of 

the same dimension and numbers of variables. Using the theoretical distribution and the 

critical value, we then back calculated the threshold on Mahalanobis distance, beyond 

which we compared the tails of two distributions. Any pixel whose Mahalanobis distance 

exceeded the scene-wide theoretical chi-square distribution by more than the critical 

value was marked as ‘changed’. 

3.2.3.3 Cloud, cloud shadow and haze screening 

Landsat imagery available upon request from the United States Geological Survey 

included the standard Fmask for initial land/water segmentation and cloud screening. 

Additional cloud screening was carried out to remove missed clouds, cloud shadows and 
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haze in the images that Fmask did not pick up and to avoid false positives in the final 

change detection. Given the extensive regional cloud cover, we developed a single scene 

texture based cloud screening procedure using the grey scale co-occurrence matrix 

(GLCM) textures. On every scene within the 208 images, variance of variance for band 2, 

4 and 5, ratio between band 1 and band 7 (Goodwin et al. 2013) and the Tasseled Cap 

Haze index (Richter 1995) were calculated on a window of 3 by 3 pixels and in 4 

directions to identify cloud, cloud shadows (Ouma and Tateishi 2006) via the adaptive 

oulier detection described in section 3.2.3.2.  

3.2.3.4 LiDAR processing 

Light Detection and Ranging (LiDAR) observations covering approximately 3,600 

hectares of Sungai Damit were acquired in 2010 with an airborne multi-pulse scanning 

laser altimeter (Optech ALTM Gemini, Optech, Inc., Ontario, Canada). The scan angle 

was 12
o
 from zenith, giving a total field of view of 24

o
. The average point spacing was 

0.584m, with vertical and horizontal accuracy of 0.15m and 0.20m, respectively. Returns 

were classified by the accompanying TerraScan software, with class 2 representing 

ground returns and classes 1, 3, 4, and 5 corresponding to canopy returns. Class 5 (tall 

vegetation) accounted for more than 80% of total returns. The accompanying photo 

imagery was not ortho-rectified and was therefore only used for illustrative purposes. 

From the raw point clouds, Canopy Height Model (CHM) for Damit at 0.5m resolution 

was produced following the procedure described in Nguyen et al. (2016). 



 

60 

 
6
0
 

Due to challenges associated with the signal of vegetation moisture from open mixed 

swamp forests, we limited our analysis to forests dominated by Shorea albida, which 

were most affected by human activities. As there was no clear boundary to mark the 

transition from riverine, open mixed swamp forest to other phasic forest communities 

(Anderson 1983, Bruenig and Huang 1989), we limited the analysis area using 

information of peat depth and drainage. Therefore the analysis area was produced in 

ArcGIS using a minimum elevation of 3m and a maximum slope of 0.10 as proxy for 

poor drainage. Since three meters was the reported peat depth that was beyond tidal 

influence and that was most like subjected to human disturbances (Esterle and Ferm 

1994; Hoojer 2004; Wosten et al., 2008), we assumed that a minimum elevation of 3m 

could help delineate the area of at least 3m peat depth. The final analysis area was 1,980 

hectares. Subsequent extraction of forest structures (gap fraction, canopy stem density, 

canopy stem position and height) followed the methodology set out in Nguyen et al. 

(2016). We derived a fractional canopy cover map using our CHM and a forest definition 

from Food and Agricultural Organization (FAO 2012).  

3.2.4. Trajectory formulation and selection 

3.2.4.1 Parameterizing trajectories 

Within a QGIS framework implemented by C. Holden, we inspected the landscape 

and derived three land use land cover trajectories as priors for the subsequent temporal 

fitting algorithm: intact forest, clear cut with regrowth prior to the start of the time series 
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(1991), and logging after 1991 followed by regrowth. After identifying three candidate 

trajectories, we developed appropriate analytical functions to describe them. The 

functional forms of these trajectories were adapted from Viedma et al. (1997), Kennedy 

et al. (2010) and Ahmed et al. (2014). Intact forest and forest disturbed prior to 1999 

shared the same single, flat line functional form due to cloud and large gap in data 

acquisition for the tropics during the 1990s. We relied on the predictive power of the 

adaptive outlier detection (section 3.2.3.2) for classification of intact vs pre-1999 

disturbances. For forest disturbed after 1999 with revegetation, the NDMI shows a pre-

disturbance, linear state similar to intact forest, a sharp dip representing the disturbance 

event followed by a logistic growth for recovery. The functional form for this disturbance 

type had three shape parameters to represent (i) NDMI value immediately after 

disturbance; (ii) the stabilizing NDMI that revegetation reached and (iii) the rate at which 

NDMI changed from immediately post disturbance to stability.  

3.2.4.2 Identifying breakpoints 

The problem of detecting forest changes in our case was a problem of segmenting a 

time series of vegetation characteristics. The goal was to partition the input time series 

into segments that represent homogenous vegetation condition e.g. intact, logging and 

post-logging. By this definition, each segment represented a state of vegetation condition 

and the time points between one segment to the next a state change of vegetation 

conditions. In other words, segmentation of time series involved identifying the time 

points at which the statistical behavior of a pixel changed in a time series. As such, it was 
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essential that segmentation takes place after removal of noise from cloud, cloud shadow 

and haze and additional smoothing. 

Our segmentation strategy was a top down technique that considered every possible 

partition and split the time series at the best locations. We started by identifying the 

observation with the largest drop in the NDMI time series. Observations between this 

point and the end of the time series constituted a post disturbance state, while those 

between it and the beginning of the time series represented the pre-disturbance state 

and/or a during-disturbance state. If a break point existed, two linear segments were fit 

for the pre-disturbance and during-disturbance phases, respectively. Otherwise, only one 

linear segment would be fit. In order to decide on such a break point, we followed the 

Kendall-Theil Robust Line method, otherwise known as the Theil-Sen line (Fernendes & 

Leblanc 2005), and assessed the pair-wise slopes of each segment between the minimum 

NDMI and each of its preceding observation. The maximum of these slopes would 

belong to the segment formed between the minimum NDMI value and the break point 

that separated the pre-disturbance phase from the disturbance event and post disturbance 

phase. To identify the break point, we incorporated an existing script that implemented 

the Kendall-Theil Robust Line method written by Daniel Rothenberg 

(https://code.google.com/p/ccfhomogenization/source/browse/code/mw2009/chgptmodel

s.py)  

3.2.4.3 Fitting trajectories (or trend seeking) 

https://code.google.com/p/ccfhomogenization/source/browse/code/mw2009/chgptmodels.py
https://code.google.com/p/ccfhomogenization/source/browse/code/mw2009/chgptmodels.py
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For each per pixel time series we created initial estimates of shape parameters for the 

three forest change models (intact, clear cut and regrowth before 2001, logging after 2001 

and regrowth). We fit the pre-disturbance and post-disturbance portions of the trajectory 

using a linear model and a nonlinear model, respectively. The linear model indicating 

pre-disturbance state was fit between the minimum NDMI, at which disturbance occurred 

and the break point (section 3.2.4.2). The non-linear model was a logistical growth 

curved with three shape parameters initialized by (i) the minimum NDMI value; (ii) the 

mean NDMI of the last 10 observations of the time series and (iii) the difference between 

the log value of the immediately post disturbance NDMI and that of the at-stability 

NDMI. Non-linear curve fitting employed the Levesque-Marquadt nonlinear least square 

regression and optimization to adjust these initial parameters to find the best fit of the 

potential trajectory to the observed trajectory (Kennedy et al., 2010, Ahmed et al., 2014). 

By assuming that disturbance warrants a substantial and detectable drop in vegetation 

moisture and by comparing curves fit to a time series with and without cloud screening, 

we set a threshold so that a drop in NDMI had to be at least 0.11 for the algorithm to 

accept it as a disturbance event. If NDMI values were negative, which indicated exposed 

soil, we set the value to 0, to facilitate convergence of shape parameters. No logistic 

growth curve would be fit if the single disturbance event of the time series happened after 

2011, when records confirmed the end of logging operation, or happened within the last 5 

observations of the time series.  
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Assessment of goodness of fit was summarized in terms of a standard f-statistic, and 

the probability of that f-statistic (p-of-f) was calculated (Kennedy et al., 2007). The f 

statistics is a function of the sum of squared model (SSM), the sum of squared errors 

(SSE), the number of cloud free observations minus the number of model parameters 

minus 1 and the number of model parameters. In turn, SSE was calculated as deviations 

of predicted from actual empirical values of data and SSM as deviations of predicted 

values from mean value of data. We built a cumulative distribution for the f statistics and 

back calculated the p-of-f statistics for a null hypothesis (no trend, single linear line) and 

for the fit trajectory. High f-values indicated that the fit trajectory described the 

observations well. The model with the lower p value was the one with higher probability 

of observing f statistics more extreme than the null hypothesis, and hence showing better 

agreement between the fit trajectory and the observations. We only considered a 

hypothesized trajectory if its p-of-f value did not exceed 0.05 (Kennedy et al., 2007, 

2010). 

The model with the lowest p-value was selected. The trajectory type and all the 

parameters describing that model were saved as separate layers of the output image and 

the fitting statistics (f-statistic and p-of-f) were output as a text file. The model parameters 

written to the output images described key aspects of the disturbance regime, including 

year of disturbance, change in NDMI at disturbance (a proxy for intensity of 

disturbance), and rate of recovery of NDMI (a proxy for regrowth). This process was 

repeated for all 20,006 pixels in the study region. 
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3.2.4.4 Deviation seeking 

We ran the adaptive outlier detection procedure on the cloud free EVI and NDMI for 

each scene separately. Candidate change pixels were those that, across their respective 

time series, exceeded the threshold calculated for the scene-wide chi-square distribution 

of Mahalanobis distances with respect to the scene-wide mean and covariance of the 

vegetation index of interest, namely EVI or NDMI. If outliers were flagged in the EVI or 

NDMI layers, the pixel was classified as changed. The trend seeking approach only 

worked if there was sufficient data for a fitting to be completed. However, large data gaps 

due to sporadic acquisition in the 1990s, scan line corrector failure since 2003, and clouds 

led to large data gaps corresponding to loss of data for historical disturbance and 

recovery. When p-of-f statistics returned a straight line (i.e. no trend; section 3.2.4.3), we 

turned to deviation seeking, whereby if and when the vegetation index of a pixel 

exceeded the adapted threshold defined for that scene, that observation was flagged as 

change for the pixel’s time series.  

3.2.5. Processing, assembly and validation of final results. 

Texture based cloud screening and adaptive outlier detection were carried out the 

statistical software R. Using a processing framework implemented by C. Holden (2015) 

in Python and QGIS, we assembled a stack of 12 images for each observation date and 

processed and output forest disturbance trajectory parameters and statistics for each pixel. 

A separate script read in results by parameter type (e.g. time, and intensity of disturbance, 
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recovery rate) and output one raster for each parameter. Any pixel that had no trajectory 

output due to its having less than a desired number of observation (e.g., less than 15 over 

25 years) were assigned a trajectory and disturbance status from the dominant disturbance 

status of its 8 neighbors. Any pixel who disturbance status was significantly different 

from those of its 8 neighbors (e.g., an 8 years different in time of last disturbance events) 

was reassessed based the disturbance status and parameters of its 8 neighbors.  

We designed a pixel-based stratified random validation scheme to compensate for the 

lack of high resolution aerial imagery of the area and to conform as much as possible to 

recommended good practices in estimating accuracy and area and quantifying uncertainty 

in land use land cover change detection (Olofsson et al., 2013, 2014). We visually 

assessed pixel-level LULC labels and distinguished between natural and anthropogenic 

disturbances against the two IKONOS aerial images at 1m resolution for 2001 and 2013 

available from Google Earth. Each pixel was assessed by its status as well as the statuses 

of its 8 neighbors. To account for misalignment and differing viewing angles at different 

acquisition date, we relied on tree fall gaps, forest edge and crown shape to make sure we 

were looking at the same area on the 2001 and 2013 IKONOS images. In addition, we 

compared top-of-canopy heights of forest and deforested Landsat pixels for scenes from 

the early 1990s as an independent check on the accuracy of our outlier detection (Fig.3.5, 

section 3.2.3.3). 
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3.3. Results and Discussions 

3.3.1 Forest disturbance trajectories and rates 

The Damit study area was dominated by forests that were disturbed before 2001 

(53.8% of the total area), intact forests (31.2%) and forests disturbed after 2001 (15.0%) 

(Fig.3.3). The majority of deforestation happened in the 1980s spreading north to south 

and from east to west through access along the tributaries of the Belait river. Annual rate 

of deforestation dropped by almost an order of magnitude: from ~ 300 ha year
-1

 during 

the early 1990s to ~40-50 ha year
-1

 during the 2000s, which reflected the government’s 

policy to limit timber production (Siddique 1992). The spatial pattern and areal rates of 

logging showed an initial period of booming exploitation that lasted until the early 1990s, 

followed by a slower expansion into the remaining, more marginal forests in the 2000s. 

Similar patterns have been previously been observed in Sarawak (Malaysian Borneo) 

(Ichikawa 2007, Kaur 1998). The dominance of disturbance contrasted our study area 

with other forest change mapping studies, where change was assumed to be rare events 

and hence only constituted no more than 10% of the landscape (Olofsson et al., 2014; 

Song et al., 2014, DeVries et al., 2015). The landscape dominance of deforestation has 

increasingly become the norm for Borneo’s peat swamp forests, which further 

highlighted the need to examine their post-disturbance conditions (Bryan et al. 2013). 
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Our algorithm identified the shape, the duration and rate of disturbance events, as 

well as disturbance type and timing of last disturbance event across a peat dome that was 

logged for almost 40 years (circa 1972 – 2010). Figure 3.4 illustrated each example of 

curve fitting output for the multiple forest disturbance trajectories (intact, logging before 

1991, logging in 1999 followed by regrowth and logging in 2009 followed by regrowth) 

 

Figure 3.3: Change detection results for Damit and comparison with other global and 

regional LULCC products: From clockwise, the 2010 LiDAR based Canopy Height 

Model (panel A), this study’s LULCC maps by class and by year of disturbance (panel B), 

an LULCC map for Borneo in 2010 by Gaveau et al. (2014) (panel C), a global LULCC 

map zoomed in for Borneo by Kim et al. (2015) (panel D) and Hansen et al. (2013) (panel 

E). The area of analysis was designated to correspond to peat depth of at least 3m and 

slope of at most 0.10 (Section 3.2.3.5). 
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with collocated observations in 2010 aerial imagery and the LiDAR canopy height. 

Although the final NDMI values for each example across three disturbance trajectories  

  

Figure 3.4: Examples of the disturbance trajectories. The center image shows the 

LiDAR based canopy height model and color coded sample trajectory pixels. Clockwise 

from the top left are examples of a stable forest pixel (black), a forest pixel disturbed 

before 2001 (red), a forest pixel disturbed after 2001 (purple) and a forest pixel 

disturbed before 1991 (blue). For each example a 2010 unorthorectified aerial photo 

zoomed in for the canopy height adjacent to the NDMI time series observations and 

disturbance models are included. The square within each image is the 30m x 30m 

Landsat pixel area color coded for the disturbance type. 
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were similar (~ 0.5), a pixel that was clear-cut in 1999 was shown to be structurally 

different from another pixel selectively logged in 2009 in terms of regrowth rate and tree 

height. The former had uniformly short vegetation stature, most of which was dominated 

by Pandanus andersonii and Nephrolepsis biserrata (Kobayashi 2000), whereas the latter 

had a few tall, poor quality trees left behind by the loggers. Post logging, vegetation 

moisture increased, which should be taken as caution due to NDMI’s susceptibility to 

contamination to shadow from within pixel tall canopy, moisture in the regenerated ferns 

and the water saturated condition in the soil (Jin and Sader 2005). Tree cover as seen 

from the CHM did not distinguish old deforestation patches from newly logged ones. 

Whereas the traditional, wall-to-wall mapping approach often assumed that reduction in 

forest cover meant deforestation and hence resulted in a one time, binary assessment of 

forest condition i.e. logged or intact, the use of time series can provide extra information 

such as the mode of deforestation (clear cut vs. selective logging) and the subsequent rate 

of recovery. 

3.3.2 Comparisons with other products 

The extent of pre-1991 deforestation closely followed that from the field observations 

report by Kobayashi (1999). By 2010, deforestation was shown to have expanded and 

matched the pattern in the map produced by Gaveau et al. (2013) (Fig.3.3 C) using 

selected Landsat imagery and Phased Array L-band Synthetic Aperture Radar data on 

board the Advanced Land Observing Satellite (ALOS PALSAR). Our results agreed 

better with Gaveau et al. (2013)’s map than with the global products by Kim et al. (2015) 
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(Figure 3.3D) and Hansen et al. (2013) (Fig.3.3E). Note that all four products were at the 

30m Landsat resolution. Both Hansen et al. (2013) and Kim et al. (2015) used decision 

trees to predict class membership of Landsat pixels using relationships between Landsat 

spectral reflectance metrics and data on tree crown and tree cover. Since Hansen et al 

(2013)‘s analysis period was restricted to be post-2000, their product broadly agreed with 

our map in terms of extent and year of tree cover loss for the same period. Also using 

decision trees, Kim et al. (2015) extended the analysis period to the 1990s. Based on a 

sample of pixels whose vegetation cover stayed ‘forest’ or non-forest’ between two given 

dates, they calculated the possibility of being ‘forest’ or ‘non-forest’ as a function of 

surface reflectance and temperature. A categorical map of forest change was then 

produced by assigning each pixel to the category with highest probability. It was possible 

that cloud cover excluded many pixels from the training data for Kim et al. (2015), 

resulting in these deforested pixels not chosen for training the trees and hence their 

product seemed to miss a lot of deforestation in the Damit study area. In addition, both 

Hansen et al. (2013) and Kim et al. (2015) relied on global tree cover to inform forest 

change. The extraordinary height and vigorous regrowth of tropical peat forest 

(Kobayashi 2000) meant that even post-logged forests were rendered intact forests under 

FAO’s definition. The practice of detecting forest change by epoch, despite being 

necessitated by the paucity of data in tropical region, resulted in both studies missing 

deforestation that occurred before the studied period. This comparison made clear how 

land use land cover change products can differ just by the choice of a cloud mask or the 
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change detection technique and called for a more uniform framework for continuous 

monitoring of forest disturbance and regrowth especially in the tropics.  

3.3.3 Accuracy assessments  

We tested whether our algorithm captured the extent of logged forest by calculating 

fractional forest cover from LiDAR within the disturbed Landsat pixels. Fractional 

canopy cover was computed as the ratio between the number of LiDAR pixels with 

minimum elevation of 30m (Figure 2.5) and total number of LiDAR pixels in each 

Landsat pixel and the ratio had to be 10% minimum (FRA 2015). The mean fractional 

forest cover for the disturbed forest was 0.2, which showed that our algorithm was 

sensitive to both clear cut and partial logging at Landsat resolution.  

Our algorithm achieved clear separation between disturbed and intact forests in terms 

of NDMI and mean top-of-canopy height. Figure 3.5 showed how all pixels in a cloud 

free NDMI scene were grouped into intact (blue) and disturbed (orange) pixels as a result 

of the adaptive outlier detection procedure and the corresponding NDMI and top-of-

canopy height distributions for each group. The distributions of NDMI values showed 

similar shapes but a shift in centroid and great overlapping between the intact and the 

disturbed forest pixels, which would be very challenging to resolve without the adaptive 

outlier detection. Similarly with the independent measure of canopy height, we observed 

that intact forests were taller than disturbed forests, as expected. The overlap in height 

between intact and disturbed forests was due to (i) poor quality canopy trees left behind 
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by loggers, which increased the mean height of the collocated Landsat pixel and (ii) sub 

pixel canopy gaps, which reduced the mean height of the collocated Landsat pixel. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Detecting changed pixels: we started with a cloud free scene (NDMI was 

shown as example) and plotted its theoretical (purple) and simulated (green) chi square 

distributions. The resultant intact (blue) and disturbed (orange) pixels were plotted by 

NDMI and mean top-of-canopy height values. 

 

Our pixel-based stratified sampling validation scheme for disturbance type and timing 

of last disturbance event closely followed Olofsson et al. (2013, 2014)’s guidelines. We 

calculated a total sampling size of 650 pixels assuming that all classes achieved user's 

accuracy of 85% and standard error of 0.014. From this, we assigned stratified sampling 
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sizes of 225, 312 and 113 pixels to intact forest, disturbed forest before 2001 and 

disturbed forest after 2001 respectively. The sample size of 113 was to ensure that every 

year after 2001 would show up in the selected samples. The sample count statistics were 

summarized in Table 3.1: 

Table 3.1: Error matrix of sample counts for the three land use land cover classes. Map 

categories are the rows while the reference categories are the columns. 

 

Observation 

 

Algorithm 

Intact 

forest 

Disturbed 

prior to 

2001 

Disturbed 

during 

2000s 

Map area 

(hectares) 

Fraction of 

total 

landscape 

Intact forest 211 10 4 793.5 0.40 

Disturbed prior to 

2001 

6 284 22 891.3 0.45 

Disturbed after 2001 5 5 103 297.1 0.15 

 

Table 3.2 summarized user’s and producer’s accuracies and areal estimates with 95% 

confidence level. Our LULCC areal estimates in table 3.1 were within 95% confidence 

intervals for the true areas (Table 3.2). Our user’s and producer’s accuracies were in the 

upper range among the most popular tropical deforestation studies (DeVries et al.  2015). 
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Table 3.2: Estimated error matrix with accuracy measures ± a 95% confidence interval. 

 

Class 

User’s 

accuracy 

(percentage) 

Producer’s 

accuracy 

(percentage) 

Areal 

estimates 

(hectares) 

Intact forest 0.94 ± 0.032 0.95 ± 0.051  772.7 ± 30.5 

Disturbed prior to 2001 0.91 ± 0.032 0.95 ± 0.027 878.7 ± 37.5 

Disturbed after 2001 0.91 ± 0.053 0.80 ± 0.052  329.4 ± 32.7 

 

We further analyzed forest structure associated with the validation pixels. Many pixels 

located at the edge of logging swatch in one year only became detected in later years by 

the algorithm when at least an additional 50% of the pixel’s canopy cover was removed 

or when the cloud cover for that area was low enough for successful detection, which was 

encountered elsewhere in the temperate forest (Ahmed et al., 2014). The algorithm 

detected all natural gaps bigger than 20 hectares, which occurred in 4 separate locations 

due to pest pathogen in the late 1940s (Anderson 1961). For natural gaps that were one 

Landsat pixel or smaller, the canopy cover had to reduce by 50% of the pixel area or 50% 

of the original canopy height in order to be detected. As such, only a few pixels with 

pixel to sub-pixel natural gaps were detected. Gap opening was not the main objective of 

the development of our method and will be treated separately in another section. 
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3.3.4 Change Detection Methodological tradeoffs  

Differences of data sources, acquisition streams, analysis strategy, spatial extent and 

resolutions prevent simple standardization of continuously updated land use/ cover 

change product that was highly versatile for different research purposes (carbon 

accounting, climate change projections and biogeochemical modeling). The algorithm 

introduced in this paper is a major step towards a framework for continuous monitoring 

of forest disturbance and regrowth by contributing a means to map forest disturbance in 

an aseasonal tropical forest at annual resolution using time series analysis. Here, NDMI 

as proxy for vegetation moisture is used as an illustration of the algorithm. Like other 

time series change detection methods (e.g., VCT (Huang et al. 2010), BFAST (Breaks for 

Additive Season and Trend) Verbesselt et al. 2010, LandTrendr Kennedy et al. 2010), 

our method has the statistical advantage of increased degrees of freedom over the wall-to-

wall change detection methods. A candidate change event is confirmed by a time series 

(instead of a pair) of observations before, during and after the change in order to be 

detected and identified. In addition to our primary design for change detection algorithm, 

we provide a texture based cloud mask to better screen cloud, cloud shadow and haze, 

which is important and useful for other tropical areas with similar cloud cover challenges. 

Our algorithm accounts for both continuous changes and abrupt changes (or events in 

sparse data density), assuming that NDMI values for disturbed pixels either change 

gradually (e.g., resulting from natural growth) over time or differ substantially from the 

statistical distribution of their neighbors from observation date to observation date.  
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The methodological foundation is based on well-characterized, parametric statistical 

models and offers computational simplicity. Large-area land cover mapping or change 

detection often requires intensive human involvement or automation, which entails 

sophisticated algorithm parameterization, substantial computing facilities or both. Our 

method follows established statistical theory with little parameter fine-tuning. It includes 

(i) careful screening of cloud, cloud shadow and haze to prevent false positive and (ii) 

adaptive detection of candidate change pixels to provide the algorithm the initial values. 

Further, this method captures continuous natural and anthropogenic changes in land cover 

at fine spatial resolution and has the potential to capture subtle and long-term changes, 

such as forest degradation in the absence of a universal, definite method designed for 

forest degradation and in light of the rapid but uncharacterized forest degradation in 

Southeast Asia (Miettinen et al., 2014). This application to a dense, cloudy tropical peat 

swamp forest provides the exact location, the timing and the mode of disturbance for an 

area understudied in current global environmental change research, under-reported in 

national forest inventory but that has been undergoing fast and substantial disturbances. 

This method can contribute to current efforts in monitoring for both Deforestation and 

Degradation in the context of REDD+. 

This approach does not need to be limited to tree cover or imagery resolution and 

frequency. Although our proof of concept of the algorithm uses NDMI, the general 

method has no specific requirement on the thematic type or spatial or temporal resolution. 

Therefore, it may be applicable to continuous fields of other land cover types generated 
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using satellite data from different sensors at the sampling frequency, resolution and 

spectral indices that optimize the research purpose(s). However, there are several 

limitations of the current algorithm that require additional refinement. First, the algorithm 

currently operates on time series of single pixels without any consideration for its 

neighbors and spatial correlation is only considered in the post processing of the results. 

We may expect spatial correlation between different pixels and serial correlation between 

observations of a given pixel taken over time. The effect of spatiotemporal correlation on 

change detection needs to be investigated in the future. Moreover, the current algorithm 

is optimized for detecting single and dominant forest disturbances (e.g., clear cutting) 

whereas changes can be multiple (logging and burning) or repeated, such as fires and 

crop rotations. Another big assumption is that any change has to result in a prominent, 

detectable drop in vegetation greenness or moisture while events such as crop 

intensification might only shift the mode of the vegetation time series. Secondly, 

although both natural and anthropogenic disturbances are captured, the distinction 

between the natural and anthropogenic cause is only by visual inspection, instead of 

registering each cause with a distinctive temporal signature. To this end, more indices 

should be investigated to best suit a variety of disturbances e.g. wind, pathogen, fire etc. 

Finally, our current algorithm evaluation is only demonstrated in the tropical moist 

broadleaf forest biome, which accounts for less than 40% of global tropical forests. With 

the opening of the Landsat historical archive and new satellite missions, there is no 

reason that the quantitative evaluation cannot be expanded to other (tropical) forest types. 
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3.4. Conclusions 

Accurate, detailed and timely land use land cover information at both the regional and 

global scale is extremely valuable for helping policy makers, natural resource managers 

and researchers address the issues related to global environmental changes. In this study, 

we provided a new strategy for characterizing land use land cover change in forested 

areas using time series of Landsat resolution vegetation moisture. The recognition of land 

cover disturbances being rare events in a large geographic region allows efficient change 

detection by employing well-established parametric statistics. Fitting nonlinear curves to 

time series, continuous estimates of vegetation moisture simultaneously characterize the 

timing and intensity of forest cover change. The method requires little parameter fine-

tuning to derive indicators of annual forest cover change but rigorous cloud screening and 

texture computation. It offers multiple advantages, namely (i) reliable results; (ii) 

computational simplicity; (iii) global applicability; (iv) flexibility to capture abrupt as 

well as gradual changes; and (v) capability to apply to other satellite sensors. Because 

increasing the frequency of forest cover change detection to annual resolution is highly 

desirable for understanding the global carbon cycle, further research should be broadened 

to include multiple and repeated disturbance at once as well as other types of 

disturbances. The more reliable capturing of type, timing and intensity of disturbance will 

also facilitate the understanding of post disturbance forest conditions, which is the topic 

of the next chapter. The results here will allow for segmenting forest structures at LiDAR 
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scales by Landsat derived time of disturbance and constructing a chronosequence to 

analyze how forest recovers as a function of type, time and intensity of disturbance. 



 

81 

 
8
1
 

CHAPTER 4 – RECOVERY DYNAMICS OF DISTURBED PEATLANDS IN 

NORTHWESTERN BORNEO 

 

4.1 Introduction 

4.1.1 Current knowledge on the ecology of tropical peatlands 

Tropical peatlands account for less than 1% of global forest area (Page et al., 2011), 

but contain one third of the global soil organic carbon pool (Parish et al., 2008; Draper et 

al., 2014). Southeast Asia, with Indonesia and Malaysia, collectively called the Indo-

Malayan realm, is home to 56% of the tropical peatland area. The Indo-Malayan 

peatlands are one of the most geologically complex and biologically endemic and diverse 

regions in the world (Sodhi et al., 2004), providing a variety of ecological services and 

resources such as flood mitigation and timber. The rate of deforestation targeting the 

economically valuable Dipterocarps that dominate Indo-Malayan peatlands was twice 

that for other types of evergreen forests in the region during the 2000s (Miettinen et al., 

2011). Starting in the 1970s and accelerating through the 1990s, 80% of the pre-industrial 

extent of Southeast Asian peat swamp forests (PSF) has undergone some form of 

extraction and development (logging, draining, burning) with no ecologically and 

hydrologically intact peat domes remaining in Malaysia and Indonesia (Dommain et al., 

2016; Gaveau et al., 2014, 2016; Bryan et al., 2013; Miettinen et al., 2012). By the 

2010s, peatland deforestation and degradation represented approximately 20% of global 

annual CO2 emissions from land use land cover change (van der Werf 2009, La Quere et 
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al., 2015) and substantially contributed to CH4 and N2O greenhouse gas emissions 

(Hatano et al., 2016; Muller et al., 2016; Mitsch et al., 2010). Further, the 1997/98 and 

2015/16 El Niño episodes resulted in tropical peatland fires that contributed to 

anomalously large rises in atmospheric CO2 concentrations (Langman & Heil 2004, Betts 

et al., 2016). Transboundary haze from peatland fires during the 1997/98 El Niño event 

caused financial damage of up to $20 billions (Varma 2003) and during the 2015/16 El 

Niño event was associated with 100,000 deaths (Koplitz et al., 2016). If peatland 

deforestation and degradation is to continue unabated, PSF will disappear in 30 years 

(Hoojier et al., 2010) and potentially produce CO2 emissions equivalent to 11-13% of all 

emissions since the start of the Industrial Revolution (Donahue 2016). Conservation and 

restoration of PSF concerns the reduction of CO2 emissions, protection of the region’s 

highly endemic fauna and flora, and also regional water regulation and public health 

safety (Dommain et al., 2016). 

Policies, initiatives and conventions have thus far been largely ineffective in halting 

the wave of logging and agriculture conversions in peatlands despite a large body of 

literature dedicated to ecosystem services and ecological uniqueness of PSF, as well as 

the consequences of unsustainable management in this ecosystem (Anderson 1961, 1964, 

1983; Bruenig 1964, 1969; Furukawa 1988a,b; Kobayashi 2000; Page 1999, 2002, 2011; 

Dommain 2004, 2010, 2016; Hoojier et al., 2010). Broadly, logging in peat swamp forest 

removes up to 80% of aboveground biomass, directly reducing input to peat 

accumulation while also changing the peatland microclimate and impairing its water 

http://rainforests.mongabay.com/08indo_fires.htm
http://www.smithsonianmag.com/science-nature/mad-dash-figure-out-fate-peatlands-180958841/?no-ist
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holding capacity (Page et al., 2008). Drainage of peatland results in peat oxidation and 

eventually subsidence to such low levels that the water table is able to reach and rise 

above the new surface more quickly in periods of high rainfall and dramatically 

increasing runoff, leading to more flooding and salinity from increased tidal influence. In 

some locations the peat eventually disappears leaving behind soils that hold far less water 

and tend to be more nutrient deficient and/or toxic (for example, sulfates in peatland of 

brackish water origin), which is unsuitable for agriculture and further management 

(Kobayashi 2016). Logging and peat drainage also increase fire risk. Fire not only 

destroys the aboveground biomass but also smolders in the underlying peat, resulting in 

high atmospheric emissions of greenhouse gases (CO2, CO and CH4) and particulate 

matter (Page et al., 2016). The aboveground and belowground destructions from fires 

further lead to loss of the water regulation functions of the near-surface peat layer 

(Turetsky et al., 2015), subsidence of the peat surface (Rein et al., 2008), loss of the seed 

bank and tree bases for future vegetation re-establishment (Page et al., 2009; Rein et al., 

2008), and damages to human health and livelihoods through loss of natural resources 

and high levels of air pollution (Page et al., 2016). So far literature has focused on 

drainage and fires (Hirano et al., 2012; Schrier-Uijl et al., 2013), effectively assuming 

damages are reduced in PSF if logging occurred without subsequent drainage and fires.  

Countries like Indonesia have pledged to accelerate the recovery and restoration of 

hydrology in degraded peatlands by rewetting 2 million hectares between 2016 and 2020. 

The success of these efforts will depend on the methods that can bring about an 
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economical, effective and permanent rise in the depth to water level and the former 

vegetation cover (Jaenick et al., 2011). Unfortunately, our understanding of PSF ecology 

and its time evolution following disturbances is still very limited (Bryan et al., 2013; 

Posa et al., 2011; Dommain et al., 2004). Monitoring of PSF has been extremely difficult 

due to the lack of baseline information, cloudy and rainy weather conditions that limit 

utility of satellite-based remote sensing, remote and isolated location and the microscale 

and mesoscale heterogeneities of this ecosystem. Improved knowledge of PSF ecology 

and its responses to harvesting and management practice is necessary to improve global 

climate models, inform sustainable peatland management practices, biodiversity 

conservation, and to improve carbon accounting (Page et al., 2011; Posa et al., 2011; 

Sodhi et al., 2004). 

4.1.2 Research objectives 

The ecology of peat swamp forests is unique in many respects, including their supra-

annual masting mode of reproduction (Curran et al., 1999), high interdependence 

between peat, water and vegetation (Page et al.; 1999, Dommain et al., 2010), and 

adaptation to waterlogged, nutrient-poor environmental conditions (Anderson 1983, 

Furakawa 1988a). This study aims to yield new insight into how the hydrological and 

ecological characteristics of PSF respond to natural and anthropogenic disturbances in 

both the short- and long-term. Specifically, we examined (i) regrowth dynamics with 

respect to time since last disturbance (logging and pathogen); (ii) the mesoscale patterns 

of hydrology with respect to disturbance dynamics and (iii) how the co-dependence 
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between hydrology and forest structure determines the contrasts in structure and 

environmental conditions between intact and logged forests. 

 

4.2 Methodology 

4.2.1 Site Description 

The Damit and Mendarem peat domes occupy an area of 7,145 ha at the Malaysian 

 

Figure 4.1: LiDAR-derived canopy height map (panel A) and dome elevation (panel 

B). Land use history at Sungei Damit and Ulu Mendaram (panel C: land use 

trajectories; panel D: years that logging was detected and panel E: years that 

agricultural conversion was detected) together  
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and Brunei border region (Figure 4.1). Figure 4.1A showed the extent of LiDAR 

coverage across a landscape, capturing a chronosequence of disturbance by both logging 

and insect infestation. In both Mendaram and Damit, the mode of logging was clear 

cutting with mechanical transport of logs on railroads that were laid out across the 

landscape (Kobayashi 2000). Both domes showed evolving disturbance dynamics 

associated with logging and conversion to oil palm plantations for the case of Mendaram 

(figure 4.1C and E). The Damit dome is in close proximity to two active river channels of 

the Belait system (Sungei Belait and Sungei Damit) and experienced extensive logging 

between the late 1980s and 2010 (Furukawa 1988b, Kobayashi 2000). In contrast, the 

Mendaram dome is sandwiched by the Belait system on one side (Brunei) and the Baram 

system on the other (Malaysia). Most of the Bruneian side of Mendaram dome is still 

intact with an exception of a 94-ha logged area detected on the south end of the dome that 

is estimated to have occurred prior to 1984 as viewed from Google Earth. The west side 

of the Mendaram dome is adjacent to Malaysia and was directly adjacent to logging 

activities from the Malaysian side of the border which also occurred prior to 1984. 

Although there were Landsat imagery between 1983 and 1991 for the two domes, they 

were not compatible in terms of atmospheric correction, coordinate system and 

resolution, which prevented them from being used with our land use land cover change 

detection algorithm. A buffer along the border was cleared between 1991 and 1994, from 

which logging tracks started to extend over the Malaysian side of dome to facilitate 

transport of logs. The heaviest period of logging occurred on the late 2010s (fig. 4.1D). 
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The entire Malaysian portion of Mendaram dome underwent drainage and conversion to 

palm oil plantation between 2010 and the present (fig. 4.1E; Dommain et al., 2016). 

4.2.2 Disturbance dynamics from optical imagery (Landsat) 

The Baram-Belait complex, to which the peat domes at Sungei Damit and Ulu 

Mendaram belong, was one of the most widely documented peat complexes in 

northwestern Borneo (Sarawak, Malaysia and Belait, Brunei), being about 4,500 km
2
 in 

size, about 4,500 years in age and among the few peat domes that exhibited a full catena 

of vegetation (Staub and Esterle 1994, Anderson 1983, 1964, 1961). By 2015, the Baram 

dome was completely drained and converted to oil palm plantations (Dommain et al., 

2016; Gaveau et al., 2016). However, the rest of the Baram-Belait peatland complex, the 

Mendaram (MD) and Damit (DT) dome across the Malaysian border in Brunei 

experienced varying degrees of disturbance since the 1980s and hence could inform 

understanding of the differing ecology and hydrology of intact, logged, and degraded 

PSF. The entire Damit dome had a peat thickness of no more than 4.5m and was covered 

by pure stands of Shorea albida, an endemic species from the Dipterocarp family that 

reaches 65m in height (Furukawa 1988). On the other hand, at Mendaram, the peat depth 

reaches 4.5m within just 900m from the river (Dommain et al., 2015), increasing toward 

the dome center. Mendaram contains the full catena with tree height ranging from 35 to 

65m across only a 4 meter change in dome elevation (Nguyen et al., 2016). Apart from 

anthropogenic disturbance, the forest occasionally experienced squall lines, which were 
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spatially localized and confined to the wet season (November-March), lightning (Bruenig 

1963, 1969) and rare but extensive pathogen defoliation (Anderson 1961).  

To characterize disturbance dynamics in the Damit and Mendaram peatdomes, we 

employed the land use/ cover change analysis approach developed in chapter 2 to analyze 

a time series of (208 Landsat images) that spanned 25 years (1991-2015) and detected 

changes using time series analysis of Landsat-pixel level reflectances and vegetation 

indices. In brief, a time series of the Normalized Difference Moisture Index (NDMI) was 

built for each pixel within the study region, screened for clouds and noise and assessed to 

determine whether there was a shift in its temporal trend or a change in the pixel’s value 

with respect to the scene-wide statistical distribution during the analysis period. 

Quantitative metrics, such as the magnitude, rate and time of forest cover change in each 

pixel, were derived from the resultant logistic equations. However, if such a trend fitting 

procedure could not work due to data scarcity, we then assessed whether a pixel was 

perceived as change from the statistical distribution of its neighbors. We limited our 

analysis for only the extent of Shorea albida forests and avoid complex hydrological 

features such as former river channels, buried river beds and ox-bow lakes as these 

features can contaminate the vegetation signal and the vegetation composition is unlikely 

to include Shorea albida (Furukawa 1988). Further, noticing that when the cleared land 

became plantation, the presence of water in plantation canals dropped the wetness signal 

to below 0, we modified our algorithm to detect time of appearance of plantation canals 

as proxy for agricultural conversion. The algorithm achieved more than 92% user’s and 
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producer’s accuracies, making it reliable to segment higher resolution data of forest 

structure and radar backscatter. 

4.2.3 Forest structure from Light Detection and Ranging (LiDAR) data 

We characterized forest structure (individual tree canopy height, crown area, crown 

roughness, stem density) of the two peat domes from Light Detection and Ranging 

(LiDAR) observations acquired in 2010 and covering approximately 7,145 hectares of 

peatlands. From the raw point clouds, Canopy Height Model (CHM) for Damit at 0.5m 

resolution was produced following the procedure described in Nguyen et al. (2016). A 

0.5m resolution was deemed adequate for both computational power and detailed enough 

for subsequent exaction of forest structure. Due to challenges associated with the signal 

of vegetation moisture from open mixed swamp forests, we again limited our analysis to 

forests dominated by Shorea albida, which were most affected by human activities. As 

there was no clear boundary to mark the transition from riverine, open mixed swamp 

forest to other phasic forest communities (Anderson 1983, Bruenig and Huang 1989), we 

delineated the analysis area using information of peat depth and drainage. The analysis 

area was produced in ArcGIS using a minimum elevation of 3m above mean sea level 

and a maximum slope of 0.10 units as proxy for poor drainage. Three meters was the 

reported peat depth that was beyond tidal influence and that was most like subjected to 

human disturbances (Esterle and Ferm 1994; Hoojer 2004; Wosten et al., 2008), we 

therefore assumed that a minimum elevation of 3m corresponded to a minimum of 3m in 
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peat depth. The final analysis area for Damit and Mendaram were 1,980.5 and 5,164.6 

hectares, respectively. 

We extracted statistics on forest structure (gap fraction, canopy stem density, canopy 

stem position and height) following the methodology used in Nguyen et al. (2016), with 

improvements to account for the heterogeneity of the near-edge and logged forest areas. 

We first separated logged and intact forest areas by using the Landsat map of disturbance 

dynamics to segment the CHM by disturbance type. The intact portion of the CHM was 

further separated into gap and non-gap areas while the logged portion was separated into 

four layers: emergent/ tall canopy, mid height canopy, low stature canopy and forest floor 

vegetation (mainly the fern species Pandanus andersonii and the herb Lephrolepis 

biserrata). Assuming that the maximum height for Pandanus is 6.5m (Kobayashi 2000) 

and modifying Duncanson et al. (2014)’s approach, we inverted the logged portion of the 

CHM and ran ArcGIS’s (Version 10.4) Basin tool to produce neighboring watersheds 

along lines of local minima. Within this section, a watershed represented a potential tree 

crown or a cluster of crowns. For each watershed we examined its pseudo-waveform 

shape of the distribution of pixels’ height. We relied on Jenks’ natural breaks to inform 

the number of layers and the thresholds at which layers within a watershed can be 

separated. After all watersheds were individually split into sub-watersheds representing 

separate forest layers, we merged all sub-watersheds that belonged to the same layer into 

one complete raster. 
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To separate the intact portion of the CHM into gaps and non-gapped areas, we relied 

on the knowledge that for tall, rough forests (phasic communities I, II and III), canopy 

height within the gaps should reach between ¼ and ¾ the surrounding canopy height 

(Bruenig 1964, 1973, Anderson 1963). For short, smooth forests (phasic community IV), 

lightning gaps are very fewer. Thus, we carried out a moving window analysis of 150m 

by 150m over the intact forest and calculated the ratio between mean height of a given 

LiDAR pixel and the maximum canopy height within the search window. On the 

resultant canopy fraction raster, which ran continuously between 0 and 1, we conditioned 

that if the maximum canopy height in the search window is more than 35m, then a 

canopy fraction of at most ¾ corresponded to a gap. If the maximum canopy height in the 

search window is less than 35m, all canopy fraction of less than 1 corresponded to a gap. 

On the resultant gap and non-gapped areas of the intact forest CHM, we again inverted 

the CHM and ran ArcGIS’s Basin tool to produce neighboring watersheds along lines of 

local minima. No layering analysis was done since very little signal from LiDAR can 

penetrate a forest of 55-60m height. 

Finally, we extracted individual stem height, crown roughness and crown areas by 

running a local maxima filtering algorithm on the watersheds. The algorithm relied on a 

priori knowledge of the relationship between stem height and crown diameter in 

Dipterocarp forest to dynamically adjust the size for the local maxima search window 

(Nguyen et al. 2016). Neighboring crowns of within 1.25 times their hypothetical crown 

diameter and within a 6m difference in vertical height (Osunkoya et al. 2007) were 
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merged to be one tree. The algorithm generated the location, height, crown area, crown 

roughness and crown depth for each tree within each layer. Crown area was calculated as 

the number of pixels in the crown multiplied by the area per pixel (0.25m
2
). Crown 

roughness was calculated as the standard deviation of height of all pixels belonging to the 

same trees. 

4.2.4 Hydrology and canopy-ground interactions from L-band HH backscatter 

(PALSAR and JERS-1) 

We characterized the canopy-ground interactions (and hydrology) by analyzing multi-

temporal active radar images of the peatlands between 1993 and 1998 and between 2007 

and 2009. Optical satellite observations for Southeast Asian coastal peatlands are limited 

due to near ubiquitous cloud cover (70-80% of the year), haze from smoldering fires 

during the dry season (April – October), and precipitation during the wet season 

(November – March). Unlike optical sensors, which look at vegetation reflectance in the 

visible spectrum, microwave sensors measure the emissivity of surface objects (e.g. land, 

soil, water), given that water has a very high dielectric constant compared to other solid 

objects. The wavelengths of microwave are much less influenced by clouds and smoke 

and can better penetrate vegetation at some wavelengths, making many studies using 

microwave data successful for mapping wetlands and inundation (e.g. Hess et al., 2003; 

Siqueira et al., 2003). In particular, the longer wavelength of L-HH sensors such as the 

Japanese Earth Resource Satellite-1 (JERS-1) and the Phased Array type L-band 

Synthetic Aperture Radar (PALSAR) onboard the Japanese ALOS satellite have been 
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found to maximize canopy penetration, interaction with vegetation components (leaves, 

branches, trunks) and the forest floor, and discrimination between flooded and non-

flooded forest (e.g. Hess et al., 2003; Siqueira et al., 2003; Salas et al., 2002; and Lucas 

et al., 2007).  

JERS-1 was launched and operated by the National Space Development Agency of 

Japan (NASDA) from February 1992 until October 1998. The JERS-1 Synthetic Aperture 

Radar imaged the Earth on descending node with a 35-39° westward look and a ground 

resolution of 18m in both range and azimuth with a 44 day revisit cycle. In comparison, 

the ALOS PALSAR imaged on ascending node at an incidence angle of 38.8° between 

2007 and 2011. The polarization mode was switched periodically between single mode 

(HH) during the wet season and dual mode (HH, HV) during the dry season, with a 

temporal resolution of 46 days. The absolute calibration accuracy of PALSAR data is 

0.219 dB, using the Amazon rainforest as calibration target (Shimada et al., 2009), while 

that for JERS-1 data was approximately 1dB (Salas et al., 2002).  

The Japanese Space Agency (JAXA) provided us free of charge eleven (11) 

radiometrically and terrain corrected, horizontally co-polarized (L-HH) JERS-1 imagery 

between 1993 and 1998 at 12.5m resolution. In addition, we obtained from the Alaska 

Space Facility eight (8) radiometrically and terrain corrected, calibrated ALOS PALSAR 

imagery between 2007 and 2009 with horizontal co-polarization (4 of which were also 

available in dual polarization) and 12.5m resolution. While ALOS PALSAR backscatter 

intensity was only available in the format of gamma nought (γ°) (normalized to the slant 
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range, which is the plane perpendicular to the ground), JERS-1 backscatter was manually 

normalized to the ground range and converted to intensity as sigma nought (δ°) (Shimada 

& Isoguchi 2002). Hence, although the images were of the same wavelength and 

resolution, they cannot be used together in simple one multi-temporal analysis. 

Nevertheless, we took advantage of the flat terrain in PSF, the zonation of vegetation 

structure, the availability of multiple dry-season observation dates, and similar SAR 

configurations between JERS-1 and ALOS (wavelength, resolution, incident angle) to 

deduce valuable information about the short and long-term dynamics of hydrology and 

forest structure in PSF.  

Additional pre-processing had to be done for both JERS-1 and ALOS PALSAR to 

limit co-registration error and speckle noise, which contributed the most to the signal 

variation in L-band backscatter (Lucas et al., 2007; Siqueira et al., 2003; Hess et al., 

2003). Due to very low geometric accuracy inherent in JERS-1 imagery (406m, Shimada 

and Isoguchi 2002), co-registration was carried out first between Landsat and the JERS-1 

imagery and then among the JERS-1 imagery. The final co-registration error between 

JERS-1 imagery and Landsat was reduced to 8m, or 0.7 of the horizontal resolution 

(12.5m). This was deemed adequate for further analysis by previous studies using JERS-1 

data (Jaenick et al., 2011; Almeida-Filho et al., 2000, 2005, 2009). After co-registration, 

the images were despeckled using the enhanced Lee filter over a moving 5 by 5 window. 

We then segmented the L-band backscatter by disturbance epoch (section 4.2.1), then 

within each land use/ type (intact forest or logged forests of different epochs), sampled 
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and calculated the mean, standard deviation and 95% confidence interval (CI) for its 

backscatter.  

We segmented selected JERS-1 and ALOS imagery using the Landsat-based land 

use/cover types (Figure 4.1), then assessed backscattering coefficients γ° for ALOS and 

δ° for JERS-1 across the chronosequence spatially and seasonally given three known 

scattering mechanisms. Despite efforts to despeckle, the images were found to be noisy 

and showed substantial spatial variation between forest types as expected from radar 

imagery (Salas et al, 2002). A sharp edge was consistently observed at the boundary of 

forests logged between 1991 and 1994 and the intact forest and was an artifact of SAR 

with the boundary between intact and logged forest (Salas et al., 2002). By looking at 

statistics of L-HH backscatter between intact and logged forests at different ages and 

between seasons, we asked the following questions: (i) were intact and logged peatlands 

statistically different in terms of L-HH backscatter?; (ii) if existent, was this statistical 

difference changed between seasons and with logging ages? 

4.2.5 Edge analysis 

We characterized how the spatial and temporal extents over which disturbance 

influenced adjacent intact peatland forests by analyzing forest structure and surface 

properties (backscatter for soil moisture and EVI for greenness) in four forest edges in 

Damit and Medaram that were created at similar times (1991-1994), but are situated on 

different dome elevations (<4.5m vs. > 6m above sea level) with varying aspect with 



 

96 

 
9
6
 

respect to the dominant wind direction and subjected to different logging ages and modes 

(10 years vs 15 years, clear-cut vs selective logging). For each forest edge, we extracted 

forest structure (section 4.2.2), microwave data (section 4.2.3) and EVI from an area that 

ran from the edge and to1km away from both sides of the edge. If the intact side of the 

edge was less than 1km in width, we limited the area of analysis to 500m into the intact 

forest. The choice of 1km was the minimum predicted depth of edge effect for Borneo 

(Chaplin-Kramer et al., 2015). Over the edge buffer areas, we laid a 100m by 100m grid 

and calculated the pixel-wise statistics for each variable (stem density, mean canopy 

height, gap fraction, dome elevation, JERS and ALOS backscatter, mean EVI for 1991, 

1997, 2007 and 2008). Edge pixels were selected as those that interfaced the logged and 

intact forests (Fig 4.1). We then calculated the shortest Euclidean distance from a pixel to 

its closest edge pixel and fitted a locally weighted scatterplot smoothing (LOESS) 

function for each variable as a function of pixel-wise distance to the edge. 

4.2.5 Statistical analysis  

All statistical analysis was carried out in the R statistical software version 3.3.0 (The 

R Development Team 2016). Unless otherwise noted, all variables were reported as mean 

± 95% confidence intervals (CI). Given the very large datasets and non-Gaussian data 

distributions, bootstrapping approaches were used to estimate statistics.  We determined 

the required sample size for a variable (forest structure of land surface property) by 

sampling with replacement for a sample size n such that we are 95% confident that the 

sample percentage as a fraction of total population size N (n/N) would be within 5% error 
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from the true population percentage. We first calculated a preliminary sample size m 

using a Z-score of 1.96 (for 95% confidence), 5% error and a default proportion of 0.5 

(Berenson et al., 2013): 

𝑚 = 1.962 ∗ 0.52/(0.05)2 

We then corrected m for the small, finite population and output the actual sample size n 

(Berenson et al., 2013): 

𝑛 =
𝑚

1 +  
(𝑚 − 1)

𝑁

 

Once we determined the sample size, we sampled with replacement from the population 

1000 times and calculated the means and quantiles.  

For comparison of data distributions relating to forest structure (mean canopy height, 

stem density) and surface properties we used the two-tailed F-test against the null 

hypothesis that across seasons, or decades, or land use type, the two populations of the 

same variables assumed the same variance with 95% confidence level. We also tested the 

statistical relationships between EVI and backscatter, and between forest structure 

variables and surface properties with distance from forest edge by fitting least squares 

linear regression to the scatterplots. In the event that a least squares linear regression 

could not be fitted, we tested the lack of a relationship using the Pearson Product Moment 

Correlation test. 
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4.3 Results and Discussion 

4.3.1 Vegetation structure chronosequence analysis 

Much of our current knowledge of the processes of natural regeneration on degraded 

peatlands in the tropics comes from studies of small areas, typically tens of hectares of 

degraded land embedded in a forested matrix (Uhl et al., 1988; Aide et al., 

2000; Galindo-Gonzalez et al., 2000, Zimmerman et al., 2000, Cubina and Aide, 

2001, Ingle, 2003; Guevara et al., 2004; de Melo et al., 2006 and Dosch et al., 2007). 

Logging in PSF can vary in intensity with some forests being mechanically logged, 

drained with canals, and/or burned. Natural regeneration of woody species in peat swamp

forests has been shown to be so highly sensitive to moisture, wherein if the germinated 

seedlings become either submerged or desiccated they are not likely to survive 

(Kobayashi 2016, Blackham et al., 2013, 2014). Results and synthesis from these field 

surveys undertaken by Bruenig and Huang (1989), Kobayashi (1998, 1999) and 

Anderson (1961) on the coastal peatlands in Northwestern Borneo all pointed to little 

natural regeneration of the canopy species, but vigorous regeneration of ferns and herbs. 

Logged peat domes have been observed to shift from pure stands of highly valuable and 

http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0245
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0010
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0010
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0100
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0270
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0085
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0085
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0150
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0115
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0090
http://www.sciencedirect.com/science/article/pii/S0378112714001959#b0095
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high biomass Shorea albida to a new domination of wind dispersed, medium stature 

woody species that either dominated later vegetation communities (e.g. Cambretocarpus 

rotundatus) or did not normally grow in peatlands (e.g. Macaranga spp.; Blackham et al., 

2013, 2014); and ferns (especially Pandanus andersonii and Nephrolesis biserrata, 

Kobayashi 2000, Cheng 2016 - unpublished).  

 

Figure 4.2: Mean canopy height observations in the top layer (>= 45m, panel A), in 

the mid-layer (15-45m, panel B), in the low layer (6.5-15m, panel C) and on the 

forest floor (<= 6.5m, panel D). 
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To assess recovery 

dynamics for different 

vertical strata as a 

function of time since 

disturbance, we stratified 

the vegetation canopy 

into four layers (>= 45m 

– top canopy layer; 25-

45m – mid-canopy layer; 

6.5-25m – low-canopy 

layer; and <= 6.5m – 

forest floor; figure 4.2) 

and partitioned the logged 

area by epoch of deforestation (before 1991, 1992-1998, 1999-2003 and 2004-2010) 

(Figure 4.2). We found that all epochs of logging retained tall stems with heights greater 

than 45m. The insect defoliated area did not have any trees taller than 45m, but had a 

substantially higher stem density for mid-canopy height trees (25-45m) than the logged 

areas (Table 4.1). The defoliated area was present at the start of our time series in 1991. 

The precise date of defoliation is unknown, but previous accounts in the area suggest it 

could have occurred as early as the 1960s (Anderson 1964).  The observed lack of a top 

canopy layer (trees taller than 45m) in the defoliated area is likely due to the defoliated 

Epoch Density of >= 45m 

trees (± 95 C.I) 

Density of 25- 45m 

trees (± 95 C.I) 

Mendaram Damit Mendaram Damit 

Intact  72 ± 12 56 ± 2 238 ± 31 NA 

Pest 

defoliation 

(prior to 

1991) 

 NA  31 ± 5 

Logged 

1988-1991 

 2 ± 1  6 ± 1 

Logged 

1991-1994 

 2 ± 1  5 ± 1 

Logged 

1999-2003 

 4 ± 1  6 ± 1 

Logged 

2004-2010 

 5 ± 1  8 ± 1 

Table 4.1: Stem density of trees (25-45m and >= 45m) 

in intact and disturbed forests 
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trees becoming vulnerable to mortality from lighting and further susceptible to wind 

throw and branch breakage. Only the defoliated area has higher mean canopy height from 

the other epochs of disturbance (Figure 4.2). The only epoch with vegetation present in 

all layers was for 2004-2010, suggesting that logging in this area was selective and did 

not completely clear all vegetation.  

Our results temporally and spatially extend previous plot-based, episodic observations 

of regeneration dynamics in logged Shorea albida forests (Bruenig and Huang 1989, 

Kobayashi 1998, 1999 and Anderson 1961) 

to a 25-year chronosequence across more 

than 5,000 hectares of peatlands at various 

stages of degradation. The mean vegetation 

heights for intact forest, defoliated forest 

and different epochs of deforestation (before 

1991, 1992-1998, 1999-2003 and 2004-

2010) in Damit were 46.7 ± 0.86m, 21.0 ± 

0.67m, 14.6 ± 0.90m, 14.9 ± 0.80m, 15.6 ± 

0.80m, 16.1 ± 1.0m, and 20.9 ± 0.70m, 

respectively. For intact forest, and different 

epochs of deforestation (before 1991 and 

1992-1998) in Mendaram, the canopy 

heights were 44.9 ± 1.0m, 23.3 ± 1.2m and 

Figure 4.3: Mean canopy height by land 

use (Intact, logged by 1991, logged 

between 1991 and 1994, logged between 

1999 and 2003; and logged between 

2004 and 2010). Note that there was no 

height for Mendaram in the most recent 

two epochs due to LiDAR availability. 

Pest defoliation was only observed in 

Damit. 
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21.2 ± 0.90m (figure 4.3), suggesting little change in aggregate forest structure with time 

since disturbance. Canopy trees had a mean density of 2-4 trees ha
-1

 (>= 45m) and 5-8 

trees ha
-1

 for mid-canopy trees (25-45m) (table 4.1). Many of the stand-alone canopy 

trees were left behind as seed trees or due to unsuitable timber quality. Visual inspection 

showed that they remarkably survived in a drastically changed post-logging environment 

(e.g. stronger wind disturbances, higher lightning susceptibility, higher pH and flood 

risk), with densities largely unchanged through time (table 4.1). Possible reasons for their 

survival included the lack of lianas in Bornean forests and the root mat Shorea albida 

forms with the forest floor (Furukawa 1998a; Anderson 1983). 

Using the same stem recognition method (section 4.2.2), we found canopy stem 

densities in nearby intact forest in Damit (5-5.5m in dome elevation) and in the intact 

forest transect in Mendaram (~6m in dome  elevation) to be 56 ± 2 trees ha
-1

 and 56 ± 8 

trees ha
-1

,
 
respectively. The latter was within the same CI with the stem density for trees 

>= 45m found via ground survey in Mendaram (Nguyen et al., 2016) at 72 ± 12 trees ha
-

1
, which gave us confidence to proceed and compare canopy stem densities before and 

after logging. At Damit, comparing the canopy stem densities before and after logging, 

assuming a space-for-time substitution with the chronosequence, suggested that logging 

removed at least 90% of the original stem density, which implied further destruction on 

the understory due to the felling and uprooting of these tall individuals. 

The similarity of low mean canopy heights (about ¼ to 1/3 of the canopy height of 

the intact forest) in all layers and deforestation epoch across a 25-year chronosequence 
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suggested a state of arrested succession. To explore for signs of regeneration we analyzed 

the distributional difference in LiDAR height above 6.5m in order to avoid confusion 

with non-woody plants, particularly the Pandanus andersonii. Pandanus is a palm-like, 

dioecious early colonizer genus that typically does not grow taller than 6.5m (Kobayashi 

2000). The layer between 6.5 and 25m is the area where we would expect to see a 

temporal evolution in stand structure associated with tree growth and woody 

regeneration, but there were no significant differences in the height structure as a function 

of time since disturbance (fig.4.2). Examining the height structure closer to the edge of 

the intact forest boundary (within 800m) indicated a similar lack of temporal evolution in 

stand structure, suggesting that both remaining forests and residual, isolated canopy trees 

(seed trees) did not yield a sufficient number of new viable seedlings. Alternatively, it 

was also possible that saplings died shortly after establishment as previously noted by 

Kobayashi (1998). Given that Shorea albida masts approximate every 3-7 years (Curran 

et al., 1999) with an approximate dispersal distance of up to 800m from the seed tree 

(Blackham et al., 2014), this 25-year chronosequence suggested that the business-as-

usual logging operation in Brunei failed to leave the forest in a condition in which natural 

regeneration can proceed.  

Natural regeneration of Shorea albida in logged peatlands is typically limited by the 

periodicity of masting, distance to seed source, quality of seed rain and the absence of a 

seed bank as well as few dispersal agents, while artificial regeneration is both costly and 

has not been clearly proven to be effective (Blackham et al., 2013, 2014; Curran et al., 
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1999). The challenges to seedling establishment and sapling survival in logged-over and 

degraded PSF could be linked back to the high interdependence between peat, vegetation 

and water (Page et al., 1999), which would be altered by canopy removal and subsequent 

hydrological changes (Page et al., 2008). The high water holding capacity and low bulk 

density in intact peatlands made it very easy to desiccate during periods of no rain but 

also easy to be flooded after heavy rainfall (Kobayashi 1998). Measurements in the area 

have found that with the removal of the vegetation cover, the peat surface oxidizes and 

decomposes in the presence of dissolved oxygen in pore water, has higher surface 

temperature and radiation inputs (Kobayashi 2016), enhanced enzyme activities (Gandois 

et al., 2013), up to a doubling in pH level (Kobayashi 2016), and/or have the peat 

compact under the weight of the machinery used for extraction and transport of logs 

(Page et al., 2008). Compaction, compression and decomposition can all lower the peat 

surface. At the same time, with the absence of trees and lower transpiration, more surface 

water may be present. As a result, there may be an increase in flood risk either from 

heavy precipitation or tidal influence, the latter of which can result in salt intrusion and 

substrate acidification from the humic acids and the underlying mangrove mud. Flood 

tolerant ferns, often already in the forest floor community beneath the Shorea albida 

canopies, have been previously observed to grow vigorously within 10 months of clear 

cut (Kobayashi 2000). The increased wetness, increased substrate acidity and salinity, 

competition for light on the forest floor and high sensitivity to hydrological changes all 
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likely contribute to low Shorea albida seedlings survival at Damit (Page et al., 2008; 

Kobayashi 1998).  

The changes in vegetation composition and woodiness at the Damit peat dome 

implied dramatic losses in aboveground biomass, which in turn may alter the amount and 

quality of litter inputs and affect production and biogeochemistry of the new peat. From 

among the few studies that attempted to estimates biomass in logged Dipterocarp forests, 

the percentage of biomass loss immediately after logging was at least 50% that of the 

intact forest (Berry et al., 2010; Saner et al., 2012). After 22-40 years, recruitment of 

pioneer species increased biomass to about 15-28% lower than that of the intact forest 

(Saner et al., 2012; Okuda et al., 2003). For the Damit peat dome, the reduction in 

aboveground biomass is primarily due to the removal of woody biomass and the resultant 

dominance of non-woody plants in the regrowing vegetation. Laboratory experiments 

have demonstrated that leaves from secondary forest trees (e.g. Macaranga spp.) 

decompose faster than Pandanus spp., altering nutrient availability but also changing the 

quality of newly formed peat (Yule and Gomez 2009; Lim et al., 2014).  

4.3.2 Ground-hydrology-vegetation interactions  

To explore short-term (0-6 years post-disturbance) and long-term (14-20 years post-

disturbance) disturbance dynamics in terms of surface hydrology we characterized the 

active radar backscatter variations associated with forest clearing and regrowing stages 

across both peat domes. In forests, including forested wetlands, active radar is thought to 
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interact with the canopy, the forest floor and soil (moisture) via three main scattering 

mechanisms, which, in incremental backscatter strength, are surface, volume and double 

bounce scattering (fig.4.6) (e.g. Hess et al., 2003; Siqueira et al., 2003; Salas et al., 2002; 

Lucas et al., 2007). Surface (or specular) scattering is when only one reflection occurs 

(i.e. mirror-like). Volume (diffuse) scattering is where multiple reflections at differing 

angles occur. Double bounce scattering referred to the coherent reflection of a radar 

signal as it scattered from a branch or a trunk component to the ground, and back to the 

instrument. Double bounce is believed to be enhanced in inundated forests because the 

ground water surface is very reflective in the specular direction (i.e. forward scattering).  

The observed backscatter for both the Damit and Mendaram domes spanned the range 

of all three dominant scattering mechanisms including double bounce returns from 

flooded forests (highest), volume scattering within dense canopy (medium) and those 

resulting from specular (surface) scattering over open water (lowest) or over smooth 

forest floor (Hess et al., 2003; Siqueira et al., 2003; Salas et al., 2002; and Lucas et al., 

2007). The pre-1991 logging area in Sarawak, across the border from the Mendaram 

dome (area 2, figure 4.4), was dominated by surface scattering. Volume scattering was 

present through the interior intact forests in both Mendaram and Damit. Double bounce 

scattering was observed in both the open mixed swamp riverine forests and along log 

landings and light railways in Damit (area 3, figure 4.4). These areas had woody debris 

from logging and isolated standing trees that were clearly visible from Google Earth 

images for 2001 and high resolution aerial photos for 2010. The increase in scattering 
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was only temporary, as the abundance of double bounce scattering in the 1991-1994 

logging area appeared in August 1993 (area 1, fig. 4.4A), but not in June 1995 (area 1, 

fig. 4.4C). Similarly, double bounce scattering was present in the southern portion of the 

pre-1991 logging area in Sarawak in January 1996 (area 4, fig. 4.4B), but not in February 

1997 data (area 4, fig. 4.4D). This ephemeral signal was likely due to (i) vegetation 

regrowth attenuating or masking the ground-trunk backscatter and (ii) woody debris 

drying under enhanced surface temperature and radiation, lowering the dielectric constant 

 

Figure 4.4: Spatial variability of JERS-1 data in August 1993 (dry season, panel 

A), June 1995 (dry season, panel C), January 1996 (wet season, panel B) and 

February 1997 (wet season, panel D).  
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and the scattering ability. Signals from intact forests were stable between seasons, across 

the years and between two peat domes. Overall, intact PSF at -8.59 ± 0.10 had a lower 

backscatter than what was reported from the Amazonia (-7.89 dB) (Siqueira et al., 2003), 

perhaps due to its taller canopy heights (> 47m vs 35m), higher aboveground biomass 

(222 ± 24.4 Mg C ha
-1 

vs 150 Mg C ha
-1

 and higher percentage of biomass from the top 

 

Figure 4.5: A: Means (± 95 CI) of JERS-1 L-HH backscatter for intact forest and 

logged forests of different ages (1-4 years, 4-6 years, 30 years) at Damit. B: Means (± 

95 confidence interval) of ALOS L-HH backscatter for intact forest and logged forests 

of different ages (1-6 years, 14-17 years, 17-20 years and 47 years) at Damit. C: 

Means (± 95 CI) of JERS-1 L-HH backscatter for intact forest and logged forests of 

different ages (1-4 years, 4-6 years) at Mendaram. D: Means (± 95 confidence interval) 

of ALOS L-HH backscatter for intact forest and logged forests of different ages (1-6 

years, 14-17 years, 17-20 years and 47 years) at Mendaram. 
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canopy layer (81% vs 33%) (Nguyen et al., 2016 and Malhi et al., 2006, respectively), 

which could increase signal attenuation and reduce backscatter.  

We found no statistically significant differences in the backscatter between intact 

forest and logged forests, nor across different logging age classes in the same season in 

the same peat dome by land cover type nor as a function of mean canopy height (figure 

4.5).  

The differences in mean backscatter 

across land use types in the same 

season were within one standard 

deviation for backscatter of each 

land use type (see discussion of two 

exceptions below). Intact forests 

likely had similar backscatter with 

old clearings due to similar surface 

scattering from an even canopy in 

intact Shorea albida forest 

(Anderson 1964) and that from a 

thick herbaceous cover post-logging 

(Kobayashi 2000). In newly logged 

forest areas (1-6 years old clearing), 

 

Figure 4.6: Conceptual diagram of the behavior 

of L-HH backscatter from an intact, forested 

landscape to that from a logged forest at various 

dome elevations in a peat dome (panels A-C). 

All panels displayed a 50m by 500m transect 

from raw LiDAR data at selected dome 

elevation.  
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all three kinds of scattering contributed to the overall backscatter (Rignot et al., 1997): 

double bounce from either a wetter surface or felled trunks and standing trees; volume 

scattering from isolated stands and the thick herbaceous cover; and single scattering from 

lying debris and hence were not distinct from intact forests. We then compared the 

empirical results in table 4.2 with the theoretically expected values and trends of L-HH 

backscatter at 40 degrees incidence angles as a function of structural density for forest of 

similar biomass density with peatlands (Imhoff 1995, figure 9). Our L-HH backscatter 

statistics suggested four times higher vegetation density, expressed in terms of vegetation 

cover/ volume, from intact forest to newly cleared forest and a two times higher 

vegetation density from intact forest to regrowing forest. This confirmed the presence and 

near-term dominance of herbs and ferns and the compounding effect that forest structures 

had on interpreting L-HH backscatter (Imhoff 1995).  

Differences between the L-HH backscatter from intact and logged forests were very 

small, differing by less than 1.0 dB between dry and wet seasons and between two domes 

for the same logging age and season (Table 4.2 and Figure 4.5). It was impossible to 

separately quantify the effect of dense regrowth and that of changing hydrology from 

these L-HH data since the height of regrowing vegetation and intact forests at 6m and 

more than 47m, respectively, could attenuate any signal from changing soil moisture. 

Moreover, due to the waterlogging nature of the soil and near-surface water table, 

relatively small shifts in hydrology could result in changes in L-HH backscatter. The 

defoliated forest (>5.5m above sea level) and recently logged forests (between 2003 and 
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2009) in low dome elevation (3-4m above sea level) showed significant differences in 

seasonal means (figure 4.5 panel B). Between a dry season mean of -7.95 ± 0.14 and a 

wet season mean of -6.33 ± 0.14, the seasonal difference for the recently logged forest. 

Between a dry season mean of -7.30 ± 0.12 and a wet season mean of -6.81 ± 0.10, the 

seasonal difference for the recently logged forest was 1.42dB. These seasonal differences 

were 1.5 and 1.25 times the seasonal difference in intact forests, implying a higher 

likelihood of changing soil moisture and soil-vegetation interactions. In the case of the 

2003-2009 logged forests at low dome elevation, we hypothesized that the difference was 

due to low vegetation cover in the dry season and interactions between enhanced flooding 

in the wet season and woody debris from recent logging activities. Log transport railways 

were visible between 2004 and 2010 in the imagery, making the peat particularly 

vulnerable to compaction and compression. In addition, at low elevation, the surface peat 

tends to be more decomposed (sapric), with a higher bulk density (Esterle and Ferm 

1994). Others have observed very large increases in peat pH in newly logged area and 

elevated surface temperature, potentially accelerating surface peat decomposition 

(Kobayashi 2016). The combination of compaction, compression and decomposition 

would increase flood risk in the wet season but also drainage in the dry season, which 

could widen the seasonal difference in L-HH backscatter (Dommain et al., 2010). In the 

case of the defoliated forests, we hypothesized that a fibrous peat surface (Esterle and 

Ferm 1994) coupled with more isolated, defoliated trunks (Anderson 1961) were 

responsible for enhanced backscatter in the wet season.  
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Given two multi-temporal chronosequences of L-HH backscatter (1993-1998, and 

2007-2009) that were 10 years apart, we proposed a conceptual model to contrast the 

behavior of L-HH backscatter from an intact forested peatland (top panel) to that from a 

logged peatland at various dome elevations (figure 4.6). Intact PSFs with a pure stand of 

Shorea albida are dominated by surface scattering and volume scattering, with the latter 

likely in the cases where the signal penetrated the thin, broccoli-like canopies. When 

logging occurs near the edge of the dome, where access was the easiest and river flooding 

most likely, double bounce scattering can dominate due to the interactions between 

flooding episodes and woody debris and standing isolated stems (fig. 4.6A). As logging 

proceeded upslope of the peat dome, where regrowth can be vigorous (section 4.3.1) or 

where a thick understory was present (fig. 4.6B), surface scattering can also occur. At the 

top of the peat dome (fig. 4.6C), where soil moisture is lowest and stem density is highest 

(Anderson 1983), surface and volume scattering occurs, producing similar overall 

backscatter to that of an intact forest (table 4.2 and figure 4.4). 

As the temporal differences between forest conditions (intact, logging, and different 

domes) were within the calibration accuracy of the sensor (1.0 dB), the separability of 

peatlands at different clearing and regrowing stages in terms of L-HH backscatter was 

low. We find that the use of multi-temporal radar remote sensing for the purpose of 

hydrological monitoring in deforested, but undrained and unburnt peatlands for 

restoration and conservation purpose would be challenging given the complexity and 

heterogeneity of peatlands (c.f. Jaenicke et al., 2011). As we demonstrated in section 
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4.3.1, even in the absence of drainage and fire, logged peatlands are likely subject to 

enhanced decomposition and increased flood risks, often requiring intensive restoration 

efforts. Further, monitoring using interferometry SAR and coupling with ground 

measurements of forest structure and water table could allow for the differentiation of 

signals from each scattering mechanism and that of changing hydrology and ground-

vegetation interactions.  

4.3.3 Edge dynamics 

We investigated forest structure variations and canopy-soil interactions along two 

edge areas between logging and intact forests in Damit and Mendaram. By studying 

forest structure and microwave data near the edge and in the transition from the logged 

forest into the intact forest, we asked the following questions: (i) Do forest structures 

(stem density, canopy height, gap fraction) and canopy-soil interactions (indicated by 

microwave data) vary as a function of distance from the edge? (ii) Did the patterns of 

variation with distance from the forest edge change with time since edge creation (0-4 

years vs 20-24 years)? and (iii) Were these patterns the same across two domes (Damit 

and Mendaram)? Why (not)? 

When a patch of forest becomes isolated or interfaces with converted lands they can 

become very different environments from continuous intact forest or the central areas of 

large patches (Kapos 1989). Laurance et al. (2002) identified three phases of edge 

evolution: initial isolation, edge-closure, and post-closure. In the initial isolation phase 
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(<1 year after edge formation), the gradient between the forest interior and edge is 

steepest, with hot, dry conditions and increased light and wind penetrating into the 

fragment. There is often a dramatic pulse in tree mortality with many trees dying standing 

(Kapos 1989, Kapos et al., 1997; Laurance et al., 1998), of which large trees are 

particularly vulnerable (Laurance et al., 2000). During the edge-closure phase (1–5 years 

after edge formation), secondary vegetation and lateral branching by edge trees 

progressively seals the edge, making it less permeable to microclimatic changes 

(Carmago and Kapos 1995). Edge gradients in microclimate become more complex, but 

do not disappear entirely (Kapos et al., 1997). Broadly, plants near the edge die or 

become physiologically acclimated to edge conditions. Laurance et al. (2002) found that 

treefall gaps proliferate within the first 100–300 m of edges, partly as a result of 

increased wind throw. In the post-closure phase, wind throw remains elevated near edges, 

despite the fact that the edge is partially sealed by secondary growth. Turnover rates of 

trees increase near edges because of elevated tree mortality and recruitment of short-lived 

pioneer species. Pioneer plants replace leaves rapidly, contributing to the accumulation of 

leaf litter near edges. Although edge closure occurs quickly in tropics because of rapid 

plant growth, edges are still more dynamic and vulnerable to climatic vicissitudes than 

are forest interiors (Laurance et al., 2002). Beyond changes in the energy and water 

budgets, edge influence can lower the biomass in the edge forests by as much as 25% 

compared to the forest interiors (Chaplin-Kramer et al., 2015). In addition, edge-effect 

intensity varies markedly in space and time, and is influenced by factors such as edge 
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age, the number of nearby edges, and the adjoining matrix of modified vegetation 

surrounding fragments (Laurance et al., 2011). 

LiDAR data acquired in 2010 and ALOS L-HH backscatter in 2008-2009 allowed the 

comparison of several edges at MD and DT in their post-closure phase (figure 4.7, b and 

c). Data in figure 4.7 represented 100m x 100m pixels. We relied on our land use land 

cover change map (fig.4.1) to determine the edge zone. Distance to edge was calculated 

as the Euclidean distance between the center of a non-edge 1-hectare pixel and that of its 

closest edge pixel. Mendaram has two edges (MD1 – fig. 4.7 and MD2 – fig. 4.8) that 

were created in as early as 1984 and 1994, respectively, while the Damit study edge (DT1 

– fig. 4.9) opened in 1994. In addition, MD1 was susceptible to several drainage canals as 

of 20087, while MD2 was selectively logged between 2004 and 2008, leaving DT1 the 

only edge that was subjected to only clear-cut and no additional disturbance. Finally, both 

MD1 and MD2 are down sloped from where logging occurred, whereas DT1 upslope 

from logging. We selected several Landsat images during the dry season (May 1994, 

March 1997, July 2007 and May 2008) and reported the progression of EVI and 

backscatter as a function of distance to edge and with time.  

At MD1, 10-13 years after logging occurred, dry season EVI in 1994 were higher in 

the formerly logged area (0.21 ± 0.013) than that in the intact forest (0.18 ± 0.015), 

indicating that some regrowth occurred but the edge between intact and logged forests 

remained clearly delineated in the Landsat imagery (figure 4.7 panel A top plot). Dry 

season JERS-1 backscatter for 1994 and 1997 in logged forest was lower (-10.51 ± 0.64 
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dB and -10.31 ± 0.55dB, respectively) compared to intact forests (-9.77 ± 0.74 dB and -

9.87 ± 0.61 dB, respectively) (figure 4.7 panels A and B bottom plot), suggesting lower 

surface moisture, consistent with previous observations of to reduced evapotranspiration 

in high EVI grasses/shrubs (citation). By 2007, 23-26 years after logging (figure 4.7 

 

Figure 4.7: MD1 was clear-cut in as early as 1984, and then drained as of 2007, as 

shown in false color Landsat composite in 1994, 1997, 2007 and 2008. Edge dynamic 

at MD1 demonstrate a decline in 1994 EVI and an increase in backscatter (panel A top 

and bottom) moving from the logged to the intact forest. The 1997 EVI and backscatter 

(panel B top and bottom), 2007 EVI and backscatter (panel C top and bottom) and 

2008 EVI and backscatter (panel D top and bottom) were plotted against distance to 

edge illustrating the time evolution of the signal. The edge was indicated with a dash (-

-) line. 
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panel C top plot), the edge between intact and logged forests became blurred, indicating 

additional regrowth, with the mean dry season EVI in 2007 showing no significant 

difference between intact (0.175 ± 0.01) and logged forest (0.18 ± 0.008). However, a 

two-tailed F-test rejected the null hypothesis that the variance of EVI in logged and intact 

forests do not differ (p-value = 0.00036). In fact, ratio of variance between intact and 

logged forest was 0.2, suggesting that this regrowth in the logged forests may have 

comparable EVI, but was a different vegetation community with more woody stems 

compared to that in the 1990s (figure 4.7). Our stem detection algorithm (section 4.2.3) 

estimated stem density for trees >= 25m in 2010 in the logged and intact areas on either 

side of MD1 at 150 ± 10 trees ha
-1

 and 100 ± 12 trees ha
-1

 respectively. The increased 

abundance of woody stems might have enhanced interactions between water and 

vegetation, resulting in more backscatter on the logged side of the edge (fig. 4.7 panels C 

and D). 
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At MD2, an area fragmented in 1994 and selectively logged in the mid-2000s, dry 

season EVI and JERS during 1994-1997 (figure 4.8 panels A and B) were within one 

standard deviation between logged (0.149 ± 0.01 for EVI 1994 and -9.51 ± 0.72dB for 

JERS 1994) and intact forests (0.163 ± 0.109 for EVI 1994 and -9.25 ± 0.55dB for JERS 

1994), with clear declines in both EVI at the Malaysia-Brunei border associated with 

 

Figure 4.8: MD2 was fragmented in 1994, but selectively logged during the late 2000s, 

as shown in false color Landsat composite in 1994, 1997, 2007 and 2008. Edge 

dynamic at MD2 where 1994 EVI and backscatter (panel A top and bottom), 1997 EVI 

and backscatter (panel B top and bottom), 2007 EVI and backscatter (panel C top and 

bottom) and 2008 EVI and backscatter (panel D top and bottom) were plotted against 

distance to edge. The edge was indicated with a dash (--) line. 

 

 



 

119 

 
1
1
9
 

cutting (delineation) at the national boundary (figure 4.8). The backscatter signal at the 

border was less pronounced than the EVI shifts. Selective logging in the mid-2000s 

appeared to maintain similar EVI on both the logged and intact sides (0.169 ± 0.01 and 

0.166 ± 0.005, respectively – figure 4.8 panel C and D top plots), hence the similar 

ALOS backscatter (-8.49 ± 0.49 and -8.23 ± 0.49, respectively – figure 4.8 panel C and D 

bottom plots). However, again a two-tailed F-test rejected the null hypothesis that 

variances of EVI in logged and intact forests are the same with p-value < 1e-9. This 

either indicated patchy, non-uniform ongoing regrowth in logged forests to approach that 

of intact forest or a level of selective logging that EVI cannot distinguish between logged 

and intact forests (figure 4.8). Alternatively, the presence of an edge signal persisted 

through time and regeneration along the edge might have contributed to the higher 

variance in EVI. 
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Finally, at DT1, within 5 years since logging, dry season EVI observations showed 

signs of regrowth (logged EVI = 0.19 ± 0.02, intact EVI = 0.17 ± 0.01), but the edge 

between intact and logged forests was still well-delineated (figure 4.9 panels A and B). 

However, in 2007, 13 years since logging, dry season logged EVI decreased to 0.18 ± 

0.01, approaching intact forest’s EVI at 0.17 ± 0.01 (figure 4.9 panel C top plot). In 

addition, a two-tailed F-test comparing intact and logged EVI in 1994 and then those in 

Figure 4.9: DT1 was clear-cut in 1994, as shown in false color Landsat composite in 1994, 

1997, 2007 and 2008. Edge dynamic at DT1 where 1994 EVI and backscatter (panel A top 

and bottom), 1997 EVI and backscatter (panel B top and bottom), 2007 EVI and 

backscatter (panel C top and bottom) and 2008 EVI and backscatter (panel D top and 

bottom) were plotted against distance to edge. The edge was indicated with a dash (--) line. 



 

121 

 
1
2
1
 

2007 showed that the ratio of variance between intact and logged EVI increased from 0.2 

in 1994 to 0.6 in 2007, indicating structural heterogeneity within the regrowth 

communities. With the increasing EVI with time since logging, the logged area also 

became wetter in the area downslope of intact forest (-6.80 ± 0.77 and -7.77 ± 0.79 

respectively – fig.4.9 D), likely reflecting reduced evapotranspiration and drainage 

downslope from the remaining intact forest. The combination of patchy regeneration and 

increased presence of water might explain the markedly enhanced ALOS backscatter on 

the logged side of this edge in the late 2000s (Figure 4.9 panel C and D bottom plots).  

We investigated whether we could distinguish different modes of regeneration from 

EVI and backscatter at each of the edges. Using the Pearson Product-Moment Correlation 

test, no relationship existed between backscatter and EVI within each epoch of logging or 

with the mode of regeneration (clearing in 1984 vs clearing all in 1994 vs selectively 

logged during the mid-2000s) (p-values were 0.02 for logged forest at MD1, 0.00014 for 

logged forest at MD2, and 0.00039 for logged forest at DT1). Moreover, despite similar 

technical specifications, JERS and ALOS data were not on the same numerical scales and 

did not seem to show consistent results across the two sensors (Figure 4.7, 4.8 and 4.9), 

preventing us from further exploring the backscatter time series. Wind direction, which 

was northeasterly and the strongest during the rainy season (November – March), did not 

have any detectable effect on the above trends or lack thereof.  
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We next looked for a relationship between mean EVI at 1 hectare grids over forests 

logged in 1994 and intact areas at Damit and mean canopy height as a potential indicator 

of different modes of regeneration. In contrast to the CHM results which indicated little 

changes in vegetation structure with time since disturbance (see section 4.3.1), the edge 

dynamics demonstrated a clear regeneration signal shortly after logging. An assessment 

of the EVI and CHM as a function of season and disturbance status indicated clear 

piecewise linear relationships. The slope of the relationship between the 2008 EVI and 

2010 mean LiDAR canopy height for the logged and intact areas shifting from -0.0015 ± 

 

Figure 4.10: The relationships between dry season and wet season EVI and mean 

canopy height for logged (filled circles) and intact forests (filled triangles). Each data 

point represented 1 hectare. The adjusted R
2
 for dry and wet season relationships were 

0.47 and 0.43 respectively. 
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0.0001 to 0 ± 0.0001, respectively (fig. 4.10).  The intercept values in the logged area 

differed by season, but the slopes between EVI and height were indistinguishable at -

0.0015 and -0.0014 for dry and wet seasons, respectively. This suggested that as more 

regeneration of woody biomass overtopped the colonizing Pandanus understory, standard 

deviation in EVI would keep increasing due to more vertical difference in canopy height, 

while mean EVI would keep decreasing due to less density in vegetation growth form.  

The EVI and height relationship breaks down when the top canopy layer is becomes fully 

established. 

The three different edges in the Damit and Mendaram peat domes we just examined 

revealed the heterogeneous edge dynamics in peatlands through time and space, driven 

by harvesting history and regrowth dynamics. Edge dynamics as functions of up to 1km 

distance to edge in two edges on two different domes and of different edge ages (MD1 – 

fig.4.7 and DT1 – fig.4.9) were more similar with each other than two edges on the same 

dome (MD1 – fig.4.7 and MD2 – fig.4.8). At MD1 and DT1, in the edge closure phase 

(0-5 years after edge creation), there were clear differences in EVI (greenness), where 

logged forest had higher EVI than did intact forest, suggesting regrowth in the former. At 

the same time, logged forest had lower backscatter than intact forests, indicating more 

surface scattering from the regenerating non-woody vegetation, which has smoother 

surface. As time progressed, 13 years after edge opening at DT1 and 23 years after edge 

opening at MD1, continued regrowth development resulted in similar EVI in logged and 

intact forests, while the spatial trends in backscatter reversed with logged areas having 
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higher backscatter, suggesting enhanced double bounce backscatter from higher density 

of woody stems. MD2 differed from both MD1 and DT1 in terms of harvesting history 

with MD2 being only fragmented in 1994 and then selectively logged in the late 2000s 

while MD2 was already clear-cut as early as 1984. And despite both being opened in 

1994, the DT was clear-cut in 1994 with no subsequent major disturbances. The 

relationship between EVI and mean canopy height above might offer some utility in 

seeing how harvesting history led to different EVI trajectories, and hence regrowth 

dynamics in the logged areas compared to the intact forests. 

4.4. Summary & Conclusions 

In this study, we examined the regrowth dynamics of two peat domes in Brunei, 

Damit and Mendaram. After more than 25 years of harvesting, management and 

disturbances, the remaining intact area for the two peatlands combined was 

approximately 40% of the original area that we investigated. Our results temporally and 

spatially extended previous plot-based, episodic observations of regeneration dynamics in 

disturbed peat swamp forests (Bruenig and Huang 1989, Kobayashi 1998, 1999 and 

Anderson 1961) to a 25-years chrono-sequence across more than 7,000 hectares of 

peatlands at various stages of degradation (intact, logged, degraded). We observed a state 

of widespread arrested succession in previously logged peatlands in terms of both mean 

canopy height and density of canopy trees. The height structure of the logged forests 

showed little change with time since disturbance and a dominance of low stature non-

woody species. At the same time, mean canopy height in the logged area was linearly 
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correlated to mean EVI while standard deviation of EVI within logged forests increased 

with time, suggesting the potential to use EVI statistics to study the evolving structure of 

regrowing vegetation through time. It has been observed that deforestation can increase 

flood risk, substrate acidity and salinity, competition for light on the forest floor and 

hence reduce the ability for trees and seedlings to survive. Given the known hydrological 

sensitivity of peatland tree seedlings, our results are consistent with these logging 

practices contributing to the low woody seedlings survival at Damit and the abundance of 

non-woody biomass. The early colonizing species are very flood tolerant and can 

outcompete seedlings of the canopy species, hence preventing its returns. These non-

woody species are also lower in terms of biomass and can change both new peat quality 

and the nutrient characteristics of the soil. For areas naturally disturbed by insect 

defoliation rather than logging, taller mean canopy heights were observed, which 

suggested more vigorous regeneration.  The variable response of defoliation versus 

logging disturbance, coupled with the high gap fraction in an unlogged forested peatland 

(chapter two), indicated an important role of gaps in natural regeneration of PSF 

Harvesting strategies influenced regrowth dynamics, which in turns influenced edge 

dynamics in peatlands. Clear-cut areas were observed to produce similar edge dynamics 

within 1km inside and outside the edge despite differences in elevational gradient and 

edge ages (13 years vs 23 years). For intact forests fragmented by clear-cutting, the edge 

closure phase (0-5 years after edge creation) showed clear differences in EVI (greenness), 

where post-logging forest had higher EVI than did intact forest, suggesting regrowth in 
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the former. At the same time, logged forest had lower backscatter than intact forests, 

indicating more surface scattering from the regenerating non-woody vegetation, which 

has smoother surface. Towards the post closure phase (5-10 years after edge creation), 

the EVI converged between the logged and intact forests.  Further, the spatial trends in 

backscatter reversed with logged areas having higher backscatter, suggesting enhanced 

double bounce backscatter from higher density of woody stems. We did not observe these 

trends in a 13-years old edge adjacent to a selectively logged forest, suggesting varying 

intensity harvesting strategy can alter the regrowth dynamics. 

Just as the Biological Dynamics of Forest Fragments Project (BDFFP) in the Amazon 

yielded new and evolving insights after 5, 20 and 32 years (Kapos et al., 1997; Laurance 

et al., 2002, 2011), only time will prove or disprove Anderson’s prediction in 1961 that 

the once uniform and extensive peat swamp forests in Borneo will completely give way 

to a new ecological equilibrium of much lower ecological value. Until now, reports on 

vigorous regeneration in logged PSF such as in the Maludam peat dome, Sarawak, 

Malaysia (Mellings et al., 2007) often overlooked the biomass and ecological losses 

associated with the failed reproduction of the original canopy species and hence may be 

misleading to conservation efforts. Indonesia’s ambitious 2 million hectares restoration 

plan primarily focuses on rewetting logged, drained and burned peatlands and assumes 

that once hydrology is restored vegetation will return (Indonesia’s Peatland Restoration 

Agency 2016). The results of our studies indicated that even if a peat dome is logged and 

degraded, but not drained, natural regeneration does not seem to be sufficient for forest 
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canopy regeneration, even on the time scale of decades. Further, in its new ecological 

state, the increased flood risk, acidic substrate, herbaceous competition and severe 

hydrological fluctuations also affects the economics and management strategies for 

agricultural development on post-logged peatlands (Gaveau et al. 2016). Future research 

activities are still needed for the restoration of peatlands via rewetting and assisted 

regeneration (Page et al., 2009), the facilitation of nutrient acquisition from 

ectomycorrhizal fungal communities (Jones et al., 2003) and protection of degraded 

peatlands to allow continued regeneration and carbon accumulation (Berry et al., 2010). 

Long term monitoring of peatlands is required (Laurance et al., 2011) and should include 

hydrology and topology in addition to ecology.
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CHAPTER 5 – CONCLUSIONS 

Tropical peatlands have some of the highest carbon densities of any ecosystem and 

are under enormous development pressure. In Southeast Asia these ecosystems are 

undergoing unprecedented destruction in terms of the extent of change, rate of land cover 

change, and impacts on the global carbon cycle. Conservation and restoration of tropical 

peatlands attempts to reduce the CO2 emissions, protect the region’s highly endemic 

fauna and flora, and also regulate regional water supplies, climate and public health 

safety. This dissertation aimed to provide better estimates of the scales and trends of the 

ecological impacts of tropical peatland deforestation and degradation through a 

combination of ground measurements and optical and microwave remote sensing 

imagery. The findings temporally and spatially extended previous plot-based, episodic 

observations of regeneration dynamics in logged peat swamp forests to a 25-years 

chronosequence across more than 7,000 hectares of peatlands at various stages of 

degradation (intact, logged, degraded). 

Chapter two highlighted the unique ecology of an intact forested peat dome, most 

notably the spatial patterns of its forest structures, gap dynamics and high carbon density. 

Moving up a 4 m elevational gradient, stem density increased but canopy height, crown 

area, and crown roughness decreased. These findings were consistent with hypotheses 

that nutrient and hydrological dynamics co-influence forest structure and stature of the 

canopy individuals, leading to reduced productivity towards the dome interior. Gap 



 

129 

 
1
2
9
 

frequency as a function of gap size followed a power law distribution with a shape factor 

(λ) of 1.76 ± 0.06, while total gap area accounted for 10% of dome area. Ground-based 

and dome-wide estimates of AGB were 217.7 ± 28.3 Mg C ha
-1

 and 222.4 ± 24.4 Mg C 

ha
-1

, respectively, which were higher than previously reported AGB for PSF and tropical 

forests in general. However, dome-wide AGB estimates were based on height statistics, 

and the coefficient of variation on canopy height was only 0.08, three times less than 

stem diameter measurements, suggesting LiDAR height metrics may not be a robust 

predictor of AGB in tall tropical forests with dense canopies. This structural 

characterization of this ecosystem advances the understanding of the ecology of intact 

tropical peat domes and factors that influence biomass density and landscape-scale spatial 

variation. Improved ecological understanding is essential accurate estimation of forest 

carbon density and to effectively model the effects of disturbance and deforestation in 

these carbon dense ecosystems. 

In chapter three I developed and implemented an approach to quantifying disturbance 

in aseasonal peatlands using time series of Landsat resolution vegetation moisture. For 

each pixel, a time series of vegetation index values was compiled, screened for clouds 

and noise, and then analyzed to determine whether there was a shift in its temporal trend 

or a change in the pixel’s value with respect to the scene-wide statistical distribution 

during the analysis period. The algorithm explicitly tracked changes in vegetation 

moisture over time assuming that (i) land cover disturbances were rare phenomena for a 

relatively large area within a short time period; and (ii) a change must warrant a 
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substantial and detectable drop in vegetation moisture. The final land use land cover 

change map achieved more than 92% user’s and producer’s accuracy and revealed that 

after more than 25 years of harvesting, management and disturbances, the remaining 

intact peatland area was approximately 40% of the original area that we investigated. The 

harvesting practices for this area involved laying railway track on the ground, clear-

cutting the forest as the tracks extend and, in the case of Mendaram, drainage and 

eventually plantation development.  

Building from the disturbance time series in chapter three, in my final data chapter, I 

employed a space for time substitution to examine the temporal dynamics of this 

ecosystem and its recovery from disturbance. Where there was no post-logging 

management (drainage), there was widespread and rapid regrowth, but not the structure in 

the short to medium terms was dominaned by low stature plants with low tree density. 

The height structure of the logged forests showed little change with time since 

disturbance and a dominance of low stature non-woody species. For an areas impacted by 

insect defoliation rather than logging, taller mean canopy heights were observed 

suggested more vigorous regeneration.  The variable response of defoliated versus 

logging disturbance, coupled with the high gap fraction in an unlogged forested peatland 

(chapter two), indicated an important role of gaps in natural regeneration of PSF. 

Mean canopy height in the logged area was observed to be linearly correlated with 

mean Enhanced Vegetation Index (EVI), while standard deviation of EVI changed with 

time, suggesting EVI statistics offer potential to study the evolving structure of 
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vegetation through time and inferring harvesting characteristics. It has been observed that 

clear cutting could increase flood risk, substrate acidity and salinity, competition for light 

on the forest floor and hence reduce the ability for trees and seedlings to survive 

(Kobayashi 1998, 2012). Given the known hydrological sensitivity of peatland tree 

seedlings, the logging practices, irrespective of drainage, seem to limit woody seedlings 

survival (Page et al., 2008; Kobayashi 1998) and the abundance of non-woody biomass. 

The early colonizers species are very flood tolerant and can outcompete seedlings of the 

canopy species, hence preventing its returns. These non-woody species are also lower in 

terms of biomass and can change both new peat quality and biogeochemical properties of 

the soil.  

Clear-cutting was observed to produce similar edge dynamics within 1km inside and 

outside the edge despite differences in elevational gradient and edge ages (13 years vs 23 

years). In the early years following clear cut, logged forests had higher EVI than did 

intact forest, suggesting structural differences in vegetation between the regrowing 

vegetation and the undisturbed vegetation. At the same time, logged forest had lower 

backscatter than intact forests, indicating more surface scattering from the regenerating 

non-woody vegetation, which has smoother surface. Five to ten years after edge creation, 

the EVI converged between the logged and intact forests, suggesting more structural 

similarity in logged forests to intact forests. We did not observe these trends in a 13-years 

old edge adjacent to a selectively logged forest, suggesting a harvesting strategy with 

different intensity and impact, which in turns resulted in a different form of regrowth. 
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This dissertation advanced approaches for remote sensing analysis in aseasonal 

tropical peatlands, where only limited optical remote sensing imagery is often available 

and where the prevalence of cloud, haze and moisture can contaminate data or confound 

interpretations. In the case of microwave data, we caution against fusing data from 

different sensors and from different periods, regardless of their similar technical 

specifications. In the case of optical data, a proof-of-concept for a land use land cover 

change detection algorithm required particularly careful cloud and haze screening 

schemes. However, there is an opportunity cost between screening too much data, 

missing out on the exact timing of the event of interest and not having enough data for 

trend fitting. In peatlands, exposed soil after clear cut appears to have the same spectral 

signature with cloud, hence additional input such as image texture and spatial statistics 

could increase the accuracy of detection. Finally, as the same peatland often undergoes 

several disturbances by different agents and at different times e.g. clear cut, then left for 

regrowth, then drained, then developed as plantation, algorithms need to go beyond just 

detecting time of change and assuming only one disturbance type, but also type and rate 

of disturbance. These data analysis strategies presented throughout this dissertation will 

allow researchers to (i) spatially explicitly distinguish on the ground intact, logged and 

otherwise disturbed peatlands; (ii) construct a complete land use history for large areas of 

forested peatlands with respect type and intensity of harvesting and management 

practices through time and (iii) couple such history with contemporary observations of 

current ecologies of peatland.  
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Conversion of tropical peat forest areas has various consequences for the ecology, the 

carbon and greenhouse gas balance in the years following disturbance, which vary with 

the extent of disturbance and any associated change in hydrology, and which cannot be 

reliably inferred by short-term, infrequent measurements. Land use history provides a 

continuous framework to incorporate these previous lone-standing fiend campaigns and 

coordinate new efforts of field sampling using a space for time substitution. There still 

remains a clear need for additional field sampling and ground measurements of forest 

structures, hydrological changes, greenhouse gas fluxes and ground penetrating radar of 

peat layers. Several recent and upcoming satellite missions that observe forest structures 

(e.g. Global Ecosystem Dynamics Investigation Lidar), surface soil moisture (e.g. 

Advanced Land Observing Satellite 2), or detect fires (e.g. the Visible Infrared Imaging 

Radiometer Suite) and subsidence (e.g. interferometry Synthetic Aperture Radar) offer 

tremendous opportunities in improve understanding and monitor change, but these need 

to be carried out in conjunction with targeted field observations. These data will help 

constrain the greenhouse gas budgets in peatland and inform land use practices, which 

currently focus on rewetting of degraded peatlands and the implementation of crop and 

land use practices that do not involve drainage and heavy soil disturbance. As the 

restoration of peatland and peat quality depends on aboveground vegetation, future 

research activities should focus on improving our understanding of the regeneration 

dynamics in peatland (e.g. stand-alone trees vs gap-based regeneration), techniques and 

schemes to assist regeneration, and nutrient cycling in logged peatland e.g. the facilitation 
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of nutrient acquisition in saplings from ectomycorrhizal fungal communities (Jones et al., 

2003). Finally, any restoration and conservation scheme for peatlands should take into 

account future climate change, given the sensitivity of degraded peatlands to drought, 

fire, and its potential climate feedback. The stability of peatlands concerns the reduction 

of greenhouse gas emissions, protection of the region’s highly endemic fauna and flora, 

the regulation of regional water and climate, regional economic activities and public 

health safety, to which long term continuous monitoring can offer tremendous help. 
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