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Abstract

Because of low-frequency internal variability, the observed and underlying warm-

ing trends in temperature series can be markedly different. Important differences in

the observed nonlinear trends in hemisheric temperature series would suggest that the

northern and southern hemispheres have responded differently to the changes in the

radiative forcing. Using recent econometric techniques, we can reconcile such differ-

ences and show that all sea and land temperatures share similar time series properties

and a common underlying warming trend having a dominant anthropogenic origin. We

also investigate the interhemispheric temperature asymmetry (ITA) and show that the

differences in warming between hemispheres is in part driven by antropogenic forcing

but that most of the observed rapid changes is likely due to natural variability. The

attribution of changes in ITA is relevant since increases in the temperature contrast

between hemispheres could potentially produce a shift in the Intertropical Convergence

Zone and alter rainfall patterns. The existence of a current slowdown in the warming

and its causes is also investigated. The results suggest that the slowdown is a common

feature in global and hemispheric sea and land temperatures that can, at least partly,

be attributed to changes in anthropogenic forcing.
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1 Introduction

The changes in climate experienced during the recent decades already had widespread im-

pacts on human and natural systems (IPCC 2014a). The description of trends in temperature

series and their attribution to anthropogenic and natural factors is central to understanding

the response of the climate system to changes in external forcing, the role of human activi-

ties in altering this system, and how the risk of larger impacts might be mitigated. As has

been widely discussed in both the academic and political arenas, the implications of further

significant anthropogenic warming are far reaching and may call for considerable changes in

economic, technological and societal trends (Stern 2007; IPCC 2014b; van den Bergh and

Botzen 2014).

Despite the differences in approaches (physical- or empirical-based), the existence of

strong methodological debates (Triacca 2005; Estrada et al. 2010; Estrada and Perron

2014), as well as important mismatches between climate models’ reconstructions and obser-

vations (Stocker et al. 2013; Fyfe et al. 2016), almost all of the attribution studies to date

arrive to the same conclusion: observed warming is anywhere from partially to dominantly

anthropogenic (Bindoff et al. 2013). However, even if the attribution of the observed warm-

ing to human activities is no longer in question, there is still a need to improve and develop

methods that can help understanding better how this phenomenon has manifested itself and

to better gauge human interventions in the different expressions of a warming climate. In

particular, it is important to extend current methodologies for detecting and attributing

changes in the rate of warming, such as periods of fast warming, slowdowns and pauses.

These are currently the most relevant policy and scientific aspects in the fields of detection

and attribution of climate change (Tollefson 2014; Estrada and Perron 2016; Tollefson 2016;

Kim et al. 2017). For this matter, it is important to distinguish between the observed

temperature trends and the underlying warming trends. The first is affected by natural

variability, especially low-frequency oscillations, that can have similar magnitudes than the

response produced by changes in external forcing factors and can significantly modify the

underlying warming trends (Dima et al. 2007; Swanson et al. 2009; Semenov et al. 2010;

Wu et al. 2011; Estrada et al. 2013a; Estrada et al. 2013b; Steinman et al. 2015). The

second is harder to obtain as it implies not only being able to attribute climate change to

its different natural and anthropogenic causes but also to successfully extract the warming

trend from the effects of these large natural variations. Extracting this trend is required to

investigate the effects that changes in anthropogenic forcing has had on the warming rates
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of the climate system. The apparent slowdown in the warming provides a good example

about the need of distinguishing between observed temperature series and the underlying

warming trend. Year 2015 was the warmest on record by a considerable margin, does this

imply that the slowdown in the warming has ended? Does it imply that the slowdown never

really existed? Recent papers have analyzed unfiltered global temperature series and have

concluded that the recent slowdown was either an artefact of the data or that it never really

happened (Foster and Rahmstorf 2011; Karl et al. 2015; Cahill et al. 2015; Lewandowsky

et al. 2015; Lewandowsky et al. 2016). A large part of the body of research on this topic

has concluded that the apparent hiatus could be produced by the effects of low-frequency

natural variability represented by physical modes such as AMO, NAO and PDO (Li et al.

2013; Trenberth and Fasullo 2013; Steinman et al. 2015; Guan et al. 2015). These modes

can mask the warming trend and to create the impression of a slowdown in the underly-

ing warming trend. However, it is important to realize that these questions refer to the

underlying warming trend and cannot be properly answered if the effects of natural vari-

ability - particularly low-frequency oscillations, but also shorter-term variations such as El

Niño/Southern Oscillation (ENSO) - are not taken into account.

Estrada and Perron (2016) proposed a method based on cotrending testing and the appli-

cation of a Principal Component Analysis (PCA) to extract the underlying common trend in

global and hemispheric temperatures. They showed that some modes of natural variability

can considerably distort the underlying warming trend, making difficult to investigate the

existence of the current slowdown of the warming unless the warming trend is purged from

the effects of natural variability. Their results show that the slowdown cannot be explained

away by natural variability and that it is a statistically significant feature of the underly-

ing warming trend. Recently, a new approach for testing for the attribution of changes in

the rate of warming was developed by Kim et al. (2017). It is based on new structural

change tests that allow to make inference about common breaks in a multivariate system

with joined segmented trends. They concluded that the breaks in radiative forcing as well

as in global and hemispheric temperatures are common and that since the 1990s there has

been a significant decrease in the rate of growth of both temperatures and radiative forcing.

Estrada and Perron (2016) and Kim et al. (2017) show that the existence of the slowdown

in the warming can be properly tested if the effects of natural variability are filtered out

and if adequate statistical tests are used for this task. Their results provide strong evidence

for the existence of the current slowdown and for its dominant anthropogenic origin as was

previously suggested (Estrada et al. 2013b).
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In this paper, we characterize both the observed and underlying warming trends in hemi-

spheric sea and land surface temperatures. We document important differences in the ob-

served nonlinear trends in these temperature series which would suggest that the northern

and southern hemispheres have responded very differently to the observed changes in the

radiative forcing. However, once the observed temperatures are purged from natural vari-

ability, it is shown that these series share the same underlying warming trend. Furthermore,

the time-series analysis of the interhemispheric temperature asymmetry (ITA) suggests that

the differences in warming between hemispheres is mainly due to natural variability, and not

so much to differences in the response to increases in radiative forcing.

The rest of this paper is structured as follows. Section 2 describes the data and the

univariate and multivariate methods used. The time series properties and the analysis of

the trends in land and sea temperature series are presented and discussed in Section 3. The

existence of a common secular trend between sea and land temperatures and radiative forcing

is investigated in Section 4. The results are used to study the attribution of the trend in ITA

and its features. Section 5 is concerned with the extraction and description of the common

trend in radiative forcing and hemispheric land and sea temperatures. Section 6 concludes

and summarizes the main findings.

2 Data and Methods

The land and sea surface temperature series (Figure 1) were obtained from the Climatic

Research Unit (CRU; Morice et al. 2012) and NASA (Hansen et al. 2010). Note that the

NASA dataset contains only global but not hemispheric sea surface temperature series. For

the rest of the paper, sea, land, and sea and land temperatures are denoted by the letters S,

L and SL, and the accompanying superscript identifies the dataset (H for CRU, and N for

NASA) and region (G, NH and SH for global, northern hemisphere and southern hemisphere,

respectively). The following indices are used to represent inter-annual variability (Figure 2):

the Atlantic Multidecadal Oscillation (AMO; Enfield et al., 2001); the Southern Oscillation

Index (SOI; Trenberth, 1984), the North Atlantic Oscillation (NAO; Hurrell, 1995) and the

Pacific Multidecadal Oscillation (PDO; Zhang et al., 1997). The radiative forcing data (in

W/m2) was obtained from NASA (Hansen et al., 2011). For the analyses presented in this

paper, we use (Figure 3): 1) the well mixed greenhouse gases (WMGHG; carbon dioxide

(CO2), methane (NH4), nitrous oxide (N2O) and chlorofluorocarbons (CFCs)); 2) the total

radiative forcing (TRF) which includes WMGHG plus ozone (O3), stratospheric water vapor

(H2O), solar irradiance, land use change, snow albedo, black carbon, reflective tropospheric
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aerosols and the indirect effect of aerosols, and; 3) the radiative forcing from stratospheric

aerosols (STRAT)1. The data are annual and the samples available are: 1850-2015 for Hadley

temperatures (with the exception of G and SH land temperatures which start in 1856);

1880-2105 for NASA temperatures; 1880-2011 for the radiative forcing; 1856-2015 for AMO;

1866-2014 for SOI, 1850-2015 for NAO; 1854-2015 for PDO.

We next briefly describe the methods used in the empirical applications. Our descriptions

are brief and simply present the main ideas. The reader is referred to Estrada and Perron

(2014) for more details.

2.1 Perron-Yabu testing procedure for structural changes in the trend function.

Perron (1989) showed that the presence of structural changes in the trend can have con-

siderable implications when investigating time-series properties by means of unit root tests.

This creates a circular problem given that most of the tests for structural breaks require

to correctly identify if the data generating process is stationary or integrated. Depending

on whether the process is stationary or integrated the limit distribution of these tests are

different and, if the process is misidentified, the tests will have poor properties. Building

on the work of Perron and Yabu (2009a), the Perron and Yabu (2009b) test was designed

explicitly to address the problem of testing for structural changes in the trend function of

a univariate time series without any prior knowledge as to whether the noise component is

stationary, I(0), or contains an autoregressive unit root, I(1).

We present the case of a model with a one-time structural break in the slope of the trend

function with an autoregressive noise component of order one (AR(1)); the case with general

types of serial correlation in the noise is somewhat more involved (see, Perron and Yabu,

2009b, for details), though the main ingredients are similar. Consider the following data

generating process:

 = 0 + 0+ 1 +  (1)

 = −1 + 

where  ∼  (0 2) and  = (− ) if    and 0 otherwise so that the trend

function is joined at the time of the break. The autoregressive coefficient is such that

1All data can be obtained from the following links: https://crudata.uea.ac.uk/cru/data/temperature/;

http://data.giss.nasa.gov/gistemp/; http://www.esrl.noaa.gov/psd/data/timeseries/AMO/;

http://www.cru.uea.ac.uk/cru/data/soi/; http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/;

https://www.ncdc.noaa.gov/teleconnections/pdo/; https://data.giss.nasa.gov/modelforce/.
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−1   ≤ 1 and therefore, both integrated and stationary errors are allowed. The break
date is denoted  = [ ] for some  ∈ (0 1), where [·] denotes the largest integer that
is less than or equal to the argument and 1 (·) is the indicator function. The hypothesis of
interest is 1 = 0.

The testing procedure is based on a Quasi Feasible Generalized Least Squares approach

that uses a superefficient estimate of  when  = 1. The estimate of  is the OLS estimate

obtained from an autoregression applied to detrended data and is truncated to take a value 1

when the estimate is in a − neighborhood of 1. This makes the estimate “super-efficient”

when  = 1. Theoretical arguments and simulation evidence show that  = 12 is the

appropriate choice. Treating the break date as unknown, the limit distribution is nearly the

same in the I(0) and I(1) cases when considering the Exp functional of the Wald test across

all permissible dates for a specified equation, see Andrews and Ploberger (1994). To improve

the finite sample properties of the test, they also use a bias-corrected version of the OLS

estimate of  as suggested by Roy and Fuller (2001). The testing procedure suggested is: 1)

For any given break date, detrend the data by Ordinary Least Squares (OLS) to obtain the

residuals ̂; 2) Estimate an AR(1) model for ̂ yielding the estimate ̂; 3) Use ̂ to get the

Roy and Fuller (2001) biased corrected estimate ̂ ; 4) Apply the truncation ̂ = ̂ if

|̂ − 1|  −12 and 1 otherwise; 5) Apply a Generalized Least Squares (GLS) procedure

with ̂ to obtain the estimates of the coefficients of the trend and the variance of the

residuals and construct the standard Wald-statistic  () to test for a break at date

 = [ ]; 6) Repeat the 5 steps above for all permissible break dates to construct the Exp

functional of the Wald test denoted by - = log [
−1P

Λ exp ( () 2)] where

Λ = {;  ≤  ≤ 1− } for some   0. We set  = 015 as is common the literature.

2.2 Perron and Kim-Perron unit root tests with a one-time break in the trend

function

Perron (1989) proposed an extension of the Augmented Dickey-Fuller (ADF) test (Dickey

and Fuller, 1979, Said and Dickey, 1984) that allows for a one-time break in the trend function

of a univariate time series. Our interest centers on the “changing growth” model, which can

be briefly described as follows. The null hypothesis is:

 = 1 + −1 + (2 − 1) + 
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where  = 1 if   , 0 otherwise;  refers to the time of the break, and  is some

stationary process. The alternative hypothesis is:

 = 1 + 1+ (2 − 1) + 

where  =  − ; if    and 0 otherwise. The “changing growth” model takes

an “additive outlier” approach in which the change is assumed to occur rapidly and the

regression strategy consists in first detrending the series according the following regression:

 = + 1+ 2 + e (2)

A problem with most procedures to test for a unit root in the presence of a one-time break

that occurs at an unknown date (e.g., Zivot and Andrews (1992) and some of the tests in

Perron (1997)) is that the change in the trend function is allowed only under the alternative

hypothesis of a stationary noise component. As a consequence, it is possible that a rejection

occurs when the noise is I(1) and there is a large change in the slope of the trend function. A

method that avoids this problem is that of Kim and Perron (2009). Their procedure is based

on a pre-test for a change in the trend function, namely the Perron and Yabu (2009b) test.

If this pre-test rejects, the limit distribution of their modified unit root test is then the same

as if the break date was known (Perron and Vogelsang, 1993). This is very advantageous

since when a break is present the test has much greater power. The testing procedure for the

changing growth model consists in the following steps: 1) Obtain an estimate of the break

date ̂ by minimizing the sum of squared residuals using regression (2). Then construct

a window around that estimate defined by a lower bound  and an upper bound . A

window of 10 observations was used. Note that, as shown by Kim and Perron (2009), the

results are not sensitive to this choice; 2) Create a new data set {} by removing the data
from to  + 1 to , and shifting down the data after the window by  ( ) =  −  ;

hence,

 =

⎧⎨⎩    ≤ 

+− −  ( )    

3) Perform the unit root test using the break date . This is the t-test statistic for testing

that e = 1 in the following regression estimated by OLS, denoted by (̂ ):
e = ee + X

=1

∆e− + e (3)

where ̂ = ,  =  − ( − ) and e is the detrended value of .
6



2.3 Perron-Zhu methodology for constructing a confidence interval for the

break date

Perron and Zhu (2005) analyzed the consistency, rate of convergence and limiting distrib-

utions of parameter estimates in models where the trend exhibits a slope change at some

unknown date and the noise component can be either stationary or have an autoregressive

unit root. Another important practical application of deriving the limiting distribution of

the estimate of the break date is that it permits forming a confidence interval for the break

date. Of the various models considered in that paper, the joint-segmented trend model with

stationary errors is the most relevant to our applications (e.g., Gay et al., 2009; Estrada et

al., 2013a,b), in which case the regression of interest is

 = 1 + 1+  + 

estimated by OLS. Denote the resulting estimate by ̂ and the associated estimate of the

break fraction by ̂ = ̂ . They showed that the limit distribution of the break fraction

̂ is:

 32(̂− )→ 
³
0 42[0 (1− 0)

¡
0
¢2
]
´

where 0 is the true value of the change in the slope parameter and 
2 is the long-run variance

of  estimated using the Bartlett kernel with Andrews’ (1991) automatic bandwidth selection

method using an AR(1) approximation.

2.4 Bierens’ nonparametric nonlinear co-trending test

The advantage of the co-trending test proposed by Bierens (2000) is that the nonlinear trend

does not have to be parameterized. The nonlinear trend stationarity model considered can

be expressed as follows:

 =  () + 

with

 () = 0 + 1+  ()

where  is a -variate time series,  is a -variate zero-mean stationary process and  () is a

deterministic -variate general nonlinear trend function that allows, in particular, structural

changes. Nonlinear co-trending occurs when there exists a non-zero vector  such that

0 () = 0. Hence, the null hypothesis of this test is that the multivariate time series  is

nonlinear co-trending, implying that there is one or more linear combinations of the time

series that are stationary around a constant or a linear trend.
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The nonparametric test for nonlinear co-trending is based on the generalized eigenvalues

of the matrices 1 and 2 defined by:

1 = −1
P

=1 ̂ ( )̂ (( ))
0

where ̂ () = −1
P[]

=1 (− ̂0− ̂1) if  ∈ [−1 1], ̂ () = 0 if  ∈ [0 −1) with ̂0 and
̂1 being the estimates of the vectors of intercepts and slope parameters in a regression of 

on a constant and a time trend; also

2 = −1
P

=[
−1P−1

=0 (− − ̂0 − ̂1 (− ))][−1P−1
=0 (− − ̂0 − ̂1 (− ))]0

where  =  with  the number of observations and  = 05 as suggested by Bierens

(2000). Solving |̂1 − ̂2| = 0 and denoting the  largest eigenvalue by ̂, the test

statistic is  1−̂. The null hypothesis is that there are  co-trending vectors against the

alternative of  − 1 co-trending vectors. This test has a non-standard distribution and the
critical values have been tabulated by Bierens (2000). The existence of  co-trending vectors

in +1 series indicates the presence of  linear combinations of the series that are stationary

around a linear trend and that these series share a single common nonlinear deterministic

trend. Such a result indicates a strong secular co-movement in the  + 1 series.

2.5 Rotated PCA to separate common trends and natural variability.

PCA is commonly used to extract the main variability modes of a set of  interrelated

variables and also to reduce dimensionality while retaining most of the variability present

in the dataset (Jolliffe, 2002). The principal components 1 2   are orthogonal linear

combinations of the original dataset  of the form  =
P

=1 . The first principal

component is the linear combination 1 =
P

=1 1 that maximizes (
0
1) = 01Σ1

subject to the constraint of 011 = 1, where Σ is the variance-covariance matrix of . This

is attained when 1 is equal to the first eigenvector (i.e., the eigenvector that corresponds

to the largest eigenvalue) of the variance-covariance matrix of . The remaining principal

components are those linear combinations of 0 that maximize (0) subject to the

constraint 0 = 1 and (0 0) = 0 for all  6= . To simplify the interpretation of

the principal components and to further separate the variability modes in a set of data, the

axis of the principal components can be rotated. In our applications, we use the rotated PCA

(varimax rotation normalized) to extract the principal modes of variation of temperature and

radiative forcing variables, in particular their common trend mode.
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3 Time-series properties and trends in observed land and sea surface temper-

atures and radiative forcing.

Temperature series have been typically represented either as trend-stationary or difference-

stationary processes (Tol and de Vos 1993; Kaufmann and Stern 1997; Gay-Garcia et al.

2009). Determining which process better represents these series generated a long debate

in the literature (for a review see Estrada and Perron 2014). Besides the theoretical im-

plications that these differences can have, describing temperatures and radiative forcing as

difference-stationary or trend-stationary processes could have important practical implica-

tions for observation-based attribution studies. However, the vast literature has also shown

that the attribution of climate change to human intervention with the climate system is

robust to assuming temperature and radiative forcing variables as being all trend-stationary

or all first difference-stationary (Tol and Vos 1998; Stern and Kaufmann 1999; Estrada et

al. 2013b; Estrada and Perron 2016).

In this section, we analyze by means of state-of-the-art econometric techniques the time-

series properties of hemispheric land and sea temperatures and radiative forcing. The most

common tools for investigating the data generating process of temperature series are unit

root tests (Estrada and Perron 2014). However, the results of these tests are highly sensitive

to the presence of structural changes in the trend function (Perron 1989): if there is a shift

in the trend function the sum of the autoregressive coefficients is highly biased toward unity

and therefore the unit root null is hardly rejected even if the series are composed of white

noise realizations around the trend; moreover, if the break occurs in the slope of the trend,

the null of a unit root cannot be rejected even asymptotically.

The rate of warming during the observed period has not been constant and the existence

of changes in the slope of the trend functions of climate variables is not only expected, it has

also been widely reported (Seidel and Lanzante 2004; Tomé and Miranda 2004; Estrada et

al. 2013b; Estrada and Perron 2016). As such, the first step is to investigate the existence

of breaks in the trend function by means of a testing procedure that is robust to whether

temperature variables are difference- or trend-stationary. Then the nature of the data gen-

erating process for these series can be investigated. The Perron-Yabu test (PY) provides a

robust way to investigate the existence of structural breaks in the trend function without the

need to know if the series is difference- or trend-stationary (Perron and Yabu 2009). This

characteristic makes this test particularly useful as a pretest for applying the adequate type

of unit root tests.
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Table 1 shows that the PY test results indicate that a break in the slope of the trend

function is present in all series, with the exception of the northern hemisphere S . The large

differences in the break date estimates for the various temperature series is notable, ranging

from 1909 to 1984. Sea and southern hemisphere tend to show breaks in the slope of the

trend function at the beginning of the 20 century, while for northern hemisphere and land

temperature series the break dates occur in the second part of the century. In contrast, for

both TRF and WMGHG the break dates are estimated to occur at the same time during

the second part of the 20th century. The rates of warming over the observed period are

markedly different between hemispheres, as well as between sea and land (Table 2). All sea

temperatures show a moderate cooling trend starting in the late 19th century and the early

part of the 20th (about -0.2C to -0.3C per century, with the exception of S from NASA

which shows a much larger trend of -0.94C per century). A similar cooling trend (about

-0.14C per century) is found in SL temperatures over the southern hemisphere, which is

dominantly composed of oceans. These trends are consistent with the effects of ocean cooling

trends that have been documented from the preindustrial times until the beginning of the

20 century, when the increase in anthropogenic forcing started to become more important

(Delworth and Knutson 2000; Stott et al. 2000; McGregor et al. 2015; Abram et al. 2016).

For all sea temperature series, a moderate warming started after 1909 and in the case of

the southern hemisphere SL the warming started after 1925 (in all cases the warming trend

is about 0.7C per century). While the post-break differences in hemispheric warming are

small regarding sea temperatures, the differences in the warming rate are very large for land

temperatures. Warming trends over land in the northern hemisphere are about twice those

of the southern hemisphere (about 3.2C and 1.6C per century, respectively). These relative

magnitudes are largely due to the differences in the distribution of land/ocean mass between

hemispheres and to the large heat capacity of the oceans (Peixoto and Oort 1992).

If taken at face value, such large differences in warming rates and break date estimates

would suggest that the existence of common secular trends and breaks between hemispheric

temperatures and radiative forcing would be unlikely. Furthermore, the results would support

the fact that ITA has increased during the observed period and that a larger contrast between

hemispheric temperatures could be expected in the future (Friedman et al. 2013; Goosse

2016). However, as mentioned in the introduction, it is important to distinguish between

observed and underlying warming trends. Low-frequency variability can lead to under-

or overestimation of the warming rates and can severely affect the break date estimates

(Swanson et al. 2009; Wu et al. 2011; Estrada et al. 2013b; Guan et al. 2015; Estrada and
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Perron 2016). To address these questions, appropriate statistical tests need to be used to

investigate the time series properties of these series and the existence of a common secular

trend.

The results of applying the Kim Perron (KP) test provide strong evidence in favor of

trend-stationary processes with a break in the slope of their trend functions for all tempera-

ture and radiative forcing series (Tables 2a, 2b and 2c). The only exception is the northern

hemisphere S , for which the null hypothesis of a unit root cannot be rejected at conven-

tional levels. These results are broadly similar with those previously reported for other

temperature series (Gay-Garcia et al. 2009; Estrada et al. 2013b; Estrada and Perron 2016).

Moreover, they provide additional evidence suggesting that temperature series are better

represented as trend-stationary processes, whether or not the measurements correspond to

land or ocean and also irrespective of their spatial scale (Gay et al. 2007). Given that both

temperature and radiative forcing series share the same type of time-series properties, the

next section focusses on investigating the existence of a common secular trend by means of

the co-trending test described in the methods section (Bierens 2000).

4 Testing for a common secular trend between temperatures and radiative forc-

ing series and investigating the trend in ITA.

The results in the previous section indicate strong differences in the observed characteristics

of the trend functions of sea and land hemispheric temperatures, and also between radiative

forcing and temperature variables. Taken at face value, the previous analysis would suggest

that hemispheric sea and land temperature series follow different trends and that these

are hardly related to the trends shown by radiative forcing series. Testing for cotrending

provides a way to investigate the existence of an underlying common trend in temperature

series and radiative forcing that might be masked by the natural variability in temperatures.

Furthermore, these tests can help understanding the causes behind the underlying warming

trend and to evaluate the role of human activities in warming the climate system (Estrada

et al. 2013b; Estrada and Perron 2014).

In this section, the sets of variables used to apply the cotrending test are selected to

address the following questions: 1) is there a common secular trend between all temperature

and TRF and WMGHG?; 2) Is this common trend imparted by WMGHG, which has mainly

an anthropogenic origin?; 3) do global and hemispheric temperatures share the same trend

across the different datasets? The first two questions are directly related to attributing the

underlying warming trend to human activities and, therefore, cotrending is tested within the
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different temperature datasets (CRU and NASA). For the third one, the cotrending test is

carried out across the different temperature datasets in order to address if the differences

in how CRU and NASA process and adjust data affects the underlying trends or if these

differences mainly affect the noise component of these series. As discussed below, these

results are useful to investigate the systematic movement shown by ITA and its drivers.

Table 3 shows that for both datasets there is a common secular trend between WMGHG,

TRF and all S, SL and L temperature series, at the global and hemispheric scales. These

results provide strong evidence about the anthropogenic origin of the warming trend. Al-

though statistical methods alone can hardly prove causality, the way the tests are structured

and by invoking basic climate physics it is possible to establish a causal link. By construc-

tion, WMGHG is contained in TRF and therefore if these two variables cotrend, it must

be that WMGHG is imparting TRF its trend; as expected form climate physics, temper-

atures follow the trend imparted by TRF. As such, the common trend in all series has its

origins in WMGHG (Estrada et al. 2013b), all other forcing factors mainly modulate this

trend. Furthermore, these results confirm that the differences in the break dates reported in

the previous section are due to temporary excursions from the common trend that are pro-

duced by natural variability oscillations. Section 6 provides further evidence on how natural

variability modes alter the underlying common trend and its features.

The results in Table 4 complement those in Table 3 and strongly suggest that the dif-

ferences across CRU and NASA datasets for all temperature series and scales do not affect

the underlying trend: in all cases, deviations from the common trend can be considered

stationary. However, as shown by the results in Table 1, these deviations are large enough

to severely distort the observed trend in temperatures. Note that the existence of a common

trend does not preclude that significant differences in the warming rates between hemispheres

could be present.

The transient climate response (TCR) relates the time-dependent change in global mean

surface temperature to changes in the time-dependent change in external forcing (Gregory

and Forster 2008; Schwartz 2012; Estrada et al. 2013b). Estimates of the transient climate

response can be obtained by regressing temperature series on TRF as follows:

 = +  +  (4)

Where  is a constant,  is a fixed parameter that represents TCR and,  encompasses

low- to high-frequency unforced climate variability, which as indicated by the results in
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Tables 3 and 4 can be assumed as stationary variations.

Table 5 presents the estimates of TCR and of the response of hemispheric sea/land

temperatures to the observed changes in TRF. The TCR estimates obtained for global SL

temperatures are broadly similar for both CRU and NASA datasets: a 1 W/m2 increase in

TRF would produce an increase in global temperatures of about 0.45C. The difference in

the response of global SL temperatures to changes in TRF between the two datasets is quite

small (about 11%). The differences are also below 11% for all other global and hemispheric

temperature series, with the exception of land temperature for the southern hemisphere. In

that case, the response to changes in TRF for NASA is about 22% larger than that for CRU.

This is probably related to how the different groups process and adjust temperature data

(e.g., interpolations where data is missing).

As expected, given the high heat capacity of the oceans, the warming induced by changes

in radiative forcing is much higher over land than over sea. In particular, the largest response

occurs over the northern hemisphere. This temperature difference between hemispheres is

a characteristic of the Earth’s climate and has been suggested to be the result of a north-

ward cross-equatorial ocean heat transport and the difference in the fraction of continental

mass (Kang et al. 2015; Goosse 2016). The temperature contrast between hemispheres has

emerged in the literature as an indicator of climate change (Friedman et al. 2013). Changes

in ITA linked to increases in radiative forcing are of particular interest given its potential

effect in displacing the intertropical convergence zone and with it the current precipitation

patterns over large parts of the world could change (Broecker and Putnam 2013; Seo et al.

2016). The observed ITA has been characterized as showing no trend during most of the

20 century but having an increasing trend of about 0.17C per decade since 1980. Models

simulations indicate that this temperature contrast will increase considerably in the future

(Friedman et al. 2013). For instance, under the RCP8.5 scenario and for the Coupled Model

Intercomparison Project (CMIP5) ensemble, projected increases in ITA for the end of this

century are in the range of 0.01C to 2.96C, with an ensemble mean value of 1.63C. The

ITA ensemble mean for the RCP8.5 scenario follows a linear trend of about 0.17C per

decade, which is similar to that reported for the last part of the observed period (Friedman

et al. 2013). However, recent studies have argued that current climate models exaggerate the

synchronicity of hemispheric temperature fluctuations due to an underestimation of internal

variability and feedbacks, particularly in the southern hemisphere (Neukom et al. 2014).

This lack of synchronicity in hemispheric natural variability could explain a large part of the

observed changes in ITA. The results presented in Tables 3 to 5 allow to empirically estimate
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the change in ITA that can be attributed to differences in the response to external forcing

from the northern and southern hemispheres. The values of  from equation (4) for SL

and SL show that the difference in the transient response between hemispheres is about

0.054C per W/m2, for both CRU and NASA. That is, if an increase in radiative forcing of

8.5 W/m2 occurs by the end of this century (as is supposed under the RCP8.5 scenario),

the ITA would rise only by about 0.46C. This estimate is within the range of 0.01C to

2.96C mentioned above, but is substantially lower than the average of the CMIP5 ensemble

(1.63C)2.

Figure 4a shows ITA computed as the difference between SL from northern and southern

hemispheres. As previously reported in the literature, visual inspection of ITA suggests

the existence of a sudden drop in the late 1960s and a positive trend afterwards (Friedman

et al., 2013). We formally document the existence of a break in both the level and the

slope of the trend function by applying the Perron-Yabu (PY) test to ITA. The test results

show compelling evidence for such a break occurring in 1968 (PY test values of 28.04 and

17.15 for CRU and NASA, respectively). This feature persists even after the underlying

warming trend is removed (i.e., after ITA is detrended using TRF; Figure 4b)3. In this case,

the Perron-Yabu test values are 17.67 and 14.22 for CRU and NASA, respectively. This

strongly suggests that the sudden drop and positive trend shown since 1968 are the product

of combining the low-frequency natural variability contained in NH and SH, which can have

different amplitudes, periods and/or phases. As shown in the literature (Neukom et al.

2014; Abram et al. 2016), SH and NH are characterized by differences in timing and phase

of cooling and warming periods. This fact is clearly illustrated by the results in Table 1. The

lack of synchronicity in hemispheric natural variability could have generated the observed

break in the trend function of ITA, and cause a temporary trend in the interhemispheric

temperature contrast during the last decades.

To further investigate if the break in ITA can be explained by natural variability, we

applied a two-step method: 1) autoregressive distributed lag models (ARDL) are estimated

using TRF, AMO, NAO, SOI, and PDO as explanatory variables, which are some of the main

modes of climate variability (Enfield et al., 2001; Trenberth, 1984; Hurrell, 1995; Zhang et

al., 1997); 2) the Perron-Yabu test is applied to the residuals of these ARDL regressions to

test for the existence of a break in the trend function. For robustness, in this second step, the

2As discussed in the literature, the emission of aerosols in the northern hemisphere has decreased the

temperature contrast between hemispheres (Ridley et al. 2015) and, therefore, changes in future aerosol

emissions can have an effect on this empirical estimate.
3Broadly similar results are obtained if WMGHG is used to detrend ITA instead of TRF.
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three possible types of breaks considered by Perron and Yabu (2009b) are tested for: in the

level, in the slope, and in the level and slope of the trend function. The general specification

of the ARDL models used is:

 = +

X
=1

− +
1X
=0

+1− +
2X
=0

+1− +
3X
=0

+1− (5)

+

4X
=0

+1− +
5X
=0

+1− + 

The number of lags for the ( 1 2 3 4 5) model above is selected using the

Akaike Information Criterion. The maximum number of lags in all cases was restricted to

4. For the CRU and NASA datasets, the selected models were (3 0 1 0 0 0) and

(4 0 3 0 0 0), respectively. These models explain about 0.53% (CRU) and 0.67%

(NASA) of the variance of ITA, and standard misspecification tests (not shown) indicate a

well-specified regression.

More importantly, Table 6 shows that no break in the trend function (slope, level or

both) is present after the effects of natural variability have been taken into account. These

results suggest that, while anthropogenic forcing has contributed to the trend in ITA, the

rapid increase shown by this variable since the late 20 century can be explained by natural

variability.

5 Extracting the common warming trend and investigating its features.

The results in Sections 3 and 4 suggest that natural climate variability can significantly

distort the underlying common warming trend in a way that the observed temperature trends

seem to bear little resemblance to each other and to those of the radiative forcing series. Here

we follow the approach proposed by Estrada and Perron (2016) to extract and characterize

the common trend in temperature and radiative forcing series via a PCA, documented in

the previous section.

The PCA analysis to extract the common trend is carried out using sets of variables that

include those used for the cotrending test in the previous section (G, NH, SH, WMGHG and

TRF), the main natural variability modes (AMO, SOI, NAO and PDO), and STRAT. The

analysis is done for each temperature dataset (CRU, NASA) and for SL, L and S. The PCA

analysis presented here extracts and rotates the ten possible principal components for each

set of variables. Note that the application of the PCA proposed in Estrada and Perron (2016)
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is not to reduce dimensionality but to extract the common trend from the other modes of

variability. Tables 7a to 7c show the factor loadings of the rotated PCA for the CRU dataset

and tables 7d and 7e show those for NASA’s. In all cases, the main mode of variability

is the common underlying trend represented by PC1, which is highly correlated with the

radiative forcing and temperature series and has almost zero correlation with all the other

variables. PC1 explains about 48% of the variability of the different sets of variables (Figure

5). According to the ADF test (Dickey and Fuller 1979), all other principal components can

be considered stationary processes around a constant (results not shown here).

The next five principal components (PC2-PC6) are highly correlated (≥ 095) uniquely
to one of the physical variability modes included in the analysis and to STRAT. The second

mode of variability (PC2) corresponds to PDO for all temperatures and datasets. STRAT

is represented by PC3 for L and SL , PC5 for SL and S , and PC4 for L , while

NAO is represented by PC4 in all cases with the exception of L , in which case this mode

corresponds to PC3. AMO corresponds to PC3 in SL and S and in all other cases this

mode is represented by PC5. SOI corresponds to PC6 in all cases. PC7 (PC8 in the case of

L) and PC8 (PC7 in the case of L) represent modes of variability that difficult to identify,

but which do not correspond to natural modes included in the analysis. Although PC7 and

PC8 probably reflect part of the differences in how the CRU and NASA adjust and process

data, the strong similarity of these modes across the different datasets suggests that PC7

and PC8 may also represent true natural variability modes. PC9 closely corresponds to solar

variability and PC10 mainly represents unstructured noise.

The features of the common warming trend represented by PC1 are relevant to better

understand the observed response of the climate system to increases in radiative forcing.

The existence of a current slowdown in the warming – and its causes – are of particular

interest to the scientific and policy-making communities and the general public. For this

purpose, we apply the Perron-Yabu test to investigate the existence of structural breaks in

the slope of the trend function of the first principal components that were extracted. The

estimated break dates are compared to those found in the radiative forcing variables as a

simple way to establish the existence of co-breaking.

Consistent with what has been reported earlier (Estrada et al. 2013b; Estrada and Perron

2016; Kim et al. 2017), TRF and WMGHG are characterized by two highly significant

breaks in the slope of their trend function. These breaks occurred at the same time in

1960 and in the early 1990s and, by construction, the breaks in TRF are mainly imparted

by WMGHG. As can be seen from Table 8, the first principal components for the various
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series are also characterized by two breaks in the slope of their trend function. In all cases,

the first break is significant at the 1% level and most of the break dates are concentrated

around the mid-1960s, similar to the breaks found in the radiative forcing series. The 95%

confidence intervals of the break dates confirm that the dates for the first break in the PC1

series are not statistically different between them nor are they different from that of TRF.

Similarly, the dates for the first break in the PC1 series are not statistically different to that

of WMGHG, with the exception of PC1(L), the PC1 that corresponds to the set involving

land temperatures from CRU. Even in this case, the difference in the break dates is just a

few years. This common break between temperature series and radiative forcing occurring

in the 60s marks the onset of global warming dominated by anthropogenic factors (Estrada

et al. 2013b; Estrada and Perron 2016; Kim et al. 2017).

The PC1 and radiative forcing series are also characterized by a second break occurring

during the 1990s. In all cases, the break in the slope of the trend function in the PC1 series

is significant at the 5% level, with the exception of PC1(L) and PC1(SL) for which the

breaks are significant at the 10% level. The estimated break dates for all PC1 series are not

statistically different from those of WMGHG and TRF. The exceptions are PC1(SL) and

TRF, for which the 95% confidence intervals do not overlap. The presence of this common

break occurring in the 1990s provides strong evidence for the existence of a slowdown in

the warming and allows, at least partially, to attribute it to the anthropogenic interventions

with the climate system. According to Estrada et al. (2013), the current slowdown in the

warming is imparted by the decrease in the rate of warming in the radiative forcing of CFCs

and methane that resulted from the adoption of the Montreal Protocol and from changes in

agricultural production in Asia (Velders et al. 2007; Montzka et al. 2011; Kai et al. 2011;

Hansen et al. 2011).

A two-compartment climate model (Schwartz 2012) is useful to understand the physical

model behind the empirical results offered in this paper. The upper compartment is com-

posed of the atmosphere and the upper ocean and it is characterized by a small heat capacity

and short time constant to reach its equilibrium state. The lower compartment represents

the deep ocean and has a high heat capacity and a long time constant to reach its steady

state. These compartments are thermally coupled. When a positive and sustained external

forcing is imposed, the upper compartment temperature increases, leading to changes in the

absorbed/emitted radiation at the top of the atmosphere and to a heat flow to the lower

compartment. The analysis and results presented in this paper pertains to the response of

the upper compartment of the climate system to changes in radiative forcing. The TCR,
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represented by  in equation (4), is characterized by the short time constant of the upper

compartment. As mentioned in the previous section, TCR relates time dependent changes in

temperatures to time dependent changes in radiative forcings given by  () =  (), where

 is the TCR. Over the observed period, the response of the climate system to the forcing

has been determined by the time to reach the steady state (usually referred to as the time

constant) of the upper compartment and the TRC. This provides a physical explanation of

why global and hemispheric surface temperatures share the same nonlinear trend, the same

features of the radiative forcing and the same rapid adjustment of observed temperatures to

changes in the radiative forcing (Schwartz 2012; Estrada et al. 2013b).

6 Conclusions

This paper highlights the need to distinguish between the observed temperature trends and

the underlying warming trends when investigating the response of the climate system to

changes in external forcing. Due to the effects of natural variability, which distorts the

underlying trend, investigating the trends and features of observed temperatures as a sub-

stitute for investigating those of the underlying warming trend can be severely misleading.

Conclusions based on characterizing the trend in observed temperatures, instead of that of

the underlying trend, can hardly be useful to shed light on issues such as the existence of a

slowdown in the warming or how the ITA has changed.

Although several factors have an effect over the fitted trends in global and hemispheric

temperatures, our analysis strongly suggests that their underlying trend and its features are

imparted by the radiative forcing. Furthermore, the common trend between radiative forcing

and temperature series, and its features, can be substantially attributed to human activities.

This conclusion is strongly supported by the cotrending analysis and the characterization

of the extracted common trend. One of the most debated features of the warming trend

is the existence and causes of a slowdown in the warming since the 1990s (Tollefson 2014;

Tollefson 2016). Here, we provide additional empirical evidence showing that the slowdown

is a common feature present in the radiative forcing series as well as sea, land, and sea-land

temperatures, both at the hemispheric and global scales. As suggested by Estrada et al.

(2013a), the slowdown in the warming has, at least partly, a human origin. According to

our results, natural variability has made it more difficult to detect the current slowdown. It

is important to note that, even if other factors may have a role in explaining the slowdown

in observed temperatures, the results we report here are directly related to the response of

temperatures to changes in external forcing and therefore cannot be dismissed as natural
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variability phenomena.

ITA has been proposed as an emerging indicator of climate change for which a rapid

response to changes in external forcing has been detected in the late 1960s (Friedman et

al. 2013). Changes in ITA related to external forcings are of particular interest given their

potential effect in displacing the intertropical convergence zone, with the implication that

the current precipitation patterns over large parts of the world could change (Broecker and

Putnam 2013; Seo et al. 2016). However, our analysis shows that, although there is a trend

in ITA that can be traced to changes in anthropogenic forcings, the structural break in

the level and the slope registered in the late 1960s is very likely the product of combining

low-frequency variability of different magnitudes, phases and periods that are contained in

the temperatures of the northern and southern hemispheres. The difference in the transient

response between hemispheres is about 0.054C per W/m2. Although this estimate is within

the CMIP5 range, it would produce substantially lower increases in ITA than the average of

the CMIP5 ensemble. However, it is important to consider that regional forcing factors (e.g.,

tropospheric aerosols) can have a large influence over ITA and changes in the emissions of

these factors can lead to larger temperature contrasts between hemispheres. Given the large

effects of natural variability over ITA, our results suggest that this variable may not be a

good indicator of climate change.

The results in this paper provide additional evidence supporting the fact that tempera-

tures can be better represented as trend stationary processes with structural breaks in their

trend function. The results obtained using new techniques and approaches used that are

robust to the type of data generating process, such as those presented here, and the broad

agreement shown by most attribution studies, make a very strong case supporting the attri-

bution of climate change to human activities. The present study and those of Estrada and

Perron (2016) and Kim et al. (2017) aim to extend the current focus of observation-based

attribution studies to further characterize the warming trend. This can help to provide aca-

demic research and policy with more relevant information about the observed response of

the climate system to changes in external forcing.
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Table 1. Tests for the existence of a break in the slope of temperature and radiative forcing series.  

Series G NH SH 

SLH 14.01*** 
(1976) 
[1964, 1988] 

21.37*** 
(1982) 
[1973, 1991] 

16.37*** 
(1909) 
[1896, 1922] 

SH 7.15*** 
(1909) 
[1892, 1926] 

1.74* 
(1909) 
[1886, 1932] 

14.91*** 
(1909) 
[1896, 1922] 

LH 45.58*** 
(1978) 
[1972, 1984] 

56.15*** 
(1978) 
[1972, 1984] 

11.95*** 
(1976) 
[1965, 1987] 

SLN 16.12*** 
(1972) 
[1962, 1982]] 

16.72*** 
(1984) 
[1975, 1993] 

19.10*** 
(1925) 
[1916, 1934] 

SN 5.54*** 
(1909) 
[1899, 1919] 

-- -- 

LN 33.29*** 
(1975) 
[1968, 1982] 

23.95*** 
(1982) 
[1974, 1990] 

19.42*** 
(1964) 
[1954, 1974] 

WMGHG 20.19*** 
(1960) 
[1959, 1961] 

-- -- 

TRF 4.46*** 
(1960) 
[1956, 1964] 

-- -- 

The main entries are the values of the Perron-Yabu test. ***,**,*, denote statistical significance at 

the 1%, 5% and 10% levels, respectively. The estimated break dates are given in parenthesis and 

their corresponding 95% confidence intervals are shown in brackets.  

 

 

 

 

 

 

 

 

 

 



Table 2a. Tests for a unit root allowing for a one-time break in the trend function applied to global 

temperature and radiative forcing series.  

Series k         ( ̂  
  ) 

SLH 0 -0.407 
(-19.41) 

0.003 
(10.55) 

0.014 
(11.13) 

-5.90*** 

SH 2 -0.237 
(-8.84) 

-0.002 
(-3.46) 

0.009 
(10.58) 

-3.74* 
 

LH 0 -0.569 
(-20.45) 

0.005 
(12.53) 

0.022 
(12.27) 

-8.21*** 
 

SLN 0 -0.315 
(-14.19) 

0.004 
(9.27) 

0.014 
(11.55) 

-5.35*** 
 

SN 0 -0.038 
(-1.07) 

-0.009 
(-6.14) 

0.017 
(9.92) 

-4.57*** 
 

LN 0 -0.497 
(-21.31) 

0.006 
(15.57) 

0.016 
(11.85) 

-7.30*** 
 

WMGHG 7 -0.287 
(-23.68) 

0.011 
(64.05) 

0.035 
(87.22) 

-3.94** 

TRF 1 -0.240 
(-10.56) 

0.006 
(20.89) 

0.022 
(29.09) 

-4.25*** 

Bold figures denote statistically significance at the 5% level. T-statistic values are given in 

parenthesis.   ( ̂  
  ) is the Kim-Perron test statistic. ***,**,*, denote statistical significance at the 

1%, 5% and 10% levels, respectively.  

Table 2b. Tests for a unit root allowing for a one-time break in the trend function applied to 

northern hemisphere temperature series.  

Series k         ( ̂  
  ) 

SLH 0 -0.365 
(-14.39) 

0.003 
(8.92) 

0.022 
(11.84) 

-6.67*** 

SH 2 -0.129 
(-3.70) 

-0.003 
(-3.89) 

0.010 
(8.81) 

-3.29 

LH 0 -0.524 
(-15.11) 

0.004 
(9.04) 

0.028 
(12.45) 

-9.79*** 

SLN 0 -0.345 
(-12.74) 

0.005 
(10.73) 

0.023 
(10.82) 

-5.69*** 

LN 0 -0.486 
(-15.87) 

0.007 
(13.33) 

0.025 
(11.31) 

-6.41*** 

Bold figures denote statistically significance at the 5% level. T-statistic values are given in 

parenthesis.   ( ̂  
  ) is the Kim-Perron test statistic. ***,**,*, denote statistical significance at the 

1%, 5% and 10% levels, respectively.  

 

 

 



Table 2c. Tests for a unit root allowing for a one-time break in the trend function applied to 

southern hemisphere temperature series.  

Series k         ( ̂  
  ) 

SLH 0 -0.326 
(-12.75) 

-0.001 
(-2.45) 

0.009 
(10.72) 

-6.93*** 

SH 0 -0.303 
(-12.27) 

-0.002 
(-3.52) 

0.009 
(11.74) 

-6.93*** 

LH 0 -0.661 
(-24.80) 

0.005 
(14.92) 

0.011 
(6.651) 

-9.51*** 

SLN 0 -0.136 
(-4.67) 

-0.004 
(-5.11) 

0.014 
(12.69) 

-4.76*** 

LN 0 -0.501 
(-19.88) 

0.005 
(11.71) 

0.011 
(8.99) 

-8.12*** 

Bold figures denote statistically significance at the 5% level. T-statistic values are given in 

parenthesis.   ( ̂  
  ) is the Kim-Perron test statistic. ***,**,*, denote statistical significance at the 

1%, 5% and 10% levels, respectively.  

 

Table 3. Cotrending tests within CRU and NASA datasets for L, SL and L, TRF and WMGHG. 

Series Test statistic Series Test statistic 

LH,G, LH,NH, LH,SH, TRF, 
WMGHG 

(r=1) 0.04  
(r=2) 0.06  
(r=3) 0.07  
(r=4) 0.14  
(r=5) 0.39** 

LN,G, LN,NH, LN,SH, TRF, 
WMGHG 

(r=1) 0.03 
(r=2) 0.04 
(r=3) 0.07 
(r=4) 0.14 
(r=5) 0.36** 

SLH,G, SLH,NH, SLH,SH, 
TRF, WMGHG 

(r=1) 0.03 
(r=2) 0.06 
(r=3) 0.09 
(r=4) 0.18 
(r=5) 0.44** 

SLN,G, SLN,NH, SLN,SH, 
TRF, WMGHG 

(r=1) 0.04 
(r=2) 0.06 
(r=3) 0.07 
(r=4) 0.14 
(r=5) 0.38** 

SH,G, SH,NH, SH,SH, TRF, 
WMGHG 

(r=1) 0.04 
(r=2) 0.07 
(r=3) 0.09 
(r=4) 0.14 
(r=5) 0.37** 

  

**,* denotes statistical significance at the 10% and 5% levels, respectively. r is the number of 

cotrending vectors. Note that SN is only available at the global scale.  

 

 

 

 

 



Table 4. Cotrending tests across CRU and NASA datasets for L, SL and L, TRF and WMGHG. 

Series Test statistic Series Test statistic 

LH,G, LN,G, TRF, 
WMGHG 

(r=1) 0.04 
(r=2) 0.07 
(r=3) 0.14 
(r=4) 0.36** 

SLH,G, SLN,G, TRF, 
WMGHG 

(r=1) 0.05 
(r=2) 0.08 
(r=3) 0.11 
(r=4) 0.36** 

LH,NH, LN,NH, TRF, 
WMGHG 

(r=1) 0.05 
(r=2) 0.07 
(r=3) 0.14 
(r=4) 0.37** 

SLH,NH, SLN,NH, TRF, 
WMGHG 

(r=1) 0.04 
(r=2) 0.08 
(r=3) 0.12 
(r=4) 0.36** 

LH,SH, LN,SH, TRF, 
WMGHG 

(r=1) 0.03 
(r=2) 0.07 
(r=3) 0.13 
(r=4) 0.36** 

SLH,SH, SLN,SH, TRF, 
WMGHG 

(r=1) 0.06 
(r=2) 0.09 
(r=3) 0.13 
(r=4) 0.38** 

SH,G, SN,G, TRF, 
WMGHG 

(r=1) 0.05 
(r=2) 0.09 
(r=3) 0.10 
(r=4) 0.37** 

  

**,* denotes statistical significance at the 10% and 5% levels, respectively. r is the number of 

cotrending vectors. Note that SN is only available at the global scale.  

 

Table 5. Response of temperature series to changes in TRF. 

Series CRU NASA 

SLG 0.43 
(21.6) 

0.47 
(26.1) 

SLNH 0.45 
(17.8) 

0.50 
(19.3) 

SLSH 0.40 
(22.0) 

0.45 
(24.9) 

LG 0.60 
(20.9) 

0.64 
(28.9) 

LNH 0.65 
(18.8) 

0.67 
(21.7) 

LSH 0.50 
(20.0) 

0.60 
(30.5) 

SG 0.36 
(17.8) 

0.38 
(21.3) 

SNH 0.32 
(13.4) 

-- 

SSH 0.39 
(21.0) 

-- 

The reported values correspond to γ in equation (4). T-statistic values are given in parenthesis. 

 



Table 6. Tests for the existence of a break in the level and slope, the slope and, the level of the 

ARDL regression residuals. 

Dependent variable Level and slope Slope Level 

ITAH 2.04 
(1968) 

0.74 
(1898) 

0.87 
(1936) 

ITAN 1.37 
(1931) 

0.19 
(1985) 

0.69 
(1940) 

The main entries are the values of the Perron-Yabu test. ***,**,*, denote statistical significance at 

the 1%, 5% and 10% levels, respectively. The estimated break dates are given in parenthesis.  

Table 7a. Factor loadings of the rotated principal component analysis of CRU's sea-land G, NH, SH, 

and WMGHG, TRF, AMO, SOI, NAO, PDO and STRAT. 

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

H4SLG 0.94 0.01 0.27 0.07 0.08 0.09 0.10 0.11 0.00 0.00 

H4SLNH 0.90 0.02 0.34 0.06 0.12 0.04 -0.04 0.21 0.00 0.00 

H4SLSH 0.94 0.00 0.16 0.08 0.03 0.14 0.25 -0.02 0.00 0.00 

AMO 0.19 0.01 0.96 0.15 0.11 0.01 0.01 0.01 0.00 0.00 

SOI -0.09 -0.26 -0.01 0.08 0.09 -0.95 -0.01 0.00 0.00 0.00 

NAO -0.15 -0.03 -0.15 -0.97 -0.10 0.07 0.00 0.00 0.00 0.00 

PDO 0.00 0.97 0.01 0.03 -0.07 0.24 0.00 0.00 0.00 0.00 

TRF 0.98 0.00 -0.06 0.07 -0.04 -0.01 -0.11 -0.12 0.04 0.00 

WMGHG 0.98 -0.01 -0.07 0.10 -0.03 -0.02 -0.13 -0.08 -0.05 0.00 

STRAT 0.04 -0.06 0.11 0.09 0.98 -0.08 0.00 0.01 0.00 0.00 

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in 

absolute value are shown in bold. 

 

Table 7b. Factor loadings of the rotated principal component analysis of CRU's land G, NH, SH, and 

WMGHG, TRF, AMO, SOI, NAO, PDO and STRAT. 

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

H4LG 0.95 -0.01 0.12 0.05 0.22 0.04 0.17 0.04 0.01 0.00 

H4LNH 0.93 0.01 0.14 0.03 0.23 0.00 0.23 -0.06 0.01 0.00 

H4LSH 0.92 -0.08 0.07 0.10 0.16 0.13 0.00 0.29 0.00 0.00 

AMO 0.17 -0.01 0.11 0.15 0.97 0.02 0.01 0.01 0.00 0.00 

SOI -0.07 0.25 0.09 0.07 -0.02 -0.96 0.00 -0.01 0.00 0.00 

NAO -0.15 0.02 -0.09 -0.97 -0.15 0.07 0.00 0.00 0.00 0.00 

PDO 0.00 -0.97 -0.06 0.03 0.01 0.25 0.00 0.01 0.00 0.00 

TRF 0.97 0.02 -0.07 0.08 -0.05 0.01 -0.18 -0.09 0.04 0.00 

WMGHG 0.98 0.03 -0.05 0.11 -0.05 0.00 -0.14 -0.08 -0.05 0.00 

STRAT 0.06 0.06 0.98 0.09 0.11 -0.09 0.01 0.00 0.00 0.00 

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in 

absolute value are shown in bold. 



Table 7c. Factor loadings of the rotated principal component analysis of CRU's sea G, NH, SH, and 

WMGHG, TRF, AMO, SOI, NAO, PDO and STRAT. 

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

H4SG 0.91 0.01 0.32 0.07 0.06 0.11 0.14 0.15 0.00 -0.03 

H4SNH 0.83 0.01 0.47 0.07 0.08 0.08 0.02 0.27 0.00 0.00 

H4SSH 0.94 -0.02 0.16 0.06 0.04 0.10 0.26 0.01 0.00 0.00 

AMO 0.17 0.01 0.97 0.15 0.11 0.01 0.01 0.00 0.00 0.00 

SOI -0.09 -0.26 -0.02 0.08 0.09 -0.95 -0.01 -0.01 0.00 0.00 

NAO -0.15 -0.03 -0.15 -0.97 -0.10 0.07 0.00 0.00 0.00 0.00 

PDO -0.01 0.97 0.01 0.03 -0.07 0.24 0.00 0.00 0.00 0.00 

TRF 0.98 0.01 -0.05 0.07 -0.03 -0.01 -0.14 -0.11 -0.05 0.01 

WMGHG 0.97 0.00 -0.05 0.10 -0.02 -0.02 -0.17 -0.08 0.04 0.01 

STRAT 0.03 -0.06 0.11 0.09 0.98 -0.08 0.00 0.01 0.00 0.00 

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in 

absolute value are shown in bold. 

 

Table 7d. Factor loadings of the rotated principal component analysis of NASA's sea-land G, NH, 

SH, and WMGHG, TRF, AMO, SOI, NAO, PDO and STRAT. 

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

NSLG 0.96 -0.02 0.06 0.08 0.22 0.08 -0.09 0.11 0.00 -0.01 

NSLNH 0.90 -0.04 0.13 0.06 0.33 0.05 0.07 0.21 0.00 0.00 

NSLSH 0.95 0.01 -0.04 0.09 0.07 0.12 -0.28 -0.03 0.00 0.00 

AMO 0.16 -0.01 0.11 0.15 0.97 0.01 -0.01 0.01 0.00 0.00 

SOI -0.09 0.26 0.09 0.08 -0.02 -0.96 0.01 0.00 0.00 0.00 

NAO -0.16 0.03 -0.10 -0.97 -0.15 0.07 0.00 0.00 0.00 0.00 

PDO 0.00 -0.97 -0.07 0.03 0.01 0.24 0.00 0.00 0.00 0.00 

TRF 0.99 0.01 -0.03 0.06 -0.04 -0.01 0.10 -0.11 0.04 0.01 

WMGHG 0.98 0.01 -0.02 0.09 -0.04 -0.02 0.12 -0.08 -0.05 0.00 

STRAT 0.02 0.06 0.98 0.09 0.11 -0.08 0.00 0.01 0.00 0.00 

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in 

absolute value are shown in bold. 

 

 

 

 

 

 



Table 7e. Factor loadings of the rotated principal component analysis of NASA's land G, NH, SH, 

and WMGHG, TRF, AMO, SOI, NAO, PDO and STRAT. 

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

NLG 0.97 0.03 0.07 0.10 0.16 0.05 0.07 -0.09 0.00 -0.01 

NLNH 0.93 0.05 0.06 0.14 0.25 0.02 -0.04 -0.21 0.00 0.00 

NLSH 0.97 0.01 0.08 0.05 0.05 0.07 0.21 0.05 0.00 0.00 

AMO 0.14 0.01 0.15 0.11 0.97 0.02 0.00 -0.01 0.00 0.00 

SOI -0.07 -0.25 0.07 0.09 -0.02 -0.96 0.00 0.00 0.00 0.00 

NAO -0.15 -0.02 -0.97 -0.10 -0.15 0.07 0.00 0.00 0.00 0.00 

PDO 0.01 0.97 0.03 -0.06 0.01 0.25 0.00 0.00 0.00 0.00 

TRF 0.98 -0.02 0.07 -0.06 -0.02 0.01 -0.11 0.11 0.04 0.00 

WMGHG 0.98 -0.03 0.09 -0.05 -0.02 0.00 -0.10 0.07 -0.05 0.00 

STRAT 0.06 -0.06 0.09 0.98 0.11 -0.09 0.00 -0.01 0.00 0.00 

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in 

absolute value are shown in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8. Tests for the existence two breaks in the slope of the common trend between 

temperature and radiative forcing series. 

Series Test statistic Series Test statistic 

PC1(LH) 99.95*** 
(1968) 
[1964, 1972] 
1.14* 
(1990) 
[1980, 2000] 

PC1(SLN) 51.48*** 
(1962) 
[1956, 1968] 
4.2862*** 
(1990) 
[1984, 1996] 

PC1(SLH) 43.16*** 
(1966) 
[1960, 1972] 
1.17* 
(2002) 
[1996, 2008] 

TRF 4.46*** 
(1960) 
[1956, 1964] 
18.21*** 
(1991) 
[1989, 1993] 

PC1(SH) 16.70*** 
(1964) 
[1954, 1974] 
1.85** 
(1998) 
[1992, 2004] 

WMGHG 20.19*** 
(1960) 
[1959, 1961] 
3.42*** 
(1994) 
[1990, 1998] 

PC1(LN) 109.60*** 
(1965) 
[1961, 1969] 
1.84** 
(1988) 
[1980, 1996] 

  

The main entries are the values of the Perron-Yabu test. ***,**,*, denote statistical significance at 

the 1%, 5% and 10% levels, respectively. The estimated break dates are given in parentheses and 

their corresponding 95% confidence intervals are shown in brackets.  
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Figure 1. Global and hemispheric temperature series from CRU and NASA datasets. Panel a): sea-

land (SL) temperature series from the CRU dataset (H) for global (SLH_G), northern hemisphere 

(SLH_NH) and southern hemisphere (SLH_SH); Panel b): SL from the NASA dataset (N) for global 

(SLN_G), northern hemisphere (SLN_NH) and southern hemisphere (SLN_SH); Panel c): L from H 

for global (LH_G), northern hemisphere (LH_NH) and southern hemisphere (LH_SH); Panel d): L 

from N for global (LN_G), northern hemisphere (LN_NH) and southern hemisphere (LN_SH); Panel 

f): S from N for global (SN_G).  
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Figure 2. Principal modes of natural variability. Panel a):  Atlantic Multidecadal Oscillation (AMO). 

Panel b): Southern Oscillation index (SOI); Panel c): North Atlantic Oscillation (NAO); Panel d): 

Pacific Decadal Oscillation (PDO).  
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Figure 3. Radiative forcing series. Panel a): Well-Mixed Greenhouse Gases (WMGHG); Panel b): 

Total Radiative Forcing (TRF); Panel c): radiative forcing from stratospheric aerosols (STRAT).  
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Figure 4. Interhemispheric Temperature Asymmetry. Panel a): the blue line shows ITA from the 

CRU dataset (ITA_H), while the red line shows ITA from the NASA dataset (ITA_N); Panel b): ITA 

detrended using TRF, for the CRU (ITA_H*; blue line) and NASA (ITA_N*; red line) datasets.
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Figure 5. Rotated principal components of global and hemispheric sea, land, sea and land temperatures, WMGHG, TRF, AMO, SOI, NAO and PDO. 
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