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ABSTRACT

A fundamental goal of statisticians is to make inferences from the sample about

characteristics of the underlying population. This is an inverse problem, since we

are trying to recover a feature of the input with the availability of observations on

an output. Towards this end, we consider complexity penalized methods, because

they balance goodness of fit and generalizability of the solution. The data from the

underlying population may come in diverse formats - structured or unstructured -

such as probability distributions, text tokens, or graph characteristics. Depending

on the defining features of the problem we can chose the appropriate complexity pe-

nalized approach, and assess the quality of the estimate produced by it. Favorable

characteristics are strong theoretical guarantees of closeness to the true value and in-

terpretability. Our work fits within this framework and spans the areas of simulation

optimization, text mining and network inference. The first problem we consider is

model calibration under the assumption that given a hypothesized input model, we

can use stochastic simulation to obtain its corresponding output observations. We for-

mulate it as a stochastic program by maximizing the entropy of the input distribution

subject to moment matching. We then propose an iterative scheme via simulation

vi



to approximately solve it. We prove convergence of the proposed algorithm under

appropriate conditions and demonstrate the performance via numerical studies. The

second problem we consider is summarizing text documents through an inferred set of

topics. We propose a frequentist reformulation of a Bayesian regularization scheme.

Through our complexity-penalized perspective we lend further insight into the na-

ture of the loss function and the regularization achieved through the priors in the

Bayesian formulation. The third problem is concerned with the impact of sampling

on the degree distribution of a network. Under many sampling designs, we have a

linear inverse problem characterized by an ill-conditioned matrix. We investigate the

theoretical properties of an approximate solution for the degree distribution found by

regularizing the solution of the ill-conditioned least squares objective. Particularly,

we study the rate at which the penalized solution tends to the true value as a function

of network size and sampling rate.
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1

Chapter 1

Introduction

At the heart of any statistical estimation problem is the following: there is a char-

acteristic of interest from an underlying (unobserved) population, and through some

method we obtain an estimate of that characteristic calculated from a sample. This

falls within the framework of inverse problems in the sense that we are trying to re-

cover a feature of the input with the availability of observations on an output. To this

end, complexity penalized methods are a preferred approach since they are a class of

methods that balance the goodness of fit to the observed data and the generalizability

of the solution to the broader unobserved population. The data from the underlying

population may come in a variety of formats - structured or unstructured - scoping

probability distributions, natural text tokens, or graph characteristics, to name a few.

Once we have chosen the appropriate flavor of complexity penalized approach, natu-

rally we want to assess the quality of the estimate that we produce. Desired features

of the estimate are strong theoretical guarantees of closeness to the true population

value, empirical validation on real data sets, and clarity, rigor and interpretability

of the solution. The following work fits within this mindset and spans the areas of

simulation optimization, text mining and network inference.

The first problem we consider is an inverse problem belonging to the world of

model calibration under the assumption that given a hypothesized input model, we

can use stochastic simulation to obtain its corresponding output observations. This

kind of inverse problem is observed in some service operations settings where data are
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available only for system outputs but we do not know the constituent input models.

Examples are service call centers and patient flows in clinics, where sometimes only

the waiting time or the queue length data are collected for economic or operational

reasons, and the data on the “input distributions”, namely interarrival and service

times, are limited or unavailable. We take a nonparametric viewpoint, and formulate

this inverse problem as a stochastic program by maximizing the entropy of the input

distribution subject to moment matching. We then propose an iterative scheme via

simulation to approximately solve the program. We prove convergence of the pro-

posed algorithm under appropriate conditions and demonstrate the performance via

numerical studies.

The second problem we consider is in the field of topic allocation to text docu-

ments. This is a discussion based on the paper A regularization scheme on word oc-

currence rates that improves estimation and interpretation of topical content, (Airoldi

and Bischof, 2015). When we have a large corpora of text documents, and we de-

sire to efficiently describe/summarize them, we seek a small collection of words that

characterize each document in the collection. An accepted approach to tackling this

task is to disregard the order in which words appear in the text, i.e. the bag of words

approach, and organize the previously unstructured data into a word count matrix.

Then, to extract the most suitable topics, one might be tempted to choose the most

frequent words within each text (this idea can be phrased as a regularization across

the rows of the topic word matrix). However, such frequently used words may be com-

mon across many fields and may not be exclusive to the real topic of the document.

Hence, in (Airoldi and Bischof, 2015), the authors propose a novel regularization

scheme, within a complex Bayesian framework, that penalizes across the columns of

the topic word matrix to leverage frequency and exclusivity of the selected topics.

Our contribution is a different representation of the problem, from a frequentist point
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of view, that gives clear insight into the nature of this novel regularization approach.

The third problem arises in the context of networks. Networks are widely used

to model the relationships among elements in a system. Many empirical networks

observed today can be viewed as samples of an underlying network, for example, large-

scale online social networks. Hence, it is of fundamental interest to investigate the

impact of the network sampling mechanism on the quality of characteristics estimated

from the sampled network. We focus on the degree distribution as a fundamental

feature. Under many popular sampling designs, this problem can be stated as a

linear inverse problem characterized by an ill-conditioned matrix. This matrix relates

the expectation of the sampled degree distribution to the true underlying degree

distribution and depends entirely on the sampling design. The work of (Zhang et al.,

2015) introduces an approximate solution for the degree distribution by regularizing

the solution of the ill-conditioned least-squares problem corresponding to the naive

estimator. We aim to theoretically characterize the distance between this penalized

weighted least-squares estimator and the true degree counts vector. We succeed in the

subcase of ego-centric design and achieve partial results for other more complicated

sampling designs. We accompany the theoretical results with numerical simulations

and visualizations that further illustrate the behavior of the estimator and allow us

to make comparisons between the different sampling designs we have considered.
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Chapter 2

Reconstructing Input Models via

Simulation Optimization

2.1 Introduction

Stochastic simulation takes probability models as input and generates random outputs

for subsequent performance analyses. The accuracy of the input model assumptions

is critical to the analyses’ credibility. Conventionally, the input models are conferred

either through physical implication or expert opinion, or observable via input data.

In this work, we ask a converse question: Given only output data from a stochastic

system, can one infer about the input model?

The main motivation of asking this question is that, in many situations, a simula-

tion modeler plainly may not have the availability of direct data or knowledge about

the input. The only way to gain such knowledge could be data from other sources that

are at the output level. For instance, such complication arises in the context of build-

ing a simulation model for a contract fulfillment center, where service agents work

on a variety of processing tasks and, despite the abundant transaction data stored in

the center’s IT system, there is no record on the start, completion, or service times

spent by each agent on each particular task. Similarly, in clinic operations, patients

often receive service in multiple phases such as initial checkup, medical tests and doc-

tor’s consultation. Patients’ check-in and check-out times could be accurately noted,

but the “service” times provided by the medical staff could very well be unrecorded.
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Clearly, these service time distributions are needed to build a simulation model, if an

analyst wants to use the model for sensitivity or system optimization purpose.

The problem of inferring an input model from output data is sometimes reffered

to as model calibration. In the simulation literature, this is often treated as a re-

finement process that occurs together with iterative comparisons between simulation

reports and real-world output data (a task known as model validation; (Sargent,

2005; Kleijnen, 1995)). If simulation reports differ significantly from output data,

the simulation model is re-calibrated (which can involve both the input distributions

and system specifications), re-compared, and the process is iterated. Suggested ap-

proaches to compare simulation with real-world data are to conduct statistical tests

such as two-sample mean-difference tests (Balci and Sargent, 1982) or the Schruben-

Turing test (Schruben, 1980). Beyond that, inferring input from output seems to be

an important problem that has not been largely discussed in the stochastic simulation

literature (Nelson, 2016). Thus, on a high level, one contribution of this work is to

study the first systematic framework for the input model calibration problem.

The setting we consider can be briefly described as follows. We assume an input

model is missing and we make no parametric assumptions on the probability distribu-

tion. We assume, however, that certain output random variable from a well-specified

system is observable with some data. Our task is to nonparametrically infer the input

distribution. A key insight we use that distinguishes this problem from model cali-

bration in other literature (e.g., computer experiments) is the intrinsic probabilistic

structure of the system. Namely, the input and the output in stochastic simulation

are represented as probability distributions, or in other words, the relation that links

the observed and the to-be-calibrated objects is a (simulable) map between the input

and output spaces of distributions. Our calibration method is designed to take such

a relation into account.



6

More specifically, we use a moment-based approach to calibrate the input model.

We match the moments of a sequence of statistics collected from the simulation and

real-world data at the output level. Unless we can afford to match an infinite num-

ber of such moments, however, this scheme in general can lead to many candidate

input models, therefore we face the unidentifyability issue. To tackle this problem,

we propose entropy maximization as a criterion to identify the best model. This

approach is motivated by the interpretation of the maximum entropy (ME) distri-

bution as the conditional distribution given all prior information. Hence it is the

most “natural” distribution without any further knowledge (Van Campenhout and

Cover, 1981). Furthermore, this approach has been successfully used in the context

of density estimation (Barron and Sheu, 1991). In our work, we offer justification of

the consistency of our moment-matching approach, while at the same time we also

reveal some finite-sample limitations. Roughly speaking, “natural” models such as

unimodal or smooth distributions are amenable with our approach, but more “com-

plicated” distributions are more difficult to infer and our scheme may not be powerful

enough to calibrate such underlying model. We also provide some numerical results

to substantiate these observations.

Beyond proposing and justifying our formulation, another key contribution of this

work is algorithmic. In particular, we study a simulation optimization procedure that

targets our ME moment-matching problem. A particularly challenging characteristic

of this problem is that the moment statistics are at the output level, which is generally

a nonlinear function of the input distribution. As a simple example, consider the

mean waiting time of a queue as a function of the service time distribution. Thus

the constraints in the optimization formulation are stochastic and could be non-

convex. To our best knowledge, there is no literature on this class of simulation

optimization problems. As our key algorithmic contribution, we propose and analyze a
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stochastic quadratic penalty method. The idea is to reformulate the optimization into a

sequence of sum-of-squares optimizations with stochastic objectives and deterministic

convex constraints, whereby each element of the sequence can be solved efficiently

using mirror descent stochastic approximation (MDSA) (Nemirovski et al., 2009).

MDSA is a constrained stochastic approximation (SA) algorithm that is especially

suitable for our setting. We analyze the details of our reformulation. As a part of the

algorithm, we develop a gradient estimation procedure and analyze the convergence

of our MDSA. Note that, for a general simulation model, the ME formulation and our

reformulation only guarantees a local optimum because of non-convexity. In practice,

this issue can be addressed with the use of multi-start procedures. We also propose

visualizations to validate our method.

The remainder of the chapter is organized as follows. Section 2.2 reviews the

related literature. Section 2.3 introduces the problem setting and explains our opti-

mization formulation. Section 2.4 presents and analyzes our algorithm. Section 2.5

reports numerical results. Section 3.4 concludes and discusses future work. Addition-

ally, the Appendix at the end of the manuscript contains some Auxiliary Theorems

A.1 and Supplementary Materials A.2 with the details of an additional variant of our

method.

2.2 Related literature

We organize the literature review in two aspects, one related to the model calibration

problem, and one related to our optimization approach.

2.2.1 Literature Related to Our Problem Setting

Input modeling and uncertainty in stochastic simulation focus mostly on the input

level. (Barton, 2012) and (Song et al., 2014) review some major methods of quantify-

ing the statistical errors from finite input data. Commonly used approaches therein
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include the delta or two-point method (Cheng and Holland, 1998; Cheng and Holland,

2004), Bayesian methodology and model averaging (Chick, 2001; Zouaoui and Wilson,

2004) and resampling methods (Barton and Schruben, 2001; Barton et al., 2013). Our

problem is more closely related to model calibration. In the simulation literature, this

is often considered together with model validation (Sargent, 2005; Kleijnen, 1995).

Conventional approaches compare simulated data with real-world historical output

data through the use of common statistical or Turing tests (Balci and Sargent, 1982;

Schruben, 1980), then conduct re-calibration, and repeat the process until the data

are successfully validated (Banks et al., 2009; Kelton and Law, 2000).

Other literatures focus on the fact that the model calibration problem is an inverse

problem (Tarantola, 2005). The general focus is the identification of parameters

or functions that can only be inferred from transformed outputs. In the field of

signal processing, the linear inverse problem (e.g., (Csiszár, 1991; Donoho et al.,

1992)) reconstructs signals from measurements of linear transformations. Common

practices in this context consist of minimization of an objectie function comprised

of least-squares loss and a penalty, such as the entropy penalty, which also provides

justification of our main formulation. In computer experiments (Santner et al., 2013),

surrogate models based on complex physical laws require the calibration of physical

parameters. Such models have wide scientific applications, such as weather prediction,

oceanography, nuclear physics, and acoustics (e.g., (Wunsch, 1996; Shirangi, 2014)).

Bayesian and Gaussian processes methodologies are commonly used (e.g., (Kennedy

and O’Hagan, 2001; Currin et al., 1991)). We point out that Bayesian methods

could be a potential alternative to the approach considered in this work, but since we

consider discrete-event systems, one might need to resort to sophisticated techniques

such as approximate Bayesian computation (Marjoram et al., 2003).

Also related to our work is the body of research on inference problems in the
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context of queueing systems. The first stream similar to our work aims at inferring

the constituent probability distributions of a queueing model based on its output data,

e.g., queue length or waiting time data, collected either continuously or at discrete

time points. The focus is on systems whose structures allow closed-form analyses or

are amenable to analytic approximations via, for instance, the diffusion limit. The

majority of the papers in this field assume that the inferred distribution(s) comes

from a parametric family and use maximum likelihood estimators (Basawa et al., 1996;

Pickands III and Stine, 1997; Basawa et al., 2008; Fearnhead, 2004; Wang et al., 2006;

Ross et al., 2007; Heckmüller and Wolfinger, 2009; Whitt, 2012). Others work on

nonparametric inference by exploiting specific queueing system structures (Bingham

and Pitts, 1999; Hall and Park, 2004; Moulines et al., 2007; Feng et al., 2014). A

related stream of literature studies point process approximation (see Section 4.7 of

(Cooper, 1972), (Whitt, 1981; Whitt, 1982), and the references therein), based on a

parametric approach and is motivated by traffic pattern modeling in communication

networks. Finally, there are also a number of studies inspired by the “queue inference

engine” by (Larson, 1990). But, instead of inferring the input models, many of

these studies use transaction data to estimate the performance of a queueing system

directly and hence do not take on the form of an inverse problem (see (Mandelbaum

and Zeltyn, 1998) for a good survey of the earlier literature and (Frey and Kaplan,

2010) and its references for more recent progress). Several papers estimate both the

queueing operational performance and the constituent input models (e.g., (Daley and

Servi, 1998; Kim and Park, 2008; Park et al., 2011)), and can be considered to belong

to both this stream and the aforementioned first stream of literature.

2.2.2 Literature Related to Our Methodology

Our formulation uses the widely used notion of maximum entropy (ME). In informa-

tion theory, entropy can be viewed as the amount of intrinsic randomness (Cover and
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Thomas, 1991). (Csiszár, 1991) studied axiomatic properties of ME (or more gener-

ally the I-divergence class). (Donoho et al., 1992) used ME to recover sparse signals.

(Barron and Sheu, 1991) studied the use of moment-constrained ME in nonparamet-

ric density estimation and analyzed the convergence rate in terms of Kullback-Leibler

(KL) divergence. (Lindley, 1956; DeGroot, 1962; Box and Hill, 1967; Bernardo, 1979;

Chick and Ng, 2002) studied the use of entropy criterion to maximize information

and identify important parameters in experiments. In finance, (Avellaneda et al.,

2001) studied ME calibration of risk-neutral measures from derivative prices. This

technique, known as the weighted Monte Carlo, has also been studied as a variance

reduction technique (Glasserman and Yu, 2005).

Our optimization reformulation is inspired by the quadratic penalty method (Bert-

sekas, 1999), which is a deterministic nonlinear programming technique that reformu-

lates the constraints as squared penalty and sequentially tunes the penalty parameter

to approach optimality. Our algorithm to solve the sequence of optimizations in the

reformulation utilizes MDSA proposed by (Nemirovski et al., 2009). (Nemirovski

et al., 2009) analyzed convergence guarantees on convex programs with stochastic

objectives. (Ghadimi and Lan, 2013) investigated related methods for nonconvex

programs, and (Ghadimi and Lan, 2015) and (Dang and Lan, 2015) studied gen-

eralizations incorporating accelerated gradient and coordinate decomposition. The

particular scheme of MDSA we consider uses entropic penalty, and is known as the

entropic descent algorithm (Beck and Teboulle, 2003).

2.3 Setting and Formulation

We assume a discrete probability distribution p = (p1, . . . , pn) for the input model,

on the support set S = {z1, . . . , zn}, where the support size n can be potentially

large. We let X = (X1, . . . , Xτ ), where Xt ∈ S, be an i.i.d. sequence of input variates
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each distributed under p over a random horizon τ . We denote the function h(·) ∈ R

as the system logic from the input sequence X to the output h(X). We assume that

h is completely specified and is computable, even though it may not be writable in

closed-form, i.e. we can evaluate the output given X. For example, X can denote

the sequence of interarrival or service times for the customers in a queue, and h(X)

is the average queue length until the first idle time. Note that we can work in a

more general framework where h depends on both X and other independent input

sequences, say Y, that possess known or observable distributions. In other words, we

can have h(X,Y) as the output. Our subsequent discussion can be trivially extended

to this case, and hence we will suppress these auxiliary input sequences throughout

our exposition.

Consider the situation that only h(X) can be observed via data. Let y1, . . . , yN

be N observations of h(X). Our task is to calibrate p.

We match the moment-based statistics of the simulation output and the empirical

output data. More precisely, let φj(·) : R→ R, j = 1, . . . ,m be m moment functions

specified by the modeler. Natural examples of φj include polynomials φj(y) = yj,

and quantile-based functions φj(y) = I(y ≤ cj) for given values cj, where I denotes

the indicator function. We want to find p such that

Ep[φj(h(X))] = µ̂j for j = 1, . . . ,m (2.1)

where Ep[·] denotes the expectation with respect to the i.i.d. input process X each

distributed as p (in other words, the product measure p× p× · · · ) and the random

time τ . µ̂j is the empirical moment

µ̂j =
1

N

N∑
r=1

φj(yr), j = 1, . . . ,m (2.2)

Note that, when the support size n is larger than m, there are typically more than
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one p that satisfies (2.1). Moreover, depending on what the function h is, there may

be a fundamental barrier in fully recovering p even if there is a full knowledge on

the distribution of h(X). For example, when h is identically equal to a constant,

any p will give a perfect fit. The phenomenon of being unable to uniquely recover

p is generally known as non-identifiability in the inverse modeling literature (e.g.

(Tarantola, 2005)).

Our approach to reduce the number of distributions p that satisfy (2.1) is to

maximize entropy, namely

max R(p) = −
∑n

i=1 pi log pi
subject to Ep[φj(h(X))] = µ̂j for j = 1, . . . ,m

p ∈ P
(2.3)

where P = {p :
∑n

i=1 pi = 1, pi ≥ 0 for i = 1, . . . , n} is the probability simplex on

S = {z1, . . . , zn}. R(p) denotes the entropy of p. The decision variable in (2.3) is the

unknown input model p.

2.3.1 Why Moment Matching?

Moment estimators are ubiquitous in parametric estimation (e.g., (Hall, 2005)). In our

framework, which is closer to nonparametric, the moment-matching is based on two

beliefs: 1) Given sufficiently many moments, one can recover the distribution of the

output with high accuracy; 2) There is a one-to-one map from the input distribution

to the output distribution. These two beliefs together would lead to the recovery of

the input model to high accuracy given enough output data and moments matched.

The following presents this logic more rigorously:

Lemma 2.3.1. Denote FY : R → [0, 1] as the distribution function of the output

Y = h(X). We write FY (p) to highlight the dependence of FY in terms of the input

distribution p. Let p∗ be the true input distribution, and µj = Ep∗ [φj(h(X))] for a

chosen sequence of moment functions φj, j = 1, 2, . . .. Assume the following:

1. Let N (p∗) ⊂ P be a small neighborhood of p∗. For every p ∈ N (p∗), FY (p) is
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completely identified by a finite number of φj, i.e. FY (p) is uniquely determined

by ∫
φk(y)dFY (p)(y) = µj, j = 1, . . . , l

among the set of distributions PY = {FY (q) : q ∈ P}, for some l > 0. This

defines a map G : N (p∗) → N (µ), where N (µ) denotes a small neighborhood

of µ = (µ1, . . . , µl) ∈ Rl. We assume moreover that G is one-to-one.

2. G−1, the inverse of G, is continuous.

3. The empirical moment µ̂j → µj a.s. as the output sample size N → ∞, for

j = 1, . . . , l.

Then G−1(µ̂)→ p∗ a.s. as N →∞, where µ̂ = (µ̂1, . . . , µ̂l).

Proof of Lemma 2.3.1:

As N →∞, by Assumption 3, we have µ̂j → µj. Hence by Assumptions 1 and 2, we

have G−1(µ̂)→ p∗. �

Lemma 2.3.1 is of course a rather trivial result, stating that with enough moments

and a one-to-one map from the input to the output distribution, one would be able

to consistently calibrate the input model. The conditions in the lemma are generally

very difficult to verify in practice, since the map G is related to the simulation process

that could be highly complex. The use of Lemma 2.3.1 is more about pointing out the

limitation of moment-matching: we expect that, if the input support size is n, we need

l = n− 1 moments to form a well-determined system of equations and subsequently

recover the input model. Hence when n is big, the number of moments matched needs

also be big. However, with finite output observation size, statistical errors prohibit

matching too many moments, since in this case some of the empirical moments could

be badly estimated (i.e., overfitting). Thus in practice one would only match a small

number of moments. This in turn implies that one would have an under-determined

system of equations that results in plenty of candidate input models. An additional

criterion, namely the entropy, is therefore needed to pin down the choices.
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2.3.2 Why Maximize Entropy?

The use of the ME criterion is strongly inspired from results in density estimation.

Let us for a moment take the simulation model aside, and consider the estimation of

the density from a finite number of i.i.d. data. It is known that by increasing the

number of matched moments suitably with the sample size, the ME density subject

to empirical moment matching is a consistent density estimator and, moreover, elicits

explicitly obtainable convergence rate to the true density, in terms of KL divergence,

according to the class of moment functions used (Barron and Sheu, 1991). The only

difference between our setting and this classical setting is the layer of transformation

induced by the simulation model. We note that one could potentially derive the pre-

cise conditions on the simulation model to generalize these classical results. However,

such an attempt may not be meaningful because the obtained conditions are likely

unverifiable for the complex simulation maps typically occurring in practice. We thus

choose to only justify the ME criterion on an intuitive level.

In addition, entropy has been widely used as a proxy for the expected gain or in-

formation in experimental design (e.g., (Lindley, 1956; Box and Hill, 1967; Bernardo,

1979)). The entropy here often refers to the output distribution, though input distri-

bution has also been considered if the goal is to optimize inference at the input level

(Chick and Ng, 2002). ME is also used in financial option pricing to infer the most

“natural” risk-neutral measure nonparametrically (Avellaneda et al., 2001). This

work in a sense follows these widely taken viewpoints of ME, under the presumption

that we do not have any additional information about the input model.

2.4 Optimization Procedure

This section focuses on solving our main formulation (2.3). Our strategy consists

of two parts: a reformulation of (2.3) into a sequence of optimization programs with
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deterministic convex constraints, which is inspired from the quadratic penalty method

in nonlinear programming (Section 2.4.1), and a constrained SA procedure for finding

local optima for each of these programs (Section 2.4.2).

2.4.1 Transforming into a Sequence of Stochastic Programs with Entropy

Constraints

Note that the constraints in (2.3) are in general nonlinear because the i.i.d. input

sequence means that the expectation Ep[·] is a convolution of p. In fact, Ep[φj(h(X))]

is a high-dimensional polynomial in p, and is in general non-convex. Moreover, this

polynomial can involve a huge (or even infinite) number of terms and hence its eval-

uation requires simulation approximation.

To handle such non-convex stochastic constraints, consider a sequence of opti-

mization programs parametrized by η

min
∑m

j=1(Ep[φj(h(X))]− µ̂j)2
subject to R(p) ≥ η

p ∈ P
(2.4)

This sequence satisfies the following key properties:

Theorem 2.4.1. Suppose that Ep[φj(h(X))] is a continuous function in p, for each

j = 1, . . . ,m. Let W ∗(η) denotes the optimal value of (2.4) indexed at η. We have

1. W ∗(η) decreases as η decreases from log n to 0.

2. An optimal solution of (2.4), at any η ∈ [0, log n], exists. Denote this optimal

solution as p∗(η).

3. If there exists an η∗ = sup{η ∈ [0, log n] : W ∗(η) = 0}, then p∗(η∗) is optimal

for (2.3).

4. If there does not exist any η ∈ [0, log n] such that W ∗(η) = 0, then (2.3) is

infeasible.
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In view of Theorem 2.4.1, our strategy is to solve (2.4) at different values of η

and identify η∗. This strategy is a modification of the quadratic penalty method for

solving deterministic nonlinear programs, where equality constraints are relaxed into

the objective function with squaring (Bertsekas, 1999). Note that while the standard

quadratic penalty method solves a sequence of optimizations with objectives consist-

ing of both the primal objective and the relaxed squared constraints, our formulation

(2.4) has chosen to put the primal objective as a constraint in the optimization se-

quence. This arrangement is beneficial for a few reasons. First, it allows us to more

easily locate a stochastic root η∗ ∈ [0, log n] for which we can look for an optimal

solution, whereas the standard quadratic penalty method requires the sequencing in-

dex to go to ∞ and does not offer an explicit guideline on when to stop searching.

Second, our primal objective, as an entropy, has advantageous concave structure that

allows running efficient MDSA (which we will discuss momentarily) when translated

as constraint. Third, η has the interpretation as the entropy level of the distributions

to be considered. For convenience we call our method the stochastic quadratic penalty

method. In the Supplementary Materials, we provide some discussion on applying a

variant of our approach that is closer to the conventional quadratic penalty method.

2.4.2 Constrained Stochastic Approximation for Solving the Optimiza-

tion Sequence

Although formulation (2.4) is still non-convex, its constraints are convex and deter-

ministic, which can be handled more easily using SA than in the original formulation

(2.3). This section investigates the design and analysis of an MDSA algorithm for

finding a local optimum of (2.4).

MDSA is the stochastization of the mirror descent (MD) method, an iterative

procedure for solving deterministic convex programs (Nemirovski and Yudin, 1983).

MD was first motivated for optimizations in general normed space, where the space
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of the solution (i.e. the primal) is different from the space of the gradient (i.e. the

dual), and hence the usual gradient descent scheme does not make sense. MD uses

the insight of first mapping the solution to the dual space (using a map associated

with a strongly convex function called the distance-generating function), moving the

solution along the gradient direction in the dual space, and mapping it back to the

primal (via the so-called prox-mapping). In the Euclidean space, it is not necessary to

use MD since the primal and the dual space are the same. But, by choosing a suitable

primal-dual mapping, MD can provide advantages in the convergence speed in terms

of less dependence on the problem dimension. Moreover, the resulting optimization

subroutine required in the iteration can be very efficient.

To describe the algorithm, MD finds the next iterate via optimizing the objective

function linearized at the current solution, together with a penalty on the distance

of movement of the next iterate. When the objective function is only accessible via

simulation, the linearized objective function, or the gradient, at each iteration can

only be estimated, in which case the procedure becomes MDSA (Nemirovski et al.,

2009). More precisely, given a current iterate pk, MDSA solves

min γkψ̂k
′
(p− pk) + V (pk,p)

subject to R(p) ≥ η
p ∈ P

(2.5)

where ψ̂k carries the gradient information at pk, V (·, ·) is some distance measure

known as the prox-function (Nemirovski et al., 2009), and γk is the step size at

iteration k. (2.5) thus minimizes over the feasible set of p with an objective function

linearized at pk, penalized by the distance (1/γk)V (pk, ·). To implement this scheme,

we need to investigate: 1) how to obtain ψ̂k, 2) the complexity of the program (2.5)

with a choice of V , and 3) the convergence property of the procedure in relation to

γk. The next three subsections present these investigations respectively.
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Even though MDSA can provably converge to a local optimum, the non-convexity

of (2.4) means that there is no guarantee of finding a global one. However, we can

obtain some evidence of global convergence by scrutinizing the monotonic pattern of

W ∗(η) as predicted by Theorem 2.4.1. We will revisit this discussion in our numerical

experiments in Section 2.5.

Gradient Estimation

We denote W (p) as the objective function in (2.4). Though W (p) is a function on the

Euclidean space and in principle can be differentiated in a standard manner, naive

differentiation of W (p) with respect to p in general does not lead to any simulable

form. This is because an arbitrary perturbation of p can shoot outside the probability

simplex, and the resulting gradient will be a high-dimensional polynomial in p that

has no probabilistic interpretation. To get around this issue, we use the idea of the

Gateaux derivative defined on a functional of probability distribution (Serfling, 2009).

This consists of restricting the perturbations of p within the probability simplex as

represented by the mixtures (1−ε)p+ε1i, where 1i is a point mass at the support point

zi and 0 ≤ ε ≤ 1 is a mixture parameter. The idea is to differentiate W ((1−ε)p+ε1i)

at ε = 0. The resulting quantity, which we call ψi(p), satisfies the following:

Proposition 2.4.1. We have:

1. Suppose W is differentiable in P, then

∇W (p)′(q− p) = ψ(p)′(q− p) (2.6)

for any q ∈ P, where ψ(p) = (ψ1(p), . . . , ψn(p))′ and

ψi(p) =
d

dε
W ((1− ε)p + ε1i)

∣∣∣∣∣
ε=0+
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2. Assume, for all j = 1, . . . ,m, Ep[|φj(h(X))|l+θ] < ∞ for an integer l ≥ 1 and

some small θ > 0, and τ satisfies Ep[eβτ ] < ∞ for some small β > 0. Also

assume p = (p1, . . . , pn) where each pi > 0. θ, β might depend on p. Then ψi(p)

is finite for all i and is equal to

ψi(p) = 2
m∑
j=1

(Ep[φj(h(X))]− µ̂j)Ep[φj(h(X))Si(X; p)] (2.7)

= 2Ep

[
m∑
j=1

(φj(h(X))− µ̂j)φj(h(X̃))Si(X̃; p)

]
(2.8)

where

Si(x; p) =
τ∑
t=1

Ii(xt)

pi
− τ

for x = (x1, . . . , xτ ). Here Ii(x) = 1 if x = zi and 0 otherwise. X and X̃ are

two independent copies of the i.i.d. input process generated under p. Moreover,

for all i, j and 1 ≤ s ≤ l, the moments

Ep [(φj(h(X)))s] , Ep [(φj(h(X))Si(X; p))s]

are continuous in p.

Equation (2.6) guarantees that the Gateaux derivative ψ(p) behaves the same

as a standard gradient ∇W (p) when applying to any directions within the proba-

bility simplex P , which are the only directions we consider in MDSA. Importantly,

ψ(p) is simulable by using (2.8). Through (2.7) and (2.8), each component ψi(p)

can now be expressed via the function Si(·; p) that plays the role of the score func-

tion as in the conventional likelihood ratio method (also known as the score function

method) (Glynn, 1990; Reiman and Weiss, 1989; Rubinstein, 1989; L’Ecuyer, 1990)

in parametric sensitivity analysis. Thus Proposition 2.4.1 can be viewed as a non-

parametric version of the likelihood ratio method. (Ghosh and Lam, 2015a) and

(Ghosh and Lam, 2015b) have also studied such type of methods for finding the gra-

dients of expectation-type performance measures. Proposition 2.4.1 Part 2 generalizes
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their results to sums of squared expectations and random time horizons, relaxes their

boundedness condition on the performance function, and identifies the conditions to

guarantee finite moments of the estimator and their continuity with respect to the

underlying probability measure.

In view of Proposition 2.4.1, we have the following gradient estimation scheme:

Corollary 2.4.1. Under the assumptions in Proposition 2.4.1 Part 2, an unbiased

estimator for ψ(p) is given by ψ̂(p) = (ψ̂1(p), . . . , ψ̂n(p))′, where

ψ̂i(p) = 2
m∑
j=1

1

M1

M1∑
r=1

(φj(h(X(r)))− µ̂j)
1

M2

M2∑
r=1

φj(h(X̃(r)))Si(X̃
(r); p) (2.9)

and X(r)’s and X̃(r)’s are M1 and M2 independent copies of the i.i.d. input process

generated under p and are used simultaneously in all ψ̂i(p).

Solving Stepwise Subprograms in MDSA

We discuss the choice of the prox-function V and how to solve program (2.5). Fol-

lowing (Nemirovski et al., 2009), we take V as the Bregman divergence

V (p,q) = ω(q)− ω(p)−∇ω(p)′(q− p) (2.10)

where ω(·) is called the distance-generating function and is strongly convex, i.e.

ω(q)− ω(p) ≥ ∇ω(p)′(q− p) +
α

2
‖q− p‖2 (2.11)

for all p,q in the feasible region, ‖ · ‖ is some norm, and α > 0. One choice of ω

that is especially appropriate for our feasible space, the probability simplex, is the

negative entropy ω(p) =
∑m

i=1 pi log pi. In this case α = 1 and ‖ · ‖ is taken as the

L1-norm. The function V (p,q) derived from (2.10) is the KL divergence given by

V (p,q) =
n∑
i=1

qi log
qi
pi

(2.12)
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We shall use this choice in our procedure. The iteration (2.5) using (2.12), but

without the constraint R(p) ≥ η and the stochasticity, is also called the entropic

descent algorithm (Beck and Teboulle, 2003).

Consider a generic formulation of (2.5) written as

min ξ′(q− p) + V (p,q)
subject to R(q) ≥ η

q ∈ P
(2.13)

where V (p,q) is defined by (2.12), for some given p = (p1, . . . , pn) and ξ = (ξ1, . . . , ξn).

The solution of (2.13) is in the following form:

Proposition 2.4.2. Denote

κ(p, ξ, α) =

∑n
i=1 p

1
1+α

i e−
ξi

1+α

(
− 1

1+α
log pi + ξi

1+α

)
∑n

i=1 p
1

1+α

i e−
ξi

1+α

+ log
n∑
i=1

p
1

1+α

i e−
ξi

1+α (2.14)

Suppose κ(p, ξ, 0) ≥ η, then the optimal solution of (2.13) is given by q∗ = (q∗1, . . . , q
∗
n),

where

q∗i =
pie
−ξi∑n

l=1 ple
−ξl

(2.15)

Otherwise, if κ(p, ξ, 0) < η, then

q∗i =
p

1
1+α∗
i e−

ξi
1+α∗∑n

l=1 p
1

1+α∗
l e−

ξl
1+α∗

(2.16)

where α∗ is a positive root (potentially ∞) of the equation κ(p, ξ, α) = η.

Proposition 2.4.2 entails that the subprogram in each iteration can be solved as a

one-dimensional root-finding problem, which can be implemented efficiently by, e.g.,

a bisection search.

Convergence Analysis

The MDSA algorithm is depicted in Algorithm 1. Steps 1 and 2 there come from

the discussion in Sections 2.4.2 and 2.4.2 respectively. Step 3 is a technical step in



22

securing theoretical convergence (as will be shown momentarily). We point out that

Steps 2 and 3 combined are in effect solving (2.5) with P replaced by P(ε), a restricted

version of the original (2.5). Step 2 first solves (2.5) under P . If its optimal solution

lies in P(ε), then this is immediately an optimal solution for the restricted problem.

Otherwise, Step 3 is carried out to find the optimal solution for the restricted problem

directly.

Algorithm 1 MDSA for solving (2.4)

Input: A small parameter ε > 0, initial solution p1 ∈ P(ε) = {p :
∑n

i=1 pi = 1, pi ≥
ε for i = 1, . . . , n}, a step size sequence γk, and sample sizes M1 and M2.
Iteration: For k = 1, 2, . . ., do the following: Given pk,

1. Estimate ψ̂k = (ψ̂k1 , . . . , ψ̂
k
n) with

ψ̂ki = 2
m∑
j=1

1

M1

M1∑
r=1

(φj(h(X(r)))− µj)
1

M2

M2∑
r=1

φj(h(X̃(r)))Si(X̃
(r); pk)

where X(r) and X̃(r) are M1 and M2 independent copies of the input process gen-
erated under i.i.d. replications of pk, which are used simultaneously for all compo-
nents of ψ̂k.
2. If κ(pk, γkψ̂k, 0) ≥ η where κ is defined in (2.14), then output pk+1 =
(pk+1

1 , . . . , pk+1
n ), where

pk+1
i =

pki e
−γkψ̂ki∑n

l=1 p
k
l e
−γkψ̂kl

Otherwise, if κ(pk, γkψ̂k, 0) < η, then

pk+1
i =

pki
1

1+αk e
− γ

kψ̂ki
1+αk∑n

l=1 p
k
l

1

1+αk e
−
γkψ̂k

l
1+αk

where αk is a positive root (potentially ∞) of the equation κ(pk, γkψ̂k, α) = η.
3. If pk+1

i < ε for some i, then solve the convex optimization (2.5) but with P
replaced by the set P(ε). Output its solution as pk+1.

The reason why we consider such a restricted problem is to guarantee that pk

does not have any components that are too small. In turn, this is because the form

of the gradient estimator ψ̂k contains pki at the denominator, and a small pki can blow
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up its variance. By restricting pki to be at least ε, the variance of ψ̂k is bounded, and

convergence of Algorithm 1 can be shown in situations where the optimal solution for

(2.4) is indeed in P(ε).

We mention that Step 3 is really a technicality for theoretical correctness and does

not seem to have practical implications. All the experiments we perform (in Section

2.5) do not run into the problem of vanishing pki . For this reason we do not attempt to

find analytical solution for the optimization (2.5) under P(ε) but rather just impose

it as a general convex optimization problem.

Theorem 2.4.2. Suppose the assumptions in Proposition 2.4.1 Part 2 hold with

l = 2. Assume there exists a unique optimal solution p∗ ∈ P(ε) for (2.4) such that

ψ(p)′(p − p∗) = 0 if and only if p = p∗. Choose the step size sequence {γk} such

that
∞∑
k=1

γk =∞,
∞∑
k=1

(γk)2 <∞

Then pk generated in Algorithm 1 converges to p∗ a.s..

The condition ψ(p)′(p − p∗) = 0 is a generalization of the first order local op-

timality condition ψ(p) = 0 in unconstrained optimization. It is in line with the

standard condition ψ(p)′(p − p∗) > 0 for all p 6= p∗ used in the SA literature (e.g.,

(Benveniste et al., 2012; Broadie et al., 2011)).

The proof of Theorem 2.4.2 follows the framework in (Blum, 1954), which consid-

ers SA on unconstrained problems.

2.5 Numerical Results

We provide numerical illustration of our method. We focus on a stylized M/G/1

queue, where we assume known i.i.d. exponential interarrival time distribution. Our

goal is to calibrate the unknown i.i.d. service time distribution. In each experiment,

we generate N i.i.d. realizations of h(X) under a “true” service time distribution, for
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a specified function h. We take these N realizations as our output data, and apply

our formulation (2.3) and the stochastic quadratic penalty method in Section 2.4 to

infer the service time distribution.

To apply the stochastic quadratic penalty method, we need to solve (2.4) for a

grid of η such that η∗ can be approximately located. We set the maximum search

value of η to be the largest possible entropy log n, and the minimum search value

such that it is clearly far below the threshold η∗. This requires empirically keeping

track of the approximate value of W ∗(η), the optimal value in (2.4), as we decrement

η from log n.

Denote by At the interarrival time between the t-th and (t+ 1)-st customers, and

by Xt the service time of the t-th customer. In all our examples shown below, we let

the true service time be a discrete random variable over the set {1/n, 2/n, . . . , (n −

1)/n, 1}, i.e. zi = i/n, and p = (p1, . . . , pn) is obtained by

pi :=

i
n∫

i−1
n

f(x)dx, (2.17)

for some continuous probability density function f(x). We use the moment function

φj (y) = I (y ≤ cj) , j = 1, 2, . . . ,m where cj’s are some quantiles. Rather than fixing

these cj, we choose them as the i/(m + 1)-quantiles of the N data points. Though

introducing a small bias in our procedure, this gives us a reasonable set of quantiles

to match against our simulation outputs.

We will use two choices of h, vary the support size n, the number of quantile-based

moments m, output data size N , and the function f(x) in our experiments.

Our first choice of h(X) is the time-averaged number of customers in the system
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during a busy period. Specifically,

h (X1, X2, . . . , Xτ ) =

∑τ
t=1 (Dt − Et−1)

Eτ
,

Dt =
t∑

k=1

Xk, Et =
t∑

k=1

Ak, E0 = 0,

where τ := min

{
t ≥ 1 :

t∑
k=1

Ak >
t∑

k=1

Xk

}
.

(2.18)

We set At as unit mean exponentials. Here we show that the gradient estimator (2.9)

is valid for this setting. Note that the assumption of finite moment in Proposition

2.4.1 Part 2 trivially holds since φj’s are indicator functions. As for the stopping time

τ , if the probability measure governing Xt puts positive weight on each d
n
, d = 1, . . . , n,

we have E[Xt] < 1 = E[At]. It is obvious that E[eθ(Xt−At)] < ∞ for some θ > 0.

Therefore

P (τ > T ) = P

(
s∑
t=1

(Xt − At) ≥ 0,∀s ≤ T

)

≤ P

(
T∑
t=1

(Xt − At) ≥ 0

)
≤ e−δT , for all T ≥ 1,

for some δ > 0, where the last inequality follows from Lemma 2.6.2 in (Durrett,

2010). This verifies the assumption on τ because an exponentially decaying tail

implies finiteness of moment generating function at a neighborhood of zero. We set

f(x) as a uni-modal density

f(x) =
1

Beta (2, 4)
x (1− x)3 , (2.19)

and n = 50.

We first set the number of observed data N = 105, a large size so that the empirical

moments are very close to the true moments. This is to illustrate the efficacy of our

method without introducing another layer of errors due to insufficient output data.
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The parameters of Algorithm 1 are set to be γk = 10/k,M1 = 300,M2 = 300.

The algorithm is terminated as soon as one of the following conditions is met: (1)

the difference between the average of the last 50 iterates and that of the last 51 to

100 iterates is less than 1× 10−3, (2) the number of iteration exceeds 1× 103. Figure

2·1 shows a set of typical trace plots with n = 50 for different components of pk as

Algorithm 1 progresses. We can see the evidence of convergence under our stopping

criterion and parameter setting.
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Figure 2·1: Trace plots of different components of the input probabil-
ity vector p. Support size n = 50, number of quantile-based moments
m = 9. The algorithm terminates after 668 iterations.

Figure 2·2 shows our input reconstruction results by matching m = 9 quantile-

based moments. Figure 2·2a shows the estimated values of W ∗(η) over a 20-point

grid for η between 3.55 and 3.9. We can see that W ∗(η) stays at zero until around

η = 3.7, and then starts to increase. Thus we identify η∗ as approximately 3.7.

Note that, even though our MDSA algorithm only guarantees convergence to local

optima, the depicted monotone trend of W ∗(η) shows evidence that our algorithm

lands at the global optima. In general, a non-monotone trend alarms that our MDSA

algorithm misses global optima, whereas a monotone trend can serve as a validity

check of global convergence. Figure 2·2b shows the optimal p∗ obtained at η∗ = 3.7.

The shape of the reconstructed mass function follows the truth quite well, although
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it is not as smooth. Our method is capable of locating the mode, and correctly gives

a decreasing trend towards both sides of the mode.
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(b) N = 105, n = 50,m = 9, η∗ = 3.713.

Figure 2·2: Optimal values of (2.4) and reconstruction performance
in the uni-modal case.

Next we vary the support size n to investigate its effect on the quality of the

estimate yielded by our method. Figures 2·3 (a) and (b) show the reconstructed

distribution, i.e., the estimated p∗(η∗), at n = 10 and 100 respectively. The recon-

structed distributions both follow quite closely the shape of the truth. The one for

n = 100 is noticeably more bumpy. This is because n represents essentially the num-

ber of parameters in our estimation. As n grows, the estimation variance increases,

where the variance comes from both the output data noise and the simulation noise

in our reconstruction.
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(a) N = 105, n = 10,m = 9, η∗ = 2.121,
run time = 7 min.
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(b) N = 105, n = 100,m = 9, η∗ = 4.409,
run time = 13 min.

Figure 2·3: Reconstructed versus the true distribution in the uni-
modal case for different n.

Although our analyses and experiments above assume discrete true distributions,

we show how our method can be applied in the case of continuous true distributions,

where we can calibrate using discrete distributions as approximation. Figure 2·4

illustrates the reconstructed distributions, using different n and support points zk =

k/n, to recover a continuous service time distribution with its density given by (2.19)

based on output data of the time-averaged number of customers in the system during

a busy period. To make the comparison fair, we scale down the true density function

by a factor of 1/n in each of the three cases to obtain the red curves in each of the

three plots (this is because the mass at zk would be approximately 1/n times the

original density value at zk, if the true density is discretized over the set of zk’s). The

results are similar to the discrete true distribution setting. In all of the cases n = 10,

50, and 100, the general shape of the truth can be recovered. The case n = 10 has

low resolution and cannot capture the sharp shrink of density at the left end. When

n = 50 and n = 100 we can recover it relatively well including near the end points,

but the case n = 100 jitters more as the estimation variance grows. In general, there



29

is a trade-off in choosing an optimal n: a small n leads to a small variance but large

bias, whereas a large n leads to a large variance but small bias. In our example one

can argue that n = 50 achieves a balance and is the best among the three cases in

capturing the characteristic of the continuous density.
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(c) n = 100

Figure 2·4: Reconstructed versus the true distribution for different n,
for continuous true distribution.

Next we investigate the effect of the number of matched quantiles m. Figures 2·5

(a) and (b) show the results when we match m = 4 and 14 quantiles respectively.

While m = 4 still appears acceptable, we can see considerable gain at m = 14, with

the distribution matching almost perfectly for the most part. Compared with m = 9

(Figure 2·2 (b)), m = 14 shows slightly better fit. Here, the data size N = 105 seems

big enough to support matching as many as 14 quantiles without overfitting.
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(a) N = 105, n = 50,m = 4, η∗ = 3.768,
run time = 8 min.
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(b) N = 105, n = 50,m = 14, η∗ = 3.694,
run time = 12 min.

Figure 2·5: Reconstructed versus the true distribution in the uni-
modal case for different m.

We now test our method in the case of a moderate number of output data points

N , to mimic a situation that might occur often in practice. Figure 2·6 shows the

reconstructed distribution compared with the truth, for the four combinations of

N = 200 or 500, and m = 4 or 9. What we observe is that gathering more data (from

200 to 500) does not elicit dramatic improvements. The case of N = 200 and m = 4

cannot capture the shape of the left tail. However, the case of N = 200 and m = 9

seems to be able to recover the left tail behavior better. Of course, we are exploring

one particular realization of the data, and the details of the reconstruction accuracy

could be subject to statistical noise. Nonetheless, the plots show that using a relatively

large number of quantiles can still give promising results with the availability of even

only 200 observations.
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(a) N = 200, n = 50,m = 4, η∗ = 3.807,
run time = 7 min.
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(b) N = 500, n = 50,m = 4, η∗ = 3.729,
run time = 8 min.
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(c) N = 200, n = 50,m = 9, η∗ = 3.768,
run time = 11 min.
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(d) N = 500, n = 50,m = 9, η∗ = 3.803,
run time = 12 min.

Figure 2·6: Reconstructed versus the true distribution in the uni-
modal case with fewer output data sizes.

Next we test our method on a monotone and a bi-modal distribution. Figures 2·7

and 2·8 show the results where the true probability mass functions of the service time

X1 are given by (2.17) with

f(x) =
1

Beta
(
1
2
, 2
)x− 1

2 (1− x) and
0.4

Beta (5, 2)
x4 (1− x) +

0.6

Beta (3, 9)
x2 (1− x)8 ,

respectively. We use n = 50 and m = 9 for both settings. Figure 2·7a shows the
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values of W ∗(η) on a grid between η = 2.9 and 3.9. The η∗ can be approximately

located at 3.3. Figure 2·7b shows that our reconstructed input distribution recovers

the monotonicity of the true mass function very well. On the other hand, Figures

2·8a and 2·8b show the results for a bi-modal distribution, where the reconstruction

seems unable to capture the two modes. However, even in this unfavorable setup, we

seem to be capable of capturing the overall trend of more masses on the left than on

the right. Figures 2·9a and 2·9b also show the similar behavior of our reconstructions

when the true distributions are continuous.
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(a) Optimal value of (2.4) against η. Run
time = 9 min.
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(b) N = 105, n = 50,m = 9, η∗ = 3.305.

Figure 2·7: Optimal values of (2.4) and reconstruction performance
in the monotone case.
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(a) Optimal value of (2.4) against η.
Run time = 11 min.
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(b) N = 105, n = 50,m = 9, η∗ = 3.883

Figure 2·8: Optimal values of (2.4) and reconstruction performance
in the multi-modal case.
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(a) Monotone case.
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(b) Multi-modal case.

Figure 2·9: Continuous true distribution. n = 50.

Our second choice of h(X) is the average waiting time of the first 50 customers
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after starting from an empty single-server queue. In this case,

h (X1, X2, . . . , XT ) =
1

T + 1

T+1∑
t=1

Wt, (2.20)

where T = 49, Wt = max {0,Wt−1 +Xt−1 − At−1} for t ≥ 2, W1 := 0.

Note that the validity of the gradient estimator (2.9) is obvious because all φj’s are

indicator functions and τ is a deterministic time. We let At follow a known exponential

distribution with mean 1/5. The support size n and the number of quantile-based

moments m are set to be 50 and 9, respectively. The same algorithmic parameter

setting and stopping criterion as in the previous set of experiments are adopted.

Typical trace plots are given in Figure 2·10 to demonstrate that the algorithm does

converge.
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Figure 2·10: Trace plots of different components of the probability
vector p. Support size n = 50, number of quantile-based moments
m = 9. The algorithm terminates after 619 iterations.

As in the previous set of experiments, our method is tested in the cases of mono-

tone (Figure 2·11), uni-modal (Figure 2·12), and multi-modal (Figure 2·13) distri-

butions, where the underlying probability functions of the service time X1 are again
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given by (2.17) but with f(x) now replaced by

1

Beta (2, 0.9)
x (1− x)−0.1 ,

1

Beta (2, 4)
x (1− x)3 ,

and
0.4

Beta (2, 5)
x (1− x)4 +

0.6

Beta (9, 3)
x8 (1− x)2 ,

respectively. The results are generally similar to the previous set of experiments.

Our method recovers the monotone distribution very well. It cannot fully recover the

peaks in the other two cases, but it can capture the overall trend of more masses on

the left than the right end. Figure 2·14 demonstrates the same behavior in the case

when the true distribution is continuous.
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(b) N = 105, n = 50,m = 9, η∗ = 3.678.

Figure 2·11: Optimal values of (2.4) and reconstruction performance
in the monotone case.
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(b) N = 105, n = 50,m = 9, η∗ = 3.725.

Figure 2·12: Optimal values of (2.4) and reconstruction performance
in the uni-modal case.

η

3.87 3.875 3.88 3.885 3.89 3.895 3.9 3.905 3.91

o
p
ti
m

a
l 
v
a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Optimal value of (2.4) against η.
Run time = 26 min.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
true

approximation

(b) N = 105, n = 50,m = 9, η∗ = 3.887.

Figure 2·13: Optimal values of (2.4) and reconstruction performance
in the multi-modal case.
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(c) Multi-modal case.

Figure 2·14: Continuous true distribution. n = 50. Y = average wait
of first 50 customers starting from an empty system.

Finally, Figure 2·15 compares the output probabilities at the matched quantiles

from the simulation outputs generated using our reconstructed input model, with

those from the output data. We illustrate this comparison for uni-modal, monotone,

and bi-modal truths, and for the two types of outputs we have considered. We see

that the probabilities are matched very well in all cases. This suggests that for the

multi-modal case, the mismatch between our reconstructed distribution and the truth

is due to either the insensitivity of the output distribution, or the incapability of the

quantiles we use in unveiling the shape of the input distribution.
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(a) Uni-modal case for time-
averaged # of customers, i.e.,
Figure 2·2b.
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(b) Monotone case for time-
averaged # of customers, i.e.,
Figure 2·7b.
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(c) Multi-modal case for time-
averaged # of customers, i.e.,
Figure 2·8b.
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(d) Uni-modal case for 50-
customer average wait, i.e.,
Figure 2·12b.
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(e) Monotone case for 50-
customer average wait, i.e.,
Figure 2·11b.
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(f) Multi-modal case for 50-
customer average wait, i.e.,
Figure 2·13b.

Figure 2·15: Moment matches between the simulation output and the
true output.

2.6 Summary

We have studied a framework to calibrate the input models in stochastic simulation

with only the availability of output data. This inverse model calibration problem

appears to be generally understudied in the simulation literature, yet it could arise in

many contexts. We have proposed a moment-based approach to nonparametrically

infer the input by matching moment statistics, such as quantile probabilities, at the

output level. To alleviate the non-identifiability issue, we reduce our model search

space by maximizing the entropy among all moment-matching models.

This formulation in general gives a simulation optimization problem that consists
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of stochastic nonlinear equality constraints. We have converted this difficult problem

into a sequence of simulation optimization programs with deterministic convex con-

straints, and subsequently proposed an MDSA algorithm to solve them efficiently. We

have analyzed the convergence properties of our method. Our numerical experiments

show that the reconstructed input distributions are generally capable of capturing

the overall trends of the truths. They perform particularly well in the case of simple

distributions, but with some degradation in the case of more complex distributions.



40

Chapter 3

A Frequentist Perspective on Hierarchical

Poisson Convolution Models for Topic

Allocation

3.1 Introduction and Motivation

This chapter is a discussion based on the paper: (Airoldi and Bischof, 2015) A regular-

ization scheme on word occurrence rates that improves estimation and interpretation

of topical content. At the heart of their work, as indicated in the title, is a novel regu-

larization scheme, which is intended to address certain shortcomings of existing meth-

ods in the literature on dimensionality reduction principles and techniques for topic

modeling in document analysis. Multilevel models are a popular set of methods that

are considered flexible and powerful in finding latent structure in high dimensional

data (McLachlan and Peel, 2004) . However, although these models are successfully

reducing the dimension, there is no guarantee that the resulting low-dimensional pro-

jections they produce are particularly interpretable in terms of quantities of scientific

interest. In (Airoldi and Bischof, 2015), the authors propose a new regularization

scheme, that incorporates how words are used differentially across topics, and results

in more interpretable summaries. The proposed novel regularization is carefully mo-

tivated, and empirical results thoroughly demonstrate its effectiveness. At the same

time, it can be said that the regularization is rather complex and, as a result, inter-

pretation arguably suffers to some extent, particularly at a first reading. Accordingly,
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we have taken as our goal in this discussion to attempt to lend further insight into the

nature of the regularization proposed in (Airoldi and Bischof, 2015). Towards this

end, while the authors take a formally Bayesian approach to modeling and estimation,

here we adopt for our purpose the perspective of complexity-penalized regularization,

as an alternative lens through which to view the authors’ contributions. Throughout

we consider certain simplifications of the assumptions of the proposed model, where

we feel doing so lends additional insight, hopefully without excessive loss of fidelity

to the original.

3.2 Hierarchical Poisson Convolution Formulation

In the work of (Airoldi and Bischof, 2015), the hierarchical Poisson convolution (HPC)

model, conditional on the topic hierarchy tree, can be summarized by the graphical

model diagrammed in our Figure 3·1.

wdf

ld

θd

Id

ξd

η,Σ v

A

βf µf τ 2f

ψ, γ2 ν, σ2

T

B

D
V

Figure 3·1: Graphical model diagram of the HPC model. Plates
indicate replication, outside circles are hyper-parameters for priors, and
shading means a quantity is observed. (Note: Id is not necessarily
assumed observed here.)
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As indicated in the figure, structure on the word frequency matrix W is provided

by imposing structure on documents (left) and words (right). Let βf be a K × 1

vector of occurrence rates for word f ∈ {1, . . . , V }, across all K topics in the topic

hierarchy. Define αd = ldθd, where ld is a scalar and θd is a K × 1 vector containing

the proportion with which document d ∈ {1, . . . , D} belongs to each one of the K

topics. Below we describe the HPC generative process:

• Topic membership parameters

Let ξd be a (K × 1) topic affinity vector.

For document d ∈ {1, . . . , D}

ξd ∼ N(η,Σ)

For topic k ∈ {1, . . . , K}

Idk ∼ Bern

(
1

1 + e−ξdk

)
the role of Idk is to indicate whether topic k is active in document d.

Define

θdk(Id, ξd) =
eξdkIdk∑K
j=1 e

ξdjIdj

• Tree parameters

In (Airoldi and Bischof, 2015), the known hierarchy of topics is utilized by

assuming that words are used similarly in topics that are neighbors on the tree

T . The tree structure is shown in Figure 3·2.
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.  .  .

. . . . . .

0 , 0

J , J1 , 1

11 1J 1J JJ

Figure 3·2: Details of the tree plate from Figure 3·1.

For word f ∈ {1, . . . , V }

µf0 ∼N(ψ, γ2)

τ 2f0 ∼Inv-χ2(ν, σ2)

∀j ∈ {1, . . . , J} :

µfj ∼ N(µf0, τ
2
f0)

τ 2fj ∼ Inv-χ2(ν, σ2)

∀j ∈ {1, . . . , J} :

µfj1 , . . . , µfjJ ∼ N(µfj, τ
2
fj)

• Word counts

wdf ∼ Poisson(αTdβf )
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Therefore, E[W ] = AB, where the d-th row of A is αd and the f -th column of

B is βf . Hence, ignoring the (important) scaling inherent in the parameters ld, the

proposed model can be viewed usefully as constraining a certain non-negative matrix

factorization (NMF), i.e., ⇒ W ≈ AB. This factorization is reflected at the bottom

of Figure 3·1 here, and shown explicitly in Figure 3·3.

3.3 From Bayesian to Frequentist Perspective

It can be argued that the regularization described by the generative model above is

rather complex and hence, difficult to interpret. To address this, we attempt to lend

further insight into the nature of the regularization proposed. To achieve this, instead

of the formally Bayesian approach to modeling and estimation, here we adopt for our

purpose the perspective of complexity-penalized regularization, as an alternative lens

through which to view the novel regularization scheme.

3.3.1 Representing the HPC Model as NMF

wdf
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W

≈

rows
αd

topic k
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word f

to
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Figure 3·3: Representation of HPC model likelihood parameterization
as a non-negative matrix factorization (NMF).

Now consider the structure lent to the matrices A and B in this NMF, through the

priors adopted by (Airoldi and Bischof, 2015) in their HPC model. We connect our

NMF approach to the original parameterization through a re-derivation of the log-

posterior distribution of A and B given the observed word count matrix W , with the
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goal of producing a complexity-penalized formulation of the optimization problem

underlying the proposed HPC-based estimation of these two matrices.

3.3.2 Derivation of the Log-posterior Likelihood

Writing the log-posterior as

logP(A,B|W ) ≈ logP(W |A,B) + logP(A) + logP(B)

we begin with the likelihood. Formally, the likelihood is Poisson, given by the equation

below:

logP(W |A,B) = log
D∏
d=1

V∏
f=1

(αTdβf )
wfde−α

T
d βf

wfd!

=
D∑
d=1

V∑
f=1

(
wfd log(αTdβf )−αTdβf − log(wfd!)

)
However, in the literature on NMF, various error functions have been proposed, with

the most widely used arguably being squared-error loss, see section 14.6 of (Friedman

et al., 2001). This suggests approximating the log-likelihood logP(W |A,B) by the

quantity ||W − AB||2F , where || · ||F denotes the Frobenius norm.

Next consider the priors on A and B. Beginning with P(A), and treating the

document lengths ld as fixed and known, we write

logP(A) = logP
(
{αd}Dd=1

)
=

D∑
d=1

logP(ldθd) =
D∑
d=1

logP(θd) + c ,

where here and elsewhere c denotes an arbitrary constant (not necessarily the same).

Now

P(θd) =
∑
Id

∫
ξd

P(θd|Id, ξd)P(Id|ξd)P(ξd)m(Id, ξd) . (3.1)
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But note that

P(θd|Id, ξd) =

{
1, iff supp(θd) = supp(Id) and ξd ∈ A
0, otherwise

where

A =

ξd : for k ∈ supp(θd), θdk =
eξdk∑
k

eξdk
:= f(ξd|k)

 .

Furthermore, for any ξd there is only one Id that satisfies supp(θd) = supp(Id).

Finally, for k /∈ supp(θd), ξd can take on any value. Combining these observations

and simplifying the resulting expressions, we obtain that

logP(A) =
D∑
d=1

− 1

2λ2

∑
k∈supp(θd)

(
f−1(θd)[k]− η[k]

)2
+ c , (3.2)

where [k] indicates the k-th entry of a vector and λ is the scale parameter for the

(conditional) normal prior on θ.

For P(B), we can write

logP(B) =
V∑
f=1

logP (βf ) =
V∑
f=1

(
−1Tµf + logP (µf )

)
,

where µf = log(βf ) is the collection of all log-rates in the tree for word f . Now sup-

pose the dispersion parameters τ 2f,k are treated as fixed and known. In the HPC model

the elements µf,k of µf are then conditionally independent normal in a Markov fash-

ion down the topic hierarchy tree, from root to leaves. So, ignoring the contribution

of the corpus-level term in the prior, logP(B) can be expressed as

V∑
f=1

−1Tµf −
∑

j∈int(T )

1

2τ 2f,j
||µf,ch(j) − µf,j1||22

 , (3.3)

where int(T ) is the set of interior nodes (i.e., non-leaves) of the topic tree T and

ch(j) denotes the children of node j in T .
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Combining the above arguments, we arrive at the following complexity-penalized

NMF problem as an approximation of the posterior maximization posed in the paper:

min
A,B


||W − AB||2F + λ1

D∑
d=1
‖ξd(A)−η‖2

over active topics︸ ︷︷ ︸
regularization
on rows of A

+
V∑
f=1

(
1Tµf (B)+

∑
j∈int(T )

1

2τ2
f,j

||µf,ch(j)(B)−µf,j(B)1||22
)

︸ ︷︷ ︸
regularization on cols of B


(3.4)

3.4 Discussion of the Advantages and Disadvantages of the

Complexity Penalized Likelihood Formulation

The representation in (3.4) allows us finally to make several observations.

1. The posterior-based estimation strategy associated with the HPC model can be

viewed, to a reasonable extent, as being in the family of NMF solutions with

`2-based penalties. Previously, for example, (Pauca et al., 2004) have applied

a penalty proportional to ||B||2F , while (Pauca et al., 2006) have incorporated

both ||A||2F and ||B||2F . However, in the current paper there are at least three

key differences: (a) the nonlinear and atomized fashion (i.e., over active topics

only) in which A enters the penalty; (b) the hierarchical nature of the `2 penalty

for B; and (c) the addition of the linear term 1Tµf (B). Furthermore, we note

that B is penalized on a logarithmic scale (i.e., since µf = log(βf )) and that

the penalty on the log-rates of words in columns of B differs markedly from

||B||2F . The regularization on the columns of B that we arrive at combines

principles of `2 penalties with the use of hierarchies that is popular in topic

modeling (e.g., (Blei et al., 2010)). The manner in which children log-rates are

shrunk towards their parents can be interpreted as a variant of the ridge fusion

penalty, discussed in (Price et al., 2015), along paths from root to leaves. Note

too that, where the µf are positive, we have 1Tµf (B) = ||µf ||1, in which case
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it is perhaps tempting to think of the penalty on B in the spirit of a convex

combination of `1 and `2 norms.

2. From a computational perspective, the optimization in (3.4) is somewhat non-

standard. Suppose the elements ξ are unconstrained. The last two terms of the

objective function (i.e., deriving from P (A) and P (B)) are convex in the ξ and

µ parameterizations. And the elements of the product AB in the first term are

sums of products of exponential functions applied to the ξ and µ, albeit with a

renormalization in the ξ variable and an unbounded domain for both variables.

So it seems possible that convex optimization procedures could be used to solve

this problem, with appropriate care. However, the atomization implicit in the

role the setA plays in the penalty on the ξ (and hence A) arising through the use

of multinomial sampling of word-topic associations in the prior on A, requires

thought. It might be possible to relax the problem to a more tractable variant.

Alternatively, one might focus on the supervised version of the unsupervised

posterior optimization we consider here, as (Airoldi and Bischof, 2015) do in

their applications, replacing P(A,B|W ) by P(A,B|W, I) throughout, which sim-

plifies away this challenge. In any event, from the computational perspective, a

strength of the probabilistic approach adopted by (Airoldi and Bischof, 2015) in

formulating their regularization is readily apparent – the resulting optimization

problem becomes primarily a problem of designing an appropriate Monte Carlo

sampler.

3. There are several parameters in the HPC model that we have assumed here

to be fixed and known. Our treatment of the document lengths ld (important

to the formulation of the problem in (Airoldi and Bischof, 2015), and a key

way in which their work differs from much of that in the literature on topic

models) is equivalent to conditioning on l ≡ {ld}, as it is done in (Airoldi and
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Bischof, 2015) as well. On the other hand, our treatment of the variances τ 2f,j is

analogous to needing to set the regularization parameter(s) in a ridge regression.

The probabilistic perspective adopted here facilitates an inferential approach to

setting these parameters.

4. The manner in which the regularization introduced by (Airoldi and Bischof,

2015) is re-expressed in (3.4) is useful in helping to further highlight a central

feature of their approach: the regularization is across topics over words (i.e.,

within columns of B, over rows) rather than the converse. It is this feature

which appears to facilitate gains in interpretability.

3.5 Summary

In this work we provide a frequentist formulation complementing a Bayesian approach

to topic allocation of text documents. In particular, we present a complexity penalized

likelihood perspective and formulate the problem as a minimazion of an NMF-based

least squares loss function plus penalty terms on the complexity of the matrices

that make up the factorization. Our formulation highlights the novel approach of

regularizing over words across topics which fosters interpretability of the inferred

topics.
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Chapter 4

Estimating Network Degree Distributions

Under Sampling

4.1 Introduction, Setup and Notation

Networks, also referred to as graphs, are commonly used across many disciplines to

represent the connections between elements in a system. When it comes to observing

networks empirically, it is often the case that we do not have access to the whole

population of vertices and edges. Consider large-scale online social media networks,

which typically contain millions of vertices, and are stored on multiple memory loca-

tions. It might be too costly, too time consuming, or we may not be granted access

due to privacy constraints to the entirety of the network, but only a fraction of it

might be visible to us. Hence, instead of containing full information, the empiri-

cally observed network reveals only a partial view of the underlying phenomenon.

Such an empirically observed network can be viewed as a sample from the underlying

network. Since our fundamental goal as statisticians is to make inferences from the

sample about characteristics of the underlying population, it is of interest to investi-

gate how closely the characteristics estimated from the sampled network resemble the

ones of the true network. This is not a trivial task, and there is no theory similar to

the one for estimators based on independent and identically distributed samples. In

the development of this line of estimation theory, we aim to characterize the impact

of the dependence inherent to the elements of a network.
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Let G = (V,E) be a graph, with a set of vertices denoted by V of dimension nV ,

and a set of edges, E, and let G∗ = (V ∗, E∗) be the corresponding sampled graph,

where V ∗ is a subset of V and E∗ is a subset of E.

Network characteristics that are of interest include the degree distribution, density,

network diameter, distribution of the clustering coefficient, distribution of the singular

values of the adjacency matrix, etc. In the work below we focus on the network degree

counts vector, which, up to re-scaling is equivalent to the network degree distribution,

arguably one of the most fundamental features of a graph.

Figure 4·1 below illustrates the effect of sampling on the degree distribution. As

we can see, the sampled degree distributions do not appear to be fair representatives

of the true degree distribution. Furthermore, the observed degree distribution seems

to vary greatly from sample to sample.
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Figure 4·1: Left: Two induced subgraph samples (colored in green
and yellow) generated from the same true graph (ER with 100 vertices
and 500 edges) with the same sampling rate p = 50%. Right: Degree
counts of the true graph and the two sampled graphs.
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Recall that the degree of a vertex is defined as the number of edges coming out

of it. Denote by N = (N0, . . . , Nm−1) the degree counts vector of the true network

and let N∗ = (N∗0 , . . . , N
∗
m−1) be the degree counts vector of the observed (sampled)

network, where m− 1 is the maximum vertex degree in the true network.

As shown by (Frank, 1980), (Frank, 1981), under certain network sampling de-

signs, the expectation of the observed degree counts vector is a linear combination of

the true degree counts vector:

N∗ = PN + ε (4.1)

Eε = 0

EεεT = C = Cov(N∗)

where N is the true degree counts vector, N∗ is the observed degree counts vector, P

is a (possibly ill-conditioned) linear operator, ε is a noise vector. Introduced by the

sampling, the noise vector ε, and hence N∗, are random variables. We are adopting a

designed-based approach (as opposed to model-based), i.e. ε and P depend only on

the sampling mechanism, and not on the structure of the network itself.

Our goal is to estimate N , the true degree counts vector. Since EN∗ = PN , then

a natural choice of an unbiased estimator is N̂naive = P−1N∗. However, this naive

estimator may not be computable, since the matrix P may be non-invertible. Even

when it is invertible, we are not guaranteed non-negativity of the solutions (see Figure

4·2 below).
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Figure 4·2: Left: Degree counts from an ER graph with 150 vertices
and 680 edges. Right: Naive estimate of degree counts. Data drawn
according to induced subgraph sampling with sampling rate p = 60%.

Since we desire non-negative degree counts, we consider solutions of the form

Ñ ∈ C := {Ñ : Ñ ≥ 0 and 1T Ñ = nV }

The second part of the constraint comes from the fact that the sum of the number of

nodes of various degrees is equal to the total number of nodes in the network.

4.2 Constrained Penalized Weighted Least-Squares Solution

(Zhang et al., 2015) propose the following estimator for the true degree counts vector:

min
Ñ

(PÑ −N∗)TC−1(PÑ −N∗) + t||DÑ ||22 (4.2)

subject to Ñ ∈ C
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where t is a regularization parameter, and D is a second-order differencing operator.

The penalty term ||DÑ ||22 is introduced because P is often ill-conditioned.

Hence, the solution to the above problem will always be non-negative (by con-

straint), and existence and uniqueness of the the solution are guaranteed by the

inclusion of the penalty term since it makes the objective function convex.

4.3 Theoretical Properties of the Unconstrained Estimator

Extensive numerical studies in (Zhang et al., 2015) indicate that this estimator per-

forms well. We aim to develop theoretical guarantees of the quality of the constrained

penalized weighted least-squares estimator. We succeed in the subcase of ego-centric

design and achieve partial results and accompanying numerical results for other more

complicated sampling designs. The theory we derive is limited to describing the be-

havior of the unconstrained estimator and we leave the details of the constrained case

for future work.

4.3.1 Target Quantity

Our goal is to quantify how far off the solution N̂ is from the true degree counts vector

N . Formally, the appropriate notion of distance between N̂ and N in our problem

is ||PN̂ − PN ||2C−1 , which takes into account the correlation between the entries of

N∗. Note that N̂ is random, since it depends on the observed degree counts vector

N∗, and hence, the target distance is also a random quantity. Therefore, we aim to

bound ||PN̂ − PN ||2C−1 with high probability.

4.3.2 Complexity Functional

Following the formulation of the objective function (4.2) and focusing on the uncon-

strained solution, we find useful for our further derivations to define the following
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complexity functional, inspired by (Donoho et al., 1997)

K(Ñ , ·) = (PÑ − ·)TC−1(PÑ − ·) + t||DÑ ||22 (4.3)

We aim to show that minimizing the complexity functional introduced above favors

solutions Ñ close to the true vector N in a weighted (by C−1) l2 norm squared spirit,

appropriately regularized to make the problem solvable and encouraging Ñ to be

smooth.

Now consider the following key estimators:

• Unconstrained minimum empirical complexity estimate:

N̂ = argminK(Ñ ,N∗) (4.4)

This unconstrained minimizer of the emipiral complexity is the solution we can

find in practice.

If we had an oracle who knows the true degree counts vector N , then we could

use our complexity minimization rationale and produce the

• Unconstrained minimizer of theoretical complexity:

N0 = argminK(Ñ , PN) (4.5)

4.3.3 Main Inequality

Since our goal is to quantify how far off the solution N̂ is from the true degree counts

vector N , we are interested in bounding ||PN̂ − PN ||2C−1 with high probability. To

this end, we have derived the following inequality:

||PN̂ − PN ||2C−1 ≤ K(N̂ , PN) ≤ K(N0, PN) + 2 < ε,C−1(PN̂ − PN0) > (4.6)
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Proof follows as in (Donoho et al., 1997):

We begin by stating that for any t > 0 it holds:

||PN̂ − PN ||2C−1 ≤ ||PN̂ − PN ||2C−1 + t||DN̂ || = K(N̂ , PN) (4.7)

Now recall that N∗ = PN + ε, hence we can replace PN with N∗ − ε:

K(N̂ , PN) = ||PN̂ − PN ||2C−1 + t||DN̂ ||22

= (PN̂ − (N∗ − ε))TC−1(PN̂ − (N∗ − ε)) + t||DN̂ ||22

= (PN̂ −N∗)TC−1(PN̂ −N∗) + t||DN̂ ||22

+ 2 < ε,C−1(PN̂ −N∗) > +εTC−1ε (4.8)

Note that we can combine the first two terms of (4.8) to get the empirical complexity

functional of N̂ . Therefore, the above equation becomes

= K(N̂ ,N∗) + 2 < ε,C−1(PN̂ −N∗) > +εTC−1ε (4.9)

In order to get an upper bound, we will use the fact that K(N̂ ,N∗) ≤ K(N0, N∗),

which is true because of equation (4.4), i.e K(N̂ ,N∗) ≤ K(·, N∗). Hence, we can

upper bound (4.9) by

K(N0, N∗) + 2 < ε,C−1(PN̂ −N∗) > +εTC−1ε (4.10)

Now we will add and subtract PN0 inside the second term of the inner product of

(4.10), to complete a square. Thus, (4.10) now becomes

=(PN0 −N∗)TC−1(PN0 −N∗) + t||DN0||22

+ 2 < ε,C−1((PN̂ − PN0) + (PN0 −N∗)) > +εTC−1ε
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=(PN0 −N∗)TC−1(PN0 −N∗) + 2 < ε,C−1(PN0 −N∗) > +εTC−1ε

+ t||DN0||22 + 2 < ε,C−1(PN̂ − PN0) > (4.11)

We notice that the first three terms of (4.11) are the expanded square

||PN0 −N∗ + ε||2C−1 , which is equal to ||PN0 − PN ||2C−1 . Hence, (4.11) is

= (PN0 − PN)TC−1(PN0 − PN) + t||DN0||22 + 2 < ε,C−1(PN̂ − PN0) >

= K(N0, PN) + 2 < ε,C−1(PN̂ − PN0) >

This concludes the proof of the main inequality (4.6).

We can rewrite the second term in the right-hand side of (4.6) in order to empha-

size its structure as a function of the noise vector ε. To do that, we use the closed

form for the unconstrained solutions N̂ and N0:

N̂ = (P TC−1P + tDTD)−1P TC−1N∗

N0 = (P TC−1P + tDTD)−1P TC−1PN

Plugging them in PN̂ − PN0 yields:

PN̂ − PN0 = P (P TC−1P + tDTD)−1P TC−1 (N∗ − PN)

= P (P TC−1P + tDTD)−1P TC−1ε

Hence, the inequality now becomes:

||PN̂ − PN ||2C−1 ≤ K(N0, PN) + 2 < ε,C−1P (P TC−1P + tDTD)−1P TC−1ε >

Now, denoting

A := C−1P (P TC−1P + tDTD)−1P TC−1 (4.12)
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the main inequality (4.6) takes the form:

||PN̂ − PN ||2C−1 ≤ K(N0, PN) + 2εTAε (4.13)

We denote the first term, K(N0, PN) =: K0, and identify it as the approximation

error. This quantity is the ideal value of the complexity functional, in the sense

that it can be obtained only with an oracle who has full knowledge of the true vector

of degree counts N and selects the best estimator by minimizing the theoretical

complexity functional K(·, PN).

The second term in (4.13) is a random error component since it depends on the

noise vector ε introduced by the sampling.

To explain why the main inequality (4.13) is useful in assessing the closeness of

N̂ to N , let us revisit its more expanded form:

||PN̂ − PN ||2C−1 ≤ K(N̂ , PN) ≤ K0 + 2εTAε

We hope that the estimator N̂ leads to a theoretical complexity, K(N̂ , PN), that

is almost as good as the ideal theoretical complexity, K0. Thus, we hope that the

distribution of our target quantity, ||PN̂ − PN ||2C−1 , takes on values close to the

ideal theoretical quantity K0. In other words, we would like to be able to show that

P
(
||PN̂ − PN ||2C−1 −K0 > λ

)
is small, where λ is some appropriate constant. Let’s

elaborate on this.

From the main inequality (4.13), we can conclude that

P
(
||PN̂ − PN ||2C−1 −K0 > λ

)
< P

(
2εTAε > λ

)
Therefore, our aim is to bound P

(
εTAε > λ

)
.
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4.3.4 Concentration Inequality

In this section we investigate the probability that the random error term εTAε takes

on large values. A traditional approach towards this goal is to study how likely εTAε

is to be larger than its mean value. Therefore, we focus on

P
(
εTAε− E[εTAε] > const

)
One of the main difficulties of studying the behavior of εTAε comes from the fact

that the entries of the ε vector are correlated. The hammer that helps us overcome

this difficulty is a variant of Azuma’s inequality, Lemma 4.1 on page 19 from (Borgs

et al., 2008):

Lemma: Let k be a positive integer and let c > 0. Let Z = (Z1, . . . , Zk), where

Z1, . . . , Zk are independent random variables. Let f be a measurable function. Sup-

pose that |f(x)− f(y)| ≤ c whenever x = (x1, . . . , xk) and y = (y1, . . . , yk) differ only

in one coordinate. Then

P (f(Z) > E[f(Z)] + Tc) < e−T
2/2k (4.14)

Indeed, we are able to use this lemma in our case, because we can consider Z =

(Z1, . . . , Zk) to be the binary vector of independent coin flips at each vertex of the

true network that determines the sampled graph. In all of the sampling designs

considered in this work, there is always the notion of these underlying independent

coin flips. Now let us translate the condition in the lemma that the vectors x and y

only differ in one coordinate. Since our vectors represent sequences of coin flips, what

we need to do is to consider one sequence in which, say the l-th coin flip resulted

in a success (we will denote this sequence with 1l), and a second sequence which is

the same as the first one, except that it resulted in a failure in position l (denoted

as 0l). Naturally, we define the function f(Z) := εTAε =< ε,Aε >. Then all that



60

we need to do is to show that |f(1l) − f(0l)| ≤ c, ∀l ∈ V . In other words, we want

to determine the value of a Lipschitz constant c that tells us how “smooth” εTAε

is when we change the value of any one coin flip. The mechanism through which

switching one coin flip influences εTAε under distinct sampling designs is different.

Hence, the derivation of the concentration inequality will require a different approach

under each sampling design. In 4.3.5 we carry out the details of its derivation and

numerical studies under the three main sampling designs we consider.

4.3.5 Behavior of the Estimator Under Different Sampling Designs

We are able to explicitly derive an upper bound for the probability in equation (4.14)

in the case of ego-centric sampling. Other sampling designs that obey our framework

are, for example, induced and one-wave snowball sampling. The derivation of an exact

analytical expression for these sampling designs is challenging, due to combinatorics,

and we did not find approximations with our current approach. Thus, we make it our

goal, to pursue the detailed derivation of the ego-centric case, additionally illustrate

its behavior numerically, and use the insight gained to carefully design numerical

studies to lend insight into possible approximate analytical expressions for the other

sampling designs.

Ego-centric Sampling

Ego-centric sampling is a nonadaptive sampling design in which first a set of vertices is

selected through a sequence of nV i.i.d. Bernoulli(p) trials (i.e., one independent coin

flip at each vertex) and then all edges incident to the selected vertices are observed.

Therefore, a vertex in the sampled graph is observed to have degree k if and only if

this vertex is selected and has degree k in the true graph. Hence,

N∗k =
∑

{u:du=k}

1{u ∈ V ∗}
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where N∗k denotes the number of vertices of degree k in the sampled graph,

k ∈ {0, . . . ,m− 1}. Recall that the max degree of the true network is equal to m− 1.

N∗k ∼ Bin(Nk, p)

and the N∗k are independent.

For ego-centric sampling, the entries of the matrix P are given by

Pego(i, j) =

{
p , i = j
0 , i 6= j

Thus, the m×m matrix Pego is

Pego =


p 0

p
. . .

0 p


The m×m covariance matrix of N∗ is

Cov(N∗) = C = p(1− p)diag(N)

= p(1− p)


N0 0

N1

N2

. . .

0 Nm−1


Hence, the inverse of the covariance C is given by

C−1 =
1

p(1− p)



1

N0

0
1

N1
1

N2
. . .

0 1

Nm−1
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The following assumptions are not necessary but are made to simplify the exposition:

• The maximum observed degree is equal to the true maximum degree.

• Nk > 0,∀k = 0, . . . ,m− 1 (otherwise consider the general inverse of the covari-

ance matrix).

Now we are ready to tackle the details of the concentration inequality. Recall that,

to apply the lemma, we need to show smoothness of εTAε and we need to determine

the Lipschitz constant c. Let us assume that switching off the l-th coin flip causes a

vertex of degree k to be turned off. We can express this as follows:

ε(1l) = N∗(1l)− PN

ε(0l) = N∗(0l)− PN

= N∗(1l)−


0
...
1
...
0

 ← kth − PN

⇒ ε(0l) = ε(1l)−


0
...
1
...
0

 ← kth



63

Now we can plug this in to get:

|f(1l)− f(0l)|

= |ε(1l)TAε(1l)− ε(0l)TAε(0l)|

=

∣∣∣∣∣∣∣∣∣∣∣∣
ε(1l)

TAε(1l)−

ε(1l)−


0
...
1
...
0





T

A

ε(1l)−


0
...
1
...
0





∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣
2ε(1l)

TA


0
...
1
...
0

−


0
...
1
...
0



T

A


0
...
1
...
0



∣∣∣∣∣∣∣∣∣∣∣∣
= |2εTA•k − Akk|

where A•k denotes the k-th column of the matrix A. Note that the above holds

since the matrix A defined by (4.12) is symmetric in the case of ego-centric sampling.

However, bounding |2εTA•k − Akk|, ∀k is not an easy task, to a large degree due to

the dependence between the entries of the noise vector ε. To make the derivation

tractable, we propose a transformation that would “diagonalize” the problem (i.e.

decouple it to a system of m linear equations). The proposed transformation is the

following:

Theorem:

(i) There are nonsingular matrices M and L and nonnegative diagonal matrices F
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and E such that

LTL = C−1, (4.15)

LP = FM,

DTD = MTETEM

(ii) Whenever the system (4.15) holds, the transformed variables

x = MN

y∗ = LN∗

satisfy

(PN −N∗)TC−1(PN −N∗) = ||Fx− y∗||22

||DN ||22 = ||Ex||22

We provide a fully constructive proof, closely following the proof of Theorem 11.1 in

(Neumaier, 1998), that directly translates into an algorithm for computing M , L, F ,

and E.

Proof: We begin by factorizing C = SST (i.e., the Cholesky decomposition of

the covariance matrix) and consider, for some ρ 6= 0, the QR-factorization[
S−1P
ρD

]
= QR (4.16)

with Q(2M×M) =

[
Q1(M×M)

Q2(M×M)

]
, QTQ = I and upper triangular R.



65

Thus,

S−1P = Q1R

ρD = Q2R

QT
1Q1 +QT

2Q2 = I

Using the SVD

Q1 = UFW T (4.17)

with orthogonal U ,W and a non-negative diagonal matrix F , we define

M := W TR

L := UTS−1

From (4.17), we find

F TF = (UTQ1W )T (UTQ1W )

= W TQT
1Q1W

so that the diagonal matrix

I − F TF = W TW −W TQT
1Q1W

= W TQT
1Q2W

= (Q2W )T (Q2W )

is positive definite. Therefore its entries are non-negative, and we can form the non-

negative diagonal matrix

E := ρ−1(I − F TF )1/2 (4.18)

with component-wise square roots.
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Now it holds that

• LTL = STUUTS−1 = STS−1 = (SST )−1 = C−1

• LP = UTS−1P = UTQ1R = UTUFW TR = FW TR = FM

• ρD = Q2R = Q2WW TR = Q2WM

• ρ2DTD = (Q2WM)T (Q2WM) = MT (Q2W )T (Q2W )M

= MT (I − F TF )M = ρ2MTETEM since E is a square diagonal matrix.

This concludes the proof of the theorem.

Notes (as provided by (Neumaier, 1998)):

1. When C = I, the factorization (4.15) is generally referred to as generalized

singular value decomposition (GSVD).

2. An implementation may proceed according to (4.16), (4.17), and (4.18); in

(4.16) one should choose ρ =
||S−1P ||∞
||D||∞

or a similar expression to ensure that

S−1P and D have similar magnitude.

In the new coordinate system we have

x := MN

y∗ := LN∗

z := Lε

After the transformation, the penalty and the loss terms from the objective function
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in (4.2) take the form

||DN ||22 = NTDTDN = NT (MTETEM)N

= NT (EM)T (EM)N = ||EMN ||22 = ||Ex||22

(PN −N∗)TC−1(PN −N∗) = (PN −N∗)TLTL(PN −N∗)

= ||L(PN −N∗)||22 = ||FMN − y∗||22 = ||Fx− y∗||22

The inverse problem can now be written as

y∗ = Fx+ z

The constrained penalized weighted least-squares estimator can be found from:

min
x̃
||Fx̃− y∗||22 + t||Ex̃||22

s.t. M−1x̃ ≥ 0

1TM−1x̃ = nV

It is straight-forward to verify that the new objective function and the new set of

constraints C ′ := {x̃ : M−1x̃ ≥ 0 and 1TM−1x̃ = nV } are both convex.

Just like before, we narrow our attention to the unconstrained solution, for which we

have the following closed-form expression:

x̂ = (F TF + tETE)−1F Ty∗

We denote the complexity functional for the transformed problem as

K ′(x̃, ·) = ||Fx̃− ·||22 + t||Ex̃||22
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Hence, the main inequality (4.6) can be re-expressed as

||PN̂ − PN ||2C−1 = ||Fx̂− Fx||22

≤ K ′(x̂, Fx)

≤ K ′(x0, Fx) + 2 < z, F x̂− Fx0 >

Again, we aim to re-write the second term from the right-hand side of the inequality

in order to emphasize its structure in terms of the “whitened” noise vector z. It is

important to note that the components of z are uncorrelated, but are still dependent.

x̂ = (F TF + tETE)−1F Ty∗

x0 = (F TF + tETE)−1F TFx

⇒Fx̂− Fx0 = F (F TF + tETE)−1F T z

⇒ < z, F x̂− Fx0 >= zTF (F TF + tETE)−1F T z

Denote W = F (F TF + tETE)−1F T and note that W is a non-negative diagonal

matrix. Therefore,

< z, F x̂− Fx0 >= zTWz

=
m−1∑
i=0

z2iWii :=
m−1∑
i=0

z2iwi

where w is a vector containing the diagonal entries of the non-negative diagonal matrix

W .

Recall that the main purpose of introducing the transformation was to make the

derivation of the Lipschitz constant c tractable. The function f is given by zTWz,
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and we want to show that |f(1l)− f(0l)| ≤ c.

|f(1l)− f(0l)| =

∣∣∣∣∣
m−1∑
i=0

(
z2i (1l)− z2i (0l)

)
wi

∣∣∣∣∣
=
∣∣< w, z2(1l)− z2(0l) >

∣∣
≤ ||w||2||z2(1l)− z2(0l)||2

Since ||w||2 is a constant, we move to bounding ||z2(1l)− z2(0l)||2 by a constant.

z = Lε = L(N∗ − PN)

⇒ z(1l) = L (N∗(1l)− PN)

z(0l) = L (N∗(0l)− PN) = L

N∗(1l)−


0
...
1
...
0

 ← kth − PN


because, according to our notation, switching off the l-th indicator turns off a vertex

of degree k. Thus, we get

z(0l) = z(1l)− L


0
...
1
...
0

 ← kth = z(1l)− L•k

Let us look into the L matrix in more detail. Recall that LTL = C−1 where L is a
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m×m matrix. Then,

L =
1√

p(1− p)



1√
N0

0

1√
N1

1√
N2

. . .

0 1√
Nm−1


We are interested in the k-th column of L, i.e. L•k

L•k =



0
...
0

1

p(1− p)
· 1

Nk

0
...
0


← kth entry

Note that Lik = 0,∀i 6= k. Hence we get

zi(0l) = zi(1l)− Lik

Plugging in this result yields:

||z2(1l)− z2(0l)||2

=

√√√√m−1∑
i=0

(z2i (1l)− z2i (0l))
2

=

√√√√m−1∑
i=0

(z2i (1l)− (zi(1l)− Lik)2)2

=

√√√√m−1∑
i=0

(z2i (1l)− z2i (1l) + 2zi(1l)Lik − L2
ik)

2

=

√√√√m−1∑
i=0

((2zi(1l)− Lik)Lik)2
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Recall again that Lik = 0, ∀i 6= k. Thus, only the k-th term in the summation

remains:

=

√
((2zk(1l)Lkk − L2

kk)
2

=
∣∣2zk(1l)Lkk − L2

kk

∣∣
=

∣∣∣∣∣∣2 1√
p(1− p)Nk

(N∗k − pNk)
1√

p(1− p)Nk

−

(
1√

p(1− p)Nk

)2
∣∣∣∣∣∣

=
2

p(1− p)Nk

∣∣∣∣N∗k − pNk −
1

2

∣∣∣∣
Since N∗k , pNk, and

1

2
are all greater than 0, we get

≤ 2N∗k + 2pNk + 1

p(1− p)Nk

Now, since the number of observed vertices of degree k, ∀k ∈ {0, . . . ,m− 1} is less or

equal to the number of vertices of degree k in the true graph, i.e. N∗k ≤ Nk, we have

≤ 2Nk + 2pNk + 1

p(1− p)Nk

=
2(1 + p)

p(1− p)
+

1

p(1− p)Nk

Therefore, for a fixed k, we have

|f(1l)− f(0l)| ≤ ||w||2
(

2(1 + p)

p(1− p)
+

1

p(1− p)Nk

)
Putting everything together, we have an expression for the Lipschitz constant c:

⇒ c = max
k
||w||2

(
2(1 + p)

p(1− p)
+

1

p(1− p)Nk

)
= ||w||2

(
3 + 2p

p(1− p)

)
(4.19)
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Recall the main inequality (4.13):

||PN̂ − PN ||2C−1 ≤ K0 + 2εTAε (4.20)

= K0 + 2zTWz

We have derived, in the ego-centric case, with c given by (4.19), the following bound

P
(
zTWz > E[zTWz] + Tc

)
< e−T

2/2nV (4.21)

Hence, P
(
2zTWz > 2E[zTWz] + T2c

)
< e−T

2/2nV . Therefore, combining the main

inequality (4.13) and the concentration inequality (4.21), we can conclude that

P
(
||PN̂ − PN ||2C−1 −K0 > E[2εTAε] + 2cT

)
(4.22)

< P
(
2εTAε > E[2εTAε] + 2cT

)
< e−T

2/2nV

Our final step in the analysis of the ego-centric case is to visualize the main inequality

(4.20) and the concentration result (4.22) for several sampling rates.

The setup of the simulations is the following - the true graph is Erdos-Renyi with

1000 vertices and 50000 edges. We explore the following sampling rates: 0.1, 0.2, 0.3,

0.5, 0.7, all under ego-centric sampling.

We construct the plots below by generating 1000 samples from the true network,

and for each one we find the value of the target quantity and the random term. For

each value of the sampling rate, we produce two plots. The first one demonstrates

that the main inequality (4.20) holds. To produce this plot, we take the difference

between the LHS and the RHS of (4.20) for each one of the 1000 samples, (i.e.

||PN̂ − PN ||2C−1 −K0 − 2εTAε), and we plot its empirical distribution. The second

plot verifies the concentration result. The color of the box around the expressions in
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equation (4.22) is reflected in the plots below. Finally, in Figure 4·8, we address the

question of the relative position of the ideal theoretical complexity with respect to the

sampling distribution of the target quantity by visualizing P
(
||PN̂ − PN ||2C−1 > K0

)
for the different values of the sampling rate.

p = 0.1
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(b) Probabilities colored according
to (4.22)

Figure 4·3: p = 0.1 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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(b) Probabilities colored according
to (4.22)

Figure 4·4: p = 0.2 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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(a) Sampling distribution of
||PN̂ − PN ||2C−1 −K0 + 2εTAε

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

● ●
●

●
●

●
● ● ●

● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(b) Probabilities colored according
to (4.22)

Figure 4·5: p = 0.3 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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p = 0.5
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(b) Probabilities colored according
to (4.22)

Figure 4·6: p = 0.5 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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(b) Probabilities colored according
to (4.22)

Figure 4·7: p = 0.7 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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Figure 4·8: Probability that the target quantity is greater than the
ideal (||PN̂ − PN ||2C−1 > K0) for different values of the sampling rate

What we observe in all of the above plots is that both the main inequality and

the concentration result hold. On all of the left-hand side plots we observe that

the empirical distribution of the difference is to the left of 0, and the gap between

||PN̂ − PN ||2C−1 and K0 + 2εTAε is increasing as the sampling rate p increases.

On the right-hand side plots we observe that the upper bound (in yellow) of (4.22)

is not tight, which is not surprising, since concentration inequalities generally do

not produce tight bounds. As we vary the sampling rate from very low sampling

(0.1) to high sampling (0.7) we observe that the probability that the target quantity,

||PN̂ −PN ||2C−1 , is larger than the ideal value, K0, decreases. This is an anticipated

behavior, since higher sampling rate means we get to build an estimator based on a

fuller view of the true network.

After describing the effect of varying the sampling rate, we are also interested in

the performance of the estimator as we vary the size of the true network. We consider

an Erdos-Renyi with 1000 vertices and 150000 edges. In Appendix A.3.1 we include

the corresponding plots for this larger network and we observe the same trends.
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To recap, we considered ego-centric sampling as the tractable case for closed form

derivation of the concentration inequality. We proceed by investigating induced and

one-wave snowball sampling. However, once we leave the world of i.i.d. degree sam-

pling (ego-centric case), we were not able to carry out the derivation all the way

through. We formulate the problem under the new design, and go through with the

analogous derivations until we hit the combinatorial burden of the more complex

sampling designs. To close the loop and draw final conclusions about the behavior of

the estimator, we perform the same numerical study and provide visualizations.

Induced Subgraph

Induced subgraph sampling is a non-adaptive sampling scheme in which a set of

vertices is selected through independent Bernoulli(p) trials at each vertex of the true

graph and then all edges connecting selected vertices are observed. In other words,

what we observe is the subgraph induced by the subset of sampled vertices. This

sampling design is considered parsimoneous and has been used in the analysis of

technological and biological networks (Stumpf and Wiuf, 2005).

The relation (4.1) holds for this sampling scheme. The form of the matrix P is given

by

Pind(i, j) =

{ (
j
i

)
pi+1(1− p)j−i , 0 ≤ i ≤ j ≤ m− 1

0 , 0 ≤ j < i ≤ m− 1

For induced sampling, the matrix P is not diagonal. Figure 4·9 below illustrates the

shape of the P matrix.
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Figure 4·9: Heatmap of the values of the matrix P for induced sub-
graph sampling. The darker the color, the higher the value.
Sample generated from true graph (ER with 800 vertices and 20000
edges) with p = 60%.

A vertex in the sampled graph is observed to have degree k if and only if this vertex

is selected, has degree k or higher in the true graph, and is connected to exactly k

other sampled vertices. Hence,

N∗k =
m−1∑
r=k

nV∑
u=1

1{u ∈ V ∗, d∗u = k, du = r}

where k ∈ {0, . . . ,m− 1}.

The N∗k s are not independent for this design, hence the covariance matrix is not

diagonal. Their mean is still given by E[N∗] = PN . Expressions for their variance

and covariance can be found in (Zhang et al., 2015).

Next, we turn our attention to the concentration inequality. Recall that, to apply

the lemma, we need to show smoothness of εTAε and determine the Lipschitz constant

c. Let us assume the l-th vertex is of degree k in the sampled network. Figure

4·10 below depicts the mechanism of induced subgraph sampling, and the effect of

including (in the middle) and not including (on the right) the l-th vertex. The nodes

highlighted in the network on the left represent the set of sampled vertices (including

the l-th vertex). In the middle display, we color the induced subgraph (when the

l-th vertex is switched on). In the right display, we show how the induced subgraph
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changes when we switch off the l-th vertex.

Figure 4·10: (Left) True Graph, (Middle) l-th vertex in the sample,
(Right) l-th vertex not in the sample.

We express the effect of switching off the l-th vertex on ε below:

ε(1l) = N∗(1l)− PN

ε(0l) = N∗(0l)− PN

=N∗(1l)+



0
...
0
−1
0
...
0


← kth+



0
...
1
−1
0
...
0


← (s− 1)th

← sth +. . .+



0
...
1
−1
0
...
0


← (r − 1)th

← rth

︸ ︷︷ ︸
k such vectors

−PN

⇒ ε(0l) = ε(1l) +



0
...
0
−1
0
...
0


← kth+



0
...
1
−1
0
...
0


← (s− 1)th

← sth +. . .+



0
...
1
−1
0
...
0


← (r − 1)th

← rth

The vector with a −1 at position k indicates that since we have switched vertex l,

which is of degree k, then we must decrease the count of vertices of degree k by 1. The

next k vectors are for each of the neighbors in the sampled graph of the l-th vertex.

Let the first neighbor have s neighbors in the sampled graph. The perturbation causes
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this vertex to have its degree now become s− 1, since it is no longer connected to the

vertex we have switched off, but it is still connected to all its other neighbors in the

induced subgraph. Therefore, to adjust for this change in the degree counts vector,

we need to decrease the number of vertices of degree s by 1, and increase the number

of vertices of degree s − 1 by 1. Analogously, we do the same for each of the other

neighbors of the vertex we are perturbing.

Since we do not know the degree of the k neighbors of the l-th vertex, coming up

with a closed form expression for the Lipschitz constant c would involve performing the

computation over the set of all possible degrees that the k neighbors could have. The

vast combinatorial burden of such a computation leads us to use numerical studies, like

the ones that accompany the theory in the ego-centric case, in order to demonstrate

the theoretical properties of the estimator in the case of induced subgraph sampling.

The setup of the simulations is the same as in the ego-centric case - the true

graph is Erdos-Renyi with 1000 vertices and 50000 edges. We produce the same kind

of plots as the ones in the ego-centric case. The only difference is that, since we were

not able to derive a closed form for the Lipschitz constant c, we only plot the first

and middle term of (4.22).
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(a) Sampling distribution of
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(b) Probabilities colored according
to (4.22)

Figure 4·11: p = 0.1 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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(a) Sampling distribution of
||PN̂ − PN ||2C−1 −K0 − 2εTAε
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(b) Probabilities colored according
to (4.22)

Figure 4·12: p = 0.2 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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p = 0.3
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(b) Probabilities colored according
to (4.22)

Figure 4·13: p = 0.3 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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(a) Sampling distribution of
||PN̂ − PN ||2C−1 −K0 − 2εTAε
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(b) Probabilities colored according
to (4.22)

Figure 4·14: p = 0.5 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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p = 0.7
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(a) Sampling distribution of
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(b) Probabilities colored according
to (4.22)

Figure 4·15: p = 0.7 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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Figure 4·16: Probability that the target quantity is greater than the
ideal (||PN̂ − PN ||2C−1 > K0) for different values of the sampling rate

The estimator behaves similarly in the induced subgraph and the ego-centric

cases, in the sense that the main inequality (4.20) and concentration (4.22) hold,
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and P
(
||PN̂ − PN ||2C−1 > K0

)
decreases as we increase p. However, there is at

least one difference we should point out. The shape of the sampling distribution of

||PN̂ − PN ||2C−1 −K0 − 2εTAε is now heterogeneous (skewed) as opposed to being

homogeneous in the ego-centric case.

The behavior of the estimator remains similar as we increase the network size. See

Appendix A.3.1 for the corresponding plots of the larger network. We notice that the

probabilities that the target quantity is larger than the ideal theoretical complexity

are bigger than the corresponding probabilities for the smaller network. This suggests

that increasing the size of the network makes the problem of estimating the degree

counts vector more difficult under induced subgraph sampling.

One-wave Snowball Sampling

In one-wave snowball sampling, there are two stages. In the initial stage, a set of

vertices is drawn according to independent Bernoulli(p) trials. All edges coming out

of the sampled vertices are observed. Then, in the second stage, we observe every

vertex from the neighborhood of the vertices sampled at the first stage, and all edges

incident to them. Therefore, one-wave snowball sampling is an adaptive sampling

design. This sampling scheme has been used in social network studies (Rolls et al.,

2012), and is similar to ego-centric sampling. The matrix P is diagonal, with entries

given by:

Psnow(i, j) =

{
1− (1− p)i+1 , i = j

0 , i 6= j

A vertex in the sampled graph is observed to have degree k if and only if this vertex

has degree k in the true graph, and is selected or is a neighbor of a selected vertex.
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Hence,

N∗k =
∑

{u:du=k}

1{u ∈ V ∗}

where k ∈ {0, . . . ,m− 1} and the N∗k s are not independent.

Again, we turn our attention to the concentration inequality, meaning that, to

apply the lemma, we need to show smoothness of εTAε and determine the Lipschitz

constant c. Let us again assume the l-th vertex is of degree k in the sampled network.

Figures 4·17, 4·18, 4·19 focus on a piece of the network and depict the mechanism of

one-wave snowball sampling, along with the effect of including (in the middle) and

not including (on the right) the l-th vertex. The nodes highlighted in the network

on the left in all three figures represent the set of sampled vertices (including the

l-th vertex) within the piece of the network that we are considering. In the middle

display, we color the resulting subgraph (when the l-th vertex is switched on) under

the one-wave snowball sampling design. In the right display, we show how the sampled

subgraph changes when we switch off the l-th vertex. We lay out three base cases

where we consider which, if any, of the near-by vertices to node l are also included

in the sample. Generally, in addition to the base cases, a combination of case 2 and

case 3 also may occur, along with variations on the number of neighboring vertices

that are also in the sample.
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Case 1: None of the neighbors or neighbors of neighbors of the l-th

vertex are also in the sample

Figure 4·17: Case 1. (Left) Piece of the True Graph, (Middle) l-th
vertex included in the sample, (Right) l-th vertex not in the sample.

Case 2: One of the neighbors of the l-th vertex is also in the sample

Figure 4·18: Case 2. (Left) Piece of the True Graph, (Middle) l-th
vertex included in the sample, (Right) l-th vertex not in the sample.
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Case 3: One of neighbors of neighbors of the l-th vertex is also in the

sample

Figure 4·19: Case 3. (Left) Piece of the True Graph, (Middle) l-th
vertex included in the sample, (Right) l-th vertex not in the sample.

We express the effect of switching off the l-th vertex on ε below:

ε(1l) = N∗(1l)− PN

ε(0l) = N∗(0l)− PN

= N∗(1l)− ul − PN

⇒ ε(0l) = ε(1l)− ul

where ul is a vector, such that

ul :

[
uTl 1 ≤ k + 1
ul ∈ Nm (4.23)

The positive integer valued m-dimensional vector ul has the form (4.23) because,

as we can see from the base cases in Figures 4·17, 4·18, 4·19, switching off the l-th

vertex (of degree k) could end up causing up to k+1 vertices to be excluded from the

sampled subgraph. Therefore, we may have to decrease by one up to k + 1 (possibly

overlapping) entries of the degree vector, corresponding to the degrees of the excluded

vertices.
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As in the induced subgraph case, here again we do not know the degree of all k

neighbors of the l-th vertex, or how many neighbors or neighbors of neighbors are

simultaneously included in the sample. Hence, making it unfeasible to come up with

a closed form for the Lipschitz constant c. Therefore, we resort to numerical studies

to demonstrate the theoretical properties of the estimator in the case of one-wave

snowball sampling.

We use a modification of the previous sampling set up. The true graph is again

Erdos-Renyi with 1000 vertices, but now with 500 edges. If we were to have a graph as

dense as before, we would end up observing all edges, even with low rates of sampling,

due to the propagating nature of one-wave snowball sampling. Additionally, the

sampling rates of 0.1, 0.2, 0.3, 05, and 0.7 now refer to the percentage of the total

number of vertices sampled as a result of the two stages of this sampling design.

The plots below are constructed in the same way as the plots in the ego-centric

and induced cases.

p = 0.1
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(b) Probabilities colored according
to (4.22)

Figure 4·20: p = 0.1 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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p = 0.2
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(b) Probabilities colored according
to (4.22)

Figure 4·21: p = 0.2 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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(b) Probabilities colored according
to (4.22)

Figure 4·22: p = 0.3 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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p = 0.5
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(b) Probabilities colored according
to (4.22)

Figure 4·23: p = 0.5 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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(b) Probabilities colored according
to (4.22)

Figure 4·24: p = 0.7 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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Figure 4·25: Probability that the target quantity is greater than the
ideal (||PN̂ − PN ||2C−1 > K0) for different values of the sampling rate

The performance of the estimator in the one-wave snowball case is overall similar

to the ego-centric and induced cases. The shape of the sampling distribution of

||PN̂−PN ||2C−1−K0−2εTAε is rather homogeneous (more similar to the ego-centric

case). As we increase p the spread of the sampling distribution visibly decreases.

4.4 Summary

In this work we consider the problem of estimating the degree counts vector of a

network in the context of only having the availability of a sample from the true

network. We study the theoretical properties of the constrained penalized weighted

least-squares estimator proposed by (Zhang et al., 2015). We identify a suitable met-

ric that quantifies the discrepancy between the true solution and the estimator, and

refer to it as our target quantity. We bound the probability that the target quantity

exceeds the ideal theoretical complexity of the estimator in the ego-centric case. We

bring the concentration inequality technique that we lay out for the ego-centric case
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to bare in the cases of induced subgraph and one-wave snowball sampling designs.

The derivation of the concentration result in these considerably more complex sam-

pling schemes is hindered by their combinatorial complexity. Therefore, we utilize

numerical studies and visualization aids to demonstrate that the estimator behaves

similarly across the different sampling designs.
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Chapter 5

Conclusions

This work is concerned with designing and studying the theoretical behavior of esti-

mators based on complexity penalized methods for both structured and unstructured

data. It opens any number of possibilities for future work. Some concrete routes are

outlined below for each of the three projects.

In the inverse model calibration problem that we consider first, there are several

directions one can pursue in order to enhance the applicability of our methodology.

The first is to improve the geometric properties of the reconstructed input model,

for instance the smoothness. The second is methodological development in the case

of multiple input and multiple output variables. So far we have only focused on the

one-to-one situation, but in practice the simulation models are likely more complex.

The third is further investigation on the statistical guarantees and robustness of this

line of methods, including also situations where not only the input model is unknown

but the system logic in the simulation model could also be subject to errors.

In the topic allocation of text documents problem we take a Bayesian framework

and provide a corresponding frequentist formulation. We derive an objective function

that consists of a NMF-based least-squares objective and two penalty terms. One di-

rection for further investigation of our formulation is to characterize the nature of the

objective function and propose a feasible algorithm for its optimization. A common

heuristic for optimizing the NMF-based loss function is alternating minimization. As

far as the penalty terms are concerned, it is easy to check that the penalty term in
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A is convex. It would require nontrivial efforts to check if the penalty term in B is

also convex. If this penalty term is not convex, then a common approach is convex

relaxation, i.e. replacing it by a suitably derived convex term. A consequent step af-

ter proposing an optimization algorithm would be to study the theoretical properties

of the resulting estimator.

In the third project we aim to theoretically characterize the distance between

the true degree counts vector of a network and the penalized weighted least-squares

estimator proposed by (Zhang et al., 2015). In the subcase of ego-centric sampling

we derive a concentration inequality that bounds the tail of the probability that the

distance between the true and the estimated degree counts (referred to as the target

distance) is larger than the ideal theoretical complexity functional. We visualize the

theory via numerical studies that illustrate the relative position of the ideal to the

sampling distribution of distance between the truth and the estimator. We confirm

that the target distance concentrates around the ideal. For the two other more compli-

cated sampling designs we achieve partial theoretical results. We perform analogous

numerical studies and conclude that, although there are some differences across de-

signs, especially in the shape of the empirical distribution of the target quantity, it is

always concentrating around the ideal at a similar rate. Based on this observation we

are hopeful that our work could be extended to show that the difference between the

target distance and the ideal under induced and one-wave snowball sampling can be

approximated reasonably well by their difference in the ego-centric case, the theory

for which we have derived fully. Another component of the analysis of the quality of

the estimator would be to study the ideal theoretical complexity and verify that its

magnitude is small in an appropriate sense. Finally, recall that we carry out the the-

oretical derivations considering the unconstrained estimator. A logical continuation

of our work would be to understand how adding the constraints influences the theory
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derived so far. In the current work we examine three sampling designs - one simple

case (ego-centric), and two more complex designs - one non-adaptive (induced) and

one adaptive (one-wave snowball). It could be of interest to consider more sampling

designs, for example a random walk on the graph.
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Appendix A

Additional Proofs for Chapter 2

A.1 Auxiliary Theorems

Theorem A.1.1 (Corollary in Section 3 in (Blum, 1954)). Let Yk be a sequence of

integrable random variables that satisfy

∞∑
k=1

E[E[Yk+1 −Xk|X1, . . . , Xk]
+] <∞

where x+ = x if x > 0 and 0 otherwise, and are bounded below uniformly in k. Then

Yk converges a.s. to a random variable.

Lemma A.1.1 (Lemma 2.1 in (Nemirovski et al., 2009)). Let ω be defined in (2.11)

and V in (2.10). Denote X as the feasible region of (2.5). For every q ∈ X , p ∈ X ◦,
and ξ ∈ Rn, one has

V (p̃,q) ≤ V (p,q) + ξ′(q− p) +
‖ξ‖2∗
2α

where p̃ = minu∈X ξ
′(u− p) + V (p,u) is the prox-mapping acting on p, and ‖ · ‖∗ is

the dual norm of ‖ · ‖, α is the strong convexity parameter, both defined in (2.11).

A.2 Supplementary Materials

A.2.1 Quadratic Penalty Method

An application of the conventional quadratic penalty method (Bertsekas, 1999) yields

the following:

Lemma A.2.1. Suppose that (2.3) is feasible. Consider the sequence of optimization
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programs
min

∑m
j=1(Ep[φj(h(X))]− µj)2 − λR(p)

subject to p ∈ P (A.1)

for λ > 0. Let p∗(λ) be an optimal solution for (A.1) indexed at λ. As λ decreases

to 0, every limit point of the sequence {p∗(λ)} is an optimal solution for (2.3).

Proof. Proof of Lemma A.2.1 Consider relaxing the constraints in (2.3) to get

min −R(p) + c
∑m

j=1(Ep[φj(h(X))]− µj)2
subject to p ∈ P (A.2)

for c > 0, which is equivalent to (A.1) with λ = 1/c. Proposition 4.2.1 in (Bertsekas,

1999) entails that as c → ∞, every limit point of the sequence of optimal solutions

for (A.2) converges to the optimal solution of (2.3), given that (2.3) is feasible. This

concludes the lemma. �

A Variant of MDSA

In parallel to Section 2.4.2, we shall design an iterative procedure for solving (A.1).

Note that the objective function in (A.1) consists of a non-convex, stochastic com-

ponent
∑m

j=1(Ep[φj(h(X))] − µj)2 and a convex component −λR(p). We shall use

the idea of proximal gradient (Sra et al., 2012) used for solving composite objective

functions in convex problems, which iteratively linearizes the first component while

keeping the second component intact at every iteration. The variant of MDSA scheme

under this operation amounts to solving, given a current solution pk,

min γkψ̂k
′
(p− pk)− γkλR(p) + V (pk,p)

subject to p ∈ P (A.3)

The gradient estimate ψ̂k is the same as discussed in Section 2.4.2, γk is the step

size, and V is the KL divergence discussed in Section 2.4.2. Consider the generic

formulation of (A.3) written as

min ξ′(q− p)− βR(q) + V (p,q)
subject to q ∈ P (A.4)

Lemma A.2.2. An optimal solution for (A.4) is given by q∗ = (q∗1, . . . , q
∗
n) where

q∗i =
p

1
1+β

i e−
ξi

1+β∑n
l=1 p

1
1+β

l e−
ξl

1+β

(A.5)
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Proof. Proof of Lemma A.2.2 Consider the Lagrangian for (A.4)

ξ′(q− p)− βR(q) + V (p,q) + α

(
n∑
i=1

qi − 1

)

= ξ′(q− p) + β
n∑
i=1

qi log qi +
n∑
i=1

qi log
qi
pi

+ α

(
n∑
i=1

qi − 1

)
(A.6)

by relaxing the constraint
∑n

i=1 qi = 1. Differentiating (A.6) with respect to q gives

ξi + β log qi + β + log
qi
pi

+ 1 + α

Setting to zero gives

qi ∝ p
1

1+β

i e−
ξi

1+β

Using the constraint
∑n

i=1 qi = 1, we get (A.5), which can be verified to satisfy the

KKT condition straightforwardly. �

One advantage of using the representation (A.1) and the stepwise subprogram

(A.3), as compared to (2.4) and (2.5) introduced in Section 2.4, is that it does not

involve any root-finding in the MDSA iterations. Thus the resulting procedure is

faster than that in Section 2.4. However, examining when to stop the algorithm

becomes less clear as the procedure now relies on the convergence over the sequence

of λ to 0, rather than a cutoff at η∗ as in Section 2.4. In the experimental settings

in Section 2.5 we found that it is difficult to determine when to stop in using (A.1).

Since this issue outweighs the marginal advantage in removing the need of solving for

a one-dimensional root, we have chosen to adopt (2.4). Nonetheless, the next section

describes that the analysis of the MDSA procedure under this alternate approach in

parallel to that under (2.4).

Convergence Analysis of the Variant of MDSA

The variant of MDSA for solving (A.1) is depicted in Algorithm 2. Similar to Algo-

rithm 1, Steps 2 and 3 in Algorithm 1 combine to solve (A.3) with P replaced by P(ε).

The rationale for such operations lies in a technicality in guaranteeing boundedness

of the gradient estimator, and subsequently algorithmic convergence, as in Algorithm

1.
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Algorithm 2 MDSA for solving (2.4)

Input: A small parameter ε > 0, initial solution p1 ∈ P(ε) = {p :
∑n

i=1 pi = 1, pi ≥
ε for i = 1, . . . , n}, a step size sequence γk, and sample sizes M1 and M2.
Iteration: For k = 1, 2, . . ., do the following: Given pk,

1. Estimate ψ̂k = (ψ̂k1 , . . . , ψ̂
k
n) with

ψ̂ki = 2
m∑
j=1

1

M1

M1∑
r=1

(φj(h(X(r)))− µj)
1

M2

M2∑
r=1

φj(h(X̃(r)))Si(X̃
(r); pk)

where X(r) and X̃(r) are M1 and M2 independent copies of the input process gen-
erated under i.i.d. replications of pk, which are used simultaneously for all compo-
nents of ψ̂k.
2. Output

pk+1
i =

pki
1

1+γkλ e
− γkψ̂ki

1+γkλ∑n
l=1 p

k
l

1

1+γkλ e
−
γkψ̂k

l
1+γkλ

3. If pk+1
i < ε for some i, then solve the convex optimization (A.3) but with P

replaced by the set P(ε). Output its solution as pk+1.

To prove almost sure convergence of Algorithm 2, we need the following general-

ization of Lemma 2.1 in (Nemirovski et al., 2009):

Lemma A.2.3. Let X be a convex set in Rn and ‖ · ‖ be a norm with dual ‖ · ‖∗. Let

ω : X → R be a strongly convex function that satisfies

ω(z) ≥ ω(x) +∇ω(x)′(z − x) +
α

2
‖z − x‖2

for any x, z ∈ X . Let f : X → R be a convex differentiable function. Define, for any

x, z ∈ X ,

V1(x, z) = ω(z)− ω(x)−∇ω(x)′(z − x)

V2(x, z) = f(z)− f(x)−∇f(x)′(z − x)

and Ṽ (x, z) = V1(x, z) + V2(x, z). Then, given any x, y ∈ Rn, we have

Ṽ (v, u)− Ṽ (x, u) ≤ f(x)− f(v) + (y +∇f(x))′(u− x) +
‖y‖2∗
2α

for

v = argminz∈X{y′(z − x) + f(z) + V1(x, z)} (A.7)
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and any u ∈ X .

Proof. Proof of Lemma A.2.3 Given x, y ∈ Rn, define v as in (A.7), and consider

V1(v, u)− V1(x, u)

= ω(u)− ω(v)−∇ω(v)′(u− v)− (ω(u)− ω(x)−∇ω(x)′(u− x))

= ω(x)− ω(v)−∇ω(v)′(u− v) +∇ω(x)′(u− x)

= (∇ω(x)−∇ω(v)−∇f(v)− y)′(u− v) +∇ω(x)′(v − x)

+ y′(u− v) +∇f(v)′(u− v) + ω(x)− ω(v)

≤ y′(u− v) +∇f(v)′(u− v)− V1(x, v)

= (y +∇f(v))′(u− v)− V (x, v) (A.8)

where the inequality follows from (y +∇f(v) +∇ω(v)−∇ω(x))′(u− v) ≥ 0, by the

optimality of v on the convex function y′(z − x) + f(z) + V (x, z) in z. On the other

hand,

V2(v, u)− V2(x, u) = f(x)− f(v)−∇f(v)′(u− v) +∇f(x)′(u− x) (A.9)

Hence, from (A.8) and (A.9), we have

Ṽ (v, u)− Ṽ (x, u)

≤ y′(u− v) + f(x)− f(v) +∇f(x)′(u− x)− V1(x, v)

= y′(x− v) + f(x)− f(v) + (y +∇f(x))′(u− x)− V1(x, v) (A.10)

Using y′(x− v) ≤ ‖y‖2∗
2α

+ α
2
‖x− v‖2, via Young’s inequality (Nemirovski et al., 2009),

and V1(x, v) ≥ α
2
‖x− v‖2 from the definition of V1, we have (A.10) less than or equal

to

f(x)− f(v) + (y +∇f(x))′(u− x) +
‖y‖2∗
2α

�

The following is the analog of Theorem 2.4.2 for Algorithm 2:

Theorem A.2.1. Suppose there exists a unique optimal solution p∗ ∈ P(ε) for (2.4)

such that (ψ(p) − λ∇R(p))′(p − p∗) = 0 if and only if p = p∗. Choose a non-
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increasing step size sequence {γk} such that

∞∑
k=1

γk =∞,
∞∑
k=1

γk
2
<∞

Then pk generated in Algorithm 2 converges to p∗.

Note that ψ(p)−λ∇R(p) is now the gradient (with the first term obtained from a

perturbation within the probability simplex) of the corresponding objective function

in (A.1), and (ψ(p)−λ∇R(p))′(p−p∗) ≥ 0 by the optimality of p∗. We also mention

that the condition of non-increasing {γk} can be replaced readily by eventually non-

increasing {γk}.

Proof. Proof of Theorem A.2.1 By defining X = P , ω(pk) =
∑n

i=1 p
k
i log pki , f(p) =

−γkλR(pk) = γkλ
∑n

i=1 p
k
i log pki , x = pk, y = γkψ̂k, u = p∗, ‖·‖ as L1-norm and ‖·‖∗

as the supremum norm in Lemma A.2.3, we have Ṽ (pk,p∗) = (1 + γkλ)
∑n

i1
p∗i log

p∗i
pki

,

α = 1, and

Ṽ (pk+1,p∗)− Ṽ (pk,p∗)

≤ γkλ(R(pk+1)−R(pk)) + γk(ψ̂k − λ∇R(pk))′(p∗ − pk) +
γk

2‖ψ̂k‖2∞
2

(A.11)

Let V (p,q) =
∑n

i1
qki log

qki
pki

be the KL divergence, so that Ṽ (pk,p∗) = (1+γkλ)V (pk,p∗).

Let Fk be the filtration generated by {p1, . . . ,pk}. Taking conditional expectation

on (A.11), we have

E[V (pk+1,p∗)− V (pk,p∗)|Fk]
≤ λγk(V (pk,p∗)− E[V (pk+1,p∗)|Fk]− λγk(R(pk)− E[R(pk+1)|Fk])

+ γk(ψ(pk)− λ∇R(pk))′(p∗ − pk) +
γk

2
E[‖ψ̂k‖2∞|Fk]

2
(A.12)
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Taking expectation and summing up on both sides of (A.12), we have

K∑
k=1

E[E[V (pk+1,p∗)− V (pk,p∗)|Fk]+]

≤ λ

K∑
k=1

γk(E[V (pk+1,p∗)]− E[V (pk,p∗)])− λ
K∑
k=1

γk(E[R(pk)]− E[R(pk+1)])

+
K∑
k=1

γkE[(ψ(pk)− λ∇R(pk))′(p∗ − pk)] +
K∑
k=1

γk
2
E‖ψ̂k‖2∞

2

= λ

(
γ1V (p1,p∗) +

K∑
k=2

(γk − γk−1)E[V (pk,p∗)]− γKE[V (pK+1,p∗)]

)

− λ
(
γ1R(p1) +

K∑
k=2

(γk − γk−1)E[R(pk,p∗)]− γKE[R(pK+1,p∗)]

)

+
K∑
k=1

γkE[(ψ(pk)− λ∇R(pk))′(p∗ − pk)] +
K∑
k=1

γk
2
E‖ψ̂k‖2∞

2
(A.13)

by telescoping. Note that V (p,p∗) ≥ 0, R(p) ≥ 0, and R(p) ≤ log n for any p ∈ P .

Moreover, (ψ(p)−λ∇R(pk))′(p−p∗) ≥ 0 for any p ∈ P . Also, by the same argument

as in the proof of Theorem 2.4.2, we have E[‖ψ̂k‖∞] ≤ C uniformly for some C > 0.

Therefore, (A.13) is less than or equal to

λγ1V (p1,p∗) + λ
K∑
k=2

(γk−1 − γk) log n+ λγK log n+
C2

2

K∑
k=1

γk
2

= λγ1V (p1,p∗) + λγ1 log n+
C2

2

K∑
k=1

γk
2

by telescoping. Letting K →∞, we have

∞∑
k=1

E[E[V (pk+1,p∗)−V (pk,p∗)|Fk]+] ≤ λγ1V (p1,p∗) +λγ1 log n+
C2

2

∞∑
k=1

γk
2
<∞

By martingale convergence theorem (Theorem A.1.1 in the Appendix), we have

V (pk,p∗) converges a.s. to some integrable random variable V∞.

Now, taking expectation and summing up on both sides of (A.11), and by a similar
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argument as above, we have

∞∑
k=1

γkE[ψ(pk)′(pk − p∗)]

≤ V (p1,p∗)− EV∞ + λγ1V (p1,p∗) + λγ1 log n+
C2

2

∞∑
k=1

γk
2
<∞

As in the proof of Theorem 2.4.2, since
∑∞

k=1 γ
k =∞ and E[(ψ(pk)−λ∇R(pk))′(pk−

p∗)] ≥ 0, for all k, there must exist a subsequence ki such that

E[(ψ(pki)−λ∇R(pk))′(pki−p∗)]→ 0 a.s.. This implies that (ψ(pki)−λ∇R(pk))′(pki−
p∗)

p→ 0, which in turn implies the existence of a further subsequence li such that

(ψ(pli)−λ∇R(pk))′(pli−p∗)→ 0 a.s.. From Proposition 2.4.1 Part 2, we have ψ(p)

continuous in p. By the assumption that (ψ(p) − λ∇R(pk))′(p − p∗) = 0 only if

p = p∗, and that (ψ(p) − λ∇R(pk))′(p − p∗) is continuous in p, we have pli → p∗

a.s.. Hence V (pli ,p∗)→ 0 a.s.. Since we have proved above that V (pk,p∗) converges

a.s., this limit must be 0. Therefore, by Pinsker’s inequality, we have pk → p∗ in

total variation a.s.. This concludes the theorem. �

A.3 Additional Visualizations Characterizing the Quality of

the Network Degree Estimator

A.3.1 Ego-centric Sampling

The setup of the simulation is the following - the true graph is Erdos-Renyi with 1000

vertices and 150000 edges. The plots on the left below show the sampling distribution

of the target quantity and its relative location with respect to K0 and the right hand

side of the main inequality (4.20). The plots on the right visualize the concentration

inequality (4.22).
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(b) Probabilities colored according
to (4.22)

Figure A·1: p = 0.1 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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(b) Probabilities colored according
to (4.22)

Figure A·2: p = 0.2 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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p = 0.3
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Figure A·3: p = 0.3 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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(b) Probabilities colored according
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Figure A·4: p = 0.5 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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p = 0.7
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(b) Probabilities colored according
to (4.22)

Figure A·5: p = 0.7 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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Figure A·6: Probability that the target quantity is greater than the
ideal (||PN̂ − PN ||2C−1 > K0) for different values of the sampling rate

A.3.2 Induced Subgraph Sampling

The true graph is Erdos-Renyi with 1000 vertices and 150000 edges. The plots in

Figure A.3.2 show the sampling distribution of the target quantity and its relative
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location with respect to K0 and the right hand side of the main inequality (4.20).
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Figure A·7: p = 0.1 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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Figure A·8: p = 0.2 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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p = 0.3
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Figure A·9: p = 0.3 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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Figure A·10: p = 0.5 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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p = 0.7
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(b) Probabilities colored according
to (4.22)

Figure A·11: p = 0.7 Visualizing Main Inequality (4.20) (Left), and
Concentration Result (4.22) (Right)
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Figure A·12: Probability that the target quantity is greater than the
ideal (||PN̂ − PN ||2C−1 > K0) for different values of the sampling rate
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Carlo without likelihoods. Proceedings of the National Academy of Sciences,
100(26):15324–15328.

McLachlan, G. and Peel, D. (2004). Finite mixture models. John Wiley & Sons.

Moulines, E., Roueff, F., Souloumiac, A., and Trigano, T. (2007). Nonparametric
inference of photon energy distribution from indirect measurement. Bernoulli,
13(2):365–388.

Nelson, B. (2016). ‘Some tactical problems in digital simulation’ for the next 10
years. Journal of Simulation, 10(1):2–11.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic ap-
proximation approach to stochastic programming. SIAM Journal on Optimization,
19(4):1574–1609.

Nemirovski, A. and Yudin, D. (1983). Problem Complexity and Method Efficiency in
Optimization. Wiley, New York.

Neumaier, A. (1998). Solving ill-conditioned and singular linear systems: A tutorial
on regularization. SIAM review, 40(3):636–666.

Park, J., Kim, Y. B., and Willemain, T. R. (2011). Analysis of an unobservable
queue using arrival and departure times. Computers & Industrial Engineering,
61(3):842–847.

Pauca, V. P., Piper, J., and Plemmons, R. J. (2006). Nonnegative matrix factoriza-
tion for spectral data analysis. Linear algebra and its applications, 416(1):29–47.

Pauca, V. P., Shahnaz, F., Berry, M. W., and Plemmons, R. J. (2004). Text min-
ing using non-negative matrix factorizations. In SDM, volume 4, pages 452–456.
SIAM.

Pickands III, J. and Stine, R. A. (1997). Estimation for an M/G/∞ queue with
incomplete information. Biometrika, 84(2):295–308.

Price, B. S., Geyer, C. J., and Rothman, A. J. (2015). Ridge fusion in statistical
learning. Journal of Computational and Graphical Statistics, 24(2):439–454.



115

Reiman, M. I. and Weiss, A. (1989). Sensitivity analysis for simulations via likelihood
ratios. Operations Research, 37(5):830–844.

Rolls, D., Daraganova, G., Sacks-Davis, R., Hellard, M., Jenkinson, R., McBryde,
E., Pattison, P., and Robins, G. (2012). Modelling hepatitis c transmission over a
social network of injecting drug users. Journal of theoretical biology, 297:73–87.

Ross, J. V., Taimre, T., and Pollett, P. K. (2007). Estimation for queues from queue
length data. Queueing Systems, 55(2):131–138.

Rubinstein, R. Y. (1989). Sensitivity analysis and performance extrapolation for
computer simulation models. Operations Research, 37(1):72–81.

Santner, T. J., Williams, B. J., and Notz, W. I. (2013). The Design and Analysis of
Computer Experiments. Springer Science & Business Media.

Sargent, R. G. (2005). Verification and validation of simulation models. In Proceed-
ings of the 37th Winter Simulation Conference, pages 130–143. Winter Simulation
Conference.

Schruben, L. W. (1980). Establishing the credibility of simulations. Simulation,
34(3):101–105.

Serfling, R. J. (2009). Approximation Theorems of Mathematical Statistics, volume
162. John Wiley & Sons.

Shirangi, M. G. (2014). History matching production data and uncertainty assess-
ment with an efficient TSVD parameterization algorithm. Journal of Petroleum
Science and Engineering, 113:54–71.

Song, E., Nelson, B. L., and Pegden, C. D. (2014). Advanced tutorial: Input uncer-
tainty quantification. In Proceedings of the 2014 Winter Simulation Conference,
pages 162–176. IEEE Press.

Sra, S., Nowozin, S., and Wright, S. J. (2012). Optimization for Machine Learning.
MIT Press.

Stumpf, M. P. and Wiuf, C. (2005). Sampling properties of random graphs: the
degree distribution. Physical Review E, 72(3):036118.

Tarantola, A. (2005). Inverse problem theory and methods for model parameter
estimation. SIAM.

Van Campenhout, J. M. and Cover, T. M. (1981). Maximum entropy and conditional
probability. IEEE Transactions on Information Theory, 27(4):483–489.



116

Wang, T.-Y., Ke, J.-C., Wang, K.-H., and Ho, S.-C. (2006). Maximum likelihood
estimates and confidence intervals of an M/M/R queue with heterogeneous servers.
Mathematical Methods of Operations Research, 63(2):371–384.

Whitt, W. (1981). Approximating a point process by a renewal process: The view
through a queue, an indirect approach. Management Science, 27(6):619–636.

Whitt, W. (1982). Approximating a point process by a renewal process, I: Two basic
methods. Operations Research, 30(1):125–147.

Whitt, W. (2012). Fitting birth-and-death queueing models to data. Statistics &
Probability Letters, 82(5):998–1004.

Wunsch, C. (1996). The Ocean Circulation Inverse Problem. Cambridge University
Press.

Zhang, Y., Kolaczyk, E. D., Spencer, B. D., et al. (2015). Estimating network degree
distributions under sampling: An inverse problem, with applications to monitoring
social media networks. The Annals of Applied Statistics, 9(1):166–199.

Zouaoui, F. and Wilson, J. R. (2004). Accounting for input-model and input-
parameter uncertainties in simulation. IIE Transactions, 36(11):1135–1151.



117

Curriculum Vitae



118

CURRICULUM VITAE



119



120




