
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2017

Assessing malware detection using
hardware performance counters

https://hdl.handle.net/2144/27051
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/215924782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Thesis

ASSESSING HARDWARE PERFORMANCE COUNTERS

FOR MALWARE DETECTION

by

ANMOL GUPTA

B.E., Mumbai University, 2015

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

2017



c© 2017 by
ANMOL GUPTA
All rights reserved



Approved by

First Reader

Manuel Egele, PhD
Assistant Professor of Electrical and Computer Engineering

Second Reader

Ajay Joshi, PhD
Associate Professor of Electrical and Computer Engineering

Third Reader

Michel Kinsy, PhD
Assistant Professor of Electrical and Computer Engineering



Mens sana in corpore sano

iv



Acknowledgments

First and foremost, I am endlessly thankful to my advisor, professor Manuel Egele

and my co-advisor, professor Ajay Joshi – without whom this work would not have

been possible. Their help and support, despite my constant resistance, was the only

thing that brought me where I am right now. A special mention to the collaborators

and contributors of this project. It goes without saying without the contributions of

Boyou Zhou, this project would have never reached its summit. With him, I would

also like to thank Leila Delshadtehrani who was always on her feet to help me out.

I would like to express gratitude to my parents, Brijesh and Shobha Gupta, as

they were the ones who encouraged me to take on this path, and were morally very

helpful throughout. My parents together with my young sibling brother, Devansh

Gupta, were there when I needed them the most, and thus should always be thanked

for believing in me.

Lastly, I would like to mention all my colleagues in the infamous PHO 340 and

PHO 301 rooms, with whom I spent enormous amount of time having off-topic

discussions on completely irrelevant topics - Yenai, Fulya, Saiful, Onur(x2), Ozan,

QuingQuing, Rushi, Ahmed, Ethan, Zafar, Asselya, Kiran, Aravind, Furkhan and

Sadullah. With the conclusion of this project began a new string of invaluable friend-

ship.

Anmol Gupta

Boston University

ECE Department

v



ASSESSING HARDWARE PERFORMANCE COUNTERS

FOR MALWARE DETECTION

ANMOL GUPTA

ABSTRACT

Despite the use of modern anti-virus (AV) software, malware is a prevailing threat

to today’s computing systems. AV software cannot cope with the increasing num-

ber of evasive malware, calling for more robust malware detection techniques. Out

of the many proposed methods for malware detection, researchers have suggested

microarchitecture-based mechanisms for detection of malicious software in a system.

For example, Intel embeds a shadow stack in their modern architectures that main-

tains the integrity between function calls and their returns by tracking the function’s

return address. Any malicious program that exploits an application to overflow the

return addresses can be restrained using the shadow stack. Researchers also propose

the use of Hardware Performance Counters (HPCs). HPCs are counters embedded

in modern computing architectures that count the occurrence of architectural events,

such as cache hits, clock cycles, and integer instructions. Malware detectors that

leverage HPCs create a profile of an application by reading the counter values pe-

riodically. Subsequently, researchers use supervised machine learning-based (ML)

classification techniques to differentiate malicious profiles amongst benign ones. It

is important to note that HPCs count the occurrence of microarchitectural events

during execution of the program. However, whether a program is malicious or benign

is the high-level behavior of a program. Since HPCs do not surveil the high-level

behavior of an application, we hypothesize that the counters may fail to capture the

difference in the behavioral semantics of a malicious and benign software.
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To investigate whether HPCs capture the behavioral semantics of the program, we

recreate the experimental setup from the previously proposed systems. To this end,

we leverage HPCs to profile applications such as MS-Office and Chrome as benign

applications and known malware binaries as malicious applications. Standard ML

classifiers demand a normally distributed dataset, where the variance is independent

of the mean of the data points. To transform the profile into more normal-like dis-

tribution and to avoid over-fitting the machine learning models, we employ power

transform on the profiles of the applications. Moreover, HPCs can monitor a broad

range of hardware-based events. We use Principal Component Analysis (PCA) for se-

lecting the top performance events that show maximum variation in the least number

of features amongst all the applications profiled. Finally, we train twelve supervised

machine learning classifiers such as Support Vector Machine (SVM) and MultiLayer

Perceptron (MLPs) on the profiles from the applications. We model each classifier

as a binary classifier, where the two classes are ‘Benignware’ and ‘Malware.’ Our

results show that for the ‘Malware’ class, the average recall and F2-score across the

twelve classifiers is 0.22 and 0.70 respectively. The low recall score shows that the ML

classifiers tag malware as benignware. Even though we exercise a statistical approach

for selecting our features, the classifiers are not able to distinguish between malware

and benignware based on the hardware-based events monitored by the HPCs. The

incapability of the profiles from HPCs in capturing the behavioral characteristic of

an application force us to question the use of HPCs as malware detectors.
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Chapter 1

Introduction

1.1 Motivation

Leveraging the low-level micro architectural features for providing security is a grow-

ing trend among hardware companies. For example, Advanced RISC Machines (ARM)

[ARM, 2017a] provides TrustZone [ARM, 2017b]. TrustZone architecturally divides

the hardware into a secure and insecure zone running secure OS and normal OS re-

spectively. The hardware-separated ‘secure’ and ‘insecure’ zones are used to separate

the execution of user-level applications from the trusted kernel operations. Security is

thus maintained using the existing hardware of the device, without affecting system

performance. Qualcomm’s Snapdragon 835 Mobile Platform uses Haven [Qualcomm,

2017] which is a combination of hardware and biometric technologies to secure fi-

nancial transactions over the Internet. Intel’s 4th generation Instruction Set Archi-

tecture (ISA) has dedicated instructions, called AES-NI [Akdemir et al., 2010], for

providing fast and secure encryption-decryption using Advanced Encryption Stan-

dards (AES) [Rijmen and Daemen, 2001]. Additionally, Intel also provides platform

security by securing the BIOS, the firmware and hardware-based authentication us-

ing Boot Guard, BIOS Guard, and Identity Protection Technology (IPT) [Intel, 2017].

The hardware implementations of security features mentioned above provide energy-

efficient, low-overhead, and high-performance solutions compared to their software

counterparts. However, developing dedicated hardware support for security leads



2

to a substantially longer time-to-market than software products. National Instru-

ments(NI) state that a hardware product takes on average a year or more to mature

from the idea stage to production stage [Instruments, 2014]. Moreover, there is a per-

sistent race between the security developers and their adversaries. One approach for

keeping pace in this persistence race between the malware developers and security de-

velopers is leveraging the existing hardware units to implement defense mechanisms.

Recently, researchers have proposed to use Hardware Performance Counters (HPCs)

for malware detection [Demme et al., 2013], [Bahador et al., 2014], [Patel et al., 2017].

HPCs are physical counters embedded in modern processors. These counters are ca-

pable of counting the occurrence of a wide range of low-level architectural events such

as branch mispredictions and data cache hits. Initially, software designers employed

HPCs to characterize and optimize their code’s performance on hardware. A mal-

ware detector exercising HPCs leverage Machine Learning (ML) classification-based

techniques to differentiate between malware and benignware profiles. Each profile

contains a time-series of the counter values sampled while monitoring a set of archi-

tectural events that transpire during the entire execution of an application.

One of the benefits of using HPCs for malware detection is that the profiling of

an application does not interfere with application’s execution. Additionally, HPCs

incur low-overhead while reading the counts of the events. Recording the counter

values of the HPCs is known as sampling and the frequency by which the profilers

record counts is called the sampling frequency. However, there are three main design

challenges while using HPCs in malware detectors. Firstly, the low-level instructions

executed on a processor and the architectural resource utilization by an application

does not reflect the high-level behavior of an application. Whether an application is

malicious or benign is a high-level characteristic. Secondly, even though modern pro-
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cessors provide an option to monitor more than 200 architectural events on the HPCs,

it is unclear which event(s) a malware detector should use to profile an application

for predicting its behavior (malignant or benignant). Lastly, a time-series profile of

an application profiled using the HPCs is irreproducible in essence. The profiles are

not reproducible because the count values corresponding to an architectural event

may not repeat when counted multiple times. For example, the number of L1-data

cache hits is not the same at every instant across multiple runs of an application.

The number of L1-data-cache hits depends on the presence of all the active processes

in a system that share one limited sized cache. As a result, the active processes con-

tinuously update the cache at every cache-reference. The irreproducible profiles may

cause an inefficient training of the ML classifier models.

The challenges listed above raises a question - Do profiles from the HPCs reflect

the behavioral difference between malicious and benign applications? In this thesis,

we evaluate the robustness of HPCs in capturing the behavioral semantics of a pro-

gram. To this end, we profile benignware and malware using HPCs and report the

performance of a broad range of ML classifiers in classifying the application as benign

or malicious. Based on our evaluation in Chapter 3, we have to answer the question

in negative.
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1.2 Contributions

In this project, we attempt to assess the capabilities of using HPCs for malware detec-

tion in challenges mentioned earlier. To this end, we use a methodological framework

for profiling benignware and malware on HPCs and then train ML classifiers on these

profiles. We profile applications on Intel and AMD processors, running 32-bit Win-

dows 7 operating system (OS).

The following work was completed leading up to this thesis:

Savitor - A HPC profiler for AMD

Our experimental setup on the AMD machine uses Savitor. We developed Sav-

itor as a user-level application for profiling applications using HPCs. Savitor

uses kernel-level APIs from AMD CodeAnalyst [Drongowski, 2008] to program

the HPCs to monitor a list of desired events. Via the inputs to Savitor, a user

can specifically monitor a single application while also setting the affinity of

all the processes associated with this application. Using the process affinity, a

user can force an application to run on one or many cores. Savitor will then

sample only counters from these cores. Additionally, a user can set the sam-

pling frequency N. By profiling the counters every N th fraction of a second a

time-series profile of an application is generated. Savitor features low overhead

and high sampling frequency while creating time-series profiles of applications.

Our application list includes 83 malware samples and 64 real-life benignware

applications running on Windows. We use VirusTotal [Total, 2012] to down-

load malware samples have known to affect the Windows-7 operating systems

previously. For benignware samples, we include applications commonly used on

Windows Operating System by consumers worldwide such as Microsoft Office

and Internet browsers.
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A statistical approach for Feature Selection using PCA

Modern processors provide more than 200 events to monitor on the HPCs. It

is unclear which architectural events are an ideal fit for malware detection. In-

tuitively, the events that create distinct profiles of applications will generate

more accurate machine learning models. We apply Principal Component Anal-

ysis (PCA) [Wold et al., 1987] on the time-series profile of all the events. PCA

converts high-dimensional data into linearly uncorrelated components. Using

this property of PCA, we can pick events that show maximum variation in the

dataset using the least number of components. The chosen events are then used

to profile the remaining applications.

Evaluating our system on a broad range of ML classifiers

We deploy twelve supervised ML algorithms including but not limited to K-

Neighbor Classifiers (KNN), Support Vector Machines (SVMs), Decision Trees

(DTs) Multi-Layer Perceptron (MLPs) and Logistic Regression. For pre-processing

the data, we aggregate the raw samples into 32-binned histograms. Addition-

ally, they are converted to a normally distributed data using power transforms.

We report the prediction accuracy of ML classifiers on the testing samples from

the datasets on all the twelve classifiers.
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1.3 Related Work

Earlier work has proposed to use Hardware Performance Counters (HPCs) for mal-

ware detection for one or more classes of malware (such as rootkits). [Demme et al.,

2013] first presented a detailed feasibility report on using HPCs for malware detection

on Intel and ARM processors. Their analysis includes detection of Android malware,

Linux rootkits, and cache side-channel attacks. They achieve prediction accuracies

ranging from 100% to 25% across Android malware samples. Additionally, they lack

convincing results for side-channel attacks and detection of rootkits. For Android

malware, they classify malware based on classes of malware rather than the individ-

ual traces of malware. Moreover, their analysis lack any information based on the

event selection from a large pool of architectural events, to monitor on the HPCs.

As opposed to their method, we present a methodological system of feature selection

and feature extraction. For feature extraction, we apply on the time-series profiles

from the HPCs, power transform to extract more normally distributed profiles. The

power transform extract maximum information while compressing the size of data.

Our compression methodology is an extension to the histogram-based binning used

by Demme. [Patel et al., 2017] rank a variety of classifiers used for malware detec-

tion. The classifiers range from simplistic KNNs to complex MultiLayer Perceptron

(MLP). They measure different parameters including accuracy/area, Power Delay

Profile (PDP), and testing latency. They include a systematic approach to select the

top events from the entire set of available events using WEKA [Witten et al., 1999]

and Pearsons correlation coefficient [Pearson, 1901] (Pearsons correlation coefficient

determines the linear dependence between two variables). On the contrary, we do

not assume that the samples in the data set will possess a strong linear correlation

between them. Instead, we use Principal Component Analysis (PCA) to extract lin-

early uncorrelated ‘components’ in our dataset. These components reflect maximum
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variations amongst samples using the least amount of features.

[Singh et al., 2017] and [Nomani and Szefer, 2015] use HPCs for detection of

kernel-level rootkits and defending side-channel attacks, respectively. The former

identifies 16 events to detect rootkits. The authors achieve high prediction accuracy

in detecting five self-developed synthetic rootkits. All the synthetic rootkits used pre-

viously known attack mechanisms such as code-injection and function pointer hook-

ing. Additionally, they collect samples from the HPCs only at the end of execution

of the program. Our traces contain a time-series of the sample obtained from the

HPCs, thus enabling us to extract the entire execution profile of the application.

The latter proposes to use HPCs for segregating the applications into sections called

‘phases.’ The application is segregated into ‘phases’ based on the architectural re-

source employed by each section. Then, the scheduler schedules these ‘phases’ in a

way to minimize the impact of side-channel attacks that leverage sharing of proces-

sor resources. Their experimental setup uses only SPEC benchmarks. We believe

that SPEC benchmarks do not entirely represent the real-life applications running

on modern processors. [Uhsadel et al., 2008] make use of HPCs to detect time-based

cache attacks. They exploit cache-based events for every lookup at the L1-cache level.

Their implementation monitors cache behavior while executing an OpenSSL [Young,

2017] version of AES [Rijmen and Daemen, 2001]. Unlike our method, they assume

that cache is not affected by the processes running on a processor. This assumption

can lead to a wide variety of traces for a single application. [Gulmezoglu et al., 2017]

show how to exploit web privacy using HPCs. Adversaries can infer user websites

running on browsers even in incognito mode. Their results show a prediction accu-

racy of 70% on average, across many browsers. Unlike our implementation, they lack

sophisticated pre-processing of data before training the ML classifiers.
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Researchers have suggested both the behavioral and anomaly-based malware de-

tectors using the HPCs. [Bahador et al., 2014] proposes HPCMalHunter, a behavioral

online malware detector that predicts with high accuracy of 90% with SVMs. They

use Singular Value Decomposition (SVD) as their feature reduction method. Like

many other papers, they also lack a detailed explanation of how they chose the four

events that they monitor on the HPCs. Moreover, their dataset contains 20 benign

applications and 11 malware programs. It is not clear if their evaluation can reflect

the same results for a larger dataset as well. Tang [Tang et al., 2014] use samples from

HPCs to train unsupervised machine learning methods for detecting deviations in pro-

gram behavior that occur due to a potential malicious attack. They use F-Score as

their feature selection and provide a comparison of performance while using different

sampling frequencies for the HPCs. They use only two applications namely, Internet

Explorer and Adobe Acrobat, in their proof of concept and Metasploit [Metasploit,

2017] to create the exploits for the applications. We avoid using F1-score [Sokolova

et al., 2006] for feature selection as it does not reflect any mutual dependence amongst

the features and rather highlights only the linear separation between them. One of

the important goals of the feature selection in ML is to select only independent fea-

tures for higher prediction accuracy. Our implementation selects informative features

that are mutually exclusive.
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1.4 Background

In this section, we briefly introduce the hardware and software-based components,

used in our experiments. The former includes Hardware Performance Counter and

the Hardware Performance Events. Next we discuss about malware is and classifi-

cation of malware. Additionally, this section also includes a preface to the feature

selection and feature extraction algorithms used in this thesis - i.e., Principal Com-

ponent Analysis.

1.4.1 Hardware Performance Counters

Hardware Performance Counters (HPCs) are special-purpose counters embedded in

a modern microprocessor die; which count a broad range of architectural and mi-

croarchitectural events. A variety of processor platforms such as Intel, ARM, and

AMD include HPCs on their processors. Depending on the processor, each counter

varies from 32 to 64 bits in size. The number of physical registers present on each

core usually ranges from 2 to 8. These registers are capable enough to count a myr-

iad of events such as L1/L2/L3 cache access & misses, TLB hits & misses, branch

mispredictions, and core stalls of the chip. HPCs are easily programmable across all

platforms. The counters are often programmed to throw an interrupt when a counter

overflows or even be set to start the counter from the desired value. The start count

can also be a negative count, for which the counters count up). The software handles

these interrupts allowing programmers to analyze the hardware resource utilization

by their applications at run time.

HPCs, thus find themselves a handy tool in tuning and optimizing the low-level

architectural performance of running applications [Bulpin and Pratt, 2005]. From per-
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formance analysis tools their usage has extended to detecting firmware modification

in embedded systems [Wang et al., 2015], estimating system power utilization [Con-

treras and Martonosi, 2005], and even detection of malware [Demme et al., 2013].

Essentially, software engineers use HPCs for measuring the performance of their code

and thus optimizing it.

In a ring-based security model [Wikipedia, 2017c] HPCs belong to ring-0. This

makes them accessible only to the kernel (events like cycle-count and timestamp

counter make an exception on some processors). The operating systems can program

the HPCs using control registers, called Performance Monitoring Counters (PMCs)

found in the Performance Monitoring Unit (PMU). These registers are known as

Model Specific Registers (MSRs) on Intel processors. User-space applications can ac-

cess the HPCs through software interfaces to PMUs and configure the HPCs using the

PMCs. Some of the commonly used software interfaces include PAPI [Mucci et al.,

1999] that provide standard APIs for accessing the HPCs. Also, there are different

profilers for Linux and Windows operating systems. For example, perf [de Melo,

2010] based on perf event, is a popular tool providing support for HPCs on Linux

2.6+ based hosts. On Windows, one can use Intel’s VTunes [Reinders, 2005] for the

Intel processors and AMD’s CodeAnalyst [Drongowski, 2008] (now CodeXL) for the

AMD processors. In our project, we use HPCs to construe a time-series trace of N

microarchitectural events by profiling malware and benign applications. Each pro-

gram executed on CPU may or may not generate a different performance counter

trace.
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1.4.2 Hardware Performance Events

As mentioned in the section 1.4.1, HPCs can monitor a broad spectrum of performance

events across all modern processors. It is the responsibility of the PMUs to keep track

of microarchitectural events that occur during process execution. The performance

events provide a comprehensive snapshot of a processor’s runtime behavior. Software

developers may use the traces from performance events to enhance their systems.

Based on the architectural aspect monitored, the events are classified as follows:

1. Hardware Events - Counters monitoring CPU-based event

2. Software Events - Events based on kernel events such as CPU migrations,

minor and major faults

3. Kernel Tracepoint Events - Static tracepoints for the kernel

4. User Statically-Defined Tracing (USDT) - Static tracepoints for user-level

applications

5. Dynamic Tracing - Dynamically instrumented software events for user-level

applications using the ‘uprobes’ framework and kernel-level operations using

the ‘kprobes’ framework

We consider Hardware Events for our malware detectors because all profilers pro-

vide the option of tracking hardware events on all the architectures on any operating

system. Some profilers may not feature the remaining kinds of events. For example,

the AMD’s CodeAnalyst supports static Tracepoint events and does not feature dy-

namic tracing [Drongowski, 2008]. Figure 1·1 shows a broad range of events available

to monitor on the hardware performance events.
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Figure 1·1: Various architectural events available to monitor on the
HPCs

There is a limitation on the number of events that can be sampled on the HPCs

at any instant across all platforms. The number of physical counters on each core

of the processor imposes the restriction. For example, Intel provides the option of

monitoring 468 and 519 on the Ivy-bridge and Intel Broadwell CPUs, respectively [In-

tel, 2011] However, only four events can be sampled simultaneously since the number

of counters is limited to four on each core of the processor. On modern processors,

the limitation is mitigated by multiplexing performance counters [May, 2001]. Mul-

tiplexing incorporates sampling of the events in a round robin manner. Round robin

technique monitors the first series of events for a pre-decided time slice. On the ex-

piration of the time slice, HPCs monitor the next sequence of events. Multiplexing

then reduces the frequency by which each event is sampled and reduces the samples

in the trace.
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1.4.3 Malware and Malware Detection

Adversaries create malicious software or malware to unlawfully use a system or com-

promise the privacy of a victim. Table 1.1 [Demme et al., 2013], [Risks, 2011] describes

different classes of malware. Adversaries develop malware for financial gains, espi-

onage or personal information theft [Risks, 2011]. Some ways to publish malware

to a potential victim includes phishing emails (broadcasted with malicious attach-

ments), pdfs, software downloads from untrusted sources, accessing web pages injected

with exploits, storage devices, or downloading applications from mobile stores. [Risks,

2011], [Demme et al., 2013]

A widely deployed malware detection technique is Signature-based detection [Grif-

fin et al., 2009]. Signature-based detection techniques can detect known categories

of malware such as viruses and worms. A typical Anti-Virus (AV) system that

uses signature-based detection techniques scans files for known malware signatures,

specifically code strings, which are responsible for the functionality of the malware.

Signature-based techniques have several significant drawbacks. Firstly, static signature-

based detection is computationally intensive as scanning a large size of the database of

malware is steadily increasing at a fast pace [Harley and Lee, 2007]. Secondly, the rise

of Polymorphic malware produces a new variant of malware using obfuscation tech-

niques such as subroutine reordering and register reassignment. Since signature-based

techniques are reactive, they are unable to defend against new malware samples, until

the malware signature database is updated [Rad et al., 2011]. Lastly, encrypted mal-

ware can potentially delay or avoid detection by static code analysis [Rad et al., 2011].

The pitfalls of signature-based detection techniques motivated the defenders to

track behavior or anomalies in applications during their execution. Literature shows
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Malware
Classes

Description

Virus
Malware found in programs or executables. The processor
executes the malware code together with with the program

Worm
Are similar to virus in functional behavior except that they are
stand-alone software which does not require any assistance from

a host program or human aid for broadcasting

Polymorphic
Virus

A virus that is capable of altering its payload to evade detection,
while maintaining its functionality

Metamorphic
Virus

A virus that alters both the payload and functionality

Trojan
Malware that appears legitimate but acts maliciously once

activated

AdWare Malware that floods a web-page with unwanted advertisements.

SpyWare
Malware that secretly gathers reports user’s personal

information and grants access to such information to another
entity without the user’s consent

Ransomware
Malware that blocks access to user data and threatens to

publish it unless the user makes a predetermined price

Botnet
Malware that employs an infected system as a node in a network

controlled by a central malicious unit called the bot herder

Rootkit
Malware that provides privileged access to a system while hiding

its or any other malicious software’s presence

Table 1.1: Classes of Malware [Demme et al., 2013], [Risks, 2011]

that behavior-based malware detection techniques [Christodorescu, 2007] track dy-

namic aspects of programs such as system call traces, control flow graphs, and

data flow graphs. Behavior-based techniques overcome some disadvantages of static

signature-based detection. For example, tracking behavioral patterns in the malware

during runtime helps detect polymorphic malware [Zhao et al., 2010]. On the other

hand, the using behavior-based techniques require a secure execution environment

for the malware such as a Virtual Machines(VM). Tracking the malware sample in a

virtual environment can be time-consuming and give rise to false-alarms [Tian et al.,

2010].
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Recently, security researchers have proposed to use hardware-based solutions for

malware detection [Demme et al., 2013], [Tang et al., 2014], [Kirat et al., 2014].

Hardware-based detectors offer fast online detection, minimize hardware resource

utilization, and are inaccessible to user-level applications (unless adversaries have ac-

cess to the kernel-level privilege of the platform). Intuitively, such qualities make

them suitable for mitigating both known and new threats. However, there are several

design challenges with hardware-based detectors. Some of them include having the

capability of tracking the malicious activities in parallel to the execution of user-level

processes, a small logic area on the die and low power overhead for implementation

on the processor. On top of that, hardware-based detection techniques often use ML

classifiers [Demme et al., 2013], that adds overhead based on the classification algo-

rithm used.

1.4.4 Principal Component Analysis

Principal Component Analysis (PCA) is an approach used to accentuate variation

and highlight linear relation in a multivariate data set [Wold et al., 1987]. A broad

range of fields such as neuroscience and computer graphics [Rao, 1964] leverage PCA

for data analysis. PCA reduces the dimensions of a multivariate dataset, thus ex-

tracting relevant information from complex and large datasets using fewer variables.

To be more specific, PCA maps a nonlinearly correlated data to orthogonal linearly

correlated variables called principal components (PCs). The transformed dimension

size of the data is less than or equal to the original dimensions of the data set. PCA

arranges the PCs such that the first PC shows the maximum possible explained vari-

ance ratio. Explained variance ratio accounts for the proportion of variation in the

transformed variable(s) as compared to the original variable(s). Each following PC
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contains the next highest variation and is orthogonal to the preceding components.

Figure 1·2 shows a pictorial depiction of applying PCA to transform a 3-dimensional

data a 2-dimensional components. It is evident that the data points in the original

data space have large projections on the 3-dimensional planes. PCA creates new

planes such that the data-points now have small projections on the newly transformed

planes. The planes are orthogonal to each other and are linearly correlated. As a

result, the same amount of information is carried in the transformed 2-dimensional

data space when compared to the original data space.

Figure 1·2: PCA demonstration - Converting a 3-dimensional original
data space to a 2-dimensional linearly uncorrelated components [Vid-
hya, 2016]

Mathematically speaking, PCA uses eigenvalue decomposition of a data covariance

(or correlation) matrix. We use the derivations from [Shlens, 2014] to explain how

the results of PCA are eigenvectors of a matrix. Consider:

• A data set X be an [m× n] matrix, where m is the number of examples points,

and n is the number of features
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• Cx ≡ 1
n
XXT is covariance matrix of X

Goals of PCA: Find a covariance matrix CY ≡ 1
n
Y Y T of Y , where Y is a diago-

nal matrix in some orthonormal matrix P such that Y = PX. Then the rows of this

orthonormal matrix P are the PCs of X.

Proof : Consider covariance matrix CY of Y :

CY =
1

n
Y Y T

=
1

n
(PX) (PX)T

=
1

n
PXXTP T

= P

(
1

n
XXT

)
P T

∴ CY = PCXP
T (1.1)

Theorem: Any symmetric matrix - A is diagonalized by an orthogonal matrix

of its eigenvectors. For a symmetric matrix A, A = EDET , where D is a diagonal

matrix and E is a matrix of eigenvectors of A arranged as columns [Shlens, 2014].

Thus, select a matrix P where each row of P - {pi} is an eigenvector of 1
n
XXT .

From theorem, P ≡ ET and P−1 = P T , CY now evaluates to:

CY = PCxP
T

= P
(
ETDE

)
P T

= P
(
P TDP

)
P T

=
(
PP T

)
D
(
PP−1

)
CY

∴ CY = D (1.2)
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From equation 1.2, an orthonormal matrix P diagonalizes CY . The PCs of X are

the eigenvectors of covariance matrix Cx of X. The ith diagonal elements of covari-

ance matrix CY of Y is the variance of X along {pi}

The mathematical derivation1 of PCA impose some limitations. Firstly, Dimen-

sionality reduction using any algorithm causes loss of information, in general. PCA

minimizes information loss depending on the original data. Secondly, PCA decom-

poses a data set into uncorrelated variables removing the second-order dependencies.

There are more than one solutions to remove dependencies higher than second-order.

1.4.5 Power Transform

Power transform converts the data into a more normal-like distribution [Box and Cox,

1964]. The normalization using power transform stabilizes the variance in data. Power

transform stabilizes the variance by applying a logarithmic function to a data set. A

logarithmic function will magnify subtle variations in data and dampen high varia-

tions in the data. As a result we obtain an approximately normally-distributed data.

A normally distributed data set benefits the linear statistical algorithms like Pearson’s

Correlation calculation used for processing and analyzing the data. Additionally, a

power transform is a monotonic transformation. A monotonic transformation does

not change the order of a dataset. What this means is that, if a function is monoton-

ically increasing, then power transformation will preserve this order. The above two

mentioned properties of power transform help to find application in a variety of data

analysis fields such as medical research [Wikipedia, 2017a]

1Note that a discussion on the theorems and other derivation used in the above equations is
outside the scope of this research. Refer [Shlens, 2014] and [Wold et al., 1987] for more details
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For vectors (y1, , yn) in which each yi > 0, the the power transform is given by

[Wikipedia, 2017a] :

y
{λ}
i =


yλi − 1

λ(GM(y))λ−1
if λ 6= 0

(GM(y)) ln yi if λ = 0

(1.3)

where, GM(y) = (y1, yn)
1
n and λ, is the power parameter

λ determines the point at which the power function is continuous. There are

many variations of Power Transform, namely, BoxCox transformation [Sakia, 1992]

and Yeo-Johnson transformation [Weisberg, ]. We use the Box-Cox version of Power

Transform in our implementation. Box-Cox version is a logarithmic transformation.

Refer figure 1·3 [Scibilia, 2015] for a plot showing the logarithmic plot. The Box-Cox

implementation inflates or magnifies the smaller variations in the dataset (because

the slope of the logarithmic function is steep when values are small), and the reduces

the larger variations (due to a steady slope at larger values). As a result, we stabilize

the variance in our dataset across the events. The stabilized variation enables com-

parable contribution by each feature while training the ML classifiers.
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Figure 1·3: Logarithmic Function [Scibilia, 2015]

The remainder of the current dissertation is outlined as follows: Chapter 2 gives

a detailed account of the proposed malware detector. Chapter 3 evaluates the perfor-

mance of the ML classifiers in identifying between malicious and benign applications.

Based on the evaluations in chapter 3, we present our conclusion, and possible exten-

sions to this project as future work in chapter 4.
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Chapter 2

Malware Detector using HPCs

2.1 Profilers - Introduction

The profilers play a major role in our implementation. Profilers are user-level applica-

tions that provide an interface to the PMU. The users can use the profilers to program

the HPCs especially to leverage features such as selecting a set of hardware-events to

monitor and fixing the sampling frequency for that event from only a particular core.

Following are some of the common features provided by HPC-based profilers:

• Setting the events to monitor for profiling an application

• Providing a CPU core mask to count the occurrence of a hardware event on

one or many cores

• Providing process Ids (PID) to monitor one or more processes. Some profil-

ers have provisions to input the commands to run an application directly; the

profiler will then monitor all the processes and child-processes associated with

that command

• Selecting the sampling frequency/count. There are two ways to sample the

events:

– Counting - The kernel will probe the HPCs after an event has occurred

for a specified number of times
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– Sampling - The kernel will probe the HPCs after a specified interval of

time

Profilers may also provide additional features to users. For example, AMD’s Code-

Analyst [Drongowski, 2008] and perf [de Melo, 2010] can also measure the % CPU

utilization and % memory utilization by an application.

In our implementation, we leverage Intel’s VTunes [Reinders, 2005] on the In-

tel architecture and AMD’s CodeAnalyst [Drongowski, 2008] (now CodeXL) on the

AMD architecture. AMD implemented CodeAnalyst on both, Windows and Linux

operating systems. CodeAnalyst provides a set of pre-defined profiling options to

profile an application. Table 2.1 shows all of the options.

Assess Performance Event-based Profiling

Instruction-based Profiling Time-based Profiling

Instruction-based Sampling Investigate L2 Cache Access

Investigate Branching Investigate Data Access

Investigate Instruction Access Thread Profiling

Table 2.1: Predefined Options to profile on AMD’s CodeAnalyst

Each option mentioned in table 2.1 has a set of predefined events that the profiler

will monitor on the HPCs. For example, the ‘Assess Performance’ profiling option

presents a detailed analysis of system performance for the application under consider-

ation [Drongowski, 2008]. The analysis includes a report on the instructions executed,

the data & instruction cache accesses, the Translation Lookaside Buffer (TLB) hits &

misses and Misaligned accesses in the main memory. To analyze such system features,

HPCs monitor the following events, as shown in table 2.2.

Similarly, the Time-Based Profiling (TBP) option identifies the hotspots in a pro-
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Retired Instructions Data Cache Accesses

Data Cache Misses Data Cache Misses

Data Cache Misses IData Cache Misses

Unified TLB Hit Unified TLB Miss

Misaligned access

Table 2.2: Events profiled for Access Performance Profiling on AMD’s
CodeAnalyst

gram [Drongowski, 2008]. Hotspots are the maximum time-consuming phases of an

application. The time-cost of a phase may be high due to potential memory bot-

tlenecks, execution penalties or lack of optimization opportunities. To identify such

hotspots, TBP tracks the following events, as shown in table 2.3:

CPU Clocks Instruction per Cycle

Data Cache Miss Rate Data TLB L1/L2 Miss Rate

Misalign Rate Branch Mispredict Rate

Table 2.3: Events profiled for Time-based Profiling on AMD’s Code-
Analyst

It is important to note that the events mentioned in Table 2.3 are preconfigured

and cannot be reprogrammed by a user. In TBP, CodeAnalyst configures a hardware

timer that periodically interrupts the program executing on a processor core. The

PMU samples the counters when a timer interrupt occurs. Post-processing in TBP

aggregates the raw sample into a histogram for easy visualization of the profile.

Event-based Profiling (EBP) counts the number of hardware events occurred

[Drongowski, 2008]. The PMU needs the following information to configure each

counter with the specified event :

• An event to be measured
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• An event count (sampling count)

• Choice of OS-space sampling, user-space sampling, or both

• Choice of edge- or level-detect.

PMU will use the above set of information to configure an event on one of the coun-

ters in the HPCs. Once the profiling starts, the kernel interrupts the counter as soon

as the count for an event reaches the specified sampling count. In EBP, there are no

preconfigured events. A user can choose any events from the pool of events provided

by the family of the processor. For examples, on the Intel machine the available

events to monitor depend on the microarchitecture (such as Nehalem, Haswell, and

Skylake) of the processors [Intel, 2011].

For our application, we need features from both, TBP and EBP; i.e., the capa-

bility of firing an interrupt once a timer is expired and the flexibility to monitor any

desired event. This flexibility provides an opportunity to identify the top events that

can predict the functional behavior of a program. Additionally, we desire to read

the samples after a given sampling frequency, rather than sampling the HPCs after

an event count has reached a certain sampling count. We impose such restriction

because our malware detector demands a time-series of the count of occurrence of

the architectural event. For example, suppose we monitor misaligned accesses with

sampling count set as 1000 sample/second. The sampling count entails that the pro-

filer will fetch the count of the number of misaligned accesses occurred once every

millisecond. To facilitate profiling hardware performance events in the time domain,

we introduce Savitor.
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2.2 Savitor

Savitor is a HPC-based profiler implemented on Windows OS. A user can deploy

Savitor on an AMD-based processor with any microarchitecture (such as Bulldozer

and Athlon). As mentioned in section 2.1, the profiler features profiling of an ap-

plication in the time-domain. Savitor uses AMD’s CodeAnalyst APIs [Drongowski,

2008] at the back end. The CodeAnalyst APIs provide a kernel level functionality to

configure the HPCs with a desired set of event and then sample the configured events

with a specified sampling frequency. With Savitor the sampling rate can be as fast as

3000 samples per second. The front end of the profiler is an user-interface to provide

different profiling options to the user. These options include:

• Provide the hardware events to monitor on the HPCs. The number of events

inputted can range from 1 to the number of hardware counters available per

core on the architecture.

• The sampling frequency. The sampling frequency determines the rate at

which the HPCs are interrupted to read the counter values

• The application to profile. The application can execute on command prompt

or could have a Graphical User Interface (GUI)

• The output file to store the sampled values. The samples are stored in plain-

text and hence can be directly be used for further analysis of the data

• Total time to profile. The profiling stops when this timer expires, or the appli-

cation terminates, whichever happens first.

One of the responsibilities of Savitor is to make sure that profiling of the appli-

cation is not dependent on the presence of other system processes. To achieve this,

we designed Savitor to leverage multithreading on the AMD processors. Each thread
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runs on a different core and is assigned a specific task. The first thread called the

application thread, spawns a new process with the application to profile. Savitor ex-

ecutes all the process and the subprocesses of the application on the first core of the

processor. The counting of the events on the HPCs occurs on a per-process basis.

As a result, HPCs monitor only the threads of the processes or the subprocess of the

application. Forcing an application to run on a single core enables the counters from

that core to capture the entire execution profile sequentially; else, the profiles of mul-

tithreaded applications will not capture the correct time sequence of the occurrence

of the events. Additionally, in a multi-threaded computing system, the resources

are shared amongst the processes running on the system. A scheduler manages the

scheduling of these processes. The scheduler assigns a priority to each process, and

higher priority processes usually get more resource usage time. Since it not possible

to alter the current scheduler implementation on Windows OS, Savitor sets these

threads to maximum possible priority-THREAD PRIORITY TIME CRITICAL be-

longing to the REALTIME PRIORITY CLASS [Center, 2017] on the Windows OS.

By assigning the highest priority, we ensure minimum preemption of the application’s

processes (and their threads) by other user-level processes. Only OS-spawned threads

can preempt the application’s processes. The second thread called the timer thread

is responsible for keeping track of time of profiling. Recall that, the user provides

a time in second to profile each application. After the time expires, Savitor termi-

nates both the profiling of the application. The timer thread runs on the second core.

This thread also manages a hardware timer. This hardware timer determines the

sampling frequency of the profiles. Once the timer expires, an interrupt is sent to

Savitor, asking to read the counter values. A third thread called the sampling thread,

on receiving an interrupt from the timer thread, uses the CodeAnalyst APIs to read

the counter values. Additionally, the sampling thread also fetches the timestamp at
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which the kernel sampled the HPCs. The next thread called the write thread gets

the counts from the sampling thread and writes it these sampled counts from the

HPCs to the file specified in user-input. The write thread logs the counts is - times-

tamp:event:count. The table 2.4 summarizes the job distribution of each thread in

Savitor.

Threads Thread Job

application thread
Spawns a new process to run the

application to profile

timer thread

Manages a hardware timer to achieve the
sampling frequency desired by the profiler.
Additionally, it also terminates profiling of
the application based on the time to profile

entered as an user-input

sampling thread
Issues a system call to the kernel using the

AMD CodeAnalyst APIs to sample the
counter values

write thread
Write the sampled values to a file of user

choice

Table 2.4: Task List of the threads in Savitor

In principle, the sampling of the HPCs and the writing of the sampled values to

a file are sequential tasks, even though Savitor assigns the two steps to two different

threads. This is because, unless the sampling thread fetches the count value, the

write thread cannot log the counts into a file. On the other hand, the until the

write thread finishes writing the samples to the output file, the sampling thread has

to hold the next fetched samples. To parallelize this process, we use a queue in the

memory to hold the samples from the HPCs temporarily. As soon as the timer thread

issues an interrupt to the sampling thread, the sampling thread fetches the timestamp

from the kernel and the counts from the HPCs. The sampling thread pushes the

timestamp, the sampled counts and the event monitored to the queue. This process is
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repeated at the rate of the sampling frequency specified by the user. The write thread

pops the three data fields (timestamp, events to monitor and the sampled counts)

to log and write them to an output file. Using the queue, the sampling and the

writing process are isolated. The queue is protected by a mutex to prevent pushing

and popping elements from occurring at the same instant. Parallelizing the process

of sampling the HPCs and writing the sample to the thread helped us achieve high

sampling frequency of 3000 Hz.
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2.3 Benignware and Malware Used

In our dataset, we profile 83 malware and 64 benignware. For benignware, we profile

applications and services that are commonly used by consumers. We use the Future-

marks PCMark [NIEMEL, 2005] benchmark suite to profile applications running on

a Windows machine. PCMark classifies its benchmarks into:

• Essentials

• Productivity

• Digital Content Creation

• Gaming

We use the benchmarks from the ‘Essentials’ and ‘Productivity’ class. The Essential

workload includes benchmarks like web browsing, one-to-one video calls, and video

Conferencing. The Productivity workloads include spreadsheets and other writing

related applications. We do not use benchmarks from the Digital Content Creation

and Gaming class because of the workloads in these groups test GPUs extensively. On

the other hand, we also profile web-based applications as benignware. In July 2017, a

survey from Netcraft [Netcraft, 2017] received responses from 1,767,964,429 sites from

6,593,508 web-facing computers. The study highlights the large consumer-base of web

users. According to a recent survey from PyCharm [PyCharm, 2016], 38% of web de-

velopers, use Python for web development. Another survey from PyCharm [PyCharm,

2016] shows Django is most popular web framework used by Python developers. The

numbers motivate us to use the services provided by Django as our benignware. To

explore further, we also include services from Tornado in our setup. Additionally, we

add a few features from SQLite to profile SQL-based applications. Table 2.5 shows

some of the services that we profile on the HPCs. Web-Based applications commonly

use one or more of these services.
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chameleon chaos
crypto
pyaes

django
template

regex
effbot

dulwich
log

unpack
sequence

fannkuch float genshi go regex v8 hexiom unpickle

hg
startup

html5lib
json

dumps
json loads r ichards logging

unpickle
list

mako
meteor
contest

nbody nqueens scimark pathlib
unpickle

pure
python

pickle
pickle
dict

pickle ist pidigits spambayes pyflate xml tree

python
startup

python
startup
no site

raytrace
regex

compile
spectral

norm
regex dna

tornado
http

sqlalchemy
declara-

tive

sqlalchemy
impera-

tive

sqlite
synth

sympy telco

Table 2.5: Django, Tornado and SQLite services used as benignware

For malware samples, we used the VirusTotal [Total, 2012] database to search for

all the malware with the following tags:

• File OS - Win32

• File Type - Win EXE

• Machine Type - Intel 386 or later, and compatibles

• Subsystem - Windows CMD

These tags are important to make sure that we can run the malware samples via

a command prompt on a 32-bit Windows 7 machine. The use of command prompt

to execute an application aids in automating the profiling of the malware samples.

Thus, we do not consider any malware samples whose subsystem is ‘Windows GUI.’

Our samples include a mix of malware such as worm, virus, and rootkits.
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2.4 Feature Extraction

Feature extraction aims at extracting informative, non-redundant, and low-dimensional

features from the HPCs. Each HPC-based profile is a multidimensional time series

of the hardware events monitored on the HPCs. The raw samples collected from the

HPCs cannot be used directly to train on the ML classifiers because the execution time

being different for any application results in a different number of samples recorded

across such applications. The inconsistency in the number of samples recorded by

the HPCs will lead to each profile in our dataset to have a distinct dimension. Only

an equidimensional dataset will facilitate comparison amongst the profiles. It thus

becomes a hard requirement for each sample in the dataset to be equidimensional. To

achieve an equidimensional dataset, we aggregate the raw samples from the HPC’s

into 32 binned-histograms and then normalize the bins. Each bin is an aggregation of

the number of samples recorded in a given time interval. The time interval is deter-

mined by the number of bins. Thus, histogram gives the probability distribution of

the occurrence of an event across the application’s entire execution time. Moreover,

the aggregation of raw samples decreases the sparsity of our dataset. The sparsity of

a matrix is the ratio of the number of zero elements in the matrix to non-zero ele-

ments [Golub and Van Loan, 2012]. Depending on the data set, sparsity may reduce

the information content of the dataset. In our case, a sparse data set comprising of

the profiles from the HPCs indicates low or no occurrence of the corresponding event.

A low count of a hardware event across the data set reduces the discriminating power

of that event. Aggregating the samples into histograms increases the bin value of the

bins by decreasing the number of zero elements in the dataset.

Additionally, during the execution of an application, the application behavior can

differ substantially. As a result, the profile of each application shows inconsistent vari-
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ation across the execution profile. For examples, assume that we measure L1-Data

Cache Hits to profile an application. During the entire execution of the application,

the number of L1-Data Hits can vary extensively based on the number of memory

accesses made by that application. The inconsistent variation in the profile makes

our data non-normal. In such situations, the ML classifiers with Gaussian kernel

functions (such as SVMs and Gaussian Process) [Gärtner, 2003] show a bias towards

features with more variation than the features with least variation. Gaussian kernels

measure the Euclidean distance between the features in the dataset [Vert et al., 2004].

Intuitively, a strong statistical analysis of a data favors a perfect bell-shaped curve

(normal distribution). Figure 2·1 shows a non-normal curve and a normal curve. To

transform our dataset from non-normal distribution to a more approximate normal

distribution, we use Power Transform.

(a) (b)

Figure 2·1: Variation in dataset: (a) A non-normal distribution #1;
and (b) Normal (Gaussian) Distribution #2. [University of Minnesota,
2017]
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2.5 Feature Selection

HPCs on both Intel and AMD architectures provide over 200 architectural events.

The ideal number of events to monitor simultaneously on the HPCs is equal to the

number of counters present on each core in the architecture. As mentioned in section

1.4, we can monitor any number of events on the HPCs while the PMU will sample

these events in a round-robin manner. Multiplexing multiple events will reduce the

sampling frequency of the profiler, which affects the prediction accuracy of the ML

classifiers. Subsequently, we monitor six events simultaneously on our AMD machines

and four events on the Intel machines.

While training the ML classifiers, we consider each bin in the profile as a feature.

The facility to monitor a large number of architectural events increases the number

of potential features that can be used to train the ML classifiers. On the Intel and

AMD machines, we can monitor 600 and 200 events respectively. On the other hand,

the number of counters in each architecture usually ranges from four (like in Intel’s

Nehalem microarchitecture) to eight (like in Intel’s Haswell microarchitecture and

AMD’s Bulldozer). We thus need a feature selection algorithm to select the best

events from the pool of all the available hardware performance events. Note that,

any number of events can be extracted using our feature selection algorithm.

Additionally, if each bin is considered a feature, then each event contributes 32

features in the dataset (since each event is a vector of 32 binned histogram). As

a result, the total number of features in the dataset will be equal to 128/192/256

for 4, 6 and 8 events monitored simultaneously. A dataset with a large number of

features and low training examples may cause the problem of over-fitting [Hawkins,

2004] and train on the ML classifiers inefficiently. Secondly, the storage cost of the
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data set during the training phase increases with the increase in number of features.

To estimate the memory requirements by our implementation, we observed that our

file was somewhere around 512 KB in size. In this scenario, each file stores traces

for an event monitored on the HPC for an application executing for a minute. An

application that is profiled using 8 events then requires 4 MB of memory. If we

profile 1000 application on a system, the profile will take 4GB of space. This cost

scales based on the number of applications in the dataset. The problems mentioned

above while using a large number of features calls for decomposition of the data set

using Principal Component Analysis (PCA). PCA yields the following advantages:

• Dimensionality reduction makes the dataset easier to comprehend by re-

searchers/ users

• Shorter training times on complex classifiers such as SVM with RBF kernel

• Dimensionality reduction avoids the curse of dimensionality [Köppen, 2000]

• Enhanced generalization by reducing over fitting of the samples while training

the ML classifiers

As mentioned in the section 1.4, PCA divides a multivariate dataset into compo-

nents that are linearly uncorrelated. To choose the top events, we first run a small

dataset of 10 benchmarks on both Intel and AMD machines for all the events possible.

We discard events that yield no samples for one or more applications in our dataset.

Next, we create datasets comprising of the profiles of each event. We apply PCA on

the datasets of the events, individually. The results from the PCA yields the per-

centage of variance explained by each component. Intuitively, we want high variance

ratio explained by each component. To this end, we sort the events in the order of

the variance explained by each component. Our best events show a total of more
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than 99% variance in the first two components itself. To this end, we chose the top

four events for the Intel machine and six events for the AMD machines. The number

of events chosen is in correspondence to the number of physical counters available

on each core. For training our ML classifiers, we use the eigenvalues of the first two

principal components of each of the chosen best events to obtain the transformed data

points as our features. As a result, we have reduced a 128/192/256 dimensional to

an 8/12-dimensional dataset on Intel and AMD machines respectively. Additionally,

PCA minimizes the redundancy in our dataset.
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2.6 Machine Learning Classifiers

In our implementation, we explore twelve classifiers to estimate their potential for

malware identification. The classifiers are trained to behave as binary classifiers.

The two classes are Malware and Benignware. We start training our dataset with

linear algorithms like KNN and SVM( Linear Kernel). Additionally, we also use com-

plex classifiers like SVMs (with Poly and RBF kernels), Decision Trees and Random

Forests, MLP, AdaBoost and Logistic Regression. Table 2.6 gives a complete list of

the classifiers used in our experimental setup. We use scikit-learn [Pedregosa et al.,

2011] machine learning tools to train our classifiers. We follow use the 70-30% split

to train our classifiers, i.e., 70% of the samples for training and the remaining 30%

for testing. We cross-validate our results using k-fold cross-validation [Refaeilzadeh

et al., 2009] technique with k = 10.

K Nearest
Neighbors

Decision Trees Random Forest Naive Bayes

SVM Linear SVM Poly SVM RBF SVM Sigmoid

Gaussian
Process

Logistic
Regression

AdaBoost
MultiLayer
Perceptron

Table 2.6: Supervised Machine Learning Classifiers
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Chapter 3

Evaluation

3.1 Experimental Setup

The end goal of this project is to test the capabilities of ML classifiers in differentiat-

ing between benign and malicious HPC based profiles. We setup our experiments on

Intel and AMD-based processor. For our Intel machine, we use the Intel I7-2600 pro-

cessor which belongs to the Sandy Bridge microarchitecture and contain four physical

counters per core. Additionally, the Intel machine had 4GB of RAM, private L1/L2-

cache, and a shared L3-cache. For the AMD machine, we use the AMD FX-8150

processor which belongs to the Bulldozer family of processors. A bulldozer microar-

chitecture has six physical counters per core. Each machine had 8GB of RAM, a

private L1-cache and shared L2-cache. Our experimental setup uses 32-bit Windows

7 OS. The main motivation for using Windows is the existence of a large dataset of

malware developed over the years.

The presence of other processes can affect the profiles collected by the HPCs since

all the processes share the same hardware resources of the processor. We make sure

that do not execute any other application in parallel to the application needed for

profiling. Therefore during profiling, only the processes spawned by the application,

the profiler and the OS are scheduled. Further, we run each application for 32 times

on the same machine. Here, the motivation is to analyze the reproducibility of an

HPCs based profile.
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We ensure that the malware samples are successful in executing their malicious

behavior by taking the following steps - we turned off both the Windows firewall set-

tings and the Windows Defender1. Additionally, we did not have any third-party AV

software installed on our system. To select top malware samples, we ran a preliminary

test on the AMD machine, with randomly downloaded 1000 malware samples. We

then time the execution of each malware sample and create a subset of all the malware

samples that terminate within a minute of execution. We profile this subset of mal-

ware samples on the HPCs using AMDs CodeAnalyst profiler. AMDs CodeAnalyst

features an option of monitoring %CPU utilization and %Memory Utilization while

executing a certain application. The motivation was that irrespective of the malware

behavior, it is bound to use some CPU resources and some memory (at the least,

the instruction memory). We ranked the Malware in the decreasing order of %CPU

Utilization and %Memory Utilization in the first minute of the malware execution.

Potentially a malware can entirely or partially compromise the OS it is running

on. To prevent profile creation on a faulty OS, we restore a clean copy of the OS after

every single execution of malware. We divide our hard disk into two partitions; one

partition has Windows 7 running all the benignware and malware. The second parti-

tion has Ubuntu 16.04 LTS running on it. The Linux partition stores a clean image of

the Windows partition. After every single run of malware, on the Windows partition,

the Linux partition restores the affected Window’s partition with the original clean

image. To automate the above process, we modify the Linux GRUB bootloader to

alternate booting into the two partitions on every restart. A restart signal is sent to

the Windows operating system after the execution of the malware completes or after

a minute, whichever happens first. As a result, the HPCs definitely monitor complete

1We do not include any malware sample that required an active Internet connection.
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or partial malware activity in the first minute of execution. After booting into the

Linux OS, a startup script restores the fresh copy of the Windows image into the

partition and then sends the power off signal with the restart option. The GRUB

bootloader will now boot into the Windows partition. Figure 3·1 provides the cycle

followed by the experimental setup to profile malware using HPCs.

Figure 3·1: Executing and Profiling Malware using Savitor and Intel’s
VTunes

The implementation stated in the above two paragraphs, i.e., running each ap-

plication sequentially, and restoring a clean copy of the Windows while executing

malware - causes a substantial increase in the total time to profile all applications in

our dataset. The total time to profile a single run of malware takes ≈ 6 minutes to

profile. To parallelize the profiling of the applications we create a cluster of the Intel

and AMD machines with each machine in the cluster having the exact same hardware

and software specifications. The Intel cluster has 12 nodes while the AMD cluster
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has 21 nodes. Note that the number of nodes does not hold any importance in our

implementation. Each cluster has a master node that is responsible for scheduling

the profiling task on the slave nodes. The master node uses RabbitMQ [Videla and

Williams, 2012] for scheduling the jobs to the slave nodes. RabbitMQ is an open-

source message broker that can schedule tasks from a master entity to the available

clients. Each slave node, after booting into the Windows partition informs the master

of its availability to profile an application. The master node then responds to the

slave with the next application to be scheduled.

On the AMD machines, we use Savitor to profile the applications. We set the

sampling frequency to 1000 Hz, and monitor six events simultaneously. On the Intel

machines, we use VTunes. On Windows 7 32-bit version, VTunes only provides com-

mand line interface for measuring hardware performance events. In our experiments,

we used runsa mode in VTunes, which records all the samples in the configured fre-

quency. Even on the Intel machines, we set the sampling rate to 1000 Hz. After

sampling the HPCs, we use VTunes report to extract the data into 32 bins with iden-

tical time intervals during the one-minute experiment. The profiles from the HPCs

are compressed using the Principal Component Analysis to eight components on the

Intel machine and 12 components on the AMD machine. Each event contributes two

1 features in our dataset, and the Intel’s SandyBridge and AMD’s Bulldozer archi-

tecture have four and six physical counters respectively. Table 3.1 summarizes the

experimental setup described in this section.

1Please refer section 3.2 to understand why each event contributes two components.
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Specifications AMD Setup Intel Setup

Processor AMD FX-8150 Intel I7-2600

Microarichitecture
Bulldozer (Family

15h)
Sandy-Bridge

RAM Size 8GB 4GB

OS Windows 7 32-Bit Windows 7 32-Bit

Partition Loader OS Ubuntu 16.04 LTS Ubuntu 16.04 LTS

#HP Counters 6 4

Profiler Savitor Intel VTunes

Sampling Frequency 1000Hz 1000Hz

Feature Size (Post-PCA) 12 8

Cluster Size 21 15

Table 3.1: Experimental Setup - Specifications
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3.2 Results after Feature Selection using PCA

Table 3.2 and 3.3 show the top four and six events selected for the Intel and AMD

experimental setups. These events show more than 99% of variance in their top two

components.

Event
Code

Event Description

0x04000
The number of accesses to the data cache for load and

store references

0x03000 The number of CLFLUSH instructions executed

0x02B00 Counts the number of SMIs received

0x02904
Counts the number of Load operations dispatched to

the Load-Store unit

0x02902
Counts the number of Store operations dispatched to

the Load-Store unit

0x02700 The number of CPUID instructions retired

Table 3.2: List of Top 6 AMD Events Code & Description

Event Code Event Description

L2 LINES OUT
DEMAND DIRTY

Dirty L2 cache lines evicted by demand

LOCK CYCLES
SPLIT LOCK UC

LOCK DURATION

Cycles in which the L1D and L2 are locked,
due to a UC lock or split lock

FP COMP OPS EXE
SSE PACKED

SINGLE

Counts number of SSE single precision
Floating Point scalar uops executed

L2 LINES OUT PF
DIRTY

Dirty L2 cache lines evicted by L2 prefetch

Table 3.3: List of Top 4 Intel Events Code & Description

To analyze the result of PCA, we can either use a Scree Plot or a Cumulative

Variation plot. The ideal pattern in a scree plot is a steep fall curve, followed by
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a bend and then a flat or horizontal line. We retain those components in the steep

curve before the first point that starts the flat line trend. Another way of analyzing

the same data is using the Cumulative Variation plot. The cumulative variation plot

shows the proportion of variance explained by each component. Thus, from the Cu-

mulative Variation plots, we select components that cumulatively explain a certain

percentage of variation. Refer figure 3·2 and 3·3. In these plots, the blue bar plots the

cumulative variation plot and the red dotted line shows the scree plot. We observe

that the events from table 3.2 and 3.3 require two components to explain a cumulative

variance of more than 99%.
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Figure 3·2: Scree and Cumulative Variation Plot for Intel’s Top 4
events
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Figure 3·3: Scree and Cumulative Variation Plot for AMD’s Top 6
events
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3.3 Metrics to measure Classification Accuracies

We measure the performance of our classifiers using the True Positive (TP), False

Positive (FP), True Negative (TN) and False Negative (FN) parameters. To define

each parameter, assume that we have a Binary classifier with classes A and B. With

respect to class A,

• True Positive: When a testing condition correctly predicts class A

• False Positive: When a testing condition predicts class B but the sample is

class A

• True Negative: When a testing condition correctly predicts class B

• False Negative: When a testing condition predicts class A but the sample is

class B

Based on the above parameters, the metrics used to analyze the ability of a clas-

sifier to predict the classes successfully are defined as follows:

• Precision (P): Is the ratio of number of positive testing samples classified into

a class to the total number of samples classified to the class, i.e., P = TP
TP+FP

• Recall (R): Is the ratio of number of positive testing samples classified into a

class to the total number of samples belonging to that class, i.e., R = TP
TP+FN

• F2-Score: Weighted Average of Precision and Recall. Gives the prediction

accuracy in classifying testing samples into a class.

• Support: Total number of occurrence of each class in the testing dataset

For an ideal binary classifier, the precision, recall (also called sensitivity) and

F2-Score is 1.0 implying the perfect true positive rate. An ideal classifier classifies
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all the samples into their respective classes. On the contrary, recall and precision

value decreases when the false negative or false positive rate increases, i.e., when the

classifier identifies the testing sample into the wrong class.

Additionally, we plot the Receiver Operating Characteristics (ROC) curve for each

classifier. A ROC curve plots the true positive rate versus the false positive rate.

Mathematically speaking, the false positive rate is (1− recall) [Wikipedia, 2017b]. A

model that is able to fit the data points in the classifier accurately lies in the top left

corner of the ROC curve [Sokolova et al., 2006]. Such models show true positive rate

of ≈ 1.0 and false positive rate of ≈ 0.0. As the curve comes closer to 45◦, the less

accurate the machine learning model becomes. Additionally, the area under the curve

is a measure of prediction capability of the classifier, i.e., how well the test separates

the two classes.
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3.4 Classification Results - AMD

Table 3.4 shows the four metrics to measure the classification accuracies for each

classifier while classifying the malware and benignware samples in our testing data

set. Figure 3·4 plots the precision and recall value for each classifier. For benignware

classification, all classifiers yield precision & recall >0.80 and >0.80 respectively. As

a result, the F2-Score for benignware is >0.90 for all the classifiers. For malware clas-

sification, all the classifiers yield high precision of >0.75 except Naive Bayes. High

precision shows success in classifying malware and benignware samples. However, the

classifiers also produce recall values ranging from 0.74 to as low as 0.10. Low recall

value shows that classifiers label malicious sample as benignware.
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Classifier Class Precision Recall
F2-

Score
Support

KNN
Benignware 0.95 0.98 0.96 559
Malware 0.86 0.73 0.79 112
Average 0.93 0.94 0.93 671

DECISION TREE
Benignware 0.94 0.95 0.95 559
Malware 0.75 0.72 0.74 112
Average 0.91 0.91 0.91 671

RANDOM FOREST
Benignware 0.94 0.97 0.96 559
Malware 0.83 0.71 0.76 112
Average 0.92 0.93 0.92 671

NEURAL NETWORK
Benignware 0.86 0.99 0.92 559
Malware 0.74 0.18 0.29 112
Average 0.84 0.85 0.81 671

ADABOOST
Benignware 0.93 0.93 0.94 559
Malware 0.75 0.64 0.69 112
Average 0.90 0.90 0.90 671

NAIVE BAYES
Benignware 0.86 0.98 0.91 559
Malware 0.65 0.28 0.35 112
Average 0.80 0.83 0.81 671

LOGISTIC REGRESSION
Benginware 0.88 0.99 0.93 559
Malware 0.79 0.12 0.21 63
Average 0.86 0.87 0.83 671

LINEAR SVM
Benginware 0.85 1 0.92 559
Malware 0.92 0.10 0.18 112
Average 0.86 0.85 0.79 671

POLY SVM
Benginware 0.84 1.00 0.91 559
Malware 1 0.15 0.10 112
Average 0.87 0.84 0.78 671

RBF SVM
Benginware 0.85 1.00 0.92 559
Malware 0.91 0.19 0.16 112
Average 0.86 0.85 0.79 671

Sigmoid SVM
Benginware 0.85 1.00 0.92 559
Malware 0.881 0.12 0.22 112
Average 0.85 0.85 0.80 671

Gaussian Process
Benignware 0.95 0.96 0.95 559
Malware 0.78 0.74 0.76 112
Average 0.92 0.92 0.92 671

Table 3.4: Classifier results in terms of Precision, Recall, F2-Score
and Support for each class on the AMD machine. [F2-Score is weighted
harmonic mean for each class, whereas the Average is weighted mean of
Precision, Recall, and F2-Score values for benignware and the malware
classes individually.]

To explain why we get such results, refer figure 3·5. We plot a two-dimensional
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representation of the original eight-dimensional data space from the AMD setup. Ad-

ditionally, it also shows the training and testing samples extracted randomly using

70% and 30% split. The plot is used just for the visualization of the data space and to

explain the observed classification results. For decomposing the twelve-dimensional

dataset, we use scikit’s implementation of Manifold decomposition using multidimen-

sional scaling [Kruskal, 1964]. In the plot, the blue triangle represents the benignware

samples, whereas the orange asterisk represents the malware samples. The data space

comprises of benignware samples spread across whereas the malware samples accu-

mulate in a small cluster. The clustering of malware samples is because of the events

monitored on the HPCs while profiling the malware samples.
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Figure 3·5: 2D representation of the entire Data space, the training
data space and the testing data space.

Refer table 3.2 for the top events measured on the AMD setup. Three of the six

events measure the number of load and stores references dispatched to the load-store

unit. The next two instructions track the number of CLFLUSH and CPUID instruc-

tions executed by a program. A program can flush a cache line from the L2-cache

using the CLFLUSH instruction. The CPUID instruction provides details about the

hardware to an user-level application. Two other event measure the number of Sys-

tem Management Interrupts(SMI) issued to the kernel. SMI interrupts to enter the

system into the System Management Mode (SMM). SMM is a part of the firmware

used to debug the hardware on the processor’s motherboard [Favor and Weber, 2000].

Embleton [Embleton et al., 2013] demonstrate how they deployed rootkits in the SMM
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code. The clustering of malware samples may occur due to multiple reasons. Malware

samples may regularly issue CLFUSH instructions to evict a cache line [Yarom and

Falkner, 2014] for malicious purpose. Secondly, caching enables a program to mini-

mizes the number of references to the external memory. Moreover, a malware sample

that resides in the system’s memory also tries to reduces the number of accesses to

external memory to evade detection [Ligh et al., 2014]. The profile of such malware

samples may see an overlap in the number of load-store references. Thirdly, there is

no alternative to enter the SMM, except by issuing an SMI instruction. The profiles

from the HPCs depict no inherent difference amongst the malware samples. On the

contrary, the benignware samples in our data set perform a myriad of tasks resulting

in different memory usage. The inconsistent memory utilization of the benignware

yields a distinct number of load-store references, CLFLUSH instructions or request

for hardware information via the CPUID instruction. As a result, the benignware

samples spread across the data space. The clustering of malware samples and the

widespread benignware samples in the data-space cause mispredictions while classi-

fying malware samples. The classifiers may tag all the benignware sample that lie

close to the cluster, as malware samples or the malware samples as benignware.

Further in figure 3·6 we observe that simple linear classifiers such as Linear SVMs

have an area under the ROC curve of ≈ 70%for the malware class. As a result, an

increasing true positive rate will almost linearly increase the false positive rate. As a

result, Linear SVM was unsuccessful in efficiently fitting our data set. Additionally,

for complex classifiers such as Decision Trees, Random Forests, AdaBoost Classifier

and Neural Network (using MultiLayer Perceptron) the ROC curve is >80% imply-

ing small variation in false positive rate on increasing the true positive rate. Such

classifiers with high area under the curve indicate a well-trained model on our data-set.
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3·6(b), shows the prediction accuracy of K-Fold validation technique with k =

10 and the standard deviation (SD) of the results. The prediction accuracy of all

the classifiers match the cross-validation results. Additionally, the cross-validation

shows an SD of < 0.1, implying no variation in the prediction score in 10-fold Cross-

validation.
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Figure 3·6: a. ROC Curve for all the classifiers. b. ROC-Area Under
Curve (AUC) and Cross-validation score for all the classifiers
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3.5 Classification Results - Intel

For the Intel setup, we use the same strategy to explain our results as in section

3.4.Table 3.5 shows the four metrics to measure the classification accuracies for each

classifier while classifying the malware and benignware samples in our testing data

set. Note the precision and recall for both benignware and malware classes for each

classifier. For benignware classification, all classifiers but Gaussian Naive Bayes yield

precision & recall >0.85. As a result, the F2-Score for benignware is >0.90 for all

the classifiers except for Naive Bayes and SVM with the linear kernel. For malware

classification, all the classifiers yield high precision of more than ≈0.80 except for

Naive Bayes and SVM Trees classifiers. However, the classifiers also produce recall

values ranging from 0.86 to as low as 0.12.

Figure 3·7: Precision and Recall Scores for classification of benignware
and Malware Classes for the Intel’s experimental setup.
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Classifier Class Precision Recall
F2-

Score
Support

KNN
Benignware 0.88 1.0 0.94 556
Malware 0.89 0.18 0.30 90
Average 0.88 0.88 0.85 646

DECISION TREE
Benignware 0.89 0.99 0.94 556
Malware 0.78 0.23 0.36 90
Average 0.87 0.88 0.86 646

RANDOM FOREST
Benignware 0.88 0.99 0.94 556
Malware 0.82 0.20 0.32 90
Average 0.88 0.88 0.85 646

NEURAL NETWORK
Benignware 0.88 1.00 0.93 556
Malware 0.92 0.12 0.22 90
Average 0.88 0.88 0.83 646

ADABOOST
Benignware 0.89 1.00 0.94 556
Malware 0.95 0.22 0.36 90
Average 0.90 0.89 0.86 646

NAIVE BAYES
Benignware 0.95 0.47 0.63 556
Malware 0.21 0.86 0.33 90
Average 0.85 0.53 0.59 646

LOGISTIC REGRESSION
Benginware 0.88 0.99 0.93 556
Malware 0.79 0.12 0.21 63
Average 0.86 0.87 0.83 646

LINEAR SVM
Benginware 0.99 0.24 0.39 556
Malware 0.17 0.98 0.29 90
Average 0.87 0.35 0.38 646

POLY SVM
Benginware 0.88 0.90 0.89 556
Malware 0.28 0.23 0.25 90
Average 0.80 0.81 0.80 646

RBF SVM
Benginware 0.88 1.00 0.89 556
Malware 1.00 0.14 0.25 90
Average 0.90 0.88 0.84 646

Sigmoid SVM
Benginware 0.87 0.88 0.88 556
Malware 0.21 0.20 0.21 90
Average 0.78 0.78 0.78 646

Gaussian Process
Benignware 0.89 1.00 0.94 556
Malware 0.95 0.20 0.33 90
Average 0.89 0.89 0.85 646

Table 3.5: Classifier results in terms of Precision, Recall, F2-Score
and Support for each class on the Intel machine

To explain why we get such results, refer figure 3·8. Similar to results on the

AMD setup as seen in figure 3·5, the data space comprises of widespread benignware

samples and clustered malware samples.
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Figure 3·8: 2D representation of the entire Data space, the training
data space and the testing data space.
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Refer table 3.2 for the top events measured on the Intel setup. Two of the four

events measure the number of times L2-cache line are evicted. One event measures

the number of SSE single precision floating point instructions executed. The cluster-

ing occurs because the malware samples have a similar memory utilization or perform

a similar number of floating point calculations. The similarity in memory access by

the malware samples results in a similar profile for all such malware specimens. On

the contrary, the benignware sample performs a myriad of tasks resulting in different

memory usage and floating point tasks. The benignware samples, thus spread across

the data space.

Further in figure 3·9, we plot the Receiver Operating Characteristics (ROC) curve

for each classifier. From figure 3·9 we observe that simple linear classifiers like SVMs

have an area under ROC curve < 70% for the malware class and complex classifiers

such as Decision Trees and AdaBoost Classifier, the ROC curve is > 80%. The results

show that incapability of the linear classifiers to fit our dataset into a model and the

need for complex classifiers.

3·9(b), shows the prediction accuracy of K-Fold validation technique with k = 10

and the standard deviation (SD) of the results. The cross-validation result shows an

SD of < 0.1, implying no variation in the prediction score in 10-fold Cross-validation.
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Figure 3·9: a. ROC Curve for all the classifiers. b. ROC-Area Under
Curve (AUC) and Cross-validation score for all the classifiers
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Chapter 4

Conclusions

4.1 Summary of the thesis

In this thesis, we present an assessment to advice against the usage HPCs and ML

classifiers to classify the benign and malware applications. We intend to stress the

fact that, HPCs being low-level hardware components do not capture any behavioral

semantics of a high-level program. In our assessment, we use Savitor and Intel’s

VTunes to profile application on HPCs. Our dataset contains applications that are

commonly used real-life applications as benignware and pre-existing known malware.

Moreover, we apply power transform our data to convert non-normally distributed

samples into normally distributed samples. Then, we use PCA to select the top four

events that best distinguishes across applications in our dataset. Finally, we train

our dataset on twelve classifiers that include both simple linear classifiers to complex

classifiers such as MultiLayer Perceptron. The prediction accuracy of an ML classifier

to detect benignware is is more than 85% across all ML classifiers. Linear classifiers

such as Linear SVMs and Naive Bayes were not able to fit a model around our dataset.

This calls for more complex classification techniques. However, all the classifiers failed

to flag known malicious application as malware. The results show that while testing

the malware samples, the recall value of all the classifiers is a ≈20%. The results

we show are on a dataset that has 83 malware samples and 64 benign samples. The

failure to detect a small dataset, as such, begs us to consider using HPCs as malware

detectors on a larger dataset. The failure to predict malware effectively forces us
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to conclude that HPCs are incompetent in capturing the high-level semantics of an

application.
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4.2 Future Work

In this research, we evaluate the performance of twelve classifiers in their attempt to

differentiate between benign and malicious software using the profiles from the HPCs.

We base our results on Intel and AMD processors. Additionally, we plan to implement

our system on Android-based Devices as well. Demme [Demme et al., 2013] reported

a classification accuracy ranging from 100% to 25% across a wide variety of Android

malware. They enlist samples that successfully evade their proposed systems calls for

a more thorough analysis of the proposed system. Moreover, the proposed system of

malware detection using HPCs are deployed to detect specific malware families such

as rootkits. We should inform the security community of the downfalls of using HPCs

for malware detection.

In our implementation, we used 83 malware samples and 63 benign samples. It is

not clear how the classifiers would fare in case of a larger dataset of both malware and

benign samples. Intuitively, a small data space such as ours, was dense enough for

80% of the malware samples to evade detection, then a larger data space will increase

the false positive and false negative rate subs
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Using profilers like Savitor and VTunes, we profile an application on a single core

to create a time-series profile of the application. Modern processors support hyper-

threading and applications leverage this feature to parallelize their payload. The

currently, implemented systems will not yield a time-series profile of the application

in case of a hyper-threaded application. A novel system needs to be evaluated to

incorporate hyper-threading such that HPCs can still construe a time-series profile of

an application.

In summary, we would like to evaluate the proposed system of malware detection

using HPCs in the following scenarios:

• Implement and test the proposed system on an Android-based Device

• Evaluate the system on a larger data set

– Say, 1000 samples of Benignware and 1000 samples of Malware

• Evaluate the system for Hyper-threaded processors
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