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ABSTRACT 

Clinically tractable diagnostics must be low-cost, rapid, sensitive, easy to use, and 

adaptable to new targets. With its rational design, synthetic biology holds promise for 

developing diagnostic technologies that can address these needs. In particular, progress in 

synthetic biology has led to improved circuit-building abilities and a large collection of 

biomolecular sensors. However, these technologies fundamentally require transcription 

and translation, limiting their applicability to cellular contexts 

In vitro cell-free expression systems that contain transcription and translation 

machinery provide the environment necessary for biologically-based technologies to 

function independently of living cells. Our lab recently developed a paper-based system 

for cell-free gene expression, which utilizes cell-free extracts that are freeze-dried on to 

paper and other porous substrates to allow for long-term preservation of synthetic circuits 

at room temperature. Our platform represents a scalable, cost-effective technology that is 

easy to use and is compatible with synthetic biology tools. 

In this dissertation, I present several advancements to this diagnostic platform that 

are geared towards improving the system’s clinical tractability. In the context of 

developing a diagnostic for Zika virus that could be deployed in low-resource settings, I 
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demonstrate improvements to diagnostic sensitivity and rapid sample processing that 

allow for detection of low femtomolar quantities of active virus directly from blood 

plasma samples. I also describe preliminary results towards a streamlined one-pot 

amplification-sensing reaction, and propose the development of a paper-based diagnostic 

for antibiotic susceptibility testing.  
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CHAPTER ONE: BACKGROUND & INTRODUCTION 

1.1 Synthetic biology 

Synthetic biologists have developed tools for rationally engineering biological 

systems by studying and repurposing the design principles that underlie native gene 

networks (Khalil and Collins 2010; Cameron, Bashor et al. 2014). Early efforts in 

synthetic biology focused on the development of model transcriptional networks to 

recapitulate and understand native gene regulation (Elowitz and Leibler 2000; Gardner, 

Cantor et al. 2000; Basu, Gerchman et al. 2005; Stricker, Cookson et al. 2008). These 

works advanced our ability to engineer complex behavior, such as memory encryption 

and oscillatory gene expression, and catalyzed advancements in the rapid design and 

implementation of synthetic gene networks (Hasty, Dolnik et al. 2002; Canton, Labno et 

al. 2008; Gibson, Young et al. 2009; Lu, Khalil et al. 2009; Salis, Mirsky et al. 2009; 

Danino, Mondragon-Palomino et al. 2010; Egbert and Klavins 2012; Casini, Storch et al. 

2015; Chen, Kim et al. 2015). The field has since moved towards repurposing natural 

biological processes for tunable and targetable synthetic gene regulation (Qi, Larson et al. 

; Isaacs, Dwyer et al. 2004; Mutalik, Guimaraes et al. 2013; Green, Silver et al. 2014). 

The innate biochemistry of microorganisms has been harnessed in the biosynthesis of 

organic compounds, such as the antimalarial drug artemisinin (Ro, Paradise et al. 2006) 

and various opioids (Galanie, Thodey et al. 2015). Strides have also been made in 

engineering genetic networks for direct clinical applications, such as customized cancer 

treatments and nonconventional cell therapies (Ruder, Lu et al. 2011; Weber and 

Fussenegger 2012).  
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1.2 Diagnostic applications for synthetic biology tools 

Synthetic biology platforms have been particularly useful for medical diagnostic 

purposes (Slomovic, Pardee et al. 2015). Biomolecular genetic circuits have been 

developed for whole-cell bio-sensing and in vivo diagnostics, including tumor imaging 

and mammalian gut monitoring. To further these diagnostic applications, natural 

biomolecular sensing capabilities have been mined and utilized as relevant reporting 

tools. For example, natural E. coli nitric oxide sensors have been reconfigured to allow 

for in vivo detection of nitric oxide levels that are indicative of inflammation (Archer, 

Robinson et al. 2012). Synthetic biologists are actively working to expand the repertoire 

of molecular sensors. The development of chimeric transcription factors that connect a 

desired signal to a known transcriptional output has proven successful in engineering 

novel ligand-inducible expression systems that respond to factors such as amino acids 

and light (Utsumi, Brissette et al. 1989; Tabor, Salis et al. 2009; Shis, Hussain et al. 

2014). This progress has led to a large collection of DNA, RNA, and protein-based 

sensors for many industrially and clinically relevant inputs, including small molecules 

and pathogen markers. Clinically tractable diagnostics must be low-cost, rapid, sensitive, 

easy to use, and adaptable to new targets. With their rational design, synthetic biology 

platforms hold promise for diagnostic technologies that can address these needs. 

 

 1.2.1 Bacteriophage-based diagnostics 

Phages are ideal vectors for diagnostic applications due to their highly specific 

targeting capabilities (Schofield, Sharp et al. 2012; Tawil, Sacher et al. 2014). Early 
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phage diagnostics took the form of plaque assays that identified bacteria based on their 

clearance by known phage species (Lu and Koeris 2011; Smartt and Ripp 2011; 

Schofield, Sharp et al. 2012; Tawil, Sacher et al. 2014). With time, phage-based 

diagnostics evolved to rely on genetic modifications to enhance signal amplification and 

shorten the time required to obtain a readable output (Lu, Bowers et al. 2013).  

 

Phage infection markers have taken the form of standard fluorescent, 

bioluminescent, and colorimetric readouts (Figure 1) (Loessner, Rees et al. 1996; Tanji, 

Furukawa et al. 2004; Schofield, Molineux et al. 2009; Smartt and Ripp 2011; Schofield, 

Bull et al. 2012; Tawil, Sacher et al. 2014). In other approaches, external phage proteins 

have been genetically modified to allow for detection through auxiliary methods. In a 

demonstration of this methodology, Edgar et al. engineered phages to express a 

biotinylated capsid protein for direct detection by streptavidin-coated quantum dots, 

allowing identification of as few as ten bacterial cells per milliliter in one hour (Edgar, 

McKinstry et al. 2006). While modern-day clinical use of phage-based therapeutics has 

been dampened by strict regulatory requirements, commercial diagnostic applications of 

phages have had considerable success, with several such platforms available for use in 

laboratory and food-industry settings (Lu and Koeris 2011; Schofield, Sharp et al. 2012; 

Lu, Bowers et al. 2013; Nakonieczna, Cooper et al. 2015).  

 



 

 

4 

 
 

Figure 1. Engineered bacteriophage for diagnostic applications.  

(A) The ability of phage to infect and replicate within a host microorganism has made them a 

popular technology platform. An engineered phage can induce the expression of heterologous 

constructs in a specific population of microbes for therapeutic and diagnostic applications. (B) By 

inducing microbial expression of reporter proteins, an engineered phage can facilitate 

bioluminescence that enables precise and sensitive detection of a microorganism. Figure taken 

from (Braff, Shis et al. 2016).  

 

1.2.2 Synthetic probiotics as living diagnostics 

Although most diagnostics have been developed for in vitro use, there has been a 

push toward the development of in vivo living diagnostic platforms. Much like 

therapeutic probiotics that secrete antimicrobial agents upon pathogen detection, 

diagnostic bacteria could persistently monitor the microbiome for a particular cue and 

respond with reporter expression.  

 

Diagnostic probiotics must be able to encode long-term synthetic memory. A 

memory device ensures that the diagnostic microbe will “remember” transient 
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environmental events even after the trigger has disappeared, and that the microbe will 

convey accurate diagnostic information over the course of multiple cellular generations 

(Figure 2). Early efforts to engineer genetic memory focused on the creation of bistable 

toggle switches that flipped between two protein expression states in response to 

exogenous inducers (Gardner, Cantor et al. 2000), and native cellular networks such as 

the SOS signaling pathway responding to DNA damage (Kobayashi, Kærn et al. 2004). 

More recently, efforts to engineer biological memory transitioned to the use of DNA 

modification in order to overcome inherent stochasticity in gene expression and relieve 

the metabolic load imposed on the host microbe in sustaining circuit operation. 

Orthogonal integrases that can irreversibly flip DNA segments have been engineered to 

encode genetic memory (Friedland, Lu et al. 2009; Yang, Nielsen et al. 2014), and 

recombinase-based systems have been used to record the magnitude and duration of 

trigger exposure through regulated co-expression of recombinase and retron elements that 

modify genomic DNA (Farzadfard and Lu 2014).  

Improvements in the design of synthetic cellular memory have led to the prospect 

of building reliable diagnostic probiotics for use in vivo. Researchers have endowed E. 

coli with a synthetic memory circuit that enables probiotic tracking of antibiotic exposure 

from within a mouse gut (Kotula, Kerns et al. 2014), and the human commensal microbe 

Bacteroides thetaiotamicron, has been instilled with integrase-based memory constructs 

that can operate in vivo to track external stimuli (Mimee, Tucker et al. 2015).  These 

efforts demonstrate the budding feasibility of using engineered probiotics to persistently 

monitor the gut microbiome.  
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Thus far, most synthetic probiotics have been proof-of-concept models designed 

to respond to exogenous inducers rather than to host factors indicative of a diseased state 

or pathogen presence (Holmes, Kinross et al. 2012). Mining natural bacterial pathways 

can help develop more relevant sensing capabilities, such as the detection of nitric oxide 

levels that are indicative of gut inflammation (Archer, Robinson et al. 2012). To further 

expand the repertoire of pathogen sensors, development of chimeric transcription factors 

that connect a desired signal to a known transcriptional output may be a productive 

strategy (Shis, Hussain et al. 2014; Chan, Lee et al. 2016). Such efforts have been 

successful in engineering novel ligand-inducible expression systems that respond to 

factors such as amino acids and light (Utsumi, Brissette et al. 1989; Tabor, Salis et al. 

2009). Expanding the ability of engineered probiotics to sense their environment will 

greatly improve their clinical relevance as diagnostic and therapeutic agents.  

 

 
 

Figure 2. Synthetic probiotics for diagnostic applications.  

(A) Engineered microorganisms can be deployed in vivo to provide prophylactic, therapeutic, and 

diagnostic benefits. (B) By modifying probiotic microbes to express synthetic gene circuits that 

facilitate cellular memory, probiotics can be used to persistently monitor the host and report on 

the presence of a molecule or signal of interest. Figure taken from (Braff, Shis et al. 2016). 
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1.2.3 Cell-free and paper-based platforms 

Although phages and engineered probiotics are suitable for a wide range of 

diagnostic applications, other biologically-based diagnostic platforms are less tractable in 

vivo. Progress in synthetic biology has led to improved circuit-building abilities and a 

large collection of RNA and DNA sensors; however, these technologies fundamentally 

require transcription and translation, limiting their applicability to cellular contexts 

(Isaacs, Dwyer et al. 2004; Khalil, Lu et al. 2012; Green, Silver et al. 2014; Slomovic and 

Collins 2015).  

In vitro cell free expression systems that contain transcription and translation 

machinery provide the environment necessary for biologically-based technologies to 

function independently of living cells (Carlson, Gan et al. 2012). Cell-free transcription 

and translation (TXTL) systems have been used for in vitro protein synthesis for research 

purposes for many years (Hodgman and Jewett 2012; Smith, Wilding et al. 2014). These 

systems may be comprised of crude cell extract or they may be reconstituted de novo 

from purified cellular transcription and translation enzymes. Though cell-free systems are 

available commercially, there has been a recent effort to ease in-house production of 

crude cell extracts in laboratory settings (Sun, Hayes et al. 2013; Kwon and Jewett 2015).  

Cell free protein synthesis (CFPS) expression systems have recently been 

recognized for their ability to support more complicated gene networks (Roberts and 

Paterson 1973; Endo and Sawasaki 2006; Hodgman and Jewett 2012; Smith, Wilding et 

al. 2014). Synthetic gene circuits have been shown to operate well within these systems, 

often with the added benefit of reduced cross-talk and minimal off-target effects. Further, 
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the more precise control of conditions offered by in vitro expression systems has enabled 

the high-throughput tuning of synthetic constructs (Hodgman and Jewett 2012; Sun, 

Hayes et al. 2013; Sun, Yeung et al. 2013; Smith, Wilding et al. 2014). Despite these 

advancements, the application of cell-free methods has been limited to laboratory settings 

due to strict storage requirements, including the need for refrigeration.  

To mitigate these constraints, Pardee et al. developed a paper-based system for 

cell-free gene expression, providing a simple platform for the real-world application of 

engineered genetic systems (Figure 3) (Pardee, Green et al. 2014). This paper-based 

technology utilizes cell-free extracts freeze-dried on paper and other porous substrates to 

allow for long-term preservation of synthetic circuits at room temperature. The system is 

low-cost, at about $0.04 to $0.65 per reaction, and can be interfaced with an electronic 

optical reader for optimal performance in low-resource settings (Figure 3B). In a 

noteworthy demonstration, RNA toehold switch sensors were used to develop a paper-

based colorimetric diagnostic that was able to rapidly detect and distinguish between the 

Sudan and Zaire Ebola strains from the 2014 outbreak (Green, Silver et al. 2014; Pardee, 

Green et al. 2014; Carroll, Matthews et al. 2015).  The paper-based system has also been 

shown to integrate well with non-RNA sensor modalities such as ligand-inducible 

promoters and FRET-based nanosensors, and to allow for complex circuitry that encodes 

molecular-based logic. This platform is primed for antimicrobial diagnostic development 

and represents a scalable, cost-effective technology that is sensitive, easy to use, and 

compatible with synthetic biology tools. 
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Figure 3. Cell-free paper-based platform for real world applications of synthetic gene 

networks.  

(A) Components necessary for transcription and translation are freeze-dried along with synthetic 

gene networks on to a paper substrate. These components can be stored at room temperature and 

utilized for diagnostic purposes upon rehydration. (B) A low-cost electronic optical reader was 

developed to read and process colorimetric signals from cell-free paper-based reactions. (C) 

Toehold switches are second-generation riboregulator elements that can be designed to sense full-

length mRNA sequences. In the inactive complex, translation of the output gene is inhibited by 

secondary structure of the toehold. When target mRNA is present, the toehold switch adopts an 

alternate conformation that allows for translation of the reporter gene. Reporter genes can take the 

form of fluorescent and colorimetric outputs. Figure modified from (Pardee, Green et al. 2014). 
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1.3 Dissertation overview 

In this dissertation I describe several advancements to the paper-based cell-free 

platform that are geared towards improving the system’s clinical tractability.  

The next two chapters (Chapters 2 and 3) focus on developments in diagnostic 

sensitivity and sample processing in the context of building a diagnostic for Zika virus 

that could be deployed in low-resource settings. As such, the next section of this chapter 

(Section 1.4) provides background information on the Zika diagnostic that will be 

referenced throughout the dissertation. All text and figures describing the Zika work are 

adapted from (Pardee, Green et al. 2016).   

The following chapters focus on next-step advancements to the paper-based 

platform, including developing a one-pot amplification-sensing reaction to improve both 

speed and sensitivity (Chapter 4) and a proposal for developing a paper-based diagnostic 

for antibiotic susceptibility testing (Chapter 5). All methods are described in detail in 

Chapter 6. 

 

1.4 Rapid, low-cost detection of Zika virus using programmable biomolecular 

components 

The emerging outbreak of Zika virus in the Americas has brought this once 

obscure pathogen to the forefront of global healthcare. Mostly transmitted by Aedes 

aegypti and Aedes albopictus mosquitoes, Zika virus infections have been further spread 

by international travel, and have expanded to large, heavily populated regions of South, 

Central and North America (Bogoch et al., 2016). Correlations between the increase in 
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Zika virus infections and the development of fetal microcephaly (Calvet et al., 2016; 

Galindo-Fraga et al., 2015; Victora et al., 2016) and Guillain–Barré syndrome have 

resulted in the declaration of a public health emergency by the World Health 

Organization (WHO) and a call for fast-tracked development of Zika virus diagnostics 

(Oehler et al., 2014; Smith and Mackenzie, 2016; WHO, 2016). 

Synthetic biology is an emerging discipline that has great potential to respond to 

such pandemics. The increasing ability of synthetic biologists to repurpose and engineer 

natural biological components for practical applications has led to new opportunities for 

molecular diagnostics (Kotula et al., 2014; Lu et al., 2013; Slomovic et al., 2015). We 

previously developed two biotechnologies that dramatically lower the cost of and 

technical barriers to the development of synthetic biology-based diagnostics. The first 

technology, programmable RNA sensors called toehold switches, can be rationally 

designed to bind and sense virtually any RNA sequence (Green et al., 2014). The second 

technology, a freeze-dried, paper-based, cell-free protein expression platform, allows for 

the deployment of these toehold switch sensors outside of a research laboratory by 

providing a sterile and abiotic method for the storage and distribution of genetic circuits 

at room temperature (Pardee et al., 2014). We combined these technologies to create a 

platform for rapidly and inexpensively developing and deploying diagnostic sensors.  

In the context of the Zika virus outbreak, the paper-based sensors offer a solution 

to the critical challenges facing diagnosis of the virus. Standard serological approaches, 

such as antibody detection, are limited in diagnostic value due to cross-reactivity in 

patients that have previously been infected by other flaviviruses circulating in the region. 
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As a result, accurate diagnosis requires nucleic acid-based detection methods, such as 

PCR and isothermal nucleic acid amplification (Lanciotti et al., 2008; de M Campos et al., 

2016; Tappe et al., 2014; Zammarchi et al., 2015). However, such techniques are 

relatively expensive, require technical expertise to run and interpret, and utilize 

equipment that is incompatible with use in remote and low-resource locations where 

surveillance and containment are critically needed.  

Here, we demonstrate the rapid development of a diagnostic workflow for 

sequence-specific detection of Zika virus that can be employed in low-resource settings 

(Figure 4). We have addressed limitations in the practical deployment of nucleic acid-

based molecular diagnostics by combining isothermal RNA amplification with toehold 

switch sensors on our freeze-dried, paper-based platform. We automate the amplification 

primer and sensor design process using in silico design algorithms and demonstrate a 

high-throughput pipeline to assemble and test 48 Zika sensors in less than seven hours. 

Clinically relevant sensitivity is attained using our amplification and detection scheme, 

and we report no significant detection of the closely related Dengue virus. To further 

increase diagnostic capabilities, we develop a CRISPR/Cas9-based module that 

discriminates between Zika genotypes at single-base resolution. Finally, we employ a 

simple sample-preparation protocol to reliably extract viral RNA, and demonstrate robust 

detection with this scheme on active Zika virus samples. 
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Figure 4. Workflow for the rapid prototyping of paper-based biomolecular sensors for 

portable and low-cost diagnostics.  

Using sequence information from online databases, primers for isothermal RNA amplification 

and toehold switch-based RNA sensors were designed in silico using purpose-built algorithms. 

Once synthesized, the resulting sequence-specific toehold sensors can be assembled and validated 

in less than seven hours. In under a day, validated sensors can be embedded into paper and 

freeze-dried along with a cell-free transcription and translation system to be deployed in the field 

as stable diagnostics. For the diagnostic test, extracted RNA is isothermally amplified via 

NASBA and used to rehydrate the freeze-dried paper sensors. The detection of the appropriate 

trigger RNA is indicated by a color change in the paper disc from yellow to purple. Figure taken 

from (Pardee, Green et al. 2016). 
 

1.4.1 In silico toehold switch design for Zika virus detection 

RNA-based sensors have been optimized and employed by synthetic biologists in 

many cellular engineering and diagnostic pursuits. Riboregulators are an example of such 

RNA-based devices that confer tunable control of gene expression by induced secondary 

structure changes that allow for transcript translation in response to the binding of a trans-

acting RNA (Isaacs, Dwyer et al. 2004; Callura, Dwyer et al. 2010; Callura, Cantor et al. 

2012). Though they have been used as biological devices to study microbial toxin-

antitoxin systems (Callura, Dwyer et al. 2010) and to gain insight into the underlying 

mechanisms of action of antibiotic treatments (Dwyer, Kohanski et al. 2007; Kohanski, 

Dwyer et al. 2007), riboregulators can also serve as simple molecular reporters for the 
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presence of RNA sequences by inducing expression of reporter proteins (Pardee, Green et 

al. 2014).  

Green et al. recently developed a second-generation riboregulator variant that 

enables tunable regulation of endogenous RNA transcripts and can also be employed in 

microbial screens and transcript detection (Figure 3C) (Green, Silver et al. 2014). 

Notably, toehold switch sensors have been utilized as diagnostic devices on the paper-

based platform, demonstrating high sensitivity and rapid readout capabilities in the 

detection of medically interesting RNAs, such as Ebola transcripts and antibiotic 

resistance markers (Pardee, Green et al. 2014). These sensors display a high level of 

orthogonality and can be easily and rapidly designed and tested. Toehold switches thus 

lend themselves to a wide array of medical diagnostic applications, particularly in 

conjunction with the paper-based platform. 

Toehold switch sensors are programmable synthetic riboregulators that control the 

translation of a gene via the binding of a trans-acting trigger RNA. The switches contain 

a hairpin structure that blocks gene translation in cis by sequestration of the ribosome 

binding site (RBS) and start codon. Upon a switch binding to a complementary trigger 

RNA, sequestration of the RBS and start codon is relieved, activating gene translation 

(Figure 5A and 5B) (Green et al., 2014). To allow for colorimetric detection of trigger 

RNA sequences, the sensors can be designed to regulate translation of the enzyme LacZ, 

which mediates a color change by converting a yellow substrate (chlorophenol red-β-D-

galactopyranoside, CPRG) to a purple product (chlorophenol red).  

Toehold switch sensors for sequence-based detection of Zika virus were generated 
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using a modified version of the previously developed in silico design algorithm 

(Supplemental Information, (Pardee, Green et al. 2016)). The modified algorithm 

screened the genome of the Zika strain prevalent in the Americas (Genbank accession 

number: KU312312) for regions compatible with RNA amplification and toehold switch 

activation. The selected Zika genome regions were then computationally filtered to 

eliminate potential homology to the human transcriptome and to a panel of closely related 

viruses, including Dengue and Chikungunya. A total of 24 unique regions of the Zika 

genome compatible with downstream sensing efforts were identified.  

Two toehold switches, each utilizing a different design scheme, were designed for 

each region, resulting in a total of 48 sensors. The first design scheme, termed the A 

series, utilizes a modification to the original toehold switch (Green et al., 2014) that 

reduces the size of the loop domain from 18-nts to 11-nts (Figure 5A) to discourage loop-

mediated docking of the ribosome and therefore reduce leakage in the OFF state. The 

second design scheme, termed the B series, features a 12-nt loop and incorporates a more 

thermodynamically stable stem in order to lower OFF state gene expression (Figure 5B). 
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Figure 5. Rapid prototyping of 48 paper-based RNA toehold sensors for Zika virus 

detection.  

(A) Series A toehold switch sensor schematic. The sensor design from Green et al. (2014) was 

modified with a shortened 11-nt loop sequence to reduce leakage of output gene expression. (B) 

Series B toehold switch sensor and schematic. Based on the same Zika genomic region as the A 

series, these sensors include a 12-nt loop and lack of the refolding domain. These modifications 

were made to further reduce LacZ reporter leakage in the OFF state. (C) Maximum fold change in 

the rate of LacZ production for the Series A Zika virus RNA sensors during the first 90 min at 

37⁰C. Fold change of LacZ production rate is determined from the slope of absorbance at 570 nm 

over time (sensor alone vs. sensor with 3000 nM RNA trigger). Sensors are ordered according to 

fold change. (D) Maximum fold change in the rate of LacZ production for the Series B Zika virus 

RNA sensors during the first 90 min at 37⁰C. Error bars represent SD from three replicates. Inset: 

average LacZ absorbance of the OFF state at 60 min indicates an overall reduction in LacZ 

reporter leakage for the Series B sensors. Error bars represent SD across the 24 sensors. See also 

Figure S1 and Table S1. Figure taken from (Pardee, Green et al. 2016). 
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1.4.2 Rapid in vitro sensor assembly and screening for Zika virus 

In vitro assembly and initial screening of all 48 sensors took place in a seven-hour 

time period, with low costs associated with sensor development (DNA input $20 

USD/sensor) and testing ($0.10 – $1/test). All 48 sensors and 24 targeted genomic 

regions were assembled in-house using in vitro protocols. Toehold switches were 

constructed by ligating the sensors (~130 nt) to a LacZ reporter element in a single two-

hour PCR-based step. Sensor performance screening to assess each sensor against its 

respective trigger RNA element (Zika genome fragment) was completed using low 

volume, cell-free transcription and translation reactions on paper. We found that 25 

(52%) of the 48 sensors produce a fold change of five or greater in the presence of the 

appropriate trigger element (128 – 178 nucleotide regions of the Zika genome; Figures 

5C, 5D and S1 from (Pardee, Green et al. 2016)). The top-ranked sensors exhibited 

activation as high as 34-fold over sensor alone (sensor 27B), and were activated in as 

quickly as 20 minutes after incubation at 37C (sensors 7A and 8A). For all sensors, 

maximum fold change occurred within the first 90 minutes. Averaging the LacZ output 

from sensors not exposed to trigger RNA confirmed that the low background design of 

the series B toehold switch sensors successfully reduced signal leakage (Figure 5D inset).  
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CHAPTER TWO: ADVANCEMENTS IN SENSITIVITY AND DETECTION 

2.1 Introduction 

Our first area of focus in building on the paper-based diagnostic’s clinical 

relevance was to improve the diagnostic sensitivity of the toehold sensors. Our goal was 

to develop a simple method for signal amplification that would be compatible with 

applications in low-resource settings. As such, we decided to focus on a technique called 

NASBA (nucleic acid sequence based amplification). NASBA is an isothermal RNA 

amplification process that requires minimal temperature cycling and could thus be easily 

integrated into a diagnostic workflow in low-resource areas (Cordray and Richards-

Kortum, 2012).  

This chapter focuses on the development and demonstration of a NASBA 

protocol that is compatible with our paper-based toehold sensors. The following section 

(Section 2.2) delineates preliminary experiments that demonstrate the compatibility of the 

NASBA amplification scheme with paper-based toehold detection. The next section 

(Section 2.3) outlines a demonstration of this amplification scheme in the context of the 

Zika diagnostic. 

 

2.2 Preliminary NASBA experiments and results 

2.2.1 NASBA overview  

NASBA is a promising candidate for use with our diagnostic scheme because it is 

known to be extremely sensitive and has a proven track record in field-based diagnostic 

applications (Cordray and Richards-Kortum, 2012). The amplification process begins 
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with reverse transcription of a target RNA that is mediated by a sequence-specific reverse 

primer to create an RNA/DNA duplex. RNase H then degrades the RNA template, 

allowing a forward primer containing the T7 promoter to bind and initiate elongation of 

the complementary strand, generating a double-stranded DNA product. T7-mediated 

transcription of the DNA template then creates copies of the target RNA sequence. 

Importantly, each new target RNA can be detected by the toehold switch sensors and also 

serve as starting material for further amplification cycles. NASBA requires an initial 

heating step (65C), followed by isothermal amplification at 41C (Figure 6) (Guatelli et 

al., 1990). 

 

 
 

Figure 6. NASBA-mediated RNA amplification. 

NASBA begins with reverse transcription of a target RNA, mediated by a sequence-specific 

reverse primer to create an RNA/DNA duplex. RNase H then degrades the RNA template, 

allowing a forward primer containing the T7 promoter to bind and initiate elongation of the 

complementary strand, generating a double-stranded DNA product. T7-mediated transcription of 

the DNA template then creates copies of the target RNA sequence. Each new target RNA can be 

detected by the toehold switch sensors and also serve as starting material for further amplification 

cycles. Figure taken from (Pardee, Green et al. 2016). 
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2.2.2 NASBA produces RNA that is compatible with toeholds 

Our first goal was to demonstrate compatibility of the NASBA amplification 

product with the toehold sensors. Our preliminary experiments were performed with 

toehold sensors for the Kanamycin resistance gene using two different sets of NASBA 

primers. We were able to confirm that the NASBA-amplified RNA products from both 

sets of NASBA primers were compatible with activating the toehold switches (Figure 7). 

All experiments in this section were done in collaboration with Melina Fan. 

 

 

 
 

Figure 7. Toehold activation from NASBA-amplified RNA.  

NASBA was performed on trigger RNA using two different sets of primers. Both primer sets 

were able to mediate sufficient RNA amplification for triggering the paper-based toehold 

switches. 
 

 



 

 

21 

2.3 Assessing and improving Zika sensor sensitivity  

We then proceeded to test the NASBA protocol on the Zika sensors. We selected 

top performing sensors from both the A and B series for trigger RNA titration 

experiments, and found that all chosen sensors were activated with as little as 30 nM of 

trigger RNA (Figure 8A). The sensors displayed a linear response to RNA concentration, 

providing semi-quantitative information on input trigger RNA values (Figure S2A from 

(Pardee, Green et al. 2016)). Additionally, our top three sensors were shown to be highly 

orthogonal to each other when challenged with a high dose of trigger RNA from off-

target Zika sequences (3000 nM) (Figure S2B from (Pardee, Green et al. 2016)). 

Though the sensors displayed specificity for their respective Zika RNA trigger, 

they were unable to detect clinically relevant RNA concentrations. Zika viral loads have 

been documented up to 202 x 10
6
 copies/ml (365 fM) in urine (Gourinat et al., 2015). 

However, viral loads in saliva and serum are reportedly even lower, with 3 x 10
6
 

copies/mL (4.9 fM) (Barzon et al., 2016) reported in patient saliva and 2.5 x 10
6
 

copies/ml (4.1 fM) (Zika experimental science team) and 7.2 x 10
5
 copies/ml (1.2 fM) 

(Lanciotti et al., 2008) in primate and patient serum respectively. Accordingly, to 

increase the sensitivity of our diagnostic platform, we incorporated an isothermal RNA 

amplification technique known as NASBA into our workflow (Figure 6).  

NASBA was performed on trigger RNA corresponding to Zika genomic regions 

for sensors 27B and 32B. Trigger RNAs were spiked into either water or human serum 

(7%) to more closely mimic clinical samples. NASBA reactions were run for two hours 

and then applied to freeze-dried, paper-based sensors. We saw detection with Zika 
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sensors from NASBA reactions initiated with as little as 3 fM of trigger RNA (Figure 

8B), a value well within the range of reported patient viral loads. Zika sensor detection of 

NASBA-amplified trigger RNA proved to be reliable on samples spiked into either serum 

or water (Figure 9A). Additionally, for reactions initialized with high concentrations of 

trigger RNA (>300 fM), NASBA reaction times could be reduced to as little as 30 

minutes (Figure 9B). NASBA reagents are compatible with freeze-drying (Figure 9C) 

and could therefore be easily deployed and utilized alongside our paper-based sensors. 

We also demonstrated that NASBA can be run in the absence of the initial heating step 

(65C) (Figure 9D), further reducing the technical and power requirements for 

deployment. 
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Figure 8. Isothermal RNA amplification improves sensitivity of toehold switch sensors to 

allow for detection of femtomolar concentrations of Zika virus fragments.  

(A) Sensitivity of six of the best performing Zika Series A and B sensors without RNA 

amplification. Fold change is calculated from absorbance (570 nm) after 30 min at 37⁰C. Error 

bars represent SD from three replicates. (B) Zika RNA fragments diluted in water or 7% human 

serum were amplified using NASBA with input concentrations ranging from 30 pM down to 3 

fM. A 1:7 dilution of the NASBA reaction in water was then used to rehydrate freeze-dried, 

paper-based reactions containing sensors 27B and 32B. Fold change is calculated as described in 

(A) after 30 min at 37⁰C. Figure taken from (Pardee, Green et al. 2016).  
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Figure 9. Further analysis on NASBA-mediated sensor sensitivity. 

(A) Reproducibility of NASBA reactions. Samples of Zika RNA in water or 7% human serum 

were amplified in three independent 2 hr NASBA reactions. Each NASBA reaction was diluted 

1:7 in water and used to rehydrate three freeze-dried, paper-based reactions containing sensor 

27B for a total of nine replicates. Fold change was calculated from absorbance (570 nm) after 30 

min at 37⁰C. Error bars represent SD from nine replicates for the 3pM sample and three replicates 

for the 0pM sample. (B) Effect of NASBA reaction time on sensitivity. Samples of Zika RNA in 

7% human serum were amplified in NASBA reactions for 30, 60, and 90 min. Diluted NASBA 

reactions (1:7) were tested with sensor 32B. Fold change was calculated as above. Error bars 

represent SD of three replicates. (C) NASBA with freeze-dried reagents. Samples of Zika RNA in 

7% human serum were amplified by NSABA reagents in the standard formulation and by 

reagents freeze-dried in-house. Fold change and error bars were calculated as above after 60 min. 

(D) Removing the 65⁰C step from NASBA protocol. Samples of Zika RNA in 7% human serum 

incubated at 95⁰C for two minutes, mimicking viral lysis, and then amplified by NASBA 

according to the standard procedure without the 65⁰C step. Fold change and error bars were 

calculated as above after 60 min. Figure taken from (Pardee, Green et al. 2016). 
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2.3.1 Moving towards a field-ready diagnostic platform 

To move our experiments toward conditions more representative of those found in 

clinics worldwide, we focused on three key efforts: (1) testing sensor specificity against 

related viruses that share clinical symptoms, partial homology, and geographic range with 

Zika virus, (2) building a second-generation portable, battery-powered reader to provide 

lab-quality results in low-resource environments, and (3) developing a low-cost and 

tractable method for viral RNA extraction (Chapter 3). 

Although our sensor design algorithm screened for Zika genomic sequences that 

are mostly distinct from those of related viruses, the targeted Zika sequences do share 

substantial similarity (51%–59%) with their Dengue virus counterparts (Figure S3A and 

S3B from (Pardee, Green et al. 2016)). To test the Zika sensors for possible cross-

reactivity, we exposed the sensors to regions of the Dengue genome that share a degree of 

homology with regions targeted in the Zika genome. Sensors 27B and 32B were treated 

with high concentrations of RNA amplicons (3000 nM) from either Zika or Dengue 

genomic regions. As seen in Figure 10A, Dengue RNA sequences failed to activate the 

toehold switch sensors. We also tested our NASBA primer sets for specificity to their 

targeted Zika sequences by applying the NASBA-mediated amplification and paper-

based detection scheme to 300 fM inputs of the Dengue and Zika RNA in human serum 

(7%). Again, we did not see a response to the Dengue RNA sequences, demonstrating 

robust sequence specificity in our amplification and detection scheme (Figure 10B). 

As part of our efforts to advance the paper-based sensor platform toward field-

ready diagnostics, we designed a second-generation portable electronic reader to serve as 
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an accessible, low-cost companion technology that provides robust and quantitative 

measurements of sensor outputs. The electronic reader was assembled using readily 

available consumer components, open-source code, and laser-cut acrylic housing, with a 

total cost of just under $250 (Figure S4 from (Pardee, Green et al. 2016)). The reader is 

powered by a lithium ion battery (18.5 hours) that can be re-charged via micro USB, and 

houses onboard data storage (4 GB) to resolve the need for an attached laptop during 

diagnostic reads (Pardee et al., 2014). To achieve sensitive detection of toehold switch 

signal output, an acrylic chip that holds the freeze-dried, paper-based reactions is placed 

into the reader between an LED light source (570 nm) and electronic sensors (Figure S4B 

from (Pardee, Green et al. 2016)). Using onboard electronics, each sample is read 29 

times per minute, providing low-noise measurements of changes in light transmission due 

to LacZ-mediated color change. 

To demonstrate the utility of the companion reader, we monitored detection of 1 

fM and 3 fM of Zika RNA amplicons that had been amplified in NASBA reactions for 

2.5 hours. The reader detected significant signal from both samples, which are within the 

reported range of Zika virus in patient serum (1.2 fM) and urine (365 fM) (Gourinat et al., 

2015; Lanciotti et al., 2008), after just over 20 minutes (Figure 10C). 
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Figure 10. Moving towards a field-ready diagnostic for Zika virus.  

(A) Sequence specificity of Zika virus sensors 27B and 32B. Sensors were challenged with 3,000 

nM of RNA corresponding to target sequences from the Zika virus or the homologous region of 

the Dengue virus. Fold change is calculated from absorbance (570 nM) at 60 min after 

rehydration and incubation of freeze-dried, paper-based reactions at 37⁰C. Error bars represent 

SD from three replicates. (B) Zika virus sensors 27B and 32B were tested for specificity using 

NASBA reaction products derived from 300 fM input RNA corresponding to target genomic 

regions of the Zika or Dengue viruses in 7% human serum. Fold change was calculated as in (A). 

(C) Using the portable electronic reader, time-course data were collected for Zika virus sensor 

32B in the presence of RNA amplified from 1 fM or 3 fM inputs of trigger RNA in 7% human 

serum. To increase sensitivity, NASBA reactions were run for 2.5 hr. Graphs plot the relative 

absorbance of 570 nm wavelength light compared to background, which was collected every 

minute from freeze-dried, cell-free reactions embedded into paper. Figure taken from (Pardee, 

Green et al. 2016). 

 

 

 

2.4 Discussion  

To the best of our knowledge, this is the first report where NASBA, or any RNA 

amplification scheme, has been linked to a downstream synthetic gene network as an 

output detection method. This innovative development addresses several key technical 
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and economic challenges in the employment of isothermal amplification methods in the 

field (Cordray and Richards-Kortum, 2012). Namely, although NASBA has exceptional 

sensitivity to low-level infections (Casper et al., 2007; Cordray and Richards-Kortum, 

2012; Ulrich et al., 2010), the technique is costly ($5–$20/test) and susceptible to 

contamination that can lead to off-target products and false positives (Cordray and 

Richards-Kortum, 2012). Our diagnostic scheme addresses both of these points and 

brings NASBA closer towards application in low-resource settings. The low volume 

paper-based reactions only use a fraction of a microliter of NASBA product ($0.51/l), 

significantly reducing the total cost of NASBA per test. Additionally, linking NASBA to 

a synthetic gene network for signal detection allows for rapid and sensitive output reads 

in a cost-effective manner ($0.10 – $1/test) that is practical for use in low-resource 

settings. Our ability to eliminate the initial 65°C heating step (Figure 10D) traditionally 

used in NASBA reactions streamlines the diagnostic protocol for in-field use and reduces 

the requirements of the hardware necessary for monitoring results. Finally, we have 

shown that NASBA reagents can be freeze-dried (Figure 10C) and therefore could be 

distributed around the world at room temperature alongside our toehold switch sensors.  
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CHAPTER THREE: ADVANCEMENTS IN SAMPLE PROCESSING 

3.1 Introduction 

In this chapter, I discuss advancements made towards rapid and simple sample 

processing procedures that are compatible for use in low-resource settings, with a focus 

on processing blood serum and blood plasma patient samples. The next two sections 

(Sections 3.2 and 3.3) discuss procedures to minimize reaction inhibitors and access RNA 

within viral capsids and bacterial cells. The last sections (Sections 3.4 and 3.5) discuss 

the validation of these procedures in the context of the Zika virus diagnostic.  

 

3.2 RNA amplification and toehold detection from serum samples 

Certain components within blood are known to inhibit PCR (Schrader et al., 2012) 

and similarly affect all nucleic acid based diagnostics, including NASBA. However, we 

found that a simple dilution of serum or plasma into water sufficiently removes this effect 

in our diagnostic scheme (Figure 11). This dilution procedure is minimally time and cost 

intensive, allowing for its use in low-resource settings. 

We therefore used diluted human serum (7%) as a matrix for our exploratory 

experiments, and diluted viremic plasma samples (10%) for our final validation 

experiment for the Zika diagnostic. The dilution step does affect the overall sensitivity of 

the diagnostic platform, but we have shown that increasing the NASBA reaction time can 

sufficiently compensate for this (Pardee, Green et al. 2016).  
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Figure 11. Effect of serum on NASBA reaction. 

(A) NASBA was performed on trigger RNA spiked into a background of water (0% serum) or 

serum diluted into water (100%, 50%, 25%, 13%, 6%, and 3% final concentration of serum).  

NASBA outputs were run on an Agilent Bioanalyzer for analysis, which confirmed that NASBA 

amplification was able to proceed in solutions of 6% serum or less. (B) NASBA reactions for 0% 

serum, 3% serum, and 6% serum background were used as inputs into a paper-based toehold 

reaction. All three NASBA reactions were able to successfully activate the toehold reaction. 

 

 

3.3 Sample boiling to release RNA 

Our next challenge was to develop a technique to release RNA from the viral 

capsid using simple methodology compatible with low-resource environments. To this 

end, we tested the efficacy of boiling viral samples to break down the capsid. For initial 

development, we engineered lentivirus, which is also an RNA virus, to encapsulate the 

regions of either the Zika or Dengue genomes that correspond to the sensor 32B target 
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sequence (Figure S3B from (Pardee, Green et al. 2016)). These proxy Zika and Dengue 

viruses were spiked into human serum (7%) at a final concentration of 3 fM, and heated 

to 95C for either one or two minutes. The resulting lysates were then immediately used 

to initiate NASBA reactions, in order to simulate what might be recovered from a patient 

sample. Boiling the viral samples for one minute was sufficient to release detectable 

amounts of RNA in our amplification and toehold switch detection scheme (Figure 12B). 

NASBA reactions from two-minute boiled samples were also monitored for sensor 

activation on the portable electronic reader. We detected strong sensor activation in less 

than 30 minutes from 3 fM of lentivirus carrying Zika RNA. We were also able to 

demonstrate clear discrimination between lentiviruses containing Zika and Dengue RNA 

sequences (Figure 12A). 
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Figure 12. Incorporating viral sample processing into the diagnostic workflow. 

(A) Lentivirus was packaged with Zika RNA or homologous Dengue RNA fragments targeted by 

sensor 32B. Three femtomolar of virus was spiked into 7% human serum and heated to 95⁰C for 

2 min to extract viral RNA. The boiled lysate was used to initiate NASBA-mediated RNA 

amplification. A 1:7 dilution of the 2hr NASBA reaction in water was then used to rehydrate 

freeze-dried paper-based reactions. Time-course data were collected on the portable electronic 

reader. (B) Effect of boiling time on RNA extraction. Lentivirus was packaged with the Zika 

virus RNA fragment corresponding to sensor 32B. Virus was diluted to 10 and 3 fM target RNA 

in 7% human serum. 25 µL of virus was heated to 95⁰C for 1 and 2 min. One µL was then used to 

initiate NASBA-mediated RNA amplification. A 1:7 dilution of 2 hour NASBA reactions in 

water was then used to rehydrate freeze-dried, paper-based reactions. Fold change was calculated 

from absorbance (570 nm) after 60 min at 37⁰C. Error bars represent SD of three replicates. 

Figure taken from (Pardee, Green et al. 2016). 
 

 

We are also working to expand the boiling procedure to other, non-viral 

biological entities. Preliminary tests for boiling bacterial samples to extract E. coli RNA 

have been promising (Figure 13), however, more experiments are required to test for 

extraction consistency, detection from genomically encoded RNA (rather than RNA 

expressed off of a plasmid), and detection from other bacterial species, including gram-

positive organisms. 
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Figure 13. Boiling procedure for extracting plasmid-expressed RNA in E. coli. 

(A) NASBA was performed on lysate collected from E. coli boiled at 95⁰C for four minutes to 

extract RNA.  NASBA outputs were run on an Agilent Bioanalyzer for analysis, which confirmed 

that NASBA amplification was able to proceed from boiled lysate samples. (B) Samples from (A) 

were used as inputs for a paper-based toehold reaction. Only NASBA reactions from boiled E. 

coli lysate were able to activate the toehold. 

 

3.4 Diagnostic workflow validation with active Zika virus 

We next sought to validate our sensor platform with live Zika virus. First, we 

verified that our amplification and detection scheme could successfully detect full-length 

genomic RNA purified from Zika virus (Uganda strain MR 766) (Figure 14A). We 

designed new NASBA primers to accommodate sequence differences between the 
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Uganda Zika strain (Genbank accession number: AY632535) and the American Zika 

strain (Genbank accession number: KU312312) that our sensors and primers had 

originally been designed to detect. Computational analysis suggested that Uganda-lineage 

Zika RNA would activate sensor 32B despite two base mismatches in the toehold region, 

and this was confirmed experimentally (Figure 14A). We also demonstrated sensor 

orthogonality to full-length genomic Dengue RNA isolated from three different Dengue 

serotypes using these methods (Figure 14A).  

Once we confirmed that the sensors behaved as expected on full-length genomic 

RNA, we sought to validate the sample preparation scheme and diagnostic workflow 

from start to finish. Active Zika virus was cultured in the laboratory and spiked into 

human serum (7%) at a final concentration of 12 fM, to mimic a clinical sample. The 

viral sample was then heated to 95C for two minutes, and the resulting lysate was 

subjected to NASBA amplification for three hours. Sensor activation from the NASBA-

amplified viral sample was monitored on the portable electronic reader. We successfully 

detected activation of sensor 32B from a diagnostic workflow initiated with live Zika 

virus (Figure 14B). 

For the final validation of our system, we acquired and tested plasma samples 

from a viremic macaque infected with Zika virus (Genbank accession number: 

KJ776791) (Zika experimental science team). The macaque was found to have a plasma 

viral load of 1.7 x 10
6
 copies/ml (2.8 fM), by a standard qRT-PCR protocol, which was 

within the detection limits of our platform as tested on synthetic RNA amplicons. The 

viremic plasma was diluted 1:10 in water to reduce known inhibitory effects of plasma on 
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downstream reactions. The diluted plasma was then taken through our sample processing 

and diagnostic workflow. The sample was heated to 95C for two minutes and then 

amplified via NASBA for three hours. Paper-based reactions were monitored on the 

portable electronic reader, and showed strong activation with both sensors 27B and 32B 

in less than 30 minutes (Figure 14C and 14D). 
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Figure 14. Validation of diagnostic workflow on live Zika virus samples.  

(A) Specificity of sensor 32B against purified genomic RNA. Sensor 32B was tested for 

specificity using NASBA reaction products performed on 30fM RNA purified from Zika virus 

and three different Dengue virus serotypes. Fold change is calculated from absorbance (570 nm) 

at 60 min after rehydration and incubation of freeze-dried paper-based reactions at 37⁰C. Error 

bars represent SD from three replicates. (B) Detection of live Zika virus. Ten femtomolar of 

laboratory-cultured Zika virus was spiked into human serum (7%), heated to 95⁰C for 2 min, and 

used to initiate NASBA-mediated RNA amplification. A 1:7 dilution of the 3 hr NASBA reaction 

in water was then used to rehydrate freeze-dried paper-based reactions. Time-course data were 

collected on the portable electronic reader. Graph plots the relative absorbance of 570 nm 

wavelength light compared to background. Error bars present SD from three replicates. (C and D) 

Detection of Zika virus in viremic rhesus macaque plasma using sensors 27B and 32B. Plasma 

containing 2.8 fM of Zika virus was diluted 1:10 in nuclease free water, heated to 95⁰C for 2 min, 

and used to initiate NASBA-mediated RNA amplification. 3 hour NASBA reactions were 

monitored on the portable electronic reader as in (B). Figure taken from (Pardee, Green et al. 

2016). 
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3.5 Discussion 

In this work, we implemented a simple procedure to extract viral RNA that does 

not require specialized laboratory equipment. By simply boiling (95°C) virus samples for 

two minutes, we were able to extract sufficient quantities of RNA for amplification and 

detection in our diagnostic platform (Figures 12A and 14B, 14C, and 14D). We note that 

we worked quickly to transfer boiled viral samples to NASBA reactions that contained 

RNase inhibitors to protect the integrity of the viral RNA. In practice, other commercially 

available reagents could be added to the sample to protect RNA from degradation upon 

collection. Of note, we were able to reliably extract RNA from three different sample 

types using our methodology: engineered lentivirus (Figure 12A), cultured Zika virus 

(Figure 14B) and plasma from an infected rhesus macaque (Figure 14C and 14D), 

highlighting the robustness of our sample preparation scheme. 

Additionally, we demonstrated that simply boiling an RNA virus liberates 

sufficient material for downstream amplification and detection processes (Figures 12 and 

14). Finally, our methods were validated on viremic plasma samples (Figure 14C and 

14D), demonstrating a level of sensitivity that would be required for use of this 

diagnostic scheme in the field.   

Our platform provides multiple levels of molecular programmability that greatly 

improve diagnostic specificity. Both the toehold switches and NASBA primers can be 

designed to target regions specific to a given genome, while excluding regions with 

significant homology to other organisms. We demonstrated the effectiveness of this 

design algorithm with sensor 32B, which was able to distinguish genomic Zika RNA 
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from the genomic RNA of three different Dengue serotypes (Figure 14A). Given the high 

sensor success rate and low barriers to development, we envision that sensors could be 

easily multiplexed to ensure high confidence diagnosis (reducing both false negative and 

false positive results) while keeping costs low. Furthermore, the diagnostic platform 

could be deployed as panels that include sensors for strain-specific identification and 

related infections to help monitor the spread of illness. 

However, in some cases, it is beneficial for a diagnostic platform to be able to 

tolerate genetic mutations within a particular nucleic acid sequence. Evolutionary drift, 

for example, is an unavoidable feature of our ongoing arms race with pathogens that all 

molecular diagnostics must confront. Our assay in particular has the capacity to tolerate 

the expected genetic variation found in nature. We analyzed the binding between the 

toehold switch 32B and RNA sequences from homologous regions in Zika strains 

isolated from Africa and Asia (Supplemental Information: Extended Experimental 

Procedures from (Pardee, Green et al. 2016)). Both of these strains are predicted to fully 

activate the toehold sensors, even with up to 4-nt (11%) mismatches. In fact, we were 

able to demonstrate this using RNA triggers from the American strain, two different 

African strains and an Asian lineage of the virus (Figure 14 and 17D). Additionally, a 

critical feature of our technology is the ability to rapidly and inexpensively prototype new 

genetic sensors, thus allowing for a rapid response to genetic variations and mutations as 

they arise.  
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CHAPTER FOUR: ONE-POT NASBA 

4.1 Introduction 

We are also actively working towards combining the NASBA and toehold switch 

sensor reactions in a one-pot assay that will further streamline the diagnostic protocol and 

shorten the timeframe for readout. In this chapter, I discuss the optimization experiments 

we have performed towards this goal.  

 

4.2 Results 

4.2.1 Experimental design  

NASBA and cell-free TXTL are two very different reactions that occur at 

different temperatures under very different buffer conditions (Figure 15). Our goal is to 

combine these two reactions into a single one-pot paper-based reaction that allows for 

RNA amplification and toehold sensor detection to occur simultaneously. This would 

significantly reduce the readout time of our system and simplify the diagnostic protocol, 

allowing this platform to be more readily used in low-resource areas.  

For simplicity, we began by comparing the reagents and reaction conditions for 

the NEB PURExpress In Vitro Protein Synthesis Kit (catalog number E6800L) and the 

NASBA kit available from LifeSci (catalog numbers: NEC-1-24, NECB-24, and NECN-

24). Our approach is two-fold: first, we tested the sensitivity of each reaction to 

temperature variations (4.2.2); then, we began titrating buffer components to find a 

“middle-ground” that allows both reactions to proceed simultaneously with relatively 

strong efficiency (4.2.3).  
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Figure 15. Comparison of NEB Cell-Free TXTL vs. NASBA reaction components 

A comparison of the reaction conditions and buffer components required for NEB PURExpress 

TXTL reactions and NASBA reactions. The differing buffer conditions and temperature 

requirements of each of these reactions renders their combination into a single one-pot reaction 

nontrivial. 
 

4.2.2 Temperature effects on NASBA and TXTL reactions 

The first set of experiments was designed to test the tolerance of the NASBA and 

NEB reactions to different temperature conditions (Figure 16). These tests were 

conducted on a several different toehold sensors to ensure that results were robust across 

different toehold and NASBA primer sets. Note that Sensor 3B is the same sensor as Zika 

Sensor 27B and Sensor 8B is the same sensor as Zika Sensor 32B.We found that NASBA 

performed robustly at temperatures ranging from 41⁰C to 38⁰C, with a slight drop in 
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reaction efficiency at 37⁰C for two of the sensors (Figure 16A and 16C). We also found 

that the NEB reactions performed well from 37⁰C to 39⁰C, but dropped sharply in 

performance at temperatures above 39⁰C (data not shown). 
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Figure 16. Temperature titration for NASBA reaction. 

A comparison of NASBA efficiency at temperatures ranging from 37⁰C to 41⁰C for three 

different toehold sensors: Zika sensor 8B (A), Zika sensor 3B (B), and the KanR sensor (C). 

NASBA reactions are comparable in efficiency for this range of reaction temperature, with a 

slight drop off at 37⁰C for some toehold sensors.  
 

 

The next set of experiments was designed to test the tolerance of the NASBA 

reaction to different annealing conditions. In the standard NASBA protocol, the NASBA 

buffer components, NASBA primers, and RNA trigger are all heated to 65⁰C for two 

minutes and then left to anneal for ten minutes at 41⁰C, prior to addition of the NASBA 

enzymes. We ran tests to compare this standard protocol to taking only the RNA trigger, 

and only the RNA trigger and NASBA primers through these heating steps (Figure 17). 

We also compared the effects of switching the 65⁰C step for a 95⁰C step, and switching 

the 41⁰C step for ten minutes at either 37⁰C or room temperature. These experimental 

conditions were chosen in the hopes of simplifying the NASBA reaction conditions for 

easy sample processing in low-resource settings. We found that the temperature 
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variations did not significantly affect the efficiency of the NASBA reactions, and that, 

instead, the components of the reactions that were taken through the heating and 

annealing steps had a greater effect on noise in the downstream toehold reactions (Figure 

17). 
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Figure 17. Annealing conditions parameter space search for NASBA reaction. 

A comparison of NASBA efficiency for reactions initialized with different annealing conditions. 

(A) Only trigger RNA was taken through the annealing procedures, with all other components 

added after the annealing step. (B) Trigger RNA and NASBA primers were taken through the 

annealing procedures. (C) All NASBA components except NASBA enzymes (as per the original 

NASBA protocol) were taken through the annealing procedures. All reactions were performed 

using Zika Sensor 8B. Annealing conditions include: 2 min initial heating step at either 65⁰C or 

95⁰C, followed by 10 minute incubation at 41⁰C, 37⁰C, or room temperature. The isothermal 

component of the NASBA reactions was performed at 41⁰C for two hours. 
 

 

Finally, we looked at a dose response of the RNA input into NASBA at different 

reaction temperatures (Figure 18). We found that NASBA rapidly loses sensitivity as the 

reaction temperature decreases from 41⁰C. These results suggest that finding an optimal 

reaction temperature is a critical component of successfully optimizing a one-pot 

NASBA/TXTL reaction. 
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Figure 18. NASBA reaction dose response under different reaction temperature conditions. 

A comparison of NASBA efficiency for reactions initialized with different concentrations of 

trigger RNA. NASBA was run for two hours at 41⁰C (A), 39⁰C (B), 38⁰C (C), and 37⁰C (D). All 

reactions were performed using Zika Sensor 8B. These results indicate that NASBA loses 

sensitivity and dynamic range as reaction temperature decreases, suggesting that finding an 

optimal “middle ground” temperature may be necessary for successfully combining NASBA and 

TXTL reactions into a one-pot assay. 
 

 

4.2.3 Buffer titrations 

We then began titrating buffer conditions for a one-pot NASBA reaction. This 

work was initiated with Melina Fan during her sabbatical with the Collins lab. Here, I 

present work begun after her tenure. All of the experiments described in this section were 

performed on the freeze-dried paper-based system. Notably, because of the number of 

components going into the one-pot reactions, freeze-drying was a necessary step to 

properly concentrate the reagents for the final paper-based reaction.  
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We began by comparing buffer concentrations of each reaction and creating a 

“NASBA buffer supplement” and “NASBA nucleotide supplement”. The starting 

concentrations of each reagent are described in the table below (Table 1); these 

concentrations were determined during Melina’s tenure by comparing reagent 

concentrations in each reaction (NEB PURExpress and NASBA) and performing rough 

titrations of several key reagents. Our initial sets of one-pot experiments failed, with none 

yielding any toehold signal above the sensor alone condition (data not shown). We 

approached solving this problem in two ways: one was to confirm that NASBA 

components were not inhibiting the toehold reaction; the other was to confirm that 

NASBA components could be freeze-dried on paper and function upon rehydration, like 

the NEB toehold reactions.  

  



 

 

48 

NASBA Buffer Supplement 1.0     

  

stock 

concentration 

(M) 

final 

concentration 

(mM) 

25X 

solution 

uL of stock in 100 uL 

final volume 

Tris HCl 

pH 8.5 1 20 500 50 

MgCl 1 3 75 7.5 

KCl 1 15 375 37.5 

DTT 1 2 50 5 

      

final 

volume 100 

     NASBA Nucleotide Supplement 1.0     

  

stock 

concentration 

(mM) 

final 

concentration 

(mM) 

16X 

solution 

uL of stock in 100 uL 

final volume 

CTP 100 0.5 8 8 

ATP 100 0.5 8 8 

GTP 100 0.5 8 8 

UTP 100 0.5 8 8 

dATP 100 1 16 16 

dTTP 100 1 16 16 

dGTP 100 1 16 16 

dCTP 100 1 16 16 

      

final 

volume 96 

      

uL water 

to add 4 

 

Table 1. Initialization of one-pot NASBA reaction buffer supplements. 

 

From experiments performed during Melina’s tenure, we knew that the ITP 

component of the NASBA nucleotide mix was inhibitory to the toehold reactions (data 

not shown). We thus decided to test the effect of each NASBA supplement component on 

the toehold reaction, to confirm whether there were other reagents inhibitory to the 

toehold reactions. These tests were performed with Zika sensor 3B because of the low 
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background and high activity of this sensor (Figure 19). We discovered that dNTPs were 

inhibitory to the toehold reactions. Because dNTPs are an obligatory component of the 

NASBA reactions, we could not eliminate them from the one-pot reaction. We thus 

performed a titration of dNTPs, including dNTPs sourced from different stock solutions, 

and found that a concentration of .1 mM dNTPs is permissive to toehold activity (Figure 

20). 
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Figure 19. Effects of NASBA reaction components on TXTL toehold reaction.  
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A comparison of NEB reaction efficiency in the presence of different NASBA reaction 

components; the reactions were performed using the Zika 3B toehold sensor. (A) The control 

reactions, not supplemented with any NASBA components. (B) The NASBA nucleotide 

supplement, consisting of dNTPs and NTPs, contained at least one component inhibitory to the 

toehold reaction. The NASBA buffer supplement (C), NASBA enzyme mix (D), NASBA primers 

(E), and DMSO (F), were all permissive to the toehold reaction.  
 

 

 

 
 
Figure 20. dNTPs are inhibitory to the toehold reactions at high concentrations.  

A comparison of NEB reaction efficiency in the presence of .5 mM and .1 mM final 

concentrations of dNTPs, from two different sources (Promega and Thermo); the reactions were 

performed using the Zika 3B toehold sensor. Both Promega (A) and Thermo (B) dNTPs were 

inhibitory at .5mM and permissive at .1mM to the toehold reactions.  
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We then wanted to test whether NASBA would be permissive to freeze-drying on 

paper. We knew that the toehold reaction could function post-freeze-drying, but had no 

evidence that NASBA enzymes and buffers would be able to function upon rehydration.  

We freeze-dried the one-pot reaction with an updated dNTP concentration (.1mM of each 

dNTP), without the sensor. We then rehydrated the reaction with trigger only and 

incubated the paper-based reactions at 37⁰C for two hours to allow the NASBA reaction 

to run without interference or competition for resources from the toehold reaction. After 

the two hour incubation, we added in the toehold sensor and monitored reaction output.  

The results indicated that NASBA reactions were able to run successfully (Figure 

21). We also noted that the 300nM RNA input activated toeholds in the NASBA 

background but not in the normal NEB background, as would be expected for such a high 

RNA input. This suggests that the RNA trigger was likely degraded during the two hour 

incubation, and that the NASBA reaction was able to sufficiently compensate for this via 

RNA amplification in the one-pot reaction. This result may indicate that the RNase 

inhibitor does not function after freeze-drying, and that in the future it may be worth to 

explore this more thoroughly, in particular if diagnostic sensitivity becomes an issue.  
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Figure 21. NASBA can be freeze-dried on paper.  

One-pot NASBA/NEB reactions were freeze-dried on paper, without the toehold sensor. 

Reactions were rehydrated and incubated at 37⁰C for two hours to allow the NASBA reactions to 

run without interference from the toehold sensor. After two hours, toehold sensors were applied 

to the paper-based reaction and the reactions were monitored for toehold activity. Reactions were 

run for 300 nM, 3 nM, and 3pM of trigger RNA input. Only the 300 nM input with the full 

NASBA background (+ primers) was able to activate the toehold switch. Under normal 

conditions, 300nM should activate the toehold, even without NASBA-mediated signal 

amplification. Because this was not the case, these data suggest that the RNase inhibitor does not 

function post freeze-drying: in the no-primer control reaction with a 300 nM input, the input RNA 

may have been degraded during the two hour incubation period prior to toehold addition, 

resulting in no toehold activation; in the “+ primer” reaction condition, NASBA was able to run 

to completion and compensate for RNA degradation, resulting in successful activation of the 

toehold switch. 
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After confirming that NASBA can be freeze dried, we continued with the titration 

of individual reaction components. We first looked into the NTP concentration of the 

NASBA nucleotide supplement. We found that high concentrations of NTPs were 

inhibitory to the NEB toehold reaction (Figure 22A), but allowed for signal amplification 

in the one-pot reaction (Figure 22B and 22C). These results suggest that the reaction 

components interact with one another in a non-predictable fashion, and that the reaction 

parameter space must be thoroughly searched in order to find the optimal one-pot 

reaction conditions. 
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Figure 22. NTPs are inhibitory to the NEB reaction, but amplify signal in the one-pot 

NASBA reaction.  

All reactions were run with the Zika 3B toehold switch. (A) NTPs were titrated in a regular 

toehold NEB reaction, demonstrating that concentrations down to .5 mM NTPs are inhibitory to 

the NEB reactions. (B) A replicate experiment of (A) yielded similar results; graph is scaled for 

easy comparison with (C). (C) One-pot NASBA (NASBA background) reactions were able to 

tolerate up to 1 mM NTPs, and yielded significant signal amplification over the traditional NEB 

toehold reaction.  
 

 

We proceeded to investigate which component of NASBA helps alleviate the 

NTP inhibition. To do this, we ran NEB reactions supplemented with an inhibitory 

concentration of NTPs and various NASBA components (NASBA buffer supplement, 

NASBA enzyme mix, dNTPs, DMSO, and primers). We discovered that the NASBA 

buffer supplement and the DMSO both help alleviate NTP inhibition (Figure 23C and D); 

we did not test which specific component of the NASBA buffer supplement is 

responsible for this phenotype. Notably, we were not able to amplify signal in any of the 

reactions other than the reaction complete with all of the necessary NASBA components, 

indicating that proper NASBA functioning is likely responsible for the signal 

amplification in the one-pot reaction (Figure 23A and B).  
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Figure 23. NASBA buffer supplement and DMSO both contribute to alleviation of NTP 

inhibition on NEB toehold reaction.  

All reactions were run with the Zika 3B toehold switch. (A) A standard NEB toehold reaction 

serves as a point of comparison for (B) through (D). (B) One-pot NASBA (NASBA background) 

yielded significant signal amplification over the traditional NEB toehold reaction. (C) A standard 

NEB toehold reaction with an inhibitory concentration of NTPs (.5 mM each) was able to run to 

completion only when supplemented with either DMSO or NASBA buffer supplement. However, 

this reaction did not yield signal amplification, suggesting that these reagents alone are not 

responsible for the signal amplification observed in (B). (D) A standard NEB toehold reaction 

(without NTPs) supplemented with the components tested in (C) serves as a point of comparison 

the reactions in (C). 
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We then wanted to confirm that the signal amplification was due to NASBA 

functioning properly, and not due to any individual component of NASBA amplifying 

sensor activity on its own. We found that, indeed, every single component of NASBA 

must be present in order for signal amplification, indicating that NASBA is likely 

working properly on paper in the one-pot reaction to amplify the trigger RNA (Figure 

24). We also tested a titration of inputs into the functioning one-pot reaction, to test the 

dynamic range and sensitivity of the one-pot reaction (Figure 25). 
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Figure 24. NASBA buffer supplement and DMSO alone are sufficient for inhibition 

alleviation, but not for signal amplification in the standard NEB toehold reaction.  

All reactions were run with the Zika 3B toehold switch. (A) A standard NEB toehold reaction 

serves as a point of comparison. The addition of the NASBA buffer supplement and DMSO is not 
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sufficient for signal amplification in this reaction (B) A standard NEB toehold reaction is 

inhibited by the addition of .5 mM NTPs. This inhibition can be alleviated by the addition of the 

NASBA buffer supplement and DMSO, but signal amplification cannot be achieved in these 

reaction conditions. (C) One-pot NASBA (NASBA background) yielded significant signal 

amplification over the traditional NEB toehold reaction. The addition of .5 mM NTPs is not 

necessary for amplification to occur, suggesting that the quantity of NTPs found in the NEB 

reaction may be sufficient for the one-pot reaction. (D) The one-pot NASBA reaction cannot 

amplify toehold signal in the absence of the NASBA primers. (E) The one-pot NASBA reaction 

cannot amplify toehold signal in the absence of the NASBA enzymes. 
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Figure 25. Titration of trigger input into one-pot NASBA reaction.  

All reactions were run with the Zika 3B toehold switch. (A) A standard NEB toehold reaction 

serves as a point of comparison. (B) One-pot NASBA (NASBA background) yielded significant 

signal amplification over the traditional NEB toehold reaction for both 300 nM trigger input and 

30 nM trigger input. (C) The one-pot NASBA reaction cannot amplify toehold signal in the 

absence of the NASBA primers. (D) The one-pot NASBA reaction cannot amplify toehold signal 

in the absence of the NASBA enzymes.  
 

 

With a functioning one-pot reaction, we moved towards optimization of the 

reaction conditions. We approached this by titrating buffer components one by one and 
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updating the NASBA supplements appropriately before moving on to the next 

component. Each reaction condition was tested against an NEB background reaction 

(with no amplification), as well as a defective NASBA background that was missing a 

key component of the NASBA reaction, such as primers or enzymes, and which serves as 

a negative control.  

Our baseline conditions are shown in Figure 26, for comparison. We found that 

the optimal reaction conditions include: running the reaction at 39⁰C (Figure 27), 

rehydration with 4% DMSO (Figure 28) (note that DMSO is an organic compound that 

cannot be freeze-dried), no additional NTPs beyond what is included in the standard NEB 

reaction (Figure 29), and .5 mM dNTP (Figure 30). 
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Figure 26. Baseline one-pot NASBA reaction.  

All reactions were run with the Zika 3B toehold switch; this reaction is with a new batch of 

sensor, which yields slightly maximum output than the batch used in Figure 25. (A) A standard 

NEB toehold reaction serves as a point of comparison. (B) One-pot NASBA (NASBA 

background) yielded significant signal amplification over the traditional NEB toehold reaction for 

both 300 nM trigger input and 30 nM trigger input. (C) The one-pot NASBA reaction cannot 

amplify toehold signal in the absence of the NASBA primers. (D) The one-pot NASBA reaction 

cannot amplify toehold signal in the absence of the NASBA enzymes.  
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Figure 27. One-pot NASBA reaction at 39⁰C yields better amplification than at 37⁰C.  

All reactions were run with the Zika 3B toehold switch. Reactions were run at 39⁰C, yielding 
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better amplification and less noise in reaction output.  (A) A standard NEB toehold reaction 

serves as a point of comparison. (B) One-pot NASBA (NASBA background) yielded significant 

signal amplification over the traditional NEB toehold reaction for both 300 nM trigger input and 

30 nM trigger input. (C) The one-pot NASBA reaction cannot amplify toehold signal in the 

absence of the NASBA primers. (D) The one-pot NASBA reaction cannot amplify toehold signal 

in the absence of the NASBA enzymes.  
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Figure 28. One-pot NASBA reaction rehydrated with 4% DMSO is optimal.  

All reactions were run with the Zika 3B toehold switch at 39⁰C. Freeze-dried reactions were 

rehydrated with 2% (B, C), 2.5% (D, E), 3% (F, G), 3.5% (H, I), and 4% (J, K) DMSO. 

Subsequent experiments rehydrated with high concentrations of DMSO did not yield improved 

amplification (data not shown).  (A) A standard NEB toehold reaction serves as a point of 

comparison. (B) through (K) DMSO titration on NASBA background, with and without primers. 

The one-pot NASBA reaction cannot amplify toehold signal in the absence of the NASBA 

primers, serving as a negative control for each condition. 
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Figure 29. One-pot NASBA reaction with NTP titration.  

All reactions were run with the Zika 3B toehold switch at 39⁰C and rehydrated with 4% DMSO. 

Reactions were freeze-dried with 0mM (B, C), .5 mM (D, E), 1 mM (F, G), 2 mM (H, I), and 4 

mM (J, K) NTPs. NTPs at high concentrations were found to be inhibitory to the one-pot 

reaction.  (A) A standard NEB toehold reaction serves as a point of comparison. (B) through (K) 

NTP titration on NASBA background, with and without primers. The one-pot NASBA reaction 

cannot amplify toehold signal in the absence of the NASBA primers, serving as a negative control 

for each condition. 
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Figure 30. One-pot NASBA reaction with dNTP titration.  

All reactions were run with the Zika 3B toehold switch at 39⁰C, rehydrated with 4% DMSO, and 

no additional NTPs beyond those already present in the NEB reaction. Reactions were freeze-

dried with .05mM (B, C), .5 mM (D, E), 1 mM (F, G), and 2 mM (H, I) dNTPs. dNTPs at high 

concentrations were found to be inhibitory to the one-pot reaction.  (A) A standard NEB toehold 

reaction serves as a point of comparison. (B) through (I) dNTP titration on NASBA background, 

with and without primers. The one-pot NASBA reaction cannot amplify toehold signal in the 

absence of the NASBA primers, serving as a negative control for each condition. 
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4.2.4 Alternative approaches 

We looked into switching the NASBA reverse transcriptase enzyme (AMV 

reverse transcriptase), which runs most efficiently at 42⁰C, with a different reverse 

transcriptase that works better at 37⁰C. Sensiscript and Omniscript (Qiagen catalog 

numbers 205213 and 205113, respectively) are both reverse transcriptases that have been 

shown to work well at 37⁰C. These two enzymes additionally exhibit RNase H and DNA-

dependent DNA polymerase activity, potentially allowing for minimizing enzymatic 

additions to the one-pot NASBA reaction. We ran several tests using these enzymes (data 

not shown). However, the results of these tests indicate that the NASBA primers would 

likely need to be redesigned to work well with these enzymes, as the primers we designed 

for NASBA do not appear to be compatible. It may be worth trying this approach in the 

future, especially to minimize costs and maximize reaction efficiency. 

Another alternative approach to synthesizing the one-pot NASBA system would 

be to build a bacterial strain that expresses NASBA enzymes and make a “home-brew” 

TXTL system out of this strain. The engineered strain would need to express a subset of 

the following enzymes: reverse transcriptase, Rnase H, DNA polymerase, and T7 RNA 

polymerase. Presumably the bacterial strain’s native DNA polymerase could be used for 

NASBA, thus eliminating the need to express this enzyme synthetically. As mentioned 

previously, the AMV reverse transcriptase used in the standard NASBA protocol is the 

limiting enzyme that functions best at higher temperatures (above 37⁰C). As such, it may 

be worth searching for a bacteriophage species that expresses a reverse transcriptase 

naturally upon infection. A reverse transcriptase from this source would be more likely to 
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work efficiently at 37⁰C in conjunction with other enzymes present in the cell lysate.  

Synthesizing a cell-free TXTL system from an engineered strain is tractable using the 

Jewett lab’s comprehensive protocol for making TXTL systems in-house (Kwon and 

Jewett 2015). Notably, we have been able to robustly replicate this protocol in the lab 

with several engineered E. coli strains. Additionally, if necessary, these NASBA enzymes 

could be added in synthetically to the one-pot reaction, though this would add to the cost 

of each reaction. 

To move these options forward, we ran preliminary experiments to test for 

inhibition of TXTL reactions by various relevant enzymes and buffers. All enzymes and 

buffers, except Omniscript and Sensiscript, were purchased from NEB, and the toehold 

reactions were performed using Zika Sensor 3B (Figure 31). We found that AMV reverse 

transcriptase, the Omniscript/Sensiscript buffer, NEB Buffer 2, and the RNase H buffer, 

all inhibit the TXTL toehold reaction at the concentrations we tested. However, some 

components, such as the AMV reverse transcriptase buffer and the Klenow DNA 

Polymerase allow the toehold reaction to function properly and yet other components 

including the Omniscript, Sensiscript, and RNase H enzymes are permissive for the 

toehold reaction and additionally display some amount of signal amplification.  
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Figure 31. Effects of various enzymes and buffers on NEB toehold reaction.  

(A) The addition of AMV reverse transcriptase enzyme inhibits the toehold reaction. (B) The 

AMV reverse transcriptase buffer is permissive to the toehold reaction. (C) The addition of 

Omniscript slightly enhances toehold activity. (D) The addition of Sensiscript slightly enhances 

toehold activity. (E) The Omniscript/Sensiscript buffer inhibits the toehold reaction. (F) Addition 

of Klenow DNA polymerase does not affect the toehold reaction. (G) NEB Buffer 2 is inhibitory 

to the toehold reaction. All reactions were run with the Zika 3B toehold switch.  
 

 

4.3 Conclusion and future directions 

We have promising results that indicate that it is possible to combine NASBA and 

the toehold reactions into a single paper-based one-pot reaction. However, more work is 

needed to continue the optimization process and search the parameter space for the 

optimal reaction conditions. One approach towards this optimization process is to 

continue with the one-by-one titrations of each buffer component. Keeping in mind that 

each component may affect the other in a nonlinear fashion, it would be necessary to 

titrate and test each component multiple times, varying the concentrations of the other 

buffer components. Alternative approaches such as doping in individual enzymes rather 

than the singular NASBA Enzyme mix and synthesizing a TXTL system in-house from a 
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bacterial strain that expresses NASBA enzymes should also be considered, especially to 

improve reaction sensitivity and lower reagent costs. 
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CHAPTER FIVE: FUTURE DIRECTIONS 

5.1 Introduction 

The following chapter introduces future directions for the paper-based platform. 

The first two sections (Sections 5.2 and 5.3) describe a proposal for the development of 

an antibiotic susceptibility testing (AST) platform using the paper-based diagnostic. The 

next section (Section 5.4) describes other technological advancements and approaches for 

building on the paper-based platform’s diagnostic capabilities. 

 

5.2 Background and motivation for paper-based AST 

5.2.1 The antibiotic resistance problem 

The Centers for Disease Control and Prevention (CDC) reports that the rise of 

antibiotic resistance has become a public health crisis, leading to over 2 million infections 

and 23,000 deaths per year in the United States alone (2013). Limited diagnostic 

capabilities leave health-care providers unable to precisely diagnose clinical infections 

and administer effective treatments in a timely manner. Furthermore, the use of broad-

spectrum antibiotics clears out microbial niches and enables microbiome colonization by 

opportunistic pathogens (Kessel 2015). This threat has motivated efforts to reinvigorate 

antibiotic research and streamline funding and approval processes for new therapies 

(Hwang, Powers et al. 2015). However, the rapid transmission of antibiotic resistance 

challenges our present ability to develop additional small-molecule therapeutics, broad 

spectrum or otherwise (Ng, Ferreyra et al. 2013).  Furthermore, lack of effective 

diagnostic measures leads to widespread misuse of antibiotic treatments, promoting 
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further development and spread of antibiotic resistance. The societal and monetary costs 

associated with the lack of effective diagnostic measures calls for improved antimicrobial 

testing capabilities (Hwang, Powers et al. 2015; Kessel 2015).  

5.2.2 Antibiotic susceptibility testing (AST) 

The growing prevalence of antibiotic resistance calls for new approaches in the 

development of antimicrobial diagnostics. Such diagnostics are essential in guiding the 

application of targeted therapies and preventing the evolution and spread of antibiotic 

resistance. Current antibiotic susceptibility testing (AST) methods are slow, leading to 

the empiric use of non-specific broad-spectrum antibiotics that cause iatrogenic infections 

and contribute to the increasing prevalence of antibiotic-resistant microbes. Clinically 

tractable diagnostics must be low-cost, rapid, sensitive, easy to use, and quickly adaptable 

to new targets.  

Current ‘gold standard’ AST measures are based on minimum inhibitory 

concentration assays that evaluate long-term growth of clinical isolates in the presence of 

antibiotics (Andrews 2001). However, these assays are slow, taking at minimum 48 to 72 

hours to produce accurate results. Other resistance-determination schemes rely on 

nucleic-acid based detection of genetic resistance measures. Though rapid and minimally 

labor intensive, these tests are costly and must be developed anew for each resistance 

gene, limiting their widespread use and applicability as the rapid emergence of new 

resistance mechanisms continues.  

The lack of direct point-of-care (POC) antibiotic susceptibility determination 

leads to empiric use of non-specific broad-spectrum antibiotics. However, such 
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treatments often result in the elimination of both pathogenic and commensal 

microorganisms, clearing out native microbial niches which leads to iatrogenic infections 

such as Clostridium difficile and contributes to the increasing prevalence of antibiotic-

resistant microbes (Kalghatgi, Spina et al. 2013; Modi, Collins et al. 2014).  

5.2.3 Transcriptional signatures are indicative of antibiotic susceptibility 

Antibiotic exposure has been shown to rapidly induce stereotypical transcriptional 

responses in microbes susceptible to antibiotics (Barczak, Gomez et al. 2012). These 

mRNA-based signatures have been used to identify microbial species in clinical samples 

and have also been shown to allow for rapid characterization of antibiotic susceptibility.  

They indicate robust changes to the transcriptome in response to antibiotic treatment, and 

have been shown to correlate with antibiotic susceptibility but not with antibiotic 

resistance. While transcript-based AST has demonstrated success in the laboratory, the 

methodology utilized is not clinically tractable due to time-and labor-intensive sample 

processing and the expensive and highly specialized instrumentation required for reliable 

diagnosis.  

5.3 Paper-based AST proposal outline 

I propose the development of a diagnostic tool to addresses the need for POC 

AST. The proposed approach takes advantage of the cell-free paper-based platform to 

deploy RNA sensors that can identify transcriptional signatures associated with antibiotic 

susceptibility. Because this approach takes advantage of phenotypic susceptibility 

markers rather than genetic markers of resistance, this testing method is agnostic to 

mechanism of resistance and is thus widely applicable and adaptable to new 
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organism/drug combinations. Furthermore, this diagnostic will provide a colorimetric 

output that can be read in a rapid, easy-to-use, and cost-effective manner via the 

electronic optical reader.  

I propose to detect these native transcriptional signatures using RNA toehold 

switches, which have been shown to sense clinically relevant mRNA transcripts on the 

cell-free paper-based platform (Pardee, Green et al. 2014; Pardee, Green et al. 2016).  

The proposed platform scheme accepts an input of patient bacterial samples that have 

been treated with antibiotics for 15 to 30 minutes (Figure 32). The samples will then be 

processed and loaded onto a paper-based toehold sensor array for analysis.  

The following sections delineate an approach for engineering this system. Section 

5.3.1 proposes to develop and characterize RNA toehold switches for detection of 

antibiotic susceptibility markers. The next section (Section 5.3.2) focuses on advancing 

practical diagnostic applications and detection limits of this platform by incorporating an 

optimized one-pot NASBA protocol (described in Chapter 4).  Lastly, section 5.3.3 

proposes employment of the synthetic biology molecular toolbox to engineer logic-based 

circuits that integrate information from multiple toehold switch sensors into a single 

output measure of antibiotic susceptibility.  
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Figure 32. Paper-based antibiotic susceptibility testing platform.  

The proposed clinical scheme involves sample collection and amplification from a patient with a 

suspected bacterial infection. The bacterial sample will then be briefly treated with antibiotics and 

prepared for loading on to the paper-based RNA sensor platform. mRNA susceptibility signatures 

will be reported on colorimetrically using engineered toehold switches.  Figure from A. Khalil.   
 

5.3.1 Design and characterize RNA toehold switch sensors for detection of native 

mRNA transcripts that are indicative of antibiotic susceptibility 

The first challenge is to develop toehold switch sensors for a subset of transcripts 

that are highly indicative of antibiotic susceptibility. I propose to develop sensors for E. 

coli in response to three clinically relevant antibiotics: ciprofloxacin, ampicillin, and 

gentamicin. The transcripts most indicative of antibiotic susceptibility for these 

drug/microbe combinations have been previously identified, and include a family of three 

to five transcripts per drug (Figure 33) (Barczak, Gomez et al. 2012).  

I propose to design several toehold switch sensors to diagnose the presence of 

each of these relevant transcripts. The toehold switches will then be screened for activity, 

sensitivity, and detection limits on the freeze-dried paper-based system. Initial 

experiments will be performed on total RNA purified from antibiotic-treated bacterial 

cultures; later tests will focus on optimizing transcript detection directly from cell lysate 
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material using the boiling protocol (Chapter 3), and ultimately from samples mimicking 

clinical isolation methods (such as urine-obtained isolates spiked into urine samples). 

Experiments will be carried out to determine the minimal sample processing that is 

necessary for robust transcript detection on paper. 

 

 
 

Figure 33. Transcriptional signatures correlate with antibiotic sensitivity. 

mRNA susceptibility signatures for E. coli have been reported for ciprofloxacin, ampicillin, and 

gentamicin. These transcriptional signatures are able to differentiate sensitive and resistant 

bacterial populations in less than 30 minutes.  Image from (Barczak, Gomez et al. 2012). 
 

5.3.2 Optimize isothermal on-paper RNA amplification to increase diagnostic 

sensitivity 

The next challenge is to optimize the one-pot NASBA amplification technique 

described in Chapter 4 and to incorporate the toehold switch sensors from section 5.3.1 

into this streamlined amplification-detection protocol. I propose to develop a NASBA 

protocol that can be used to amplify and detect native mRNA transcripts that naturally 

occur at levels below the limit of detection of the toehold switch alone. This will allow 
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for easy expansion of the RNA amplification protocol to other toehold switch sensor 

targets, furthering the general diagnostic applications of the toehold switch technology. 

Fulfillment of this goal will occur in three optimization steps: optimizing the isothermal 

NASBA reaction at 37⁰C to ease clinical tractability; freeze-drying the NASBA reaction 

on paper; and optimizing an on-paper one-pot reaction that allows the NASBA protocol 

and toehold switch reporters to work together simultaneously to increase diagnostic 

detection limits.  

 

5.3.3 Design synthetic circuity that allows for integration of inputs from multiple 

mRNA transcripts into a single output indicative of antibiotic susceptibility. 

Lastly, I propose to develop synthetic biology-based genetic circuitry that allows 

for multiplexed detection of stereotypical transcriptional changes in a one-pot reaction. 

Multiplexed detection of different transcript species will allow for integration of signal 

from the three to five transcripts that comprise one antibiotic-dependent transcriptional 

signature. This integration will allow for a simple yes/no output read in regards to 

antibiotic susceptibility and will significantly reduce the cost associated with the 

proposed AST by reducing the number of reactions needed to obtain a reliable diagnosis. 

To achieve this, I propose to utilize basic synthetic biology tools to build biomolecular 

circuitry that is sensitive and robust. Toehold switches have been shown to be highly 

orthogonal, and can easily be used to evaluate multi-input AND logic (Pardee, Green et 

al. 2014). Other methods such as CRISPR-based or intein-based circuits may also be used 

to integrate multiple inputs into a single output on paper (Chavez, Scheiman et al. 2015). 
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I propose to first design a simple, two-input AND gate that can integrate signal from two 

RNA toehold switch sensors, and to then expand to three-, four-, and five-input AND 

gates that integrate signal from the toehold switch sensors designed and optimized in 

Section 5.3.1.  

 

5.4 Other technological advancements  

5.4.1 NASBA-CRISPR cleavage assay to provide single base-pair discrimination  

This section describes an innovation developed for Zika virus strain 

discrimination that can be paired with the paper-based toehold diagnostic platform 

(Pardee, Green et al. 2016). During epidemic outbreaks, it is often valuable to monitor 

pathogen lineage and geographic spread. In some cases, genetic variants may be 

responsible for different clinical manifestations of infection. For example, the Zika strain 

found in Brazil has been uniquely connected with higher incidences of fetal microcephaly 

and Guillain-Barre syndrome (Calvet et al., 2016; Mlakar et al., 2016). To allow for 

strain-specific detection and tracking, we developed an assay that provides single-base 

discrimination in a manner that is compatible with our freeze-dried sensor platform. Our 

assay, which we term NASBA-CRISPR Cleavage (NASBACC), leverages the sequence-

specific nuclease activity of CRISPR/Cas9 to discriminate between viral lineages (Figure 

34A). To do this, NASBACC exploits the ability of Cas9 to selectively cleave DNA only 

in the presence of an NGG protospacer adjacent motif (PAM). Since any non-biased 

mutation has a 48% probability of either creating a new PAM site or destroying an 

existing one (Table S1 from (Pardee, Green et al. 2016)), there many strain-specific PAM 
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sites that can be used for lineage discrimination (Figure 34B and 34C). In the NASBACC 

detection scheme, RNA sequences undergo NASBA amplification utilizing a reverse 

primer designed to append the trigger sequence of a synthetic toehold switch (sensor H, 

Figure 34A) (Pardee et al., 2014). In the presence of the appropriate PAM sequence and 

guide RNA target site, the double-stranded DNA that is synthesized as part of the 

NASBA reaction undergoes Cas9-mediated cleavage, resulting in a truncated RNA 

product that is unable to activate the sensor H toehold switch. In the absence of the PAM 

sequence, the full-length RNA product containing the sensor H trigger sequence is 

generated, allowing for sensor H activation. Trigger RNA is only amplified from DNA 

that is not cut by Cas9, thereby allowing for strain-specific detection using toehold sensor 

H.  

Using the paper-based system, sensor 32B was able to distinguish between Zika 

and Dengue RNA sequences. However, this sensor could not discriminate between the 

African (Genbank accession number: KF268950) and American (Genbank accession 

number: KU312312) Zika variants (Figure 34D), a feature which may be useful in certain 

diagnostic applications. To address this, we applied our NASBACC detection scheme to 

discriminate between the African and American Zika strains. Due to a single base 

difference in the trigger regions of these two strains, a PAM site only exists in the 

American-lineage Zika virus sequence (Figure 34C). Thus, only the American strain 

sequence was cleaved by Cas9, which led to amplification of truncated RNA that did not 

activate the sensor H toehold switch (Figure 34E). Conversely, the African strain 

sequence does not contain the PAM site and was not cleaved by Cas9, which resulted in 
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amplification of full-length RNA that activated the sensor H toehold switch. 

Incorporating NASBACC into our diagnostic workflow can provide precise genotypic 

information within a few hours. As with the other biomolecular elements of this 

workflow, Cas9 is compatible with lyophilization and could be used in the field (Figure 

S5 from (Pardee, Green et al. 2016)).  
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Figure 34. NASBA-CRISPR Cleavage (NASBACC) allows for strain differentiation at a 

single-base resolution.  

(A) Schematic representation of NASBACC genotyping following a positive Zika diagnosis. A 

synthetic trigger sequence is appended to a NASBA-amplified RNA fragment through reverse 

transcription.  The presence of a strain-specific PAM leads to the production of either truncated or 

full-length trigger RNA, which differentially activates a toehold switch (sensor H) (Pardee et al., 

2014). (B) The probability that a non-biased single nucleotide polymorphism (SNP) between two 

strains can be discriminated by CRISPR/Cas9 is 48% (Table S4 from (Pardee, Green et al. 2016)).  

Hence, genetic drift between the American and African or Asian strains, while relatively small 

(14.4% and 4.9% sequence dissimilarity, respectively), has created hundreds of strain-specific 

PAM sites. (C) A SNP between African (KF268950) and American (KU312312) strains at site 

7330 disrupts an existing PAM site, allowing for Cas9-mediated DNA cleavage only in the 

American strain. (D) Sensor 32B can distinguish between Dengue and Zika RNA sequences, but 

cannot discriminate between American and African Zika strains. Paper discs containing sensor 

32B were rehydrated with 300 nM trigger RNA corresponding to sequences from American-Zika, 

African-Zika, or Dengue. Colorimetric outputs: a purple color indicates the activation of LacZ 

expression from the toehold switch, and a yellow color indicates the toehold switch remained 

inactive. (E) NASBACC can discriminate between American- and African-lineages of Zika virus. 

Paper discs containing sensor H were rehydrated with a 1:10 dilution of NASBACC reactions 
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initiated with 0.05 µl of a 300 nM RNA sample. In this case, an inactive toehold switch leads to a 

positive identification of the American Zika strain.   
 

5.4.2 CRISPR-mediated improvements to diagnostic sensitivity  

More recently, our group developed a new RNA/DNA sensing technique called 

SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) that has even 

greater sensitivity and specificity for target nucleic acids (Gootenberg, Abudayyeh et al. 

2017). SHERLOCK utilizes the activity of the CRISPR effector C2c2, which recognizes 

and cleaves target RNAs with very high precision and sensitivity when programed with 

an appropriate guide RNA. Our group was able to use SHERLOCK to detect DNA and 

RNA target molecules at a concentration of 2 attomolar, equivalent to 1 copy per uL.  

 

5.4.3 Microfluidic device for automated sample processing and diagnostic readout  

Current limitations to in-field diagnostic use of our platform include the need for 

an automated, simple, and portable sample handling and processing scheme. In order to 

advance the diagnostic capabilities of the platform, it will be necessary to develop a 

microfluidic device to automate sample processing and minimize the hand-on time 

required by the diagnostic. As an example, the processing procedures used to detect Zika 

virus in blood plasma samples are: (1) Boiling the plasma sample (95C, 2 min) to 

inactivate the virus, break down the viral capsid, and release viral RNA (2) diluting the 

boiled sample 1:10 into water to dilute reaction inhibitors that are naturally present in 

blood plasma (3) loading the diluted sample into an isothermal RNA amplification 

reaction (41C, 30 min to 3 hrs) (4) loading the amplified sample onto a cell-free paper-
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based reaction for detection via toeholds (37C, 1hr). A microfluidic device integrated into 

this platform would take blood plasma as an input and automate the above steps for a 

final output in the form of a paper-based reaction with an easy diagnostic readout. A 

diagnostic device could also be programmed to quantify toehold output. As such, it is 

also worth exploring alternative output readouts to the toehold switches including other 

colorimetric readouts, as well as chemiluminescence and fluorescent markers.  

 

5.5 Conclusion 

We have devised a rapid diagnostic development pipeline in response to the 

ongoing Zika virus outbreak. The serious but poorly understood complications of this 

viral infection make its timely diagnosis critical for patient health and for limiting its 

rapid proliferation. However, the poor performance of antibody detection methods 

(Lanciotti et al., 2008; de M Campos et al., 2016; Tappe et al., 2014; Zammarchi et al., 

2015) and the limitations of traditional sequence-based diagnostics have left technical 

and economic challenges to meeting diagnostic needs. 

Our paper-based platform directly addresses these needs by enabling sequence-

specific detection of Zika virus in a low-cost manner that is tractable in low-resource 

settings. By freeze-drying cell-free transcription and translation systems with genetic 

sensors onto paper, we have created a sterile and abiotic platform that can be utilized 

outside of laboratory conditions without concern over biosafety. Furthermore, the freeze-

dried biomolecular components remain stable at room temperature, allowing for easy 

storage and distribution in global settings. Our application is easy to use, relying on a 
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colorimetric output that can be read by the naked eye or with a low-cost, battery-operated 

companion reader, and we are actively working to improve field-readiness via 

development of a third-generation reader with onboard capabilities for sample 

preparation and incubation.  

The streamlined sensor development platform we describe here provides a 

generalizable method for a rapid response to any emerging outbreak. Our automated 

design process computationally screens for sequence specificity and feeds into a high-

throughput protocol for rapid sensor prototyping in vitro. We have augmented our 

diagnostic sensors with an upstream target-amplification scheme that allows for detection 

of target sequences in the low femtomolar range, bringing sensor sensitivity in line with 

in-patient virus concentrations (Gourinat et al., 2015; Lanciotti et al., 2008).  

With our goal of responding to the ongoing outbreak in a timely manner, we 

began our work using synthetic RNA fragments spiked into human serum, followed by 

engineered lentiviruses to mimic clinical samples. As with many proof-of-concept 

diagnostic studies, synthetic samples provided us with a powerful tool for optimizing our 

sensor platform ahead of the regulatory demands required for use of live pathogens 

(Antunes et al., 2015; Crannell et al., 2014; Rohrman et al., 2012; Stefan et al., 2016; Yen 

et al., 2015). Through collaborative efforts with the Zika virus community, we were able 

to test our platform on live Zika virus, and were pleased to find similar detection 

thresholds with Zika virus isolated from infected Vero cells (Figure 13B) and plasma 

samples from an infected rhesus macaque (Figure 13C and 13D). Our rapid response to 

the ongoing Zika virus outbreak and our ability to achieve clinically relevant sensitivity 
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and specificity highlight the utility and practicality of this platform technology. 

Our synthetic biology pipeline for rapid sensor design and prototyping could be 

applied to a broad range of public health threats, allowing for rapid development of new 

diagnostics when and where they are most needed. The ease of in vitro sensor synthesis 

will allow for the widespread use of validated sensor sequences, aiding rapid global 

responses to current and future health crises. Finally, our ability to expeditiously design 

and implement our biomolecular diagnostics for an emerging pathogen using the 

engineering principles of synthetic biology suggests that the field will play an ever-

increasing role in the support and improvement of human health.  
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CHAPTER SIX: METHODS 

Relevant methods are highlighted in this chapter; full methods can be found in 

(Pardee, Green et al. 2016). 

 

6.1 In silico sensor design and DNA synthesis 

A set of 48 different toehold switch sensors and corresponding NASBA primers 

were generated using an integrated in silico design algorithm. See the Extended 

Experimental Procedures section in the Supplemental Information from (Pardee, Green et 

al. 2016) for full details.  

 

6.2 DNA sensor assembly 

Toehold switch constructs for the 48-sensor screen were amplified from synthetic 

DNA templates (Integrated DNA Technologies) and ligated to the lacZ reporter gene 

using PCR. For characterization of the top six toehold switches (Figure 7A), plasmids 

were constructed. The synthetic DNA templates were amplified using PCR and inserted 

into pET system parent plasmids (EMD Millipore) using Gibson assembly (Gibson et al., 

2009) with 30 bp overlap regions. Plasmids for sensors 27B and 32B are available 

through Addgene (Addgene plasmid numbers: 75006 – 75011). 

 

6.3 Cell-free reactions 

Details of RNA sensor validation are described in Pardee et al. (2014). Briefly, 

amplified sensor DNA was column purified and tested on paper discs (2 mm) containing 

freeze-dried, cell-free reactions (NEB, PURExpress) in the presence or absence of trigger 
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RNA coding for a complementary region of the Zika virus genome (128 – 178 nts). The 

cell-free reactions consisted of: NEB Solution A (40%) and B (30%), chlorophenol red-

-D-galactopyranoside (Sigma, 0.6 mg/ml), RNase inhibitor (Roche, 03335402001; 

0.5%), and linear DNA constructs encoding the toehold sensors (0.33 nM). The paper 

discs (Whatman, 1442-042) were blocked in 5% BSA overnight prior to use. The trigger 

RNA was produced using T7 RNAP-based transcription (Epicentre ASF3257) from 

linear DNA templates.  Paper-based reactions (1.8 l) were incubated at 37C using 

either our companion electronic reader inside a humidified chamber or a plate reader 

(BioTek Neo). For the in-house reader, paper discs were placed into 2 mm holes in a 

removable acrylic chip; for the plate reader, paper discs were placed into black, clear 

bottom 384-well plates (Corning 3544).   

 

6.4 NASBA 

For NASBA reactions, the trigger elements (128 – 178 nts) were extended by 100 

nts on the 5’ and 3’ ends with the relevant Zika genome sequence to provide suitable 

template RNAs. RNA amplicons were spiked into 7% human serum (Sigma H4522) 

where indicated. Reaction Buffer (Life Sciences NECB-24; 33.5%), Nucleotide Mix 

(Life Sciences NECN-24; 16.5%), RNase inhibitor (Roche, 03335402001; 0.5%), 12.5 

µM of each NASBA primer (2%), nuclease free water (2.5%), and RNA amplicon (20%) 

were assembled at 4C and incubated at 65C for 2 min, followed by a 10-min incubation 

at 41C. Enzyme Mix (Life Sciences NEC-1-24; 25%) was then added to the reaction (for 

a final volume of 5uL), and the mixture was incubated at 41C for 2 hours unless noted 
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otherwise. For output reads with paper-based toeholds, the NASBA reactions were 

diluted 1:7 in water. For freeze-dried NASBA experiments, Enzyme Mix was lyophilized 

separately from the other components. The solution containing reaction buffer, nucleotide 

mix, RNase inhibitor, and primers was reconstituted in 15% DMSO, while the Enzyme 

Mix was reconstituted in nuclease-free water. Once reconstituted, the experiments 

proceeded as described above. 

 

6.5 Lentivirus preparation and sample processing 

HEK293FT cells (Life Technologies, R70007) used for virus packaging were 

cultured in DMEM supplemented with 10% FBS, 1% penicillin-streptomycin, and 4 mM 

GlutaMAX
TM

 (ThermoFisher Scientific). Twelve hours prior to transfection, 6.5 x 10
6 

cells were seeded in a 10 cm dish. 7.5 µg psPAX2, 2.5 µg pMD2.G, and 10 µg pSB700 

modified to include a Zika or Dengue RNA fragment were transfected using the HeBS-

CaCl2 method. Media was changed 12 hours post-transfection. Twenty-seven hours after 

changing media, viral supernatant was harvested and filtered using a 0.45 m syringe 

filter.  Viral supernatant was then purified with ViraBind Lentivirus Purification Kit (Cell 

Biolabs VPK-104) and buffer exchanged into 1xPBS with Lenti-X Concentrator 

(Clontech, 631231). Viral RNA concentration was quantified using QuickTiter Lentivirus 

Quantification Kit (VPK-112). Virus samples were spiked into 7% human serum at a 

final volume of 25 µl. Samples were heated to 95C for 1 and 2 min and immediately 

used as input to a NASBA reaction. 
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6.6 Zika virus preparation and sample processing 

100 µl of Zika virus isolate (MR 766) was utilized for infection of 10
6
 Vero cells 

in 4 ml of media (DMEM supplemented with 2% fetal calf serum (FCS) and penicillin-

streptomycin). The supernatant was removed after 2 h of incubation at 37C and replaced 

with fresh media (DMEM, 10% FCS) for 48 h of infection. Cell debris was removed by 

centrifugation at 1500 rcf for 10 minutes, and aliquots of the virus were stored at -80C 

until use. The virus was buffer exchanged into 1xPBS with Lenti-X Concentrator 

(Clontech, 631231). Virus titer was determined from virus purified with the QIAamp 

Viral RNA Mini Kit (Qiagen 52904), and confirmed with qRT-PCR. Virus titer 

corresponds to a multiplicity of infection of 6.7 x 10
7
. Virus samples were spiked into 7% 

human serum at a final volume of 30 µl. Samples were heated to 95C for 2 min and 

immediately used as input to a NASBA reaction. NASBA primers were re-designed to 

accommodate the MR 766 strain sequence (see Supplemental Information from (Pardee, 

Green et al. 2016)).  

 

6.7 Calculation of fold change 

The calculation of fold change for plate reader data was done by first subtracting 

the background absorbance measured from paper-based reactions that did not contain 

sensor DNA or trigger RNA. These normalized values were smoothed to reduce 

measurement noise using a three-point average of the time point and the data collected 10 

minutes before and after. The minimum value of each well was then adjusted to zero.  For 

data presented in Figures 3, 4 and 6, fold change was calculated from these zero adjusted 
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values by dividing the wells at each time point by the average signal from the 

corresponding sensor-alone control wells. For our initial sensor screen, we used a more 

sensitive measure of fold change based on the difference in the rate of color change 

between control and RNA trigger wells. This was done by calculating the rate of change 

in normalized absorbance (570 nm) values using slope; where, at each 10 min time point, 

the rate was calculated using Sn = (Tn+1 - Tn)/10, where T is the normalized data at a time 

point (Tn) and the time point 10 min later (Tn+1), and Sn is the slope reported for Tn. Fold 

change was then calculated as above. MATLAB code provided in (Pardee, Green et al. 

2016) 

 

6.8 NASBACC  

Reactions were performed in a 5 µL volume containing (NASBA buffer), 1 µL of 

a 250 nM Cas9 nuclease (NEB, M0386) and 250 nM purified gRNA (GeneArt precision 

gRNA synthesis kit, ThermoFisher Scientific, A29377) mix, 3 nM NASBACC primers, 

and 0.4 units of RNAse inhibitor (NEB, M0314). The forward NASBACC primer is 

composed of the reverse complement of the trigger H sequence (5’- GTT TGA ATG 

AAT TGT AGG CTT GTT ATA GTT ATG TTT-3’) and the forward binding sequence 

of the (region 32) NASBA primers. The reverse NASBACC primer contains the T7 

promoter sequence (5'-CTA ATA CGA CTC ACT ATA GG-3’) followed by the reverse 

binding sequence of the (region 32) NASBA primers. The assembled reaction was 

incubated at 37°C for 2–6 h. For toehold activation assay on freeze-dried paper, 

NASBACC reactions were diluted 1:10 in nuclease-free water.  
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6.9 Zika virus challenge of macaques, plasma collection and processing 

The virus stock was thawed, diluted in PBS to the appropriate concentration for 

each challenge, and loaded into a 1 mL syringe that was kept on ice until challenge. 

Animals were anesthetized as described above, and 1 mL of inocula was administered 

subcutaneously over the cranial dorsum. At the conclusion of the procedure, animals 

were closely monitored by veterinary and animal care staff for adverse reactions and 

signs of disease. Fresh plasma and PBMC were isolated from EDTA-treated whole blood 

by Ficoll density centrifugation at 1860 rcf for 30 min. The plasma layer was collected 

and centrifuged for an additional 8 min at 670 rcf to remove residual cells. The 

supernatant plasma was then filtered over a 0.45 µm syringe filter. Collected plasma was 

diluted 1:10 in nuclease free water. Diluted samples were heated to 95C for two minutes 

and immediately added to a NASBA reaction as described above. NASBA was run for 

three hours. 
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