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ABSTRACT

The U.S. health care system is considered costly and highly inefficient, devoting

substantial resources to the treatment of acute conditions in a hospital setting rather

than focusing on prevention and keeping patients out of the hospital. The poten-

tial for cost savings is large; in the U.S. more than $30 billion are spent each year

on hospitalizations deemed preventable, 31% of which is attributed to heart diseases

and 20% to diabetes. Motivated by this, our work focuses on developing central-

ized and distributed learning methods to predict future heart- or diabetes- related

hospitalizations based on patient Electronic Health Records (EHRs).

We explore a variety of supervised classification methods and we present a novel

likelihood ratio based method (K-LRT) that predicts hospitalizations and offers in-

terpretability by identifying the K most significant features that lead to a positive

prediction for each patient. Next, assuming that the positive class consists of multi-

ple clusters (hospitalized patients due to different reasons), while the negative class

is drawn from a single cluster (non-hospitalized patients healthy in every aspect), we

present an alternating optimization approach, which jointly discovers the clusters in
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the positive class and optimizes the classifiers that separate each positive cluster from

the negative samples. We establish the convergence of the method and characterize its

VC dimension. Last, we develop a decentralized cluster Primal-Dual Splitting (cPDS)

method for large-scale problems, that is computationally efficient and privacy-aware.

Such a distributed learning scheme is relevant for multi-institutional collaborations

or peer-to-peer applications, allowing the agents to collaborate, while keeping every

participant’s data private. cPDS is proved to have an improved convergence rate

compared to existing centralized and decentralized methods. We test all methods

on real EHR data from the Boston Medical Center and compare results in terms of

prediction accuracy and interpretability.

vii



Contents

1 Introduction 1

1.1 Machine Learning in Healthcare . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Significance: An Underlying Motive . . . . . . . . . . . . 1

1.1.2 Healthcare Big Data . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 How Can Big Data Benefit the Medical Domain? . . . . . . . 4

1.1.4 Applications of Machine Learning to Medical Problems . . . . 5

1.1.5 Challenges and Concerns . . . . . . . . . . . . . . . . . . . . . 6

1.1.6 Methodologies: What is Needed, What Works, What Matters 8

1.2 Thesis Goal: Predict Chronic Disease Hospitalizations . . . . . . . . . 9

1.3 Position in the Literature . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Datasets: Electronic Health Records of patients with heart diseases

or diabetes 15

2.1 Heart Diseases Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Detailed Data Description . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Correlation Between Features . . . . . . . . . . . . . . . . . . 20

2.2 Diabetes Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Detailed Data Description . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Identifying the Diabetes-Related Hospitalizations . . . . . . . 22

viii



2.2.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Baseline Methods; Performance and Interpretability 27

3.1 Support Vector Machines (SVM) . . . . . . . . . . . . . . . . . . . . 27

3.2 AdaBoost with Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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Chapter 1

Introduction

1.1 Machine Learning in Healthcare

1.1.1 The Significance: An Underlying Motive

Healthcare has adapted to the recent advancements in machine learning and the

unprecedented explosion of data. Mainly economic, if not other quality-of-service

related, reasons play a key role in the transformation that healthcare is undergoing.

In 2006, health-care expenses represented 15.5% of the United States (U.S.) gross

domestic product (GDP) [Jiang et al., 2009], while in 2013, this percentage was in-

creased to 17.6% [Groves et al., 2013], that is nearly $600 billion more than what

was expected of a country with the U.S.’s size and wealth.1 The World Health Orga-

nization estimates that healthcare costs will grow to 20% of U.S.’s GDP (nearly $5

trillion) by 2021 [Adler and Hoagland, 2012], especially with civilization diseases (or

else called lifestyle diseases), like diabetes, coronary heart disease and obesity, grow-

ing. At the same time, machine learning (ML), whose aim is to develop algorithmic

systems that can learn from data, improve through experience and be used for pre-

dictions, provides the tools needed to address a variety of diagnostic and prognostic

medical problems.

1This estimate is based on McKinsey’s regression analysis of income and spending data from other
countries in the Organization of Economic Co-operation and Development. This measure estimates
how much a country is expected to spend on healthcare based on per capita GDP [Groves et al.,
2013].
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1.1.2 Healthcare Big Data

Traditionally, healthcare data have been static, paper-based and used for record keep-

ing and information sharing. The digitalization of patients’ records started more than

two decades ago. Widespread adoption of electronic health records (EHRs) (else called

electronic medical records EMRs, or personal health records PHRs), has generated

massive data sets. 87% of US office-based physicians were using them by the end of

2015, up from 42% in 2008 [Office of the National Coordinator for Health Information

Technology, 2016]. EHRs have found diverse uses [Ludwick and Doucette, 2009], e.g.,

in assisting the quality management in hospitals [Takeda et al., 2003], in detecting

adverse drug reactions [Hannan, 1999], and in general primary care [Wang et al.,

2003]. These early application uses of EHRs merely scratch the surface of what may

be possible.

Healthcare data nowadays, are being collected and stored massively and cheaply

in data warehouses. They come from various sources and can be of different types:

insurance claims and cost data, research and development data developed over the

years and aggregated into medical databases by pharmaceutical companies, electronic

health records, genomic sequences, human genetics, population data, clinical trial

data, patients’ behavior data etc. Most recent forms include biometric sensor read-

ings, 3D imaging and more. EHRs form a rich set that might include demographics,

hospital admissions, the patient’s admitting, primary and secondary diagnoses, pro-

cedures, the physician’s name, the hospital’s name, nurse and doctor’s notes, treat-

ment reimbursement codes, discharge records, MRI (magnetic resonance imaging)

and other images, ECGs (electrocardiograms) etc. EHRs also contain quantitative

data (e.g., laboratory values, blood pressure measurements), qualitative data (e.g.,

text-based notes, demographic information) and transactional data (e.g., records of

drug deliveries) [Murdoch and Detsky, 2013].
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In 2001, D. Laney introduced “the three V” dimensions along which big data are

expanding [Laney, 2001]: volume, velocity and variety. In [Raghupathi and Raghu-

pathi, 2014], it is reported that the U.S. healthcare system data reached, in 2011, 150

exabytes and that at this rate of growth they will soon be on the order of zettabytes

or yottabytes. Two perhaps even greater challenges than volume, are the variety of

healthcare data, that come from diverse sources, all of which need to be utilized in

order to fully leverage the potential of analytics, and the velocity. Velocity refers to

the fact that healthcare data do not come only in static formats anymore. Nowadays

real-time measurements are available by regular monitoring, e.g., diabetic glucose

measurements, blood pressure readings, ECGs, data from operating room monitoring

or new data streams, such as heart rate measurements, from fitness trackers. Of-

tentimes, critical outcomes, such as life or death, depend on mining those real-time

streams. For example, in [Convertino et al., 2011] monitoring noninvasively measured

hemodynamic signals detects early indicators of blood volume loss and impending cir-

culatory failure in conscious, healthy humans who experience reduced central blood

volume. In [Jin et al., 2009] real-time electrocardiographic monitoring can predict the

cardiovascular disease, since heart rhythm irregularities cannot always be detected on

a standard resting ECG machine.

Since 2011, a fourth dimension has been added to the description of big data and

that is veracity. [Meyfroidt et al., 2009] discuss the problem of data accuracy and

how it is hard to be measured in retrospect. Accuracy is understood as the ability of

collected data to properly describe the clinical continuum during the time they were

collected. It has two aspects to it: completeness, referring to how much data were

actually collected and how much are missing, and correctness, which is capturing

both whether the code or amount recorded in the system has the correct value and

whether the diagnoses or prescriptions recorded capture what has truly happened.
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Most recently, people consider value as the fifth “V” big data dimension, which refers

to the business potential of achieving greater value through insights from superior

analytics. [Chen et al., 2012] highlight the increasing demand for individuals that

know how to manage the three perspectives of business decision making: descriptive,

predictive and prescriptive analytics.

1.1.3 How Can Big Data Benefit the Medical Domain?

The big data transformation of healthcare can potentially have a positive impact on

all key components of the system, i.e., provider, payer, patient and management.

Essentially, the benefits originate from being able to provide the most suitable in-

tervention at the most appropriate time for each individual patient. [Murdoch and

Detsky, 2013] present examples of illustrative beneficial directions.

First, big data have a great potential on generating new knowledge and advanc-

ing medical research: (i) clinical data could be used for discovering phenotypes and

treatment of patients; (ii) EHRs could potentially establish new patient-stratification

techniques and reveal unknown disease correlations; and (iii) integrating EHRs with

genetic data could provide insights into the genotype /phenotype relationships [Jensen

et al., 2012].

Second, big data may support knowledge dissemination in clinical care. Standard

medical practice is gradually becoming more evidence-based shifting away from sub-

jective decision making. However, most physicians struggle to stay updated with the

latest evidence that is guiding clinical practice. The digitalized format of medical lit-

erature articles facilitates access to knowledge, however the large number of available

information hinders it. A medical diagnostic decision support system (MDDSS or

else called clinical decision support system CDSS) that analyzes real-time data and

provides recommendations could not only be a helpful tool to physicians, but reduce

costs and contribute to standardization of care as well.
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Third, big data slowly shift healthcare towards a model in which the patient is

empowered with a more active role. Patients will no longer always have to visit the

doctor and passively receive advice and treatment. By using smartphone devices,

fitness trackers, or health applications, they could take some measurements on their

own and also improve their health-related data (e.g., medication list, family history)

by linking them to other personal data (e.g., income, education, dietary habits, exer-

cise). By maintaining a digital medical history that always resides with them, patients

obtain greater control over their health. Based on the individual’s history, big data

offer the capability of creating an indicator in a patient-directed way of whether the

patient could be targeted and participate in public health initiatives, to reduce for

example smoking or obesity. Taking it one step further, big data could also contribute

to the medicine development process. People will be able to better evaluate in a more

direct way a drug, since analyzing large patient populations data and making results

available is feasible.

1.1.4 Applications of Machine Learning to Medical Problems

There is a number of papers in the literature that examine the application of data

analytics techniques to healthcare problems. [Raghupathi and Raghupathi, 2014] men-

tion as examples: detecting diseases at earlier stages (e.g., [Li et al., 2007], [Moore

et al., 2013]; managing population health by detecting vulnerabilities within patient

populations during disease outbreaks or disasters (e.g., [Wong et al., 2002]), predict-

ing outcomes, such as length of stay, based on historical data (e.g., [Hachesu et al.,

2013], [Frost et al., 2017], [Pathak et al., 2013], [Hrovat et al., 2014]); forecasting ill-

ness/disease progression (e.g., [Rizk-Jackson et al., 2011]); discovering causal factors

for co-morbid conditions (e.g., [Diamond and Sekhon, 2013]); reducing readmissions

(e.g., [Bayati et al., 2014]); improving outcomes by examining at-home health mon-

itors (e.g., [Costa et al., 2012], [Rodŕıguez-Mart́ın et al., 2017], [Forkan and Khalil,
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2017]); combining clinical, financial and operational data to analyze resource utiliza-

tion productively and in real time (e.g., [IBM, 2013]).

[Obenshain, 2004] discuss the mining applications in the drug discovery process

(e.g., [Burbidge et al., 2001]), infection control surveillance [Brossette et al., 2000],

ranking hospitals and healthcare plans [Cerrito et al., 2002] and identifying high-risk

patients [Ridinger, 2002]. [Koh et al., 2011] refer to how machine learning can help

healthcare insurers detect fraud and abuse (e.g., [Tomar and Agarwal, 2013], [Boxwala

et al., 2011]), healthcare organizations make customer relationship management deci-

sions (e.g., [Paddison, 2000]), physicians identify effective treatments and best prac-

tices, and patients receive better and more affordable healthcare services (e.g., [Groves

et al., 2013]).

[Magoulas and Prentza, 2001] discuss the use of ML for extracting medical knowl-

edge for outcome research (e.g., [Phan et al., 2017]), therapy planning and individ-

ualized support (e.g., [Tuarob et al., 2017]), interpretation of continuous data used

in the Intensive Care Unit (e.g., [Kim et al., 2011]), and medical diagnostic reason-

ing (e.g., [Stausberg and Person, 1999]). Even more examples of applications can be

found in [Meyfroidt et al., 2009], [Yoo et al., 2012] and [Dua et al., 2014].

1.1.5 Challenges and Concerns

The challenges encountered in using analytics with big healthcare data do not only

concern volume, heterogeneity, complexity and uncertainty [Fan et al., 2014]. There

are major concerns especially tied to the medical domain.

First, there is the problem of data privacy, i.e., who has access to patients per-

sonal information and under what conditions. In the U.S., the law that provides a

standard for medical privacy is the Health Insurance Portability and Accountability

Act (HIPAA), voted in 1996. Removing a set of protected health information (PHI)

ensures HIPAA compliance and allows querying the data. Examples of PHI identifiers
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are names, social security numbers, medical records numbers, dates (other than year)

and geographical identifiers smaller than a state. Even though there is regulation

in place and security measures are taken in health institutions to protect medical

data, the healthcare industry is experiencing a number of data breaches. According

to the Identity Theft Resource Center’s reports, in 2013 the health sector breaches

represented 43% of the total overall breaches, with the percent increasing to 44.1% in

2014 and dropping to 35.5% in 2015. The 2013 health sector data breaches impacted

1.84 million Americans and the average victim held liable for more than $18, 600 in

medical services, according to the Ponemon Institutes 2013 Survey on Medical Iden-

tity Theft. Clearly, even with the patients identities blinded, the risk of a central

data repository being compromised renders data privacy an important concern and

medical data sharing challenging.

Another impeding factor for healthcare to embrace the benefits of big data is that

all stakeholders must recognize the value of analytics and be willing to act on its

insights and this is a fundamental change in mentality. Diagnostic decision support

systems (DDSS) have been developed for and used by physicians. Studies have in-

dicated that although physicians acknowledge the need for diagnostic support, they

rarely alter their diagnostic judgment based on recommendations by the system [Rid-

derikhoff and van Herk, 1997], [Ridderikhoff and van Herk, 1999], [Rosenbloom et al.,

2004]. Moreover, there are entities within the health sector that do not deliver direct

individual patient care, such as health service researchers, pharmaceutical compa-

nies, public health or other government organizations, who yet do not exploit big

data due to a lack of coherent policies and standard good practices for secondary

use of health data [Safran et al., 2007]. While at first, there might have not been

strong enough incentives for the adoption of algorithmic approaches in practice, the

healthcare industry nowadays has been transitioning from a fee-for-service to a value-
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based reimbursement model, which is mandating better care at a lower cost. Health

providers that cannot achieve the required quality-of-care scores, face significant fi-

nancial penalties. This, together with the realization of the business benefits of big

data, are driving the required mindset shift. The combination of physicians and data-

driven assistance in clinical practice deserves further and thorough exploration. To

that end, it is of critical importance for the proposed algorithmic big data solutions

to be as much as possible accessible to and comprehensible by the physicians.

1.1.6 Methodologies: What is Needed, What Works, What Matters

There is a number of established and emerging machine learning paradigms for health-

care informatics. Successful application of ML in healthcare problems, requires ac-

curacy, transparency, ability to deal with complex data (often imbalanced, of low

or very large sample size, of high dimensionality, including missing data, of varying

time intervals), ability to incorporate background knowledge to the model, and time

efficiency. More than that, algorithms need to be robust, since they often deal with

life or death decisions.

As nicely suggested in [Kohavi et al., 1997], it is useful to “take each algorithm for

a test drive” and keep in mind the criteria of classification accuracy, comprehensibility,

compactness, training and classification time. For the medical domain in particular,

accuracy is important, but also interpretability is a paramount quality that machine

learning methods should aim to achieve [Vellido et al., 2012]. Sparse classifiers are

interpretable, since they provide feedback on how important each feature is. Based

on this feedback, one can often remove many non-predictive variables from a model

without any significant loss in accuracy, highlighting at the same time features that

most affect the classification decision. We will extensively experiment with and show

the advantages of sparse classifiers in this thesis. While harder to interpret than

linear and sparse algorithms, ensemble methods that build collections of classifiers,
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such as boosting and random forests, can model non-linear relationships, have proven

to provide more accurate models for common healthcare problems, including the one

we study in this thesis, and run quite quickly. We will also explore other models,

such as Naive-Bayes classifiers, which seem to perform well in the medical domain

[Kononenko, 1993], and logistic regression [Wu et al., 2010].

Last, it is our belief that the increasing volume of available healthcare data and the

concerns about data privacy will cause a paradigm shift in data sharing and healthcare

analytics towards a distributed computing model. Such a scheme is more scalable

compared to a single or centralized computing site and, given security measures are

in place, it has many key benefits: greater statistical power due to the large number

of samples and ability to (a) study occurrences of rare outcomes, uptake or usage of

new drugs or therapies, and diverse populations of individuals, (b) combine sources of

data to develop novel analytic and statistical methods, and (c) alleviate data holders

concerns over data security, patient privacy and proprietary interests [Popovic, 2015].

This thesis explores this research direction too.

1.2 Thesis Goal: Predict Chronic Disease Hospitalizations

The key problem we will address in this thesis is to explore and develop centralized

and distributed methods to predict hospitalizations (i.e., admissions to the hospital)

during a target year for patients with heart-related diseases or diabetes based on their

medical history as described in their Electronic Health Records.

Diseases of the heart have been consistently among the top causes of death. In the

U.S., heart disease is yearly the cause of one in every four deaths, which translates

to 610,000 people, while every year, about 735,000 Americans have a heart attack

[Centers for Disease Control and Prevention, 2015]. At the same time, diabetes is

recognized as the worlds fastest growing chronic condition. One in eleven adults has
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diabetes worldwide (415 million) and 12% of global health expenditures is spent on

diabetes ($673 billion) [International Diabetes Federation, 2015]. In the U.S. alone,

29.1 million people or 9.3% of the population had diabetes in 2012 [Centers for Disease

Control and Prevention, 2014]. Given its impact, medical and health services studies

have been tracking the prevalence and trends in diabetes among adults [Menke et al.,

2015,King et al., 1998,Rathmann and Giani, 2004]. While heart diseases and diabetes

affect primarily the patients at many levels (physical, financial, etc.), they also pose

an economic burden to states influencing healthcare costs and GDP/productivity

metrics.

According to [Jiang et al., 2009], nearly $30.8 billion in hospital care cost during

2006 was preventable. Heart diseases and diabetes were the leading contributors ac-

counting correspondingly for more than $9 billion, or about 31% and for almost $6

billion, or about 20%. Clearly, even modest percentage reductions in these amounts

matter. This motivates our research to predict heart and diabetes-related hospitaliza-

tions. Two key enablers to such research are the availability of patient EHRs and the

existence of sophisticated (machine learning) algorithms that can process and learn

from the data.

Our algorithms consider the history of a patient’s records and predict whether

each individual patient will be hospitalized in the following year, thereby, alerting

the health care system and potentially triggering preventive actions. An obvious

advantage of our algorithmic approach is that it can easily scale to a very large

number of monitored patients; such scale is not possible with human monitors.

In Chapter 2, we provide a detailed description of the two datasets we will be

experimenting with in this thesis, namely the dataset of patients with heart-related

diseases and the dataset of patients with diabetes. The EHRs come from Boston

Medical Center, the largest safety-net hospital in Boston. We formulate the problem
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as a binary classification problem and seek to differentiate between patients that will

be hospitalized in a target year and those who will not. Chapters 3 and 4 explore

methods that separate the two classes of samples (patients) using a single classifier.

Specifically, in Chapter 3 we explore a set of baseline methods and we evaluate their

performance in terms of prediction accuracy and interpretability of the model and the

results. Baseline methods include well-established methods, such as Support Vector

Machines, AdaBoost with trees as the weak learner, logistic regression, and also a

novel likelihood ratio based method we develop, K-LRT, that identifies the K most

significant features for each patient that lead to hospitalization.

We continue the analysis in Chapter 4 by developing a distributed cluster Pri-

mal Dual Splitting (cPDS) method, that is computationally efficient and privacy-

aware. Such a distributed leaning scheme is relevant for multi-institutional (e.g.,

hospitals) collaborations or peer-to-peer (e.g., patients’ smartphones) applications,

allowing the“agents” to collaborate, while keeping every participant‘s data private.

We also show that cPDS has an improved convergence rate compared to existing

centralized and decentralized methods. We test all methods in Chapters 3 and 4 in

the heart disease dataset.

In Chapter 5, assuming that the positive class consists of multiple clusters (hos-

pitalized patients due to different reasons), while the negative class is drawn from

a single cluster (non-hospitalized patients healthy in every aspect), we present an

alternating optimization approach, which jointly discovers the clusters in the positive

class and optimizes the classifiers that separate each positive cluster from the negative

samples. We also establish the convergence of the method, characterize its VC di-

mension and present experimental results on both the heart disease and the diabetes

datasets. Lastly, we conclude in Chapter 6 with our key findings in this thesis and

we discuss potential future research directions for this work.
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1.3 Position in the Literature

To the best of our knowledge, the problem of chronic disease hospitalization prediction

using ML methods is novel. A closely related problem, which has received a lot of

attention in the literature, is the re-hospitalization prediction, since around 20% of all

hospital admissions occur within 30 days of previous discharge. Medicare penalizes

hospitals that have high rates of readmissions, especially among patients with heart

failure, heart attack and pneumonia. Identifying patients at risk of readmission can

guide efficient resource utilization and can potentially save millions of healthcare

dollars each year. Examples of work on this problem include [Hosseinzadeh et al.,

2013], [Zolfaghar et al., 2013], [Strack et al., 2014] and [Caruana et al., 2015].

Other related problems are: predicting the onset of diabetes using artificial neural

networks [Pradhan and Sahu, 2011], developing an intelligent system that predicts,

using data mining techniques, which patients are likely to be diagnosed with heart

disease [Palaniappan and Awang, 2008] (it can answer complex queries for diagnos-

ing heart disease and thus assist healthcare practitioners to make intelligent clinical

decisions, which traditional decision support systems cannot), and using data mining

techniques to predict length of stay in cardiac patients (with decision trees, support

vector machines and artificial neural networks) [Hachesu et al., 2013] or in acute

pancreatitis (with artificial neural networks) [Pofahl et al., 1998].

As the last related problem, let us mention the Heritage Health Prize, a competi-

tion by Kaggle, whose goal was to predict the length of stay for patients who will be

admitted to a hospital within the next year, using historical claims (insurance) data

and data mining techniques [Heritage Provider Network, 2011].
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1.4 Our Contributions

• In terms of the application field, we explore a novel, to the best of our knowledge,

problem, that of predicting chronic disease hospitalizations, using centralized or

distributed machine learning methods that we develop. We analyze the results

of the various methods in terms of accuracy and interpretability.

• We show that the accuracy rates achieved by our computational methods sur-

pass what is possible with more empirical but well accepted risk metrics, such as

a heart disease risk factor that emerged out of the Framingham study [D’Agostino

et al., 2008]. We show that even a more sophisticated use of the features used

in the Framingham risk factor, still leads to results inferior to our approaches.

This suggests that the entirety of a patient’s EHR is useful in the prediction

and this can only be achieved with a systematic algorithmic approach.

• We develop a likelihood ratio based method, K-LRT, that is able to identify the

K most significant features for each patient that lead to hospitalization. K-LRT

is proven to achieve high accuracy providing at the same time interpretability

to the results.

• We propose a decentralized optimization scheme (cPDS) for solving the sparse

Support Vector Machines problem. Advantages of this scheme include the scal-

ability and the fact that it avoids raw data exchange, which are crucial for

applications in domains like healthcare. We also prove that cPDS has improved

convergence rate compared to alternatives. The cPDS framework is general and

can be applied to solve other problems that follow the “nonsmooth+nonsmooth”

minimization structure. Such problems can be found in machine learning, where

we aim to minimize functions with non-smooth reguralizers, or in distributed

model predictive control.
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• We apply cPDS to the sparse SVM problem and illustrate its efficiency on

the real healthcare problem we are studying at this thesis, that is aiming to

differentiate between patients that are likely or not likely to be hospitalized

within a target year.

• We propose a novel method, an alternating optimization approach, which jointly

discovers the clusters in the class of hospitalized patients and optimizes the clas-

sifiers that separate each cluster of hospitalized patients (positive class) from the

non-hospitalized patients (negative class). We establish the convergence of this

joint clustering/ classification process and characterize its Vapnik-Chervonenkis

(VC) dimension; a metric of complexity of the classification function that can

lead to generalization guarantees.

1.5 Bibliographic Notes

Large part of the thesis appears in published or working research papers: [Dai et al.,

2014], [Dai, 2015], [Dai et al., 2015], [Xu et al., 2016], [Brisimi et al., 2016] and [Brisimi

et al., 2017] .



15

Chapter 2

Datasets: Electronic Health Records of

patients with heart diseases or diabetes

The purpose of this chapter is to describe in detail the two datasets that will be

used throughout the thesis. The first dataset contains the medical history of patients

who have at least one heart-disease diagnosis, while the second dataset contains the

medical history of patients who have at least one diabetes mellitus diagnosis. Both

datasets are extracted from the Boston Medical Center. A survey by the Ameri-

can Hospital Association showed that adoption of EHRs has doubled from 2009 to

2011, partly a result of funding provided by the Health Information Technology for

Economic and Clinical Health Act of 2009 [Charles et al., 2012]. Indeed, in the two

datasets we compile, we observe an abundance of EHRs after 2007, with the number

of EHRs increasing every year.

2.1 Heart Diseases Dataset

2.1.1 Detailed Data Description

The data we used are from the Boston Medical Center (BMC) - the largest safety-

net hospital in New England. The study is focused on patients with at least one

heart-related diagnosis or procedure record in the period 01/01/2005–12/31/2010.

For each patient in the above set, we extract the medical history (demographics, visit

history, problems, medications, labs, procedures and limited clinical observations)

for the period 01/01/2001–12/31/2010, which contains relevant medical factors and
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from which the features of the dataset will be formed. Data were available from the

hospital EHR and billing systems. The ontologies, along with the number of factors

and some examples corresponding to each, are shown in Table 2.11. We note that

some of the Diagnoses and Admissions are not directly heart-related, but may be

good indicators of a heart problem. Overall, our data set contains 45,579 patients

(60% of which compose the training set and the rest the test set).

Our objective is to leverage past medical factors for each patient to predict whether

she/he will be hospitalized or not during a target year which could be different for

each patient.

Ontology
Number

of Factors
Examples

Demographics 4 Sex, Age, Race, Zip Code

Diagnoses 22

e.g., Acute Myocardial Infarction (ICD9: 410),

Cardiac Dysrhythmias (ICD9: 427), Heart Fail-

ure (ICD9: 428), Acute Pulmonary Heart Dis-

ease (ICD9: 415), Diabetes Mellitus with Com-

plications (ICD9: 250.1-250.4, 250.6-250.9),

Obesity (ICD9: 278.0)

1ICD9 (International Classification of Diseases, 9th revision), CPT (Current Procedural Ter-
minology), LOINC (Logical Observation Identifiers Names and Codes), and MSDRG (Medicare
Severity-Diagnosis Related Group) are commonly used medical coding systems for diseases, proce-
dures, laboratory observations, and diagnoses, respectively.
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Procedures CPT 3

Cardiovascular Procedures (including CPT

93501, 93503, 93505, etc.), Surgical Procedures

on the Arteries and Vein (including CPT 35686,

35501, 35509, etc.), Surgical Procedures on the

Heart and Pericardium (including CPT 33533,

33534, 33535)

Procedures ICD9 4

Operations on the Cardiovascular System

(ICD9: 35-39.99), Cardiac Stress Test and pace-

maker checks (ICD9: 89.4), Angiocardiography

and Aortography (ICD9: 88.5), Diagnostic Ul-

trasound of Heart (ICD9: 88.72)

Vitals 2

Diastolic Blood Pressure, Systolic Blood

Pressure

Lab Tests 4

CPK (Creatine phosphokinase) (LOINC:2157-

6), CRP Cardio (C-reactive protein)

(LOINC:30522-7), Direct LDL (Low-density

lipo-protein) (LOINC:2574-2), HDL (High-

density lipoprotein) (LOINC:9830-1)

Tobacco 2
Current Cigarette Use, Ever Cigarette Use

Visits to the ER 1
Visits to the Emergency Room
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Admissions 17

e.g., Heart Transplant or Implant of Heart

Assist System (MSDRG: 001, 002), Cardiac

Valve and Other Major Cardiothoracic pro-

cedures (MSDRG: 216-221), Coronary By-

pass(MSDRG: 231-234), Acute Myocardial In-

farction (MSDRG: 280-285), Heart Failure and

Shock (MSDRG: 291-293), Cardiac Arrest (MS-

DRG: 296-298), Chest Pain (MSDRG: 313),

Respiratory System related admissions (MS-

DRG: 175-176, 190-192)

Table 2.1: Medical Factors in the Heart Diseases Dataset.

In order to organize all the available information in some uniform way for all

patients, some preprocessing of the data is needed to summarize the information over

a time interval. Details will be discussed in the next subsection. We will refer to

the summarized information of the medical factors over a specific time interval as

features.

Each feature related to Diagnoses, Procedures CPT [American Medical Associ-

ation, 2014], Procedures ICD9 [World Health Organization, 1999] and Visits to the

Emergency Room is an integer count of such records for a specific patient during the

specific time interval. Zero indicates absence of any record. Blood pressure and lab

tests features are continuous valued. Missing values are replaced by the average of

values of patients with a record at the same time interval. Features related to tobacco

use are indicators of current- or past-smoker in the specific time interval. Admission

features contain the total number of days of hospitalization over the specific time

interval the feature corresponds to. Admission records are used both to form the

Admission features (past admission records) and in order to calculate the prediction
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variable (existence of admission records in the target year). We treat our problem as a

classification problem and each patient is assigned a label: 1 if there is a heart-related

hospitalization in the target year and 0 otherwise.

2.1.2 Data Preprocessing

In this section we discuss several data organization and preprocessing choices we

make. For each patient, a target year is fixed (the year in which a hospitalization

prediction is sought) and all past patient records are organized as follows.

Summarization of the medical factors in the history of a patient: Based

on experimentation, an effective way to summarize each patient’s medical history

is to form four time blocks for each medical factor with all corresponding records

summarized over one, two, and three years before the target year and all earlier

records being summarized in a fourth block. For blood pressure and tobacco use,

only the year before the target year is kept. This process results to a vector of 212

features for each patient.

Selection of the target year: As a result of the nature of the data, the two classes

are highly imbalanced. When we fix the target year for all patients to be 2010, the

number of hospitalized patients is about 2% of the total number of patients, which

makes the classification problem much more challenging. Thus, and to increase the

number of hospitalized patient examples, if a patient had only one hospitalization

throughout 2007–2010, the year of hospitalization is set as the target year for that

patient. If a patient had multiple hospitalizations, a target year between the first and

the last hospitalization is randomly selected.

Setting the target time interval to be a year: Based on experimentation, a year

has been proven to be an appropriate time interval for prediction. Moreover, given

that hospitalization occurs roughly uniformly within a year, we take the prediction

time interval to be a calendar year.
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Removing noisy samples: Patients who have no records before the target year are

impossible to predict and are thus removed.

2.1.3 Correlation Between Features

The correlation coefficient matrix of all features is shown in Fig. 2·1. Each point (i, j)

corresponds to the correlation coefficient between feature i and feature j. There are

a few features with zero variance (shown as white stripes) that are later removed

from the features set. Most of the features are weakly correlated. There is moderate

correlation between features that refer to the same medical factor but correspond to

different time blocks (near- diagonal elements) and between few other pairs of features

including: Diagnosis of Chronic Ischemic Heart Disease with Diagnosis of Diabetes,

Diagnosis of Ischemic Heart Disease with Diagnosis of Old Myocardial Infarction,

Diagnosis of Heart Failure with Admission due to Heart Failure, and Operations on

Cardiovascular System with Ultrasound of the Heart.

2.2 Diabetes Dataset

2.2.1 Detailed Data Description

The data in this dataset also come from the Boston Medical Center (BMC). The pop-

ulation of the study consists of patients with a Diagnosis record of Diabetes Mellitus

between 01/01/2007–12/31/2012. For each patient in the above set, we extract their

medical history (demographics, visit history, problems, procedures and department

information) for the period 01/01/2001–12/31/2012, which contains relevant medical

factors and from which the features of the dataset will be formed. Data are available

from the hospital EHR and billing systems. The ontologies, along with some examples

corresponding to each, are shown in Table 2.2. As expected, many of the diagnoses

and procedures are direct complications due to diabetes. Diabetes-related admissions
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Figure 2·1: Correlation coefficient between features in the heart dis-
eases dataset.

are not trivially identifiable, and are revealed through the procedure described in the

next subsection. Overall, our data set consists of 40,921 patients (60% of which form

the training set and the rest the test set).

Similarly with the heart-related dataset, our objective is to leverage past medical

factors for each patient to predict whether she/he will be hospitalized or not during

a target year which could be different for each patient. The target year for the never-

hospitalized patients is set to be 2012, so that there is as much possible available

history for them. Patients that have a single hospitalization in a year between 2007-

2012, have this year as their target year. For patients with multiple hospitalizations,

the target year is randomly selected between their first and last hospitalization. The

fraction of hospitalized patients is 16.97%.
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Ontology Examples

Demographics Sex, Age, Race, Zip Code

Diagnoses e.g., Diabetes mellitus with complications, Thyroid disorders,
Hypertensive disease, Pulmonary heart disease, Heart failure,
Aneurysm, Skin infections, Abnormal glycose tolerance test, Family
history of diabetes mellitus

Procedures
(CPT or ICD9)

e.g., Procedure on single vessel, Insertion of intraocular lens
prosthesis at time of cataract extraction, Venous catheterization,
Hemodialysis, Transfusion of packed cells

Admissions e.g., Diabetes (with and without) complications, Heart failure
and shock, Deep Vein Thrombophlebitis, Renal failure, Chest
pain, Chronic obstructive pulmonary disease, Nutritional. & misc
metabolic disorders, Bone Diseases & Arthropathies, Kidney & uri-
nary tract infections, Acute myocardial infarction, O.R. procedures
for obesity, Hypertension

Service by De-
partment

Inpatient (admit), Inpatient (observe), Outpatient, Emergency
Room

Table 2.2: Medical Factors in the Diabetes Dataset.

2.2.2 Identifying the Diabetes-Related Hospitalizations

Identifying the hospitalizations that occur mainly due to diabetes is not a trivial

task, the reason being that many diabetes- related hospitalizations are recorded in

the system as other types of admissions, e.g., heart-related, mostly because of financial

reasons (the billing system charges more for other diseases than diabetes). Therefore,

as a first step we aim to separate the diabetes-related admissions -including diabetes-

related admissions that are labeled otherwise- from all the rest. For that, we consider

all patients with at least one admission record (that indicates hospitalization) between

1-1-2007 and 12-31- 2012. From this set, patients with at least one Diabetes Mellitus

record during 1-1-2007 up to 12-31-2012 are assigned to the diabetic population, while

the rest are assigned to the non-diabetic population.

We list the union of all the unique admission types for both populations (732
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unique types). The total number of admission samples for the diabetic and non-

diabetic populations are N1 = 47, 352 and N2 = 116, 934 correspondingly. For each

type of admission d, each admission sample can be viewed as the outcome of a binary

random variable, that takes the value 1, if the sample hospitalization occurs because

of this type of admission, or 0 otherwise. Thus, we can transform the two sets of

admission records for the two populations into 0/1 sequences. By comparing in the

way described below the proportions of d in the two populations, we can infer whether

admission d was caused mainly by diabetes or not.

At this point, we will elaborate on the statistical hypothesis test used that involves

sample differences of proportions [Sprinthall and Fisk, 1990]. Let P1 and P2 be

the sample proportions obtained in large samples of sizes N1 and N2 drawn from

respective populations p1 and p2. Consider the null hypothesis that the population

parameters are the same (p1 = p2) and thus that the samples are drawn from the same

distribution. The sampling distribution of differences in proportions is approximately

normally distributed, with its mean and standard deviation given by

µP1−P2 = 0 and σP1−P2 =

√√√√√√pq

 1

N1

+
1

N2

, (2.1)

where p = (N1P1 +N2P2)/(N1 +N2) is used as an estimate of the population propor-

tion and where q = 1− p. By using the standardized variable z = (P1−P2)/(σP1−P2)

we can check if the results observed in the samples differ markedly from the results

expected under the null hypothesis. We do that using the single sided p-value of the

statistic z. The p-value is the probability of observing a sample statistic as more

extreme than the one observed under the assumption that the null hypothesis is true.

To interpret that, a small p-value (typically ≤ 0.05) indicates strong evidence against

the null hypothesis. Thus, the smaller the p-value is, the higher the confidence we
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have in the alternative hypothesis or equivalently in the fact that the diabetic patients

have higher chance of getting admission records of type d than the non-diabetic ones

(since we consider the difference P1−P2). After producing the list of increasing order

p-values for each one of the admission types d, we infer that the ones with p-value

≤ α = 1E − 42 are caused by diabetes. Examples of diabetes-related admissions are

shown in Table 2.2.

2.2.3 Data Preprocessing

The features are formed as combinations of different medical factors (instead of con-

sidering the factors as separate features) that better describe what happened to the

patients during their visits to the hospital. Specifically, we formulate triplets that

consist of a diagnosis, a procedure (or the information that no procedure was done)

and the service department. An example of a complex feature (a triplet) is the di-

agnosis of ischemic heart disease that lead to an adjunct vascular system procedure

(procedure on single vessel) while the patient was admitted to the inpatient care.

Clearly, since each category can take one of several discrete values, a huge number of

combinations should be considered. Naturally, not all possible combinations occur,

which reduces significantly the total number of potential features that describe each

patient. Also for each patient, we extract information about the diabetes type over

their history and demographics including age, gender and race. Next, we present

several data organization and pre-processing steps we take. For each patient, a target

year is fixed and all past patient records are organized as follows.

Forming the complex features. We create a diagnoses-procedures indicator ma-

trix to keep track of which diagnosis occurs with which procedure. The procedures

that are not associated with any diabetes-related diagnosis are removed. Procedures

2Apart from selecting a small-value α, we also check the cumulative fraction of patients that are
potentially labeled as belonging to the hospitalized class not to be too small, so that the dataset is
not highly imbalanced.
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in the dataset are listed in the most detailed level of the ICD9 coding system [World

Health Organization, 1999] or the CPT coding system [American Medical Associa-

tion, 2014]. We group together procedures that belong to the same ICD/CPT family,

resulting in 31 categories (out of 2004 in total).

Summarization of the complex features in the history of a patient. Based

on experimentation, an effective way to summarize each patient’s medical history

with a fixed target year is to form four time blocks for each medical factor with all

corresponding records summarized over one, two, three years before the target year

and a fourth time block containing averages of all the earlier records. This produces

a 9402-dimensional vector of features characterizing each patient.

Reducing the number of features. We remove all the features that do not con-

tain enough information for a significant amount of the population (less than 1% of

the patients), as they could not help us generalize. This leaves 320 medical and 3

demographical features.

Identifying the diabetes type. The ICD9 code for diabetes is assigned to category

250 (diabetes mellitus). The fifth digit of the diagnosis code determines the type of

diabetes and whether it is uncontrolled or not stated as uncontrolled. Thus, we have

four types of diabetes diagnoses: type II, not stated as uncontrolled (fifth digit 0), type

I, not stated as uncontrolled (fifth digit 1), type II or unspecified type, uncontrolled

(fifth digit 2) and type I, uncontrolled (fifth digit 3). Based on these four types, we

count how many records of each type each patient had in the four time blocks before

the target year, thus adding 16 new features for each patient.

Setting the target time interval to a calendar year. Based on some preliminary

experiments we conducted, we observed that there is greater variability in the results

when trying to predict hospitalizations in periods of time shorter than a year (e.g.,

predicting hospitalization in the next 1, 3 or 6 months). Thus, we have designed our



26

experiment to predict hospitalizations in the target time interval of a year starting

on the 1st of January and ending on the 31st of December.

Selection of the target year. As a result of the nature of the data, the two classes

are highly imbalanced. To increase the number of hospitalized patient examples, if a

patient had only one hospitalization throughout 2007-2012, the year of hospitalization

will be set as the target year. If a patient had multiple hospitalizations, a target year

between the first and the last hospitalizations will be randomly selected. 2012 is set as

the target year for patients with no hospitalization, so that there is as much available

history for them as possible. By this policy, the ratio of hospitalized patients in the

data set is 16.97%.

Removing patients with no record. Patients who have no records before the

target year are removed, since there is nothing on which a prediction can be based.

The total number of patients left is 33,122.

Splitting the data into a training set and a test set randomly. As is common

in supervised machine learning, the population is randomly split into a training and

a test set. Since from a statistical point of view, all the data points (patients fea-

tures) are drawn from the same distribution, we do not differentiate between patients

whose records appear earlier in time than others with later time stamps. A retrospec-

tive/prospective approach appears more often in the medical literature and is more

relevant in a clinical trial setting, rather than in our algorithmic approach. What is

critical in our setting is that for each patient prediction we make (hospitalization/non-

hospitalization in a target year), we only use that patients’ information before the

target year (cf. summarization of patient history above).
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Chapter 3

Baseline Methods; Performance and

Interpretability

To predict whether patients are going to be hospitalized in the target year given

their medical history, we experiment with five different methods. All five are typ-

ical examples of supervised machine learning. We adapt the last one to better fit

the specific application we examine. The first three methods fall into the category

of discriminative learning algorithms, while the latter two are generative algorithms.

Discriminative algorithms directly partition the input space into label regions without

modeling how the data are generated, while generative algorithms assume a model

that generates the data, estimate the model’s parameters and use it to make classi-

fications. Discriminative methods are likely to give higher accuracy, but generative

methods provide more interpretable models and results. This is the reason we ex-

periment with methods from both families and the trade-off between accuracy and

interpretability is observed in our results.

3.1 Support Vector Machines (SVM)

An SVM is a very efficient two-category classifier [Cortes and Vapnik, 1995]. Intu-

itively, the SVM algorithm attempts to find a separating hyperplane in the feature

space, so that data points from the two different classes reside on the different sides

of that hyperplane. We can calculate the distance of each input data point from the

hyperplane. The minimum over all these distances is called margin. The goal of SVM
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is to find the hyperplane that has the maximum margin. In many cases data points

are neither linearly nor perfectly separable. To that end, one can make the classi-

fier tolerant to some misclassification errors (soft-margin SVMs) and leverage kernel

functions to “elevate” the features into a higher dimensional space where linear sepa-

rability is possible (kernelized SVMs) [Cortes and Vapnik, 1995]. Given training data

xi ∈ Rd and labels yi ∈ {−1, 1}, i = 1, . . . , n, soft-margin SVMs find the classifier

(β, β0), β ∈ Rd, β0 ∈ R by solving:

min
β,β0,ξi

0.5‖β‖2 + C
∑n

i=1 ξi

s. t. ξi ≥ 0, ∀i
yi(x

ᵀ
iβ + β0) ≥ 1− ξi, ∀i

(3.1)

where C is a tunable parameter and ξi is the penalty that will be imposed if point

(xi, yi) is misclassified. Kernelized SVMs use K(xi,xj) = φ(xi)
Tφ(xi) as a kernel for

some feature mapping function φ and solve an optimization problem that is based on

the dual of (3.1) to find the optimal (β, β0). In our application, we employ the widely

used Radial Basis Function (RBF) K(xi,xj) = exp(−‖xi−xj‖2/2σ2) [Scholkopf et al.,

1997] as the kernel function in our experiment settings. Tuning parameters are the

misclassification penalty coefficient C and the kernel parameter σ; we used the values

[0.3, 1, 3] and [0.5, 1, 2, 7 15, 25, 35, 50, 70, 100], respectively. Optimal values of 1

and 7, respectively, were selected by cross-validation.

3.2 AdaBoost with Trees

Boosting [Freund et al., 1999] provides an effective way of combining decisions of not

necessarily strong classifiers to produce highly accurate predictions. The AdaBoost

algorithm iteratively adjusts the weights of various training data points through an

exponential up-weighting or down-weighting procedure. Specifically, starting with

equal weights, the algorithm generates in every iteration a new base classifier to best
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fit the current weighted samples. Then, the weights are updated so that the mis-

classified samples are assigned higher weights so as to influence the training of the

next base classifier. At termination, a weighted combination of the base classifiers

is the output of AdaBoost. In our study we use stumps, which are two-level Clas-

sification and Regression Trees (CART), as the base classifier [Hastie et al., 2009].

This method recursively partitions the space into a set of rectangles and then fits

a prediction within each partition. There is an extra preprocessing step applied to

the data. The zip code values are clustered into 4 clusters using the k-means algo-

rithm [Hastie et al., 2009] and this feature is treated as a categorical one. Moreover,

we used cross-validation to set to 100,000 the number of Adaboost iterations.

3.3 Logistic Regression

Logistic Regression [Bishop et al., 2006] is a popular classification method in real

applications. This method models the posterior probability that a sample falls into

a certain class (e.g. positive class) as a logistic function and the input of this logistic

function is the linear combination of the input features. Under this model, the log-

likelihood ratio of the posterior probabilities of the two classes is a linear function of

the input features. Therefore, the decision boundary that separates the two classes

is still linear. However, beyond the classification decision, the prediction on a certain

sample point naturally comes with a probability value, which could be meaningful in

many applications. Thus, logistic regression is widely used.

3.4 Näıve Bayes Event Model

Näıve Bayes models are generative models that assume the features or “events” to

be generated independently (näıve Bayes assumption [McCallum et al., 1998]). Näıve

Bayes classifiers are among the simplest models in machine learning, but despite their
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simplicity, they work quite well in real applications. There are two types of näıve

Bayes models [McCallum et al., 1998]. The first one will be presented extensively in

the next method. The second one, referred to as the Näıve Bayes Event Model, works

as follows. To generate a new patient from the model, a label y will first be generated

(hospitalized or non-hospitalized) based on a prior distribution p(y). Then, for this

patient, a sequence of events (xt ’s) is generated by choosing each event independently

from certain multinomial conditional distributions p(x|y). An event can appear many

times for a patient and the overall probability of this newly generated patient is the

product of the class prior with the product of the probabilities of each event. In

our problem, an event is a specific combination of the medical factors. We consider

only the medical factors from the following six ontologies: Diagnoses, Admissions,

Emergency, Procedures CPT, Procedures ICD9, and Lab Tests. To generate such a

data set, we aggregate the medical factors that belong to each one of these types and

count the total number of records of the same type in each of the four time blocks

discussed earlier that represent a patient’s history. Thus, each patient is represented

as a sequence of four events. To make events more intuitive and to reduce the total

number of possible events, the data just formed are quantized into binary values and

then the tuples of the six binary values (one for each ontology) are encoded into

single values. We estimate the prior distribution of labels p(y) and the conditional

distributions p(x|y) from the training set and make predictions for the test set based

on the likelihoods calculated from these distributions.

3.5 K-Likelihood Ratio Test

The Likelihood Ratio Test (LRT) is a Näıve Bayes classifier and, as described be-

fore, assumes that features xi are independent. For this method as well, we quantize

the data as shown in Table 3.1. In the quantized data set, the LRT algorithm em-
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Features Levels of
quantiza-
tion

Comments

Sex 3 0 represents missing information

Age 6 Thresholds at 40, 55, 65, 75 and 85 years old

Race 10

Zip Code 0 Removed due to its vast variation

Tobacco (Current and
Ever Cigarette Use)

2 Indicators of tobacco use

Diastolic Blood Pres-
sure (DBP)

3 Level 1 if DBP < 60mmHg, Level 2 if 60mmHg
≤ DBP ≤ 90mmHg and Level 3 if DBP >
90mmHg

Systolic Blood Pres-
sure (SBP)

3 Level 1 if SBP < 90mmHg, Level 2 if 90mmHg
≤ SBP ≤ 140mmHg and Level 3 if SBP >
140mmHg

Lab Tests 2 Existing lab record or Non-Existing lab record
in the specific time period

All other dimensions 7 Thresholds are set to 0.01%, 5%, 10%, 20%,
40% and 70% of the maximum value of each
dimension

Table 3.1: Quantization of Features.
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pirically estimates the distribution p(xi|y) of each feature for the hospitalized and

the non-hospitalized class. Given a new test sample z = (z1, z2, · · · , zn), LRT cal-

culates the two likelihoods p(z|y = 1) and p(z|y = 0) (y = 0 corresponds to non-

hospitalized and y = 1 to hospitalized) and then classifies the sample based on

the ratio p(z|y = 1)/p(z|y = 0). Due to independence, p(z|y = 1)/p(z|y = 0) =∏n
i=1 p(zi|y = 1)/p(zi|y = 0). In our variation of the method, which we will call

K-LRT, instead of taking into account the ratios of the likelihoods of all features,

we consider only the K features with the largest ratios. This type of method is

closely related to the anomaly detection methods in [Saligrama and Zhao, 2012]. The

purpose of this “feature selection” is to identify the K most significant features for

each individual patient. Thus, each patient is actually treated differently. After ex-

perimentation, the best performance is achieved by setting K = 4. The prediction

accuracy for K = 1 is also reported in the experimental results section.

3.6 Experimental Results on the Heart Disease Dataset

Typically, the primary goal of learning algorithms is to maximize the prediction ac-

curacy or equivalently minimize the error rate. However, in the specific medical

application problem we study, the ultimate goal is to alert and assist doctors in tak-

ing further actions to prevent hospitalizations before they occur, whenever possible.

Thus, our models and results should be accessible and easily explainable to doctors

and not only machine learning experts. With that in mind, we examine our models

from two aspects: prediction accuracy and interpretability.

3.6.1 Prediction Accuracy

The prediction accuracy is captured in two metrics: the False Alarm Rate (the fraction

of false positives out of the negatives) and the Detection Rate (the fraction of true

positives out of the positives). Note that in the medical literature, the detection rate
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is often referred to as sensitivity and the term specificity is used for one minus the false

alarm rate. For a binary classification system, the evaluation of the performance using

these two metrics is typically illustrated with the Receiver Operating Characteristic

(ROC) curve, which plots the Detection Rate versus the False Alarm Rate at various

threshold settings.

We first compare the performance of LRT using all features and K-LRT under

different values of K. Fig. 3·1 shows the prediction accuracy for LRT, 1-LRT and 4-

LRT. In Fig. 3·2, a comparison of the performance of all five methods we presented is

illustrated. We also generate the ROC curve based on patients’ 10-year risk of General

Cardiovascular Disease defined in the Framingham Heart Study (FHS) [D’Agostino

et al., 2008]. FHS is a seminal study on heart diseases that has developed a set of

risk factors for various heart problems. The 10-years risk we are using is the closest

to our purpose and has been widely used. We calculate this risk value (which we

call the Framingham Risk Factor-FRF ) for every patient and make the classification

based on this risk factor only. We also generate an ROC by applying the AdaBoost

with trees method just to the features involved in FRF. The generated ROC serves

as a baseline for comparison.

Based on the experimental results, we draw the following conclusions:

1. LRT, 1-LRT and 4-LRT achieve very similar performance. This indicates that

using only the most significant or several significant features with the largest

likelihood ratios, is sufficient in making an accurate prediction. It also suggests

that our problem is close to an “anomaly detection” problem and identifying

the most anomalous feature captures most of the information that is useful for

classification.

2. From the comparison of all five methods in Fig. 3·1, it can be seen that AdaBoost

is the most powerful one and performs the best except for situations that require
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Figure 3·1: Comparison of LRT, 1-LRT and 4-LRT.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n 
R

at
e

 

 

RBF SVM
AdaBoost with trees
Naive Bayes Event
4−LRT
Logistic Regression
Thresholding FRF
AdaBoost on FRF Features

Figure 3·2: Comparison of all five methods and the methods based
on the Framingham Heart Study.
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very low False Alarm Rates. On the other hand, the Näıve Bayes Event classifier

generally performs the worst due to its simplicity.

3. The performance of RBF SVM, Logistic Regression, AdaBoost with trees, and

4-LRT is quite similar in general. However, these methods have very different

assumptions and underlying math formulation. Based on this observation, we

conjecture that we have approached the limit of the prediction accuracy that

could be achieved with the available data.

4. All of our proposed methods perform better than utilizing the FRF, except for

the näıve Bayes event classifier for high false alarms rates. Even by applying

AdaBoost with Trees (the best method so far) to the features involved in calcu-

lating the FRF, does not seem to help a lot. This suggests that it is valuable to

have and leverage a multitude of patient-specific features obtained from EHRs.

Using these data, however, necessitates the use of the algorithmic approach we

advocate.

3.6.2 Interpretability

With SVM, the features are mapped through a kernel function from the original space

into a higher-dimensional space. This, however, makes the features in the new space

not interpretable. In AdaBoost with trees, while a single tree classifier which is used

as the base learner is explainable, the weighted sum of a large number of trees makes

it relatively complicated to find the direct attribution of each feature to the final

decision. The näıve Bayes Event model is in general interpretable, but in our specific

problem each patient has a relatively small sequence of events (four) and each event

is a composition of medical factors. Thus, again, to find the direct attribution of

each feature to the final decision is hard. LRT itself and Logistic Regression still lack

interpretability, because we have more than 200 features for each sample and there
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is no direct relationship between prediction of hospitalization and the reasons that

led to it. The most interpretable method is K-LRT. K-LRT highlights the top K

features that lead to the classification decision. These features could be of help in

assisting the physicians reviewing the patient’s EHR profile.

Below we present the features highlighted by two of our methods: 1-LRT and

Adaboost. We remind the reader that in 1-LRT, each test patient is essentially

associated with a single feature. For all features, we count how many times they

were selected as the primary feature and we report in Table 3.2 the 10 features that

were the most popular as primary. Adaboost, on the other hand, yields a linear

combination of decision trees and is hard to interpret. However, we can calculate a

variable Importance Score (IS) [Hastie et al., 2009] for each feature, which highlights

the most significant features. Table 3.3 lists the top 10 important features indicated

by their importance score. Features that appear in both tables are in bold.

The two sets of features highlighted from the two methods have several features

in common, indicating that the results from the different methods are consistent.

This consistency supports the validity of our methods from a stability/sensitivity

perspective as well.

From a medical point of view, the features listed in Table 3.2 and Table 3.3 are

reasonably highlighted. ER visits, a diagnosis of heart failure, and chest pain or other

respiratory symptoms are often precursors of a major heart episode. The CPK test

is also viewed as one of the most important tests for diagnosing Acute Myocardial

Infarction (AMI) and AMI, among all heart diseases, is the most probable to lead to

hospitalization.

To provide additional insight into the algorithms, Table 3.4 presents five more

medically significant features highlighted by each method and two interesting features

with low significance in both methods. For 1-LRT, features with low significance are



37

1-LRT 1-LRT
Counts Feature Name

1591 Age

548 Visit to the Emergency Room, 1 year before the target year

525 Diagnosis of hematologic disease, 1 year before the target year

523 Diagnosis of heart failure, 1 year before the target year

514 Symptoms involving respiratory system and other chest symp-
toms, 1 year before the target year

486 Diagnosis of diabetes mellitus w/o complications, 1 year before
the target year

474 Lab test CPK, 1 year before the target year

451 Lab test CPK, 4 years before the target year and the rest of the history

408 Diagnosis of heart failure, 2 years before the target year
356 Diagnosis of diabetes mellitus w/o complications, 2 years before the tar-

get year

Table 3.2: Top 10 significant features for 1-LRT.

the ones with a likelihood ratio p(zi|y = 1)/p(zi|y = 0) close to 1. For Adaboost,

non-significant features have a low IS. It is interesting that Hypertensive heart disease

is considered non-significant by both methods. This is probably due to the fact that,

once diagnosed, it is usually well-treated and the patient’s blood pressure is well-

controlled.
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AdaBoost AdaBoost
IS (×10−4) Feature Name

0.6462 Diagnosis of diabetes mellitus w/o complications, 1 year before the
target year

0.5498 Diagnosis of heart failure, 1 year before the target year

0.4139 Age

0.3187 Symptoms involving respiratory system and other chest
symptoms, 1 year before the target year

0.2470 Admission due to other circulatory system diagnoses, 1 year before
the target year

0.2240 Visit to the Emergency Room, 4 years before the target year and
the rest of the history

0.1957 Operations on cardiovascular system (heart and septa OR vessels
of heart OR heart and pericardium), 4 years before the target year
and the rest of the history

0.1578 Visit to the Emergency Room, 1 year before the target
year

0.1543 Symptoms involving respiratory system and other chest symptoms,
4 years before the target year and the rest of the history

0.1124 Diagnosis of heart failure, 2 year before the target year

Table 3.3: Top 10 significant features for AdaBoost with Trees.
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Another 5 significant fea-
tures in 1-LRT

Another 5 significant fea-
tures in 1-LRT

Lab Test High-density lipoprotein
(HDL)

Lab Test High-density lipoprotein
(HDL), 1 year before the target
year

Lab Test Low-density lipoprotein
(LDL)

Angiography and Aortography
procedures, 4 years before the
target year and the rest of the
history

Systolic Blood Pressure Cardiac Catheterization Proce-
dures, 4 years before the target
year and the rest of the history

Diagnosis of Heart Failure Race

Diagnosis of Other Forms of
Chronic Ischemic Heart Diseases

Cardiac Dysrhythmias, 1 year be-
fore the target year

2 non-significant features in
1-LRT

2 non-significant features in
AdaBoost with Trees

Sex Sex

Hypertensive Heart Disease, 1
year before the target year

Hypertensive Heart Disease, 1
year before the target year

Table 3.4: Other significant and non-significant features with 1-LRT
and AdaBoost with Trees.
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Chapter 4

A Distributed Cluster Primal Dual

Splitting Method for Large-Scale Sparse

Support Vector Machines

As the volume, variety, velocity and veracity (the four V’s) of the clinical data are

growing, there is greater need for efficient computational models to mine these data.

Insights from these techniques could help design efficient healthcare policies, detect

disease causes, provide medical resolutions that are personalized and less costly and

finally, improve the quality of hospital care for the patients. We are motivated by

problems in the medical domain that can be formulated as binary supervised classi-

fication problems and solved using Support Vector Machines; the applications range

from prediction of diabetes disease [Kumari and Chitra, 2013] [Yu et al., 2010], pre-

diction of medication adherence in heart failure patients [Son et al., 2010], automated

recognition of the obstructive sleep apnea syndrome [Khandoker et al., 2009], to our

problem of predicting heart-related hospitalizations. Results in the literature suggest

that sparse classifiers, i.e., relying on few informative features, have strong predictive

power and generalize well out-of-sample, providing at the same time interpretabil-

ity in both models and results, which is crucial in order for healthcare practitioners

to trust the computed solutions. Another major concern, especially in the medi-

cal domain, is the privacy of the data, attracting recent research efforts, including

work on the field of differential privacy [Narayanan and Shmatikov, 2008, Dwork,

2011,Brown et al., 2013]. Two well-known examples of privacy breaches are the Net-
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flix Prize and the Massachusetts Group Insurance Commission (GIC) medical records

database. In both cases, individuals were identified even though the data had been

through a de-identification process. This demonstrated that one’s identity and other

sensitive information could be compromised once a single center has access and pro-

cesses all data. Especially, under the Precision Medicine Initiative, in the near future,

these data could include individuals’ genome information, which is too sensitive to

be shared.

In this part of the thesis, we are particularly interested in addressing three chal-

lenges tied to healthcare data: (1) data reside in different sources (hospitals, health

centers, patients’ smartphones), which implies the need to build a collective intelli-

gence system; (2) there is a growing availability of data, which makes scalable frame-

works rather important; and (3) data privacy is a critical concern. A decentralized

computational scheme that collaboratively utilizes all the data in the network, while

avoiding centralized data collection and coordination, may meet the requirements.

Notational Conventions: All vectors are assumed to be column vectors. xᵀ

represents the transpose of x. For any real matrices (vectors) with appropriate di-

mensions, A and B, the inner product of them is defined as 〈A,B〉 = Trace{AᵀB}.

The Frobenius norm of matrix B = (Bij) is denoted by ‖B‖Fro =
√∑m

i=1

∑n
j=1 |Bij|2.

Suppose M is a real matrix with appropriate dimensions, then an M-weighted norm

of B is defined as ‖B‖M =
√
〈B,MB〉. Suppose B is also a square matrix, then

√
B = L

√
SRᵀ where B = LSRᵀ is the singular value decomposition of B. Given an

m×n matrix A and a p× q matrix B, their Kronecker product C = (Cij) = A⊗B is

an (mp)× (nq) matrix with elements defined by Cαβ = AijBkl, where α = p(i−1)+k

and β = q(j − 1) + l. The largest eigenvalue of B is denoted by λmax{B}. The

m-by-m identity matrix is denoted by Im. The relation A 4 B means (B − A)

is positive semidefinite while A ≺ B means (B − A) is positive definite (< and �
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are similarly defined). For any proper, closed, and convex function (could be nons-

mooth/nondifferentiable) f : Rp → R, we use ∂f(x) to denote the subdifferential of

f at x which is actually a convex set. A subgradient of f at x, denoted as ∇̃f(x),

is an element of ∂f(x). Which subgradient we will use in the algorithm will be clear

from the context.

Aim: The focus of this section is to solve in a decentralized manner the soft-

margin `1-regularized (sparse) Support Vector Machines (sSVM) problem [Friedman

et al., 2001]. Given training data φi ∈ Rd and labels li ∈ {−1, 1}, i = 1, . . . , n, we

would like to find the classifier (β, β0), β ∈ Rd, β0 ∈ R by solving:

min
β,β0,ξi

0.5‖β‖2 + C
∑n

i=1 ξi + κ‖β‖1
s. t. ξi ≥ 0, ∀i

li(φ
ᵀ
iβ + β0) ≥ 1− ξi, ∀i

(4.1)

where C and κ are tunable parameters. If ξi = 0, then 1− li(φᵀiβ + β0) ≤ 0 and the

corresponding term in the objective function is 0. If ξi > 0, then 1− li(φᵀiβ+β0) ≤ ξi

and minimizing ξi in the objective function is equivalent to minimizing 1−li(φᵀiβ+β0).

Thus, formulation (4.1) is equivalent to the following with the tunable parameters

being τ = 1/C and ρ = κ/C:

min
β,β0

∑n
i=1 hi(β, β0) + 0.5τ‖β‖2 + ρ‖β‖1 (4.2)

where each hi(β, β0) = [1− li(φᵀiβ + β0)]+ = max{0, 1− li(φᵀiβ + β0)} is a hinge loss

function corresponding to sample i and the ‖β‖2 and ‖β‖1 terms are regularizers for

the model parameters.

In the distributed context we are interested in a setting where each agent1 holds a

part of the data/samples, namely, a subset of {φi,∀i} and {li,∀i}, and would like to

collaborate with the others to obtain a better estimate on β and β0. Due to privacy

1We will use the generic term “agent” to represent each data/computation center. The term
could refer to institutions, or even individuals.
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concerns, these agents are not willing to share their original data with each other or

with a processing center. Thus, we will pursue a decentralized solution that avoids

raw data exchange.

Related literature: Problem (4.2) involves minimization of the sum of two

convex but non-smooth terms that have the form of a sum:
∑n

i=1[1− li(φi
ᵀβ + β0)]+

and
∑n

i=1 {0.5τi‖β‖2 + ρi‖β‖1} where
∑

i τi = τ and
∑

i ρi = ρ. When all the data

are stored and computations are executed in a centralized unit, we can solve the

problem using the interior point (also referred to as barrier) method [Bertsekas, 1999]

or the classical subgradient method (SubGD) [Bertsekas, 1999] .

A recent method for solving regularized empirical risk minimization problem that

features a master-slave type (star network) distributed computing scheme is proposed

in [Zhang and Lin, 2015] (SPDC). For the sSVM problem, such scheme is shown to

have an O(1/k) convergence rate2 with constant step size and supports mini-batch

coordinate updates. However, it cannot be performed in a general decentralized net-

work. When the objectives are strongly convex and smooth (though not applicable

to sSVM), it is proved to have geometric convergence rate. Another approach with

O(1/
√
k) convergence rate that can solve the sSVM and allows a decentralized im-

plementation is the incremental subgradient method (IncrSub). However, IncrSub

needs to deploy vanishing step size to reach exact convergence and only works over

networks containing a ring structure [Nedic and Bertsekas, 2001]. Besides the above

methods that only work in networks with some specific topology, the following op-

timization schemes can be applied to arbitrary undirected communication networks.

The subgradient method introduced in [Nedic and Ozdaglar, 2009] can be directly

used for solving the sSVM. Although this algorithm features an elegant update rule,

its convergence is typically slow due to the use of diminishing step sizes. A re-

2A nonnegative sequence {ak} is said to be convergent to 0 at an O(1/k) rate if lim supk→∞kak <
+∞. In contrast, it is said to have an o(1/k) rate if lim supk→∞kak = 0.
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cent fully decentralized scheme that has made a significant improvement over the

subgradient method is the Linear time Average Consensus optimization algorithm

(LAC) [Olshevsky, 2014]. The LAC algorithm utilizes a fixed but small step size

and is shown to have O(1/
√
k) convergence rate. A good feature of the LAC is that

it improves the algorithmic scalability in the size of the network through utilizing

Nesterov’s acceleration technique [Nesterov, 1983]. There exist other decentralized

optimization frameworks that allow the objective to be nondifferentiable, such as

the Proximal-EXact first order Algorithm (Proximal-EXTRA) algorithm [Shi et al.,

2015b] and the Distributed Alternating Direction Method of Multipliers (DADMM)

algorithm [Bertsekas and Tsitsiklis, 1989]. Under strong convexity and smoothness

assumptions, these methods are proved to have geometric convergence rate, whereas

in the presence of nonsmooth objectives, the convergence rate of these methods is

O(1/k). But since these (proximal) methods are not tailored for problems with “non-

smooth+nonsmooth” structure, their per-iteration cost will be rather expensive if we

apply them to the sSVM directly.

We list in Table 4.1 comparative results that illustrate the trade-offs between dif-

ferent methods, including our proposed cluster Primal Dual Splitting (cPDS) frame-

work, when applied to the sparse SVM problem.3

Table 4.1: Theoretical performance results for all methods for the
sSVM problem

Method Decent- Per iteration ε-accuracy
ralized? complexity iterations

SubGD × O(nd) O(1/ε2)
IncrSub × O(d) O(1/ε2)
SPDC × O(nd) O(1/ε)
LAC

√
O(n2d) O(1/ε2)

cPDS
√

O((n+m2)d) o(1/ε)

3“Per iteration complexity” measures how many scalar multiplications are needed per iteration
when applied for solving sSVM. “ε-accuracy iterations” measure how many iterations are needed to
reach ε-accuracy.
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4.1 The Cluster Primal Dual Splitting Method

In this section, we first introduce the general decentralized primal dual spliting scheme

that we have designed for solving “nonsmooth+nonsmooth” optimization problems.

Then we provide convergence analysis for the scheme we have proposed.

Let us assume there is a network of agents, each of which is holding part of the data

and they all collectively would like to solve (4.2) utilizing all data. We consider two

cases: each agent is holding (1) multiple samples (semi-centralized) or (2) one sample

(fully-decentralized) of the data. In the healthcare context, for the first scenario

agents can be hospitals that process the data of their patients only and exchange

messages in order to optimize globally some function, while the second scenario may

correspond to each patient having their data stored and processed in their smartphone

and messages to be exchanged between patients’ phones. In both cases, the m agents

are connected through an underlying communication network, which is modeled by

an undirected graph G = (V , E), where V = {1, 2, . . . ,m} is the vertex set and E is

the edge set. Throughout the paper, we make the following Assumption 1.

Assumption 1. The graph G is connected.

Let W = [wij] be a doubly stochastic matrix generated following the Metropolis

rule on G, i.e.,

wij =


1

max{degree(i),degree(j)}+1
, if (i, j) ∈ E ,

0, if (i, j) /∈ E and i 6= j,
1−

∑
k∈V

wik, if i = j.

Such rule allows each agent i to generate wij,∀j, by only using local information (its

own and neighbors’ degree information). Note that we always have −Im ≺W 4 Im

[Shi et al., 2015a]. Let us also define  L , (Im −W) ⊗ Id+1 and U ,
√

 L. We note

that U has the same null space as  L.

Clearly, in the decentralized environment, problem (4.2) can be reformulated into
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the following m-cluster splitting formulation:

min
β,β0

m∑
j=1

{
nj∑
i=1

[1− yji]+ + 0.5τj‖βj‖2 + ρj‖βj‖1
}

s.t. γji(lji(φ
ᵀ
jiβj + βj0)− yji) = 0,∀j, i;

β1 = β2 = . . . = βm;
β1,0 = β2,0 = . . . = βm0,

(4.3)

where each agent (hospital) j holds nj samples (note that n =
∑m

j=1 nj) and maintains

its own copy of the model parameters to be estimated xj = (βj, βj0) ∈ Rd+1 and τj and

ρj are tunable model parameters. The parameters γji’s are arbitrary nonzero scalar

constants and will serve as algorithmic parameters later in the designed algorithm.

Let us define a long vector x = [x1; . . . ; xm] ∈ Rm(d+1) to compactly represent all

the local copies; a long vector variable y = [y1; . . . ; ym] ∈ Rn where each block

yj = [yj1; . . . ; yjnj
] ∈ Rnj is handled by agent j. We also prepare q ∈ Rn and

λ ∈ Rm(d+1) which will serve as auxiliary (dual) variables later in the algorithm.

Their blocks are handled in parallel by agents and the operations on them will be

clear from the context.

With the above notation, problem (4.3) can be represented in a more compact

form as follows:

min
{xj ,yj}, ∀j

m∑
j=1

{gj(xj) + fj(yj)}

s.t. Γj(Ajxj − yj) = 0, ∀j,
x1 = x2 = . . . = xm,

(4.4)

where the function fj(yj) contains all the hinge loss functions
nj∑
i=1

[1 − yji]+ for agent

j, while the function gj(xj) includes the regularizers 0.5τj‖βj‖2 + ρj‖βj‖1 over agent

j. Each Aj contains all the data samples for agent j (c.f. the corresponding first

group of constraints in (4.3)). Each matrix Γj ∈ Rnj×nj is a diagonal full rank

matrix containing γji,∀i. Each Γj is locally produced/tuned by agent j to possibly

precondition/scale Aj so as to achieve better performance. To solve the cluster sSVM,

or its more general form (4.4), in a decentralized fashion, we propose Algorithm 1.
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Algorithm 1 Cluster PDS Method

Input: ∀j, Prepare data/objectives fj and gj; Set parameters Γj and Θj.
Initialize: ∀j, x0

j ∈ Rd+1, y0
j ∈ Rnj , q−1j = 0, q0

j = Γj(A
ᵀ
jx

0
j − y0

j ), λ
−1
j = 0, and

λ0
j = x0

j −
∑

i∈Nj∪{j}wjix
0
i .

repeat
x-update (locally): ∀j

xk+1
j = arg min

xj

{
(2qkj − qk−1j )T (ΓjAjxj) + gj(xj)

+(2λkj − λk−1j )Txj + 0.5‖xj − xkj‖2Θj

}
y-update (locally): ∀j

yk+1
j = arg min

yj

{
fj(yj) + (qkj )

T (−Γjyj) + 0.5‖yj −Ajx
k+1
j ‖2Γᵀ

jΓj

}
q-update (locally): ∀j

qk+1
j = qkj + Γj(Ajx

k+1
j − yk+1

j )

λ-update (requires information exchange): ∀j

λk+1
j = λkj + xk+1

j −
∑

i∈Nj∪{j}

wjix
k+1
i

until specific criteria are met.

In the algorithm, Θj ∈ R(d+1)×(d+1) is a diagonal positive definite matrix that

serves as a part of the algorithmic parameters maintained by agent j. Later after the

analysis, we will remark that the algorithmic parameters Γj and Θj can be determined

by agent j fully locally and independently from the network topology.

To facilitate our convergence analysis, let us further write (4.4) into an even more

compact form:

min
x,y

{g(x) + f(y)}
s.t. Γ(Ax− y) = 0,

Ux = 0,

(4.5)
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where g(x) =
m∑
j=1

gj(xj), f(y) =
m∑
j=1

fj(yj) and Γ, A are the matrices/tensors that

contain Γj and Aj correspondingly ∀j = 1, . . . ,m. We note that Ux = 0, where

U ,
√

 L, is equivalent to x1 = x2 = . . . = xm, as long as the graph is connected,

since the null space of U is {x = [x1; x2; . . . ; xm] ∈ Rm(d+1)
∣∣x1 = x2 = . . . = xm}.

Before starting the convergence analysis, let us make two more basic assumptions.

Assumption 2. The functions g : Rm(d+1) → R and f : Rn → R are both proper,4

closed, and convex.

Assumption 3. The solution set χ∗ of (4.5) is nonempty and bounded.

Assumption 2 imposes a minimal requirement on the objectives to conduct convex

analysis. Assumption 3 is obviously satisfied by the sSVM problem.

The augmented Lagrangian function of (4.5) is as follows

L = g(x) + f(y) + 〈r,Ux〉+ 〈q,Γ(Ax− y)〉 (4.6)

where r ∈ Rm(d+1) and q ∈ Rn contain the dual variables. The first-order conditions

for the saddle point of (4.6) are

∇̃g(x∗) + Ur∗ + AᵀΓᵀq∗ = 0; (4.7a)

Ux∗ = 0; (4.7b)

∇̃f(y∗)− Γᵀq∗ = 0; (4.7c)

Ax∗ − y∗ = 0. (4.7d)

Clearly, x∗ ∈ χ∗. The update relations of Algorithm 1 can be recast into the following:

4A function f : X → Y is proper if ∃x in the domain X of f such that f(x) is finite.
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∇̃g(xk+1) + AᵀΓᵀ(2qk − qk−1)

+ U(2rk − rk−1) + Θ(xk+1 − xk) = 0; (4.8a)

∇̃f(yk+1)− Γᵀrk + ΓᵀΓ(yk+1 −Axk+1) = 0; (4.8b)

qk+1 = qk + Γ(Axk+1 − yk+1); (4.8c)

λk+1 = λk +  Lxk+1. (4.8d)

By reorganisation of the updates and by using the optimality conditions, we derive

the following Lemma.

Lemma 1. The recursion of the proposed algorithm obeys

(Θ−AᵀΓᵀΓA−  L)(xk+1 − xk) + AᵀΓᵀΓ(yk+1 − yk)

= −∇̃g(xk+1)−Urk+1 −AᵀΓᵀqk+1; (4.9a)

(Θ−AᵀΓᵀΓA−  L)(xk+1 − xk) + AᵀΓᵀΓ(yk+1 − yk)

= ∇̃g(x∗)− ∇̃g(xk+1) + U(r∗ − rk+1) + AᵀΓᵀ(q∗ − qk+1); (4.9b)

∇̃f(yk+1)− Γᵀqk+1 = 0; (4.9c)

∇̃f(yk+1)− ∇̃f(y∗)− Γᵀ(qk+1 − q∗) = 0; (4.9d)

qk+1 = qk + Γ(A(xk+1 − x∗)− (yk+1 − y∗)); (4.9e)

rk+1 = rk + Uxk+1; (4.9f)

λk = Urk;

rk+1 = rk + U(xk+1 − x∗). (4.9g)

Before stating our main results, let us define a long vector zk ,
[
xk; yk; rk; qk

]
∈

R2m(d+1)+2n and a (2m(d+ 1) + 2n)× (2m(d+ 1) + 2n) block diagonal matrix5 M ,

blkdiag{Θ−AᵀΓᵀΓA−  L,ΓᵀΓ, Im(d+1), In}. Correspondingly, we also define z∗ ,

5We use blkdiag(A,B,C,D), where A, B, C, D are matrices, to denote a block diagonal matrix of

the form

A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D

.
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[x∗; y∗; r∗; q∗] ∈ R2m(d+1)+2n.

Theorem 1 (Convergence). If the scaling parameters are chosen such that

Θ−AᵀΓᵀΓA−  L � 0, (4.10)

then ‖∇̃f(yk+1)− Γᵀqk+1‖2Fro = 0 and the sequences {‖zk − zk+1‖2M}, {‖∇̃g(xk+1) +

Urk+1+AᵀΓᵀqk+1‖2Fro}, {‖Γ(Axk+1−yk+1)‖2Fro}, and {‖Uxk+1‖2Fro} are all infinitely

summable over k ≥ 0. Consequently, the sequence {xk+1} generated by the proposed

algorithm converges to a consensual6 and optimal solution of problem (4.5) (x part).

Proof. By the convexity of g, we have

0 ≤ 2〈xk+1 − x∗, ∇̃g(xk+1)− ∇̃g(x∗)〉. (4.11)

Substituting (4.9b) into the second term of the right-hand-side of (4.11) for (∇̃g(xk+1)−
∇̃g(x∗)) gives

0
≤ 2〈xk+1 − x∗, ∇̃g(xk+1)− ∇̃g(x∗)〉
= 2〈xk+1 − x∗,−(Θ−AᵀΓᵀΓA−  L)(xk+1 − xk)
−U(rk+1 − r∗)〉+ 2〈xk+1 − x∗,
−AᵀΓᵀΓ(yk+1 − yk)−AᵀΓᵀ(qk+1 − q∗)〉

= 2〈xk+1 − x∗, (Θ−AᵀΓᵀΓA−  L)(xk − xk+1)〉
+2〈U(xk+1 − x∗), r∗ − rk+1〉
+2〈xk+1 − x∗,AᵀΓᵀΓ(yk − yk+1)〉
+2〈xk+1 − x∗,AᵀΓᵀ(q∗ − qk+1)〉.

(4.12)

Next, let us look into the four terms at the right-hand-side of (4.12). The first term

has an appropriate form; For the second term, by (4.9g), we have

2〈U(xk+1 − x∗), r∗ − rk+1〉
= 2〈rk+1 − rk, r∗ − rk+1〉; (4.13)

For the third term, we have

2〈xk+1 − x∗,AᵀΓᵀΓ(yk − yk+1)〉 (by (4.9e))
= 2〈Γ(yk+1 − y∗) + qk+1 − qk,Γ(yk − yk+1)〉 (by (4.9c))
= 2〈yk+1 − y∗,ΓᵀΓ(yk − yk+1)〉
−2〈∇̃f(yk)− ∇̃f(yk+1),yk − yk+1〉
(by the convexity of f)

≤ 2〈yk+1 − y∗,ΓᵀΓ(yk − yk+1)〉;

(4.14)

6All rows of x are equal to each other.
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For the last term, we have

2〈xk+1 − x∗,AᵀΓᵀ(q∗ − qk+1)〉 (by (4.9e))
= 2〈Γ(yk+1 − y∗) + qk+1 − qk,q∗ − qk+1〉 (by (4.9d))
= −2〈yk+1 − y∗, ∇̃f(yk+1)− ∇̃f(y∗)〉+ 2〈qk+1 − qk,

q∗ − qk+1〉 (by the convexity of f)
≤ 2〈qk+1 − qk,q∗ − qk+1〉.

(4.15)

Combining (4.12)–(4.15) and using the definition of M and z, we get

0
≤ 2〈xk+1 − x∗, (Θ−AᵀΓᵀΓA−  L)(xk − xk+1)〉

+2〈yk+1 − y∗,ΓᵀΓ(yk − yk+1)〉
+2〈rk+1 − rk, r∗ − rk+1〉
+2〈qk+1 − qk,q∗ − qk+1〉

= 2〈zk+1 − z∗,M(zk − zk+1)〉
= ‖zk − z∗‖2M − ‖zk+1 − z∗‖2M − ‖zk − zk+1‖2M.

(4.16)

It shows from (4.16) that ‖zk − z∗‖2M is monotonically non-increasing and thus is

bounded. Since z0 and z∗ are bounded, we also have that zk is bounded and thus

‖zk − zk+1‖2M is bounded. It then follows from (4.16) that

∞∑
k=0

‖zk − zk+1‖2M

≤
∞∑
k=0

(‖zk − z∗‖2M − ‖zk+1 − z∗‖2M)

(Telescoping cancellation)
= ‖z0 − z∗‖2M − ‖z∞ − z∗‖2M < +∞,

(4.17)

thus, we conclude that {‖zk − zk+1‖2M} is infinitely summable over k thus

lim
k→+∞

‖zk − zk+1‖2M = 0. (4.18)

Below we will show that zk converges to a point z∞ that satisfies the first-order

optimality condition. Combining (4.9f), (4.17), and (4.18) gives that {‖Uxk‖2Fro} is

infinitely summable and

limk→+∞ ‖Uxk+1‖2Fro = limk→+∞ ‖rk − rk+1‖2Fro = 0; (4.19)

Combining (4.8c), (4.17), and (4.18) gives that {‖Γ(Axk − yk)‖2Fro} is infinitely
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summable and
limk→+∞ ‖Γ(Axk+1 − yk+1)‖2Fro

= limk→+∞ ‖qk+1 − qk‖2Fro = 0;
(4.20)

Combining (4.9a), (4.17), and (4.18) gives that {‖∇̃g(xk) + Urk + AᵀΓᵀqk‖2Fro} is

infinitely summable and

limk→+∞ ‖∇̃g(xk+1) + Urk+1 + AᵀΓᵀqk+1‖2Fro
= limk→+∞ ‖(Θ−AᵀΓᵀΓA−  L)(xk+1 − xk)

+AᵀΓᵀΓ(yk+1 − yk)‖2Fro
≤ limk→+∞ 2(λmax{ΘᵀΘ}

+λmax{ΓAAᵀΓ})‖zk − zk+1‖2M
= 0;

(4.21)

The relation (4.9c) ensures that we always have

‖∇̃f(yk+1)− Γᵀqk+1‖2Fro = 0 (4.22)

By comparing (4.19)–(4.22) with the first-order optimality condition (4.7), we can

see that the limit point z∞ satisfies the KKT system (4.7) thus is an optimal solution

to the KKT system. Finally, we conclude that all blocks of x∞ are equal to each

other and every block of x∞ is an optimal solution to problem (4.5) (x part). This

concludes the proof.

In addition to the infinite summability of {‖zk − zk+1‖2M} shown above, in the

following Lemma 2, we will show that this sequence is also monotonic non-increasing.

Lemma 2 (Monotonic successive difference). Under the same settings as those in

Theorem 1, the sequence {zk} generated by the proposed algorithm satisfies

‖zk+1 − zk+2‖2M ≤ ‖zk − zk+1‖2M, (4.23)

for any k = 0, 1, . . ..

Proof. To ease the description of the proof, let us define ∆xk+1 , xk−xk+1, ∆rk+1 ,

rk− rk+1, ∆yk+1 , yk−yk+1, ∆qk+1 , qk−qk+1, ∆zk+1 , zk− zk+1, ∆∇̃g(xk+1) ,

∇̃g(xk)− ∇̃g(xk+1), and ∆∇̃f(yk+1) , ∇̃f(yk)− ∇̃f(yk+1).

By the convexity of ∇̃g, we have

0 ≤ 2〈∆xk+1,∆∇̃g(xk+1)〉. (4.24)
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Taking the the successive difference of (4.9a) gives

(Θ−AᵀΓᵀΓA−  L)(∆xk+1 −∆xk)
+AᵀΓᵀΓ(∆yk+1 −∆yk)

= −∆∇̃g(xk+1)−U∆rk+1 −AᵀΓᵀ∆qk+1.
(4.25)

Substituting (4.25) into the second term of the right-hand-side of (4.24) for ∆∇̃g(xk+1)

yields
0

≤ 2〈∆xk+1,−(Θ−AᵀΓᵀΓA−  L)(∆xk+1 −∆xk)〉
+2〈∆xk+1,−AᵀΓᵀΓ(∆yk+1 −∆yk)〉
+2〈U∆xk+1,−∆rk+1〉+ 2〈∆xk+1,−AᵀΓᵀ∆qk+1〉.

(4.26)

Next, let us look into the four terms at the right-hand-side of (4.26). The first term

has an appropriate form; For the second term, we have

2〈∆xk+1,−AᵀΓᵀΓ(∆yk+1 −∆yk)〉 (by (4.8c))
= 2〈Γ∆yk+1 + ∆qk+1 −∆qk,−Γ(∆yk+1 −∆yk)〉
= 2〈∆yk+1,−ΓᵀΓ(∆yk+1 −∆yk)〉
−2〈∆qk+1 −∆qk,Γ(∆yk+1 −∆yk)〉.

(4.27)

For the third term, by (4.9f), we have

2〈U∆xk+1,−∆rk+1〉 = 2〈∆rk+1 −∆rk,−∆rk+1〉. (4.28)

For the last term, we have

2〈∆xk+1,−AᵀΓᵀ∆qk+1〉 (by (4.8c))
= 2〈Γ∆yk+1 + ∆qk+1 −∆qk,−∆qk+1〉 (by (4.9c))
= −2〈yk − yk+1, ∇̃f(yk)− ∇̃f(yk+1)〉

+2〈∆qk+1 −∆qk,−∆qk+1〉 (by the convexity of f)
≤ 2〈∆qk+1 −∆qk,−∆qk+1〉.

(4.29)

Combining (4.26)–(4.29) gives

0 ≤ 2〈∆xk+1,−(Θ−AᵀΓᵀΓA−  L)(∆xk+1 −∆xk)〉
+2〈∆yk+1,−ΓᵀΓ(∆yk+1 −∆yk)〉
−2〈∆qk+1 −∆qk,Γ(∆yk+1 −∆yk)〉
+2〈∆rk+1 −∆rk,−∆rk+1〉
+2〈∆qk+1 −∆qk,−∆qk+1〉

= 2〈∆zk −∆zk+1,M∆zk+1〉
−2〈∆qk+1 −∆qk,Γ(∆yk+1 −∆yk)〉

= ‖∆zk‖2M − ‖∆zk+1‖2M − ‖∆zk −∆zk+1‖2M
−2〈∆qk+1 −∆qk,∆yk+1 −∆yk〉,

(4.30)
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and thus we eventually have

‖∆zk‖2M − ‖∆zk+1‖2M
≥ ‖∆zk −∆zk+1‖2M

+2〈∆qk+1 −∆qk,Γ(∆yk+1 −∆yk)〉
= ‖∆xk −∆xk+1‖2Θ−AᵀΓᵀΓA− L + ‖∆rk −∆rk+1‖2Fro

+‖(∆qk+1 −∆qk) + Γ(∆yk+1 −∆yk)‖2Fro≥ 0,

(4.31)

which completes the proof.

We will use Theorem 1 and Lemma 2 to establish the rate of convergence. Before

that, we need an interlude on the convergence property of a nonnegative monotonic

scalar sequence. This is stated as a proposition bellow which has also appeared in

recent works [Deng et al., 2017,Davis and Yin, 2017,Shi et al., 2015b].

Proposition 1. If a sequence {ak} ⊂ R is: (i) nonnegative, ak ≥ 0, (ii) summable,∑∞
t=1 at < ∞, and (iii) monotonically non-increasing, ak+1 ≤ ak, then we have:

ak = o(1/k).

Proof. Since ak is monotonically non-increasing, we have ka2k ≤
∑2k

t=k+1 at. By this,

along with the fact that limk→∞
∑2k

t=k+1 at → 0 which is given by the summability,

we get ak = o(1/k).

Theorem 2 (Sublinear rate). Under the same settings as those in Theorem 1, the

first-order optimality residuals (violation to the KKT system (4.7)):

(i) Consensus violation ‖Uxk‖2Fro;

(ii) Local replication error ‖Γ(Axk − yk)‖2Fro;

(iii) Dual/Gradient span space error ‖∇̃g(xk) + Urk + Aᵀ∇̃f(yk)‖2Fro

all converge at an o(1/k) rate.

Proof. By applying Proposition 1 to the results of Theorem 1 and Lemma 2, we have

that ‖zk − zk+1‖2M = o(1/k). By using the definition of z and the recursive relation

for zk+1 of the Algorithm 1, we derive the statement of this theorem.

Remark 1 (Fully localized parameter settings). We have obtained that under the

parameter settings Θ−AᵀΓᵀΓA−  L � 0, the algorithm converges at an o(1/k) rate.
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Here we show that the parameter selection can be fully localized. As presented in

Section 4.1, we choose  L = (Im−W)⊗ Id+1 where W is an m×m doubly stochastic

matrix whose non-zero pattern meets the topology of the underlying communication

network. The agents in the network can determine/implement a W matrix only

using local information in a purely decentralized manner. Such matrix W satisfies

−Im ≺W 4 Im thus 0 4  L ≺ 2Im(d+1). To fulfill Θ−AᵀΓᵀΓA−  L � 0, we only need

Θ−AᵀΓᵀΓA � 2Im(d+1), which can be broken down to Θj−AᵀjΓ
ᵀ
jΓjAj � 2Id+1, ∀j.

Each agent j has the freedom of how it would like to choose its own Θj and Γj to

satisfy such requirement. We recommend that one chooses Γj to make the largest and

smallest nonzero eigenvalues of AᵀjΓ
ᵀ
jΓjAj close to 2 and then Θ can be chosen as

4Im(d+1).

4.2 Application of cPDS on `1-Regularized Support Vector

Machines

In this section we will apply cPDS to the large-scale distributed sSVM problem.

Assume that n samples of data (patients EHRs) are distributed among m agents

(hospitals) that want to collectively agree on a global classifier to separate the two

classes. Each agent is holding nj samples and maintains a copy (βj, βj0) of the

classifier parameters to be estimated. (βj, βj0) are updated in each iteration of the

method, using data locally stored in the agent as well as information that the agent

receives from its neighbors. Let φji ∈ Rd and lji ∈ R be the features and the label

of sample i in agent j accordingly and fji be the corresponding hinge loss for that

sample. gj contains the regularizers of parameters (βj, βj0) for each agent j. Define

aji = (ljiφji, lji), which we will use later. In every iteration each agent updates

xj = (βj, βj0) ∈ Rd+1, yj ∈ Rnj , qj ∈ Rnj and λj ∈ Rd+1. Let us illustrate below the

cPDS updates that each agent is performing. For simplicity in the implementation,

we use Θj = θjId+1, where θj is a positive scalar maintained by agent j locally. Next

we describe the updates over each agent j.
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x-update

(βk+1
j , βk+1

j0 ) = arg min
βj ,β0j

nj∑
i=1

γji(2q
k
ji − qk−1ji )aᵀji(βj, βj0)

+
τ

2
‖βj‖2 + ρ‖βj‖1 + (2λkj − λk−1j )ᵀ(βj, βj0) + 0.5‖(βj, βj0)− (βkj , β

k
j0)‖2θj

(4.32)

The simple form of the non-smooth gj allows us to get a closed form solution for this

problem. Problem (4.32) can be decoupled into two problems, one that finds βk+1
j ,

whose solution is given by the soft thresholding function, i.e., ∀ t = 1, . . . , d,

β∗jt = sgn(ujt)(|ujt| − µ)+ =


ujt − µ, if ujt > µ,
0, if |ujt| ≤ µ,
ujt + µ, if ujt < −µ,

with µ = (2ρ)/(τ + θj) and uj = −1/(τ + θj)

[
nj∑
i=1

γjilji(2q
k
ji − qk−1ji

)
φji + (2λkj,1:d −

λk−1j,1:d)− θjβ
k
j

]
, and one that finds βk+1

j0 , which has as an optimal solution:

β∗j0 =
−

nj∑
i=1

γjilji(2q
k
ji−q

k−1
ji )−(2λk

i,d+1−λ
k−1
i,d+1)+θjβ

k
j0

θj

(4.33)

y-update

yk+1
j = arg min

yj

nj∑
i=1

{
max{0, 1− yji} − γjiqkjiyji

+
1

2
‖γji(ljiφᵀjiβ

k+1
j + ljiβ

k+1
j0 − yji)‖2

}
.

(4.34)

To deal with the second non-smooth term, the hinge loss function, we consider

three cases for each term: 1− yji > 0, 1− yji < 0 and 1− yji = 0. For each agent j,

we can obtain every entry of yj in parallel, i.e., for all i:

• Solve ỹk+1
ji = arg min

yji

{
(γ2jiy

2
ji)/2 + (−1− γjiqkji − γ2jiljiφ

ᵀ
jiβ

k+1
j − γ2jiljiβk+1

j0 )

}
,

which yields ỹk+1
ji = 1/γ2ji

(
1 + γjiq

k
ji + γ2jiljiφ

ᵀ
jiβ

k+1
j + γ2jiljiβ

k+1
j0

)
. If 1− ỹji > 0,

then yk+1
ji = ỹk+1

ji ; otherwise proceed to the next step.
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• Solve ỹk+1
ji = arg min

yji

{γjiqkji,−yji + 1/2‖γji(ljiφᵀjiβ
k+1
j + ljiβ

k+1
j0 − yji)‖2}, which

yields ỹji = 1/γ2ji
(
γjiq

k
ji + γ2jiljiφ

ᵀ
jiβ

k+1
j + γ2jiljiβ

k+1
j0

)
. If 1 − ỹk+1

ji < 0, then

yk+1
ji = ỹk+1

ji ; otherwise proceed to the next step.

• yk+1
ji = 1.

q-update ∀i

qk+1
ji = qkji + γji(ljiφ

ᵀ
jiβ

k+1
j + ljiβ

k+1
j0 − yk+1

ji ) (4.35)

λ-update

λk+1
j = λkj +

∑
i∈Nj∪{j}

wjix
k+1
j (4.36)

Last, let us mention that the storage needed to operate cPDS for sSVM following

the updates in this section is O(nd), which is the same as the other methods listed

in Table 4.1 (also see Table 4.1 for other comparisons).

4.3 Experimental Results on the Heart Disease Dataset

We will now apply our methodology to solve the heart diseases hospitalization predic-

tion problem. We measure the performance of cPDS in terms of the Area Under the

Receiver Operator Characteristic (ROC) curve (AUC), which plots the detection rate

(i.e., out of the hospitalized patients how many were correctly predicted as hospital-

ized) versus the false alarm rate (i.e., out of the non-hospitalized patients how many

were wrongly predicted to be hospitalized). We also consider for comparison the bar-

rier method, the SubGD, the IncrSub descent and the LAC scheme we have mentioned

in the Introduction. For SubGD and IncrSub, we use the steplength rule for the di-

minishing stepsize.7 The parameters for all methods are selected via cross-validation.

7Following the steplength rule, the diminishing stepsize in k-th iteration is set as ak =
a0/(‖∇̃g(xk)‖+ ε), where a0 is an initial value of the stepsize and ε a very small number.
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In cPDS the data are distributed between m = 10 hospitals connected through a

random graph generated by the Erdős–Rényi model. Using this model, a graph is

constructed by connecting nodes randomly. Each edge is included in the graph with

probability p independent from every other edge. In our experiments, we have used

p = 0.2. Table 4.2 shows the AUC and the total running time of the algorithms

to perform the maximum number of iterations reported. In the experiment, cPDS

gives a comparable AUC as IncrSub does, both outperforming the others. Although

cPDS requires more time than IncrSub does, it can work over general decentralized

networks.

Table 4.2: Numerical performance of different methods for solving the
sSVM problem: AUC, maximum number of iterations, total running
time (in secs).

Method Distributed? AUC max iters total time
SubGD × 0.7667 1500 2055
Barrier × 0.7688 32 40.174
IncrSub × 0.7734 554 6.3485

LAC
√

0.7520 1000 147, 090
cPDS

√
0.7711 2000 11, 176
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Chapter 5

An Alternating Clustering and

Classification Framework

We seek to predict hospitalizations associated with heart diseases or diabetes within

one year from the time the EHR of a patient is examined. We treat hospitalization

prediction as a classification problem, distinguishing between patients likely to be hos-

pitalized or not. Intuitively, however, patients belong to different clusters depending

on their demographics and ailments that are likely to cause a future hospitalization.

The supervised learning methods we have explored so far can certainly make classi-

fications without considering these hidden clusters; yet, identifying the clusters can

potentially improve classification performance. An additional key benefit of hidden

cluster identification is that results become more interpretable. Patients in the same

cluster, especially if the cluster is identified based on a low-dimensional subspace of

“diagnostic” features, share key characteristics and their cluster membership offers

an explanation as to why they have been flagged for a future hospitalization. In the

medical setting, interpretability has an essential role in persuading physicians to trust

the learning outputs and rely on them for their decision making. EHRs exhibit inter-

esting special structure in that for each patient only a very low-dimensional subset of

features is important in predicting a future hospitalization. This subset is different

for each cluster and, typically, there is no universal set of irrelevant features that can

be eliminated. This suggests that it is useful to consider sparse classifiers for each

cluster.
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Related literature: In the literature, there are generally two types of assump-

tions about hidden clusters in a classification problem, implicit or explicit. The im-

plicit approach is more prevalent, which is implied in piecewise linear techniques [Tou-

ssaint and Vijayakumar, 2005, Dai et al., 2006, Yujian et al., 2011, Pele et al., 2013].

The purpose of a piecewise linear classifier is to approximate nonlinear boundaries

with a union of local linear classifiers. Therefore samples are implicitly assumed to

lie in local regions/clusters and classified by the local classifiers there. A more ob-

vious assumption of hidden clusters (even though still implicit) is in feature space

partitioning methods. Tree-based methods [Breiman et al., 1984] partition the whole

feature space into sub-regions and each sub-region can be viewed as a cluster. Differ-

ent from the greedy approach tree methods took, [Wang and Saligrama, 2012] utilize

an iterative way of partitioning the feature space and train classifiers inside each sub-

region. All these methods do not have clustering as their goal and clusters are simply

a byproduct in their classification models.

An explicit assumption of clusters within a classification problem is proposed

in [He et al., 2006,Gu and Han, 2013], where training samples are first put into clusters

and then separate classifiers are trained. They both do clustering once and [He et al.,

2006] trains classifiers in parallel while [Gu and Han, 2013] trains classifiers jointly.

Due to the sequential procedure, the clustering does not take label information into

account and thus these methods’ advantage mostly lie in boosting the speed of model

training.

A special feature of our problem is that the two classes are asymmetric in the

sense that only the positive samples are assumed to have hidden clusters. A concrete

example can be drawn again from medical diagnosis, where the positive class repre-

sents the unhealthy people and the negative class represents the opposite. It is very

intuitive that people get sick for various reasons (viewed as different clusters) while
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the healthy people should be healthy in every aspect (thus forming only one cluster).

A similar asymmetric setting is also proposed in [Zhao and Shrivastava, 2013] where

the data are assumed to be imbalanced and the larger class contains hidden clusters.

Their solution is to solely cluster the larger class and train classifiers with copies of

the samples from the other class. We design two methods along this direction which

serve as our baseline for comparison.

From all the related literature, the most similar problem is mentioned in [Fil-

ipovych et al., 2012], also with a medical application. There, they try to maximize

the margin between hidden clusters and, thus, are generally suitable for cases with

only two hidden clusters. Besides, they use mixed integer programming to represent

the cluster tags, which makes the problem intractable for large instances.

5.1 Problem Definition

We consider a classification problem that has multiple hidden clusters in the positive

class, while the negative class is assumed to be drawn from a single distribution. For

different clusters in the positive class, we assume that the discriminative dimensions,

with respect to the negative class, are different and sparse. We could think of these

clusters as “local opponents” to the whole negative set (see Fig. 5·1) and therefore,

the “local boundary” (classifier) could naturally be assumed to be different and lying

in a lower-dimensional subspace of the feature vector.

In summary, the classification problem satisfies the following assumptions:

• The negative class samples are assumed to be i.i.d. and drawn from a single

cluster with distribution P0.

• The positive class samples belong to L clusters, with distributions P 1
1 , · · · , PL

1 .

• Different positive clusters have different features that separate them from the
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negative samples.

y = +1 
y =  -1 

Figure 5·1: Positive clusters as “local opponents”. The positive class
contains two clusters and each cluster is linearly separable from the
negative class, denoted by dashed lines.

We propose a joint cluster detection and classification problem under the SVM

framework. Let (x+
i , y

+
i ) and (x−j , y

−
j ) be the D+1 dimensional positive and negative

samples, where i ∈ {1, 2, . . . , N+} and j ∈ {1, 2, . . . , N−}. Let T be the parameter

controlling the local sparsity. Assuming L hidden clusters in the positive class, we

try to discover the L hidden clusters (denoted by a mapping function l(i)) and L
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classifiers (βl, βl0’s, one for each cluster) as the solution of

min
βl,βl

0,l(i)

L∑
l=1

(
1
2
||βl||2 + λ+

∑
i:l(i)=l

ξ
l(i)
i + λ−

N−∑
j=1

ζ lj

)
s.t.

D∑
d=1

|βld| ≤ T,

ξ
l(i)
i ≥ 1− y+i β

l(i)
0 −

D∑
d=1

y+i β
l(i)
d x+i,d,

ζ li ≥ 1− y−j βl0 −
D∑
d=1

y−j β
l
dx
−
j,d,

ξ
l(i)
i , ζ lj ≥ 0,

where y+i = 1, and y−j = −1.

(5.1)

The negative samples are not clustered but simply copied into each cluster. So

their empirical costs are counted L times as shown in (5.1). The relative weight of

costs from negative samples compared to that of the positive samples is controlled by

λ− and λ+. The constraint
D∑
d=1

|βld| ≤ T is an `1-relaxation of the sparsity requirement

to the local classifiers.

5.2 Alternating Clustering and Classification (ACC)

Problem (5.1) involves two sets of decision variables: (βl, βl0) for the classifiers and

l(i) for cluster assignment. The problem is a mixed integer programming problem,

but given l(i), it reduces to L quadratic optimization problems. This motivates

the alternating clustering and classification (ACC) optimization approach we present

next.

The process starts with a random cluster assignment of the positive clusters and

then alternates between two modules: (i) training a classifier for each cluster and (ii)

re-clustering samples given all the estimated classifiers using a subset of “diagnostic”

features C. Note that since only positive samples belong to different clusters, only

these samples need to be re-clustered. During the training phase, we alternate be-

tween (i) –training L sparse classifiers– and (ii) –re-clustering the positive samples
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given the classifiers– until convergence. Algorithm 2 describes the training process,

while Algorithm 3 provides details on how we re-cluster the positive samples given

the classifiers learnt in (i).

The re-clustering step concentrates only on a subset of “discriminative” features

C ⊆ {1, 2, . . . , D}, which adds more flexibility to the model and allows us to incor-

porate prior knowledge, so that the discovered clusters are more intuitive. Also note

that the re-clustering step in ACC does not need to assume any cluster centers, as is

common in other clustering methods (e.g., in k-means [Lloyd, 1982]). The reason is

that samples labels are available during training (in contrast with a typical cluster-

ing problem) and the goal of clustering is to assist classification. Samples are being

assigned into a cluster, where they lie as far away as possible from the classification

boundary, i.e., the projection < xi,C,β
l
C > is the maximum. When checking for the

maximum projection, an extra constraint (5.3) needs to be imposed to guarantee

the global convergence of the alternating optimization process. Intuitively, the terms

in (5.3) are associated with the slack variables in the sparse linear SVM (SLSVM)

problem, as presented in (5.9), and imposing this constraint will guarantee that the

alternating process moves in a monotonic direction, such that the costs from the slack

variables are non-increasing.

Ol = min
βl,βl

0

1
2
||βl||2 + λ+

N+
l∑

i=1

ξli + λ−
N−

l∑
j=1

ζ lj

s.t.
D∑
d=1

|βld| ≤ T,

ξli, ζ
l
j ≥ 0,

ξli ≥ 1− y+i βl0 −
D∑
d=1

y+i β
l
dx

+
i,d,

ζ li ≥ 1− y−j βl0 −
D∑
d=1

y−j β
l
dx
−
j,d,

where y+i = 1, ∀i ∈ {1, . . . , N+
l } and

y−j = −1 ∀j ∈ {1, . . . , N−l }.

(5.2)
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Algorithm 2 Alternating Clustering and Classification Training

Initialization:
Randomly assign positive class sample i to cluster l(i). i ∈ {1, . . . , N+} and l(i) ∈
{1, . . . , L}.

repeat

Classification Step:
Train an SLSVM classifier for each cluster of positive samples combined with
all negative samples. Each classifier is the outcome of a quadratic optimization
problem (5.9), that provides βl and Ol.

Re-clustering Step:
Re-cluster the positive samples based on the classifiers βl and update l(i)’s.

until no l(i) is changed or
∑

lO
l (the sum of the objective values in training

classifiers) is not decreasing.

Once training has been performed with Algorithm 2, we can classify a newly pre-

sented sample not seen during training using Algorithm 4. Specifically, we compute

the projections on each classifier and assign the new sample to the cluster with the

largest projection value. We use the classifier of this cluster to classify the corre-

sponding samples. We note that tuning λ+ and λ− in ACC should be done globally,

i.e., λ+ and λ− should be fixed across all clusters to guarantee convergence.

Two Hierarchical Methods for Clustering and Classification. To demon-

strate the superiority of ACC, we will compare it against regural SVM that use a

linear or an RBF kernel and with other binary supervised learning methods, such

as `1-regularized logistic regression and random forests [Friedman et al., 2001]. We

will also compare ACC with two hierarchical methods which naturally arise from our

assumptions regarding the data.

Since we assume that only the positive class contains clusters, during the model

training phase we could first cluster the positive samples (still based on the feature

set C ), then copy negative samples into each cluster, and finally optimize classifiers

(linear SVMs) for each cluster. For clustering we adopt the widely used k-means
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Algorithm 3 Re-clustering procedure given classifiers

Input: positive samples x+
i , classifiers βl, current cluster assignments which as-

signs sample i to cluster l(i).

for all i ∈ {1, . . . , N+} do

for all l ∈ {1, . . . , L} do
calculate projection ali from positive sample i onto the classifier for cluster l
with only desired dimensions C. ali =< x+

i,C,β
l
C > ;

end for

update cluster assignment of sample i from l(i) to
l∗(i) = arg max

l
ali,

subject to
< x+

i ,β
l∗(i) > +β

l∗(i)
0 ≥ < x+

i ,β
l(i) > +β

l(i)
0 . (5.3)

end for

Algorithm 4 Alternating Clustering and Classification Testing

for each test sample x do
Assign it to cluster l∗ = arg max

l
< xC,β

l
C >.

Classify x with βl
∗
.

end for

method [Lloyd, 1982]. To classify new (test) samples we can use an approach just like

the ACC method. We name this algorithm Cluster Then Linear SVM (CT-LSVM).

The second hierarchical method we introduce is very similar to CT-LSVM but

instead of training a linear SVM, we train a sparse linear SVM, calling this method

Cluster-Then- Sparse-Linear-SVM (CT-SLSVM). Notice that an important difference

between CT-LSVM, CT-SLSVM and ACC is that ACC has an alternating procedure

while the other two do not. With only one-time clustering, CT-LSVM and CT-

SLSVM create unsupervised clusters without making use of the negative samples,

whereas ACC is taking class information and classifiers under consideration so that

the clusters also help the classification.
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5.3 ACC Theoretical Performance Guarantees

We begin by presenting a result that suggests a favorable sample complexity for

SLSVM compared to the standard linear SVM. Suppose that SLSVM for the l-th

cluster yields Ql < D non-zero elements of βl, thus, identifying a Ql-dimensional

feature subspace used for classification. The value of Ql is controlled by T l. Assume

we draw a training set with N− negative samples from P0 and N+
l positive samples

from P l
1, where N l = N+

l +N−. Let Rl
N denote the expected training error rate and

Rl the expected test error under these distributions.

Theorem 3. For a sparse linear SVM lying in a Q-dimensional subspace of the

original D-dimensional space, for any ε > 0 and δ ∈ (0, 1), if the sample size N l

satisfies

N l ≥
8

ε2

(
(Ql + 1)log

2eN l

Ql + 1
+Qllog

eD

Ql
+ log

2

δ

)
, (5.4)

then with probability no smaller than 1− δ, Rl −Rl
N ≤ ε.

Proof. To simplify notation we drop the cluster index l. We will use a result from [Bous-

quet et al., 2004]. We note that the family of linear classifiers in a D-dimensional

space has VC-dimension D + 1 ( [Vapnik, 1998]). Let G be a function family with

VC-dimension D + 1. For ease of notation we will drop the reference to the l-th

cluster as the result applies to all clusters. Let RN(g) denote the training error rate

of classifier g on N training samples randomly drawn from an underlying distribution

P . Let R(g) denote the expected test error of g with respect to P . The following

theorem from [Bousquet et al., 2004] is useful in establishing our result.

Theorem 4 ( [Bousquet et al., 2004]). If the function family G has VC-dimension

D + 1, then

P

R(g)−RN (g) ≤ 2

√
2

(D + 1) log 2eN
D+1 + log 2

ρ

N

 ≥ 1− ρ (5.5)

for any function g ∈ G and ρ ∈ (0, 1).

For the given ε select large enough N such that

ε ≥ 2
√

2((D + 1) log(2eN/D + 1) + log(2/ρ))/N.
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or

2/ρ ≤ exp
{

(Nε2)/8− (D + 1) log(2eN/(D + 1))
}
. (5.6)

It follows from Theorem 4

P (R(g)−RN(g) ≥ ε) ≤ ρ. (5.7)

In our setting, the classifier g is restricted to a Q-dimensional feature subspace of the

D-dimensional feature space. Thus, the bound in (5.6) holds by replacing D with Q

in the right hand side and the bound in 5.7 holds for any such Q-dimensional subspace

selected by the `1-penalized optimization. Since there are
(
D
Q

)
possible choices for the

subspace, using the union bound and the inequality
(
D
Q

)
≤ ( eD

Q
)Q = exp(Q log eD

Q
),

we obtain:

P (R(g)−RN(g) ≥ ε) ≤ ρ exp

{
Q log

eD

Q

}
(5.8)

For the given δ ∈ (0, 1) in the statement of Theorem 3, select small enough ρ such

that

δ ≥ ρ exp

{
Q log

eD

Q

}
or equivalently

1

δ
≥ 1

ρ
exp

{
−Q log

eD

Q

}
Using 5.6 (with Q replacing D), we obtain

log
2

δ
≤ Nε2

8
− (Q+ 1)log

2eN

Q+ 1
−Qlog

eD

Q

which implies that N must be large enough to satisfy

N ≥
8

ε2

(
(Q+ 1)log

2eN

Q+ 1
+Qlog

eD

Q
+ log

2

δ

)

This establishes P (R(g)−RN(g) ≥ ε) ≤ ρ, which is equivalent to Theorem 3 and

concludes the proof.

Theorem 5. The ACC algorithm converges for any set C.

Proof. At each alternating cycle, for each cluster l we train a SLSVM with positive

samples of that cluster combined with all negative samples. This produces an optimal
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value Ol and the corresponding classifier (βl, βl0). Specifically, the formulation is:

Ol = min
βl,βl

0,

ζlj ,ξ
l
i

1

2
||βl||2 + λ+

N+
l∑

i=1

ξli + λ−
N−∑
j=1

ζ lj (5.9)

s.t. ξli ≥ 1− y+i βl0 −
∑D

d=1 y
+
i β

l
dx

+
i,d, ∀i;

ζ lj ≥ 1− y−j βl0 −
∑D

d=1 y
−
j β

l
dx
−
j,d, ∀j;∑D

d=1 |βld| ≤ T l; ξli, ζ
l
j ≥ 0, ∀i, j.

We use the sum of the optimal objective function values in (5.9) across different

clusters to prove the convergence. We have

Z =
L∑
l=1

Ol =
L∑
l=1

(
1

2
||βl||2 + λ−

N−∑
j=1

ζ lj

)
+ λ+

N+∑
i=1

ξ
l(i)
i ,

where l(i) maps sample i to cluster l(i),
∑L

l=1N
+
l = N+, and βl, βl0, ζ

l
j, and ξ

l(i)
i are

optimal solutions of (5.9) for each l. Now, let us consider the change of Z at each

iteration of the ACC procedure.

First, we consider the re-clustering step given SLSVMs. During the re-clustering

step, the classifier and slack variables for negative samples are not modified. Only

the ξ
l(i)
i get modified since the assignment functions l(i) change. When we switch

positive sample i from cluster l(i) to l∗(i), we can simply assign value ξ
l(i)
i to ξ

l∗(i)
i .

Therefore, the value of Z does not change during the re-clustering phase and takes

the form

Z =

L∑
l=1

(
1

2
||βl||2 + λ+

∑
{i:l∗(i)=l}

ξli + λ−
N−∑
j=1

ζ lj

)
.

Next, given new cluster assignments we re-train the local classifiers by resolving

problem (5.9) for each cluster l. Notice that re-clustering was done subject to the

constraint in Eq. (5.3) (see Alg. 3). Since y+i = 1, we have

ξ
l(i)
i ≥ 1− βl(i)0 −

D∑
d=1

β
l(i)
d x+i,d ≥ 1− βl

∗(i)
0 −

D∑
d=1

β
l∗(i)
d x+i,d.

The first inequality is due to ξ
l(i)
i being feasible for (5.9). The second inequality is

due to y+i = 1 and Eq. (5.3) in Alg. 3. Thus, by assigning ξ
l(i)
i to ξ

l∗(i)
i it follows
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that the ξ
l∗(i)
i remain feasible for problem (5.9). Given that the remaining decision

variables do not change, (βl, βl0, ζ
l
j, ξ

l∗(i)
i , ∀i = 1, . . . , N+

l , ∀j = 1, . . . , N−) forms a

feasible solution of problem (5.9). This solution has a cost equal to Ol. Re-optimizing

can produce an optimal value that is no worse. It follows that in every iteration of

ACC, Z is monotonically non-increasing. Given that Z is bounded below by zero, we

establish the convergence of ACC.

As a remark on convergence, it is worth mentioning that the values λ+ and λ−

should be fixed across all clusters to guarantee convergence.

Let H denote the family of clustering/classification functions produced by ACC.

Theorem 6. The VC-dimension of H is bounded by

VACC , (L+ 1)L(D + 1) log

(
e

(L+ 1)L

2

)
. (5.10)

Proof. The proof is based on Lemma 2 of [Sontag, 1998]. Given the L functions

for clustering, named g1, g2, . . . , gL, the final cluster of a sample is determined by

the maximum of g1 to gL. This clustering process could be viewed as the output of

(L−1)L/2 comparisons between pairs of gi and gj, where 1 ≤ i < j ≤ L. The pairwise

comparison could be further transformed into a boolean function (i.e., sign(gi − gj)).
Then together with the L classifiers for each cluster, we have a total of (L + 1)L/2

boolean functions to make the final classification. Among all these boolean functions,

the maximum VC-dimension is D + 1.

From Theorem 6, we draw the observation that the VC-dimension of ACC grows

linearly with the dimension of data samples and polynomially (between quadratic

and cubic) with the number of clusters. Since the local classifier is trained under

an `1 constraint, it is defined in a lower dimensional subspace. At the same time,

the clustering function also lies in a lower dimensional space C. Thus, the bound in

Theorem 6 could be tighter in practice.

An immediate consequence of Theorem 6 is the following corollary which estab-

lishes out-of-sample generalization guarantees for ACC-based classification and is

based on a result in [Bousquet et al., 2004].
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Corollary 1. For any ρ ∈ (0, 1), with probability at least 1− ρ it holds:

R ≤ RN + 2

√
2
VACC log 2eN

VACC
+ log 2

ρ

N

5.4 Experimental Results on the Heart Disease Dataset

For ACC, parameter tuning was done by 3-fold cross-validation with only training

data. Some preliminary experiments led us to set T l = 6. L explicitly varies in

(2, 3, 4, 5, 6) for all methods involving clustering. ACC uses a subset of “diagnostic”

features for clustering to better delineate across various types of heart disease. We

use the Area Under the ROC Curve (AUC) again as the performance criterion. In

Table 5.1, only the best results for CT-LSVM and CT-SLSVM are presented (L = 2).

The last column of Table 5.1 counts the number of times (out of 10 runs) that each

method’s AUC outperforms RBF SVM. It can be seen from the table that ACC

outperforms the alternatives by anywhere between 0.97% and 5.75% in average AUC.

Under L = 3, ACC outperforms RBF SVM in 10 our of 10 repetitions.

Settings avg. AUC std. AUC #

ACC, L = 2 76.83% 0.87% 10
ACC, L = 3 77.06% 1.04% 10
ACC, L = 4 75.14% 0.92% 10
ACC, L = 5 75.14% 1.00% 9
ACC, L = 6 74.32% 0.87% 6
Lin. SVM 72.83% 0.51% 3
RBF SVM 73.35% 1.07% -

CT-LSVM (L = 2) 71.31% 0.76% 0
CT-SLSVM (L = 2) 71.97% 0.73% 1

Table 5.1: Average (avg) and standard deviation (std) of the Prediction
Accuracy (AUC) of various methods on Heart Disease Data.

To interpret the clusters generated by ACC, we plot in Figure 5·2 the mean value

over each cluster of each element in the feature vector xC. The 3 clusters are well-

separated. Cluster 2 contains patients with other forms of chronic ischemic disease
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(mainly coronary atherosclerosis) and old myocardial infarction. Cluster 3 contains

patients with dysrhythmias and heart failure. Cardiologists would agree that these

clusters contain patients with very different types of heart disease. Finally, Cluster 1

contains all other cases with some peaks corresponding to endocardium/pericardium

disease.

Figure 5·2: Average feature values in each cluster (L = 3) for the
heart diseases dataset.

5.5 Experimental Results on the Diabetes Dataset

Figure 2 plots ROC curves for a variety of classification methods and Table III lists

the corresponding AUCs (average and standard deviation of AUC over 10 runs with

different training and test sets). Parameter tuning was done for all methods using

k-fold cross validation. For ACC, the initial assignment of the positive samples to the
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clusters is random. The parameters as used in 5.1 are set as follows. Some preliminary

experiments led us to set the sparsity-controlling parameter T l to 8. The number

of clusters L explicitly takes its values from {2, 3, 4, 5, 6} for all methods involving

clustering, the soft-margin parameter for the negative class λ− takes its values from

{100, 10, 1, 0.1} and the soft-margin parameter for the positive class λ+ is set equal to

Lλ−. For all methods 40% of the data are used for training and the rest for testing.

The training data are normalized to have zero mean and unit standard deviation and

are balanced by down-sampling the negative population. We also compare ACC with

CT-LSVM and CT-SLSVM. Only the best results for CT-LSVM (obtained under

L = 2) and CT-SLSVM (obtained under L = 2) are presented.

Clustering with ACC can use a subset of “diagnostic” features (subset C), since

these are the features that better delineate across different types of diabetes compli-

cations. We base, however, the clustering in these experiments on all features due to

the fact that almost all triplet features are related to “diagnostic” features. In Table

5.2, random forests perform best, perhaps not surprisingly since they produce very

complex classifiers. Still, and most importantly, they lack interpretability, because

of the complexity of the models they produce. ACC performs the best among the

remaining alternative methods, and is able to detect the hidden positive clusters and

identify why a specific patient is labeled as hospitalized. It is interesting that ACC

performs quite well even though the resulting classifiers are relatively sparse and do

not use many features. This also makes them easy to implement. Notice that ACC

utilizes sparse linear SVM as the base classifier. According to Theorem 4, sparsity

(i.e., small D) leads to smaller generalization error. ACC also proved to be efficient

from a computational point of view, since in our implementation, it is faster than

random forests by a factor of 3.

In an attempt to interpret the ACC clusters we plot in Figure 3 the mean value
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Settings avg. AUC std. AUC

ACC, L = 1 (SLSVM) 0.7924 0.0052
ACC, L = 2 0.7855 0.0041
ACC, L = 3 0.7853 0.0041
ACC, L = 4 0.7846 0.0035
ACC, L = 5 0.7836 0.0036
ACC, L = 6 0.7818 0.0050
Lin. SVM 0.7687 0.0048
RBF SVM 0.7796 0.0027

CT-LSVM (L = 2) 0.7563 0.0050
CT-SLSVM (L = 2) 0.7799 0.0049

sparse logistic regression 0.7891 0.0038
random forests 0.8454 0.0026

Table 5.2: Average (avg) and standard deviation (std) of the Prediction
Accuracy (AUC) of various methods on Diabetes Data.

over each cluster of each element in the feature vector, using as diagnostic features

the subset of features which have a correlation larger than 0.01 with the labels in

the training set. This is done for a single repetition of the experiment and L = 3,

yielding interesting clusters and highlighting the interpretative power of ACC. We

observe that Cluster 1 contains diabetes patients with chronic skin ulcers, hyperten-

sion, and an abnormal glucose tolerance test. Cluster 2 contains patients with more

severe complications including cerebrovascular disease, hypertension, and heart dis-

eases. Cluster 3 contains patients with less acute disease, combining diabetes with

hypertension. The feature values of these three clusters clearly separate from the

feature values in the negative class.
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Figure 5·3: Average feature values in each cluster (L = 3) for the
diabetes dataset.
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Chapter 6

Conclusions

6.1 Key Findings

In this thesis, we studied and developed a variety of centralized and distributed meth-

ods for predictive health analytics and we showcased them for the novel, to the best

of our knowledge, problem of predicting heart- and diabetes- related hospitalizations

based on patients Electronic Health Records (EHRs). Below, we summarize our

methods and key findings, in the order they were presented:

• We explored a variety of supervised classification methods, such as Support

Vector Machines with various kernels, AdaBoost using trees as the weak learner,

logistic regression, naive bayes methods etc. We also developed a likelihood ratio

based method, K-LRT, that is able to identify the k most important features

for each patient. Our results show that with a 30% false alarm rate, we can

successfully predict 82% of the patients with heart diseases that are going to be

hospitalized in the following year. We have examined methods that have high

prediction accuracy (Adaboost with trees), as well as methods that can help

doctors identify features to help them when examining patients (K-LRT). One

could choose which one to use depending on the ultimate goal and the desirable

target for detection and false alarm rates. Our methods also produce a set of

significant features of the patients that lead to hospitalization. Most of these

features are well-known precursors of heart problems, a fact which highlights
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the validity of our models and analysis. The methods are general enough and

can easily handle new predictive variables as they become available in EHRs,

to refine and potentially improve the accuracy of our predictions.

• We showed that these accuracy rates surpass what is possible with more em-

pirical but well accepted risk metrics, such as the heart disease risk factor that

emerged out of the Framingham study. Even a more sophisticated use of the

features used in the Framingham risk factor, still leads to results inferior to

our approaches. This suggests that the entirety of a patient’s EHR is useful

in the prediction and this can only be achieved with a systematic algorithmic

approach.

• We developed a decentralized method, the cluster Primal Dual Splitting (cPDS)

method, to solve the problem of `1-regularized Support Vector Machines. We

proved that cPDS has improved o(1/k) convergence rate compared to the al-

ternatives we have considered. Our formulation has the flexibility to address a

range of problems from fully-centralized to fully-decentralized. Information pro-

cessing can happen either at the level of the patient e.g., in their smartphones

or at the level of the hospitals that process data of their own patients. cPDS

is a general framework and can be applied to any problem that has the struc-

ture of minimizing two nonsmooth terms. For the heart-related hospitalization

prediction problem, cPDS achieves AUC as high as 77%.

• We introduced a statistical procedure to identify the diabetes-related admissions

and we experimented with a number of machine learning methods that predict

hospitalizations in a target year for diabetic patients. With a 20% false alarm

rate, we can correctly predict almost 75% of the hospitalized patients.

• We developed a novel clustering and classification framework (ACC) that jointly
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discriminates between hospitalized and non-hospitalized patients and discovers

clusters of patients with key factors, different in each cluster, that lead to hos-

pitalization. The identification of the clusters has the significant advantage of

interpretability, which is crucial in the medical domain. We proved convergence

of the new algorithm and established theoretical generalization guarantees.

• If coupled with case management and preventive interventions, our methods

have the potential to prevent a significant number of hospitalizations by identi-

fying patients at greatest risk and enhancing their outpatient care before they

are hospitalized.

6.2 A Cost-Benefit Analysis

We next assess the potential financial benefits of implementing a predictive model,

such as the ones we have presented in this thesis. As an illustrative example, let us

consider the Alternating Clustering and Classification scheme for predicting diabetes-

related hospitalizations and focus on year 2012; our dataset has NH = 916 hospital-

ized and NNH = 27, 025 non-hospitalized patients that year. According to [Clancy

et al., 2011], the average cost per hospitalization due to diabetes with complications

is $9,500. Thus, assuming no spending on the non-hospitalized patients and a single

hospitalization for the hospitalized, the expected cost per patient if no prevention

measures are implemented is:

9500NH

NH +NNH

= $311.

Suppose now we elect to utilize the predictive model and operate at a point on the

ROC curve corresponding to a roughly PD = 75% detection rate and a PFA = 20%

false alarm rate (see Figure 2). We bring each patient predicted to be hospitalized to
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the clinic, at a cost of $220 for a visit according to [Clancy et al., 2011], and prescribe

an 1-year-supply of drugs at an average cost of $100. Thus, the cost of preventive

measures is $320 per patient. Notice that this overestimates the cost because for some

patients predicted to be hospitalized, the physician may decide that additional drugs

are not needed. For patients the predictive model misses, there is no action and they

would receive their normal care. Let PS the probability that prevention is effective

and averts the hospitalization. It follows that the cost per patient becomes:

9500NH(1− PD) + 320NNHPFA+ 320NHPDPS + (9500 + 320)NHPD(1− PS)

NH +NNH

.

A simple calculation implies that the above quantity is less than $311 for PS > 0.3.

Taking PS = 0.5 leads to an expected cost per patient equal to $264, resulting in

savings of $47 per patient. If such a model was used for each patient with diabetes in

the U.S. during 2002 (29.1 million), the overall savings amount to $1.3 billion for the

year! This is about 22% of the overall amount spent on preventable diabetes-related

hospitalizations each year.

6.3 Future Directions

An immediate possible extension of the cPDS framework could be the analysis of

cPDS when the graph that connects the agents is time-varying. Another possible

direction is based on the observation that IncrSub is very fast. IncrSub however

can only be a decentralized method, when the network follows a ring structure. We

would like to consider the possibility of combining cPDS and IncrSub with the goal

of generating a distributed method that is as general as cPDS and as fast as IncrSub.

Another interesting extension of this work is to move from predictive analytics,

which addresses the question of what is likely to happen, to prescriptive analytics,

which also specifies the actions that are necessary to be taken in order achieve the
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predicted outcomes.
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