Boston University

OpenBU	http://open.bu.edu
OPCIIDO	iittpi//opciiibaicat

BU Open Access Articles

BU Open Access Articles

1996-12-19

Characterizing reference locality in the WWW

This work was made openly accessible by BU Faculty. Please share how this access benefits you. Your story matters.

Version	
Citation (published version):	A Bestavros. 1996. "Characterizing Reference Locality in the WWW."

https://hdl.handle.net/2144/26104

Boston University

Characterizing Reference Locality in the WWW

Azer Bestavros & Mark Crovella
Computer Science Department
BOSTON UNIVERSITY

Virgilio Almeida & Adriana de Oliveira Computer Science Department UNIVERSIDADE FEDERAL DE MINAS GERAIS

Thursday December 19^{th} 1996

Talk Outline

- Introduction, Motivation, and Applications
- Experimental Environment and Data Collection
- Characterizing Web Document Popularity
- Characterizing Web Reference Locality
 - Temporal Locality: Evidence and Model
 - Spatial Locality: Evidence and Model
- Synthetic Web Reference Trace Generation
- Related Work
- Current and Future Work

Introduction

- The characteristics of Web access patterns fall into two categories:
 - Static (e.g. popularity profiles)
 - Dynamic (e.g. reference locality)
- Characterizing Web access patterns is crucial for performance tuning and evaluation.
 - Client/server caching and prefetching protocols
 - Scheduling and load balancing protocols
 - Networking issues

Evaluating A Workload Model

• A workload model W is a perfect representation of the real workload R if the performance metrics ρ obtained using W and R in the same system are indistiguishable.

Data Collection

Log	NCSA	SDSC	EPA	\mathbf{BU}
Duration	1 day	1 day	1 day	2 weeks
Start Date	Dec 19	Aug 22	Aug 29	Oct 08
Total requests	46,955	28,338	47,748	80,518
Unique requests	4,851	1,267	6,518	4,471

Summary of Access Log Data

ClientIP : TimeStamp : RequestURL : Size

Data in a Typical Log Record

Characterizing Document Popularity

Zipf's Law Applied to Web Documents

Characterizing Document Popularity

Zipf's Law Applied to Sequences

Measuring Locality of Reference

LRU Stack Distance Model

Measuring Locality of Reference

- For any string of requests R = r1.r2.r3... we can compute a corresponding string of stack distances D = d1.d2.d3...
- The request and distance strings are equivalent in terms of the locality of reference information they capture.
- ullet The average stack distance of D is a measure of the number of intervening requests to unique objects between recurring requests.

Evidence of Temporal Locality

- Consider a scrambled request string R' that corresponds to a random permutation of R.
- R and R' have the same Zipf popularity profile since they are permutations of each other.
- The difference in stack distance distribution for R and R' would be a measure of temporal locality.

BU Trace	Original	Scrambled
Mean Stack Distance	479.798	645.586
Standard Deviation	941.430	968.840

Characterizing Temporal Locality

• If F_D is the distribution of the stack distance D, then the miss rate M(C) of a cache that can hold C files is

$$M(C) = P[D > C] = 1 - F_D(C)$$

Knowledge of F_D provides enough information to predict the performance of a cache of any size for the given trace.

• Our analysis shows that F_D has a long tail, yet it does not seem to follow a power-law (e.g. Pareto).

Characterizing Temporal Locality

• Lognormal distributions with parameters μ and σ seem to provide the best fit for the distributions of the stack distance in the traces we considered.

	BU	NCSA	SDSC	EPA
$\hat{\mu}$	1.829	1.730	1.568	2.150
$\hat{\sigma}$	0.947	0.836	0.827	0.921

Lognormal Distribution Parameters

Characterizing Temporal Locality

Stack Distance Distributions (BU, NCSA, SDSC, EPA)

Lognormal Distributions and Fit (BU, NCSA, SDSC, EPA)

Temporal Locality Modeling Accuracy

Actual and Predicted Miss Rates (BU, NCSA, SDSC, EPA)

Comparative Predicted Miss Rates (BU, NCSA, SDSC, EPA)

Evidence of Spatial Locality

Unique sequences observed in the BU trace

◆ Stack distance series are bursty at all timescales
→ They exhibit self-similar characteristics.

Stack Distance Scaling Behavior of Original (left) and Scrambled (right) BU Traces

- Stack distance self-similarity is evidence of very long-range correlations, which correspond to long periods of very large stack distances—caused by phase changes in referencing behavior.
- The degree of self-similarity is captured by the Hurst parameter H, which takes values between 0.5 and 1.0. As $H \rightarrow 1$, the burstiness becomes more pronounced at high levels of aggregation.
- We use four methods to estimate the H parameter for our datasets: the variance-time plot, the R/S plot, the periodogram, and the Whittle estimator, which provides confidence intervals as well.

Graphical Estimators of H for BU Trace

	V-T	R/S	Per.	Wtl.	(95% conf.)
BU	.82	.78	.87	.85	(0.84, 0.87)
NCSA	.71	.74	.74	.74	(0.73, 0.77)
SDSC	.71	.68	.69	.68	(0.66, 0.71)
EPA	.64	.66	.66	.65	(0.64, 0.67)

Estimates of H for Original Traces

	Original Trace				Scrambled Trace			
	V-T	R/S	Per.	Wtl.	V-T	R/S	Per.	Wtl.
BU	.82	.78	.87	.85	.50	.55	.50	.50
NCSA	.71	.74	.74	.74	.50	.51	.51	.49
SDSC	.71	.68	.69	.68	.52	.54	.50	.50
EPA	.64	.66	.66	.65	.51	.55	.47	.50

H for Original vs Scrambled Traces

Synthetic Web Reference Trace Generation

Step 1:

Select parameters μ and σ reflecting temporal locality, and H reflecting spatial locality—based on empirical measurement of traces to be imitated, or based on our results.

Step 2:

Generate a stack distance trace with marginal distribution determined by μ and σ and long-range dependence determined by H using the two-phase approach described in [Huang et~al: 1995].

Step 3:

Invert the stack distance trace to form a sequence of file names.

Related Work

Traditional Memory Systems

- Fundamentals of reference locality in hierarchical memories [Denning and Schwartz: 1972].
- Stack distance analysis and algorithms [Mattson et al: 1970].
- Establish the existence of long-range dependence in reference strings [Spirn: 1976].
- Relate the fractal dimension of cache misses to software complexity [Voldman et al: 1983].
- Model memory access pattern as a random walk with fractal dimension [Thiebaut: 1989].

Related Work

Large-scale Information Systems

- Caching and replication for distributed file systems [Howard et al: 1988].
- Model Web access using Zipf-based popularity profiles [Glassman: 1994].
- Model Web access using frequency and recency rates of past accesses [Recker and Pitkow: 1994].
- Characteristics of client access patterns [Cunha, Bestavros, and Crovella: 1995].
- Used Markov processes to model access interdependencies [Cunha and Bestavros: 1995, 1996].

Current and Future Work

- Incorporate file size information in the access pattern characterization.
- Study the effect of increased multiprogramming levels on access pattern characteristics.
- Study the implication on caching and prefetching algorithms at clients and servers.
- Use measured characteristics to design benchmarks for evaluating client and server software.