BU Open Access Articles

BU Open Access Articles

2017-06-01

Sharing knowledge without sharing data: on the false choice between the privacy and utility...

This work was made openly accessible by BU Faculty. Please share how this access benefits you. Your story matters.

Version	
Citation (published version):	A Bestavros. 2017. "Sharing Knowledge without Sharing Data: On the
	false choice between the privacy and utility of information."

https://hdl.handle.net/2144/25981

Boston University

Sharing Knowledge without Sharing Data

On the false choice between the privacy and utility of information

Azer Bestavros

Computer Science Department Hariri Institute for Computing Boston University

June 1, 2017

Some Historical Perspective

Past: Computers at center of universe

- Computing is centralized & expensive
- There is a dearth of non-synthetic data
- Moving "small data" is cheap
- · Best practice: Share data

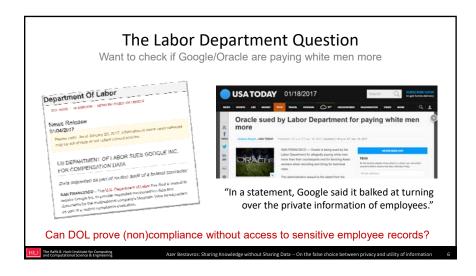
Today: Data at the center of universe

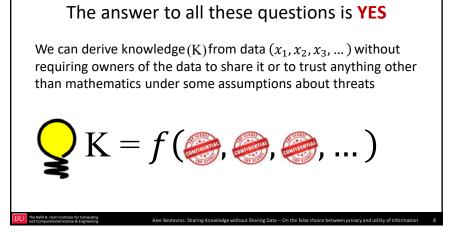
- · There is a deluge of highly-valued data
- Moving "big data" is expensive
- Code is free and computing is cheap
- · Question: Why share (private) data?

Azer's Commandment: "Thou shalt not give up/copy/move data, instead move code"

The Rafik B. Hariri Institute for Computing and Computational Science & Engineering Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information


The Valentine Question Want to know if both parties are interested in each other but, do not want to reveal unrequited love... She loves me; she loves me not Feeld — Dating for couples and singles. By Feeld Ltd Open (Tunes 1) Feeld ## 1 And this is how it in I want for the population of the

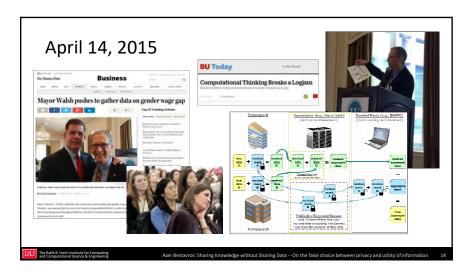


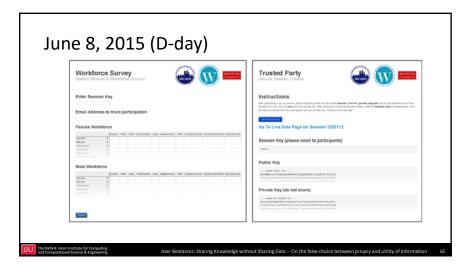

Can we reveal the answer without revealing the inputs – not even to an app?

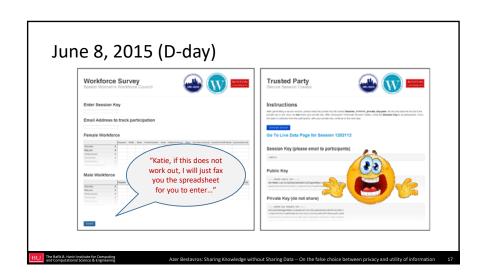
The Rafik B. Hariri Institute for Computing and Computational Science & Engineering Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

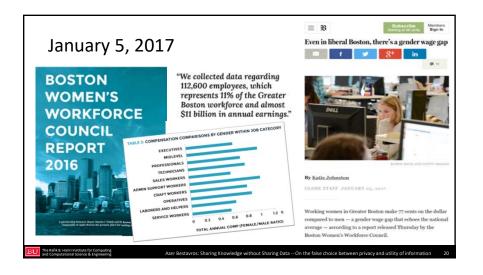
Azer in the land of social science with mayors, lawyers, CTOs, CIOs, administrators, politicians, journalists, and lawmakers...

A True Story



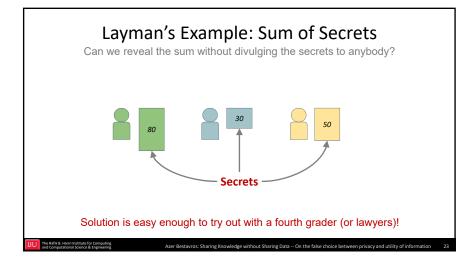


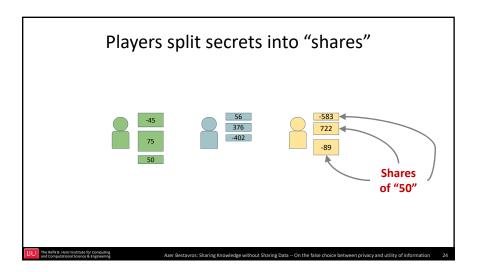


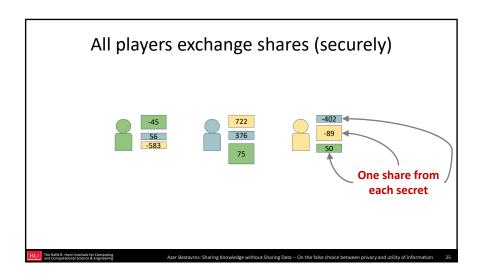


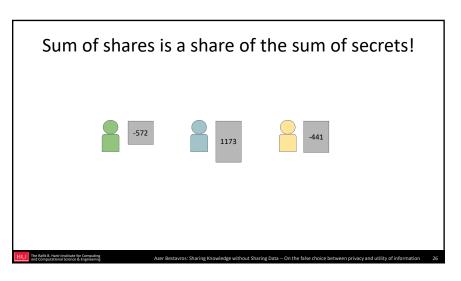
Multi-Party Computation (MPC)

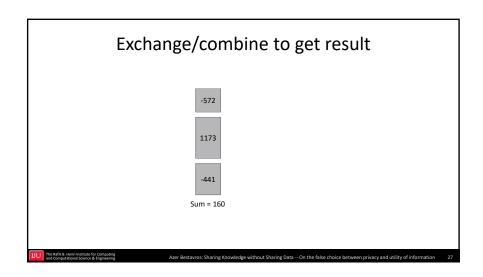
What is it?

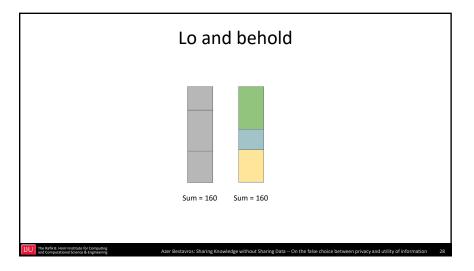

- Given multiple parties p_1 , p_2 , ..., p_n each with private data x_1 , x_2 , ..., x_n
- Parties engage in computing a function $f(x_1, x_2, ..., x_n)$
- Nothing is revealing about the inputs beyond what the output of f reveals
- Reasoning about what f leaks is the realm of "differential privacy"

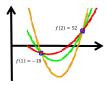

State of the Art


- Theory known since 1979, with Shamir's "How to share a secret"
- Frameworks and libraries increasingly available over the last few years ...
- Experience with use cases involving real applications is limited and deployments are not easily portable


BU The Rafik B. Hariri Institute for Computing and Computational Science & Engineering


Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information





Shamir Secret Sharing (1979): The Basic Math

\rightarrow Need k+1 points to define polynomial of degree k

- To share a "secret" among k parties, make it the free coefficient of a polynomial f(x) of degree k
- Select coefficients $a_1, a_2, ..., a_k$ of f(x) at random
- Give party P_i a "share" of the secret namely, f(i)
- To reconstruct the "secret" all three parties need to combine their shares to find the secret namely f(0)

$$f(x) = 32 - 110x + 60x^2$$

Notes

- Need to use finite field arithmetic to provably avoid any leakage
- Approach allows secret sharing among any number of parties; any subset k can uncover the secret

BU The Rafik B. Hariri Institute for Computi

Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

→ Addition is easy!

→ Multiplication is not that easy...

Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

Multiparty Computing on Secret Shares

Any arbitrary function is a circuit of additions & multiplications

– To compute f(x), each party adds its shares of $f_1(x)$ and $f_2(x)$

- Using one round of k messages, sum of secrets can be revealed

- Multiplication of secrets is represented by $f(x) = f_1(x) * f_2(x)$

- Requires O(k) rounds of communications - could be very expensive!

– Sum of secrets is represented by $f(x) = f_1(x) + f_2(x)$

Another Flavor: Yao Garbled Circuits (1986)

- Motivated by Yao's Millionaires Problem (who is wealthier)
- Enables two mistrusting parties to jointly evaluate a function over private inputs using "oblivious transfer" (OT) primitive
 - $-P_1$ replaces inputs of a truth table (gate in circuit) with random labels
 - P₁ encrypts truth table outputs using corresponding input labels
 - $-P_1$ permutes the table and sends the encrypted "garbeled" table to P_2
 - $-P_1$ sends the labels corresponding to its private input to P_2
 - P_1 also sends the labels corresponding to P_2 's inputs to P_2 using OT
 - P₂ uses labels corresponding to private inputs to compute output label
 - $-P_2$ communicates output label to P_1 who decrypts it and reveals result

Rational adversary: Cheats as long as ex

Covert adversary:

- Cheats as long as expected payout is larger than expected penalty if caught

Modeling threats and adversaries

Crypto MPC researchers consider four types of adversaries

- Follows rules but may attempt to glean information along the way

Malicious adversary:

Semi-honest adversary:

- Cheats only if unlikely to be caught

- Performs any action needed to breach system integrity

BU The Rafik B. Hariri Institute for Computing and Computational Science & Engineering Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

- 1

Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of in

ring

31

The Parties in our MPC Setting

Contributors (100% Talent Companies)

- Have private data needed for computing the analytic
- Number of contributors is unknown in advance

Broker + Analyzer (BWWC)

- Ultimate recipient of the output of the analytic
- May also participate in computing the analytic

Service Provider + Code Distributor (BU)

- Connects/coordinate largely decoupled parties
- Has capacity to (partially) compute the analytic

BU The Rafik B. Hariri Institute for Computing and Computational Science & Engineering

Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

Threat Modeling & Trust Assumptions

Contributors & analyzers place some trust in each other

- Analyzers trust that contributors will submit valid data
- Contributors trust that analyzers will protect aggregate output
- Contributors trust that analyzers will not collude with others

... but place no trust in service provider

Adversarial models are too simplistic

All parties are not created equal

- Service provider cannot be entrusted with data or with the results
- Assume that service provider is incentivized to perform the computation on behalf of the contributors and analyzers

Commentary on State of Art

Need to match crypto threat models with economic, reputation, and legal incentives
 Design of privacy-preserving platforms should take advantage of more realistic models

- Parties may have significantly different backend systems and technical sophistication

- Parties interested in output of MPC may not be the owner of the private data

→ Need to design solutions that match stakeholders & roles

- Plausible deniability (e.g., participation in MPC) goes beyond keeping data private

- Need to account for the weakest link - the human in the loop!

- Privacy concerns are not uniform across all parties

BU The Rafik B. Hariri Institute for Computing and Computational Science & Engineering

Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

Multi Party Computation: State of the Art

Very active R&D to make MPC accessible to programmers:

Frameworks

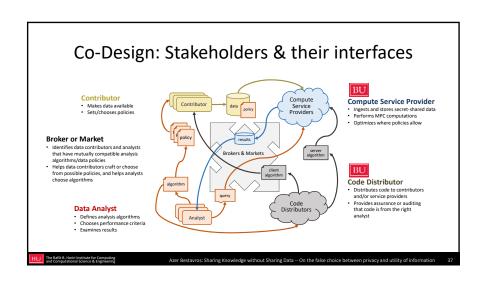
- ABY 2PC with secret sharing and GC; semi-honest adversaries
- <u>batchDualEx</u> 2PC with GC; malicious adversaries
- <u>Duplo</u> 2PC GC; malicious adversaries
- Obliv-C 2PC with gGC; semi-honest adversaries
- <u>Sharemind</u> 2PC or 3PC with secret sharing; semi-honest adversaries
 <u>SplitCommit</u> Additively homomorphic commitment scheme
- <u>SPDZ</u> General MPC with secret sharing; malicious adversaries
- <u>TinyLEGO</u> 2PC with GC; malicious adversaries
- <u>Viff</u> General MPC with secret sharing; semi-honest adversaries

Tools

- <u>CBMC-GC</u> Creates Boolean circuits (GC) from ANSI-C code
- <u>UC Compiler</u> Valiant's Universal Circuit Compiler

Primitive

- APRICOT OT Extension secure against malicious adversaries
- <u>libOTe</u> Library with various OT Extensions.
- OT Extension OT Extension secure against malicious adversaries
- <u>SCAPI</u> Various secure computation API's
- TSS Pure-Rust implementation of threshold secret sharing schemes


Protocols

- Bark-OPRF Private Set Intersection
- Linreg Privacy preserving linear regression
- ORAM (Obliv-C) Oblivous RAM
- PSI Private Set Intersection

BU The Rafik B. Hariri Institute for Computing and Computational Science & Engineering

Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

MPC Primitives for Private Network Analytics

Research Projects @ Boston University

Develop new MPC primitives, toolkits, and optimizations

Efficient shortest-path algorithms operating over private subgraphs

Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of info

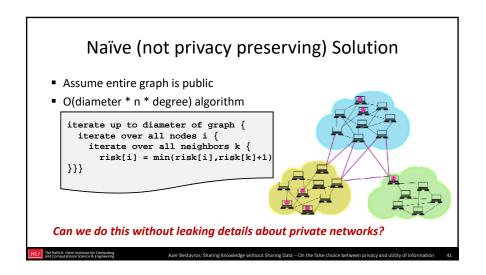
- Efficient analytics/personalization over private geo-temporal data
- PL and compiler frameworks to expose privacy-utility tradeoffs

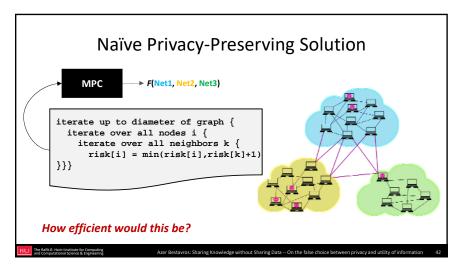
Develop MPC "as a service" solutions in various settings

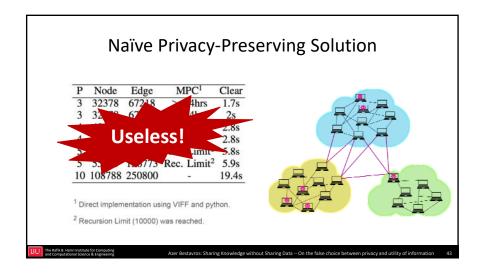
- Web/browser-based MPC as a service platform
- Spark-based MPC platform for Map-Reduce analytics
- Incorporate MPC in big-data cloud workflow management

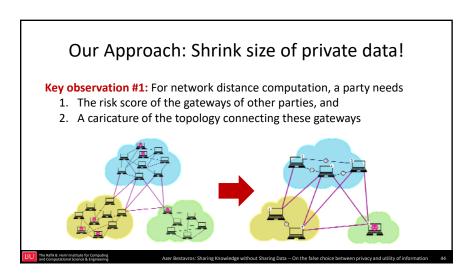
→ Need to computer risk score

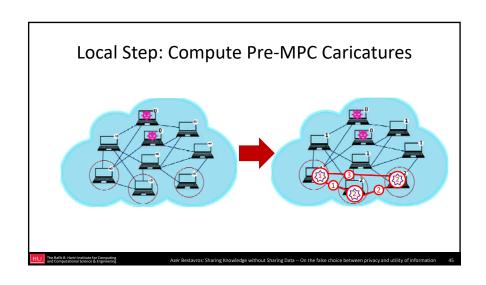
• Private (social/computer) networks connected through public gateways

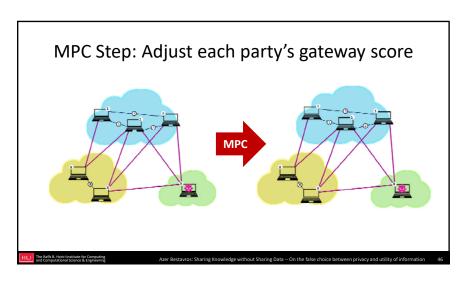

Motivating Scenario: Contagion Risk

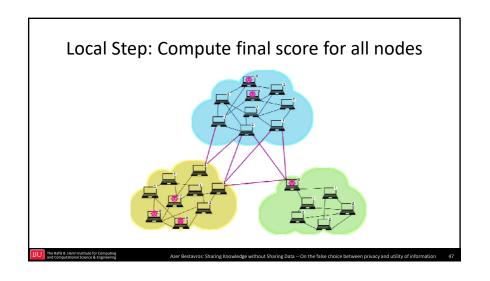

• Some nodes are unsafe, e.g.,

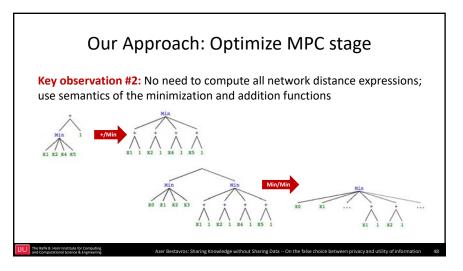

· Risk score is shortest distance


potentially compromised


to an unsafe node







Our Approach: Implementation & Evaluation

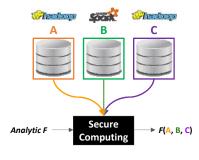
- Implementation: in Python using VIFF; design allows for other MPC backends
- Code Base: https://github.com/hicsail/ExpressionMPC
- Experiments: on peering information from Stanford large network data collection
- · Results:

P	Node	Edge	Gateway	Pub. Edg.	Our Method	MPC^1	Clear
3	32378	67218	34	86	0.72min	> 24hrs	1.7s
3	32378	67218	220	579	62min	> 24hrs	2s
4	43510	89783	43	105	2.75min	> 24hrs	2.8s
4	43510	89783	301	850	72min	> 24hrs	2.8s
5	55093	156773	45	105	2min	Rec. Limit2	5.8s
5	55093	156773	393	981	154min	Rec. Limit2	5.9s
10	108788	250800	44	124	3min	-	19.4s

Research Projects @ Boston University

Develop new MPC primitives, toolkits, and optimizations

- Efficient shortest-path algorithms operating over private subgraphs
- Efficient analytics/personalization over private geo-temporal data
- PL and compiler frameworks to expose privacy-utility tradeoffs


Develop MPC "as a service" solutions in various settings

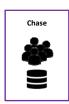
- Web/browser-based MPC as a service platform
- Spark-based MPC platform for Map-Reduce analytics
- Incorporate MPC in big-data cloud workflow management

BU The Rafik B. Hariri Institute for Computing and Computational Science & Engineering

Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

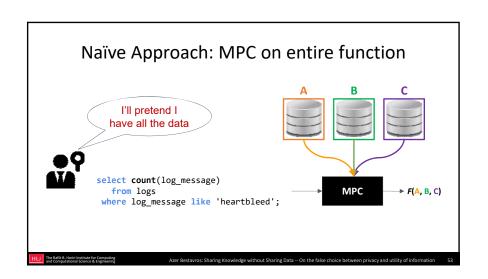
MPC for big-data cloud workflow management

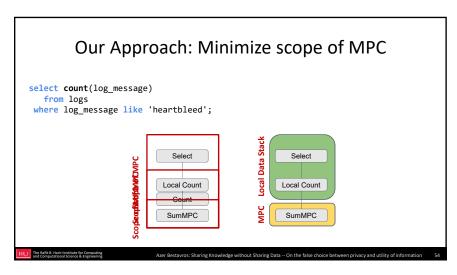
Challenges facing deployments

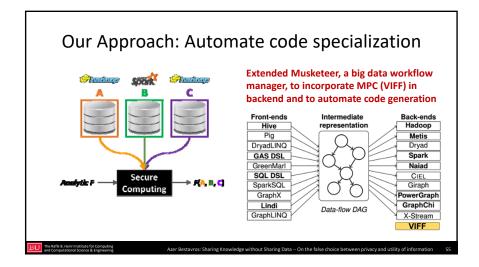

- Resources: MPC can be very slow, resulting in blowup in costs
- Developers: MPC frameworks have steep learning curve
- Info Tech: Each org works with one data stack, won't use another
- Info Sec: Each org works under different data privacy/policy rules

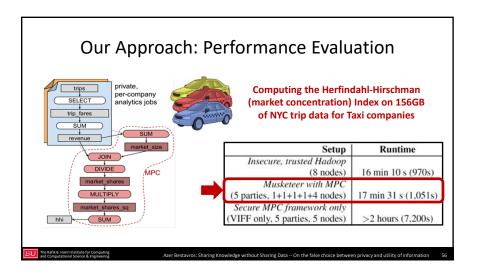
The Rafik B. Hariri Institute for Computing and Computational Science & Engineering

MPC for big-data cloud workflow management

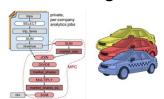



How often does 'heartbleed' appear in the internal chat logs of these companies?




JŁ

12



MPC for big-data cloud workflow management

Our Solution

- · SQL-like DSL Programming
- → No MPC experience necessary
- → Separate InfoTech from InfoSec
- Compiler does MPC transforms
 - → No need for privacy experts
 - → No need for systems experts
- Dispatcher for local deployment
 - → No need for new backend
 - → No cross-platform integration

Herfindahl-Hirschman	Index on	156GB	NYC trip d	lata

Setup	Runtime
Insecure, trusted Hadoop (8 nodes)	16 min 10 s (970s)
Musketeer with MPC (5 parties, 1+1+1+4 nodes)	17 min 31 s (1,051s)
Secure MPC framework only (VIFF only, 5 parties, 5 nodes)	>2 hours (7,200s)

Setup	Runtime
Insecure, trusted Hadoop	11 ca 14ca
(8 nodes)	16 min 10 s (970s)
Musketeer with MPC	
(5 parties, 1+1+1+1+4 nodes)	17 min 31 s (1,051s)
Secure MPC framework only	
(VIFF only, 5 parties, 5 nodes)	>2 hours (7,200s)

MPC as a Service – killer apps...

Systemic Threat Analytics in Federated Settings

- · Banking and Finance
- Data Network Operations

Collective Intelligence in Competitive Settings

- Information Brokerage for Business/Marketing Intelligence
- E-Commerce Analytics over Segmented Proprietary Data Assets

Public Good Analytics

- Anonymous Sensus and Surveys
- · Healthcare, Education, and Academic Research
- · Compliance Testing/Reporting for Trade Associations

More information @ www.multiparty.org @BU_Computing Accessible and Scalable Secure Multi-Party Computation

Take-Home Message: You can have it both ways

We can derive knowledge (K) from data $(x_1, x_2, x_3, ...)$ without requiring owners of the data to share it or to trust anything other than mathematics under some assumptions about threats

$$K = f(\mathfrak{A}, \mathfrak{A}, \mathfrak{A}, \ldots)$$

BU The Rafik B. Hariri Institute for Computin and Computational Science & Engineerin Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

Take-Home Message: Societal Implications

- Privacy/confidentiality concerns should not be used as excuses to deny society the right to answer important questions
- Privacy/confidentiality should not be sacrificed in the name of doing the right thing, or advancing science, or applying the law
- Private data should not be a tradable commodity; computation over private data should be what we offer "for sale"
- Substantial social/financial value can be gained in contexts imposing legal or policy restrictions on sharing raw data

BU The Rafik B. Hariri Institute for Computing and Computational Science & Engineering Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

More Perspective about Computer Science

Past: CS is an inward looking

- · Study computing fundamentals/limits
- · Develop abstractions for programmers
- Make ICT fast, small, cheap, ...
- · Applied CS seen as engineering

Today: CS is outward looking

- · Transforming all academic disciplines
- · Developing abstractions for non-CS
- · Making society/economy efficient
- · Applied CS seen as disrupting society

Azer's Perspective: "Applied CS is pivoting from engineering to social sciences"

BU The Rafik B. Hariri Institute for Computi and Computational Science & Engineeri Azer Bestavros: Sharing Knowledge without Sharing Data -- On the false choice between privacy and utility of information

leveraging the computational perspective

BOSTON UNIVERSITY

Hariri Institute for Computing

"Leveraging the Computational Perspective in a Data-Driven World for a Better Society"

Website: www.bu.edu/HIC

Twitter: @BU_Computing

Facebook: BUcomputing