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Cryptosporidium parvum and Toxoplasma gondii are obligate intracellular 

parasites transmitted by ingestion of resilient walled structures called oocysts. Infection is 

self-limiting in adults with normal immune systems. However, severe disease can occur 

in immunocompromised individuals, or those without cellular immunity. 

Cryptosporidium is a leading cause of infant mortality in developing countries, due to 

diarrhea. There are no human vaccines and no broad effective drug treatments. Several 

vaccine candidates have been described: the glycoproteins Gp900, Gp40, and Gp15 and 

the protein Cp23, the immuno-dominant-antigen. Details about modifications to these 

proteins have not previously been reported. Using mass spectrometry, we identified 16 

Cryptosporidium N-glycosylated proteins, including Gp900 and a possible oocyst wall 

protein. The observed N-glycan structures exhibited only two compositions: 

HexNAc2Hex5 and HexNAc2Hex6; these glycoforms had a single extended arm. The 

simplicity of Cryptosporidium N-glycans contrasts with the complexity of host N-

glycans. Four heavily O-glycosylated proteins included Gp900, Gp40, Gp15, and a novel 

mucin-like protein, Gp20. Single O-HexNAc residues modified Ser/Thr in low density 
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regions of Gp15 and Gp900, while attachment of O-HexNAc residues on tandem Ser/Thr 

repeats of Gp20 and Gp40 approached saturation. Identification of N-acetylgalactosamine 

(GalNAc) as the HexNAc released from proteins suggests that most Cryptosporidium O-

glycans resemble the immunogenic Tn antigen (O-GalNAc). The immunodominant 

antigen Cp23, while not glycosylated, was discovered to be N-myristoylated and S-

palmitoylated on the first and second residues, respectively. This is the first identification 

in Cryptosporidium of these modifications. Information about the N-glycans, O-glycans, 

and lipid modifications may be useful for design of better serodiagnostic reagents and 

more effective vaccines. To date, there are no vaccines against Toxoplasma infection, and 

the only available pharmaceutical therapies are expensive. In the second study, a novel 

O-fucose modification was discovered on nuclear pore-associated proteins including 

nucleoporins. This observation has profound implications on how the organism may 

regulate trafficking in/out of the nucleus by employing a system parallel to that described 

for O- linked N-acetylglucosamine in other organisms. In summary, the new details 

regarding the vaccine candidates of Cryptosporidium and the discovery of the novel O-

fucose modifications in T. gondii provide information that could prove useful for 

development of effective drugs and vaccines.  
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Chapter 1. Introduction.  

Parasitology 

Cryptosporidium parvum 

Cryptosporidium spp. are eukaryotic parasites belonging to the phylum 

Apicomplexa. Cryptosporidium can infect a wide range of warm blooded animal hosts 

including humans. Cryptosporidium parvum and Cryptosporidium hominis are typically 

spread via the fecal-oral route and infection inflicts prolonged watery diarrhea. Both C. 

parvum and C. hominis cause cryptosporidiosis in humans, however, transmission of C. 

hominis occurs only human-to-human, unlike C. parvum that is transmissible between 

humans and animals (1).  

Infection with Cryptosporidium 

Infections are commonplace amongst those that live in close proximity to farm 

animals, in particular ruminants, which are the major source of sporadic outbreaks (2). 

Other farm animals that carry Cryptosporidium are pigs, poultry, and rabbits; however, it 

is not known what role these animals play in the transmission to humans (3). Zoonotic 

transmission occurs frequently when agricultural run-off contaminates drinking water 

supplies, or when people come into contact with infected animals (4, 5). Human-to-

human infection can happen through contaminated drinking water or from contaminated 

recreational water (6, 7).The infectious stage of Cryptosporidium sp. is the oocyst, a 

small thick-walled shell approximately 5 μm in diameter, which is impervious to most 

disinfectants (see Fig.1)(8).   
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Fig. 1 Cryptosporidium Life Cycle 

This image is in the public domain and thus free of any copyright restrictions. Content provider: CDC/Alexander J. da 
Silva, PhD/Melanie Moser. http://www.dpd.cdc.gov/dpdx/HTML/Cryptosporidiosis.htm 

Inside the oocyst are four sporozoites (length ~1.3 μm,  width 0.5 μm) and, after 

ingestion, while in the small intestine, the individual parasites excyst from the oocyst, 

infecting the epithelium (9). The oocysts are extremely infectious and, depending upon 

the strain, the ID50 is approximately 10-100 oocysts, a value determined from 

experimentally infecting healthy human volunteers, as well as from data extrapolated 

from widespread infections (10-13). There is reason to believe that transmission may also 

occur from inhalation, as it has been shown to occur in both immune-competent and 

immune-incompetent individuals (14). Furthermore, respiratory cryptosporidiosis is well 

established in poultry, being the primary manifestation in these animals (15). This 

suggests that inhalation may be another main entry point for infection, in places where 

dusty environments or water mist from fountains could potentially carry the small 
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oocysts. In addition, it has been found that Cryptosporidium sp. are capable of infecting 

the conjunctiva of immunodeficient monkeys and the conjunctiva of pigs, indicating that 

any exposed mucosal epithelia may be an entry point for infection (16, 17).  

Cryptosporidiosis: The Disease. 

For most healthy adults, cryptosporidiosis is a self-limiting disease. However, for 

people who do not have a functional immune system (e.g. AIDS patients, those with 

congenital hypogammaglobulinemia, or organ transplant recipients undergoing 

immunosuppressive therapy), the disease can be life-threatening due to chronic diarrhea 

that leads to severe malnutrition and dehydration (18, 19). Furthermore, Cryptosporidium 

is a severe problem for children under two years old in developing countries, for whom it 

is has been identified as a leading cause of infant mortality due to diarrheal disease (20). 

Disease is not limited to developing countries, as there are numerous reports of 

occasional outbreaks in modernized cities when public drinking water filtration units fail. 

One of the best known cases in the United States took place in 1993 in Milwaukee, WI, 

where an estimated 400,000 households were affected (6). 

Treatment of Cryptosporidiosis 

Treatment of cryptosporidiosis is mostly limited to fluid and nutritional 

replacement until the infection subsides. Nitazoxanide is the only drug treatment 

available; it  has been approved for use against Cryptosporidium in persons ≥ one year 

old (21). Unfortunately, this drug has been found to be totally ineffective for the 

treatment of cryptosporidiosis in otherwise healthy children, children with HIV, and 
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adults with HIV (22-24). The only approach which has been found to prevent infection is 

to treat Cryptosporidium infections in otherwise healthy adults, children with HIV, and 

adults with HIV or AIDS with bovine hyperimmune colostrum (25-29). Most of these 

studies inoculated cows with C. parvum oocyst lysates to induce the hyperimmune 

response, with the subsequent production of anti-cryptosporidial antibodies concentrated 

in the colostrum. Two of the proteins which reacted strongly with the bovine colostrum 

were identified as Gp900 and Cp23 (30, 31). 

Attempts have been made to further characterize the immunogens of 

Cryptosporidium, which confer the protective and therapeutic properties of bovine 

hyperimmune colostrum, but, unfortunately, these have had limited success (30, 32). Two 

proteins in particular, Cp23 (also referred to as rC7), which has been identified as the 

immunodominant antigen and the later as an immunogenic glycoprotein, and Gp15/40 

have been used as recombinant proteins or DNA-based vaccines to induce production of 

protective colostrums in cows (30, 32). These strategies for inoculation present to the 

cow’s immune system an antigen that does not represent the native immunogen and 

therefore could produce sub-optimal results in a real world application. One of the pitfalls 

from inoculation with recombinant proteins is that any protein modifications present on 

the native immunogen would not be present on recombinant proteins. This is also true for 

DNA-based vaccines which utilize the biosynthetic machinery of the cells of the 

inoculated, which may not modify the proteins in the same manner that the parasite does. 

Most of the immunogenic proteins identified in previous studies are glycoproteins (15, 

33-35). In many instances, it has been shown that the glycosylation is part of the 
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immunogenic epitope on the native immunogens (36, 37). Despite the knowledge that 

many of the immunogenic proteins are glycoproteins and that antibodies against these 

immunogens can provide protection against cryptosporidiosis, the glycosylation remains 

uncharacterized. The knowledge of which proteins are modified with glycans, where the 

modification occurs, and what the glycan composition is could be used to help produce 

effective vaccines. The primary goal of the research presented in this dissertation is to 

identify and fully characterize the glycoproteins of C. parvum.  

The Glycoproteins and Vaccine Candidates of C. parvum 

N-Glycosylated Proteins in C. parvum 

One of the first studies of the immune response to C. parvum immunogens was 

performed by Luft et al. in 1987; they found that there are approximately 15 

glycoproteins that are immunogenic and eight of these appear to be N-glycosylated, as 

determined by lectin blots of SDS-PAGE separated proteins. Interestingly, they also 

found that, when treated with mixed glycosidases, the antibody recognition was markedly 

reduced for most of the antigens, and specifically, that PNGase F had a similar reduction 

on antibody recognition of the same eight proteins, suggesting that the carbohydrate 

component of the glycoproteins was important to antigenicity (36). A later study 

confirmed the assertion that the carbohydrates play a critical role in the immune 

response; it was found that two mAbs had broad recognition of several C. parvum 

proteins, and that this recognition was almost completely abolished when the proteins 

were treated with sodium periodate (38). 
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One of the very large relative molecular weight immunodominant proteins, 

Gp900, was later determined to be both O-glycosylated and N-glycosylated (15, 35). 

Gp900 is immunogenic, and antibodies against the protein offer protection against 

infection (15, 31). This was shown in both in an in vitro infection model using 

monoclonal antibodies that recognize Gp900 and blocked C. parvum sporozoite cell 

invasion, as well as antibodies against Gp900 in bovine hyperimmune colostrum, which 

provided some protection against infection in calves (15, 31). Interestingly, after 

treatment with PNGase F, three of the mAbs lost their reactivities with Gp900, 

suggesting again that N-glycosylation plays an important role in the immune response to 

C. parvum immunogens (31).  

O-Glycosylated Proteins in C. parvum 

In C. parvum, several additional glycoproteins have been shown to be important 

to infection and infiltration of the host organism. As already mentioned, Gp900, a large 

mucin-like protein, contains both O-linked and N-linked glycans. It is highly 

immunogenic and is present in both oocysts and on freshly excysted sporozoites. It has 

been observed to be deposited onto the host surface by infiltrating sporozoites (33). If 

cells are incubated with recombinant Gp900, specific recombinant domains of Gp900, or 

mAbs against Gp900, sporozoite infiltration is dramatically reduced, thus demonstrating 

the importance of this protein during host parasite interactions (33). Two other surface 

glycoproteins, Gp40 and Gp15, are located on the surface of the sporozoite, and, similar 

to Gp900, are deposited on the host surface as the sporozoites migrate (39). In a different 

study, a monoclonal antibody, mAb 4E9, also showed strong protection against infection 
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in a similar in vitro invasion assay (15) Interestingly, mAb 4E9, an IgM, recognizes 

several proteins, Gp900, Gp40, and another protein, with Mr around 220-kDa, that is only 

found in the oocysts. When treated with periodate, the reactivies are lost, suggesting that 

the Ab is recognizing a glycan epitope (15). In addition, when a C. parvum lysate is 

incubated with different concentrations of α-galactosidase, the positive bands on a 

Western that uses mAb 4E9 as a probe shift to lower apparent molecular weights and 

eventually disappear for some of the positive proteins (15). These results suggest the 

presence of terminal 1,-3-N-acetyl-galactosamine residues or the presence of Ser/Thr-

linked N-acetyl-galactosamine in the epitope (15).  

One of the other immunodominant antigens, Gp15, is encoded by that same gene 

as Gp40; however, the translated protein is processed by a furin-like protease to create an 

N-terminal portion (Gp40) and a C-terminal portion (Gp15). Gp15 has been found to 

contain a GPI-anchor (40-42). The Gp15 antigen was also found to be one of the 

immunodominant antigens present in bovine hyperimmune colostrum generated from 

oocysts, and freshly excysted sporozoites (43). A monoclonal antibody recognizing 

Gp15, an IgA, referred to as mAb5C3, was shown to reduce the number of shed oocysts 

in experimentally infected mice (37). This demonstration of passive immunity against 

Gp15 and its ability to reduce C. parvum infection suggests that Gp15 would be a good 

vaccine candidate (37). The authors also demonstrated that the antibody appears to 

recognize a glycan epitope on Gp15 (37). When co-incubated with 200 mM N-acetyl-

glucosamine (GlcNAc) or N-acetyl-galactosamine (GalNAc), the binding on a Western 

blot was decreased; this effect was much more pronounced for GlcNAc than for GalNAc 



 

 

8 

(37). In addition, when mAb5C3 was used for immunofluorescent microscopy, Gp15 

appeared to localize to both the oocyst and sporozoite, where it was present as a coat on 

the sporozoites inside the oocyst that was quickly shed after excystation (37).  

It was postulated that Gp15 was likely modified at three sites near the N-terminus, 

since Edman sequencing of tryptic peptides yielded an aberrant result, where certain 

amino acids could not be sequenced properly, and the determined sequence deviated from 

the predicted sequence (ETSEAAATVDLFAFTLDGGKR) by giving 

ET?EAAA?VDLFAF?LDGGKR, where the question marks represent the deviations 

(40). Later, using an array of different synthetic glycopeptides from the N-terminus of 

Gp15 containing different numbers of GalNAc modified residues on the available 

Ser/Thr, it was found that sera from people previously infected with C. parvum had the 

strongest response to the peptide ETS∗EAAAT∗VDLFAFT∗LDGGK (where the 

asterisks indicate modification with GalNAc) (44). Furthermore, there was very little 

response to the unmodified peptide; for those that contained fewer GalNAc 

modifications, the response was markedly decreased (44). 

An additional protein has been described in the literature as a glycoprotein of 

possible interest. A C-type lectin, which contains a mucin-like domain, has been shown 

to be prevalent during infection of cells, with the expression peaking at 48 hours post-

infection (45). The presence of glycosylation was predicted, based upon the presence of a 

mucin-like domain, but the actual modification of the protein was never established (45). 

Another class of proteins that has been shown to be important during the 

transmittable oocyst stage of the parasite is made up of the oocyst wall proteins (OWPS) 



 

 

9 

(35). This set of proteins appears to be involved in the connection between the sporozoite 

and the inner oocyst wall. These proteins are thought to be possibly N-glycosylated or O-

glycosylated (35). The inner portion of the oocyst wall appears to be composed largely of 

these proteins, connected to a rigid bilayer of lipid and an unknown structural component 

(35). The composition and structure of the O- and N-glycans of C. parvum have only 

been partially detailed, via lectin stains and glycosidase treatments. Mass spectrometry 

should provide a means to identify not only the compositions and structures of the 

glycans, but it also should provide a means to identify the proteins that contain a 

particular glycoform. 

Non-Glycosylated Immunogens 

When studying the sera and the immune response in patients known to have had 

cryptosporidiosis, it was discovered that most of the patients had a very strong antibody 

response to an approximately 23-kDa protein, as determined by Western blots of C. 

parvum lysates with patient sera (46). Furthermore, it was shown that IgM levels rose 

during infection; this was followed by a rise in IgG levels that tapered off after 12 

months, suggesting that this protein could possibly be used for vaccination (46).  

Toxoplasma gondii 

Transmission of T. gondii and Toxoplasmosis 

Toxoplasma gondii, like C. parvum, is an apicomplexan parasite that can infect 

most animals through ingestion of oocysts shed in feces of felines (see Fig. 1.2), which 

are the definitive host (47). Unlike C. parvum oocysts that are passed from the host as 
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sporulated and infectious, T. gondii oocysts are passed unsporulated and must sporulate 

outside the host in an oxygen-rich environment and later become infectious (48). T. 

gondii oocysts contaminate the soil where cats defecate, posing a threat to gardeners and 

children that play in this soil. The oocysts can be carried on produce grown in 

contaminated soil and, if they are not washed properly, persons who consume the fresh 

produce can acquire the infection (49). Individuals who change the litter boxes of pet cats 

that have consumed wild animals are also at risk for toxoplasmosis. Another method of 

infection occurs through ingestion of undercooked or raw meat where T. gondii tissue 

cysts reside (see Fig. 1.2). Potentially, any animal or bird can harbor tissue cysts and, 

therefore, care must be taken to thoroughly cook any meat prior to eating. 

Epidemiological studies estimate that people in the United States, ages 6 – 49, are 

approximately 9% sero-positive for T. gondii; in other parts of the world, the positive rate 

could be as high as 50% (49, 50). Most people infected with Toxoplasma may only have 

mild flu-like symptoms for a short period of time, with the parasite going into a dormant 

state, hiding in tissue cysts after the acute stage of infection. However, systemic 

toxoplasmosis can manifest itself in those who lack cell-mediated immunity, such as 

AIDS patients, organ transplant recipients undergoing immunosuppressive therapy, or 

fetuses. If pregnant women becomes infected, or if a latent infection becomes active, T. 

gondii can pass through the placenta to the fetus, and then spontaneous miscarriage or 

birth defects can arise (47).  
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Fig. 1.2 Toxoplasma gondii Infection Routes 

This image is in the public domain and thus free of any copyright restrictions. Content provider: CDC/Alexander J. da 
Silva, PhD/Melanie Moser, 2002. http://www.dpd.cdc.gov/dpdx/HTML/Toxoplasmosis.htm 

N-Glycosylated Proteins of T. gondii 

Very few reports have identified any of the N-glycosylated proteins in T. gondii. 

An early study of T. gondii N-glycans first isolated the Dol-PP-glycans, and used 

MALDI-TOF MS to show that the lipid-linked N-glycan precursor contained mostly 

HexNAc2Hex9 and a small amount of HexNAc2Hex8 (51). Then, global release of N-

glycans utilizing PNGase F, and examination of the MS profiles, in conjunction with 

mannosidase treatments, revealed the presence of several glycoforms with the 

compositions Hex(5-9)HexNAc2 (51). The authors suggested that T. gondii could possibly 

utilize the host cells’ N-glycan precursor; however, this was never proven. The only 

direct evidence and characterization of N-glycosylation in any apicomplexa was a study 
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of the protein Gap50 (52, 53). This protein appears to contain several glycoforms 

consisting of Hex(5-8)HexNAc2, attached to Asn residues on multiple locations within the 

protein. 

Introduction to Protein Glycosylation  

This section provides an introduction into the biochemical pathways utilized for 

protein glycosylation. Described herein are canonical pathways that have been studied in 

model organisms. The first part of this section describes the N-glycosylation pathway. 

Historically speaking, much of our current understanding of this pathway has been 

determined through studies involving Saccharomyces cerevisiae. The N-glycosylation 

biosynthetic pathway is described within the context of the historical discoveries in S. 

cerevisiae, as well other significant findings in higher eukaryotes, archaea, and 

prokaryotes. The second section of this introduction describes the various O-

glycosylation pathways, with a focus on GalNAc transferases and mucin/mucin-like O-

GalNAc modifications. In addition, details describing the O-GlcNAc modification are 

covered, as they pertain to nuclear pore proteins and FG-NUPs.  

N-Glycosylation 

Biosynthesis of the Lipid-Linked Oligosaccharide 

Protein N-glycosylation is the addition of a polysaccharide to the amide group of 

asparagine on polypeptides containing the consensus sequence Asn-x-(Ser/Thr), where x 

is not Pro (54). This sequon is common amongst eukaryotes, prokaryotes, and archaea 

(55-57). Amongst eukaryotes, a conserved lipid-linked oligosaccharide precursor is 

transferred, as a group, to secreted proteins within the ER (58). The lipid-linked precursor 
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is conserved amongst higher eukaryotic organisms, but varies for bacteria and archaea. 

For the higher organisms, it contains an oligosaccharide with the composition 

GlcNAc2Man9Glc3 (59). Yeast (Saccharomyces cerevisiae) has served as a model 

eukaryotic organism for studying the pathways and mechanisms within the N-

glycosylation pathway. 

N-glycosylation begins with the construction of the lipid-linked N-glycan 

precursor on the cytosolic side of the ER , utilizing the Alg enzymes that sequentially add 

monosaccharides onto a dolichol-phosphate anchor embedded in the ER membrane (see 

Fig. 1.3) (60, 61). Initiation of the canonical N-glycan biosynthesis pathway requires 

Alg7, which utilizes the sugar nucleotide UDP-GlcNAc and transfers GlcNAc to dolichol 

phosphate, creating GlcNAc-PP-Dol (62). The second GlcNAc is then added by the 

Alg13/Alg14 complex, forming GlcNAc2-PP-Dol (63). The double GlcNAc, often called 

the chitobiose core, appears to be the minimal N-glycan observed in eukaryotic 

organisms (64). 

The next five mannoses are added by the Alg enzymes Alg1, Alg11, and Alg2. 

The glycosyl transferases all utilize GDP-Man as the activated sugar donor, with the first 

Man transfer occurring directly to the terminal GlcNAc on the already constructed 

GlcNAc2-PP-Dol. First, Alg1 adds a Man residue via a β-1,4- glycosidic linkage to the 

terminal GlcNAc (65). Next, Alg2 adds the second and third Man residues to the 

previously added Man residue through α-1,3- and α-1,6 glycosidic linkages (60). Then, 

Alg11 sequentially adds the fourth and fifth Man residues via α-1,2-linkages, starting on 

the terminal α-1,3- Man (66). The constructed Man5GlcNAc2-PP-Dol intermediate is then 
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flipped from the cytosolic face of the ER into the lumen, via a mechanism that is not yet 

not fully understood, but, at least in humans appears to be dependent upon the protein 

Rft1 (67, 68). Unlike the cytosolic-facing oligosaccharide transferases, the luminal-facing 

transferases require Man-P-Dol as a donor, as opposed to GDP-Man. The synthesis of 

Man-P-Dol is performed by the enzyme Dpm1, which conjugates Man to P-Dol, using 

GDP-Man as a donor (69). Within the lumen of the ER, four additional Man residues are 

added to the now luminal-facing Man5GlcNAc2-PP-Dol, all utilizing the lipid-linked 

Man-P-Dol donor. First, Alg3 adds a sixth α-1,3-linked Man residue onto the α-1,6-

linked Man residue located on the shorter terminal arm (70). Next, Alg12 adds a seventh 

α-1,6-linked Man residue to the Man residue  that was previously modified by Alg3 (71). 

Finally, Alg9 adds the eighth and ninth Man residues, both α-1,2-linked, to separate 

terminal mannose residues (the α-1,3 and α-1,6 linked Man) (72). 

The final steps of lipid-linked N-glycan precursor biosynthesis involve capping 

with a glucose trisaccharide. Again, this process takes place in the lumen of the ER; the 

enzymes which perform this function require Glc-P-Dol as the donor. The enzyme Alg5 

synthesizes Glc-P-Dol, requiring UDP-Glc as the donor and p-Dol as the substrate (73). 

The first Glc residue is α-1,3-linked to the terminal Man residue on the first arm of Dol-

PP-GlcNAc2Man9 (74). A second Glc residue is then added to the first, via an α-1,3-

linkage by the enzyme Alg8 (75). Finally, Alg10 adds the terminal Glc residue, 

connecting it to the second Glc residue via an α-1,2-linkage (61). The biosynthesis of the 

lipid-linked precursor is concluded with the addition of the last Glc residue, creating Dol-

PP-GlcNAc2Man9Glc3. This oligosaccharide is transferred to the nascent protein in a co-
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translational (or, in some cases, post-translational), event. These processes will be 

outlined in the following section.  

 

 

Fig. 1.3 The Canonical Eukaryotic Lipid-Linked-Oligosaccharide Biosynthetic Pathway 

The Oligosaccharide Transferase 

N-glycosylation has primarily been described as a co-translational event, 

occurring within the ER during the translation of the protein inside the lumen of the ER 

(76, 77). There is, however, some evidence suggesting that N-glycosylation may occur 

post-translationally under certain conditions (78, 79). In fact, the catalytic subunits of the 

mammalian OST, Stt3a and Stt3b, appear to have different activities, with Stt3a having a 

higher co-translational and Stt3b having higher post-translational OST activity (80).  

The OST is multi-subunit complex of proteins, some of which partake in the co-

translational or post-translational transfer of the lipid-linked N-glycan precursor in 
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eukaryotes (76). In S. cerevisiae, the OST contains eleven subunits: OST1, Stt3, Wbp1, 

OST3, OST6, Swp1, OST2, OST5, OST4, Wbp1, and Swp1p (81). The roles of all the 

yeast OST subunits and their higher eukaryotic homologs are still being investigated, and 

several have already been identified as essential for N-glycosylation. 

The Stt3 subunit is one of the most evolutionarily conserved and contains the 

catalytic domain for the transfer of the lipid-linked-oligosaccharide to the Asn of the 

polypeptide (82). Direct evidence obtained from cross-linking experiments supports the 

hypothesis that Stt3 contains the catalytic domain, demonstrating that it intimately 

interacts with the nascent peptide chain (83). 

The evolutionary conservation of Stt3 extends into some of the prokaryotes 

capable of making N-glycosylated proteins, such as C. jejuni. This organism contains an 

OST referred to as PglB, a homolog to the yeast Stt3 (56). The function of PglB as an 

OST was proven by its introduction into E. coli , an organism that normally does not 

make N-glycosylated proteins, but was shown to be capable of such activity after PglB 

was transferred (56). Interestingly, there is a notable similarity to the mechanism found in 

eukaryotes, in that PglB requires an acetamido group on carbon 2 of the reducing end 

monosaccharide on the lipid-linked precursor, suggesting that there is an evolutionarily 

conserved transferase mechanism (84).  

The N-glycosylation sequon to which the glycan is transferred in C. jejuni is 

similar to that found in eukaryotes. However, the sequon appears to require an acidic 

residue at the -2 position, extending it to (Asp/Glu)‐x‐Asn‐x‐(Ser/Thr), where x is any 

amino acid except Pro (85). 
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It has also been found that different Stt3 variants in eukaryotes confer substrate 

specificity and donor preference. One such instance has been demonstrated in 

Trypanosma brucei, where TbStt3a appears to preferentially transfer Man5HexNAc2 with 

a single elongated arm to peptides with N-glycosylation sequons close to acidic amino 

acids, whereas TbStt3b and TbStt3c prefer to transfer Man9HexNAc2 and are not as 

substrate-selective (86). In addition, it has been shown that T. brucei is capable of 

utilizing both Man5GlcNAc2 and Glc1Man5GlcNAc as lipid-linked precursor donors 

when either Alg3 or glucosidase-II has been knocked out of the genome (87, 88). 

There are four additional conserved OST subunits which were first characterized 

in yeast and have homologs in mammalians. These are: Ribophorin I (OST1), Ribophorin 

II (Swp1), Dad1 (OST2), and OST48 (Wbp1) (89). Ribophorin I and Ribophorin II, have 

consistently been co-isolated with ribosomal preparations, suggesting there is a close 

relationship between the OST, translation, and translocation into the ER (90-92). 

Ribophorin I has been tied to OST activity; when it is removed from an in vitro system 

by immune depletion, there was a marked decrease in OST activity. It has been suggested 

that Ribophorin I may have a dolichol-binding domain, which may facilitate the transfer 

of the lipid-linked precursor (93). 

The fourth conserved OST subunit is a small hydrophobic protein Dad1 whose 

function is to keep Ribophorin I/II and OST48 in a stable structure, allowing the OST to 

function properly (94, 95). The fifth sub-unit, OST48, appears to have a role similar to 

Dad1. It keeps the OST complex stable. When OST48 was knocked down using siRNA 

in HeLa cells, hypoglycosylation of proteins was quite apparent (96). 
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N-Glycan Trimming and Modification. 

After the OST transfers the oligosaccharide moiety from the lipid-linked 

precursor to the polypeptide, the transferred glycan is trimmed of the terminal glucose 

residues by two exoglucosidases, α-glucosidases I and II (97). Glucosidase I removes the 

terminal α-1,3- Glc which then allows glucosidase II (Gls2) to trim back the two 

remaining α-1,2-linked glucose residues (98). Only after all Glc residues are removed 

will the protein exit the ER; this is, in part, due to the binding of the mono-glucosylated 

N-glycan structure by the ER resident protein calnexin (99). A single terminal glucose 

can be added back onto the already trimmed high mannose N-glycan, sequestering the 

protein inside the ER through interactions with calnexin, calreticulin, and a thiol 

oxidoreductase, and allowing the protein to undergo proper folding (100). When the 

protein cannot be folded properly, or, under conditions of stress, the protein is exported 

and degraded. This process has been described as the unfolded protein response (UPR) 

and ER-associated degradation (ERAD) (101, 102).  

A properly folded N-glycosylated protein can be exported from the ER as a high 

mannose type N-glycosylated protein, or it can be further processed in the Golgi. 

Typically the first step is trimming back the Man arms with α-mannosidases. Elongation 

is then initiated with Golgi-resident glycosyltransferases, such as β-GlcNAc transferase, 

thus beginning the synthesis of complex N-glycans, including bi-antennary, multi-

antennary, or hybrid structures (103). The branches of these structures are often built up 

by addition of lactose units (Gal-β-1,4-GlcNAc-β), and can be terminated there, capped 

with α-sialic acid, α-galactose, or α-fucose (104).  
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Functions of N-Glycosylation 

One function of N-glycosylation which has already been mentioned is its 

contribution to control of the folding of secreted proteins. N-glycosylation also affects 

intracellular vesicle trafficking, since the presence of specific glycoforms can determine 

how a vesicle will be transported between organelles and the cell exterior (105). The 

roles of N-glycosylation extend well beyond intracellular mechanisms. N-glycosylation 

alters the structure and function of immunoglobulins and is involved in the mechanics of 

cancer metastasis, cell-cell adhesions, and embryonic development (106-109). 

N-Glycosylation in C. parvum and T. gondii 

The N-glycosylation pathway has not been extensively functionally characterized 

in either of the organisms described in this dissertation, however, several in silico studies 

have characterized the pathways. It was first predicted that C. parvum has a lipid-linked 

N-glycan precursor of Dol-PP-GlcNAc2Man5Glc, due to the presence of the yeast 

homologs Alg7, Alg1, Alg2, Alg11, Rft1, Dpm1, Alg5, Alg6, Rft1 and Stt3, and the 

absence of Alg3, Alg9, Alg12, Alg8, and Alg10 in its sequenced genome (110). The 

observation that the genome of T. gondii contains the same set of predicted enzymes as 

C. parvum, with the exceptions of missing Alg11 and Rft1, and the addition of Alg8 and 

Alg10, suggested that the lipid-linked N-glycan would be Dol-PP-GlcNAc2Man5Glc3 

(110). In 2009, Cui, et al., showed that there has been evolutionary selective pressure for 

the N-glycosylation consensus sites containing Thr in the sequon as opposed to Ser, and 

that this selective pressure was driven by the quality control and folding mechanism, 

which rely upon the co-translational N-glycosylation machinery (111). Later, it was 



 

 

20 

reported that the genomes of C. parvum and T. gondii do not have quality control and 

folding machinery, since they lack the required enzymes. T. gondii has calnexin (Cxn), 

although it is noted that the gene appears to be lacking the protein disulfide isomerase 

binding domain, and the remaining sequence is quite divergent from any characterized 

calnexin (112). Prior to this dissertation, there have been neither definitions of the C. 

parvum N-glycosylated proteins nor any reports directly showing the structures of their 

N-glycans. 

O-Linked Glycosylation 

O-glycosylation is a protein modification in which saccharides are linked to the 

hydroxyl groups or amino acid residues, usually Ser or Thr; in rare cases, it can occur on 

Tyr or hydroxyproline. The process of O-glycosylation typically occurs in the Golgi for 

mucin and mucin-like glycoproteins. However, there are other classes of O-glycosylation 

where protein modification is initiated in the cytosol, nucleus, or in the ER (113). Fig. 1.4 

presents a brief graphical representation of the various types of O-glycosylation. 
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Fig. 1.4 Overview of the Different Types of O-Glycans 

A. The initiation of the core-type O-glycosylation is started by polypeptide GalNAc transferases within the Golgi. If the 
initial GalNAc is not elongated, it is referred to as the Tn-antigen. The Tn-antigen can, in some organisms, be modified 
by sialic acid, creating the sialyl Tn-antigen. If a single Gal residue is added, this structure is the T-antigen; the Gal 
residue may also serve as the basis of the Core-1 structure. B. Other types of O-glycosylation are initiated by the 
transfer of different monosaccharides by their respective glycosyltransferases, which can be located in various 
intracellular compartments. (Reproduced, with permission, from Bennett, et al., 2012). 

 

Polypeptide N-Acetylgalactosamine Transferases 

The largest and most evolutionarily conserved group of enzymes is the GalNAc 

transferases, also referred to as polypeptide GalNAc transferases (ppGalNAcTs). These 

enzymes modify mucins or mucin-like proteins (114, 115). They utilize sugar nucleotides 

as sugar donors, most often UDP-GalNAc, and transfer the GalNAc to Ser/Thr in the 
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Golgi (116-118). The ppGalNAcTs have very similar topologies and functional domain 

structures. Each contains an N-terminal membrane anchor sequence, a central GalNAc 

transferase domain and a C-terminal Gal/GalNAc-lectin (ricin) domain (119). To date, 20 

different human ppGalNAcT enzymes have been described. These can be subdivided into 

classes and subclasses, based upon their molecular phylogenetic order (114). The 20 

human ppGalNAcTs and their similarities are shown in Fig. 1.5. 

Modification of the mucins and mucin-like proteins appears to be a processive 

procedure, requiring an initial glycosylation event by certain subclasses of GalNAcTs 

(120). The subsequent binding to the same or additional GalNAc residues on the already 

O-GalNAc modified polypeptide is mediated through the GalNAc-lectin domain. The 

binding provides a means for anchoring down the ppGalNAcTs so the catalytic domain 

can modify free Ser/Thr to yield a high density of O-glycosylation on the polypeptide 

(121). Interestingly, the different GalNAcT subtypes appear to have preference for the 

direction in which they can add GalNAc to an available Ser/Thr, with respect to the initial 

Ser/Thr-O-GalNAc. It was found that T1, T2, T14 had preference for N-terminal 

addition; T3 and T6 preferred C-terminal addition; T5, T13, T16 could favor either; no 

preference could be determined for T4, T7-12, T15, T17-20 (122). 
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Fig. 1.5 The 20 Human GalNAc Transferases Displayed as a Phylogenetic and Genomic Analysis to Illustrate the 
Classes of Transferases. 

Fig. 1.5 Displayed is a comparison of twenty human ppGalNAcTs. The left side of the figure shows a phylogenetic 
tree, to help characterize and classify the groups and sub-groups of ppGalNAcT. Common amongst almost all of the 
enzymes are an N-terminal cytosolic-transmembrane region, a central catalytic domain, and a C-terminal Gal/GalNAc 
lectin domain. (Reproduced, with permission, from  Bennett, 2012) 

 

O-N-Acetyl-Galactosamine Transferases of C. parvum and T. gondii 

In the context of the two parasites described in this dissertation, C. parvum and T. 

gondii, there have only been a few studies aimed at identifying the ppGalNAcTs. Most of 

these studies have identified potential ppGalNAcTs in these organisms at a genomic 

level; some functional studies have been performed. Functional characterization of all the 

putative ppGalNAcTs in these organisms have not been fully described. 
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For Toxoplasma gondii, five ppGalNAcTs have been partially functionally 

characterized; these have been shown to modify mucin-like protein sequences. However, 

mucin like-proteins per se have not been described in the literature (123). A recent study 

showed that knockouts of ppGalNAc-T2 and T3 in T. gondii are responsible for the 

glycosylation of a tissue cyst protein, as determined by loss of VVL and Jacalin-positive 

lectin stains, lectins specific for Gal/GalNAc, as observed by fluorescent microscopy and 

Western blots (124).  

There has only been a single study published describing the ppGalNAcTs in 

Cryptosporidium. Four ppGalNAcTs were identified, but only preliminary work has been 

performed to characterize them (125). The RNA levels for the four ppGalNAcTs (1-4) 

were monitored at three time points in an infection model. The results showed that T1 

and T4 transferases are high at initial infection; after 48 hours only T3 expression is high 

while T2 is at a low level; only low levels of T2 and T3 can be observed after 72 hours 

(125). In addition, it was reported that a C. parvum lysate was capable of transferring a 

14C-labeled GalNAc from radioactive UDP-GalNAc to synthetic peptide substrates (125). 

Mucins and their O-Glycans 

By definition, mucins, and mucin-like proteins always have GalNAc as the first 

O-linked sugar residue; the GalNAc can remain unmodified or additional 

monosaccharide residues can be attached during passage of the glycoprotein through the 

Golgi (126). The O-linked glycan(s) can be developed into linear or branched structures 

(see Fig. 1.6 for a review) (127). 
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Fig. 1.6 O-Glycan Structures 

A.) The eight O-glycan core structures are shown. B.) Epitopes found on O-glycans, and those often encountered in the 
human mucosa. (Reproduced in accordance with the Creative Commons Attribution License (CC BY), 
https://creativecommons.org/licenses/by/4.0/, no changes made other than replacement of the figure legend, obtained 
from Tailford, 2015)  

There are eight O-glycan core structures (Core 1 - Core 8) and several other 

important O-glycan structures such as the Tn antigen, T antigen, and the Sialy-Tn/T, 

which are displayed in Fig. 1.6. All of these O-glycans are initiated with the addition of a 

http://creativecommons.org/licenses/by/4.0/�
https://creativecommons.org/licenses/by/4.0/�
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GalNAc as the first monosaccharide (128). Addition of O-Glycans can have varied 

effects, with the result that the physical properties of mucin proteins can be altered quite 

dramatically. Mucin-like proteins often can have massive hydrodynamic volumes due to 

the extent of modification. Dense O-glycosylation, occurring at low complexity 

sequences with disordered secondary structure, results in collective steric interactions, 

thereby driving the protein to take on a rigid and extended shape and preventing a 

compact protein conformation (129).  

There are two types of mucins, secreted (MUC2/5AC/5B/6/7) and membrane-

bound (MUC1/3/4/12/13/15/16/17/20/21) (130-132). The membrane-bound mucins, 

when abnormally regulated, have been implicated as contributors to the properties of 

cancerous tumors, such as their increased proliferation and resistance to apoptosis (133). 

Many of the secreted mucins have numerous Cys residues and are thought to form both 

inter- and intra-disulfide bonds, thereby creating large soluble and insoluble barriers 

(131). The mucosal epithelia rely upon both the secreted and membrane-bound mucins to 

protect against environmental challenges, including pathogens (134, 135). 

Mucins in C. parvum 

C. parvum, the organism which is the main focus of the research described within 

this dissertation, has its own set of mucin/mucin-like proteins; several of these have been 

shown to be important for invasion (Gp900 and Gp40) (15, 33, 34). Gp900, a very large 

mucin-like protein, contains two domains composed of long tandem Thr stretches (see 

Appendix 1). When sporozoites (the invasive life cycle stage of C. parvum), are 

incubated with a mAb which recognizes the polypeptide between the two Thr rich 



 

 

27 

domains, it prevents invasion of cells in an in vitro model (33). The protein Gp900 has 

been demonstrated to be very immunogenic in cows. However, this response may not 

depend on O-glycan modifications; much of the observed antigenicity has been attributed 

to the N-glycans, as PNGase F nearly eliminated reactivity for three monoclonal 

antibodies raised against it (31). 

O-Linked N-Acetylglucosamine 

Another important type of O-glycosylation is O-GlcNAcylation, the addition of a 

single GlcNAc residue at Ser or Thr. This modification was first detected on the surface 

of lymphocytes, where it was discovered to be the first sugar conjugated to the hydroxyl 

of Ser/Thr in a 3H-Gal oligosaccharide transferase assay (136). This group of researchers 

explored their novel finding in greater detail, utilizing the same assay to probe subcellular 

fractions from varied sources, and they found that the highest concentration of O-

GlcNAc-modified proteins resided in the nuclear fraction, more specifically on the 

nuclear envelope subfraction (137). The localization was further investigated, resulting in 

the discovery that the cytoplasmic face of nuclear pores and the lumen of the nuclear 

pores were the regions modified with O-GlcNAc (138-140). Extensive further studies 

have explored the biochemical pathways and functional roles of the O-GlcNAc 

modification. Utilization of UDP-GlcNAc as a substrate revealed that O-GlcNAc 

transferases (OGT), located both in the cytosol and the nucleus, are responsible for the 

addition of GlcNAc to protein acceptors (141). Most eukaryotes appear to have the genes 

encoding for OGT, suggesting that they may serve a vital role in the cell; furthermore, 

many proteins involved gene regulation and nuclear transport are modified in a dynamic 
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manner based upon the activity of an O-GlcNAcase (OGA), suggesting that O-

GlcNAcylation may be a signaling mechanism (142). It has been demonstrated that the 

dynamic nature of O-GlcNAc modification is in balance with phosphorylation, indicating 

that it may serve as a switching mechanism (143).  

O-GlcNAc Modification of Nuclear Pore Proteins 

 
When it was first described, the O-GlcNAc modification was found to be most 

pronounced in the nuclear periphery; it was later pinpointed to the nuclear pores (137, 

138). These initial observations were explored in greater detail, with the results that the 

nuclear pore protein NUP-62 was found to be modified with GlcNAc, and an OGT was 

determined to be responsible for this transfer of the GlcNAc (144). It has been realized 

that many of the identified nuclear-pore proteins are O-GlcNAc modified, with almost all 

of the FG-repeat containing NUPS found in cytoplasmic, nucleoplasmic regions, and 

within the lumen of the pore containing O-GlcNAc (see Fig. 1.7) (145). 

The FG-NUPS are proteins associated with the nuclear pore complex that contain 

repeating amino acid patterns of (FxFG, GLFG, PSFG, or FG). These proteins are 

disordered, with the GLFG repeat-containing FG-NUPS being more disordered than the 

others (146, 147). In S. cerevisiae, it has been found that the GLFG repeat-containing FG-

NUPS are positioned in the orifice of the nuclear pore, and they are essential for viability, 

while the FG repeats on the cytoplasmic or nucleoplasmic sides could be deleted without 

noticeable deleterious effect (148). The disordered regions of the FG-NUPS extend out 

and into the nuclear pore where they interact with karyopherins, proteins that facilitate 
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nuclear import/export and karyopherin-cargo complexes. It is thought that the FG regions 

are the crux of these interactions and confer specificity for transport into and out of the 

nucleus (149, 150). O-GlcNAcylation has not been reported for the organisms 

investigated during the research conducted for this thesis, but the growing appreciation 

for its importance mandated that its involvement should be considered. In addition, the 

aforementioned targets of O-GlcNAc modification, (i.e., FG-NUPS and nuclear-

periphery localized proteins), were encountered during the research conducted for this 

thesis, albeit O-fucosylation was observed as a modification instead of O-GlcNAcylation.  

 

Fig. 1.7 O-GlcNAc Modification of Nuclear Pore Proteins 

Fig. 1.7 The nuclear pore proteins described in mammals have been shown to be O-glycosylated with β-N-
acetylglucosamine. Modification of these proteins occurs on the nucleoporins, most often those containing FG repeat 
domains. The O-GlcNAc modification favors proteins on the cytoplasmic face or within the lumen of the pore itself. 
(Reproduced, with permission, from Li and Kohler, 2014).  
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Nuclear Transportation Mechanisms Pertaining to FG-NUPS 

The interactions and relationships between FG-NUPS and nuclear transport were 

briefly touched upon during the introduction of O-GlcNAc modification. Supplementary 

details and related topics are introduced here in order to provide readers a proper 

introduction to some of the novel discoveries discussed in Chapter. 5.  

Transportation in and out of a cell nucleus must be a tightly regulated process 

involving specific interactions with the karyopherins, a broad range of proteins involved 

in the transportation of cargo into and out of the nucleus. These proteins can loosely be 

grouped into two classes: 1.) Karyopherin α type (Kapα), which binds to the classical 

NLS signal (a single- or multi-cluster of basic amino acids); 2.) Karyopherin β type 

(Kapβ), which bind to specific proteins which lack the canonical NLS (Kapβ proteins can 

bind Kapα proteins, utilizing them as adapters to transport proteins containing a NLS) 

(150). 

Crucial details which helped to define some of the processes involved in nuclear 

transport began with the identification of a small GTPase called Ran (Ras-related nuclear 

protein. The catalyst of this novel finding was made during the course of UV-irradiation 

photo-labeling experiments using [α-32P]GDP and [α-32P]GTP on nuclear envelope 

preparations from rat liver nuclei (151) That study identified a 28-kDa GTP/GDP binding 

protein, which was later found to have GTPase activity; transport of proteins containing a 

NLS into the nucleus was dependent upon the hydrolysis of GTP (152). The name Ran 

was coined due to its nuclear localization and its similarity to the conserved series of 
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GTPases which were named after oncogenes identified in rats, the rat sarcoma genes 

(Ras) (153). 

It was revealed that the switching back and forth between the GTP- and GDP-

bound states of Ran helps drive the nuclear import and export mechanism (154). The 

hydrolysis of Ran-GTP drives importation of Ran along with the proteins which bind to 

Ran, the Kapβ class of importins, and the cargo bound to Kapβ or its adapters (150).  

A defining feature that is shared across the Kapβ and Kapα classes of proteins are 

some tertiary structural features of repeating domains, referred to as the HEAT motifs 

and ARM repeats (Armadillo as described in Drosophila). Both these features are helices 

exposing ideally spaced binding sites on the helices, or in between the repeats (155, 156). 

The ARM domain repeats are a found on Kapα, where, in between the ARM domains, 

there are NLS binding pockets that are defined by the WxxxN motif. Using a similar 

mechanism, Kapβ binds to the FG on FG-NUPS in hydrophobic grooves buried between 

the HEAT repeats, binding more tightly to the GLFG repeat as compared to other 

sequences (150, 157). 

O-GlcNAcylation in C. parvum and T. gondii 

To date, relatively only a few studies have described O-GlcNAc modifications in 

either C. parvum or T. gondii. Most reports have been based on indirect observations, in 

silico analysis, or, limited to preliminary functional transferase activity studies. The 

OGTs in both C. parvum and T. gondii were first identified from an in silico analysis of 

the genomes searching for homologous proteins to the human OGT (158). It was found 

that both T. gondii and C. parvum have divergent topologies when compared to the 
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human OGT, since they contain only two TPR repeat domains in the N-terminus 

(substrate recognition domains), whereas the human OGT has 11 (158). Furthermore, the 

functional domain at the C-terminus is a complete SPY domain (catalytic domain), but 

the human OGT is split by amino acid insertions (158). In the same study performed by 

Banerjee et al., the recombinant C. parvum OGT was shown to be a functional transferase 

capable of transferring GlcNAc from tritiated UDP-GlcNAc to the substrate casein kinase 

(158). To date, this remains the only study that has demonstrated the functionality of an 

OGT in C. parvum. Experiments performed in T. gondii have demonstrated transfer of 

GlcNAc onto the peptide substrate Pro-Tyr-Thr-Val-Val, using radioactive UDP-GlcNAc 

and a cell free lysate (159).  

The Similarities of T. gondii and C. parvum OGT to the Plant OGT 

As was noted by Banerjee et al., 2009, the putative T. gondii and C. parvum OGT 

contains a complete SPY domain and is more similar to the plant SPY domain than the 

human. This observation was also mentioned by Perez-Cervera et al., 2011, where they 

described the similarities of the putative T. gondii OGT and Arabidopsis SPY. The 

authors showed that GlcNAc could be transferred to proteins in a T. gondii crude lysate 

when incubated with tritiated UDP-GlcNAc; however, they did not identify any proteins, 

nor did they perform any experiments to evaluate the function of their putative OGT. 

Due to the significant sequence similarity of the T. gondii and C. parvum putative 

OGT to the plant SPY domain, additional background information will be presented here 

in order to aid in the understanding of results discussed in later chapters of this 

dissertation. This information is necessary to help frame the discoveries described in 
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Chapter 5. While this dissertation was being written, a new publication revealed that the 

plant the SPY domain, also known as SPINDLY, may be a fucosyl transferase (160). The 

authors demonstrated that a recombinant Arabidopsis thaliana SPY was capable of 

hydrolyzing GDP-fucose in the presence of a substrate. For this, they used a colorimetric 

assay to measure free phosphate, but they did not present any direct evidence to 

substantiate their hypothesis that SPY is exclusively a fucosyl transferase. The behavior 

of SPY as a fucosyl transferase needs to be proven with additional non-ambiguous 

experiments, especially since SPY has previously been implicated as having GlcNAc 

transferase activity (161). The SPY protein exhibits an interesting pattern of localization 

in plant cells. It has sometimes been observed in the cytosol, and at other times, in the 

nucleus (162). The determinant for localization has not been established; however, since 

it is known to be involved in plant signaling processes, there is the possibility that the 

differential localization may be due to a downstream signaling event (162). SPY has been 

established as a negative regulator of the effects of giberellin (GA), a dicyclic terpenoid 

plant hormone produced in the plastid from polyprenols, which alters growth and 

development in the plant (163-165). It is interesting to note that the organisms studied 

throughout the course of this dissertation are in the phylum Apicomplexa, gaining this 

name from their secondary plastid called the apicoplast which is evolutionarily divergent 

from the plant plastid, the chloroplast. It has lost its ability to photosynthesize, but is 

essential for isoprenoid biosynthesis (166). Of the two organisms studied, C. parvum and 

T. gondii, only T. gondii appears to have retained the apicoplast (167). What is even more 

interesting is that Toxoplasma and Plasmodium are both known to produce some of the 
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same plant hormones (e.g., giberellin), and these appear to affect the growth and 

development in these organisms, similar to their effects in plants (168). While there has 

been no established connection between apicomplexa gibberellins and the SPY domain-

containing transferase, or any other glycosyl transferases, the overlap with biosynthetic 

pathways unique to organisms that contain chloroplast or chloroplast-like plastids raises a 

question as to this possibility. 

O-Fucosylation 

O-fucosylation is a modification to proteins that has not been described 

extensively in the literature. The first description of fucose directly conjugated to an 

amino acid (as opposed to attachment via a glycosidic linkage) occurred less than thirty 

years ago; the substrate was human recombinant pro-urokinase, which was expressed in a 

mouse hybridoma cell line (169). There was suggestion that one of the Thr was modified, 

however, the exact location could not be verified (169). Human Factor IX was soon 

discovered to be O-fucosylated within the EGF domain, and fucose was determined to be 

directly conjugated to the hydroxyl of Ser, thus demonstrating that O-fucose was a true 

modification (170). In 1993, Harris et al., proposed the O-fucosyl transferase consensus 

sequence of CxxGG(T/S)C, where x is any amino acid. During the course of studying a 

migratory locust, Locusta migratoria, a neuropeptide (QISCQPGKTFKDKCNTCRCG) 

was found to contain a single Thr O-fucose (171). This discovery suggested that O-fucose 

modification occurs not only in mammalian cells but spans across a broad range of 

animals and could possibly be a universal modification that had been previously 

overlooked. Soon thereafter, a fucosyl transferase, which utilizes GDP-fucose as a donor, 
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was isolated from CHO cells using affinity purification with the peptide from the EGF 

domain containing the previously described O-fucosylation consensus sequence (172). 

Using a library of substrates based upon the proposed fucosyltransferase consensus 

sequence, these investigators determined that the two Gly residues of the sequence 

CxxGG(T/S)C were important for proper substrate recognition by the protein O-

fucosyltransferase (POFuT). They further determined that, if the two Gly were replaced 

with amino acids that made the peptide inflexible, there would be no fucosylation, 

suggesting that the two Cys residues need to form a disulfide bridge to properly present 

the Ser/Thr to the POFuT. The modification of the Locusta migratoria neuropeptide also 

occurred within a stretch of amino acids in between two Cys, suggesting that there may 

be a common mechanism requiring a tight loop to be presented to a POFuT. They 

determined that Cys position was indeed crucial for modification with O-fucose. In an 

experiment that utilized the recombinant Drosophila POFuT1, Luo, et al. later found that 

thrombospondin type 1 repeats (TSR 1), Cx(2–3)(S/T)Cx2G, similar to EGF repeats, Cx(4-

5)(S/T)C, could be modified with O-fucose, but POFuT1 was not the enzyme; they noted 

that the similarities between substrates was evident, but there was another enzyme, not 

yet identified, which modifies TSR repeats (173). Later, with GDP-fucose utilized as a 

donor, the human enzyme, POFuT2, was revealed to be the enzyme which modifies TSR 

type 1 repeats; like POFuT1, this protein has to be folded correctly with disulfide bridges 

to present the substrate to POFuT2 (174).  

There have also been a few reports of nuclear proteins or nucleus-localized 

proteins in plants. The best example showed modification of proteins localized at the 
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nuclear periphery in Daucus carota protoplasts, as found by a positive stain with Ulex 

europaeus agglutinin 1 (UEA-1) a fucose-binding lectin (175). Specificity was verified 

when the binding of the lectin could be abrogated by direct competition using fucose; 

unfortunately, there have not been any protein identifications resulting from this or any 

other studies (175). 

Mass Spectrometry 

Mass spectrometry has become a very useful and informative tool for biomedical 

research. It has undergone enormous technological advancement since it was first 

developed into an analytic instrument. Modern mass spectrometric techniques have 

application in the fields of genomics, proteomics, and glycomics (176-178). This section 

will briefly touch upon the fundamentals of mass spectrometry and provide a more 

detailed outline of the techniques and methodologies as they pertain to this dissertation. 

Fundamentals 

Modern mass spectrometry can trace its roots to the studies of charged particles 

described in late 19th Century and early 20th century. The physics which dictate how 

charged particles behave in electric or magnetic fields are the core of how all mass 

spectrometers function. Studies of cathode ray tubes helped to initiate the development 

and ideas surrounding mass spectrometry instrumentation (179). This area of research 

developed rapidly in the 20th century, moving from recordings made with phosphor 

screens and photographic plates, to oscilloscopes, leading to modern day, high throughput 

instruments with unparalleled speed and accuracy. The block diagram in Fig. 1.8 shows 

the general schema of a mass spectrometer.  
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Fig. 1.8 Block Diagram of a Mass Spectrometer 

This block diagram shows the essential components of a mass spectrometer. The diagram is simplified for clarity, and 
does not include MS/MS, or the options for fragmentation ; these will be described later. Hybrid instruments combine 
mass analyzers of different types. 

Understanding the terminology used in mass spectrometry is the first step towards 

understanding what a mass spectrum is, how to properly interpret it, and what 

information is needed for good experimental design. A mass spectrum is a measurement 

of mass-to-charge ratios (m/z), the accuracy of which is determined by the characteristics 

of the mass analyzer(s), but in a given experiment, it also depends on how well an 

instrument is calibrated with standards, and the reproducibility of the measurements 

(180). Mass accuracy, or, mass error, is often reported as the parts-per-million (ppm) 

error from the calculated theoretical value. The deviation can easily be calculated from 

the experimentally observed m/z and the calculated m/z (see equation 1.1).  

mass accuracy (ppm) = �
�(observed 𝑚/𝑧) – (calculated 𝑚/𝑧)�

(calculated 𝑚/𝑧)
� x 106      Equation 1.1 

Mass accuracy is instrument-dependent. Instruments that are capable of extremely 

accurate measurements are indispensable tools for determining chemical formulae (181). 

FT-ICR MS instruments can routinely make measurements with mass accuracies around 

1 ppm, and if both internal and external standards are used, the mass spectrum can be 



 

 

38 

post-processed to achieve sub-ppm mass errors (182). Recent instrument designs, such as 

the 21-T FT-ICR mass spectrometers that have recently been constructed, can routinely 

make measurements with errors in the range of 50 - 200 parts-per-billion (ppb), 

depending upon the m/z scan range and scan time (183, 184). 

The resolving power of an instrument, and, resolution, are two different terms 

used to describe instrument performance and to describe the observations within a 

spectrum. Resolution, is used to describe an experimental measurement, defining how 

two peaks of equal height are separated by a valley of a set value, (e.g. 10%, 50%). The 

resolving power of an instrument, describes an instrument property, as it pertains to a 

single peak (185). Resolving power, defined as R, is calculated from the full width half 

maximum (FWHM) of the measured peak (see Equation 1.3). 

R = m
∆m

 , at FWHM                                                                                Equation 1.3 

Resolving power of an instrument is critical to for accurate identification of 

analytes. This becomes increasingly more important with an increase of sample 

complexity and concurrent existence of multiple charge states in a spectrum (186). A 

simple example is provided in Fig. 1.9 to demonstrate the effects of resolution, and how 

having an instrument with higher resolving power helps differentiate the components 

within a mix of hypothetical peptides. It also illustrates a possible pitfall in interpretation, 

if there is a measurement error due to the presence of unresolved components which 

could fall within the expected error tolerances (see Fig. 1.9).   
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Fig. 1.9: Mass Resolution and Resolving Power. 

The effects of mass resolution on peak shape are shown in the top panel of the figure. A series of peaks recorded with 
different mass resolutions shown for the for the hypothetical peptide HASERICK, which has a mono-isotopic m/z 
943.4778 for the [M + H]+ ion. Shown are theoretical resolutions of 1,000 (red), 4,000 (blue), and 16,000 (fuschia). The 
lower resolution of 1,000 is inadequate for most applications, where the isotope distribution can not be observed. The 
lower two panels show a mixture of three peptides (HASERICK, HASERICQ, and HASQRNCK), all represented as 
the [M + H]+ ions. The lower left panel shows the sum of all three peptides with a resolution of 16,000. As shown, the 
apex of the apparent mono-isotopic peak is reported as m/z 942.4488, which would be -23.06 ppm error if it was 
assumed to be the peptide HASERICK. The lower right panel, shows the same peak with R=16,000 (black), and with R 
= 128,000 (red). The higher resolution of 128,000 allows for the resolution of all three components, revealing that the 
perceived error of -23.06 ppm was due to the summation of three separate components, which consequently broadens 
the first peak, with a FWHM of 0.0712, revealing a resolution of 13,241. All theoretical isotopic patterns were 
calculated using the program mMass version. 5.5.0 (187)  
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Sample Introduction Into a Mass Spectrometer 

Prior to the ionization step, the sample must be carefully prepared to avoid the 

introduction of salts or other contaminants which may otherwise hinder the analysis, and 

can even abrogate detection (188, 189). As portrayed in Fig. 1.8, the sample must first be 

introduced to the ion source. The method of introduction is dependent upon which type of 

ion source is used and the instrument used for making the measurements. The most 

commonly used methods for sample introduction are as dried spots on a surface plate (for 

Matrix-assisted laser desorption/ionization (MALDI)); liquids, either directly infused or 

eluting from a liquid chromatography system (for electrospray ionization (ESI)/ nanoflow 

electrospray ionization (nano-ESI)), or in the gas phase from a gas chromatograph (for 

electron impact (EI)).  

Ionization Techniques 

Matrix-Assisted Laser Desorption/Ionization (MALDI) 

Matrix-assisted laser desorption/ionization is considered to be a “soft” ionization 

technique, meaning that there is minimal fragmentation of the molecular ion. It is an 

ionization method which is suitable for a wide range of biological analytes, including 

carbohydrates, peptides, proteins, nucleic acids, and lipids (190-195). Typically, for 

measurements to be made in the positive-ion mode, the sample and the matrix are 

dissolved in a mix of aqueous and organic solvents along with a volatile acid, such as 

formic acid, to ensure the solution is below the pKa of the matrix, and ~0.5 - 1 µL 

volumes of each, or a mix of sample and matrix are spotted onto a metal plate and dried. 

This ionization technique has seen applications for the analysis of macromolecular 
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complexes and even whole bacterial cell walls or of intact oocysts from Cryptosporidium 

species (196-198). There is limited information to be gained from the analysis of intact 

cells other than the observation of signature m/z values for a particular microorganism 

acting as a fingerprint for identification (199). Microbial identification using MALDI-

TOF MS is now commonly used for the diagnosis of infectious agents and is currently in 

use in leading medical centers and hospitals worldwide. Initial approaches based on lipid 

or peptide patterns raised questions of reproducibility and reliability which hindered its 

implementation (200, 201), but the development and implementation of methods that 

depend on capsid protein databases has proven extremely successful (202-204). An 

approach for the analysis of intact organisms has been demonstrated with the analysis of 

Bacillus spp. spores using a MALDI-TOF/TOF mass spectrometer (205). This type of 

instrument is capable of fragmenting intact proteins, and this provides some amino acid 

sequence information, a process called top-down protein sequencing. Typically 

fragmentation is most efficient near the N- and C-termini, and is blocked if there are 

disulfide bridges, so this method works best if the disulfide bonds are reduced and the 

free cysteines are alkylated (206, 207).  

The idea of utilizing a matrix to assist in the ionization of analytes traces its origin 

to laser desorption studies of amino acids. During one desorption ionization study of 

amino acids and dipeptides, the third and fourth harmonics of a neodymium-doped 

yttrium aluminium garnet (Nd:YAG) laser (208) with a λ of 355nm and 266nm and 

respectively, were used to irradiate a metal target with the dried amino acids and 

dipeptides (209). It was found that aromatic amino acids that absorbed the shorter 
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wavelength could be observed as the [M+H]+, with a relatively low level of irradiance, 

however, the same aromatic amino acids which did not absorb the 355 nm wavelength, 

required much higher irradiance, and could be observed as [M+Na]+ or [M+K]+, or as 

protonated fragments of the amino acid, just at the threshold of ionization for the alkali 

metals (209). The true breakthrough which Karas et al. made was the observation of an 

aliphatic amino acid as the [M+H]+ ion when analyzed in a mixture with an ultraviolet-

absorbing amino acid. The observation of the non-absorbing amino acid at a level of 

irradiance required only for the aromatic amino acid, was described as “matrix-assisted 

laser desorption” (209). Observation of this phenomenon led to the development of an 

array of MALDI matrices and providing a means for ionizing a wide range of 

biomolecules, using low levels of UV or infrared (IR) irradiation well below destructive 

power levels (210). The choice of MALDI matrix, the solvent composition, the presence 

of salts or detergents, and the sample complexity can all affect the ionization efficiency 

of  the analytes, and therefore care must be taken during sample preparation (211). The 

matrices which are most commonly used for the analysis of peptides, proteins, or 

oligosaccharides are 2,5-dihydroxybenzoic acid and sinapic acid (190, 212).  

The mechanisms describing the ionization process during MALDI have been 

widely discussed in the literature, however, there is no unified model to describe the 

mechanisms for generation of all  the ion types observable in a MALDI-MS experiment – 

likely multiple processes occur in even a single experiment (213-215). The most 

simplistic model is that a photon is absorbed by the matrix and, while in the excited state, 

the matrix molecule becomes much more acidic and transfers a proton to an analyte, 
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together with the charge. However, this model doesn’t fully explain why the same matrix 

can be used in both the positive and negative modes (213). Irradiating the matrix/analyte 

mixture causes rapid ablation of the surface, rapidly accelerating clusters of matrix and 

analyte away from the plate surface. There may be thermal component to charge transfer, 

as well as charge-charge secondary and accumulative reactions which can lead the 

formation of ions that cannot be explained by the simplistic absorptive model (215). In IR 

MALDI-MS, localized heating occurs, and large chunks of the sample surface are often 

ablated (216) 

Electrospray Ionization (ESI) 

Electrospray ionization has been described as another “soft” ionization technique. 

It came into use around the same time as MALDI (217). Although early work on ESI was 

performed in Russia and published in 1984 in a Russian language journal, the work did 

not become known at the time, largely because of the political situation, an English 

translation of the earlier report was published in 2008 (218). The sample dissolved in a 

volatile liquid that flows through a conductive needle terminated at finely tipped cone 

that is held at  a voltage potential in the low-kilovolt range, relative to the inlet of the 

mass spectrometer (219). The finely-tipped needle sustains a very large charge density 

and, when the liquid exits the highly charged orifice, it picks up charge, exploding into 

plume of droplets from Coulombic repulsions. A heated neutral gas aids in the de-

solvation process, yielding charged molecules which can then be manipulated through the 

mass analyzer (217) (See Fig. 1.10). 
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Fig. 1.10 Schematic of a Typical Electrospray Ionization (ESI) Setup. 

At the left is the entry point for the liquid sample, with a heated drying gas to aid in desolvation. A high voltage 
potential is applied between the exit of the needle and the capillary inlet, where ions are transferred into the mass 
spectrometer. A skimmer is in place to only allow ions to enter into the mass analyzer section, excluding any neutral 
contaminants. (Reproduced, with permission, from Fenn et al., 1989). 

While MALDI-MS has certain advantages of ease of use and in high throughput 

screening of many samples, it is not as flexible as other techniques, since it cannot be 

readily coupled to a separation instrument (e.g. HPLC) as is possible with ESI (219). 

Direct coupling of a separation technique can only be achieved with laboratory built 

equipment and has never advanced beyond proof of concept demonstrations Another 

advantage of ESI is that ions are usually observed as multiply charged ions (220). This 

means that the detection and analysis of larger molecules can be carried out with mass 

analyzers with limited m/z range (221). It should be recognized, however, that 

chromatographic eluents can be deposited onto MALDI plates (222-224). The subsequent 

MALDI-MS analysis is much more rapid than the online separation and may be repeated 

with the same target, since only a tiny fraction of the analyte spot is ablated in a single 

experiment(225). For proteins and other larger analytes, MALDI (especially IR MALDI) 

also produces abundant multiply-charged ions (216, 226-228).  
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Nanoflow Electrospray Ionization (nanoESI)  

As the name implies, nano-ESI is electrospray ionization performed using much 

lower liquid flow rates. The nano-ESI needles have much finer tips (one to two microns) 

and nano-ESI flow rates range from around 9 nL/min. to 500 nL/min. (229, 230). The 

decreased flow rate boosts ionization efficiency of the analytes, and therefore sensitivity 

increases (231). In mixtures, the signals from detergents such as n-octyl-β-D-glucoside, 

and other surface-active species, increase in total ion intensity as flow rates increase, and 

they can suppress signals from the analytes of interest. However, when the same solution 

is sprayed at lower (nL/min.) ranges, the signal of interest goes up, demonstrating that the 

decreased flow rates of nano-ESI can help overcome some of the ionization suppression 

effects from competing species (232). This realization spawned the idea of using an 

HPLC attached to a split-flow device fitted with a nanoESI emitter which was coupled to 

a mass spectrometer (233). This setup allowed for simultaneous semi-preparative scale 

separation on a liquid chromatography system with the efficient and sensitive detection 

capabilities of nanoESI (233). Although HPLC separation coupled to a split-flow device 

can be very informative, it is only feasible large amounts of a sample are available for 

separation on the standard-flow HPLC. Obtaining such large quantities is not always 

feasible; certainly this is the case for clinically obtained human samples, environmental 

samples, and samples from microorganisms which cannot be grown in the lab. Therefore, 

methods were developed to place chromatography medium inline, just prior to the 

nanoESI emitter, so that minute quantities of material could be separated with nL/min 
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flow rates. This strategy provided a means to efficiently separate and analyze peptides 

generated from nanogram quantities of protein (234).  

Commercially available UPLC systems that are now available use smaller 

diameter separation media (<3µm) to increase the surface area and therefore boost 

separation efficiency. In addition, these system used capillary scale (<200 µm) inner 

diameter columns so smaller samples can be separated. Both the smaller diameter resin 

and smaller tubing increase back pressure and therefore the UPLC systems  operate at 

lower flow rates (<1μL/min), and thus, these systems are perfectly suited for direct 

interfacing to a nanoESI source (235-237). With the advent of commercially available 

UPLC systems came the ability to perform high quality shotgun proteomic analyses, 

because they offer the capability to efficiently and quickly separate peptides generated 

from minute quantities of proteins (238, 239). Reliable quantification should not be 

assumed, due to a variety of effects such as ion suppression of the other components 

which may be present in the sample matrix (240). 

Electron-Impact Ionization (EI) 

Electron impact ionization (EI), also known as electron ionization, is an ionization 

technique wherein an electron beam collides with a sample in the gas phase to generate 

radical ions (241). The source of electrons is provided by a heated filament, either 

rhenium or tungsten; the emitted electron energy levels are modulated by adjusting the 

voltage supplied to the filament (see Fig. 1.10). The typical electron beam energy is 70 

eV; lower energies may be used to decrease sample fragmentation – but at the cost of 

substantially reduced sensitivity. Electrons emitted from the filament are collimated into 
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a beam using permanent magnets so that the beam intersects the flow path of the sample 

(242). EI is considered to be a hard ionization technique, meaning that most analytes 

fragment upon ionization, leaving little or no intact molecular ion. Positive-mode 

ionization occurs when an electron with sufficient energy collides with the molecule, 

knocking out an electron and generating a cationic radical (see Equation 1.3) (241, 243). 

This phenomenon is observed when the electron colliding with the molecule has 

sufficient energy, expressed in electronvolts (eV), to reach the ionization potential of the 

molecule and the molecule has a large enough cross section for an impact to be probable 

(244). It is also possible to generate multiply-charged radicals, but this typically occurs 

with much higher energies or with atoms and gases (245).  

M +  e−  →  M+•  +  2e–                                                                      Equation 1.3 

 

Fig. 1.10 An Electron Impact Ionization Source 

The cartoon schematic shows a simplified view of an Electron Impact (EI) source. Electrons are generated from a 
heated filament. Permanent magnets help to collimate the beam of electrons, so that it interacts efficiently with sample 
that is introduced in the gas phase. (Reproduced, with permission, Siuzdak, 1996) 

Within the scope of studying large or fragile biomolecules, this method of 

ionization has limited applications, but has great utility for studying such analytes as 

steroids, lipids and drugs and their metabolites (246-248). One of the limitations of EI is 
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that the sample needs to be introduced in the gas phase under vacuum conditions of 10-6 

Torr or less, so this technique is best suited for GC-MS applications of volatile samples 

(242, 249). In order to analyze large or fragile biomolecules, especially those which are 

polar, or bear free amine, carboxylic acid, or hydroxyl groups, the samples must first be 

derivatized to allow the samples to be vaporized without decomposition, and to make 

them volatile, allowing for gas phase introduction. Although some established 

derivatization methods are highly efficient, even for small amounts of sample, other 

derivatization methods can involve lengthy procedures not always suitable for trace 

amounts of analytes (250, 251). 

Mass Analyzers 

Quadrupole Mass Analyzers 

Quadrupoles can be used in mass spectrometers for both storage of ions and for 

mass selection. Linear quadrupole mass filter and three dimensional (3D) quadrupole ion 

traps (QIT) are based on similar principles, but with different designs, properties, and 

operational parameters. Typically, a 3D ion trap has higher resolution than a linear ion 

trap; however, a linear ion trap has a higher storage capacity (252). The linear 

quadrupole, in its simplest form is a set of four parallel rods (see Fig. 1.11) which have 

both direct current (DC) and radio frequency (rf) voltages applied to opposing pairs of the 

poles.  

In a linear quadrupole, the rf is applied to alternate sets of coupled poles, inducing 

oscillations of the ions in both the x- and y- planes. The ions oscillate in both the x and y 

planes, differently for each m/z value. When specific combinations of the rf frequency, rf 
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voltage, and DC offsets are applied, ions of discrete m/z values have stable trajectories 

along the z-axis and continue through to the detector (253). A linear quadrupole, becomes 

a linear QIT when there are end electrodes in place, which can be held with a DC bias, 

trapping the ions in the central axis rf quadrupole field (254).  

 

Fig. 1.11 Quadrupole Schematic 

This Cartoon Schematic Shows a Linear Quadrupole Setup. 

 

A quadrupole device may be operated in two ways: 1.) ions may be pushed 

through the quadrupole by simultaneously scanning both rf V and DC V, keeping the 

ratio of rf V to DC V constant, while the rf frequency remains fixed, or, 2.) scanning the 

rf frequency, while the rf V and DC V are kept constant (255). Quadrupoles can be stand-

alone analyzers in an instrument (as single, double, or triple quadrupoles), or, they are 

utilized as part of a hybrid instrument for transient trapping of ions, or as part of a mass 

filter (252). Three dimensional ion traps have a distinct advantage over linear ion traps in 

that ions of opposite charge can simultaneously be stored in the trap, since 3D ion traps 

manipulate ions using radio frequency, a property which allows for ion-ion reaction 

monitoring and the performance of efficient electron transfer dissociation (ETD) 

reactions (see Fig. 1.12) (256-258). Furthermore, the compact three dimensional design is 
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more accommodating towards hardware modifications, such as retrofitting them with a 

He cation source to perform charge transfer dissociation experiments in the ion trap by 

boring a hole through the end caps (259). Three dimensional ion traps are very efficient at 

performing multiple sequential MS/MS experiments, or, MSn experiments, due to the 

ability to selectively eject all ions except those of interest using rf filtering. This is not a 

unique attribute for 3D traps, as 2D linear traps can perform similar experiments. 

However, there are extended capabilities and benefits with a 3D trap which have already 

been mentioned. MSn provides a way to selectively pick apart an analyte of interest, 

tracking where fragments originate, following multiple fragmentation pathways, a 

retrograde reconstruction from each MS/MS stage provides a detailed map of the original 

structure (260). 

 

Fig. 1.12 A Schematic Overview of a 3D Quadrupole Ion Trap Mass Spectrometer. 

This instrument is capable of trapping both positive and negative ions in the 3D trap, utilizing a separate negative 
chemical ionization source and a split multipole lens system (Reproduced with permission from Hartmer, et al., 2008). 

Time-of-Flight Mass Analyzers 

Time-of-flight (TOF) mass analyzers, as the name implies, measure the amount of 

time an ion traverses a known distance to calculate its m/z. Conceptually, this design is 
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the most straightforward type of mass analyzer. The underlying principles that define 

how this mass analyzer works can be described with Newtonian physics and a few simple 

equations; these provide a model which is easy to comprehend. The key to a functional 

TOF MS is the controlled introduction of ions in discrete packets so that their times of 

flight can be accurately measured. This is one reason why instruments that produce a 

continuous stream of ions must be configured to produce ion packets, such as with hybrid 

quadrupole time-of-flight (Q-TOF) mass analyzers. MALDI is a pulsed ionization mode 

and therefore can be mated directly with a TOF mass analyzer. However, irregularities in 

the sample surface may result in the generation of analyte ions with a broad energy 

spread that cannot be fully compensated even when a reflectron is employed. In these 

cases, MALDI-MS will produce better results when an orthogonal configuration is used. 

In a Q-TOF MS, the quadrupole is perpendicular to the flight tube, so ions can be injected 

as discrete packets into the flight tube, by controlling a stack of high voltage ion lenses 

that direct the ions orthogonal to their original trajectories and into the flight tube (see 

Fig. 1.14). A MALDI-TOF instrument controls the ion formation. The ions are generated 

by precisely timed pulses of a laser. The pulsing of the ion extraction electric field 

follows the timing of the ion generation. A slight delay in extraction may be imposed to 

minimize the energy distribution within the ion packet. The ion extractor accelerates the 

ions at a selected kV potential. This ensures that the amount of force exerted onto the 

ions is known; it is equal to the electric field (E) times the charge (z) (see equation 1.5). 

The ions are accelerated through the ion extractor and sent down the flight tube. It is 

assumed that all the ions will have the same kinetic energy (E𝑘), which is equal to the 
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force exerted from the accelerating electric field (see Equation 1.4). Ions with different 

masses, assuming the charges are the same, will have different velocities as they enter the 

flight tube. This should be equal to the square root of the reciprocal mass (m-1/2), since (z) 

and (E) would be equal. Therefore, combining equations 1.4 and 1.5, solving for the time 

of flight (t), and using the flight tube length (L) for the distance traveled for the velocity 

function, results in equation 1.6. Thus, measuring the time of flight (t), with a known 

length of flight (L), and a known accelerating electric field (E), the m/z can be determined 

(see Equation 1.7; also refer to Fig. 1.13 for a schematic representation). 

E𝑘 = 1
2
𝑚𝑣2 = zE...............................................................................Equation 1.4 

𝑧𝐸 = 𝑚𝑣2……………………………………………………………Equation 1.5 

𝑡 = 𝐿√𝑚
√2𝑧𝐸

  …………………………………………….……………….Equation 1.6 

𝑚
𝑧

= 2𝐸 �𝑡
2

𝐿2
�…………………………………………………………..Equation 1.7 

The variables used in the above equations are: E = accelerating potential, E𝑘 = kinetic energy, m = mass, 𝑣2  = 

acceleration, or velocity squared, z = elemental charge, t = time of flight, L = length of tube 𝑣2 = �𝐿
𝑡
�
2  

 L is always the 
length of the drift tube.  

An ion with a larger mass will have more inertia than an ion with less mass, and 

therefore when accelerated in a uniform electric field, the larger ion will have a lower 

velocity than the ions with less mass when entering in the flight tube.  
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Fig. 1.13 MALDI-TOF MS Schematic 

Shown here is a linear MALDI-TOFMS, to help illustrate the equations outlined in the text. The fuschia color 
represents a pulse of light, which is absorbed by the matrix, partially ablating the surface.  Charges are transferred. The 
ion extractor accelerates the ions with kV of potential. The ions exit into the drift tube with kinetic energy (Ek), which 
is equal for all ions, the time of flight is measured from t0 until detected at t1, for travel of the ions through the length 
(L) of the drift tube. Using equation 1.7 the m/z can be determined, since t is the only variable, E and L are known 
values.  

The equations explain the theoretical ideal. However, there are factors at play that 

can alter the time of flight. For instance, if the surface of the matrix is uneven, then the 

total distance to travel for ions of equal m/z is not the same, resulting decreased 

resolution. If the target is too thick, the distance between it and the extraction lens may be 

different from that used for calibration, and this will introduce a measurement error. 

Another occurrence which may alter resolution is that the ions are not accelerated 

through the extractor at exactly the same time from ion plume, resulting in different E𝑘 

for ions of the same m/z. To combat these issues, several strategies have been developed. 
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One such strategy involves reflecting ions back at an acute angle before they reach the 

first detector. This is done by introducing a region with an electrostatic field gradient, 

into which the more energetic ions penetrate more deeply before being reversed in their 

flight paths. The effect of the reflectron is a reduction in the energy spread of the sample 

beam that reaches the second detector (261) (see Fig. 1.14). A reflectron helps in two 

ways, is the first being that increases the overall length of the flight path – but this could 

be achieved by simply increasing the length of a linear flight path. The other, more 

important, effect is that it refocuses ions with the same m/z, but slightly different initial 

kinetic energies. This is accomplished since an ion with the same m/z, but with more 

kinetic energy will penetrate deeper into the reflectron field. When the ions are reflected, 

the total path length will have increased for the ions with more kinetic energy, re-

focusing ions with the same m/z but different kinetic energies, putting them closer to the 

same plane and allowing a tighter ion packet to hit the detector (262). The other method 

which was developed to improve resolution by correcting for differences in initial kinetic 

energies that could arise during the ionization process was the use of a delayed ion 

extraction technique (263). This method involves waiting a precisely timed interval after 

laser irradiation to apply the ion extraction field, either in a single stage, or multistage 

extraction process (263-266). 

A distinct advantage which TOF instruments have over quadrupole-based 

instruments is that they have wider m/z range, making them quite suitable for intact 

protein analysis (267). On the other hand, for protein analysis, quadrupole instruments 

are frequently used observe multiply charged ions, when they are interfaced to ESI or 
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nano-ESI sources. Hybrid instruments which contain both a quadrupole and a TOF 

analyzer combine features of both designs, as shown in the double quadrupole TOF MS 

example in Fig. 1.14. However, the use of a quadrupole before the TOF analyzer restricts 

the m/z transmission range to that of the quadrupole. 

 

Fig. 1.14 QqTOF Instrument Schematic. 

This is a schematic diagram of a quadrupole time-of-flight mass spectrometer. Ions are introduced into the flight tube 
from the perpendicularly placed quadrupole assembly. A pulsed electric field accelerates ions orthogonal to their 
original trajectories so their times of flight can be measured. (Reproduced with permission from Chernushevich, et al., 
2001)  

Fourier Transform Mass Spectrometry (FT-MS) 

There are two major classes of FT (Fourier transform) mass spectrometers. The 

Fourier transform ion cyclotron resonance (FT-ICR), and the Orbitrap instruments. Both 

types of instruments require the application of a Fourier transform to deconvolute 

complex time-domain data and convert it into frequency values that can be converted into 

m/z measurements. 
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A Fourier transform is a mathematical conversion of time-domain data to 

frequency-domain data, for which the mathematics were described by Joseph Fourier in 

1807. He showed that a function could be represented as a trigonometric series. This was 

later expanded upon and proven by Peter Gustav Lejeune Dirichlet (268). FT has been 

applied for processing data from many types of analytical chemical instrumentation; 

Comisarow and Marshall were the first to utilize FT for ion cyclotron mass spectrometry 

(269). 

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) 

FT-ICR MS instruments use a strong magnetic field to trap ions, along with 

periodic rf pulses to ensure that the ions remain in motion. Ions are detected when they 

pass between detector plates where a small current is induced and measured. A basic 

experimental sequence involves first quenching the ICR cell to remove any remaining 

ions. Analyte ions are then introduced into the ICR cell, and cyclotron motion is induced 

by an rf chirp to excite ions with their cyclotron frequencies (270). The ions in a 

cyclotron motion pass over pairs of plates, inducing a current which is measured, and is 

observed as a composite of numerous frequencies and amplitudes (269, 270). This image, 

then has a Fourier transform applied to convert the time-domain to frequency-domain, a 

calibration curve is then applied to this data to obtain a visual spectrum (269, 270). One 

of the wonderful things about any ion trap mass spectrometer is that ions are detected in a 

non-destructive manner, and therefore, under ideal circumstances, the ions can be trapped 

for extremely long times and studied in various ways. The frequency at which ions rotate 

perpendicular to the magnetic field in an FT-ICR cell is described by equation 1.8, where 
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a charged particle with a charge (q) and a mass (m), has a cyclotron frequency (fc) when 

in a uniform magnetic field (B) (see Equation 1.8) (269). Therefore, if a frequency can be 

measured, an m/z can be determined. 

 𝑓𝑐 = 𝑞𝐵
2𝜋𝑚

                                                                                Equation 1.8 

The first report of a mass spectrometer utilizing a Fourier transform showed the 

spectrum of methane as an ion cyclotron resonance (ICR) as an absorption spectrum 

(269). These investigators published another short communication soon thereafter and 

showed that frequency-sweep excitation could be performed, thus demonstrating proof of 

the concept that a wide range of m/z could be detected using this type of instrument 

design (270). The technology has developed quite dramatically since its first description 

in 1974, as was discussed earlier regarding the recent development of 21-T FT-ICR mass 

spectrometers which have unparalleled mass accuracies <≤ 1ppm and resolutions 

R>>1,000,000 (183, 184). Most FT-ICR MS instruments use large, liquid helium cooled, 

superconducting electromagnets, which have a horizontal bore, which enables the 

mounting of lasers in line with the ICR the cell, and thus they are easily amenable to 

unique methods of fragmentation, such as infrared multiphoton dissociation (IRMPD) 

and ultraviolet photodissociation (UVPD) (271, 272). Infrared irradiation at low power 

may be used to unfold large molecules in order to make them more susceptible to CID 

and ExD. 

Orbitrap 

The other type of Fourier transform mass spectrometer is the basis of a series of 

instruments that have been broadly adopted in the last decade, the Orbitrap mass 
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analyzer-based instruments. Their design originated from an old concept that used only 

an electrostatic field imposed on a fine wire to trap ions, without the need for magnetic or 

rf fields (273). The unique design by Makarov, utilizes an electrostatic field, but similar 

to an FT-ICR, it images the ion harmonic frequencies as they oscillate back and forth 

along the z-axis, and applies a Fourier transform (see Fig. 1.15)(274). The key to the 

success of this design for the analysis of organic molecules is Makarov’s invention of the 

C-trap for the efficient introduction of ions to the Orbitrap mass analyzer. 

 

Fig. 1.15 Cross-Cut View of an Orbitrap with an Ion in Motion 

(Reproduced, with permission, from Makarov, 2000) 

 

This design allows for high resolution spectra to be obtained quickly on 

instrumentation which is neither difficult nor expensive to maintain (275). The compact 

nature of this mass spectrometer allows for bench-top instrumentation, with extremely 

fast acquisition rates for MS and MS/MS spectra, superb sensitivity, an overall ideal 

platform for performing in-depth proteomics experiments (see Fig. 1.16) (276). 

  



 

 

59 

 

Fig. 1.16 The QE Series of Mass Spectrometers. 

QE series of mass spectrometers sold by ThermoFisherScientific. Adapted from reference (276), under the Creative 
Commons Attribution (CC-BY) License. To view a copy of this license, visit 
http://creativecommons.org/licenses/by/4.0/. 

 
MS/MS: Fragmentation  

Multiple stages of mass spectrometry can be performed, and this type of analysis 

is often referred to as tandem MS or MS/MS. The first stage of MS involves the 

measurement of the parent ion(s), the second stage involves the isolation of a selected 

precursor ion observed in the MS, which is then fragmented. The resulting product ions 

are measured in a second stage of mass analysis, to produce the MS/MS spectrum. In ion 

trap instruments, a fragment ion can be isolated and fragmented, and the resulting 

spectrum recorded, and then produce ions can be selected for further study and this 

procedure can continue until no signal remains. This is referred to as MSn, where n are 

the number of sequential stages of fragmentation and mass analysis.  

Fragmentation can occur even with mass spectrometers under many 

circumstances, whenever the analyte is raised to an energy level that is sufficient to 

cleave its weakest bonds. Fragmentation can occur during the ionization process, in the 

ion source (prompt fragmentation), or post-source (metastable post-source fragmentation 
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or deliberately-induced dissociation) (277, 278). Sometimes this can be utilized to expand 

the capabilities of an instrument, other times it is an unintentional consequence of an 

improper operating mode. It may result in the loss of extremely labile functional groups 

or interesting modifications on molecules (279-281). There is a multitude of different 

ways to fragment ions; only the most common methods and the methods utilized during 

the research for this dissertation will be discussed. 

Collision-Induced Dissociation (CID) 

Collision-induced dissociation is the fragmentation of an ion due to its interaction 

with a neutral gas (e.g., helium, nitrogen, argon, or, xenon), that involves the transfer of 

kinetic energy and results in breakage of one or more chemical bonds. CID is also called 

collisionally activated decomposition (CAD). CID fragmentation has been described as 

either a high or low energy process; the categorical grouping is based upon how much 

kinetic energy is involved (usually 3-10 keV for high, and 5-100 eV for low), and how 

quickly the energy transfer takes place (282-284).  

Low energy CID fragmentation is typical of rf-only quadrupole ion traps, where 

an ion of interest is isolated and excited at its resonant frequency, with just enough 

amplitude to excite the ion, but not enough to eject the ion. The ion collides with the 

helium buffer gas, yielding fragment ions (282). Similar low-energy CID fragmentation 

has been performed with a FT-ICR MS, usually by exciting the ions of interest at a value 

slightly removed from their resonant frequencies, in the presence of a higher pressure 

neutral gas in the ICR cell with enough energy to induce cyclotron resonance of the ions 

but not enough to eject them, in a process called sustained off-resonance collisionally 



 

 

61 

activated dissociation (SORI-CAD)(285). Triple quadrupole instruments can also 

perform low energy CID fragmentation with performances similar to those of an ion trap 

(286), but there are differences in the spectra because the number of collisions is lower in 

this type of instrument. In a triple quadrupole design, the first quadrupole is used to select 

the ion of interest, the second quadrupole performs as a collision cell, where it is filled 

with nitrogen or argon with the quadrupole operating in rf mode only, and finally the 

third quadrupole is used to analyze the product ions (287). 

High energy CID fragmentation occurs when the collision energy is 5-10 keV. 

This type of CID fragmentation is rarely encountered with modern instrumentation; it 

was the pathway which was standard for double-focusing magnetic sector instruments, 

but few of these remain in use today (288). In TOF/TOF instruments, then collide with 

argon at low keV to produce high energy CID fragmentation ions, but this is not nearly so 

extensive as that observed with true high-energy fragmentation magnetic sector 

instruments (289) and more. 

Higher-Energy C-trap Dissociation (HCD) 

Another type of collision-induced fragmentation is called higher-energy C-trap 

dissociation (HCD), which is superficially similar to the CID fragmentation described for 

a triple quadrupole operating with a modified collision cell operating at higher pressures, 

in place of the original lower pressure open design of quadrupole two (286, 287, 290). 

HCD was originally performed in the C-trap of an LTQ-Orbitrap instrument, whose 

designation is based on its shape, where the rf frequency voltage was increased from 

1,500 V to 2,500 V., which allowed for the detection of lower m/z ions since 
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fragmentation occurs outside the ion trap (see Fig. 1.16), however, soon a dedicated 

octapole collision cell was used, and became a commercially available option (290, 

291).This type of fragmentation has also been referred to “high energy collision 

dissociation” using the same acronym (HCD) on the later generation of Orbitrap-based 

instruments in which the dedicated collision cell is integrated into the design (290, 292). 

One of the advantages that HCD fragmentation has over CID fragmentation is that the 

lower m/z ions are retained, where in an ion trap the lower 1/3 m/z are not trapped after 

fragmentation (292). There was a technology that was developed to try and overcome the 

loss of the lower m/z range in an ion trap, referred to as pulsed Q-dissociation (PQD) 

(293). This technology was quickly surpassed by the increased sensitivity, more even ion 

intensity distribution across the m/z range, and ease of use by HCD making PQD is 

obsolete (294). 

Electron Reaction Based Fragmentation Methods (ExD) 

Other fragmentation techniques used for MS/MS experiments utilize electrons to 

induce fragmentation; these include electron capture dissociation (ECD), electron 

excitation dissociation (EED), electron detachment dissociation (EDD), electron transfer 

dissociation (ETD), and (295-298). These ExD methods can all be performed in an 

FTICR MS. In addition, ETD is successfully carried out in quadrupole ion traps that are 

operated alone or as part of hybrid systems and ECD is sometimes performed in Q-TOF 

instruments (256, 299) 

Electron capture dissociation (ECD) was first reported in an FTICR MS and is 

still usually performed in these systems but may be adapted to other mass analyzers. A 



 

 

63 

heated filament or solid electron source introduces electrons into the ICR cell, where 

electrons with energies in the range ca. 1-3 eV react with multiply positively charged 

ions, capturing an electron in an exothermic process, releasing additional energy and 

breaking nearby molecular bonds (295). Electron excitation dissociation (EED) employs 

an experimental setup very similar to ECD. In EED, even singly protonated ions can be 

reacted with >10 eV electrons, which subsequently gain charge through a slow radical 

cation formation, or secondary ionization, then undergo a subsequent fast electron 

capture process, or intramolecular rearrangement that leads to fragmentation (296). Other 

electron-induced dissociation processes use electrons generated at various energy levels 

and may also employed to dissociate negatively-charged analytes. 

The last type of ExD fragmentation that will be covered here is electron transfer 

dissociation (ETD). The fragmentation achieved from ETD is similar to ECD, however, it 

is easily compatible with a broader range of mass analyzers, the only requirement being 

that the instrument needs to be fitted with a negative chemical ionization (NCI) source 

that can introduce an anionic radical to transfer an electron to ions of interest to induce 

fragmentation. During the development of this technology, a wide range of molecules 

were tested for their ETD efficiencies as reagent ions, and it was found that SO2, m-

dinitrobenzene, o-dinitrobenzene, p-dinitrobenzene, azobenzene, fluoranthene, and 

perylene appeared to work well for the fragmentation of polycationic peptides (300). 

Another report compared reaction efficiencies using anthracene and 9,10-

diphenylanthracene as NCI reagents to perform ETD experiments with polypeptides 

(301). Coon et al. found that 9,10-diphenylanthracene formed a more stable anionic 
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radical with improved electron transfer capacity, while anthracene reacted very quickly 

with the methane carrier gas, showing again that a polycyclic aromatic hydrocarbon was 

suitable for ETD reactions. The most practical ETD reagents are the polycyclic aromatic 

hydrocarbons; azobenzene and the nitrobenzenes and are somewhat unstable and SO2 is a 

toxic gas. Ultimately, fluoranthene became the reagent of choice for ETD experiments, 

likely because it sublimes at a lower temperature than the other polycyclic aromatic 

hydrocarbons and is very efficient at ETD fragmentation of multiply charged peptides 

(302-304). A limitation of ETD fragmentation, similar to that of ECD fragmentation, is 

that multiply charged cations are required in order for fragmentation to occur; there is 

positive relationship between peptide charge state and the production of fragments (302).  

Fragmentation utilizing ETD has been successful for peptides, glycopeptides, 

phosphopeptides, proteins, and for native and permethylated glycans adducted to multi-

cationic metals (305, 306). In addition to the studies performed in the positive mode, 

negative ETD (NETD) fragmentation has been performed on multiply anionic peptides, 

as well as for polyanionic glycosaminoglycans, the fragmentation mechanism was 

described as a fragmentation process akin to the EDD mechanism (307, 308). 

Nomenclature for Naming Ions Observed in MS/MS Spectra 

Peptide Fragmentation Nomenclature 

A naming system for peptide fragmentation was proposed by Roepstorff and 

Fohlman in 1984 (300). Lower case letters indicate the type of ion, with a subscript 

number indicating the location within the peptide sequence with respect to the N- or C-

terminus (see Fig. 1.17). The an, bn, and cn ions all contain the N-terminus, n = 1 for the 
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first amino acid and the numbers increasing sequentially towards the C-terminus. 

Conversely, the xn, yn, and zn ions all contain the C-terminus and are numbered starting 

with the C-terminal amino acid as n = 1, and increase towards the N-terminus (see Fig. 

1.17 for the general scheme, Fig. 1.18 for an example peptide). 

 

Fig. 1.17 Peptide Backbone Fragmentation Nomenclature 

 

Fig. 1.18 A Hypothetical Peptide Naming all Theoretical Peptide Fragmentations 

 

Two additional types of ions that can be observed, d- and w-ions, are the result of 

amino acid side chain loss. These result from higher-energy processes and are rarely 

observed in low-energy CID spectra. Side chain fragmentation can distinguish between 
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isomeric amino acid residues, e.g., leucine and iso-leucine (284, 301). High-energy CID 

(keV) fragmentation also produces abundant a -ions, as well as the possibility of (a +1) 

ions, furthermore, z, x, and y -ions are also observable (302, 303). 

Low energy CID fragmentation and HCD fragmentation typically produce b/y-

ions as well as a-ions (290, 304, 305). The c- and z-ions are typically found in ECD 

fragmentation spectrum (295). Similarly, ETD fragmentation yields c/z -ions, although, 

there have been observations of a -ions and occasionally low intensity b/y –ions, 

however, these lower intensity ions are usually a CID process from residual collision gas 

or rf heating (298). Using a gentle CID activation of the charge-reduced ions after 

electron transfer, referred to as supplemental activation (SA), there is observation of 

exclusively c/z -ions (306). Supplemental activation has become a standard practice for 

most ETD experiments, with isolation of the charge-reduced species not required, only a 

gentle CID activation is performed after the ETD reaction yielding much higher 

fragmentation efficiencies (306). However, it should be noted that the separation of the 

charged reduced species from residual precursor and low intensity c/z –ions would yield 

much cleaner fragmentation pathways, since a mix of odd and even electron c/z -ions can 

occur (306). The even-electron (c+) and odd-electron (z+˙) are  typical of ETD, but, the 

co-observation of  even-electron (z+) + 1H, and odd electron (c+˙) – 1H ions can occur 

from abstraction of hydrogen from an α carbon, yielding the additional c/z-ion types 

(306). 
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Glycan Fragmentation and Nomenclature 

Fragment ions from glycans or glycoconjugates have their own nomenclature, 

which was defined by Domon and Costello, 1988 (307)(see Fig. 1.19). It uses upper-case 

letters, in order to be complementary to the system for peptides, and is thus suitable for 

designating the fragments from glycopeptides and glycoproteins. 

A.  

B.     

Fig. 1.19 The Domon and Costello Nomenclature for Glycosidic Bond Fragmentation 

A. Glycosidic fragments (Bi, Ci) contain the non-reducing end numbering starts with i = 1 and increases sequentially 
towards the reducing end with each monosaccharide addition. Similarly, the glycosidic fragments (Yj, Zj) contain the 
reducing end sugar and increase sequentially as monosaccharides are added towards the non-reducing end, starting with 
j = 0, indicating the bond if the glycan were part of a conjugate; the first interglycosidic bond is j = 1. The cross-ring 
fragments, k,lAi and k,lXj, contain superscript numbers “k,l” which indicate the two bonds within the ring that are broken 
(see Fig. 1.19B for numbering). The k,lAi ions, designate non-reducing-end fragments, with the subscript number “i” 
indicating the residue within monosaccharide the cross-ring fragments occurred, starting with i = 1 for the terminal 
non-reducing residue. Reducing end fragments are annotated as k,lXj ions, with the cross ring fragments on the reducing 
end starting with j = 0. B. The numbers in red show the numbering used to indicate which bonds are broken across the 
ring If the glycan is branched, each branch is assigned a subscript Greek letter, with a lowercase Greek letter assigned 
to each branch, starting with the largest branch labeled as α. If the branches have additional branch points, then the 
Greek subscript is given a prime, double prime, triple prime, etc., for each sequential branch. If an ion is the product of 
multiple fragments, then the combination is indicated with a forward slash designating the cleavage positions. 
(Reproduced, with permission, from Domon and Costello, 1988) 
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This nomenclature can be applied to native and derivatized glycans and 

glycoconjugates. Glycosidic bonds of the B-, C-, Y- and Z-types are frequently observed 

in low energy CID fragmentation (308). Low energy CID fragmentation of underivatized 

glycans, cationized with sodium, [M + Na]+, often generate dominant Y-ion fragments 

which may be quite useful for determining the topology of released N-linked glycans 

(309); the presence and completeness of this series depends on the composition, sequence 

and branching of the glycan. Both low energy and high energy CID MS/MS experiments 

of protonated, [M + H]+, native glycans and glycoconjugates can produce internal 

monosaccharide losses as well as monosaccharide rearrangements, making the 

interpretation of such spectra challenging (310, 311). Therefore, when studying native 

glycans, it is preferable to perform CID MS/MS experiments on metal-cationized species, 

as rearrangements and internal losses are rarely observed, and thus the spectra are less 

ambiguous (309).  

MALDI-TOF MS analyses of underivatized N-glycans often produce the sodiated 

ion of the composition [M + Na]+, and, when fragmented with high energy CID in a 

MALDI-TOF/TOF MS, the resulting spectrum usually contains a mixture of glycosidic 

bond fragments of the (B-, Y-, C-, and Z- types), as well as cross ring fragments of the 

(A- and X-type); however, the most abundant cross-ring fragments are 1,5Xj ions which 

do not provide interglycosidic linkage information (312). 

Permethylation of glycans aids in the interpretation of  MS/MS spectrum, since 

ions resulting from multiple fragmentations can easily be assigned due to the absence of 

one or more methyl groups where a previous glycosidic bond was present (308, 313). The 
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analysis of permethylated glycans increases both the sensitivity and fragmentation 

coverages, as was observed in the spectra of high energy CID fragmentation of sodiated 

[M + Na]+ ions, where abundant (B-, Y-, C-, Z-, A-, and X-type) ions are observed (314). 

Furthermore, many X-ions can be of the type that provide interglycosidic linkage 

information (314).  

The electron-based fragmentation techniques also generate informative fragments 

from the permethylated glycans. For doubly-sodiated permethylated N-glycans and linear 

oligosaccharides, [M+2Na]2+, when irradiated with 5-14 eV, in a process referred to as 

“hot” ECD, monosodiated, disodiated, and protonated fragment ions of the (C-, Z-, B-, 

Y-, A-, and X-type) are observed (315). In addition to the typical C- and Y-ions of the 

composition [M + Na]+, glycosidic fragments with  concurrent loss of two hydrogens can 

be observed as [Y + Na - 2H]+ and [C + Na - 2H]+ (315).  

Similar fragmentation patterns are observed for permethylated glycans using EED 

fragmentation, with ion intensities being dependent upon which metal is adducted and 

how many charges are present. An important advantage of EED is that singly-charged 

metal cation adducts such as [M + Na]+ or [M + Cs]+ can be analyzed (316, 317). ETD 

fragmentation of reduced and permethylated glycans containing a magnesium adduct, [M 

+ Mg]2+,  produces  abundant  glycosidic (C-, Z-type ions), and informative cross ring 

fragmentation  ions (A-, and X-type) in a much gentler and controlled manner, where the 

fragments are typically [P + Mg]˙+ or [P – H + Mg]+, where P = product, however, 

fragments can also be observed as [P + H]+, usually as B-ions (318). 
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Gas Chromatography-Mass Spectrometry (GC-MS) 

Gas Chromatography 

Gas chromatography separates compounds in a mixture based primarily upon 

differences in the boiling point (bp)of the compounds and the interaction of these 

compounds with the stationary phase (liquid or solid) and, to some extent, the interaction 

with the mobile phase (flowing carrier gas)(319, 320). The first practical GC setup was 

described for the separation of volatile fatty acids (320). In this setup, the mixture of 

volatile fatty acids was dissolved in a stationary phase composed of a high boiling point 

silicone oil, and the solution was placed onto a glass wool plug on the end of a capillary 

tube filled with diatomaceous earth in a temperature-adjustable sheath, and a stream of 

nitrogen flowed through the column to transport any volatile compounds. Separation of 

the components in the mixture was achieved by increasing the temperature of system to 

the boiling points of the analytes, where they left the stationary phase (the high boiling 

point silicone oil, entered into the stream of gas, and were resolved from one another 

along the length of the column as they travelled to the detector (a titration cell)(320). The 

necessity for the analytes to be volatile limits the scope of materials that can be analyzed 

using GC; however, the introduction of a heated injector port and advancement in 

derivatization procedures allows for lower boiling or non-volatile components  to be 

transferred into the gas phase without decomposition  and therefore provides a way to 

analyze these materials. There has also been a simultaneous advancement in GC detector 

technology, which greatly expanded the capabilities of GC analysis. One of the first 

widely utilized GC instruments was developed at The Dow Chemical Co. (321). That 
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apparatus was capable of separating mixtures with boiling points up to 350 °C and used a 

thermal conductivity detector (TCD) (321). Other methods of detection were developed 

for GC, including  flame ionization (FI) (322), flame photometric (FP)(323) and electron 

capture detectors (EC) (324). These detection techniques do offer sensitive detection 

capabilities, however, some of these are compound-specific, such as flame photometric 

which relies upon the phosphorescence of phosphorous of sulfur-containing molecules 

(323), or rely on the electronegativity of atoms (such as halogens and fluorine) with 

electron capture detectors (324). One of the major drawbacks of these detectors is that 

they don’t necessarily provide additional information on the compositions of the 

effluents, and therefore mass spectrometric detection techniques were developed. It 

should be noted that modern GCs can utilize multiple detectors by splitting the flow of 

gas; such a setup can be advantageous for specialized applications. 

GC Columns 

The initial descriptions of GC using a liquid stationary phase were limited with 

the choices of stationary phases and the analytes which could be analyzed. The 

development of capillary columns containing a thin inner coat of a solid support medium 

which could be impregnated with any stationary phase, leaving an open bore for 

increased carrier gas flow rates provided faster, more efficient, and extended separation 

capabilities (325). Thin film open bore capillary columns are encountered most often in 

the modern laboratory for general use; however, porous medium-packed columns are still 

used for specialized applications. Numerous books, reviews, and guides have been 

published which detail the different stationary phases used for GC and GC-MS columns, 
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and how these can be applied for specific purposes (326-329). For general GC-MS 

applications, a low bleed, non-polar DB-5 (5% phenyl-polymethylsiloxane/95% 

polymethylsiloxane) column is most often employed. This stationary phase was used for 

all the studies described in this dissertation. 

Gas Chromatography-Mass Spectrometry (GC-MS)  

The first publication describing the coupling of a gas chromatography instrument 

to a mass spectrometer was by Holmes and Morrell in 1957 (330). This early system 

demonstrated the utility of GC-MS in analytical chemistry. Gas chromatography provides 

a means to rapidly separate mixtures and showed very good sensitivity compared to most 

analytical methods at the time; coupling a GC to a mass spectrometer provided an 

additional dimension of data, thus allowing for the confident assignment of compounds, 

while not completely relying upon retention time matching to authentic standards, 

something very useful for identifying an unknown substance (330). In this proof-of-

concept GC-MS, only a narrow m/z window could be scanned within a reasonable time 

frame, providing limited information per GC-MS analysis (330). This was due to the 

limitations of the mass spectrometer being used, a Consolidated Electrodynamics 

Corporation model 21-103B magnetic sector instrument (330). Soon after this first 

publication, the report of coupling GC to a TOF-MS for detection was published, this 

TOF-MS could scan a broad m/z range very quickly, demonstrating that GC-MS could be 

a very informative technique when coupled to faster scanning instruments, although the 

low mass resolution (<400) and requirement for volatility limited the applications to 

fairly low MW and handling the flow rate was challenging for the pumping system 
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compounds (331). The development of GC-MS separation devices to enrich the sample 

delivered to the MS ion source and divert most of the gas away from the sample flow 

greatly accelerated the utilization of GC-MS for analysis of biological samples (332-334). 

From these first reports, this area of research expanded and developed quite rapidly, 

however, the basic principles remains the same. Currently, a typical GC-MS system will 

use a low-flow capillary column, with helium as the carrier gas; the effluent enters into 

the ion source of the mass spectrometer under vacuum conditions, where ions are 

produced with an electron impact ionization source similar in concept to the ion gauge 

setup of the pre-GC-MS era (335), see Fig. 1.10 for an EI source schematic and 

description, also refer to the “Electron-Impact Ionization” sub-section of Chapter 1 for a 

detailed review of the ionization process.  

Derivatization  

As mentioned previously, gas chromatography requires that the analytes are 

volatile, due to the reliance upon boiling point as a major determinant of separation. In 

addition, most biological molecules are polar (fatty acids, sugars, amino acids, etc), and 

the polar surfaces can interact with the surfaces of the GC system leading to 

chromatographic peak shape artifacts. Derivatization minimizes the interaction with any 

active surfaces, and, more importantly derivatization confers volatility. The derivatization 

product must be chemically and thermally stable. For carbohydrates, there are three 

common methods of derivatization for GC analysis. These include formation of 

trimethylsilyl (TMS) esters and ethers of monosaccharides (336), methyl ethers and esters 

(337, 338), and acetates (339, 340). 
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Permethylation of monosaccharides without reduction will yield two peaks due to 

the presence of an anomeric carbon on the reducing end that may be either the α or β 

epimer. Methanolysis opens the ring and subsequent permethylation (or other 

derivatization method) yields a single product (338). The acetylation of polyhydroxyl 

molecules, in particular monosaccharides, is often employed for their analysis by GC 

(339). The acetyl esters are not as volatile as the methyl ethers; this offers some 

advantage, in that the acetyl derivatives have higher boiling points, and show better 

resolution (340). The analysis of monosaccharides as the alditol acetates is well suited for 

the analysis of neutral sugars but cannot accommodate sialic acids (341). The analysis of 

alditol acetates has advantages over that of the TMS-esters, because of their increased 

stability, and their presence as a single chromatographic peak, whereas the TMS-esters 

give rise to two or more peaks per monosaccharide (336, 342). Formation and analysis of 

alditol acetates has been used for determining the monosaccharide composition of 

glycoproteins for a very long time, and has become a standard procedure (341). 

Derivatization of the non-reduced monosaccharides can also be performed, but this will 

yield two products for the α /β epimers, as noted above (340). Analysis of the 

monosaccharides as the alditol acetates is the method used most often for the studies 

described in this dissertation; however, analysis as the permethylated alditols was 

employed with good success for GC-MS analysis of the acetamido sugars 

GalNAc/GlcNAc.
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Chapter 2. Asparagine-Linked Glycans of Cryptosporidium parvum. 

 
This chapter was first published online on February 8, 2017 in the Molecular and 

Cell Proteomics Journal. It was published April 1st, 2017 in the special issue, “Proteomics 

and Infectious Disease: Defining Pathogens Properties and Virulence”. The full citation is 

shown below: 

Haserick, J. R., Leon, D. R., Samuelson, J., and Costello, C. E. (2017) 
Asparagine-Linked Glycans of Cryptosporidium Parvum Contain a Single Long Arm, 
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Abstract 

Cryptosporidium parvum causes severe diarrhea in infants in developing countries 

and in immunosuppressed persons, including those with AIDS. We are interested in the 

Asn-linked glycans (N-glycans) of C. parvum, because (1) the N-glycan precursor is 

predicted to contain five mannose and two glucose residues on a single long arm versus 

nine mannose and three glucose residues on the three-armed structure common in host N-

glycans, (2) C. parvum is a rare eukaryote that lacks the machinery for N-glycan-

dependent quality control of protein folding in the lumen of the Endoplasmic Reticulum 

(ER), and (3) ER and Golgi mannosidases, as well as glycosyltransferases that build 

complex N-glycans, are absent from the predicted proteome. The C. parvum N-glycans 
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reported here, which were determined using a combination of collision-induced 

dissociation and electronic excitation dissociation, contain a single, unprocessed mannose 

arm ± terminal glucose on the trimannosyl chitobiose core. Upon nanoUPLC-MS/MS 

separation and analysis of the C. parvum tryptic peptides, the total ion and extracted 

oxonium ion chromatograms delineated 32 peptides with occupied N-glycan sites; these 

were derived from 16 glycoproteins. Although the number of potential N-glycan sites 

with Thr (NxT) is only about twice that with Ser (NxS), almost 90% of the occupied N-

glycan sites contain NxT. The two most abundant C. parvum proteins modified with N-

glycans were an immunodominant antigen on the surface of sporozoites (Gp900) and the 

possible oocyst wall protein 1 (POWP1). Seven other glycoproteins with N-glycans were 

unique to C. parvum; five shared common ancestry with other apicomplexans; two 

glycoproteins shared common ancestry with many organisms. In summary, C. parvum N-

glycans are remarkable for the absence of ER and Golgi modification and for the strong 

bias toward occupancy of N-glycan motifs containing Thr. 

 
Introduction 

Cryptosporidium parvum and Cryptosporidium hominis are coccidian parasites 

(walled apicomplexans) that infect humans (both) and cows (C. parvum only) (49, 343, 

344). C. parvum and C. hominis are leading causes of diarrhea and death in children in 

the developing world and cause chronic diarrhea in AIDS patients (20, 345-347). While 

the massive outbreak of C. parvum in Milwaukee in 1993 was associated with 

contamination of municipal water, Cryptosporidium in developing countries is likely 

spread by poor hygiene (6, 348). Although there are mouse vaccine models and 
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veterinary vaccines for C. parvum, there are no human vaccines (349-353). Furthermore, 

Nitazoxanide, the drug used to treat C. parvum, is not effective in immune suppressed 

persons (354). 

We are interested in the N-glycans of Cryptosporidium for numerous reasons. 

Like Toxoplasma gondii, Entamoeba histolytica, and Trichomonas vaginalis, there is 

secondary loss of Alg genes, so that the predicted N-glycan precursor of C. parvum has a 

single long arm rather than the three-arm structure common in the host (Table 2.2) (110, 

355-359) . In contrast to most other eukaryotes, C. parvum has a paucity of predicted 

mannosidases and glycosyltransferases, which could modify N-glycans in the 

Endoplasmic Reticulum (ER) and Golgi (360) . C. parvum sporozoites label with 

cyanovirin-N, an anti-retroviral lectin that binds to the high mannose N-glycans of gp120 

in HIV (35, 361) . C. parvum is a rare eukaryote that lacks the machinery for N-glycan-

dependent quality control of protein folding, and there is no positive selection for N-

glycan sites in secreted proteins of C. parvum (111, 112, 362). Antigenic proteins on the 

surface of Cryptosporidium sporozoites (e.g., Gp900 and Gp40/Gp15), termed oocyst 

wall proteins (COWPs) and possible oocyst wall proteins (POWPs), are glycoproteins 

with numerous predicted N-glycan sites (31, 33-35, 39, 40, 42, 363-369). Finally, 

Concanavalin A, which binds some N-glycans and other mannose-containing structures, 

recognizes numerous C. parvum antigens, while release of N-glycans reduces binding of 

immune sera to parasite proteins on Western blots (36).  

Here we used tandem mass spectrometry to identify the proteins that contain N-

glycans, and determine the structures of N-glycans released with PNGase F. We found 
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that the N-glycans of C. parvum contain a single long arm, are barely processed in the ER 

or Golgi, and show an extreme bias for sequons with threonine. 

Materials and Methods 

Parasites and Reagents  

C. parvum oocysts were purchased from Bunch Grass Farm (Deary, ID) and 

handled under BSL-2 protocols approved by the Boston University Institutional Biosafety 

Committee. All chemicals and reagents, including proteomics grade trypsin, were 

obtained from Sigma-Aldrich (St. Louis, MO), unless otherwise stated. All solvents used 

for LC-MS were Fisher Scientific Optima™ grade (Thermo-Fisher Scientific, Waltham, 

MA). PNGase F was from New England Biolabs (Ipswich, MA).  

Protein Extraction  

Two distinct methods were utilized to extract proteins from whole C. parvum 

oocysts. The first method used a combination of mechanical disruption and detergent 

extraction. Briefly, 109 oocysts were concentrated by centrifugation at 1000 x g for 10 

min at 4 °C. The oocysts were resuspended in phosphate buffered saline (PBS) with 

EDTA-free cOmpleteTM protease inhibitor (Roche). The oocysts were broken using 0.5-

mm glass beads with 4 x 5 min cycles of vigorous bead beating at 4 °C. Samples were 

placed in an ice bath between cycles to mitigate any heating effect. Proteins were 

extracted using a buffer containing protease inhibitor (10 mM HEPES, 25 mM KCl, 1 

mM CaCl2, 10 mM MgCl2, 2% CHAPS, 6 M guanidine HCl, 50 mM dithiothreitol 

(DTT), pH 7.4). Insoluble material was removed by centrifugation at 21,130 x g for 5 
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min at 4 °C in an Eppendorf 5424R microcentrifuge. The supernatant was removed and 

added to a new microcentrifuge tube; proteins were precipitated by the addition of -20 °C 

acetone (acetone/sample v/v 8:1) and the tube was allowed to sit undisturbed for ≥18 h at 

-80 °C. The proteins were concentrated by centrifugation at 21,130 x g for 20 min at 4 

°C. The supernatant was discarded, and the pellet was washed 3x with ice-cold acetone. 

Any remaining solvent was removed in an unheated Speed Vac Plus speed vacuum 

(Savant, Thermo-Fisher Scientific). 

The second chemical method used hot phenol to kill and extract total proteins 

from 109 C. parvum oocysts (370, 371). C. parvum oocysts were pelleted by 

centrifugation, resuspended in 500 μl of distilled water, and added to a conical vial 

containing 1 ml of phenol, pre-heated to 68 °C in a heating block filled with sand. The 

vial was sealed, and the contents mixed by inversion every 2 min for 20 min.  The vial 

was removed, placed on ice, and gently centrifuged to facilitate good phase separation. 

The aqueous layer was removed and discarded. The interphase and phenol layers were 

carefully separated and saved. The proteins were subsequently precipitated from the 

phenol and interphase layers by the addition of eight volumes of -20 °C MeOH 

containing 100 mM NH4OAc, and allowed to sit undisturbed for ≥18 h at -20 °C. The 

precipitated proteins were concentrated by centrifugation, and pellets were washed 3x 

with -20 °C MeOH/0.1 M NH4OAc prior to lyophilization. 

Trypsin Digestions  

Three sets of samples were prepared for proteomics experiments. The fraction 

obtained from the mechanical extraction is referred to as “CHAPS” in the analysis. Two 
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fractions from the chemical extraction method came from the phenol layer (referred to as 

“phenol’) and the interphase layer (referred to as “interphase”). Precipitated proteins from 

these three samples were dissolved into 50 mM NH4HCO3, pH 8.0, reduced with 50 mM 

DTT for 20 min at 60 °C, cooled to RT, and then alkylated with iodoacetamide (IAA) for 

20 min at RT, while protected from light. Excess IAA was quenched with DTT, and 

peptides were generated by digestion with proteomics grade trypsin, overnight at 37 °C 

(1:20, w/w). The resulting tryptic peptides were dried by speed vacuum and desalted with 

C18 ZipTip concentrators (EMD Millipore, Danvers, MA), according to the 

manufacturer’s protocol. 

Release and Processing of N-Glycans  

N-glycans were released from total protein isolated from oocysts (100 µg) by 

overnight treatment at 37 °C with ten units of glycerol-free PNGase F (New England 

Biololabs), according to the manufacturer’s instructions, without the addition of NP-40. 

The product mixture was lyophilized, and the released N-glycans were separated from the 

proteins by addition of 0.1% trifluoroacetic acid (TFA) in LC-MS grade water. The 

aqueous phase was passed onto C-18 Sep-Pak cartridges (Waters Corporation, Milford, 

MA). The cartridges were washed with three bed volumes of 0.1% TFA/water, and the 

eluents were pooled and lyophilized. The N-glycan pool was reduced with 0.5 M 

NaBD4/2 M NH3 (aq) overnight at 55 °C. The reaction was quenched by dropwise 

addition of glacial acetic acid. The products were washed multiple times with 10% acetic 

acid/MeOH, dried with a gentle stream of nitrogen, and washed again multiple times with 

100% MeOH. Permethylation was performed by published methods (372, 373). Briefly, a 
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slurry of finely ground NaOH in dimethyl sulfoxide was added to the deutero-reduced 

sample; the suspension was mixed and methyl iodide was added. The solution was gently 

mixed at RT for one hr. To assure complete derivatization, the process was repeated three 

times. The product was isolated by extraction with water/chloroform, and the chloroform 

layer was dried in the SpeedVac. 

MALDI-TOF MS 

The purified deutero-reduced sample was dissolved in 20 μl of 1:1 MeOH/water, 

and 0.5 μl of this solution was spotted onto a stainless steel MALDI target with 2,5-

dihydroxybenzoic acid as the matrix. The mass spectra were recorded with an 

ultrafleXtreme MALDI-TOF/TOF MS (Bruker Daltonics, Bremen, Germany) equipped 

with a smartbeam II Nd-YAG laser (355 nm, 3 nsec, 2 kHz). Each spectrum was acquired 

by summing the signals recorded after 500 shots from each of 10 locations within the 

sample spot.  

Electron Excitation Dissociation (EED) Fourier Transform-Ion Cyclotron 

Resonance (FT-ICR) MS/MS  

The released, deutero-reduced, and permethylated N-glycans were dried and re-

suspended in 10 μl of 50% MeOH, 20 µM sodium acetate. The solution was loaded into a 

pulled glass capillary tube and directly infused into the ion source of a SolariX 12-T 

hybrid Qh-FT-ICR mass spectrometer (Bruker Daltonics), using a nano-ESI source. Each 

[M + Na]1+ parent ion was isolated by the quadrupole and accumulated in the collision 

cell for 8 seconds. The accumulated ions were then transferred into the ICR cell. 
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Fragmentation by EED was achieved via 14-eV electrons generated from a cathode 

source heated with 1.5 A current. Electron density and energy were modulated using the 

following parameters: bias, 14 V; ECD lens, -13.85 V; pulse width 1.0 sec. For each 

spectrum, 80 transients were averaged.  

LC-MS/MS 

The dried and desalted peptides were reconstituted in 2% ACN, 0.1% formic acid 

(FA) and separated on a NanoAcquity Ultra Performance Liquid Chromatography 

(UPLC) system (Waters), fitted with a  nanoAcquity Symmetry C18 trap column (5-μm 

packing, 180 μm x 20 mm) and a BEH130C18 analytical column (1.7-μm packing, 150 

μm x 10 cm). The mobile phase A was 99:1:0.1 (HPLC grade water/ACN/FA), and 

mobile phase B was 99:1:0.1 ACN/HPLC grade water/FA. Each sample was loaded on 

the trapping column for 4 min at 4 µl/min flow rate and then separated on the analytical 

column using a 45 or 90 min 2-40% mobile phase B linear gradient at 0.5 µl/min flow 

rate. The column was washed between runs and equilibrated for 30 min. The analytical 

column was coupled to a TriVersa NanoMate ion source (Advion, Ithaca, NY), and the 

ions were introduced into either an LTQ-Orbitrap-XL-ETD or a QE Plus mass 

spectrometer (both from Thermo-Fisher Scientific, San Jose, CA), which was operated in 

the positive-ion mode. MS spectra were obtained by scanning over the range m/z 350-

2000. MS/MS HCD spectra were acquired by isolating the top 5 (LTQ-Orbitrap) or top 

20 (QE+) precursor ions with a 2-m/z window and fragmenting the selected precursor 

ions with 27, 35, or 45 V HCD energy. The MS/MS HCD spectra were scanned from m/z 

100 to a value that was dependent upon the parent ion. 
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Manual Interpretation of Glycopeptide MS/MS Spectra  

Raw data files from LC-MS/MS experiments were manually interpreted using 

Qual Browser in the Xcalibur 2.2 software suite (Thermo-Fisher Scientific). HCD 

MS/MS spectra containing oxonium ions were manually interpreted to determine the 

peptide sequence and the linear arrangement of the glycan. The y1 ion, corresponding to 

the residue K or R, was used as the starting point for most of the manually interpreted 

spectra. The resulting peptide tag was then searched using the online NCBI BLASTP 

algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi) against the predicted C. parvum 

proteome, and the entire nr database (356-358) . When a match was found, we 

determined the mass difference between the predicted trypsin generated peptide [M + 

H]1+ and that of the precursor, converted to [M + H]1+. The glycosidic bond fragment 

series, typically accounting for the most abundant peaks in the spectra, were sequenced in 

a similar manner, so far as each series could be followed. Missing residues were 

accounted for by calculating the difference between the highest member of the assigned 

series and the total observed molecular weight. Extracted ion chromatograms were 

generated to aid in the assignment of the numerous glycoconjugates.  

LC-MS/MS Proteomics Database Search and Analysis 

Once the possible N-glycoforms were discovered from the manual interpretation, 

these values could be utilized to search against the predicted C. parvum proteome as 

possible dynamic modifications. Database searches were performed using the PEAKS 

software suite version 7.5 (Bioinformatics Solutions Inc., Waterloo, ON, Canada). The 

following parameters were set for the search: the data refinement step corrected for the 
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precursor m/z, for the PEAKSdenovo search stages, trypsin was specified as the enzyme, 

8.0 ppm parent mass error tolerance, 0.05 Da fragment mass error tolerance, with 

carbamidomethyl cysteine set as a fixed modification, and possible dynamic 

modifications set to include methionine oxidation, HexNAc at serine/threonine; 

Hex6HexNAc2 and Hex5HexNAc2 on Asn. A maximum of five dynamic modifications 

was specified. The PEAKSDB search stage was identical to the PEAKSdenovo stage, 

with the exception that up to three missed trypsin cleavages were allowed, with the 

possibility of one non-specific cleavage. Searches were performed against the C. parvum 

Iowa-II predicted proteome release-5.0 obtained from the Cryptosporidium Genome 

Resource (cryptodb.org) which contained 3,803 entries (357, 358). False discovery rate 

(FDR) estimation was enabled. For the final PEAKSPTM stage, the de novo score 

average local confidence (ALC) threshold was 15 and the peptide hit threshold (-10 logP) 

was set to 30. All possible Unimod modifications were considered for this stage. The 

PEAKSPTM report was exported as a mzidentML with a FDR set to 5%, ALC 50% for 

de novo only, and proteins with a score of (-10 logP) ≥ 20 containing unique peptides ≥ 

2. Each data file was analyzed individually for all samples and replicates. 

Scaffold Analysis 

The mzidentML files from the PEAKSPTM searches were imported into the 

computer program Scaffold version 4.6 for further analysis (Proteome Software, Inc., 

Portland, Oregon). Three “Biosamples” and two “categories” were specified for the 

samples. The two categories corresponded to the method of protein extraction, either 

“mechanical” or “chemical”. The sample names correspond to the sub-sample 
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classification, the “CHAPS” was the mechanically broken 2% CHAPS extraction buffer 

soluble portion, and the “phenol” and “interphase” samples correspond to the phenol and 

interphase layers from the chemical extraction procedure. Each sample was analyzed 

independently, with experiment wide grouping and protein clustering. The probability 

model utilized was Peptide Prophet with delta mass correction. All spectra that were 

assigned by the software as possible N-glycosylated peptides were manually reviewed for 

quality and proper assignment to compile the final lists of glycopeptides and proteins that 

are available in the online supplemental file Excel S3 

(http://www.mcponline.org/content/16/4_suppl_1/S42/suppl/DC1).  

Analysis of N-Glycosylation Sites  

For each protein observed to be N-glycosylated, the lists of occupied and total 

potential N-linked sites were compared. The “occupied” dataset was created from the list 

of peptides modified with an N-glycan, taking for each a nine-amino-acid window, 

centered on the modified asparagine. The same window was taken for all tryptic peptides 

which contained a canonical N-glycosylation sequon (NxS/T, N≠P) that could 

theoretically be generated from the group of observed glycoproteins. The program 

WebLogo v3.5.0 from the Department of Plant and Microbial Biology, University of 

California, Berkeley, was used to generate logos (374).  

Bioinformatics  

Predicted proteins of C. parvum with occupied N-glycan sites were analyzed for 

signal peptides and transmembrane helices using SignalP 4.0, TMHMM 2.0, and Phobius 
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(375-379). Conserved domains were identified, and proteins were compared with those of 

other apicomplexans, eukaryotes, and bacteria (356-358, 378, 379). Alg enzymes, 

glucosidases, mannosidases, and OST peptides were predicted from whole genome 

sequences of C. parvum and T. gondii, using S. cerevisiae as a model (63, 76, 110, 112, 

355, 359). Protein cartoon schematics were drawn using the program DOG 1.0 in 

combination with the software Inkscape 0.91 (380) 

Analysis of Released N-Glycans  

To assist in the interpretation of the MS/MS spectra, we used the software 

GlycoWorkBench 2.1 (release 146) to generate theoretical fragmentation lists. Additional 

theoretical m/z values were generated using Microsoft Excel. Observed and theoretical 

peak lists were compared to obtain the best match. Assignments within 1-ppm error were 

considered to be a likely match. In the event that there were isobaric ion values, 

annotations were preferentially assigned to the ion that would be generated from a single 

fragmentation event. A single cross-ring fragment in combination with one or more 

glycosidic cleavages was considered only if the simple glycosidic bond fragment was 

also observed within the spectrum. All annotations were assigned only after a thorough 

manual review of the spectrum using Bruker DataAnalysis software suite version 4.0 SP5 

build 283. Manual inspection helped to assign ions that didn’t fit the list of theoretical 

values for expected cleavages. 

The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset 

identifier PXD005503 and 10.6019/PXD005503. 
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Results 

N-Glycans of C. parvum are Much Simpler than those of the Host and Most Other 

Parasites.  

The predicted N-glycan precursor of C. parvum, based upon its Alg enzymes, is 

Glc2Man5GlcNAc2 (Table 2.2) (110, 355, 359, 362). MALDI-TOF MS of N-glycans that 

had been deutero-reduced and permethylated after being released by PNGase F from 

oocyst glycoproteins showed Hex6HexNAc2 ([M + Na]1+ m/z 1800.906) to be the most 

abundant form, while Hex5HexNAc2 ([M + Na]1+ m/z 1596.805) is less abundant (see 

Fig. 2.1). The C. parvum N-glycans are much simpler than those of calf glycoproteins, 

suggesting oocysts, which are washed with PBS and purified on a CsCl gradient, are 

clean of host tissues (125). The released N-glycans also match those present on 

glycopeptides which were separated by reversed phase C18 nanoflow chromatography, 

and identified by manual interpretation of HCD MS/MS spectra (see Fig. 2.4 and Table 

2.1).  

EED FT-ICR MS/MS was performed on the deutero-reduced and permethylated 

Hex6HexNAc2 in order to generate the glycosidic fragments that provide topographic 

information (Fig. 2.2) and the cross-ring fragments which provide linkage information  

The glycan topology is indicated by complete glycosidic bond fragmentation, 

shown dominated by the non-reducing end fragments (Cn-2H) series; in addition, 

reducing end glycosidic bond fragments of the (Yn-2H), and Zn series are prominent (Fig. 

2.2). The single long arm topology is suggested by the sequential Z3α to Z6α ions, and the 

parallel sequential (Y3α-2H) to (Y6α-2H) series, where 1-4 hexoses are attached without 
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branching. If branching were present in this tetrasaccharide moiety, there would be a gap 

in the linear series, and double glycosidic bond fragments might be observed along the 

chain. Instead, the only double glycosidic bond fragment series (Z3α/Z3β + 2H) through 

(Z6α/Z3β + 2H) correspond to cleavages involving the short arm (Fig. 2.3, Appendix 2A). 

The (Z3α/Z3β + 2H) ion indicates there is no branching from the chitobiose core. The 

remaining double glycosidic fragments of the (Zn/Z3β) series, where Zn is Z4α to Z6α, show 

loss of the single hexose Z3β branch, with no branch points down the long arm (Fig. 2.3, 

Appendix 2A).  

The EED spectrum also allowed assignment of the linkage positions, as shown in 

Fig. 2.3. The key cross-ring fragment 0,4A5 and its paired reducing end fragment (0,4X2-

2H), show that the short arm has a single hexose attached via a 1,6-linkage to the central 

hexose. The observation of 3,5A5 and 0,3A5 ions support this assignment. The ion pairs 

(1,3A5 and 1,3X2) indicate the longer arm, containing four hexose residues, is attached at 

the 2 or 3 position to this central hexose. Observation of the 0,2X2 ion eliminates the 2 

position as the linkage site, thus, narrowing the possibility for the long arm linkage to 

position 3. Although the 1,3A5 and 1,3X2 ions are isobaric to the 2,4A5 and 2,4X2 ions and 

these might allow assignment of the linkage to the 3 or 4 position, the presence of the 

3,5A5 ion rules out linkage at the 4 position. In sum, these cross-ring fragments indicate 

that the long arm containing four hexoses is attached by a 1,3-linkage to the central 

mannose.  

The observation of 1,3A4α and 1,3A3α ions suggest that second and third hexoses on 

the long arm are either 2- or 3-linked. 0,2A3α or 0,2A4α  fragments would be expected if 
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these hexoses were linked at the 3 position; their absence suggests that the links are on 

the 2 position. The presence of an internal fragment 1,3X5α/B5 indicates that the terminal 

hexose is 1,3-linked and this assignment is confirmed by the observation of the 0,2A2α-2H 

ion that rules out the possibility that the terminal hexose is 2-linked (Fig. 2.3).  

EED FT-ICR MS/MS was also performed on Hex5HexNAc2, which is the less 

abundant C. parvum N-glycan (Figs. 2.7 and 2.8, Appendix 2A). The same topology as 

described for the aforementioned Hex6HexNAc2 (minus a terminal hexose on the long 

arm) is indicated by the complete (Cn - 2H), Z, (Yn - 2H), and (Znα/Z3β + 2H) series where 

n = 3, 4, or 5 (Fig. 2.7 and Appendix 2A). A series of cross-ring fragments similar to the 

Hex6HexNAc2 glycan were observed for this glycoform. The observation of the ion pairs 

0,4A4 and (0,4X2-2H) indicate that a single hexose is linked at the 6 position; this 

assignment is further supported by the ions 3,5A4 and 0,3A4 (Fig. 2.7). The longer trihexose 

arm is linked at the 3 position, as indicated by the ion pairs 1,3A4 and (1,3X2-2H), in 

conjunction with the 0,2X2 ion, ruling out the possibility of a 2 link for the isobaric pairs 

2,4A4 and (2,4X2-2H). Therefore, it can be concluded that a single hexose is linked 1,6 to 

the first hexose on the core with the trisaccharide series linked 1,3 to the same residue. 

These results suggest the less abundant C. parvum N-glycan is likely Man5GlcNAc2 and 

has a structure identical to Hex6HexNAc2 without the terminal 1,3 linked hexose on the 

long arm. While these methods cannot differentiate between isobaric monosaccharides, 

(e.g., mannose from glucose), these methods can accurately define the topology of the 

glycan and the linkages connecting each monosaccharide. The structures we have defined 

are consistent with the N-glycan structure which has been proposed on the basis of the 
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presence or absence of the highly conserved N-glycosylation biosynthetic pathway 

enzymes identified in the C. parvum genome (Table 2.2 and Fig. 2.8). The topology of 

the Hex5HexNAc2 structure defined here, presumably Man5GlcNAc2, is different from 

the Man5GlcNAc2 glycoform produced when host Man9GlcNAc2 is processed by ER 

mannosidase 1 in higher organisms, which has 1,3 and 1,6 dimannosyl branches off the 

first 1,6-linked Man (112, 355).  

Confident Assignment of Cryptosporidium parvum N-Glycosylated Peptides.  

To rule out the possibility of host cell contamination that could occur since C. 

parvum is an obligate intracellular parasite, the MS/MS spectra of glycopeptides from a 

whole oocyst lysate were manually interpreted. Peptides generated from a trypsin 

digestion of proteins isolated from oocysts were separated on a reversed phase-C18 

nanoflow column interfaced to a mass spectrometer, as described in the methods section. 

Extracted oxonium ion chromatograms for m/z 204.08 (HexNAc) and m/z 366.13 

(HexNAc-Hex) were very abundant throughout the MS/MS spectra recorded across the 

HPLC separation (Fig. 4A). These XIC pointed out which spectra should be manually 

interpreted to obtain sequence information on both glycan and peptide. A representative 

HCD spectrum for [M + 2H]2+ m/z 1092.9426 eluting at 15 min, marked by the carat in 

Fig. 2.4A, is interpreted in Figs 4B and 4C. Ions containing sequential glycosidic bond 

fragments dominate the spectrum and provide the linear sequence for Hex6HexNAc2 (Fig. 

2.4B). The glycosidic fragments could be traced down to the aglycon, the peptide with 

[M + H]+ m/z 806.3992. Lower abundance peptide backbone fragments are observable in 

the magnified view of the spectrum (Fig. 2.4C). The complete y-series is interpretable, 
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starting from y1 m/z 175.1189, to the full-length peptide, observed at m/z 806.3992, thus 

revealing the peptide sequence NSTTEVR, and indicating the Hex6HexNAc2 was linked 

to Asn (Fig. 2.4C). Checking the peptide sequence against the NCBI nr and C. parvum 

proteome databases, utilizing the blastp algorithm, revealed that the peptide belongs to 

the C. parvum protein POWP1 (Table 2.1). In summary, the linear glycan sequence, 

conjugation site, and complete peptide sequence, can all be determined from a single 

spectrum.  

This method of manual interpretation was continued systematically for the 

remaining spectra containing one or more oxonium ion(s). Many of the most abundant 

peptides mapped to the same protein, POWP1. Five N-glycosylation sites were mapped to 

this protein; all contain either Hex5HexNAc2 or Hex6HexNAc2 (Fig. 2.5 and Table 2.1). 

Many of the MS/MS spectra assigned to glycopeptides contained Y1 and Y2 ions that 

arose via glycosidic cleavages adjacent to the HexNAc residues in the chitobiose core, 

with charge retention on the peptide fragment, but none of these MS/MS spectra 

contained (Y1 + 146) or (Y1 + 162) ions that would indicate the presence of a 

deoxyhexose or hexose branch on the inner HexNAc residue. No spectra indicated the 

presence of glycopeptides that did not originate from C. parvum. This result 

demonstrated that the preparation was clean from contaminating host material, and 

assured that the released N-glycans are of parasite origin, as the results had already 

suggested (Figs. 2.2, 2.3, 2.7, 2.8). The manual interpretations of the glycopeptide spectra 

are consistent with the results obtained by analysis of the released glycans and underscore 

the very limited repertoire N-glycans in this organism. This information could then be 
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applied to perform semi-automated database searches to dig deeper in the spectra, 

allowing for faster processing of replicate samples. 

Heavily Glycosylated Proteins Include an Immunodominant Protein (Gp900) and a 

Putative Oocyst Wall Protein (POWP1). 

 Thirty-two tryptic peptides with occupied N-glycan sites were identified. These 

peptides derive from 16 glycoproteins, which include the vaccine candidate Gp900 and 

probable oocyst wall protein POWP1 (Fig. 2.5) (31, 33-35). Some proteins (e.g., Gp900) 

but not others (e.g., POWP1) showed a higher relative abundance for Hex6HexNAc2 

versus Hex5HexNAc2 (Table 2.1), as did the released N-glycans (Fig. 2.1) (35). No other 

N-glycoforms were detected.  

Like Gp900, two Cryptosporidium N-linked glycoproteins that are also unique 

(UCG1 and UCG2) contain long runs of Thr, which are likely modified by O-linked 

GalNAc (31, 33, 53). Five other unique glycoproteins with occupied N-glycan sites 

(UCG3 to UCG7) remain uncharacterized. Other observed glycoproteins have analogs 

elsewhere in apicomplexa: the glideosome-associated protein (GAP50), three putative 

adhesion proteins with a Limulus coagulation factor C lectin (LCCL) domain (CCp1, 

CCp2, and FNPA), and a copper amine oxidase (CAO) are conserved throughout 

apicomplexa (53, 63, 356, 358, 379, 381, 382). An O-GalNAc transferase 4 is present in 

apicomplexans and mammalian hosts, while GMC oxidoreductase (GMCO) is present in 

apicomplexans, metazoans, fungi, plants, and bacteria (125) . 
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Nearly 90% of the Occupied N-Glycan Sites Contain Thr Rather than Ser.  

N-glycans of C. parvum are not used for quality control of protein folding, and 

there is no positive selection for N-glycan sites in its secreted proteins (111, 112, 359). 

However, we observed a large difference in the rate of occupancy of potential N-

glycosylation sequons. Despite the 5:3 ratio of Thr (100) and Ser (61) in the second 

position relative to Asn, the number of occupied N-glycan sites overwhelmingly (9:1) 

favors Thr (35) over Ser (4), as shown in the WebLogo in Fig. 2.6 and the data in Table 

1. (374). Notably, only 11 total spectra were assigned to peptides with the asparagine 

modified in an NxS sequon, compared to the 412 that correspond to N-glycosylation on 

the NxT motif (Table 2.1, Appendix 2B).   

Discussion 

Alg enzymes, which are required for the synthesis of N-glycan precursors, are 

reliable predictors of the types of N-glycans transferred to the nascent peptides, because 

these glycosyltransferases are constitutively expressed in the ER (110, 355). Two 

peculiarities present themselves with regards to the Alg enzymes of C. parvum. First, the 

Alg13 peptide of the glycosyltransferase that adds the second GlcNAc to the 

pyrophosphate-linked precursor can easily be identified in Cryptosporidium muris and in 

all other organisms that make N-glycans, but Alg 13 is absent from the predicted proteins 

of C. parvum and C. hominis (Table 2.2) (63, 356-358). Second, while the C. parvum N-

glycan precursor is predicted to be Glc2Man5GlcNAc2, Hex7HexNAc2 was absent from 

the N-glycans released with PNGase F and from tryptic glycopeptides (Figs. 2.1 to 2. 4 

and Table 2.1). This result suggests that Alg8, which adds the second glucose to the N-



94 
 

 

glycan precursor, is not active, or a glucose residue is rapidly removed by glucosidase 2 

from Glc2Man5GlcNAc2 after it is transferred to the nascent peptide. In contrast, T. 

gondii, which has a predicted N-glycan precursor composed of Glc3Man5GlcNAc2, has 

been shown to have glycoproteins containing Hex8HexNAc2 and Hex7HexNAc2 (53).  

While it is well-known that the oligosaccharyltransferase (OST) that adds N-

glycans to the nascent peptide prefers N-glycan sites with Thr over those with Ser, such a 

strong bias for Thr as that observed here for occupied N-glycan sites of C. parvum has 

not previously been described, to our knowledge (111, 383). The composition of the C. 

parvum OST, which includes the catalytic Stt3 subunit and three non-catalytic subunits 

(Table 2.2), is similar to that found in other apicomplexans, while the OSTs of some 

parasites (e.g., Giardia and Trypanosoma) only contain Stt3 (76). 

The binding of the anti-retroviral lectin cyanovirin-N to C. parvum strongly 

suggested that the parasite contains a high mannose N-glycan (35, 361). Cyanovirin-N 

also binds to Entamoeba and Trichomonas, each of which builds its N-glycans from a 

precursor composed of Man5GlcNAc2 (384-386). The N-glycan profile of C. parvum 

differs from those of the other parasites in the relative abundance of GlcMan5GlcNAc2 

and the absence of mannosidase products (Man4GlcNAc2 and Man3GlcNAc2) and/or 

hybrid and complex N-glycans, which contain LacNAc arms (Trichomonas) or galactose 

capped with Glc (Entamoeba) (386, 387). Other parasites (Trypanosoma, Leishmania, 

and Acanthamoeba) and Dictyostelium have N-glycan precursors with three mannose 

arms and make numerous complex N-glycans that contain LacNAc, fucose, and xylose 

(87, 388-390). Finally, the N-glycans of the mammalian hosts (mice, humans, cats, etc.) 
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are much more complex than those of C. parvum, which are remarkable for their 

simplicity (125). Whether the high mannose N-glycans of C. parvum are involved in 

antigen masking and/or pathogenesis, as has been shown for high mannose N-glycans on 

gp120 of HIV and on HA of influenza virus, remains to be determined (391-393). It has 

been established that many of the C. parvum proteins which elicit a strong immune 

response are N-linked glycoproteins (31, 36). Attempts have been made to develop 

vaccines from several of these glycoproteins; however, the critical details such as which 

amino acids are modified and with what glycan structure(s) were left unanswered (394, 

395). The results we have presented here fill in the missing details regarding the N-

glycosylation of the immunodominant antigen Gp900, and we also expand upon the 

number of N-glycosylated proteins previously described in the literature. Of particular 

interest is the abundant and densely glycosylated protein POWP1. The function of 

POWP1 remains to be determined. These details may be crucial in providing a means to 

finally developing an effective, synthetic glycoprotein or glycopeptide-based vaccine 

against cryptosporidiosis.  
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Tables 

 

Table 2.1. Summary of Identified N-Glycosylated Peptides 

The table contains the list of proteins, peptides observed to contain intact N-glycans, as well as the number of spectra 
corresponding to the HexNAc2Hex5 or HexNAc2Hex6 glycoforms.  
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Protein C. parvum T. gondii 
Alg7 cgd5_2240 TGGT1_244520 
Alg13 absent* TGGT1_268340 
Alg14 cgd7_4930 TGGT1_207070 
Alg1 cgd7_1810 TGGT1_230590 
Alg2 cgd1_230 TGGT1_227790 
Alg11 cgd4_2990 TGGT1_246982 
DPM1 cgd5_2040 TGGT1_277970 
Alg5 cgd5_2590 TGGT1_216540 
Alg6 cgd4_3120 TGGT1_262030 
Alg8 cgd1_2100 TGGT1_314730 
Alg10 absent TGGT1_321660 
Gls 1 absent TGGT1_242020 
Gls2-α cgd8_1420 TGGT1_253030 
ER MNS1 absent** absent 
Golgi MNS2 absent absent 
UGGT absent absent 
Calnexin absent TGGT1_310320 
ERGIC53 cgd6_5140 TGGT1_258950 
STT3 cgd6_2040 TGGT1_231430 
WBP1 cgd2_1650 TGGT1_203970 
Ribophorin1 cgd6_5070 TGGT1_202572 
DAD1 cgd5_2300 TGGT1_305870 

 

Table 2.2. Glycosyltransferase Enzymes Predicted from the Genomes of C. parvum, and a Related Organism, T. 
gondii.  
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Figures 

 

Fig. 2.1. MALDI-TOF MS: Released, Deutero-Reduced Permethylated N-glycans [M + Na]1+ 

Total N-glycans released from C. parvum glycoproteins with PNGase F, reduced with sodium borodeuteride, and 
permethylated. Only two glycoforms are observed: Hex5HexNAc2 and Hex6HexNAc2.  
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Fig. 2.2. Topology of the Most Abundant Glycoform Hex6HexNAc2 Determined by EED FT-ICR MS/MS. 14-eV 
EED FT-ICR MS/MS: Hex6HexNAc2 [M + Na]1+ m/z 1800.9192. 

Glycosidic fragments provide topological information. The spectrum is labeled only with glycosidic fragments that 
indicate the topology of the glycoform, revealing a single long arm and an unmodified core. All assignments can be 
viewed in Appendix 2A.   
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Fig. 2.3. Glycosidic Linkage Determination of the Most Abundant Glycoform Hex6HexNAc2 Determined by EED 
FT-ICR MS/MS. 14-eV EED FT-ICR MS/MS: Hex6HexNAc2 [M+Na]1+ m/z 1800.9192. 

Cross-ring fragments provide linkage information. The spectrum is labeled with only the informative cross ring 
fragments that provide linkage information. All assignments can be viewed in Appendix 2A.  
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Fig. 2.4. De Novo Identification of Glycopeptides from a Whole C. parvum Oocyst Lysate. 

 (A) Base peak and extracted oxonium ion chromatograms from a reversed phase C18 separation. The top trace shows 
the base peak chromatogram from the MS. The middle and bottom chromatograms are extracted oxonium ion 
chromatograms (XIC) from the 35-V HCD MS/MS spectra, corresponding to m/z 204.08 (HexNAc) and m/z 366.13 
(HexNAc-Hex), respectively. The carat located at 15 min. indicates the time point for recording of the MS/MS 
spectrum shown in Fig. 4B and 4C. (B). 35-V HCD MS/MS spectrum of an N-glycosylated Peptide: NSTTEVR 
modified with Hex6HexNAc2, [M + 2H]2+ m/z 1092.9426. Prominent glycosidic bond fragmentation is observed, 
delineating the sequence of the glycan. (C). Peptide sequence of the aglycon. Lower intensity y-ion peptide backbone 
fragments are observed in the same spectrum. Peptide fragment ion assignments are shown on this magnified view; 
these extend from y1 (Arg) at m/z 175.1189 to the complete aglycon, m/z 806.3992, defining the complete peptide 
sequence as NSTTEVR.  
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Fig. 2.5. Occupied N-Glycosylation Sites of POWP1 (cgd2_490). 

The most densely N-glycosylated protein is represented as a cartoon schematic. The occupied peptides are shown; the 
bold and italicized asparagine residues indicate the site of attachment of the glycan. 

 

 

Fig. 2.6. Total and Occupied N-Glycosylation Sequons in the Observed N-Glycosylated Proteins. 

(A). Web-Logos, generated using WebLogo 3.5.0, were compiled for all the peptides containing the canonical N-
glycosylation sequons from proteins observed to be glycosylated (Total). (B). Peptides observed to be occupied are 
represented by the (Occupied) logo. 
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Fig. 2.7. Topology of the Second Most Abundant Glycoform Hex5HexNAc2 Determined by EED FT-ICR 
MS/MS. 14-eV EED FT-ICR MS/MS: Hex5HexNAc2 [M + Na]1+ m/z 1596.8199.  
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Fig. 2.8. Glycosidic Linkage Determination of the Second Most Abundant Glycoform Hex5HexNAc2 Determined 
by EED FT-ICR MS/MS. 14-eV EED FT-ICR MS/MS: Hex5HexNAc2 [M + Na]1+ m/z 1596.8199. 
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Chapter 3. The N-Glycosylated Proteins of T. gondii. 

Introduction 

Toxoplasma gondii, as described in the general introduction, is an obligate 

intracellular parasite capable of infecting most animals and birds. Infection is primarily 

acquired through the ingestion of oocysts which are secreted in feline feces, the definitive 

host of T. gondii (47, 48, 396). There are several possible sources of infection via 

oocysts. Pet cats which spend time outdoors and consume animals are at risk of carrying 

toxoplasmosis, and thus oocysts could potentially contaminate litter boxes in the home, 

posing a risk to household members (47). It has been demonstrated that oocysts remain 

infectious for very long periods of time under common environmental conditions (397, 

398). In one study, sporulated oocysts remained infectious even after 18 months and two 

winters buried in soil in Kansas, and oocysts are likely infectious for longer periods of 

time than could be ascertained (398). Soil contamination poses a risk to gardeners and 

children who dig contaminated soils and to consumers of improperly washed produce 

grown in contaminated soil (49). Infection may also occur through the ingestion of 

undercooked or raw meat of infected animals, where T. gondii bradyzoites may reside in 

tissue cysts (399).  

Toxoplasmosis is observed worldwide, with significant percentages of people 

testing seropositive for previous infection (400). Infection with Toxoplasma gondii is 

often asymptomatic, or only presented with short flu-like symptoms and 

lymphadenopathy; however, chorioretinitis can occur in immunocompetent individuals 

(401). Protective immunity keeps infection in check, but latent infections persist in tissue 
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cysts which can become active systemic infections if the immune system becomes 

deficient, such as in AIDS or during immunosuppressive therapy (402, 403). Disease in 

the immunodeficient often leads to severe neurological complications and can be lethal 

(404-406). Toxoplasmosis in pregnant women puts the fetus as risk, and spontaneous 

miscarriage, stillbirths, or neonatal death can occur (407). 

There are relatively few pharmacological treatments available to treat T. gondii 

infection. These are limited to pyrimethamine co-administered with sulfadiazine, or 

pyrimethamine and azithromycin (408). There does not appear to be a totally effective 

treatment for those with AIDS, and infection with T. gondii requires long-term continual 

treatment (409). In pregnant women, spiramycin may be administered to try to prevent 

congenital transmission, however, this is considered to be an experimental treatment by 

the Food and Drug Administration, and its efficacy is questionable (410) 

N-Glycosylation in T. gondii 

Although several in silico studies have partially described the pathways, the N-

glycosylation pathway in T. gondii remains to be fully characterized.  It was first 

predicted that T. gondii has the lipid-linked glycan Dol-PP-GlcNAc2Man5Glc3, due to the 

presence of the yeast homologs Alg7, Alg1, Alg2, Dpm1, Alg5, Alg6, Alg8, Alg10, Stt3, 

and the absence of Alg3, Alg9, Alg12, in its sequenced genome (110). This prediction 

was corroborated by the results from Garénaux et al., 2008, where the authors isolated the 

Dol-PP-glycans from T. gondii, finding mostly HexNAc2Hex9 and a small amount of 

HexNAc2Hex8 via MALDI-TOF MS analysis. The HexNAc2Hex9-containing conjugate is 

likely host cell contamination, while the HexNAc2Hex8 originates from the parasite (51). 
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N-Glycosylated Proteins of T. gondii 

There have been relatively few reports describing the N-glycans or the N-

glycosylated proteins in T. gondii. One early report definitively identified the tachyzoite 

surface protein Gp23 as being N-glycosylated, as T. gondii tachyzoites incorporated 

tritiated monosaccharides into the surface protein gp23, and the radioactivity could be 

released with PNGase-F treatment (411). Several putative glycoforms with compositions 

HexNAc2Hex(5-9), were identified in another report after PNGase-F treatment of a T. 

gondii lysate; however, there was concern of host cell contribution to the pool of released 

N-glycans (51). The protein glideosome associated protein 50 (Gap50), an integral 

membrane protein, part of the “glideosomal” complex important for cell invasion, was 

identified as being N-glycosylated by shift on an SDS-PAGE gel after PNGase-F 

treatment (412). The first study to clearly identify glycopeptides observed, two 

glycoforms, HexNAc2Hex7 and HexNAc2Hex8, on a single Gap50 peptide 

(136)NYTSEALR(143) (52). The same research group followed up with additional 

experiments, and determined that the two remaining N-glycosylation sequons were 

occupied with similar N-glycan compositions (53).  

Materials and Methods 

Parasite Cell Culture and Protein Extraction 

T. gondii type I RH tachyzoites were cultured on a confluent layer of human 

foreskin fibroblasts (HFF), as previously described (413). The extracellular tachyzoites 

were separated from any residual host cell material by filtration through a 3-μm Whatman 

Nucleopore polycarbonate membrane (GE Healthcare Life Sciences, Marlborough, MA), 
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as previously described (414). Briefly, 1.9x109 extracellular tachyzoites were filtered 

through 47-mm diameter, 3-µm Nucleopore polycarbonate membranes. The material 

which passed though the membrane was lightly centrifuged (100 x g, 3 min., 4 °C) to 

facilitate the removal of residual host debris. To collect the T. gondii tachyzoites, the 

supernatant was carefully decanted to a new tube and then concentrated by centrifugation 

(1,450 x g, 15 min., 4 °C). The cell pellet was washed four times with 4 °C PBS, with 

centrifugation between washes, as described above. 

Enrichment of N-Glycosylated Proteins 

Proteins containing N-linked glycans were enriched using methods similar to 

those described for the enrichment of O-fucosylated proteins from T. gondii extracellular 

tachyzoites, with modifications to accommodate the lectin Con-A (415). The 

concentrated tachyzoites were resuspended in lysis buffer (2% SDS, 0.15 M NaCl, 0.1 

mM DTT in 40 mM TrisHCl pH 7.4) to a concentration of ~109 cells/mL, heated at 50 °C 

for 20 min., and were then allowed to cool to RT for 30 min. The lysis solution was then 

diluted with PD Buffer (0.8% (w/v) n-octyl-glucopyranoside, 0.15 M NaCl, 40 mM DTT, 

2 mM MnCl2, 2mM CaCl2, 20 mM TrisHCl pH 7.4, EDTA-free complete protease 

inhibitor tablets (Roche, Basel, Switzerland)), with a volume large enough to dilute the 

SDS to 0.03%. To the diluted lysate, 12 μg of biotinylated-ConA (Vector Labs, 

Burlingame, CA) was added to bind the N-glycosylated proteins. To ensure maximum 

binding, the solution was mixed on a rotary mixer for 2 h at 4 °C. Next, 240 µL of 

Dynabeads® MyOne™ Streptavidin T1 (ThermoFisher Scientific, Waltham, MA) which 

were pre-washed with PD Buffer, were added and mixed for 30 min at 4 °C on a rotary 
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mixer. The superparamagnetic beads were collected using a DynaMag™-15 magnetic 

rack (ThermoFisher Scientific), then washed five times with 4 °C PD Buffer. The N-

glycosylated proteins were then specifically eluted from the Con-A lectin by incubation 

with 100 µL of (0.2 M methyl α-D-glucopyranoside/0.2 M methyl α-D-

mannopyranoside, in PD Buffer) and lightly shaken at 4 °C for 16 h. The eluted proteins 

were stored at -80 °C until they were processed for mass spectrometry experiments. 

Protein Precipitation and Trypsin Digestion 

Two samples were prepared for this study. The first sample originated from the 

wash (un-bound) fractions from a previous AAL-lectin enrichment experiment, as 

described previously (415), and were stored at -80 °C before analysis. The second sample 

was freshly prepared using the methods described above. The proteins were precipitated 

from solution by the addition of -20 °C MeOH containing 0.1M ammonium acetate for at 

least 18 h in a -20 °C freezer. The proteins were further processed and isolated as 

described previously (415). 

In-Solution Digestions  

The purified and dried protein samples were reconstituted with 50 mM 

ammonium bicarbonate pH 8.0. The disulfides were reduced with dithiothreitol (DTT) 

and free sulfhydryls were alkylated with iodoacetamide (IAA). Proteomics grade trypsin 

was added ~1:20 w/w protein and the solution was incubated for (18 - 20 h) at 37 °C in a 

mixing heat-block to digest the proteins. The resulting peptides generated from the 

trypsin digestion were purified using C18 ZipTip® concentrators (EMD Millipore, 
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Billerica MA) according to the manufacturer’s protocol, and as described previously 

(416). 

LC-MS/MS Analyses of In-Solution Digests 

The desalted samples were dried in a speed-vacuum and reconstituted in 2% 

acetonitrile (ACN), 98% LC-MS grade water, and 0.1% formic acid (FA). The peptides 

were separated using a nano-flow ultra-performance liquid chromatograph (nano-UPLC) 

(Waters, Milford, MA) using a reversed-phase C18 column. The peptides were separated 

using a 90-min linear gradient, with a total 120-min run time, the details of which have 

been described previously (415, 416). The end of the analytical chromatography column 

was coupled to a NanoMate ion source (Advion, Ithaca, NY), to produce ions in the 

positive mode. The ions were introduced into a LTQ-Orbitrap-XL-ETD, QE, or a QE 

Plus mass spectrometer (ThermoFisher Scientific). 

The mass spectrometer settings were similar to those described in our previous 

work (415, 416), with the following exceptions. Experiments performed on the LTQ-

Orbitrap-XL, the MS spectra were acquired at 15,000 resolution in the Orbitrap; both 

CID and HCD MS/MS experiments were performed as technical replicates. For the MS 

stage, an isolation window of 3 m/z was used with a maximum 25 ms injection, 

fragmentation was performed using 35V CID energy, three microscans, and the product 

ions were analyzed using the linear ion-trap in the “enhanced” resolution mode. For HCD 

MS/MS experiments on the LTQ-Orbitrap-XL, an isolation window of 2 m/z was used, 

with a 500 ms maximum injection time, fragments were generated with 35 V HCD, and 

scanned with two microscans in the Orbitrap analyzer. For experiments on the QE mass 
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spectrometer, an isolation window of 1.8 m/z was used, with a 60 ms maximum injection 

time with an AGC target of 5x105; fragments were generated with 27 V HCD, and 

scanned with one microscan. MS/MS experiments on the QE-Plus mass spectrometer 

were performed using a method devised to maximize simultaneous observation of 

glycosidic bond fragments and peptide backbone fragments. Here, a two-stepped 

normalized-collision-energy (NCE), multi-injection method was used. An isolation 

window of 2.0 m/z isolated precursor ions, with a maximum 100 ms maximum injection 

time per injection (200 ms maximum total per precursor) with an AGC target of 5x106, 

fragments were generated with 30 V and 35 V HCD NCE for each stage, MS/MS scans 

were performed with two microscans. 

Data Analysis 

Manual Interpretation of Glycopeptide Spectra Obtained from LC-MS/MS 

Experiments 

The MS/MS spectra were manually sequenced using the same techniques 

described for the manual interpretation of N-glycosylated spectra from C. parvum (416). 

A brief description is provided here. The raw data from the nano-UPLC-MS/MS 

analyses, were opened using Qual Browser in the Xcalibur 2.2 software suite (Thermo-

Fisher Scientific). Extracted ion chromatograms (XIC) were generated from the MS/MS 

spectra, corresponding to the m/z of oxonium ions, indicative of the fragmentation of 

glycoconjugates (m/z 204.0866 for HexNAc, and, m/z 366.1395 for HexNAc-Hex).The 

spectra which contained one or more oxonium ion(s) were manually sequenced so that 
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the linear glycan sequence, amino acid localization, and peptide sequence could be 

obtained from a single spectrum (416).  

Automated Database Searches of all Spectra Obtained from LC-MS/MS 

Experiments 

The information gathered from the manual interpretation was then utilized to 

formulate search parameters for the processing of the UPLC-MS/MS data using the 

PEAKS software suite version 8.0 (Bioinformatics Solutions Inc., Waterloo, ON, 

Canada). The searches were performed as described previously (416), with the exceptions 

of specifying a parent ion mass tolerance of 5.0 ppm, a fragmentation ion mass tolerance 

of 0.05 Da, and HexNAc2Hex(5-8) as potential dynamic modifications with a maximum of 

three variable modifications per peptide. The protein database used for the searches was 

identical to the one used previously (415). A PEAKSPTM search was performed with the 

identical parameters, with the consideration of all Unimod modifications. All assigned N-

glycosylated peptide spectral matches (PSM) were evaluated with a (-logP) value ≥ 13. 

The verified spectra were tabulated for the two biological samples and their technical 

replicates, only for the data acquired on the QE+ mass spectrometer. 

Bioinformatics 

The protein results were visualized using the online web-application Protter 

(http://wlab.ethz.ch/protter/start/)(417). GPI anchor prediction was performed using the 

online GPI-prediction tool, (http://mendel.imp.ac.at/gpi/cgi-bin/gpi_pred.cgi) (418). The 

occupied N-glycosylated peptides were used to generate a sequence logo, using Weblogo 
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ver 3.5 (http://weblogo.threeplusone.com/) (374). Conserved functional domains were 

predicted using the online tool, InterPro scan (419) (https://www.ebi.ac.uk/interpro/) to 

search against the InterPro database of conserved protein domains and protein families 

(420). 

Results 

Eight proteins were identified as N-glycosylated in T. gondii tachyzoites, with a 

total of 44 spectra belonging to N-glycosylated peptides (see Table 3.1, Fig. 3.1, and 

Appendix 3). These proteins are roughly divided into three categories, based upon their 

defining features (see Fig. 3.1). Group I includes all the proteins that are predicted to 

have a signal peptide (Gap50, SRS29C, SRS22E, and the hypothetical protein 

TGGT1_243930). Two of the proteins in group I are predicted to have a GPI-anchor, 

SRS22E and TGGT1_243930. Group II proteins lack a predicted signal peptide and 

contain a single transmembrane domain. The two proteins included in group II are a 

hypothetical protein TGGT1_217680 which does not contain any conserved domains, 

and the second protein is a CS-domain containing protein (TGGT1_290730). For a 

description on the CS-domain, please refer to the Prosite database entry PS51203 

(http://prosite.expasy.org/cgi-bin/prosite/nicedoc.pl?PS51203) (421). Lastly, group III 

proteins lack a predicted signal peptide and contain multiple predicted transmembrane 

regions. The two proteins included in this last group are a hypothetical protein 

(TGGT1_258870A), and a protein which fits the hidden Markov model for the cleft lip 

and palate transmembrane protein 1 (CLMPT1) (TGGT1_299110). The InterPro database 
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match for the CLMPT1 hidden Markov model, matches the PFAM database entry 

PF05602 (http://pfam.xfam.org/family/PF05602) (422) . 

Group I contains the two most abundant proteins identified in this study, Gap50 

and SRS29C. Both Gap50 and SRS29C are predicted to have two transmembrane spans 

which are positioned very close to their N- and C-termini. Furthermore, both of these 

proteins have two (of four possible) occupied N-glycosylation sites identified. However, 

there is no peptide coverage for the remaining two N-glycosylation sites, and therefore 

their occupancies remain unknown. 

Gap50 is the most abundant N-glycosylated protein identified in this study based 

upon the number of assigned peptide spectra. More than half of the 44 spectra 

corresponding to peptides modified with an N-glycan are assigned to Gap50 (24 of 44). 

The majority of these spectra (18 of 24) are for the peptide (136)NYTSEALR(143). Ten 

of the 18 spectra contain the modification HexNAc2Hex8, seven for HexNAc2Hex7, and 

only one for HexNAc2Hex6 (see Table 3.1). The six remaining N-glycosylated spectra 

assigned to Gap50 belong to a different peptide, 

(76)K.VAANEHISFIASPGSNFLGGVSSLNDTR.W(105). The distribution of 

glycoforms seems to be slightly different on this peptide: here, the most abundant 

glycoform appears to be HexNAc2Hex7 with three spectra observed, followed by 

HexNAc2Hex6 with two spectra, and only one spectrum observed for the HexNAc2Hex8 

glycoform (see Table 3.1).  

The second most abundant N-glycosylated protein is SRS29C, again, based upon 

the number of observed spectra, corresponding to peptides containing N-glycans (see 
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Table 3.1). Interestingly, this protein has zero spectra which correspond to a peptide 

containing a HexNAc2Hex8 modification. Of the two peptides that were identified, nearly 

all the spectra are for peptides containing the glycan composition HexNAc2Hex6, two for 

(197)CSYTENSTLPK(207) and eight for (301)YNCTVPVQLGGEDPSEGSR(319). 

Only one spectrum was observed for a different glycoform on this protein, 

HexNAc2Hex7, which was present on the larger peptide (AA301-AA319). The glycoform 

distribution is also skewed on this protein, similar to that on Gap50, but in the opposite 

direction, with a higher abundance of HexNAc2Hex6, compared to that of HexNAc2Hex8 

(see Table 3.1).  

Similar trends are observed for the other proteins identified, where the large 

hypothetical protein, TGGT1_217680, placed into group II, has two of its nine possible 

N-glycosylation sequons occupied, and in both instances all spectra contain 

HexNAc2Hex6. The other proteins, the hypothetical protein (TGGT1_258870A), the CS-

domain containing protein, CLMPT1, and SRS22E each have single-spectrum examples 

of a glycopeptide, far too low for a detailed discussion of distribution; their glycoforms 

are listed in Table 3.1. However, the single spectrum examples for these proteins are 

either HexNAc2Hex6 or HexNAc2Hex8, which fits the trend that was just discussed  

A total of 12 unique N-glycosylated peptides containing eight unique occupied 

sequons have been identified; the peptides are occupied with glycan compositions 

ranging from HexNAc2Hex(6-8) (see Tables 3.2, 3.3). The most abundant glycoform based 

upon the number of observed spectra is HexNAc2Hex6 with 19 observed spectra, 

followed by HexNAc2Hex8 with 14 observations, then HexNAc2Hex7 with 11 spectra. A 
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Weblogo for all the observed-to-be-occupied N-sequons from these experiments is shown 

in Fig. 3.2. 

The most abundant peptide (136)NYTSEALR(143), from Gap50, is modified 

with HexNAc2Hex8 on Asn 136. A comparison of the MS/MS spectra of the same 

peptide, m/z 1328.53 [M+2H]2+, as analyzed with the three different instruments (LTQ-

Orbitrap CID and HCD fragmentation, as well as the QE, and QE+) which utilized 

slightly different methods, is shown in Fig 3.4A. Fig 3.4B shows the manual 

interpretation of the lower spectrum from 3.4A, from the QE+ which used stepped NCE 

of 30 V HCD and 35 V HCD with multiple injections. The demonstration here is the 

ability to obtain both the linear glycan’s sequence, first with the loss of the mass equal to 

three hexoses from the parent ion of the monoisotopic [M+2H]2+  m/z 1328.5298 to the 

singly charged ion m/z 2007.8063. The mass difference of hexose (162.0528 u) can be 

followed until the mass difference of two sequential HexNAc residues (203.0793 u) is 

observed, reaching the aglycon peptide [M+H]+ m/z 953.4677. These data provide the 

glycan’s linear sequence of HexNAc2Hex8. Here, in the same spectrum, a magnified view 

is provided to show the detail of sequential losses of masses corresponding to amino acid 

residues, revealing the sequence NYTSEALR. Thus, in the same spectrum the glycan’s 

linear sequence, its conjugation site, and the amino acid sequence of the peptide are all 

revealed (Fig 3.4B, Fig 3.4C).  

Discussion 

The reasons for these observed differences in distributions of glycoforms on the 

different proteins, and in some cases on different peptides within the same protein 
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remains unknown. One explanation is that the T. gondii glucosidases Glc1 and Glc2 may 

not work well on certain peptides. The observance of abundant spectra for peptides 

containing the minimally trimmed glycans HexNAc2Hex8 and HexNAc2Hex7, (the 

presumed product of Glc1) support this as a possibility. For example, the peptide from 

Gap50 (136)NYTSEALR(143) appears to generate a disproportionate number of spectra 

for the HexNAc2Hex8 glycoform (see Table 3.1). One other explanation is that T. gondii 

may transfer different glycans, where the HexNAc2Hex8 glycoform could originate from 

the fully assembled Dol-PP-GlcNAc2Man5Glc3 and the HexNAc2Hex6 could originate 

from the transfer from Dol-PP- GlcNAc2Man5 with a subsequent glucose transfer by 

ALG6. The preference for different donors and substrates has been demonstrated in other 

parasites, such as in T. brucei, however, T. gondii does not appear to have multiple STT3 

variants (86). The other perplexing observation with Gap50, as well as with all the 

proteins identified, is that the smallest observed N-glycoform is HexNAc2Hex6. This 

composition is contrary to what would be predicted if Glc1 and Glc2 were to trim off the 

terminal glucose residues, leaving GlcNAc2Man5 (observable as HexNAc2Hex5) (see Fig 

3.3 for the predicted un-trimmed N-glycan). It could be that the calnexin which T. gondii 

does appear to have, which lacks the protein-protein binding domain, may bind to the 

glucose on the Asn-linked GlcNAc2Man5Glc, protecting it from cleavage by Glc2. This is 

a plausible explanation, since C. parvum, which lacks Cxn, is observed to have 

HexNAc2Hex5 modified peptides, but no such modification is observed on T. gondii 

proteins (416). 
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Conclusions 

In this report, we were able to identify N-glycosylated proteins that are in T. 

gondii. There have been surprisingly few reports in the literature which characterize N-

glycosylated proteins in this organism, with the exception of Gap50 (52, 53). Our results 

confirm the previous findings of Fauquenoy, 2008. However, they were able identify 

additional N-glycosylated peptides from Gap50 in their 2011 study, which we were not 

able to observe, likely due to their use of chymotrypsin which helps cover the gap in 

peptide coverage that results when only trypsin is used for digestion (see Fig 3.1 for 

potential trypsin cleavage sites). This report shows our preliminary observations. The 

optimizations of the Con-A pulldown conditions, as well as the utilization of additional 

proteases should expand the peptide coverage, as well as expand the numbers of observed 

N-linked proteins. Interestingly, several of the N-glycosylated proteins identified in this 

study such as Gap50 and the SRS proteins, are known virulence factors. It has previously 

been demonstrated that Gap50 plays a crucial role in host cell invasion, acting as part of 

the glideosomal apparatus, and that the N-glycosylation of Gap50 is key to its 

functionality (53). In addition, two of the other proteins identified in this study, SRS22E 

and SRS29C, belong to the SAG1-related sequence (SRS) superfamily of proteins (423).  

This family of proteins contains over 120 members, many of them GPI-anchored 

proteins located on the surface of T. gondii, which are thought to play a role invasion of 

host cells, as well as evasion of the immune system (423). Our findings support the 

hypothesis that the glycans are transferred to Asn in T. gondii via the lipid-linked glycan 

precursor Dol-PP-GlcNAc2Man5Glc3, due to the presence of HexNAc2Hex8 as one of the 
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dominant glycoforms. Follow-up studies would be useful to expand the peptide coverage 

of the proteins described in this report, since many of the peptides which contain an N-

glycosylation motif were not observed. The optimization of the Con-A pull-down, as well 

as the use of different proteases would considerably expand the list of detected peptides. 

Furthermore, it would be interesting to perform analyses on the released N-glycans to 

verify their topologies and their linkages, utilizing techniques described previously, such 

as EED MS/MS on the released deutero-reduced and permethylated N-glycans(416). 

Furthermore, treatment of released N-glycans with mannosidases, in conjunction with 

MS/MS analyses, could offer additional insight into the glycans structures. An in-depth 

analysis of the N-glycans from T. gondii could help answer the remaining questions 

surrounding the unexpected N-glycoform distributions. It would be informative to 

perform functional assays using recombinant T. gondii Glc1/Glc2 to test on synthetic 

substrates, to determine whether or not T. gondii is capable of completely trimming the 

terminal glucoses from Glc(α1-2)Glc(α1-3)Glc(α1-3)-Man-X, or, if the trimming is 

arrested at Glc(α1-3)-Man-X. Another informative experiment would be to determine 

whether or not the T. gondii OST is capable of transferring different glycans from 

different lipid-linked oligosaccharide donors, and, if there are preferences for substrates.  

In summary, the work presented here expands the number of proteins identified in 

T. gondii that are confirmed to be N-glycosylated. Our preliminary results do suggest 

there is preference for the modification of the NxT versus the NxS motif, similar to what 

was observed in C. parvum (416). Furthermore, our observations confirm previous 
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observations that there appear to be two distinct populations of N-glycans on the 

glycoproteins of T. gondii (52, 53).   
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Tables 

 
 
Table 3.1 Manually Verified Proteomics Search Results of N-Glycosylated Peptides from T. gondii. 

The results from the two samples, including the technical replicates, all analyzed on the QE+ mass spectrometer, and 
searched using the PEAKS software suite. The results are collated from the PEAKS-PTM searches, the ppm error is 
shown for the best scoring spectrum (-10logP). 

‡Shown are representative peptides to simplify the table. The complete listing of all the spectra used to generate this 
table is shown in Appendix 3. The abbreviations used for the protein names are as follows: [(GAP50), acid phosphatase 
GAP50]; [(clptm1), cleft lip and palate transmembrane protein 1]; [(CS-dom. prot.), Co-chaperone (p23-like) domain 
containing protein]; [(hyp. Protein), hypothetical protein];[ (SRS29C), SAG-related sequence 29C]; [(SRS22E),SAG-
related sequence 22E].  

Protein Name Acc.# Peptide‡ #Spec. Glycoform
GAP50 TGGT1_219320 (76)K.VAANEHISFIASPGSNFLGGVSSLNDTR.W(105) 2 HexNAc2Hex6

3 HexNAc2Hex7

1 HexNAc2Hex8

(135)R.NYTSEALR.T(144) 1 HexNAc2Hex6

7 HexNAc2Hex7

10 HexNAc2Hex8

SRS29C TGGT1_233480 (196)R.CSYTENSTLPK.I(208) 2 HexNAc2Hex6

(300)K.YNCTVPVQLGGEDPSEGSR.P(320) 8 HexNAc2Hex6

1 HexNAc2Hex7

hyp. protein TGGT1_217680 (406)R.TNSTLFESQLR.E(418) 1 HexNAc2Hex6

(457)R.GVN VTIDR.H(466) 2 HexNAc2Hex6

hyp. protein TGGT1_243930 (696)K.MNNETVLYEPDTEIIEK.T(714) 1 HexNAc2Hex8

(763)K.TMNSEGVISDGLQSQLPVNHTR.L(786) 1 HexNAc2Hex8

hyp. protein TGGT1_258870A (178)R.AHTGDERPFNVTTGSSER.R(197) 1 HexNAc2Hex8

CS-dom. prot. TGGT1_290730 (333)K.DLDDFHHGNYTAR.Y(347) 1 HexNAc2Hex6

CLMPT1 TGGT1_299110 (141)R.NNTTLYVHVR.T(152) 1 HexNAc2Hex6

SRS22E TGGT1_359770 (36)K.IETCAPDKPISFN VTEAGQSILFK.C(61) 1 HexNAc2Hex6
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Table 3.2 Occupied N-Glycosylation Sequons 

 
 

Table 3.3 Totals of the Different N-Glycoforms 

  

Sequon #Unique 
Pep. Seq.

NVT 3
NYT 2
NST 2
NTT 1
NDT 1
NET 1

NCT 1

NHT 1

 

Glycoform Total Spectra 

HexNAc 2 Hex 6 19 

HexNAc 2 Hex 7 11 

HexNAc 2 Hex 8 14 
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Figures 

 
 

Fig. 3.1 Cartoon Schematics of the N-Glycosylated Proteins, Showing Predicted Features, Total Observed 
Peptides, and Occupied N-Glycosylation Sequons. 

These proteins are divided into three different groups based upon if there is (I.) a predicted signal peptide, (II.) no 
signal peptide, but a predicted transmembrane region, and (III.) no predicted signal peptide with the presence of 
multiple trans-membrane spans. The sequences are marked according to the key, observed peptides are dark grey, 
signal peptides are orange, a predicted GPI-Anchor is olive color (also indicated with squiggle-line to anchor it to the 
membrane), observed-to-be-occupied N-glycosylated motifs are green diamonds, unobserved canonical N-
glycosylation motifs are red diamonds (if the peptide was observed, but not observed to be N-glycosylated then only 
the Asn is a red diamond), predicted trypsin cleavage sites are shown as blue lines.  
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Fig. 3.2 WebLogo of Occupied N-Glycosylation Sequons 

 

 

Fig. 3.3 The Predicted Lipid Linked N-Glycan of T. gondii 
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Fig. 3.4A Comparison of MS/MS Fragmentation of the Ion m/z 1328.53 [M+2H]2+ on an LTQ-Orbi (HCD, CID), 
QE, and QE+. 

This comparison demonstrates the differences in fragmentation of the ion m/z 1328.53 [M+2H]2+, which corresponds to 
the glycopeptide NYTSEALR with a HexNAc2Hex8 glycan modification. The differences in the fragmentation for each 
spectrum can be attributed in part due to the type of fragmentation (CID or HCD), method of detection (ion trap, 
Orbitrap), instrument specific differences, and instrument setup (e.g. microscan count, injection time, collision energy, 
etc.).  
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Fig. 3.4B HCD MS/MS Fragmentation of the Ion m/z 1328.53 [M+2H]2+ on a QE+: Revealing the Linear Glycan 
Sequence HexNAc2Hex8. 

The ion m/z 1328.53 [M+2H]2+ was fragmented using HCD on a QE+ mass spectrometer using a method utilizing a 
multi-injection stepped NCE program as described in the a methods section. This spectrum is the same spectrum shown 
in the bottom panel of Fig 3.4A, but, a limited range m/z (950 - 2,200) is shown. The mass differences calculated from 
the monoisotopic [M+H]+ parent ion and the largest observed ion (m/z 2169.8604), and, between the (m/z 2169.8604) 
ion and sequentially smaller ions down to the aglycon peptide (m/z 953.4684), which are equal to the Δmass of one or 
more sugar(s), reveals a linear glycan sequence of HexNAc2Hex8.  
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Fig. 3.4C HCD MS/MS Fragmentation of the Ion m/z 1328.53 [M+2H]2+ on a QE+: Revealing the Peptide 
Sequence NYTSEALR. 

This MS/MS of spectrum the ion m/z 1328.53 [M+2H]2+, is the same spectrum in the bottom panel of Fig 3.4A, and in 
Fig 3.4B, but, only the lower m/z range from the start of the scan to the aglycon peptide is shown (m/z 100-1,000) to 
reveal the peptide sequence. The complete y-ion series are observed, revealing the peptide sequence NYTSEALR. The 
spectrum is also labeled to show the abundant oxonium ions (Hex, HexNAc, Hex2, and Hex-HexNAc)
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Chapter 4. The O-Glycosylated Proteins of C. parvum. 

The work contained within this chapter has been submitted to: The Journal of 

Biological Chemistry, an American Society for Biochemistry and Molecular Biology 

journal. It is presented here in a manuscript format. 

The research presented here was exclusively my own with the exception of a 

single figure which is contained as part of the supplementary data set. This figure was 

produced by Joshua A. Klein utilizing software which he has been developing as part of 

his own Ph.D. degree in the Boston University Bioinformatics Program. In addition, 

Joshua A. Klein helped to re-annotated spectra which are deposited online as part of the 

entire data-set for publication purposes. That work is not presented here, but, it will be 

viewable once the manuscript has been accepted and the dataset released to the public. 

The data has been deposited to the online data repository, the Proteomics Identifications 

Database (PRIDE), and may be accessed by connecting to 

http://www.ebi.ac.uk/pride/archive/projects/PXD005989  
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Cryptosporidium parvum Vaccine Candidates are Heavily Modified with O-

linked-N-acetylgalactosamine or Contain N-terminal N-Myristate and S-Palmitate. 

 

John R. Haserick, Joshua A. Klein, Catherine E. Costello, and John Samuelson 

Abstract  

Cryptosporidium parvum (studied here) and Cryptosporidium hominis are 

important causes of diarrhea in infants and immunosuppressed persons. C. parvum 

vaccine candidates, which are on the surface of sporozoites, include glycoproteins with 

Ser- and Thr-rich domains (Gp15, Gp40, Gp900) and a low complexity, acidic protein 

(Cp23). Here we used mass spectrometry to determine that O-linked GalNAc is present in 

dense arrays on a glycopeptide with consecutive Ser derived from Gp40 and on 

glycopeptides with consecutive Thr derived from Gp20, a novel C. parvum glycoprotein 

with a formula weight of ~20 kDa. In contrast, the occupied Ser or Thr residues in 

glycopeptides from Gp15 and Gp900 are isolated from one another. Gly at the N-

terminus of Cp23 is N-myristoylated, while Cys, the second amino acid, is S-

palmitoylated. In summary, C. parvum O-GalNAc transferases, which are homologs of 

host enzymes, densely modify arrays of Ser or Thr, as well as isolated Ser and Thr 

residues on C. parvum vaccine candidates and the N-terminus of an immunodominant 

antigen has lipid modifications similar to those of host cells and other apicomplexan 

parasites. The significance of these post-translational modifications is discussed with 

regards to the function of these proteins and the design of serological tests and vaccines. 
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Introduction 

Cryptosporidium parvum infects humans and cows, while Cryptosporidium 

hominis only infects humans (49, 343, 344). C. parvum was first identified as an 

opportunistic infection and cause of severe diarrhea in AIDS patients (424, 425). In 1993, 

C. parvum contaminated the municipal water supply and a caused a massive outbreak of 

diarrhea among immunocompetent persons in Milwaukee (6, 345). More recently C. 

parvum has been shown to be the second most important cause (after rotavirus) of 

diarrhea and death in infants in low resource countries where the parasite is endemic (20, 

346, 348). Presently, there are no human vaccines for C. parvum, although numerous 

candidates have been identified (352, 353) and see below. Treatment of C. parvum is 

difficult in populations with the most severe disease: infants and immunosuppressed 

persons (343, 354).  

Oocysts of C. parvum have acid-fast walls, which are resistant to environmental 

insults and to gastrointestinal acids, proteases, and bile (425, 426). Oocysts each contain 

four infectious sporozoites, which have on their surface Ser- and Thr-rich glycoproteins 

(e.g. Gp900 and Gp40) (31, 33-35, 40, 369). The precursor protein (Gp40/Gp15), which 

is specific for C. parvum and C. hominis, is cleaved by a furin-like protease into an N-

segment (Gp40) and a C-segment (Gp15) (Fig. 4.1) (42). Subsequently, the N-terminal 

signal peptide of Gp40 is removed, and a glycosylphosphatidylinositol (GPI) anchor is 

added to the C-terminus of Gp15 (427). Gp40 contains a domain of 17 consecutive Ser 

residues followed by Thr-Ser-Thr, while the Ser and Thr residues of Gp15 are dispersed. 

Gp900, which is much larger than Gp40/Gp15, is a secreted protein present in C. parvum, 
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C. hominis, and C. muris; it has four sets of consecutive Thr residues, ranging in length 

from 33 to 155 residues, as well as dispersed Ser and Thr (31, 33). Gp40 and Gp900, 

which are shed from the surface of sporozoites during gliding motility, tether sporozoites 

to the interior surface of the oocyst wall (33, 35, 39), . In contrast, Gp15 is present at the 

apical end of sporozoites and on the outer surface of the oocyst wall (35).  

Polymorphisms in Gp15 and Gp40 have been used to distinguish isolates of C. 

parvum, while recombinant Gp15 has been used to measure the serological response in 

epidemiological studies (15, 363-367, 428). Vaccination studies have been performed 

using recombinant C. parvum proteins, bacterial vectors (e.g. Salmonella), or DNA -

encoding C. parvum proteins (352, 353, 429). These vaccines either contain no O-glycans 

(bacterially expressed proteins) or may display host O-glycans (DNA vaccines). The 

presence of O-glycans (most likely O-GalNAc) on C. parvum glycoproteins has not 

previously been detected by mass spectrometry, but it has been suggested by the 

following observations: The C. parvum genome predicts four O-GalNAc transferases (O-

GalNAcTs), and parasite lysates add O-GalNAc to synthetic peptides (125). A lectin that 

recognizes O-GalNAc (Helix pomatia agglutinin) (HPA) binds to the surface of 

sporozoites, while binding of a monoclonal antibody (4E9) to Western blots of C. parvum 

proteins is competed by HPA and reduced by treating proteins with an O-GalNAcase 

(15). The Maclura pomiphera agglutinin, which binds O-GalNAc, dramatically enriches 

Gp40, Gp900, and other mucin-like glycoproteins of C. parvum (35). Lastly, sera from 

patients infected with C. parvum bind to synthetic peptides to which an O-linked GalNAc 

has been added (44). 



132 
 

 

Cp23, which is also known as the immunodominant antigen, is a small, low 

complexity, acidic protein present on the surface of sporozoites (30). Monoclonal 

antibodies to Cp23 partially protect neonatal mice against oral infection with C. parvum, 

while antibodies to Cp23 have more frequently been found in HIV/AIDS patients 

infected with C. parvum but without diarrhea (347, 430). Recombinant Cp23 has been 

used to demonstrate humoral and cellular immune responses to C. parvum in human, 

cattle, and mouse infections, whereas recombinant Cp23 and DNA-based vaccines have 

been used to immunize mice and to elicit an innate immune response from mouse and 

human dendritic cells in vitro (349, 350, 366, 431-436). Previous mass spectrometry 

studies of C. parvum sporozoites and oocysts have identified numerous peptides from 

Gp40, Gp15, Gp900, and Cp23, but none of these studies described post-translational 

modifications (PTMs), which may include O-linked glycans, Asn-linked glycans (N-

glycans), and fatty acyl chains (35, 44, 125, 427, 437-441). Recently we used mass 

spectrometry to determine that C. parvum N-glycans, which are built on a predicted 

precursor with a single long mannose arm, appear to be processed by glucosidase-2 but 

not by ER mannosidases or elongated with Golgi glycosyltransferases (110, 359, 416). 

The resulting N-glycans, which are likely GlcMan5GlcNAc2 and Man5GlcNAc2, are 

remarkable for their simplicity, as compared to the complicated N-glycans identified in 

other protists (389). In this report, we used mass spectrometry to characterize tryptic 

glycopeptides of lysates of C. parvum oocysts and thereby directly determine the number 

and some of the positions of O-GalNAc residues on Gp40, Gp15, Gp900, and a 

previously uncharacterized glycoprotein with a predicted weight of 20-kDa (named here 
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Gp20) (Fig. 4.1). Mass spectrometry also detected the addition of myristoyl and 

palmitoyl groups to the first and second residues at the N-terminus of Cp23 (442, 443). 

Experimental Procedures 

Reagents and Parasites 

Freshly passaged C. parvum oocysts were purchased from Bunch Grass Farm 

(Deary, ID), and handled under BSL-2 protocols with the approval of the Boston 

University Institutional Biosafety Committee. All reagents and chemicals were purchased 

from Sigma-Aldrich (St. Louis, MO), unless noted otherwise. Solvents used for LC-MS 

were Optima™ grade, procured from Fisher Scientific (Thermo-Fisher Scientific, 

Waltham, MA). 

Protein Extraction and Trypsin Digestion 

Procedures for extracting proteins from C. parvum oocysts and digesting them 

with trypsin have recently been described in detail (416), and therefore only a brief 

summary of the methods is presented here. Briefly, 109 C. parvum oocysts were 

concentrated by centrifugation, washed 3X with PBS, and re-suspended with PBS 

containing EDTA-free cOmpleteTM protease inhibitor (Roche, Basel, Switzerland). 

Oocysts walls were disrupted in a bead beater with 0.5-mm glass beads and centrifuged. 

The PBS supernatant was removed and saved, while the remaining insoluble materials 

and beads were extracted with a solution composed of 10 mM HEPES, 25 mM KCl, 1 

mM CaCl2, 10 mM MgCl2, 2% CHAPS, 6 M guanidine HCl, 50 mM dithiothreitol, 1X 

protease inhibitor, pH 7.4). This guanidine-DTT supernatant was combined with the PBS 
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supernatant, and the insoluble material was discarded. The proteins were then 

precipitated, and the pellet was washed with methanol and vacuum dried. Alternatively, 

oocyst proteins were extracted with hot phenol, and phenol and interphase layers were 

kept, while the aqueous layer was discarded. Proteins were precipitated with methanol 

containing 100 mM NH4OAc and dried, as described above. The pelleted proteins were 

re-suspended in 50 mM NH4HCO3, pH 8.0, reduced with 50 mM DTT, alkylated with 

iodoacetamide, and then digested with proteomics grade trypsin (Sigma-Aldrich, St. 

Louis, MO). Tryptic peptides were dried and desalted using C18 ZipTip concentrators 

following the manufacturer’s protocol (EMD Millipore, Danvers, MA). 

Mass Spectrometry 

The LC-MS/MS methodologies and the manual interpretation of MS/MS spectra 

of C. parvum glycopeptides containing O-glycans were performed using the methods 

described for C. parvum N-glycosylated peptides, as recently described in detail (416). A 

brief summary of the methods is provided here. Desalted and dried peptides were 

dissolved in 2% ACN, 0.1% formic acid (FA) and separated using a NanoAcquity Ultra 

Performance Liquid Chromatography (UPLC) system (Waters. Milford, MA), using a 

nanoAcquity Symmetry C18 trap column and a BEH130C18 analytical column. Solvent 

mixtures for the mobile phase gradient were 99:1:0.1 HPLC grade water/ACN/FA and 

99:1:0.1 ACN/HPLC grade water/FA. The UPLC was coupled to a TriVersa NanoMate 

ion source (Advion, Ithaca, NY), operated at 1.5 kV, introducing ions into either an LTQ-

Orbitrap-XL-ETD or a QE Plus mass spectrometer (Thermo-Fisher Scientific, San Jose, 

CA), both operating in the positive-ion mode. MS spectra were recorded over the range 
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m/z 350-2000. MS/MS HCD spectra were acquired by isolating the top 5 (LTQ-Orbitrap) 

or top 20 (QE+) precursor ions with a 2-m/z window and fragmenting the selected 

precursor ions with 15 to 45 V HCD energy. The lower energy MS/MS HCD spectra 

were scanned from m/z 100 to an upper m/z value which was dependent upon the parent 

ion m/z. For the 45-V HCD spectra, ions below m/z 210 were excluded to avoid trapping 

the very abundant HexNAc oxonium ion. 

Manual Interpretation of Mass Spectra 

Data obtained from LC-MS/MS experiments were first examined using Qual 

Browser in the Xcalibur 2.2 software suite (Thermo-Fisher Scientific). Extracted ion 

chromatograms were generated from MS/MS spectra for oxonium ions of interest 

(HexNAc, m/z 204.0866; Hex-HexNAc m/z 366.1395; HexNAc2, m/z 407.1670). Spectra 

containing one or more of these ion(s) were then manually interpreted (416). Once a 

sequence was obtained, it was searched against the 3,803 entries within the C. parvum 

Iowa-II predicted proteome and cross-searched within the entire NCBI nr database, using 

the online NCBI BLASTP algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (356, 358, 

444). The software, Glycoworkbench v2.1 release 146, was used to help calculate glycan 

compositions (445). It was found that the O-glycosylated peptides utilized HexNAc 

almost exclusively. Due to the labile nature of O-linked glycans, b and y ions containing 

one or more HexNAc residues typically had very low abundances. The charge-reduced 

molecular ion, with the loss of one or more HexNAc residues was often observed. The 

information obtained from manual interpretations was then used for database searches, 

allowing for deeper sequencing of the data, and allowing for higher-throughput 
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processing of samples. A spreadsheet is supplied for all of the manually annotated spectra 

contained within this manuscript; it shows the peak list, the assigned ions, and their mass 

errors (see Appendix 4B). 

Database Searches for Glycopeptides 

Automated database searches were performed on the RP C18 UPLC-MS/MS data 

using the PEAKS software suite version 8.0 (Bioinformatics Solutions Inc., Waterloo, 

ON, Canada), against the 3,803 entries within the C. parvum Iowa-II predicted proteome 

release-5.0, available from the Cryptosporidium Genome Resource (cryptodb.org).  

Trypsin was specified as the enzyme, with a 5.0 ppm parent mass error tolerance, a 0.01 

Da fragment mass error tolerance, and carbamidomethyl cysteine set as a fixed 

modification for the PEAKSdenovo step. For the PEAKSDB stage of the search, the 

following options were specified: trypsin as the enzyme with ≤ two missed cleavages and 

≤ one non-specific cleavage, the error tolerances for precursor of 6 ppm and 0.02 Da for 

fragment ions, carbamidomethyl cysteine as a fixed modification, and the dynamic 

modifications HexNAc, HexNAc2, HexNAc3, or HexNAc4 with ≤ six/peptide. The 

peptide match threshold (-10 logP) was set to 15, with estimation of the false discovery 

rate (FDR) enabled. A 5.6 FDR was calculated using the aforementioned parameters. A 

multi-round search was performed, using the de novo only results from the first 

PEAKSDB search. The search parameters were identical to the prior PEAKSdenovo and 

PEAKSDB searches, with the exception that myristate (N-term, S,T) and palmitate 

(C,S,T,K) were specified as dynamic modifications, and HexNAc was removed. A 

PEAKSPTM search stage was used for the multiple-round search, considering all 
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Unimod modifications, with ≤ three PTMs per peptide. The results from the PEAKSDB 

search, and the multiple-round PEAKSPTM search were exported in Excel and collated.  

Re-Annotation of Automated Database Searches 

The PEAKS DB search algorithm does not consider neutral loss of HexNAc from 

b/y ions, and therefore does not annotate the MS/MS product ions appropriately, with the 

exception of peptides modified with only a single HexNAc residue. Therefore, the 

proteomics results from PEAKS DB were exported in mzIdentML 1.1 format (446) and 

the manually verified spectra provided to GlycReSoft, (a software package developed in-

house for glycopeptide discovery and annotation), to re-annotate the supplied 

glycopeptide spectra. The code for GlycReSoft, which is currently in active development 

with periodic updates and improvements, is open source and freely available from the 

online repository: https://github.com/BostonUniversityCBMS/glycresoft. All peptides 

listed in the mzIdentML document and all non-redundant theoretical tryptic digest 

peptides for each included protein were used as templates, upon which a database of 

theoretical glycopeptides was constructed. Glycosylation was permitted at up to 20 

putative sites. All distinct combinations-with-replacement with the putative glycan 

compositions were generated. For each template peptide, theoretical glycopeptides were 

produced by assigning glycosylation events for combinations of between 1 and 𝑘 

glycosylation sites, where 𝑘 is the total number of potential glycosylation sites. The 

combinatorial complexity was reduced by limiting the number of possibilities to the first 

100 combinations, for glycopeptides having an excess of 100 possible placements. Each 

dataset was deisotoped, charge state deconvolved, and searched independently against the 
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database described above. Individual datasets which acquired MS/MS scans in the range 

m/z 100-240 were filtered, and only tandem mass spectra for which the average ratio of 

oxonium ion signal to maximum signal exceeded 5% were considered; otherwise, every 

scan was considered. In addition to including normal peptide backbone fragments, the 

search considered spectra containing peaks that indicated either the presence of a 

HexNAc residue or its loss. The software also searched for the intact peptide backbone 

with zero or more partial losses of each potential glycan. Glycopeptide-spectrum matches 

were evaluated based upon joint binomial intensity-backbone coverage criteria included 

in a novel algorithm that is based in part on a binomial scoring function described 

previously (447) The lists of ions assigned for each of these spectra are located in 

Appendix 4A. Fig. 4.10    shows a representative spectrum annotated by GlycReSoft (one 

of 345 submitted to the ProteomeXchange Consortium (448).  

Other Bioinformatics Methods 

The furin-like protease site that separates Gp40/Gp15 was predicted by the online 

tool “ProP 1.0 Server”, made available by the Center for Biological Sequence Analysis, 

Department of Systems Biology, Technical University of Denmark 

(www.cbs.dtu.dk/services/ProP/) (449). Signal peptides and transmembrane helices were 

predicted using the online tool Phobius (http://phobius.sbc.su.se/index.html) (375). The 

GPI-anchor site of Gp15 was predicted using the BIG-PI prediction server 

(http://mendel.imp.ac.at/gpi/gpi_server.html) (418). Cartoon representations of proteins, 

mapped with all the peptides across all MS/MS experiments and protein features were 

generated using the online software tool, Protter v.1.0, (http://wlab.ethz.ch/protter/start/) 
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(417). The assigned peptides from the PEAKSDB search results were used to map to the 

proteins of interest. The protein features were mapped using the results from the 

bioinformatics searches. 

O-Linked Glycan Release and Characterization 

Ser-linked or Thr-linked glycans were released from the proteins via reductive 

alkaline β-elimination. Briefly, purified proteins from a total oocyst lysate were first 

lyophilized in glass conical vials. To the dried protein extract, an aqueous solution of 0.1 

M NaOH + 1 M NaBD4 was added. The loosely capped vials were placed into an oven 

and kept at 45 °C for 18 h. After the incubation period, the borate was removed by 

extensive washes with 10% acetic acid in methanol and then neat methanol. The released 

glycans were subsequently separated from the proteins by solid phase extraction columns. 

To the dried sample, LC-MS grade water containing 0.1% trifluoroacetic acid (TFA) was 

added; the tube was vigorously vortexed, and the contents were then passed through a C-

18 Sep-Pak cartridge (Waters Corporation, Milford, MA). Three bed volumes of 0.1% 

TFA/water were subsequently passed through the column, and the eluent fractions were 

pooled and lyophilized. The released O-glycans were permethylated using previously 

described methods (372, 373). A slurry of powdered NaOH in DMSO was added to the 

dried, released O-glycans. An equal volume of methyl iodide was added, and the reaction 

mixture was agitated gently while protected from the light. The process was repeated 

three times to ensure complete permethylation. The product was extracted with 

chloroform/water, and the aqueous layer was removed and discarded. Washes with water 

were repeated until the pH of the solution was that of the LC-MS grade water being used 
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for the washes. The chloroform layer was removed, placed into a new clean vial, dried in 

a speed vacuum and stored in a dissector at -20 °C until it was analyzed. 

Monosaccharide Composition Determination 

The permethylated sugars were identified using GC-MS with a Bruker Scion SQ 

interfaced to a 436-GC (Bruker Daltonics, Billerica, MA). Separation was performed 

using a (30 m x 0.25 mm x 0.25 μm) Restek™ Rxi™- 5ms capillary column (Restek 

Corporation, Bellefonte, PA), using helium as the carrier gas. Samples were dissolved in 

hexane with 1 μl introduced via an auto-injector, using a split/split-less injection 

program, maintaining a constant column flow rate of 1 ml/min. The injector temperature 

was set to 220°C. The split-less injection sampling was set for 1 min before starting the 

split flow at 100 ml/min for 1 min. Then a split flow of 50 ml/min was used for the 

remainder of the program. The initial oven temperature of 60 °C was maintained for 1 

min, then ramped at 4 °C/min to 250 °C, with a final ramp to 300 °C at 20 °C/min, and 

held there for 10 min. Ions generated by an electron impact (EI) ionization source (70 eV) 

were introduced into the mass analyzer after a 5-min solvent delay. Centroid mass spectra 

were acquired in the positive mode, scanning the range m/z 50-500, taking 500 ms/scan. 

An internal standard of permethylated myo-inositol was added to all samples to verify 

retention time repeatability. Four spectra were averaged and background subtracted. The 

retention times and EI spectra of the released and permethylated glycans were compared 

to those of genuine deutero-reduced, permethylated monosaccharide standards. Data 

analysis was performed using the software MS Data Review 8.0 (Bruker). Retention 

times were compared using extracted ion chromatograms (XIC), for the ion signal at m/z 
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101, an ion common to GalNAc and GlcNAc. The EI spectra recorded for the standards 

and β-elimination products were compared at the same time points.  

Results 

The Vast Majority of Peptides with O-HexNAc Derive from Gp40, Gp15, and 

Gp900, which are Vaccine Candidates 

Peptides obtained from trypsin digestion of total proteins of C. parvum oocysts 

were separated using a UPLC reversed phase C18 column that was online with a mass 

spectrometer. Peptides were subjected to Higher-energy C-trap Dissociation (HCD), and 

O-glycosylated peptides were recognized by the observation of an oxonium ion signal at 

m/z 204.0866 in the MS/MS spectra, corresponding to the fragmentation of a 

glycopeptide containing a HexNAc residue. The utilization of larger oxonium ions 

(corresponding to Hex-HexNAc, HexNAc-HexNAc, and Hex-HexNAc-HexNAc) all 

derived from N-glycans, was described in (416). Since there was no enrichment for 

glycoproteins in the protein preparations (e.g. lectin chromatography), we identified the 

most abundant glycopeptides without selection bias. These included glycopeptides with 

O-linked glycans, originating from three C. parvum vaccine candidates (Gp15, Gp40, and 

Gp900), as well as Gp20, the immunogenicity of which is unknown (Table 4.1 and 

Appendix 4A). We also detected the presence of myristate and palmitate on an N-

terminal peptide of the immunodominant antigen Cp23. In addition, we identified at least 

two peptides without O-HexNAc from each of 811 other C. parvum proteins. Information 

about these peptides and the glycopeptides described below has been deposited in the 

ProteomeXchange Consortium. 
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Dense Arrays of O-GalNAc are Present on the Ser-rich Domain of Gp40 

Gp40/Gp15 precursor (cgd6_1080) has an N-terminal signal peptide, a furin 

cleavage site that separates Gp40 (AA-22 to 220) from Gp15 (AA-221 to 324), and a C-

terminal site for the addition of a GPI-anchor (Fig. 4.1) (34, 40, 42, 369). A tryptic 

glycopeptide (AA-43 to 60) of Gp40, which contains 17 consecutive Ser residues 

followed by Thr-Ser-Thr, was modified with 15 to 20 HexNAc residues (Table 4.1 and 

Appendix 4A). For example, the monoisotopic mass of the precursor ion m/z 1757.2272 

[M + 4H]4+ corresponds to the value calculated for the peptide 

DVPVEGSSSSSSSSSSSSSSSSSTSTVAPANK with the addition of 20 HexNAc 

residues (Fig. 4.2 and Appendix 4B). The very abundant HexNAc oxonium ion (m/z 

204.0866) and a very low abundance peak that fits the value for HexNAc2 (m/z 407.1670) 

are present in the 30-V HCD MS/MS spectrum. The observed dimer could be an artifact 

generated from the high population of HexNAc monomers. To a very large extent, glycan 

loss occurs prior to fragmentation of the peptide, with the result that the observed b and y 

ions contain zero to four HexNAc residues. The only product ion that can be used to 

assign the HexNAc modification to a specific amino acid is the y7* ion, indicating the 

presence of HexNAc on the Thr closest to the C-terminus. In a second experiment, to 

avoid overpopulating the Orbitrap analyzer with the less informative HexNAc oxonium 

ion, the start of the selection window was raised from m/z 100 to m/z 210, and to ensure 

the generation of more peptide backbone fragments, the HCD energy was increased to 45 

V (Fig. 4.7 and Appendix 4B). The 45-V HCD MS/MS spectrum exhibited extensive 

fragmentation of the aglycon peptide, which resulted in product ions that composed a 
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nearly complete y -series (y2 - y25, y30 ) and included several b ions (b2 - b4, b6 - b7). 

Because we saw little evidence for the presence of HexNAc-HexNAc, we assume that 

each of the 20 potential O-glycan sites is occupied with a single HexNAc residue. We 

were unable to localize site occupancy in glycopeptides with 15-19 HexNAc residues, 

due to the labile nature of the O-glycans. Quite likely, the peptides modified with 15 to 

19 HexNAc residues are a mixture of components having different occupancies.  

Release of O-glycans from C. parvum sporulated oocyst proteins by reductive β–

elimination, followed by monosaccharide analysis versus sugar standards using GC/MS, 

showed that the HexNAc residues in the Gp40 glycopeptide and in glycopeptides of the 

other vaccine candidates are likely GalNAc (Fig. 4.8). In support of this assignment are 

the previous reports that C. parvum has four O-GalNAcTs, and patient sera recognize 

synthetic glycopeptides derived from Gp40 and Gp15 with O-GalNAc (44, 125). In 

summary, the Gp40 spectra presented here show that the C. parvum O-GalNAcTs are 

capable of saturating or nearly saturating consecutive arrays of Ser residues. 

Isolated O-GalNAc Residues Decorate a Glycopeptide of Gp15 

A non-tryptic glycopeptide of Gp15 (AA-221 to 240), which results from 

cleavage of the Gp40/Gp15 precursor by the furin-like protease, contained one to four 

HexNAc modifications (Fig. 4.1, Table 4.1, and Appendix 4A) (34, 40, 42, 369). For 

example, the precursor ion m/z 1326.6164 [M + 2H]2+ of the most abundant Gp15 

glycopeptide has a monoisotopic mass equal to that of the peptide 

ETSEAAATVDLFAFTLDGGK with the addition of three HexNAc residues (Fig. 4.3 

and Appendix 4B). Fragmentation with 30-V HCD yielded a prominent HexNAc 
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oxonium ion (m/z 204.0868) and full series of b and y ions, some of which retained a 

single HexNAc modification (marked with an asterisk). The product ion series y6* to 

y12*, indicates Thr-235 is modified and the series y13* to y15* suggests that either Thr-

228 or Thr-235 is modified. The b3* ion indicates that either Thr-222 or Ser-223 is 

modified. Thus there is evidence for distribution of the three HexNAc residues over the 

four available sites in this peptide. In the glycopeptide with four HexNAc modifications, 

all possible O-glycan sites must be occupied. Analyses of the fragmentation patterns of 

numerous other peptides (Appendix 4A), both tryptic and non-tryptic, suggest that Thr-

222 is preferentially modified over Ser-223, while Thr-228 and Thr-235 are nearly 

always modified.  

Dense Arrays of O-GalNAc are Present on Thr-rich Glycopeptides of Gp20  

Gp20 (cgd7_1280), is a small, acidic, secreted protein with four domains with 

consecutive Thr residues, two of which are described here (Fig. 4.1). The first Gp20 

glycopeptide (87)EGEETDENTDETTTTTTTASPKPK(110) has 10 potential O-glycan 

sites and was found to be decorated with six to eight HexNAc residues (Table 4.1 and 

Appendix 4A). For example, the peak corresponding to the precursor ion of the most 

abundant Gp20 glycopeptide has a monoisotopic [M + 4H]4+ m/z 1001.9305, equal to the 

value calculated for the peptide modified by seven HexNAc residues (Fig. 4.4 and 

Appendix 4B). The 30-V HCD MS/MS spectrum includes a HexNAc oxonium ion (m/z 

204.0868) and numerous b and y-ions retaining zero to two HexNAc residues (marked 

with asterisks). Because the vast majority of HexNAc residues were lost prior to peptide 

fragmentation, it was not possible to define the seven occupied sites or to determine 
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whether the occupancy was heterogeneous. A second Gp20 glycopeptide 

(135)SSTTTTTTTAPVSSEDNKPEDSEDEK(160) with 12 potential O-glycan sites has 

a monoisotopic mass equal to that of the peptide with the addition of eight HexNAc 

residues (Table 4.1 and Appendix 4A). Again glycan loss prior to peptide backbone 

fragmentation made it impossible to localize the occupied O-glycans sites. Two other 

Thr-rich domains of Gp20 are present in a 55-amino acid long tryptic peptide, which was 

not identified. Regardless, the two Gp20 spectra show that the C. parvum O-GalNAcTs 

are capable of nearly saturating arrays of Thr residues.  

A Glycopeptide of Gp900 with Consecutive Thr is Lightly Modified by O-GalNAc, 

while Numerous Gp900 Glycopeptides Contain a Single O-HexNAc Residue 

Gp900 (cgd7_4020), which has an N-terminal signal peptide and a 

transmembrane domain near its C-terminus, is by far the largest of the C. parvum vaccine 

candidates (1912 amino acids minus the signal peptide) (Fig. 4.1) (31, 33) . One reason 

for the large size of Gp900 is the presence of a vast array of consecutive Thr residues, 

which extends from AA-304 to 640. A second Thr-rich region extends from AA-797 to 

908. Because of the paucity of tryptic sites in the Thr-rich arrays of Gp900, and the 

likelihood that the Thr stretches are also heavily O-glycosylated, these regions were not 

observed by mass spectrometry, with one exception (Table 4.1, Appendix 4A, and Fig. 

4.8). The precursor ion m/z 732.0284 [M + 3H]3+ has a monoisotopic mass equal to that 

calculated for the peptide (609)KPTTTTTTTTTTTTK(623) with the addition of only 

three HexNAc residues, despite the presence of 12 available sites (Fig. 4.8 and Appendix 

4B). The 30-V HCD MS/MS spectrum includes a HexNAc oxonium ion (m/z 204.0868) 
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and numerous b and y ions containing zero to two HexNAc residues (marked with 

asterisks). Here again, because of the lability of the glycans, it was not possible to 

precisely define the occupied sites or to determine whether the occupancy was 

heterogeneous. Many of the most abundant glycopeptides of Gp900 have a single 

HexNAc modification at an isolated Ser or Thr residue (Table 4.1 and Appendix 4A). For 

example, the precursor ion m/z 895.4646 [M + 4H]4+ has a monoisotopic mass 

corresponding to the value calculated for the peptide 

(1712)NIVTEAAYGLPVDPK(1726) plus a single HexNAc residue (Fig. 4.5 and 

Appendix 4B). The b4*, b6*, and b7* ions show that Thr-1715 is modified. The mass 

spectra of 12 unique peptides from Gp900, each with a single HexNAc modification, 

together with the spectra from Gp15, suggest that the C. parvum O-GalNAcTs are 

capable of modifying isolated Ser and Thr residues, in addition to stretches of 

consecutive Ser residues in Gp40 and Thr in Gp20 and Gp900.  

At the N-terminus of Cp23 Myristoyl Modifies Gly1, while Palmitoyl Modifies Cys2.  

The immunodominant antigen Cp23 (cgd4_3620) contains no signal peptide but 

has an N-terminal sequence (MGCSSSKPETK) similar to those modified by fatty acyl 

chains in the host and other apicomplexans (Fig. 4.1) (110, 450-456). Consistent with this 

resemblance, numerous hydrophobic peptides were identified by mass spectrometry 

containing the N-terminus of Cp23 minus Met-1, with no modification, substituted by 

either myristate or palmitate, or both (Table 4.2) (442). For example, the precursor ion 

[M + 2H]2+ m/z 736.4573 has a monoisotopic mass equal to that calculated for the peptide 

GCSSSKPETK with the addition myristate and palmitate (Fig. 4.6 and Appendix 4B). 
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Fragmentation using 30-V HCD showed the presence of myristate (m/z 211.2056) and 

palmitate (m/z 239.2370), as well as the charge reduced [M + H]1+ molecular ion with 

loss of palmitate (m/z 1233.6782) or myristate (m/z 1261.7001). Complete y-ion series 

and partial b-ion series allow us to assign myristate to the N-terminal Gly and palmitate 

to the Cys. We believe the example given is what is present on the native protein. The 

peptides where palmitate is absent and Cys is carbamidomethylated or palmitate modifies 

Ser residues, for which numerous other spectra were recorded, are likely artifacts 

occurring during sample processing (442, 443). 

Discussion  

Mass spectrometry here directly demonstrated that addition of O-GalNAc is a 

widespread modification of C. parvum vaccine candidates (Gp15, Gp40, and Gp900) 

(352, 353). Previous Evidence for the addition of O-GalNAc to these proteins has 

previously been obtained through the use of synthetic glycopeptides, lectins, patient sera, 

or a monoclonal anti-carbohydrate antibody to C. parvum (15, 44). The remarkable result 

reported here is  that the O-GalNAc modifications saturate Ser-rich sequences of Gp40 

and they nearly saturate Thr-rich sequences of Gp20, a protein which has not previously 

been characterized. A second remarkable result is that nearly all of peptides with O-

glycans derive from just four proteins (Gp40, Gp15, Gp900, and Gp20), even though 

>800 proteins were identified by mass spectrometry. Limitations of our observations 

include 1) failure to observe most of the very extended Thr-rich domains of Gp900 and 

two of the Thr-rich domains of Gp20, 2) inability to assign O-glycans sites on many of 

the peptides due to very facile elimination of the O-linked glycan residues during HCD 
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fragmentation, and 3) limited sampling of glycoproteins with O-GalNAc. In particular, 

the GalNAc-binding Maclura pomifera agglutinin enriched six mucin-like glycoproteins 

in addition to Gp40, Gp15, and Gp900 from lysed oocysts (35).  

These results show that the four O-GalNAcTs of C. parvum, each of which has a 

lectin domain in addition to its glycosyltransferase domain, efficiently continue to 

glycosylate regions of glycoproteins that are already glycosylated (125, 457, 458). Indeed 

the four O-GalNAcTs of C. parvum are able to make the same kind of modifications to 

arrays of Ser and Thr and to isolated Ser and Thr as the 20 O-GalNAcTs of the host. The 

activity of each O-GalNAcT can only be determined by knockouts of the genes encoding 

these enzymes, a technology that is now available in C. parvum grown in mice (459). O-

glycans of C. parvum differ from those of the host in that O-GalNAc is not extended by 

other sugars (458). C. parvum then is the equivalent of the “SimpleCell” lines engineered 

to express truncated O-GalNAc (knockout of cosmic gene), which have been used to map 

occupied O-glycan sites (460-462). Similarly, the very short C. parvum O-glycans are 

recognized by anti-Tn antibodies, which bind to O-GalNAc (44, 463). 

Properties that distinguish C. parvum Gp15 and Gp40 include glycosylation 

(discrete O-GalNAc residues versus densely clustered O-GalNAc residues) (shown here), 

localization on sporozoites (apically associated versus diffusely covering surface), 

localization on oocyst walls (outer surface versus inner surface), and structure (GPI-

anchored versus secreted) (15, 31, 33-35, 39, 40, 42, 369, 427). We infer that the densely 

clustered O-GalNAc residues make the Ser-rich regions of Gp40 and Thr-rich regions of 

Gp20 and Gp900 rigid and extended rather than unstructured (419, 464, 465). These 
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extended regions of O-glycosylation may contribute to the tethering functions of Gp40 

and Gp900, which attach sporozoites to the inner layer of the oocyst wall (35). O-

glycosylation on these glycoproteins that coat the sporozoite surface may also affect host 

cell invasion and/or the innate and acquired immune responses to infecting parasites (15, 

363, 365-367). In contrast, addition of myristate to N-terminal Gly and palmitate to Cys 

likely directs cp23 from the cytosol to membranes of C. parvum and thus is important for 

its function, as has been extensively studied in Toxoplasma, Plasmodium, and the host 

(441, 450-456). Chemical biology experiments or mutation of sites for addition of 

myristate and palmitate on cp23 would be useful to test the roles of fatty acyl 

modifications in C. parvum. Serological screens for C. parvum use recombinant proteins 

which are made in bacterial systems that fail to add O-GalNAc (Gp40 and Gp15) or fatty 

acyl chains (Cp23) (347, 363-367, 430, 431). Because the host antibody response 

includes antibodies to glycopeptides with O-glycans (44), these serological screens are 

likely lacking sensitivity and might be improved by expressing C. parvum proteins in 

SimpleCells that add only O-GalNAc to glycoproteins (460-462). Similarly, vaccination 

with recombinant proteins produced in bacteria provokes an immune response to the 

unmodified peptides, whereas acquired immunity to C. parvum infections includes 

responses to the O-glycans on Gp40 and Gp15 (44) and possibly lipid-modifications of 

Cp23. Again, the cosmc knockout might be used to produce recombinant Gp40 or Gp15 

coated with O-GalNAc for vaccination. Production of Cp23 in mammalian cells that add 

fatty acyl chains might increase the sensitivity of serological screens for this antigen and 

generate a better vaccine.  
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Tables 

 

Table 4.1. Overview of Tryptic Glycopeptides Identified by Mass Spectrometry, Examples of which are Shown 
in Figs. 4.2 to 4.5, 4.7, 4.9, and 4.10. 

The table provides an overview of the tryptic glycopeptides identified using mass spectrometry. Example spectra are 
shown in Figs. 4.2 to 4.5, 4.7, 4.9, and 4.10. The number of HexNAc residues is listed for each glycopeptide, and the 
most abundant glycopeptide is marked with an asterisk. Missed and non-tryptic cleavages are omitted, unless these 
occurrences led to a change in the number of Ser or Thr residues. †The complete list of glycopeptides used to generate 
this table can be viewed in Appendix 4A. 

 
 
Table 4.2. Lipid Modifications of the N-terminus of Cp23. 

Lipid Modifications of the N-terminus of Cp23. Asterisks mark peptides that are likely real. The other peptides could 
be artifacts from sample preparation (442, 443). (cm = carbamidomethyl, 57.0214 Da, myr = myristate, 210.1983 Da, 
palm = palmitate, 238.2296 Da) 
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Figures 

 

Fig. 4.1 Schematics of Cryptosporidium Glycoproteins Characterized by Mass Spectrometry. 

(A.) Gp40/Gp15 precursor is cleaved at a furin-like protease site (pink) into Gp40 and Gp15. Mass spectrometry 
showed Gp40 has a Thr-rich domain (AA-43 to 60) with numerous O-linked HexNAc modifications (marked in green, 
with Ser and Thr residues marked in red); Gp15 contains a single domain (AA-221 to 240) that is glycosylated. Other 
peptides identified with mass spectrometry are marked in grey. Predicted N-terminal signal peptide is marked in 
orange, while GPI-anchor signal is marked in olive. (B.) A 20-kDa glycoprotein (Gp20) contains two Thr-rich domains 
(AA-87 to110 and AA-135 to 160), which contain numerous HexNAc modifications. (C.) Gp900 contains two very 
large Thr-rich domains (red brackets), one of which contains a peptide with three HexNAc residues (AA-609 to 623). 
The transmembrane helix near the C-terminus is encompassed by two horizontal lines, representing a membrane. (D.) 
The N-terminus of Cp23 is modified with N-myristate (C14) and S-palmitate (C16). The start Met is absent (diamond).  
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Fig. 4.2 HCD MS/MS Spectrum (@ 30 V) of a Tryptic Glycopeptide of Gp40 Shows Saturation of an Array of 
Ser with O-HexNAc Residues. 

The monoisotopic mass of the precursor ion [M + 4H]4+ m/z 1757.2272 corresponds to the value calculated for the 
peptide (43)DVPVEGSSSSSSSSSSSSSSSSSTSTVAPANK(60) with the addition of 20 HexNAc residues (Δ 0.2 
ppm).  A very abundant HexNAc oxonium ion (m/z 204.0866) and a very low abundance peak (0.5%) corresponding to 
a HexNAc dimer (m/z 407.1670) are present. Asterisks mark the number of HexNAc residues present on b and y ions. 
Please see Fig. 4.7 for a 45-V HCD MS/MS spectrum of the same Gp40 glycopeptide. The lists of all of the b and y 
ions assigned for MS/MS spectra shown in this figure and others can be found in Appendix 4B. 
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Fig. 4.3. HCD MS/MS Spectrum (@ 30 V) of a Tryptic Glycopeptide of Gp15 Shows that Three of Four O-
Glycan Sites Contain the HexNAc Modification. 

The precursor ion [M + 2H]2+ m/z 1326.6164 of the most abundant Gp15 glycopeptide has a monoisotopic mass 
corresponding to that calculated for the peptide (221)ETSEAAATVDLFAFTLDGGK(240) with the addition of three 
HexNAc residues (Δ 0.3 ppm). There is a prominent HexNAc oxonium ion (m/z 204.0868) and full series of b and y 
ions, some of which contain a single HexNAc residue (*).   
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Fig. 4.4 HCD MS/MS Spectrum (@ 30V) of a Tryptic Glycopeptide of Gp20 Shows Near Saturation of 
Consecutive Thr Residues with the O-HexNAc Modification. 

The precursor ion [M + 4H]4+ m/z 1001.9305 has a monoisotopic mass corresponding to that calculated for the peptide 
(87)EGEETDENTDETTTTTTTASPKPK(110) plus seven HexNAc residues (Δ 0.5 ppm). There is a prominent 
HexNAc oxonium ion (m/z 204.0868) and full series of b and y ions, some of which contain one (*) or two (**) 
HexNAc residues. All ions are singly charged, except where indicated. In addition, charge-reduced ions, all 2+, 
corresponding to species that have undergone consecutive losses of HexNAc residues, are observed and are labeled as 
follows: ‡** = [M + 2H]2+ - HexNAc5 (m/z 1495.1470), ‡* = [M + 2H]2+ - HexNAc6 (m/z 1393.6224), ‡ = [M + 2H]2+ 
aglycon peptide (m/z 1292.0851) .  
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Fig. 4.5 HCD MS/MS Spectrum (@ 30V) of a Tryptic Glycopeptide of Gp900 Shows a Single O-HexNAc 
Modification on a Thr Residue. 

The precursor ion [M + 4H]4+  m/z 895.4646 has a monoisotopic mass corresponding to that calculated for the peptide 
(1712)NIVTEAAYGLPVDPK(1726) plus a single HexNAc residue (Δ 0.1 ppm). There is a prominent HexNAc 
oxonium ion (m/z 204.0865) and full series of b and y ions, some of which contain a HexNAc residue (*). The b4*, b6*, 
and b7* ions show that Thr-1715 is modified.  
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Fig. 4.6. HCD MS/MS Spectrum (@30 V) of an N-terminal Peptide of Cp23 (Minus Met-1) Shows Gly-1 is 
Modified with Myristate and Cys-2 is Modified with Palmitate. 

The precursor ion [M + 2H]2+ m/z 736.4573 has a monoisotopic mass corresponding to that calculated for the peptide 
(2)GCSSSKPETK(11) plus myristate and palmitate (Δ 1.1 ppm). Fragment ions could be assigned to myristate (m/z 
211.2056) and palmitate (m/z 239.2370), as well as the charge-reduced [M + H]1+ molecular ions that have undergone 
loss of palmitate (m/z 1233.6782) or myristate (m/z 1261.7001). All the b/y ions contain the lipid modification, unless 
otherwise indicated.   
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Fig. 4.7. HCD MS/MS Spectrum (@ 45V) of a Tryptic Glycopeptide of Gp40 Gives Complete Sequence of the 
Peptide. 

The precursor ion [M + 4H]4+ m/z 1757.2272  corresponds to the monoisotopic mass equal to that of the peptide 
(43)DVPVEGSSSSSSSSSSSSSSSSSTSTVAPANK(60) with the addition of 20 HexNAc residues (Δ 0.6 ppm). The 
selection window was set to start at m/z 210 in order to exclude the very abundant oxonium ion (m/z 204.0866). There 
is extensive fragmentation of the aglycon peptide ((y2 - y25, y30 ) and (b2 - b4, b6 - b7) ions). Fig. 4.2 shows the 30-V 
HCD MS/MS spectrum of the same peptide.  
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Fig. 4.8. GC-MS Analysis Shows the O-Glycan Released by β–Elimination from C. parvum Glycoproteins is 
GalNAc. 

GC/MS data obtained for the deuteroreduced and permethylated glycan released by reductive β-elimination of C. 
parvum oocyst glycoproteins are compared with results observed for the GlcNAc and GalNAc standards, which were 
similarly treated. Left, extracted ion chromatograms of m/z 101. Right, electron impact mass spectra of the standards 
and the product from reductive β-elimination of C. parvum oocyst glycoproteins. The sugar released from C. parvum is 
assigned as GalNAc, because the retention time (34 min.) and EI mass spectrum both match that of the standard 
GalNAc. The EI mass spectra of the components eluting at positions marked with the asterisk (*) and double asterisk  
(**) symbols do not correspond to sugar derivatives.   
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Fig. 4.9. HCD MS/MS Spectrum (@ 30V) of a Tryptic Glycopeptide of Gp900 Shows Partial Glycosylation of a 
Thr-rich Repeat. 

The precursor ion [M + 3H]3+ m/z 732.0284 has a monoisotopic mass corresponding to the peptide 
(609)KPTTTTTTTTTTTTK(623) with the addition of three HexNAc residues (Δ  -0.1 ppm)(Fig. 4.9). There is a 
prominent HexNAc oxonium ion (m/z 204.0868) and a full series of b and y ions, some of which contain one (*) or two 
(**) HexNAc residues. The facile loss of HexNAc residues made it impossible to localize occupied sites. Charged-
reduced aglycon peptide ions are observed in the spectrum, ǂ = [M + 2H]2+  m/z 792.9193 and † = [M + H]1+ m/z 
1584.8348.  
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Fig. 4.10. A Representative GlycReSoft Re-Annotated Spectrum, One of 345 Tandem Mass Spectra Deposited 
into the PRIDE Repository. 

This figure presents an example of an MS/MS spectrum initially assigned by PEAKS DB, then manually verified and 
re-annotated using the in-house software GlycReSoft. GlycReSoft is capable of both discovery and annotation, but only 
the annotation capabilities were utilized here.
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Chapter 5. The O-Fucosylated Proteins of T. gondii. 

The majority of this chapter was published in PNAS, 2016 (415). The full 

reference is provided below. I present here the mass spectrometry work, which I 

performed. 

Bandini, G., Haserick, J. R., Motari, E., Ouologuem, D. T., Lourido, S., Roos, D. 
S., Costello, C. E., Robbins, P. W., and Samuelson, J. (2016) O-Fucosylated 
Glycoproteins Form Assemblies in Close Proximity to the Nuclear Pore Complexes of 
Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United 
States of America 113, 11567-11572 

Abstract 

Toxoplasma gondii is an intracellular parasite that causes disseminated infections 

in fetuses and immunocompromised individuals. While gene regulation is important for 

parasite differentiation and pathogenesis, little is known about protein organization in the 

nucleus. Giuila Bandini, a post-doctoral fellow in the Samuelson lab, showed that the 

fucose-binding Aleuria aurantia lectin (AAL) binds to numerous punctate structures in 

the nuclei of tachyzoites, bradyzoites, sporozoites, but not to oocysts. AAL also binds to 

Hammondia and Neospora nuclei, but not to more distantly related apicomplexans. 

Analyses of the AAL-enriched fraction with mass spectrometry that I performed indicate 

that AAL binds O-linked fucose added to Ser/Thr residues present in, or adjacent to, Ser-

rich domains (SRDs). Sixty-nine Ser-rich proteins were reproducibly enriched with AAL, 

including nucleoporins, mRNA processing enzymes and cell signaling proteins. Dr. 

Bandini showed that two endogenous SRDs-containing proteins, a SNF2/SWI2 

transcriptional co-activator and a GPN-loop GTPase, and a SRD-YFP fusion localize 

with AAL to the nuclear membrane. She showed by super-resolution microscopy that the 
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majority of the AAL signal localizes in proximity to nuclear pore complexes (NPCs). 

Although host cells modify secreted proteins with O-fucose, this is the first O-

fucosylation pathway described in the nucleocytosol of a eukaryote. Furthermore, these 

results suggest a novel mechanism by which proteins involved in gene expression 

accumulate at the nuclear membrane and in close proximity to the NPC. 

Significance Statement 

We describe here the discovery that assemblies of O-fucosylated proteins localize 

to the nuclear membrane of Toxoplasma gondii, particularly in proximity to the nuclear 

pore complexes (NPCs). O-fucose is added to Ser and/or Thr residues in some of the FG 

domain-containing proteins that characterize the NPC channel, as well as to some Ser-

rich sequences in many proteins predicted to have roles in transcription, mRNA 

processing, and cell signaling. O-fucosylation of nucleocytosolic proteins has not been 

previously described in any eukaryote. In T. gondii this appears to be a unique means by 

which proteins important for gene expression accumulate at the nuclear membrane and in 

close proximity, likely in association, to the NPC. 

Introduction 

Toxoplasma gondii is an apicomplexan parasite that causes disseminated 

infections in humans and these can lead to severe damage in immunocompromised 

individuals and fetuses (466, 467). There is no human vaccine against T. gondii and the 

price of the drug used to treat toxoplasmosis in the United States (pyrimethamine) has 

recently increased more than 50-fold (466).  
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T. gondii has a complex life cycle, and the ability of the parasite to differentiate 

through its life stages in response to stresses and environmental conditions is fundamental 

for its pathogenicity and transmission (468). Transcriptome analyses have revealed that a 

large percentage of mRNAs show life stage-specific expression (469) and/or cell cycle 

regulation (470). Recent studies have increased our understanding of gene expression in 

T. gondii by identifying the AP2 family of transcription factors (471-473), and by 

describing post-translational modifications (PTMs) of histones and some of the enzymes 

responsible for them (474-476). However, little is known about protein organization at 

the nuclear periphery, a sub-nuclear compartment that plays a critical role in 

transcriptional regulation in many eukaryotes. In particular, the gene gating model 

(477)assigns a role to nuclear pore complex (NPC) proteins, not only in protein and 

mRNA transport, but also in transcriptional regulation and chromatin organization (478-

480).  

In T. gondii chromodomain protein 1 localizes with heterochromatin at the 

nuclear periphery (481), and centromeres sequester to an apical nuclear region (482). 

While the nuclear localization signal (NLS) and importin-α system are present, key 

nuclear import and export molecules are not easily identified (483-485). Furthermore, 

NPC composition is divergent, so that only phenylalanine-glycine (FG) repeats-

containing nucleoporins (FG-Nups) and a putative Nup54 can be predicted by primary 

sequence homology searches (486).  

Here we report the discovery of numerous assemblies of O-fucosylated proteins, 

which associate with the nuclear membrane of T. gondii, especially in proximity of the 
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NPCs. These results improve our understanding the architecture of the nuclear periphery 

of T. gondii and highlight O-fucosylation as a PTM involved in assemblies associated 

with the NPC.  

Materials and Methods:  

Lectin Pull-Downs.  

T. gondii type I RH tachyzoite culture, manipulation, and in vitro differentiation 

to bradyzoites were performed as previously described. For LC-MS/MS analyses, 

1.5x109 extracellular tachyzoites were harvested by centrifugation and washed 4x in 1x 

PBS. Cells were lysed in 2% SDS, 0.15 M NaCl, 0.1 mM DTT in 40 mM TrisHCl pH 

7.4, heated 20 min at 50 °C and cooled down to RT. After dilution to 0.03% SDS, 0.8% 

(w/v) N-octyl-glucopyranoside, 0.15 M NaCl, 40 mM DTT, 20 mM TrisHCl pH 7.4 (PD 

Buffer) plus EDTA-free complete protease inhibitor tablets (Roche), lysate was incubated 

2 h rotating at 4 °C with 30 μg biotinylated-AAL, followed by 30 min incubation with 

Dynabeads® MyOne™ Streptavidin T1. Beads were collected and washed 5x in PD 

Buffer. Proteins were eluted by incubation with 0.2 M αMeFuc in PD Buffer for 16 h, 

shaking at 4 °C (E1). E2 was performed by incubating the beads for an additional 2 h in 

0.2 M αMeFuc in PD Buffer. For analysis of tagged cell lines, pull-downs were 

performed on 4.5x108 tachyzoites and amounts of biotinylated-AAL and beads were 

adjusted accordingly. 
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Mass Spectrometry.  

Proteins in the elution were reduced, alkylated, and digested with proteomics 

grade trypsin as either in-solution or in-gel digests. The trypsin generated peptides were 

analyzed by LC-MS/MS using a Chip or UPLC C18 column either on an 6550-QTOF 

(Agilent Technologies), an LTQ-Orbitrap-XL-ETD, or a Q Exactive Plus Quadrupole 

hybrid Orbitrap (Thermo Scientific) MS system. The PTM search function within the 

analysis software PEAKS (Bioinformatic Solutions) (487) was used to produce a list of 

putative O-fucosylated peptides that was manually verified. Scaffold (Proteome 

Software) (488) was used to compare the five biological repeats and further analyses 

were performed using RStudio. Monosaccharide composition analysis was performed on 

a Bruker Scion-SQ GC-MS (Bruker).  

In-Solution Digestion of AAL-Enriched Proteins  

The following section describes the processing of biological replicates 4 and 5. 

The proteins in the AAL enrichment eluent, (E1), were precipitated in cold methanol 

(MeOH) containing 0.1 M ammonium acetate, for at least 18 h at -20 °C. The precipitate 

was washed with MeOH/ 0.1 M ammonium acetate, any remaining solvent was removed 

by speed vacuum (Speed Vac® Plus, Savant). The dried samples were re-suspended in 50 

mM ammonium bicarbonate pH 8.0, reduced with DTT, alkylated with iodoacetamide, 

and digested for 18 h at 37°C with proteomics grade trypsin. The resulting digest was 

dried by speed vacuum and desalted on C18 ZipTip® concentrators (EMD Millipore).  
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LC-MS/MS Analyses of In-Solution Digests 

Samples were reconstituted in 2% ACN, 0.1% FA and separated on an ultra-

performance liquid chromatography (UPLC) capillary system (Waters), composed of a 

nanoAcquity 5 μm Symmetry C18 180 μm x 20 mm trap and a 1.7 μm BEH130C18 150 

μm x 10 cm analytical column. The TriVersa NanoMate ion source (Advion) was 

coupled to either an LTQ-Orbitrap-XL-ETD or QE Plus. Samples were loaded on the 

trapping column for 4 min at 4 µl/ min, then separated at 0.5 µl/ min using the following 

conditions: 2-40% B linear gradient (43 min), hold at 40% B for 9 min, wash to 98% B 

and hold at 98% B (5 min), and re-equilibrate to 2% B (18 min). Alternatively, samples 

were re-constituted in 1% B and injected on the trapping column at 4 µl/min for 3.75 

min. Analytical separation was performed as follows: 0.5 µl/ min flow, 1-60% B linear 

gradient for 90 min, followed by holding at 60% B for 7 min, ramp to 95% B (3 min), 

hold for 5 min, and re-equilibration at 1% B for 15 min. On the QE Plus, MS spectra 

were obtained by scanning over the range m/z 350-2000 with 1 microscan and a 

maximum injection time of 50 ms. MS/MS parameters: top 20 MS/MS isolation window, 

1.4 m/z, 1 microscan, maximum injection time 45 ms, scan range m/z 100-2000. HCD 

fragmentation was performed at either 27 or 45 eV. For HCD MS and MS/MS, spectra 

were acquired on the Orbitrap as follows. MS: range m/z 300-2000, 1 microscan, max. 

500 ms injection time. MS/MS: 2 microscans, max. 500 ms injection time, 2 m/z isolation 

window, and 35 eV HCD fragmentation.  



168 
 

 

Electron Transfer Dissociation (ETD) Experiments 

 ETD experiments were performed on an LTQ-Orbitrap-XL-ETD using the same 

chromatography setup described above (43-min linear gradient). MS scans: 1 microscan, 

range m/z 300-2000. MS/MS scans: isolation width 3 m/z, max injection time 25 

ms/microscan, fragmentation using ETD with supplemental activation with a 180 ms 

reaction time, 4 microscans averaged per MS/MS, detection in the linear quadrupole ion 

trap. The resulting spectra were searched using Mascot against the T. gondii GT1 

predicted proteome (trypsin as the enzyme with maximum three missed cleavages, 10 

ppm precursor and 0.8 Da fragmentation mass tolerances). Carbamidomethyl cysteine 

was specified as fixed modification and dHex (on Ser/Thr) or methionine oxidation as 

variable modifications. Figure 5.5 was annotated using the PEAKS software suite using 

similar parameters as described in this manuscript; however, with the exception that the 

data was imported as ETD ion-trap data, and the MS/MS error tolerances were loosened 

to 0.5Da for MS/MS ions. 

Monosaccharide Analysis: 

Chemical Release of Monosaccharides by Reductive β-elimination 

The eluent from the AAL-enrichment (starting material 2.5x108 tachyzoites) was 

precipitated in cold methanol/ 0.1 M ammonium acetate as described above. Reductive β-

elimination was performed by dissolving the protein precipitate in 200 μL 50 mM NaOH 

containing 1 M NaBD4 and incubated in an oven set to 55 °C for 16 h. Residual NaBD4 

was eliminated by adding glacial acetic acid drop wise until effervescence ceased. The 
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sample was subsequently dried in a speedvac. The boric acid was then removed by 

extensive drying cycles in 10% acetic acid/ MeOH, followed by 100% MeOH. To isolate 

the released sugars the dried sample was re-suspended in 2% ACN 0.1% TFA and loaded 

on a SepPak C18 cartridge (Waters), 4 volumes of H2O 0.1% TFA was washed through 

the cartridge and the eluate collected. The sample was lyophilized then per-acetylated to 

generate alditol acetates.  

Per-Acetylation of the Released Monosaccharides 

Alditol acetates were generated by adding equal volumes of pyridine and acetic 

anhydride to the lyophilized sample and heating at 110 °C for 40 min. Once cooled, water 

was added to quench the remaining acetic anhydride. The alditol acetates were extracted 

into ethyl acetate and concentrated in a speedvac.  

Gas Chromatography Mass Spectrometry (GC-MS) of the Alditol Acetates 

The alditol acetates were analyzed using a Bruker Scion-SQ equipped with a 436-

GC gas chromatography system utilizing helium as a carrier gas. The concentrated alditol 

acetates were diluted 1:10 vol./vol. into hexane, and 2 μL injected. The injector 

temperature was set for 220 °C and maintained a constant column flow rate of 1 mL/ min 

for the duration of the analysis. The initial split less sample injection was followed by a 

100 mL/ min split flow (1min), then 50 mL/ min split flow (59 min). The GC temperature 

was held at 60 °C for 1 min then raised to 250°C at a rate of 4 °C/ min., then to 300 °C at 

a rate of 20 °C/ min, holding for 10 min. Separation was achieved on a Restek™ Rxi™- 

5ms capillary column. Electron impact (EI) ionization was performed with a 70eV source 
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and spectra acquired in positive mode after a 5 min solvent delay, scanning the m/z range 

50-500 with a scan time of 500 ms. Spectra were background subtracted and 5 scan 

averages used to make a composite spectrum. The spectra and retention times were 

compared to those of genuine deutero-reduced alditol acetate standards analyzed on the 

same column under identical conditions. To differentiate between rhamnose and fucose, 

XIC (129 + 171 m/z) were compared to that of the genuine standards. The software MS 

Data Review 8.0 (Bruker) was used for data analysis.  

Mass Spectrometry Data Analysis: Protein Database Searches 

All MS/MS spectra acquired in the five biological repeats, with the exception of 

the ETD data, were first analyzed with PEAKS (487). The biological samples (including 

technical replicates) were analyzed individually. The following parameters were specified 

for the de novo search: parent and fragment mass error tolerances 8 ppm and 0.05 Da, 

respectively, carbamidomethyl cysteine as a fixed modification, maximum of 8 variable 

PTMs/ peptide. For the PEAKSDB search, the same settings as above were used with 

ToxoDB-24_TgondiiGT1_RH as database (combined predicted proteins for GT1 and 

RH, with redundant protein sequences removed) and False Discovery Rate (FDR) 

estimation enabled. For the PEAKSPTM search: all parameters were identical to prior 

sections except a maximum of 5 variable PTMs/ peptide, with all built in Unimod PTMs 

considered and dHex (on Ser/Thr) or methionine oxidation as variable modifications. 

Data acquired on the Agilent 6550 was analyzed as above, but monoisotopic parent ion 

tolerance of 12 ppm and fragmentation tolerance of 0.1 Da were specified.  
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Mass Spectrometry Data Analysis: Comparison of All Data  

The PEAKS PTM results from each biological replicate were imported as unique 

biological samples into Scaffold 7.5 (Proteome Software) with all technical replicates 

contained within their respective biological sample group (488). The data were filtered to 

show 99% protein threshold and a minimum of 10 unique peptides. A 3.6% peptide FDR 

was determined using the Prophet model. Proteins listed in Appendix 5B and used to 

build Table 5.1 were either Ser-rich (either ≥10% Ser content or presence of one or more 

SRD as defined by ≥ 5 tandem Ser residues), with no predicted signal peptide and present 

in at least four out of five biological samples and/or had at least one observed 

glycopeptide confirmed by either neutral loss or presence of fragment ions plus dHex in 

the MS/MS spectrum. The list of putatively fucosylated peptides generated from the 

PEAKS PTM search (5% FDR maximum threshold for peptide-spectrum matches 

(PSM)) was then manually verified.  

Mass Spectrometry Data Analysis: Manual Verification of Database Search Results 

The list of PSM generated from the database searches were all manually verified. 

Raw data were manually examined using XCalibur Qual Browser (Thermo) or 

MassHunter Qualitative Analysis B.06.00 (Agilent). Each O-fucosylated peptide 

assignment was manually reviewed in two ways. First, a qualitative assessment of each 

MS/MS spectrum on the list of peptides containing one or more dHex was performed 

based on signal intensity, peptide coverage, and parent ion accuracy. The higher quality 

spectra were manually sequenced with the goal of specifying the locations of the dHex(s) 

on the peptide. Second, the MS spectrum corresponding to the scan used for the data-
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dependant decision tree for the automatic MS/MS of the peptide was reviewed for 

secondary evidence of dHex. This was accomplished by measuring the intervals from the 

corresponding to the mass of one or more dHex(s) in the same MS scan (within ±5 mDa) 

that could be attributed to neutral losses from a single precursor. If peaks having mass 

differences corresponding to one or more dHex(s) were observed at different retention 

times, these were considered to be indicators of PTM heterogeneity on a single peptide.  

Bioinformatics and Statistical Analyses.  

Predicted and known functions for the enriched proteins were assigned based on 

annotation on ToxoDB (489) and/or the presence of conserved PFAM domains identified 

by BlastP searches. Statistical analyses were performed by Giulia Bandini, in RStudio 

with a custom script using packages Biostrings, ggplot2 and plotrix. For the boxplot in 

Fig. 5.1A, only non-redundant peptide sequences were used and the maximum number of 

dHex observed was used to assign the peptide sequence to either group. The control set in 

Fig. 5.1B was obtained from a GO Term search on ToxoDB using the following terms: 

DNA replication (GO:0006260), RNA processing (GO:0006397), nucleus 

(GO:0005634), and nucleoplasm (GO:0005654).   

Results 

AAL Binds to O-Fucose in T. gondii.  

LC-MS/MS of tryptic peptides of AAL-enriched proteins from extracellular 

tachyzoites identified 69 unique glycopeptides containing 1-6 deoxyhexose(s) (dHexs), 

each linked to Ser or Thr (Appendix 5A). These glycopeptides correspond to 50 different 
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peptide sequences, and in many cases different numbers of dHexs were observed on the 

same peptide. All glycopeptides were manually reviewed and confirmed by either prompt 

neutral loss of at least one dHex, as indicated by the presence of peaks in the MS that 

correspond to different glycoforms detected at the same retention time, and/or by peaks in 

the MS/MS spectra that can be confidently assigned to peptide fragments containing 

dHex (Appendix 5A). No sugars other than dHex were observed, indicating that AAL is 

binding to O-fucose (O-Fuc). In a few cases, the same peptide was observed to be 

modified with a dHex, and at a later retention time was also observed in its 

unglycosylated form, suggesting the addition of O-Fuc may be a probabilistic event 

(Appendix 5A). The amino acid modified with O-Fuc could not be determined for most 

glycopeptides, due to the labile nature of the O-Fuc and the low complexity amino acid 

sequence of most of the modified peptides (Fig. 5.1B and Fig. 5.3B). Also, we cannot 

exclude the possibility of heterogeneity in the glycosylation sites. Combining high-

energy collision dissociation (HCD) and electron-transfer dissociation (ETD) MS/MS 

data, it was often possible to narrow down the modification sites to 2-6 likely Ser/Thr 

residues (Appendix 5A, Fig. 5.3B, and Fig. 5.5). Furthermore, we were able to specify the 

modification site for one glycopeptide, T610 on TGGT1_203780 (Fig. 5.1B), a putative 

FG-Nup and one of the most abundant proteins identified in the AAL-enriched fraction 

(Appendix 5B). GC-MS monosaccharide composition analysis of the sugars released by 

reductive β-elimination from the AAL-enriched fraction identified Fuc as the only dHex 

present (Fig. 5.3C and D). 
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AAL Recognizes Proteins Involved in Gene Regulation. 

In most cases, O-Fuc is added to low complexity Ser-rich domains (SRDs) or to 

sequences adjacent to these domains (Fig. 5.1A and Fig. 5.3B) and peptides with long 

SRDs are likely to have more than one dHex (Fig. 5.4B and Appendix 5A). By SRDs we 

define sequences that have five or more Ser residues in tandem. More than 70% of the 

peptides identified in the AAL-enriched fraction came from proteins with one or more 

SRDs and/or contained more than 10% Ser (Fig. 5.1A, Fig. 5.4A and Fig. 5.4B, and 

Appendix 5B). Consistent with this observation, a higher number of proteins with Ser 15-

mer is found in the apicomplexan that show nuclear AAL binding, compared to those 

which do not (Fig. 5.4C). Comparison of the data from five biological repeats resulted in 

a set of 69 Ser-rich proteins reproducibly pulled down by AAL and/or for which we 

observed glycopeptides. For 33 of the 69 AAL-enriched proteins we identified 

glycopeptides (Table 5.1 and Appendix 5B). It is likely that numerous O-fucosylated 

peptides on long SRDs were not detected because of the paucity of flanking trypsin 

cleavage sites. In contrast, proteins that were present in AAL-pull downs, but which are 

likely contaminants because of their high abundances in the cytosol (e.g. ribosomal 

proteins, cytoskeletal components, chaperones, etc.), do not contain SRDs and have an 

average of 6% Ser. A control set comprising T. gondii proteins associated with nuclear 

and cytoplasmic Gene Ontology (GO) Terms was also analyzed and shown to have an 

average Ser content of 9%, compared with the 15% Ser present in the O-fucosylated 

proteins or the SRD set (Fig. 5.4B). About 40% of the 69 proteins with one or more SRD 

contain a canonical NLS, as identified by cNLS mapper (490) (Table 5.1, Fig. 5.4A, and 
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Appendix 5B). PTMs analysis showed that the majority of AAL-enriched proteins exhibit 

some degree of phosphorylation, but none are modified by ubiquitin. This is in agreement 

with the data sets in (491) and (492). AAL enriches five out of seven predicted T. gondii 

nucleoporins (four FG-Nups and a Nup54 ortholog) each of which has one or more SRDs 

(Table 5.1 and Appendix 5B). Also present in the AAL-enriched fraction are proteins 

predicted to be involved in mRNA processing, protein-protein interactions, 

ubiquitination, and enzymes that catalyze the addition/removal of phosphate groups from 

proteins and polyphosphate phosphaditylinositol (493, 494). Transcription regulators and 

proteins with nucleotide-binding and chromosome-binding domains are also present 

(Table 5.1 and Appendix 5B). Numerous hypothetical proteins are present and these are 

often conserved in T. gondii, H. hammondi, and N. caninum, but absent in the 

apicomplexan that do not bind AAL. 

Discussion 

Almost all eukaryotes present a glycosylation pathway dedicated to the 

modification of cytosolic and nuclear proteins in which N-acetylglucosamine is 

transferred to Ser/Thr in disordered domains by O-GlcNAc transferase (OGT) (495). 

Yeast, one of the few organisms lacking a OGT, has been recently shown to use O-Man 

instead of O-GlcNAc to modify its nucleocytosolic proteins (496). In contrast, T. gondii 

has three cytosolic glycosylation pathways: an OGT (158), the hydroxylase and 

glycosyltransferases (GTs)  that modify Skp1 with a pentasaccharide (497), and the 

nucleocytosolic O-fucosylation system described here. In the host and presumably the 

parasite, the donor for the OGT reaction, UDP-GlcNAc, is sensitive to the metabolic state 
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of the cell, and modification by O-GlcNAc affects protein activity (495). Similarly, 

glycosylation of Skp1 is required for normal growth of tachyzoites in culture, and proline 

hydroxylation on Skp1 is sensitive to the redox status of T. gondii (497, 498). In contrast, 

this study suggests that addition of O-Fuc targets T. gondii proteins to assemblies closely 

associated with the nuclear membrane and that targeting of endogenous and exogenous 

proteins to the AAL-labeled assembly may occur in the absence of an NLS. SRD-YFP 

and two endogenous proteins, one containing a predicted NLS, are modified with O-Fuc 

and localize to the nuclear periphery, while addition of an NLS to either Cas9 or YFP 

targets proteins to the nucleoplasm, nucleolus included. Whether addition of O-Fuc 

affects the activity of T. gondii proteins or protein-protein interactions was not 

determined here. 

Although O-fucosylation of Ser/Thr residues has been previously described in 

secreted proteins of eukaryotic cells, this is the first time this modification has been 

identified on nuclear proteins. AAL staining suggests this pathway is conserved only in 

T. gondii, H. hammondi and N. caninum. Both human fibroblasts and bovine turbinate 

cells did not show nuclear staining by AAL. Further studies in different taxonomic 

groups should be performed, but the limited data so far suggest nuclear O-fucosylation 

may be restricted to these three species. Recognizing the limitations we have encountered 

thus far in precisely defining the modification site(s), it appears the T. gondii unidentified 

O-fucosyltransferase (OFucT) differs from host protein O-fucosyltransferases (POFUT1 

and POFUT2) in its location and acceptor specificity. First, POFUTs are ER-resident 

glycosyltransferases (486), while we predict that the T. gondii OFucT is either cytosolic 
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or nuclear. Second, the host enzymes transfer O-Fuc to epidermal growth factor-like 

(POFUT1) or thrombospondin type I (POFUT2) repeats, both of which are characterized 

by conserved disulfide bonds (499, 500), while disulfides do not form in cytosolic and 

nuclear proteins. 

Our working model of protein O-fucosylation in T. gondii is shown in Fig. 5.2. 

AAL-enrichment and the identified glycopeptides suggest that the acceptors of the 

putative OFucT are for the most part SRDs or proteins containing such domains. 

However, it seems likely that not all nucleocytosolic proteins with SRDs were identified 

in the AAL enrichment. In our model, we speculate that an as-yet-unidentified fucose-

binding lectin would recognize O-fucosylated proteins and participate in their 

accumulation in assemblies closely associated with the nuclear membrane. This would be 

similar to the host cell secretory pathway where lectins bind glucosylated and 

mannosylated N-glycans (105). Many hypothetical proteins, with no homology to any 

known conserved domains and specific to T. gondii, have been identified in the AAL 

pull-downs, and they may be important in forming the assemblies, i.e. the hypothesized 

fucose-binding lectin. The AAL-labeled assembly is also likely to contain proteins that 

are not O-fucosylated and, in our model, these proteins would associate via protein-

protein interactions. Protein-protein interactions, disrupted during lysis, reform during 

lectin enrichment, and we therefore cannot exclude the possibility that some of the 

proteins isolated in the pull-down that were categorized as contaminants are actually non-

fucosylated members of the assemblies. Isolation of the intact assemblies will be required 

to discriminate between non-fucosylated proteins that are members of the assemblies and 
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true contaminants. This distinction might be further complicated by the possibility that 

the protein composition of the assembly is itself heterogeneous. Furthermore, we 

observed addition of O-Fuc as a probabilistic event for ~20% of the identified 

glycopeptides. According to our model, this would suggest the fucosylated form of the 

protein might be present in the AAL-labeled assembly, while the non-fucosylated form 

might diffuse into the nucleus, if an NLS is present, or remain in the cytosol, if an NLS is 

absent, as suggested by the localization of GPN-3xMYC. Whether this is the result of the 

OFucT mechanism and/or kinetics, or it is because nuclear O-Fuc is, like O-GlcNAc, a 

reversible modification cannot be clearly stated at this point. No putative O-fucosidase 

could be identified so far in T. gondii.  

Multiple pieces of evidence point to the potential importance of the AAL-labeled 

assemblies in the nucleus of T. gondii. First, proteins in AAL pull-downs include 

numerous putative nucleoporins, mRNA processing enzymes, transcription regulators, 

and signaling proteins. Second, disruption of GDP-Fuc biosynthesis, which eliminates 

binding of AAL to nuclei, appears to severely affect growth, as suggested by our inability 

to clone the AAL-negative cells. Additional experiments will be performed to investigate 

if O-fucosylation and localization to the assemblies are necessary for the function of 

individual proteins and growth of T. gondii. The absence of AAL binding to oocyst nuclei 

suggests that these proteins are either absent or not glycosylated in these life stages, since 

electron microscopy showed that the nuclear membrane of sporulating T. gondii remains 

intact (501). Lastly, five out of seven predicted nucleoporins are present in the AAL 

enrichments, and tagged versions of Nup68 and Nup67 partially co-localize with AAL-



179 
 

 

labeled assemblies. Furthermore, mass spectrometry showed that O-Fuc is found on three 

FG-Nups: Nup68, TGGT1_203780, the second most abundant protein in the pull-down 

(Appendix 5B), and TGGT1_313430, T. gondii ortholog of yeast Nup98/96 (502). In all 

three instances, the sugar modifies the FG repeats region. FG regions are the disordered 

sequences that characterize the NPC channel and interact with karyopherins to mediate 

nuclear transport (484). In higher eukaryotes and yeast, FG regions are highly decorated 

with O-GlcNAc and O-Man, respectively, and evidence suggests that this PTM could 

affect cargo selectivity (495, 496). 

O-fucosylation appears then to be a novel mechanism by which T. gondii proteins 

involved in gene expression and mRNA processing (gating hypothesis) are gathered at 

the nuclear membrane often in close proximity to the NPCs (479), and components of the 

NPC itself are O-fucosylated. The mechanism of the association between the NPC and 

the O-fucosylated protein assemblies at the nuclear periphery (i.e. by a fucose-binding 

lectin or by protein-protein interactions) and whether it might be static or dynamic are the 

next important questions we shall address. 
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Tables 

 

Table 5.1: Proteins Containing Ser-Rich Domains Identified by AAL Pull-Down and Grouped by Function 
(Putative or Annotated). 

a NLS: nuclear localization signal 
b Number of proteins from the corresponding family for which glycopeptides were observed 
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Figures 

 
 

Fig. 5.1: AAL Bound Proteins are Modified by O-Fucose on Ser/Thr Residues. 

AAL bound proteins are modified by O-fucose on Ser/Thr residues. (A.) Peptides with a higher Ser percentage are 
more likely to be modified with more than one O-Fuc (dHex) residue. (B.) HCD MS/MS spectrum of a peptide from a 
FG-Nup (TGGT1_203780), m/z 827.41. Ions b13+dHex and y6+dHex were observed, indicating Thr610 (bold 
underlined) is the modified residue. Ions plus dHex are marked by a pink asterisk.  
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Fig. 5.2: Model for O-Fucosylation of Nuclear Proteins in T. gondii: 

Shown is a model for O-fucosylation of nuclear proteins in T. gondii: a yet to be identified OFucT transfers fucose (red 
triangle) to Ser/Thr residues on SRD-containing proteins. O-fucosylated proteins are then shuttled to the nuclear 
periphery where they associate in assemblies, via protein-protein interactions and, possibly, an endogenous fucose-
binding lectin (question mark). How the assembly of O-fucosylated proteins interacts with the NPC remains to be 
determined (question mark). According to the model, non-fucosylated proteins (asterisks) will stay in the cytosol or go 
to nucleus depending on the presence of a NLS. PPI: protein-protein interaction domain; RRM: RNA-recognition 
motif; K/P: kinase or phosphorylase domain; TR: transcriptional regulator; HP: hypothetical protein.  
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Fig. 5.3: AAL Binds Proteins Modified by One or More O-Fuc on Ser/Thr Residues, as Verified by Neutral Loss 
of dHex, MS/MS Fragmentation and GC-MS Monosaccharide Analysis. 

(A.) Extracted ion chromatograms (XIC) obtained from LC-MS spectra of a glycopeptide from TGGT1_285190, show 
neutral loss of 2 to 1 dHex(s) and in smaller amount from 1 to 0 dHex. (B.) MS/MS spectrum for the glycoform with 2 
dHexs, m/z 1032.47. The y and b series are marked in green and blue, respectively. Fragment ions plus one or two 
dHexs are marked with one and two pink asterisks, respectively. (C.) GC-MS extracted ion chromatograms for the T. 
gondii sample and the standards mixture. The matched retention time compared to the standard, indicate Fuc is the only 
dHex present after reductive β-elimination release of sugars from AAL-enriched T. gondii proteins. XIC were 
generated from the ions (129 and 171 m/z), these ions are abundant in the EI spectra from dHexs alditol acetates. XICs 
from 33-35 min are shown and the arrows indicate the rhamnose (Rha) and Fuc retention times. D. GC-MS EI spectra 
of the alditol acetates from T. gondii sample and Fuc alditol acetate standard. The retention time (34.1 min) from the 
XIC shown in C was used to generate the spectrum for each. Both the ions pattern and retention time match the Fuc 
standard and not that of Rha.  
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Fig. 5.4:Proteins and Peptides with Serine Rich Sequences. 

(A.) Peptides identified in a representative AAL enrichment. More than 70% of the peptides belong to proteins with 
SRDs (light and dark green). Of the proteins containing SRDs, 40% are predicted to have a nuclear localization signal 
(dark green). (B.) Comparison percentages of Ser in proteins for which glycopeptides were identified (O-Fuc), Ser-rich 
proteins with no predicted signal peptide in the AAL enrichment (SRD), other proteins in the enrichment 
(Contaminants), and a control set of predicted cytosolic and nuclear proteins (Control). (C.) Number of 15-mer of Ser 
or Thr residues present in various apicomplexan. Higher numbers of Ser 15-mer are present in the species that are 
bound by AAL.  
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Fig. 5.5: ITMS ETD MS/MS m/z 943.4736 [M+2H]2+, (390)ATGGATGLLGSSSLFGDTK(408) + 1 dHex 

This spectrum was annotated using PEAKS v8.0. Shown is an example ETD MS/MS spectrum, acquired on the LTQ-
Orbitrap-XL-ETD. The MS/MS was acquired in the ion trap, with a 180ms. ETD reaction time with supplemental 
activation (see methods section for details). The complete peptide sequence is observed with near complete c- and z-ion 
coverage. The peptide sequence (390)ATGGATGLLGSSSLFGDTK(408) belongs to the hypothetical protein 
(TGGT1_273850) This protein shares homology with FG repeat-containing protein Nup68. The two ions which 
strongly support the assignment ofThr-407 modified with a dHex (red asterisk), are c18 and z6. Although, all of the z-
ions, and the z +1 ions observed also support this assignment, since they contain the extra mass equal to that of a dHex., 
the c18 ion is the only c-ion observed which contains added mass equal to a dHex. The table in right corner shows all 
the assignments (ions ≤ 0.5Da of theoretical values.).  
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Chapter 6. Significant Findings and Future Work. 

The work performed and described in this dissertation has concerned two 

pathogenic parasites, C. parvum and T. gondii. Much of the analytical work was 

descriptive; however, the exploratory work revealed several significant, interesting, and 

novel discoveries. All of the glycoproteins that have been previously proposed as vaccine 

candidates in C. parvum were characterized through these studies. It has been known that 

many of the immunodominant antigens are glycosylated, and their importance to the 

immune response has been established to some degree through indirect methods, but the 

detailed structures had not been established.  

The work presented in Chapters 2 and 4 described the C. parvum N- and O-

glycosylated proteins, as well as the novel finding that the immunodominant antigen 

(Cp23) is both palmitoylated and myristoylated at its N-terminal domain. These details 

provide long-sought information missing from all the previous descriptions of the 

immunogenic proteins in C. parvum (e.g. Gp15, Gp40, Gp900, and Cp23). The proteins 

(Gp15, Gp40, and Gp900) all are known to have epitopes which are carbohydrate-based 

(15, 31). These epitopes are either O-glycans (Gp15/Gp40/Gp900) or N-glycans (Gp900). 

Including the aforementioned proteins which the literature has focused on, there are at 

least fifteen glycoproteins that are dominant immunogens; eight of these are N-

glycosylated (36). It is certainly plausible that many of the proteins described here could 

be among the fifteen immunodominant glycoproteins that have not been identified.  

For the O-glycosylated proteins of C. parvum, the novel findings were made here 

regarding Gp40 and Gp20. These proteins have long stretches of Ser/Thr within which 
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the levels of O-HexNAcylation almost reach saturation. This certainly appears to be the 

case with the peptide from Gp40. The immunogenicity of Gp20 is unknown, since this 

protein has not been described in the literature, but, due to the low complexity and heavy 

modification with O-HexNAc, the sequence of this peptide could not have been easily 

defined with most techniques used for C. parvum in previous studies (such as Edman 

degradation sequencing). It would be worthwhile to explore the functional role of Gp20 

and its localization within the oocyst, and to determine whether or not it is an 

immunogenic protein. The only other parasites that appear to have abundant numbers of 

mucin-like proteins with simple Tn-antigen O-glycans are some helminths (503). 

It is intriguing that other pathogens which encounter the epithelia mucosa for part 

of their life cycle have abundant sets of mucins or mucin-like proteins, such as in 

Trypanosoma cruzi, Leishmania spp., Toxocara canis, Echinococcus multilocularis, 

Fasciola hepatica, and Mesocestoides vogae, (39, 504-509). The functions of these 

mucin-like proteins are not entirely known. However, it has been suggested that, as with 

the mucins of the helminths, they may mimic the host glycoproteins to try to evade the 

immune system, or, they may be used to actively modulate the host’s immune response 

(510). Furthermore, it has been demonstrated that the parasitic nematode Toxocara canis 

has several secreted mucins, which have long stretches of tandem Thr, are heavily 

glycosylated, and are thought to help the parasite evade the immune system (506). These 

mucins resemble those of C. parvum, and, by comparison, could help provide insight into 

additional mechanisms in which the C. parvum mucins may play roles. 



189 
 

 

One of the most abundant glycoproteins in the C. parvum oocyst preparations was 

POWP1. The function of this protein remains to be determined, as there are no 

homologous proteins in any other organisms, other than C. hominis, and distantly in C. 

muris. The novelty to the human-pathogenic cryptosporidium species implies that it may 

have a novel function in this organism. The density of N-glycosylation sites on such a 

relatively small protein, the presence of a coil-coil domain, and the stretch of Tyr-rich 

residues, suggest that it could be a structural component of the oocyst wall. Additional 

studies should be performed to characterize the localization of this protein POWP1 

(Cgd2_490) and to ascertain its function. A brief example of a follow-up study would be 

to generate anti-sera against the recombinant protein for immunofluorescence studies, or 

to use the sera from previously infected individuals to test for reactivity against a 

recombinant POWP1.  

The discovery that the C. parvum immunodominant antigen Cp23 is a lipoprotein, 

has profound implications in the development of vaccines or therapies. To date, all 

studies with Cp23 have used the native immunogen as whole/broken oocysts, or as a 

recombinant protein. Ideally for vaccine development, it would be best to use a well-

defined antigen. Isolation of the native immunogen is not always feasible, and a 

recombinant protein is not likely modified in the same manner as that of the native 

immunogen. It was previously demonstrated that bovine hyperimmune colostrum from 

whole oocyst inoculated cows, can be used as an effective treatment to prevent 

cryptosporidium infection in otherwise healthy human subjects (25). In one study, 

acquired immunity against cryptosporidium appears to have minimal efficacy in the 
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prevention of re-infection of humans; however, detectable IgA, IgG and IgM isotypes 

were detectable prior to secondary challenge with oocysts(25). Whereas diarrheal 

symptoms did not appear to be reduced, the secretion of oocysts was markedly reduced 

(25).  

Cryptosporidium infections do increase fecal IgA levels, further implicating that 

mucosal secretion of antibodies may be the most viable method of acquiring immunity 

(511). It has been demonstrated that there is an inverse relationship between an increase 

of fecal IgA levels and oocyst shedding in mice, these antibodies specifically recognize 

(15-, 31-, 38-, 42-, 56-, and 254-kDa) bands on a Western blot, which are likely the same 

Gp15, Cp23, Gp40, and Gp900 components described elsewhere (512). These studies 

suggest that a well-characterized antigen could be used for nasal or oral inoculation to 

prevent infection, or, to help reduce secretion of oocysts to circumvent re-infections.  

In P. falciparum, an apicomplexa like C. parvum, an artificial construct of 

tripalmitoyl-S-glyceryl-cysteinyl-serine conjugated to the N-terminus of the 

immunodominant epitope of the circumsprozoite protein, showed a marked increase in 

immune response in BALB/c mice without the need for additional adjuvants (513). A 

similar strategy was performed with chimpanzees, against a liver stage-specific antigen 

from P. falciparum, which had a palmitate conjugated to the N-terminus (514). Taking 

these facts into consideration, a similar strategy for immunization against C. parvum 

seems very plausible. The sequences we identified as lipid modified on Cp23 could be 

used as a template to develop a vaccine utilizing a lipid-peptide-conjugate, or stable-

lipid-mimic construct. To further support this concept, inoculation with synthetic di-
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palmitoylated peptides is proven to be an effective method of immunization, especially 

for eliciting a mucosal response (515).  

I have concluded this dissertation with a discussion of the findings made in the 

project spearheaded by Giulia Bandini, with regards the O-fucosylated proteins in T. 

gondii. The collaborative efforts we made proved to be very fruitful. The arduous manual 

interpretation and verification of every single possible O-fucosylated peptide at the MS 

level, looking for neutral losses, and the MS/MS level looking for the exact localization 

of the very labile O-fucose, produced a very confident and high quality result. The data 

suggests that there are two populations of O-fucosylated proteins, FG-NUPS, and 

proteins containing stretches of tandem Ser. One of the most abundant O-fucosylated 

proteins is an FG-NUP. This protein and the other FG-NUPs identified, do not have the 

same low complexity tandem Ser-repeating regions  modified with O-Fuc, as seen in the 

other proteins, but contain discrete regions within the FG-repeating units, modified with 

O-fucose on Thr, or, to a lesser extent, on Ser. The proteins in the other group are as a 

whole quite abundant. This group contains the patches of Ser-rich repeats, often flanking 

conserved functional domains. The hydrophilic stretches of serines carry one or more 

fucose(s) and are interrupted with aliphatic or hydrophobic amino acids. This pattern is 

reminiscent of components involved in other nuclear transport mechanisms, such as the 

Kapβ and Kapα classes of nuclear transporters. These proteins have a tertiary structure 

which features repeating domains, such as the HEAT motifs and ARM repeats. These 

features are helices exposing ideally spaced binding sites on the helices or in between the 

repeats (155, 156). I hypothesize, that the Ser-rich repeats modified with O-fucose act as 
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a binding signal, allowing pairing up only to specific FG-NUPs modified with O-fucose. 

In this model, the hydrophobic FG repeats would interact with the repeating hydrophobic 

tracks located between the Ser stretches, with the fucose residues on the Ser repeats, and 

along the FG-NUPS, would hydrogen bond, facilitating a lock-and-key mechanism. This 

would be analogous to the mechanism of, Kapβ, which binds to the FG on FG-NUPS in 

hydrophobic grooves (150, 157). 

Finding abundant O-fucosylation directly conjugated to Ser/Thr is of itself an 

interesting discovery, due to the rarity of such modifications. However, what makes this 

discovery even more interesting and profound is that the modification is most abundant 

on the nucleoporins. Furthermore, these modifications are on the FG-NUPs, which are 

known to be involved in selective transport into the nucleus, but the mechanics have 

never been understood. I believe that the work and the discoveries made here in T. gondii, 

clearly set up a plausible mechanism for selective nuclear transport. Future research 

should be performed to test this hypothesis. The mechanism, if understood, not only 

would impact the field of biology, but could potentially be exploited to develop a 

therapeutic to treat toxoplasmosis. 
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APPENDIX 1: The Amino Acid Seqence of Gp900. 
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APPENDIX 2: Ion Assignments, Peptides, Sequons, and Bioinformatics 

Data for the N-Glycosylated Peptides.  

APPENDIX 2A Fragment Ion Assignments for FT-ICR EED MS/MS Spectra 

of Deutero-Reduced and Permethylated N-Glycans. 

APPENDIX 2A.1 Assigned Ions for HexNAc2Hex5. 

Observed 
m/z Intensity 14 eV EED HexNAc2Hex5, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

1596.8199 1.03E+10 Hex5HexNAc2-(2H)-reduced   (un-fragmented precursor) -0.17 1596.8202 

1522.7831 4.17E+08 (0,4X5α),(0,4X4α),(0,4X3α),(0,4X3β),(0,4X1) -0.19 1522.7834 

1478.7569 8.23E+06 (0,3X5α),(0,3X4α),(0,3X3α),(0,3X3β) -0.19 1478.7572 

1406.6997 3.50E+08 (1,5X5α),(1,5X3β) 0.02 1406.6997 

1376.6892 1.54E+08 (Y5α)-2H,(Y3β)-2H 0.07 1376.6891 

1360.6943 1.85E+08 (Z5α),(Z3β) 0.08 1360.6942 

1320.6404 8.52E+07 (C5) -0.17 1320.6406 

1318.625 1.62E+08 (C5)-2H 0.02 1318.6250 

1302.6298 8.24E+07 (B5) -0.20 1302.6301 

1286.6572 1.61E+07 
(0,4X2/Z5α),(0,4X3α/Z5α),(0,4X3β/Z5α),(0,4X1/Z3β),(0,4X3α/Z3β), 
(0,4X4α/Z3β),(0,4X5α/Z3β) -0.16 1286.6574 

1274.6356 2.87E+07 (1,5A5) 0.36 1274.6351 

1246.603 9.51E+06 (0,4X5α/C5),(0,4X4α/C5),(0,4X3α/C5),(0,4X1/C5),(0,4X3β/C5) -0.68 1246.6038 

1214.5779 8.01E+06 (1,3X5α/B5),(2,4X5α/B5),(2,4X4α/B5),(2,4X3α/B5),(1,3X3β/B5),(2,4X3β/B5) 0.22 1214.5776 

1202.5999 2.34E+08 (1,5X4α) 0.01 1202.5999 

1188.5852 1.17E+07 (Y3β/1,5X5α),(1,5X3β/Y5α) 0.80 1188.5842 

1172.5894 1.11E+08 (Y4α)-2H 0.06 1172.5893 

1158.574 3.64E+07 (Y3β/Y5α)-2H 0.28 1158.5737 

1145.5564 5.65E+07 (3,5A5) 0.20 1145.5562 

1142.5789 8.35E+07 (Y3β/Z5α),(Z3β/Y5α) 0.12 1142.5788 

1140.5629 1.23E+07 (Y3β/Z5α)-2H,(Z3β/Y5α)-2H -0.19 1140.5631 

1130.5196 8.02E+06 (1,5X5α/C5),(1,5X3β/C5) -0.46 1130.5201 

1126.5838 4.68E+07 (Z3β/Z5α)+2H -0.04 1126.5838 

1112.5102 1.41E+07 (1,5X5α/B5),(1,5X3β/B5) 0.58 1112.5096 

1100.5089 7.06E+06 (C5/Y5α)-2H,(C5/Y3β)-2H -0.59 1100.5096 

1082.5576 1.29E+07 (0,4X3β/Z4α),(0,4X2/Z5α),(0,4X1/Z4α) -0.03 1082.5576 

1073.4986 6.61E+08 (C4)-2H -0.05 1073.4987 

1068.5418 8.52E+06 (1,3X4α/Z3β),(1,3X3β/Z4α),(2,4X3β/Z4α) -0.17 1068.5420 
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Observed 
m/z Intensity 14 eV EED HexNAc2Hex5, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

1054.5266 4.63E+07 (3,5X3β/Z4α),(3,5X2/Z5α) 0.25 1054.5263 

1029.5089 3.31E+07 (1,5A4) 0.07 1029.5088 

1024.5152 6.27E+06 (1,4X3β/Z4α),(1,4X4α/Z3β),(0,4X2/B5) -0.56 1024.5158 

1010.4782 7.70E+06 (1,3A2α/B5) 0.34 1010.4779 

998.5002 2.15E+08 (1,5X3α) 0.08 998.5001 

968.4895 1.23E+08 (Y3α)-2H -0.06 968.4896 

966.4734 1.34E+07 (1,4X4α/B5) -0.52 966.4739 

955.4349 9.15E+06 (3,5X3β/B4),(3,5X3α/B4),(3,5X4α/B4),(3,5X5α/B4) -0.80 955.4357 

954.4743 2.13E+07 (Y4α/Y3β)-2H 0.41 954.4739 

952.4947 1.31E+08 (Z3α) 0.06 952.4946 

938.479 6.72E+07 (Z4α/Y3β),(Y4α/Z3β) 0.01 938.4790 

936.4631 1.23E+07 (Z4α/Y3β)-2H,(Y4α/Z3β)-2H -0.26 936.4633 

926.4203 4.45E+06 (1,5X4α/C4) -0.05 926.4203 

925.4257 4.09E+06 (1,4X5α/B4),(1,4X3β/B4),(0,3A1α/Z3β),(0,3A1β/Z5α) 0.65 925.4251 

922.4842 1.01E+08 (Z4α/Z3β)+2H 0.13 922.4841 

911.4093 4.33E+06 (2,5X5α/B4),(2,5X4α/B4),(2,5X3α/B4),(2,5X3β/B4) -0.16 911.4094 

908.41 1.50E+07 (1,5X4α/B5) 0.24 908.4098 

896.4677 4.23E+06 (1,3X2),(2,4X2) -0.81 896.4684 

896.4106 8.79E+06 (C5/Y4α)-2H 0.92 896.4098 

894.4527 9.76E+06 (1,3X2)-2H,(2,4X2)-2H -0.08 894.4528 

894.3939 7.17E+06 (C5/Y4α)-4H -0.26 894.3941 

885.3943 1.23E+07 (1,5X5α/C4),(1,5X3β/C4) 0.57 885.3938 

882.3935 9.48E+06 (C5/Y5α/Y3β)-2H -0.71 882.3941 

880.4149 2.09E+07 (Y4α/B5),(Z4α/C5) 0.04 880.4149 

878.4579 1.65E+07 (0,4X3β/Z3α),(0,4X2/Z4α),(0,4X1/Z3α) 0.04 878.4579 

866.4 3.35E+06 (Y3β/Z5α/C5),(Z3β/Y5α/C5),(Y3β/Y5α/B5) 0.91 866.3992 

864.4429 7.50E+06 (1,3X3α/Z3β),(1,3X3β/Z3α),(2,4X3β/Z3α) 0.80 864.4422 

864.3836 5.13E+06 (Y3β/Z5α/C5)-2H,(Z3β/Y5α/C5)-2H,(Y3β/Y5α/B5)-2H 0.04 864.3836 

855.3832 1.15E+07 (C4/Y5α)-2H,(C4/Y3β)-2H -0.04 855.3832 

853.3673 1.53E+07 (C4/Y5α)-4H,(C4/Y3β)-4H -0.33 853.3676 

850.4268 9.97E+06 (3,5X2/Z4α),(3,5X3β/Z3α) 0.28 850.4266 

839.3883 2.36E+07 (C4/Z5α),(B4/Y5α),(C4/Z3β),(B4/Y3β) -0.02 839.3883 

837.3727 2.30E+07 (C4/Z5α)-2H,(B4/Y5α)-2H,(C4/Z3β)-2H,(B4/Y3β)-2H 0.04 837.3727 

834.431 3.14E+06 (Z4α/0,3X2),(Z3α/0,3X3β), -0.77 834.4316 

820.4162 9.39E+06 (Z3α/1,4X3β),(Z3β/1,4X3α) 0.28 820.4160 

806.4006 3.48E+06 (2,5X3β/Z3α) 0.31 806.4003 

762.3743 7.86E+06 (1,4X3α/B5) 0.22 762.3741 

750.3742 1.38E+07 (Y3α/Y3β)-2H 0.09 750.3741 
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Observed 
m/z Intensity 14 eV EED HexNAc2Hex5, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

734.3794 1.95E+07 (Z3α/Y3β),(Y3α/Z3β) 0.25 734.3792 

732.3635 5.51E+06 (Z3α/Y3β)-2H,(Y3α/Z3β)-2H -0.09 732.3636 

723.3409 3.46E+07 (1,3A4α),(1,3A4α) -0.10 723.3410 

718.3843 1.62E+07 (Z3α/Z3β)+2H 0.00 718.3843 

704.3098 1.83E+07 (1,5X3α/B5) -0.29 704.3100 

690.2944 8.42E+06 (C5/Y3α)-4H 0.06 690.2944 

681.2939 9.89E+06 (1,5X4α/C4) -0.18 681.2940 

678.2939 8.38E+06 (C5/Y4α/Y3β)-2H -0.67 678.2944 

676.3152 2.30E+07 (C5/Z3α),(B5/Y3α) 0.16 676.3151 

674.2996 8.29E+06 (C5/Z3α)-2H,(B5/Y3α)-2H 0.24 674.2994 

667.3151 1.40E+07 (C3α) 0.51 667.3148 

665.2992 1.13E+08 (C3α)-2H 0.14 665.2991 

662.2996 1.78E+07 (C5/Z4α/Y3β),(C5/Y4α/Z3β),(B5/Y4α/Y3β) 0.24 662.2994 

660.2833 6.86E+06 (C5/Z4α/Y3β)-2H,(C5/Y4α/Z3β)-2H,(B5/Y4α/Y3β)-2H -0.74 660.2838 

658.2679 3.71E+06 (C5/Z4α/Y3β)-4H,(C5/Y4α/Z3β)-4H,(B5/Y4α/Y3β)-4H -0.37 658.2681 

651.2835 2.21E+07 (Y4α/C4)-2H 0.07 651.2835 

649.3042 2.70E+07 (B3α) 0.01 649.3042 

649.2679 1.19E+07 (Y4α/C4)-4H 0.14 649.2678 

646.3046 2.38E+07 (C5/Z3β/Z4α)+2H,(B5/Z4α/Y3β)+2H,(B5/Y4α/Z3β)+2H 0.11 646.3045 

644.2888 8.16E+06 (C5/Z3β/Z4α),(B5/Z4α/Y3β),(B5/Y4α/Z3β) -0.12 644.2889 

642.2728 3.36E+06 (C5/Z3β/Z4α)-2H,(B5/Z4α/Y3β)-2H,(B5/Y4α/Z3β)-2H -0.66 642.2732 

637.3036 3.57E+06 (C4/Z4α)+2H,(B4/Y4α)+2H -0.93 637.3042 

635.2886 4.77E+07 (C4/Z4α),(B4/Y4α) 0.09 635.2885 

635.2527 5.60E+06 (Y3β/Y5α/C4) 0.86 635.2522 

633.273 1.53E+07 (C4/Z4α)-2H,(B4/Y4α)-2H 0.17 633.2729 

621.3096 1.21E+07 (1,5A3α) 0.52 621.3093 

621.2727 9.84E+06 (C4/Z5α/Y3β),(C4/Y5α/Z3β),(B4/Y5α/Y3β) -0.31 621.2729 

619.2936 1.53E+07 (B4/Z4α)+2H -0.04 619.2936 

619.2574 1.03E+07 (C4/Z5α/Y3β)-2H,(C4/Y5α/Z3β)-2H,(B4/Y5α/Y3β)-2H 0.26 619.2572 

618.3319 1.23E+07 (0,2X2) 0.04 618.3319 

617.2784 3.12E+06 (B4/Z4α) 0.68 617.2780 

617.2416 4.38E+06 (C4/Z5α/Y3β)-4H,(C4/Y5α/Z3β)-4H,(B4/Y5α/Y3β)-4H 0.01 617.2416 

616.316 4.31E+06 (1,4X2/Z3β) -0.36 616.3162 

607.2937 4.28E+06 (Y4α/1,5A4) 0.12 607.2936 

605.278 2.66E+07 (Z3β/B4/Y5α)+2H, (Y3β/B4/Z5α)+2H, (Z3β/C4/Z5α)+2H 0.04 605.2780 

603.2622 1.37E+07 (Z3β/B4/Y5α), (Y3β/B4/Z5α), (Z3β/C4/Z5α) -0.21 603.2623 

602.2787 4.17E+06 (1,3X2/B5),(2,4X2/B5) 0.64 602.2783 

598.2833 4.13E+06 (Z3β/Z4α/1,5A5) -0.16 598.2834 
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Observed 
m/z Intensity 14 eV EED HexNAc2Hex5, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

590.3006 1.70E+08 (1,5X2) 0.05 590.3006 

589.2833 1.02E+07 (Z4α/1,5A4) 0.40 589.2831 

587.2674 3.91E+06 (Z3β/B4/Z5α)+2H -0.02 587.2674 

575.2677 4.58E+06 (B4/0,4X5α),(B4/0,4X4α) 0.50 575.2674 

562.3058 1.58E+07 (Y2) 0.25 562.3057 

561.2517 3.23E+06 (B3α/1,3X5α),(B3α/2,4X5α),(B3α/2,4X4α),(1,3X3α/B4),(Z4α/0,2A4) -0.11 561.2518 

560.29 2.90E+07 (Y2)-2H -0.01 560.2900 

547.2362 7.49E+06 (B3α/3,5X5α),(B3α/3,5X4α) 0.16 547.2361 

546.3107 3.37E+07 (Z2)+2H -0.08 546.3107 

545.2568 4.72E+06 (Z3α/2,5A5),(Z4α/2,5A4) -0.09 545.2568 

544.2951 1.49E+08 (Z2) 0.01 544.2951 

519.2414 1.70E+07 (1,3A3α) 0.39 519.2412 

505.2257 4.98E+06 (C4/0,2X5α),(C4/0,2X4α),(Y5α/1,3A4),(Y5α/2,4A4),(Y3α/2,4A5) 0.30 505.2255 

503.2097 5.11E+06 (B3α/2,5X4α),(B3α/2,5X5α) -0.39 503.2099 

501.2306 3.00E+06 (Z3α/3,5A5) -0.07 501.2306 

486.1944 3.93E+06 (1,5X3β/Z3α/C5),(1,5X3α/Z3β/C5),(Y3α/1,5X3β/B5),(Y3β/1,5X3α/B5) -0.37 486.1946 

477.1944 8.69E+06 (1,5X3α/C4),(1,5X5α/C3α) 0.32 477.1942 

470.2584 1.68E+07 (0,4X1/Z2) 0.18 470.2583 

463.2152 4.88E+06 (C2α) 0.47 463.2150 

461.1993 2.39E+07 (C2α)-2H  -0.07 461.1993 

458.2587 4.78E+06 (0,3X1) 0.84 458.2583 

456.1844 2.89E+06 (Y3α/Y3β/B5)-2H,(Y3α/Z3β/C5)-2H,(Z3α/Y3β/C5)-2H  0.84 456.1840 

449.1995 3.90E+06 (Y3α/C4),(C3α/Y5α) 0.37 449.1993 

447.2198 3.58E+06 (B2α+2H) -0.60 447.2201 

447.1837 1.63E+07 (Y3α/C4)-2H,(C3α/Y5α)-2H 0.04 447.1837 

445.2044 6.25E+06 (B2α) -0.04 445.2044 

445.1684 9.48E+06 (Y3α/C4)-4H,(C3α/Y5α)-4H 0.82 445.1680 

440.1895 3.70E+06 (Y3α/Z3β/B5),(Y3β/Z3α/B5),(Z3α/Z3β/C5) 0.90 440.1891 

431.1888 7.80E+07 (Y3α/B4),(Z3α/C4),(B3α/Y5α),(C3α/Z5α) 0.07 431.1888 

424.1938 3.12E+06 (Z3α/Z3β/B5) -0.91 424.1942 

417.1732 4.04E+07 (Y3β/Y4α/B4),(Z3β/Y4α/C4),(Z4α/Y3β/C4)  0.20 417.1731 

415.1939 1.24E+08 (Z3α/B4)+2H,(B3α/Z5α)+2H 0.11 415.1939 

414.232 4.05E+06 (0,2X1) -0.24 414.2321 

403.1939 9.99E+06 (Y3α/1,5A4), (1,5A3α/Y5α) 0.11 403.1939 

401.1782 5.98E+07 (Y3α/Z3β/B4)+2H,(Y3β/Z4α/B4)+2H,(Z3β/Z4α/C4) -0.01 401.1782 

399.1626 1.12E+07 (Y3α/Z3β/B4),(Y3β/Z4α/B4),(Z3β/Z4α/C4) 0.12 399.1626 

385.1833 9.50E+06 (1,5A3α/Z5α), (Z3α/1,5A4) 0.03 385.1833 

383.1677 5.37E+06 (Z3β/Z4α/B4) 0.16 383.1676 
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Observed 
m/z Intensity 14 eV EED HexNAc2Hex5, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

371.1676 8.88E+06 (B2α/0,4X5α) -0.10 371.1676 

357.1518 3.48E+06 (1,4A2α)-2H -0.53 357.1520 

345.1743 2.78E+07 (1,5X1) 0.29 345.1742 

341.1572 4.97E+06 (Z3α/2,5A5) 0.29 341.1571 

329.1571 8.74E+06 (3,5A4) 0.00 329.1571 

317.1794 5.39E+07 (Y1) 0.20 317.1793 

315.1637 1.18E+07 (Y1)-2H 0.05 315.1637 

301.1258 5.54E+06 (0,4A2α) 0.09 301.1258 

299.1688 1.27E+07 (Z1) 0.10 299.1688 

296.1103 5.37E+06 (1,5X2/B5) -0.53 296.1105 

259.1153 6.62E+06 (C1α),(C1β)   0.35 259.1152 

257.0996 4.80E+06 (C1α)-2H,(C1β)-2H   0.16 257.0996 

243.0839 4.83E+06 (Y5α/C2α)-2H,(Y4α/C3α)-2H -0.04 243.0839 

227.089 1.25E+07 (B2α/Y5α),(C2α/Z5α),(B3α/Y4α),(C3α/Z4α) 0.02 227.0890 

 

APPENDIX 2A.2 Assigned Ions for HexNAc2Hex6. 

Observed 
m/z Intensity 14 eV EED HexNAc2Hex6, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

1800.9192 8.23E+09 Hex6HexNAc2-(2H)-reduced  (un-fragmented precursor) -0.42 1800.9199 

1726.8826 3.57E+08 (0,4X1),(0,4X3α),(0,4X3β),(0,4X4α),(0,4X5α),(0,4X6α) -0.33 1726.8832 

1610.7991 2.26E+08 (1,5X3β),(1,5X6α) -0.21 1610.7994 

1580.7884 9.58E+07 (Y6α)-2H,(Y3β)-2H -0.30 1580.7889 

1564.7938 8.14E+07 (Z6α),(Z3β) -0.10 1564.7940 

1522.7245 1.45E+08 (C6)-2H -0.16 1522.7248 

1520.7674 5.63E+07 (0,4X2)-2H -0.23 1520.7677 

1478.7342 1.83E+07 (1,5X2) -0.49 1478.7349 

1450.703 9.54E+06 
(0,4X1/C6),(0,4X3α/C6),(0,4X3β/C6),(0,4X4α/C6),(0,4X5α/C6), 
(0,4X6α/C6) -0.43 1450.7036 

1418.6769 6.65E+06 
(1,3X6α/B6),(2,4X6α/B6),(1,3X3β/B6),(2,4X3β/B6),(2,4X3α/B6), 
(2,4X4α/B6) -0.36 1418.6774 

1406.6997 1.30E+08 (1,5X5α) 0.02 1406.6997 

1376.6891 1.46E+08 (Y5α)-2H 0.00 1376.6891 

1374.6732 8.08E+06 (Z6α/1,5X3β),(Z3β/1,5X6α) -0.18 1374.6735 

1362.6745 1.42E+07 (Y6α/Y3β)-2H 0.77 1362.6735 

1360.6943 1.39E+08 (Z5α) 0.08 1360.6942 

1349.6564 3.42E+07 (3,5A6) 0.34 1349.6559 

1346.679 5.45E+07 (Y6α/Z3β),(Z6α/Y3β) 0.34 1346.6785 

1330.6837 6.22E+07 (Z6α/Z3β)+2H 0.06 1330.6836 
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Observed 
m/z Intensity 14 eV EED HexNAc2Hex6, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

1304.609 4.98E+06 (C6/Y3β)-2H,(C6/Y6α)-2H -0.25 1304.6093 

1302.5936 4.13E+06 (C6/Y3β)-2H,(C6/Y6α)-4H -0.06 1302.5937 

1277.5984 6.23E+08 (C5)-2H -0.02 1277.5984 

1272.6418 6.41E+06 (1,3X5α/Z3β),(2,4X5α/Z3β),(1,3X3β/Z5α),(2,4X3β/Z5α) 0.03 1272.6418 

1233.6088 4.63E+07 (1,5A5) 0.16 1233.6086 

1230.5726 3.39E+06 (1,35A/C6)-2H 0.04 1230.5725 

1214.5779 4.96E+06 (1,3X5α/B6),(2,4X5α/B6) 0.22 1214.5776 

1202.5999 2.03E+08 (1,5X4α) 0.01 1202.5999 

1188.5615 3.77E+06 (1,4X5α/C6) -0.41 1188.5620 

1172.5895 1.36E+08 (Y4α)-2H 0.15 1172.5893 

1170.5739 1.02E+07 (1,5X5α/Z3β),(1,5X3β/Z5α) 0.19 1170.5737 

1158.5741 4.12E+07 (Y5α/Y3β)-2H 0.36 1158.5737 

1156.5946 9.85E+07 (Z4α) 0.16 1156.5944 

1142.579 7.97E+07 (Y3β/Z5α),(Z3β/Y5α) 0.21 1142.5788 

1126.5844 3.74E+07 (Z3β/Z5α)+2H 0.49 1126.5838 

1100.51 4.80E+06 (C6/Y5α)-2H 0.41 1100.5096 

1082.558 1.09E+07 (0,4X3β/Z4α),(0,4X2/Z5α),(0,4X1/Z4α) 0.34 1082.5576 

1082.4984 6.88E+06 (B6/Y5α)-2H,(C6/Z5α)-2H -0.54 1082.4990 

1068.5426 6.88E+06 (1,3X4α/Z3β),(1,3X3β/Z4α),(2,4X3β/Z4α) 0.58 1068.5420 

1057.4681 1.28E+07 (C5/Y3β)-4H,(C5/Y6α)-4H 0.71 1057.4674 

1054.5268 4.11E+07 (3,5X3β/Z4α),(3,5X2/Z5α) 0.44 1054.5263 

1050.4726 3.41E+06 (C6/Z3β/Z6α)-2H,(B6/Z6α/Y3β)-2H,(B6/Y6α/Z3β)-2H -0.17 1050.4728 

1043.4882 1.76E+07 (C5/Z3β),(C5/Z6α),(B5/Y3β),(B5/Y6α) 0.11 1043.4881 

1010.4778 5.29E+06 (1,3X4α/B6) -0.06 1010.4779 

998.5003 2.28E+08 (1,5X3α) 0.18 998.5001 

980.4894 4.43E+06 (1,4A6/Z5α) -0.16 980.4896 

968.4896 1.27E+08 (Y3α)-2H 0.05 968.4896 

966.4733 1.05E+07 (1,4X4α/B6) -0.63 966.4739 

954.4742 2.07E+07 (Y4α/Y3β)-2H 0.31 954.4739 

952.4948 1.15E+08 (Z3α) 0.17 952.4946 

938.4791 6.12E+07 (Z4α/Y3β),(Y4α/Z3β) 0.12 938.4790 

936.4638 9.12E+06 (Z4α/Y3β)-2H,(Y4α/Z3β)-2H 0.49 936.4633 

927.441 4.55E+07 (1,3A5),(2,4A5) 0.27 927.4407 

922.4843 8.57E+07 (Z4α/Z3β)+2H 0.24 922.4841 

920.4677 5.39E+06 (Z4α/Z3β) -0.79 920.4684 

908.4101 1.27E+07 (1,5X4α/B6) 0.35 908.4098 

896.4689 4.94E+06 (1,3X2),(2,4X2) 0.53 896.4684 

896.4098 1.83E+07 (C6/Y4α)-2H 0.02 896.4098 
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Observed 
m/z Intensity 14 eV EED HexNAc2Hex6, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

894.3942 7.97E+06 (C6/Y4α)-4H 0.08 894.3941 

885.3937 6.27E+06 (1,5X5α/C5),(1,5X3β/C5) -0.11 885.3938 

882.3943 6.67E+06 (C6/Y5α/Y3β)-2H 0.19 882.3941 

880.4151 1.94E+07 (Y4α/B6),(Z4α/C6) 0.27 880.4149 

878.4579 1.38E+07 (0,4X3β/Z3α),(0,4X2/Z4α),(0,4X1/Z3α) 0.04 878.4579 

878.3999 4.39E+06 (B6/Y4α)-2H,(C6/Z4α)-2H 0.78 878.3992 

869.399 2.99E+08 (C4α)-2H 0.14 869.3989 

866.399 3.28E+06 (Y3β/Z5α/C6),(Z3β/Y5α/C6),(Y3β/Y5α/B6) -0.25 866.3992 

864.442 7.05E+06 (1,3X3α/Z3β),(1,3X3β/Z3α),(2,4X3β/Z3α) -0.24 864.4422 

864.3842 6.19E+06 (C6/Z5α/Y3β)-2H,(C6/Y5α/Z3β)-2H,(B6/Y5α/Y3β)-2H 0.74 864.3836 

853.4042 1.92E+07 (B4α) 0.27 853.4040 

853.3679 1.33E+07 (C5/Y5α)-4H,(C5/Y3β)-4H 0.37 853.3676 

850.4261 7.69E+06 (3,5X2/Z4α),(3,5X3β/Z3α) -0.54 850.4266 

848.3893 3.68E+06 (C6/Z3β/Z5α),(B6/Z5α/Y3β),(B6/Y5α/Z3β) 0.77 848.3886 

839.3884 8.13E+07 (Y5α/B5),(Z5α/C5) 0.10 839.3883 

839.352 4.71E+06 (Y3β/Y6α/C5)-4H 0.08 839.3519 

838.4038 3.11E+06 (Y3β/Y5α/1,5A1α) -0.60 838.4043 

837.3728 2.34E+07 (C5/Z5α)-2H,(B5/Y5α)-2H 0.16 837.3727 

825.4092 3.21E+07 (1,5A4α) 0.18 825.4091 

825.3733 1.45E+07 (C5/Z6α/Y3β),(C5/Y6α/Z3β),(B5/Y6α/Y3β) 0.77 825.3727 

823.3572 1.15E+07 (C5/Z6α/Y3β)-2H,(C5/Y6α/Z3β)-2H,(B5/Y6α/Y3β)-2H 0.22 823.3570 

811.3931 6.22E+06 (Y5α/1,5A5) -0.37 811.3934 

807.3621 1.67E+07 (B5/Z6α/Y3β),(B5/Y6α/Z3β),(C5/Z3β/Z5α) 0.00 807.3621 

793.3822 8.96E+06 (Z5α/1,5A5) -0.80 793.3828 

765.3508 4.14E+06 
(Z4α/0,2A6),(1,3X4α/B5),(Z5α/0,2A5),(2,4X6α/B4α),(1,3X6α/B4α), 
(2,4X4α/B4α) -0.96 765.3515 

762.3516 3.79E+06 (1,4X3α/B6) -0.35 762.3519 

751.3363 7.21E+06 (3,5X6α/B4α),(3,5X5α/B4α),(3,5X4α/B4α) 0.55 751.3359 

750.3743 9.17E+06 (Y3α/Y3β)-2H 0.22 750.3741 

734.3793 1.47E+07 (Z3α/Y3β),(Y3α/Z3β) 0.11 734.3792 

732.3635 3.86E+06 (Z3α/Y3β)-2H,(Y3α/Z3β)-2H -0.09 732.3636 

723.341 1.77E+07 (1,3A4α),(Y4α/3,5A6) 0.04 723.3410 

722.321 5.05E+06 (1,5X3α/C6) 0.59 722.3206 

718.3847 1.33E+07 (Z3α/Z3β)+2H 0.55 718.3843 

704.31 1.68E+07 (1,5X3α/B6) -0.01 704.3100 

692.3102 3.34E+06 (C6/Y3α)-2H 0.28 692.3100 

681.2935 5.28E+06 (1,5X4α/C5),(1,5X6α/C4α) -0.77 681.2940 

678.2944 6.35E+06 (C6/Y4α/Y3β)-2H 0.07 678.2944 

676.3153 1.68E+07 (C6/Z3α),(B6/Y3α) 0.31 676.3151 
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Observed 
m/z Intensity 14 eV EED HexNAc2Hex6, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

674.2996 9.89E+06 (C6/Z3α)-2H,(B6/Y3α)-2H 0.24 674.2994 

667.3153 8.78E+06 (C3α) 0.81 667.3148 

665.2992 7.99E+07 (C3α)-2H 0.14 665.2991 

662.2996 5.76E+06 (C6/Z4α/Y3β),(C6/Y4α/Z3β),(B6/Y4α/Y3β) 0.24 662.2994 

660.2842 7.16E+06 (C6/Z4α/Y3β)-2H,(C6/Y4α/Z3β)-2H,(B6/Y4α/Y3β)-2H 0.62 660.2838 

651.2837 1.63E+07 (Y4α/C5)-2H,(C4α/Y6α)-2H 0.37 651.2835 

649.3037 4.69E+06 (B3α) -0.76 649.3042 

649.268 1.10E+07 (Y4α/C5)-4H,(C4α/Y6α)-4H 0.30 649.2678 

646.3047 1.00E+07 (C6/Z3β/Z4α)+2H,(B6/Z4α/Y3β)+2H,(B6/Y4α/Z3β)+2H 0.27 646.3045 

635.2887 4.62E+07 (C4α/Z6α),(C5/Z4α),(B4α/Y6α),(B5/Y4α) 0.25 635.2885 

634.3048 5.01E+06 (Y3β/Y4α/1,5A6) 0.43 634.3045 

633.2732 1.17E+07 (C4α/Z6α)-2H,(C5/Z4α)-2H,(B4α/Y6α)-2H,(B5/Y4α)-2H 0.49 633.2729 

621.3091 5.38E+06 (1,5A3α) -0.29 621.3093 

621.2732 1.42E+07 (C5/Z5α/Y3β),(C5/Y5α/Z3β),(B5/Y5α/Y3β) 0.50 621.2729 

619.2937 1.80E+08 (B4α/Z6α)+2H,(B5/Z4α)+2H 0.12 619.2936 

619.2577 1.01E+07 (C5/Z5α/Y3β)-2H,(C5/Y5α/Z3β)-2H,(B5/Y5α/Y3β)-2H 0.74 619.2572 

618.3319 7.14E+06 (0,2X2) 0.04 618.3319 

605.2781 2.28E+07 (C5/Z3β/Z5α)+2H,(B5/Z5α/Y3β)+2H,(B5/Y5α/Z3β)+2H 0.20 605.2780 

603.2623 1.31E+07 (C5/Z3β/Z5α),(B5/Z5α/Y3β),(B5/Y5α/Z3β) -0.05 603.2623 

590.3007 1.08E+08 (1,5X2) 0.22 590.3006 

589.2829 9.74E+06 (Z6α/1,5A4α),(Z4α/1,5A5) -0.28 589.2831 

587.2676 8.59E+06 (B5/Z5α/Z3β)+2H 0.32 587.2674 

575.2676 8.28E+06 (0,4X6α/B3α),(0,4X5α/B3α) 0.33 575.2674 

562.3056 1.18E+07 (Y2) -0.10 562.3057 

560.29 1.74E+07 (Y2)-2H -0.01 560.2900 

547.2364 5.79E+06 (3,5X6α/B3α),(3,5X5α/B3α) 0.53 547.2361 

546.311 1.08E+07 (Z2)+2H 0.47 546.3107 

545.2571 7.86E+06 (Z3α/2,5A6),(Z4α/2,5A5) 0.46 545.2568 

544.2952 1.00E+08 (Z2) 0.20 544.2951 

519.2413 1.15E+07 (1,3A3α) 0.20 519.2412 

517.2257 4.71E+06 (1,4X6α/B3α),(Z3α/0,3A6),(1,4X3α/B5),(1,4X5α/B4α) 0.29 517.2255 

503.2103 3.98E+06 (2,5X6α/B3α),(2,5X5α/B4α) 0.80 503.2099 

487.2153 3.55E+06 
(1,3A4α/Z6α),(0,2X6α/B3α),(2,4A6/Z3α),(1,3A5/Z5α),(2,4A5/Z5α), 
(0,2X5α/B4α) 0.65 487.2150 

477.1943 5.54E+06 (C3α/1,5X6α),(C4α/1,5X5α),(1,5X3α/C5) 0.11 477.1942 

470.2582 1.17E+07 (0,4X1/Z2) -0.24 470.2583 

463.2149 6.72E+06 (C2α) -0.18 463.2150 

461.1994 3.28E+07 (C2α)-2H 0.15 461.1993 

449.1991 2.98E+06 (C4α/Y5α),(C5/Y3α),(C3α/Y6α) -0.52 449.1993 
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Observed 
m/z Intensity 14 eV EED HexNAc2Hex6, Assigned Ions 

Accuracy 
(ppm) 

Theoretical 
m/z 

447.1837 1.27E+07 (C4α/Y5α)-2H,(C5/Y3α)-2H,(C3α/Y6α)-2H 0.04 447.1837 

445.2044 3.82E+06 (B2α) -0.04 445.2044 

433.2044 7.86E+06 
(C4α/Z5α)+2H,(C5/Z3α)+2H,(C3α/Z6α)+2H,(B4α/Y5α)+2H, 
(B5/Y3α)+2H,(B3α/Y6α)+2H -0.04 433.2044 

431.1888 6.27E+07 (C4α/Z5α),(C5/Z3α),(C3α/Z6α),(B4α/Y5α),(B5/Y3α),(B3α/Y6α) 0.07 431.1888 

429.1732 1.77E+07 
(C4α/Z5α)-2H,(C5/Z3α)-2H,(C3α/Z6α)-2H,(B4α/Y5α)-2H,   
(B5/Y3α)-2H,(B3α/Y6α)-2H 0.19 429.1731 

417.1732 1.81E+07 (C5/Z4α/Y3β),(C5/Y4α/Z3β),(B5/Y4α/Y3β) 0.20 417.1731 

403.194 6.46E+06 (Y3α/1,5A5),(1,5A4α/Y5α),(1,5A3α/Y6α) 0.36 403.1939 

401.1782 2.01E+07 (Y4α/Z3β/B5)+2H,(Z4α/Y3β/B5)+2H,(Z4α/Z3β/C5)+2H -0.01 401.1782 

399.1625 1.39E+07 (Y4α/Z3β/B5),(Z4α/Y3β/B5),(Z4α/Z3β/C5) -0.13 399.1626 

385.1832 7.96E+06 (1,5A4α/Z5α),(1,5A3α/Z6α),(1,5A5/Z3α) -0.23 385.1833 

371.1676 4.83E+06 (B2α/0,4X6α) -0.10 371.1676 

345.1742 2.01E+07 (1,5X1) -0.15 345.1743 

341.1571 3.67E+06 (Z3α/2,5A5) 0.08 341.1571 

329.157 6.15E+06 (3,5A5α) -0.23 329.1571 

317.1793 3.83E+07 (Y1) -0.11 317.1793 

315.1637 6.53E+06 (Y1)-2H 0.05 315.1637 

301.1257 4.13E+06 
(0,2A2α),(Y4α/1,3A5),(Y5α/1,3A4α),(Y6α/1,3A3α),(C2α/0,2X6α), 
(C3α/0,2X5α),(0,2A2α),(Y4α/2,4A5) -0.25 301.1258 

299.1687 1.05E+07 (Z1) -0.24 299.1688 

296.1103 3.07E+06 (1,5X2/B6) -0.53 296.1105 

259.1151 5.34E+06 (C1β),(C1α) -0.42 259.1152 

257.0996 3.62E+06 (C1β)-2H,(C1α)-2H 0.16 257.0996 

227.0889 1.74E+07 (C2α/Z6α),(C3α/Z5α),(C4α/Z4α),(B2α/Y6α),(B3α/Y5α),(B4α/Y4α) -0.42 227.0890 

 

APPENDIX 2A.3 MALDI-TOF-MS Assigned Ions: C. parvum Released N-Glycans 

Deuteroreduced and Permethylated [M+Na]+ 

 
Hex5HexNAc2-(2H)-reduced   Hex6HexNAc2-(2H)-reduced 

Theoretical (m/z) 1596.820 1800.920 

observed (m/z) 1596.805 1800.906 

ppm error -9.50 -7.75 
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APPENDIX 2B: Bioinformatics and Related Data for the N-Glycosylated 

Proteins. 

APPENDIX 2B.1 The Amino Acid Sequences Used to Generate the Weblogos. 

The unoccupied and occupied N-glycosylation sequons are shown, with 11 amino acids flanking the centered Asn. For 
the final figure, nine amino acids were used, with three amino acids flanking both sides of the three amino acid sequon, 
Nx[T/S] x ≠ P. 

Unoccupied Sites N.T N.S 
 

Occupied Sites N.T N.S 

AERETNAYSMLNETHHHPKAYFV 1 0 
 

ASRLTDLLERYNSTCGSQQSIVS 1 0 

CVWGEVRLVSSNFTTEKSWEVEG 1 0 
 

CELFIVNSKATNQTNDSWFNLDL 1 0 

DGNNQLVNPETNSTVSGSTSGTT 1 0 
 

DILLSDYQNAKNNTVIETSPVDI 1 0 

DLQNPVDFVNPNCTGRHALSEGC 1 0 
 

DLGESNDTKKLNETQILSDAYEA 1 0 

DWIPCCLPGYGNYTVSLHDSYGD 1 0 
 

ERENISIENSINETSIPNEETNL 1 0 

EDAIKLYSDKCNFTERKGQFSIS 1 0 
 

ETSISSDGKRYNDTASPIKTPEI 1 0 

EEEEEEGDEAANETVVTIERDSS 1 0 
 

GEHKVSINLSANMTYQLKNLRID 1 0 

ELFDPISDEIMNGTIAGIVSGIS 1 0 
 

GNVVKSQKQEKNSTTEVRSLGHR 1 0 

ENIGLWNVADSNTTSNVSEDEKI 1 0 
 

HKVSEQAFQNLNATLHYGHKHHD 1 0 

EQIEGQREIRGNKTQSTGFPFLR 1 0 
 

KLLEENSGASFNKTILKESYDWI 1 0 

ERKMDVMIPMENMTPGFINDLQD 1 0 
 

KPIPGSHSGFINGTSGEQSHEKD 1 0 

ERYARVRFGSCNETENMVDPLGL 1 0 
 

KTKEIDDIVPHNETIMKDAGNDS 1 0 

ERYISSSLILTNGTSQGKFALSP 1 0 
 

LDRAPGSSNTMNQTTNLNNERYI 1 0 

FVAASPQAAASNSTSGALPELVL 1 0 
 

LPKDPVSDIPFNSTTGELVDPST 1 0 

GVEIVEFATQSNTTVDENDFKFK 1 0 
 

LQNSNESLMQRNQTSSSGNNPVN 1 0 

GVPPLTYLSPANETLLPNNVASI 1 0 
 

LVDPSTGKPINNSTAGIVSGKPG 1 0 

IERMGFSVDNDNITLLSDVFMDL 1 0 
 

MMRESFREHVFNVTGQVPTLGEV 1 0 

IFNKGDALALNNFTNKFGPPIPV 1 0 
 

MVDPVSLMLFDNSTGVMYDPNTN 1 0 

IPNTYAGVYRSNETKTTEPSANT 1 0 
 

NGNANLLLKRNNVTYDSNNDIFP 1 0 

IRSESCIVSELNFTSTTGFTTDT 1 0 
 

NKDPVTNTQYSNTTGNIINPETG 1 0 

KALIRGSCISVNTTRLDSPSVLV 1 0 
 

NPNSEFSLNRINGTWRVYNLFNV 1 0 

KETEPDTKNIENKTKSSVKETED 1 0 
 

PKSGNLVHPYTNQTMSGLSVSYL 1 0 

KHFMDYVKKELNATDTEMKSLFG 1 0 
 

PPTGHLINPTNNNTMDSSFAGAY 1 0 

KQITKVEGNPSNTTLNEMNGVIS 1 0 
 

RDGHCEKGTIYNITSVDDLIQNS 1 0 

KTQIHYYNAVTNTTGSSNQDSTI 1 0 
 

RDKNIKNNPLYNETSISSDGKRY 1 0 

LAFANPEALEVNKTLIEEIYNRN 1 0 
 

RDPVSGLPQLPNGTLVDPSNKKP 1 0 

LDLLREFLMDENVTSSSTDVFEG 1 0 
 

SFLESGSITETNFTMSTYRNETG 1 0 

LEYHLYPENPQNNTKPEERGRNM 1 0 
 

SIIDTQDLGESNDTKKLNETQIL 1 0 

LPGMPLSTEYTNSTNLDSSKVLL 1 0 
 

SKGPYRVTLFVNKTEAYEYLDSL 1 0 

LVDPSTGKPINNSTAGIVSGKPG 1 0 
 

SPIKTPEIVYYNNTSNLRVLAKK 1 0 
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Unoccupied Sites N.T N.S 
 

Occupied Sites N.T N.S 

LVISGQNRGTYNSTIEGTTFLNC 1 0 
 

TETNFTMSTYRNETGLLTNPKEL 1 0 

MDKVCDLVQQWNNTSSFLPRQTD 1 0 
 

TSQGKFALSPLNGTEVAPLFSKF 1 0 

MRNPIHTFFGINFTGLLVVGAPI 1 0 
 

VAGDEILTEVLNITTDEVTGLPI 1 0 

NKGNENVNITSNYTMPQAKSLGM 1 0 
 

WFSAEEVYERNNGTIPITPRVMD 1 0 

NKTLIEEIYNRNTTTDGFNRMLM 1 0 
 

INGTWRVYNLFNVSDHGFRMSSD 0 1 

NLIIPAQKKLLNTTSPEATKETN 1 0 
 

PLPGPYFRYLGNESESNERKMDV 0 1 

NNVSNSSQSQYNGTNINSLNSTE 1 0 
 

SWDEPIDISKANVSTIFGDLLNS 0 1 

NQYSDFEYPFFNITAGKLANEFG 1 0 
 

TNLDSSKVLLGNDSTVKSSSFFN 0 1 

NTTSPEATKETNKTYDNNSDAKN 1 0 
 

FETIHDVVKSLNETQSGVDLEQR 1 0 

NYCSYCCENSANRTTKEQLKCKQ 1 0 
    

PFITTESLQEMNITIVEKLHASS 1 0 
 

Total Occupied: N.T N.S 

PFRVDSNKDVENSTDKEKTDSIY 1 0 
  

35 4 

PLTYVTMKPYANCTSFLNPLGEE 1 0 
    

RGGSGETLYLLNETSSIPVDIDD 1 0 
    

RIDDYTLVDINNMTVGQMLSLHT 1 0 
    

RLNYLPRVLANNFTWLIPMRDHY 1 0 
    

SDAKNRINQSNNATDKRSEKQTD 1 0 
    

SEDQFSEFLGINGTFPPFVKWPY 1 0 
    

SENIDTSDSDSNSTSDSNSSSNS 1 0 
    

SGLSVSYLAAKNLTVDTDETYGL 1 0 
    

SIDNDFEKINRNVTLELLNGENT 1 0 
    

SKTLPTSFYWPNETEKWAKISFL 1 0 
    

SNRISFEKVLANLTKRVTTKDRV 1 0 
    

SQYNGTNINSLNSTESNPNYIKD 1 0 
    

SSLGFEDITQANKTSISGNSAFV 1 0 
    

TKEETKTQDGKNLTTTTSEFNLD 1 0 
    

TNDRDSGLKIWNLTFLGRRVAFE 1 0 
    

VELENKGNENVNITSNYTMPQAK 1 0 
    

VKLGPIIYQPHNVTSENEEEQER 1 0 
    

VPPYAHIHKAFNLTEPQRQPCGR 1 0 
    

WTDTISKSSIINMTNAYEKIVKG 1 0 
    

WYSEGETFDFYNVTNNYGKDFYN 1 0 
    

----MVKFTLKNTTVIILILACL 1 0 
    

YKSGTPIDRFANATNFVNDGLFN 1 0 
    

YSETVMDSIEGNITANIERMGFS 1 0 
    

ALNKLPTSNEVNISPRPSSDAVP 0 1 
    

ASVNRRLRENTNSSQKASKSSLF 0 1 
    

DKVCDLVQQWNNTSSFLPRQTDF 0 1 
    

DNDNYYQVIVSNTSTTLVKKTKA 0 1 
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Unoccupied Sites N.T N.S 
 

Occupied Sites N.T N.S 

EALKHMPRVPINASKEEIDAAYL 0 1 
    

ELVDPSTGKPINNSTAGIVSGKP 0 1 
    

ESKSSEDESSRNESEIVLSDKKG 0 1 
    

FDYRLVGIDKDNNSFFPAFGIFN 0 1 
    

FESTGEHKVSINLSANMTYQLKN 0 1 
    

FEVFLMDKFDWNSSFTVEGQSFF 0 1 
    

FIVNSKATNQTNDSWFNLDLLRE 0 1 
    

GNDSGKNDSGKNDSSFAFKVSTS 0 1 
    

GTIWCMADNNNNFSRIRDLANKD 0 1 
    

ICLAAMHANTLNRSTGLAQITPI 0 1 
    

IPKATDISLKVNESKPFILFFKQ 0 1 
    

IRSQKKLLDELNKSKSVLRTKAL 0 1 
    

IYSAGLLNTKENSSFNCDFELQG 0 1 
    

KNLKLGELTKTNWSSTSTVATAK 0 1 
    

KSSLFNQIDLNNISFLPKKEFFK 0 1 
    

LAHQCFCVSPENMSKLAFANPEA 0 1 
    

LCEVNTITYSENKSEAWNSELGG 0 1 
    

LEESVELTLKINESGTIWCMADN 0 1 
    

LIGLISCEERENISIENSINETS 0 1 
    

LWNVADSNTTSNVSEDEKIIAMK 0 1 
    

NGNQNNDLQNSNESLMQRNQTSS 0 1 
    

NIDESYVTNSKNASEGILTGIGG 0 1 
    

NMGNSEWRSASNLSAEQQIVYTA 0 1 
    

NTCIHTCRHSANSSNCKLSANSI 0 1 
    

NWATVCLAGKNNNSPHEFPYRGG 0 1 
    

PHNETIMKDAGNDSGKNDSSFAF 0 1 
    

PIKTPEIVYYNNTSNLRVLAKKG 0 1 
    

QDDSIYLLKNENYSPEKTIKQKN 0 1 
    

QLGVIAFSTNSNDSEMMVKSVEI 0 1 
    

RSLKEENQDENNGSKTLPTSFYW 0 1 
    

SDSDSNSTSDSNSSSNSNSSSNS 0 1 
    

SGSVPLGELVENESFLLSGTRNL 0 1 
    

SKLFSNYKTASNESMTLFEENVD 0 1 
    

SNGVVGGVYFDNVSIKAKSCKKF 0 1 
    

STSDSNSSSNSNSSSNSGENGNQ 0 1 
    

TASNEVSQINSNSSQEIAKPNFF 0 1 
    

TGSSNQDSTIDNSSFEGKKDKSK 0 1 
    

TTPANVINNVSNSSQSQYNGTNI 0 1 
    

TTTTTATTASINSSLSNTLMLLS 0 1 
    



206 
 

 

Unoccupied Sites N.T N.S 
 

Occupied Sites N.T N.S 

TTTTTEANLFLNASNVGKIASVN 0 1 
    

TTTTTPANVINNVSNSSQSQYNG 0 1 
    

VDVLDLVKKAINESKLNLGLITF 0 1 
    

VKLIKSSGVEKNISSKDISGDIK 0 1 
    

VSHGRVGLSVKNCSETAFDKVSL 0 1 
    

VVTIERDSSFWNES--------- 0 1 
    

----MKSLPLINYSTIFIFLYSC 0 1 
    

---------MMNISNNIFKVSIF 0 1 
    

YDNNSDAKNRINQSNNATDKRSE 0 1 
    

YPYAGVPGYPYNYSYSYTRTTSR 0 1 
    

YSSPPSLNNDKNSSQSNE----- 0 1 
    

YYNSCKSACSINDSYAENSTKEY 0 1 
    

NATKETNKTYDNNSDAKNRINQS 0 1 
    

PCEFKKALEGYNDSQYWNIDAND 0 1 
    

       
Total Unoccupied N.T N.S 

    

 
65 57 

     

APPENDIX 2B.2 The N-Glycosylation Sequons for the Identified Proteins. 

Each protein that was identified to contain N-glycans is shown, and labeled according to the Accession number. The 
start of each sequon begins on a new line with the Asn is registered as the first position. 

Acc. #   Nx[TS] Sequon    N.T N.S 

cgd1_660 
 

  
  

  

 
NCTSFLNPLGEEGLCSGDSE NCT 

 
1   

 
NKTKSSVKETEDDKTKEIDD NKT 

 
1   

 
NETIMKDAG NET 

 
1   

 
NDSGK NDS 

  
1 

 
NDSSFAFKVSTSLYIPVIFV NDS 

  
1 

      

  
Sub-Total   3 2 

cgd7_4020 
     

 
NSTGVMYDPNTNSILEGSIA NST 

 
1   

 
NFTSTTGFTTDTSMNWPVSI NFT 

 
1   

 
NETKTTEPSANTNFLLVDPK NET 

 
1   

 
NQTMSGLSVSYLAAK NQT 

 
1   

 
NLTVDTDETYGLPIDTLTGY NLT 

 
1   

 
NGTIAGIVSGISASESLLSQ NGT 

 
1   
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Acc. #   Nx[TS] Sequon    N.T N.S 

 
NPTN NPT 

 
N/A   

 
NNTMDSSFAGAYKYAVSNGI NNT 

 
1   

 
NSTTGELVDPSTGKPI NST 

 
1   

 
NNSTAGIVSGKPGLPPIEDE NNS 

  
1 

 
NSTAGIVSGKPGLPPIEDE NST 

 
1   

 
NSTVSGSTSGTTKPKPGIPV NST 

 
1   

 
NTTGNIINPETGKVIPGSLP NTT 

 
1   

 
NITTDEVTGLPIDLETGLPR NIT 

 
1   

 
NGTLVDPSNKKPIPGSHSGF NGT 

 
1   

 
NGTSGEQSHEKDPSTGKPLD NGT 

 
1   

 
NISPRPSSDAVPDRPTNTWW NIS 

  
1 

 
NETVVTIERDSSFW NET 

 
1   

 
NES NES 

  
1 

      

  
Sub-Total   15 3 

cgd3_660 
     

 
NVSTIFGDLLNSKTFSDYNS NVS 

  
1 

 
NKTSISGNSAFVSQFSIPFI NKT 

 
1   

 
NITIVEKLHASSENIDTSDS NIT 

 
1   

 
NSTSDS NST 

 
1   

 
NSSSNS NSS 

  
1 

 
NSSSNSGENGNQNENSLTET NSS 

  
1 

 
NESKLNLGLITFYGFPKSKD NES 

  
1 

 
NWSSTSTVATAKLNSVVLAA NWS 

  
1 

 
NSSFTVEGQSFFD NSS 

  
1 

 
NPTQKYTTDKSIPPTLLAVP NPT 

 
N/A   

 
NDSEMMVKSVEIDLKCSFND NDS 

  
1 

      

  
Sub-Total   3 7 

cgd2_490  
     

 
NTTVIILILACLGNVVKSQK NTT 

 
1   

 
NSTTEVRSLGHRRGGYVGDQ NST 

 
1   

 
NYSYSYTRTTSRPGGVFTRP NYS 

  
1 

 
NESESNERKMDVMIPME NES 

  
1 

 
NMTPGFINDLQDGILSNGNQ NMT 

 
1   

 
NESLMQR NES 

  
1 

 
NQTSSSGNNPVNNLLNRESD NQT 

 
1   

 
NETSISSDGKRY NET 

 
1   

 
NDTASPIKTPEIVYY NDT 

 
1   
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Acc. #   Nx[TS] Sequon    N.T N.S 

 
NNTSNLRVLAKKGLLERVEE NNT 

 
1   

 
NTSNLRVLAKKGLLERVEE NTS 

  
1 

      

  
Sub-Total   7 4 

cgd8_4660 
     

 
NESMTLFEENVDHLFDYFFY NES 

  
1 

 
NTTVDENDFKFKRINRKKIM NTT 

 
1   

 
NGSKTLPTSFYWP NGS 

  
1 

 
NETEKWAKISFLESGSITET NET 

 
1   

 
NFTMSTYR NFT 

 
1   

 
NETGLLTNPKELALVFEVLE NET 

 
1   

      

  
Sub-Total   4 2 

cgd3_3430 
     

 
NPTEIIDGASSCPEEGNRGY NPT 

 
N/A   

 
NYSPEKTIKQKNLLLSDILR NYS 

  
1 

 
NSSFNCDFELQGYLGCGFSS NSS 

  
1 

 
NFTTEKSWEVEGALGCSGRT NFT 

 
1   

 
NYTVSLHDSYGDGWNSGSYL NYT 

 
1   

 
NESGTIWCMADNNN NES 

  
1 

 
NFSRIRDLANKDHIDEQRLV NFS 

  
1 

 
NISSKDISGDIKLSIRNLIP NIS 

  
1 

 
NLTKRVTTKDRVPKIEITRI NLT 

 
1   

 
NKTEAYEYLDSLDLHKRTPE NKT 

 
1   

 
NETENMVDPLGLNGLYHQWK NET 

 
1   

 
NTTS NTT 

 
1   

 
NVSEDEKIIAMKHYPISEPR NVS 

  
1 

 
NPTGPFGRRLEQIIINDEGK NPT 

 
N/A   

 
NVTSENEEEQERKDVDEEDE NVT 

 
1   

 
NLTFLGRRVAFEVAMVDAMA NLT 

 
1   

 
NETHHHPKAYFVVDEKLQTY NET 

 
1   

      

  
Sub-Total   9 6 

cgd1_640 
     

 
NVTGQVPTLGEVKKMKKHFM NVT 

 
1   

 
NATDTEMKSLFGVETTKKAD NAT 

 
1   

 
NASKEEIDAAYLKAWEMLGK NAS 

  
1 

 
NATNFVNDGLFNDNLILDNF NAT 

 
1   

 
NMTNAYEKIVKGEDVYDNHG NMT 

 
1   
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Acc. #   Nx[TS] Sequon    N.T N.S 

 
NMTVGQMLSLHTLIFENLYT NMT 

 
1   

 
NKSKSVLRTKALLENVNIVS NKS 

  
1 

 
NESEIVLSDKKGSSPSPSNK NES 

  
1 

      

  
Sub-Total   5 3 

      
cgd7_1730 

     

 
NLSAEQQIVYTAFISATAKA NLS 

  
1 

 
NLSA NLS 

  
1 

 
NMTYQLKNLRIDWEFPPFTY NMT 

 
1   

 
NPS NPS 

  
N/A 

 
NTTLNEMNGVISDFIQIVME NTT 

 
1   

 
NVSIKAKSCKKFFMSPAPRS NVS 

  
1 

 
NTSTTLVKKTKAKTTLLKKV NTS 

  
1 

 
NCSETAFDKVSLEPFRVDSN NCS 

  
1 

 
NSTDKEKTDSIYKSCTLNTH NST 

 
1   

 
NDSYAE NDS 

  
1 

 
NSTKEYINQLATCISGTSKA NST 

 
1   

      

  
Sub-Total   4 6 

cgd7_4810 
     

 
NSTCGSQQSIVSSRLDNIES NST 

 
1   

 
NESKPFILFFKQHPTEASLA NES 

  
1 

 
NPSMWPASLTMYIKQQVDEM NPS 

  
N/A 

      

  
Sub-Total   1 1 

cgd7_300 
     

 
NDTKKL NDT 

 
1   

 
NETQILSDAYEANINKDRDN NET 

 
1   

 
NFTGLLVVGAPIVQLTSGIT NFT 

 
1   

 
NSTSGALPELVLCSTNTNLK NST 

 
1   

 
NRSTGLAQITPIEGLESYGA NRS 

  
1 

 
NITS NIT 

 
1   

 
NYTMPQAKSLGMGVAVDTFE NYT 

 
1   

 
NLTTTTSEFNLDSEMTCQAD NLT 

 
1   

 
NRTTKEQLKCKQECHKKDVM NRT 

 
1   

 
NFTERKGQFSISMLNDEWTK NFT 

 
1   

      

  
Sub-Total   9 1 
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Acc. #   Nx[TS] Sequon    N.T N.S 

cgd6_710 
     

 
NISNNIFKVSIFYFVLGLIL NIS 

  
1 

 
NITSVDDLIQNSRDLMCILE NIT 

 
N/A   

 
NPTGLITVLFFAVVTYDNVL NPT 

 
0 0 

 
NNSFFPAFGIFNKGDALALN NNS 

  
1 

 
NFTNKFGPPIPVPTTSTSTT NFT 

 
1   

      

  
sub-Total   2 2 

cgd2_640  
     

 
NVTYDSNNDIFPRFSFPNYF NVT 

 
1   

 
NATLHYGHKHHDFTVVVGNK NAT 

 
1   

 
NSTIEGTTFLNCDSYCSFKV NST 

 
1   

      

  
Sub-Total   3 0 

cgd2_2510 
     

 
NKTILKESYDWIVNRVSNKG NKT 

 
1   

 
NGTWRVYNLF NGT 

 
1   

 
NVSDHGFRMSSDILLSDYQN NVS 

  
1 

 
NNTVIETSPVDILTNHLVTK NNT 

 
1   

 
NKTQSTGFPFLRNANLGGKF NKT 

 
1   

 
NITAGKLANEFGIEDGIKPS NIT 

 
1   

 
NESFLLSGTRNLGIVDASLL NES 

  
1 

      

  
Sub-Total   5 2 

cgd7_180 
     

 
NISIENSI NIS 

  
1 

 
NETSIPNEETNLRRLYGKGQ NET 

 
1 

 

 
NPSPPQMYVPVTKSEPNVYV NPS 

  
N/A 

      

  
Sub-Total   1 1 

cgd2_1290 
     

 
NYSTIFIFLYSCFTVFNYAT NYS 

  
1 

 
NQT NQT 

 
1   

 
NDSWFNLDLLREFLMDE NDS 

  
1 

 
NVTSSSTDVFEGFKKMIKVS NVT 

 
1   

 
NNTKPEERGRNMFSFGFTGK NNT 

 
1   

 
NSSNCKLSANSINLINQEIP NSS 

  
1 

 
NFTWLIPMRDHYQQVTDPSN NFT 

 
1   
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Acc. #   Nx[TS] Sequon    N.T N.S 

  
Sub-Total   4 3 

cgd5_1210 
     

 
NASNVGKIASVNRRLRENT NAS 

  
1 

 
NSSQKASKSSLFNQIDLN NSS 

  
1 

 
NISFLPKKEFFKPYYTTSTT NIS 

  
1 

 
NSSLSNTLMLLSQNNNRLQP NSS 

  
1 

 
NTTSPEATKET NTT 

 
1   

 
NKTYD NKT 

 
1   

 
NNSDAKNRI NNS 

  
1 

 
NQSN NQS 

  
1 

 
NATDKRSEKQTDLLQNQHIF NAT 

 
1   

 
NVS NVS 

  
1 

 
NSSQSQY NSS 

  
1 

 
NGTNINSL NGT 

 
1   

 
NSTESNPNYIKDKSDQLDRA NST 

 
1   

 
NQTTNLNNERYISSSLILT NQT 

 
1   

 
NGTSQGKFALSPL NGT 

 
1   

 
NGTEVAPLFSKFVPNEDTSD NGT 

 
1   

 
NSSQSNE NSS 

  
1 

      

  
Sub-Total   8 9 

cgd5_1220 
     

 
NKSEAWNSELGGNQITPSNI NKS 

  
1 

 
NASEGILTGIGGIDLPGMPL NAS 

  
1 

 
NSTNLDSSKVLLG NST 

 
1   

 
NDSTVKSSSFFNPMDLSHPF NDS 

  
1 

 
NSSQEIAKPNFFLPIDLNNP NSS 

  
1 

      

  
Sub-Total   1 4 

cgd7_4310 
     

 
NVTLELLNGENTNKNDMSET NVT 

 
1   

 
NNTSSFLPRQTDFSNIFKWD NNT 

 
1   

 
NTSSFLPRQTDFSNIFKWD NTS 

  
1 

 
NLTEPQRQPCGRCGFGAKCC NLT 

 
1   

 
NGTFPPFVKWPYRGGSGETL NGT 

 
1   

 
NETSSIPVDIDDQEMANMQL NET 

 
1   

 
NVTNNYGKDFYNYRMILRAE NVT 

 
1   

 
NPSSSYLAHQCFCVSPE NPS 

  
N/A 

 
NMSKLAFANPEALEV NMS 

  
1 
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Acc. #   Nx[TS] Sequon    N.T N.S 

 
NKTLIEEIYNR NKT 

 
1   

 
NTTTDGFNRMLMIDGVSTPY NTT 

 
1   

 
NITANIERMGFSVDND NIT 

 
1   

 
NITLLSDVFMDLPEDDSFTQ NIT 

 
1   

 
NETLLPNNVASIVASWAKPL NET 

 
1   

 
NTTRLDSPSVLVTHNNLLDL NTT 

 
1   

 
NNSPHEFPYRGGESEVVYSS NNS 

  
1 

 
NGTIPITPRVMDFITVSQAT NGT 

 
1   

 
NPSKLATPLIAKLSSSRNCI NPS 

  
N/A 

 
NTTGSSNQDSTID NTT 

 
1   

 
NSSFEGKKDKSKQEFSRECI NSS 

  
1 

 
NCTGRHALSEGCPCSRNIFS NCT 

 
1   

      

  
Sub-Total   15 4 

cgd7_1310 
     

 
NETQSGVDLEQRHSIKERLK NET 

 
1   

 
NDSQYWNIDANDDLLFDHGY NDS 

  
1 

 
NPSNRCVTNLNDKAVMKSCP NPS 

  
N/A 

      

  
Sub-Total   1 1 

      

  
    N.T N.S 

  
Grand Total 

 
100 61 

 

APPENDIX 2B.3 Percent NxT versus NxS Occupancies of N-Glycoyslation Sequons: 

Occupied and Unoccupied Sequons. 

 
Unoccupied Occupied Total % Occupied % Unoccupied 

NxT 65 35 100 35.0% 65.0% 

NxS 57 4 61 6.6% 93.4% 

      % NxT, of 
occupied 89.7% 
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APPENDIX 2B.4 Table of Protein Names Cross-Referenced to Various Database 

Accession Numbers; Conserved Domains Assigned by InterPro. 

The given protein names are shown cross-referenced to the UniProt accession numbers, PubMed ID, and the gene 
accession numbers. The conserved domains are shown, as assigned by InterPro, according to the UniProtKB accession 
numbers for each protein. The amino acid (AA) positions are indicates as per their InterPro entries. 

Given name UniProt 
Acc. # 

PubMed ID Gene Acc. # InterPro Domains 

UCG3 Q5CT01 15044751 cgd1_640 N/A 

UCG4 Q5CSZ9 15044751 cgd1_660 N/A 

POWP1 Q5CU33 15044751 cgd2_490 N/A 

GAP50 Q5CU19 15044751 cgd2_640 IPR029052(Metallo-dependent phosphatase-like) AA:23-249 

UCG5 Q5CTW5 15044751 cgd2_1290 N/A 

GMCO Q5CTL6 15044751 cgd2_2510 IPR023753(FAD/NAD-binding_dom.);IPR000172(Glucose-
methanol-choline oxidoreductase, N-terminal)AA:45-197;368-

415;IPR007867 (Glucose-methanol-choline oxidoreductase, 
N-terminal)AA:533-742; 

UCG6 Q5CV13 15044751 cgd3_660  

COA Q5CUC0 15044751 cgd3_3430 IPR013320(Concanavalin A-like lectin/glucanase 
domain)AA:285-474;IPR000269(Copper amine 

oxidase)AA:1,244-1,300;1,335-1,750;IPR015798(Copper 
amine oxidase, C-terminal)AA:1,343-1,740;IPR000998(MAM 

domain)AA:288-475 
UCG1 Q5CRW6 15044751 cgd5_1210 N/A 

UCG2 Q5CXK6 15044751 cgd6_710 N/A 

CCP2 Q5CZ08 15044751 cgd7_300 IPR008979(Galactose-binding domain-like)AA:138-234;366-
503,IPR000772(Ricin B, lectin domain)AA:243-

372,IPR000421(Coagulation factor 5/8 C-terminal 
domain)AA:373-482,IPR014716(Fibrinogen, 

alpha/beta/gamma chain, C-terminal globular, subdomain 
1)AA:597-662,IPR002181(Fibrinogen, alpha/beta/gamma 

chain, C-terminal globular domain)AA:619-
663,IPR004043(LCCL domain)AA:780-883 

O-GAT4 Q5CYR4 15044751 cgd7_1310 IPR029044(Nucleotide-diphospho-sugar transferases)AA:52-
343 ,IPR001173(Glycosyltransferase 2-like)AA:54-
180,IPR000772(Ricin B, lectin domain)AA:361-460 

CCP1 Q5CYM9 15044751 cgd7_1730 IPR008979(Galactose-binding domain-like)AA:42-166;302-
432,IPR000772(Ricin B, lectin domain)AA:168-

289,IPR002181(Fibrinogen, alpha/beta/gamma chain, C-
terminal globular domain)AA:541-589 ,IPR004043(LCCL 

domain)AA:738-834 
Gp900 Q5CY21 15044751 cgd7_4020 N/A 

FNPA Q5CXV2 15044751 cgd7_4810 IPR000562(Fibronectin, type II, collagen-binding)AA:39-
100,IPR011658(PA14 domain)AA:209-419 

UCG7 Q5CVB8 15044751 cgd8_4660 N/A 
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APPENDIX 2C: The Predicted Lipid Linked N-Glycan Precursors of C. 

parvum and T. gondii 

The cartoons show a visual representation of the predicted complete N-glycan which is transferred to the Asn on N-
glycosylated proteins in each of the organisms. The prediction is based upon the predicted enzymes found in the 
genomic sequences as shown in Table 2.2. 
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APPENDIX 3: The Complete Table of Observed N-Glycosylated 

Peptides and their Variants used to Generate Table 3.1. 

Protein 
Name 

Accession# Peptide Δppm #Spec Mods 

GAP50 TGGT1_219320 (76)K.VAANEHISFIASPGSNFLGGVSSLNDTR.W(105) 0.6 2 -#6- 

 (76)K.VAANEHISFIASPGSNFLGGVSSLNDTR.W(105) -0.2 2 -#7- 

 (76)K.VAANEHISFIASPGSNFLGGVSSLNDTR.W(105) 2.5 1 -#7-, -!- 

 (76)K.VAANEHISFIASPGSNFLGGVSSLNDTR.W(105) 1.1 1 -%-, -#8- 

 (135)R.NYTSEALR.T(144) -2.2 1 -#6- 

 (135)R.NYTSEALR.T(144) 0.9 5 -#7- 

 (135)R.NYTSEALR.T(144) -0.5 2 -#7-, -!- 

 (135)R.NYTSEALR.T(144) 0.9 9 -#8- 

 (135)R.NYTSEALR.T(144) 1.4 1 -#8-, -!- 

SRS29C TGGT1_233480 (196)R.CSYTENSTLPK.I(208) 0.1 2 -$-, -#6- 

 (300)K.YNCTVPVQLGGEDPSEGSR.P(320) 3 2 -#6-, -$- 

 (300)K.YNCTVPVQLGGEDPSEGSR.P(320) 2.1 2 -$-, -#6-, 
-!- 

 (300)K.YNCTVPVQLGGEDPSEGSR.P(320) 0.1 1 -#7-, -$- 

 (300)K.YNCTVPVQLGGEDPSEGSRPGGGSGGGK.R(3
29) 

2.3 4 -#6-, -$- 

hyp. 
protein 

TGGT1_217680 (406)R.TNSTLFESQLR.E(418) 3.2 1 -#6- 

 (457)R.GVNVTIDR.H(466) -1.7 2 -#6- 

hyp. 
protein 

TGGT1_243930 (696)K.MNNETVLYEPDTEIIEK.T(714) 1.9 1 -#8-, -!- 

 (763)K.TMNSEGVISDGLQSQLPVNHTR.L(786) -0.7 1 -#8-, -!- 

hyp. 
protein 

TGGT1_258870
A 

(178)R.AHTGDERPFNVTTGSSER.R(197) 1.9 1 -#8- 

CS-dom. 
prot. 

TGGT1_290730 (333)K.DLDDFHHGNYTAR.Y(347) -0.1 1 -#6-, -!- 

CLPTM1 TGGT1_299110 (141)R.NNTTLYVHVR.T(152) -0.7 1 -#6- 

SRS22E TGGT1_359770 (36)K.IETCAPDKPISFNVTEAGQSILFK.C(61) 0.9 1 -$-, -#6- 

 
The results from the two samples, including the technical replicates, all analyzed on the QE+ mass spectrometer, and 
searched using the PEAKS software suite. The results are collated from the PEAKS-PTM searches, the ppm error is 
shown for the best scoring spectrum (-10lgP).The symbols used in the table are defined as follows: (N = modified Asn 
residue; X = other modification, where X is any amino acid; -$- = carbamidomethylation of Cys, 57.02146;-!- = 
carbamidomethylation artifact, 57.02146; -%- = deamidation, 0.984; -#6- = HexNAc2Hex6, 1378.47566; -#7- = 
HexNAc2Hex7, 1540.52848; -#8- = HexNAc2Hex8, 1702.5813).
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APPENDIX 4: Ion Assignments, Peptides, Sequons, and Bioinformatics 

Data for the O-Glycosylated Peptides. 

APPENDIX 4A: Complete Tables of Peptides and Ions for the Spectra 

Assigned to O-Glycosylated Peptides. 

APPENDIX 4A.1 All HexNAc Modified Peptides used to Generate Table 4.1. 

The representative composite peptide is the shown in Table 4.1. The unique peptides used to make the composite 
peptide are shown to the right, labeled as “unique peptide” in the table. The number of HexNAc(s) and the number of 
corresponding spectra are also shown on the right hand side of the table. 

Protein Representative Peptide Unique Peptide #HexNAc #Spec. 
Gp40 (31)DVPVEGSSSSSSSSSSSSSSSSSTST

VAPANK(62) 
(31)DVPVEGSSSSSSSSSSSSSSSSSTST
VAPANK(62) 

20 2 

   19 1 
   18 1 
   17 1 
   15 1 
Gp15 (221)ETSEAAATVDLFAFTLDGGK(240) (219)SEETSEAAATVDLFAFTLDGGK(

240) 
4 8 

   3 31 
   2 6 
  (219)SEETSEAAATVDLFAFTLDGGK

R(241) 
4 3 

   3 9 
   2 2 
  (221)ETSEAAATVDLFAFTLDGGK(24

0) 
4 14 

   3 36 
   2 30 
  (221)ETSEAAATVDLFAFTLDGGKR(2

41) 
4 3 

   3 8 
   2 8 
  (222)TSEAAATVDLFAFTLDGGK(240) 4 1 
   1 1 
  (223)SEAAATVDLFAFTLDGGK(240) 3 2 
   2 21 
  (223)SEAAATVDLFAFTLDGGKR(241) 2 5 
  (225)AAATVDLFAFTLDGGK(240) 2 21 
  (225)AAATVDLFAFTLDGGKR(241) 2 5 
  (227)ATVDLFAFTLDGGK(240) 2 13 
   1 1 
  (227)ATVDLFAFTLDGGKR(241) 2 2 
  (228)TVDLFAFTLDGGK(240) 2 3 
  (232)FAFTLDGGK(240) 1 1 
  (233)AFTLDGGK(240) 1 10 
Gp20 (87)EGEETDENTDETTTTTTTASPKPK(

110) 
(87)EGEETDENTDETTTTTTTASPKPK
(110) 

8 4 

   7 7 
   6 7 
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Protein Representative Peptide Unique Peptide #HexNAc #Spec. 
  (87)EGEETDENTDETTTTTTTASPK(1

08) 
7 1 

 (135)SSTTTTTTTAPVSSEDNKPEDSED
EK(160) 

(135)SSTTTTTTTAPVSSEDNKPEDSE
DEK(160) 

8 2 

Gp900 (609)KPTTTTTTTTTTTTK (609)KPTTTTTTTTTTTTK(623) 3 1 
 (958)IADTSNLFPVQTHK(971) (958)IADTSNLFPVQTHK(971) 1 2 
 (1197)TPTQTDSVTGKPIDPTTGLPFNPP

TGH(1223) 
(1197)TPTQTDSVTGK(1207) 1 4 

 (1197)TPTQTDSVTGK(1207) (1197)TPTQTDSVTGKPIDPTTGLPFNP
PTGH(1223) 

1 1 

 (1243)YAVSNGIKTDNVYGLPVDEITG
LPK(1267) 

(1243)YAVSNGIKTDNVYGLPVDEIT
GLPK(1267) 

1 1 

 (1247)NGIKTDNVYGLPVDEITGLPK(12
67) 

(1247)NGIKTDNVYGLPVDEITGLPK(
1267) 

1 1 

  (1248)GIKTDNVYGLPVDEITGLPK(12
67) 

1 1 

  (1251)TDNVYGLPVDEITGLPK(1267) 1 19 
 (1373)GKDGLIVPPTNSINK(1387) (1373)GKDGLIVPPTNS(+203.08)INK(1

387) 
1 1 

 (1410)VIPGSLPGSLNYPSFNTPQQTDEI
TGK(1436) 

(1410)VIPGSLPGS(+203.08)LNYPSFN
TPQQTDEITGK(1436) 

1 4 

 (1646)TIPGSAASVIHTALGTPTQTDPTT
GLPSDPSTGLPFIPGFNVLVDPQTGEQI
K(1698) 

(1646)TIPGSAASVIHTALGTPTQTDPT
TGLPSDPSTGLPFIPGFNVLVDPQTGE
QIK(1698) 

1 4 

 (1658)ALGTPTQTDPTTGLPSDPSTGLP
FIPGFNVLVDPQTGEQIK(1698) 

(1658)ALGTPTQTDPTTGLPSDPSTGL
PFIPGFNVLVDPQTGEQIK(1698) 

1 2 

 (1710)EKNIVTEAAYGLPVDPK(1726) (1710)EKNIVTEAAYGLPVDPK(1726) 1 2 
  (1712)NIVTEAAYGLPVDPK(1726) 1 23 
 (1795)LIDPESGIAIDNSVSGVFATVPGT

AAPK(1822) 
(1795)LIDPESGIAIDNSVSGVFATVPG
TAAPK(1822) 

1 17 

 (1813)ATVPGTAAPK(1822) (1813)ATVPGTAAPK(1822) 1 4 
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APPENDIX 4A.2 Spectra Re-Annotated using Glycresoft. 

This table indicates the spectra which were re-annotated using Glycresoft. The files are named according to the 
“Sourcefile.Scan”, and have been deposited online into the PRIDE repository as indicated in the text of Chapter 4. 

Protein Peptide #HexNAc Source File Scan# 

Gp40/Gp15 
K.DVPVEGSSSSSSSSSSSSS
SSSSTSTVAPANK.A 20 03-11-2015_WTD_120min_45V_QE+.raw 3987 

 
  

 
02-17-2015_WTD_QE+.raw 3065 

 
  19 03-11-2015_WTD_120min_45V_QE+.raw 4006 

 
  18 03-11-2015_WTD_120min_45V_QE+.raw 4028 

 
  17 03-11-2015_WTD_120min_45V_QE+.raw 4027 

 
  15 03-11-2015_WTD_120min_45V_QE+.raw 4036 

 

L.SEETSEAAATVDLFAFTL
DGGK.R 4 02-17-2015_WTD_QE+.raw 5947 

 
  

 
02-17-2015_WTD_QE+.raw 5947 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9566 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24766 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 7985 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9827 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9592 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9592 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 7113 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 10001 

 

L.SEETSEAAATVDLFAFTL
DGGKR.I 4 05-08-2015_JRH_CP_PH_QE+.raw 22981 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 23116 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 9590 

 

L.SEETSEAAATVDLFAFTL
DGGK.R 3 05-08-2015_JRH_CP_PH_QE+.raw 25131 

 
  

 
05-15-2015_cp_inter_QE+.raw 7316 

 
  

 
02-17-2015_WTD_QE+.raw 5996 

 
  

 
02-17-2015_WTD_QE+.raw 5965 

 
  

 
02-17-2015_WTD_QE+.raw 5993 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9697 

 
  

 
07-10-2015_ph_inter.raw 23055 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 7118 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24962 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 7136 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24886 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 25139 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9639 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9626 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9659 
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Protein Peptide #HexNAc Source File Scan# 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24811 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24749 

 
  

 
07-10-2015_ph_inter.raw 23029 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 25012 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8088 

 
  

 
07-10-2015_ph_inter.raw 23180 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 10037 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9862 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9765 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9770 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8017 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9875 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 10054 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8037 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8052 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9912 

 

L.SEETSEAAATVDLFAFTL
DGGKR.I 3 05-15-2015_wtd_7-2012-A_QE+.raw 6802 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 9626 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 23272 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9454 

 
  

 
07-10-2015_ph_inter.raw 21064 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 23143 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 23185 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9370 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9370 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 23321 

 

L.SEETSEAAATVDLFAFTL
DGGK.R 2 02-17-2015_WTD_QE+.raw 6030 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 7220 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 25259 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8100 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9749 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9774 

 

L.SEETSEAAATVDLFAFTL
DGGKR.I 2 05-08-2015_JRH_CP_PH_QE+.raw 23603 

 
  

 
07-10-2015_ph_inter.raw 21498 

 

E.ETSEAAATVDLFAFTLD
GGK.R 4 02-17-2015_WTD_QE+.raw 5960 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24925 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24650 

 
  

 
02-17-2015_WTD_QE+.raw 5960 
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Protein Peptide #HexNAc Source File Scan# 

 
  

 
02-17-2015_WTD_QE+.raw 5985 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9614 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9584 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24785 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 7110 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24680 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8010 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 10000 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9816 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8003 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9724 

 

E.ETSEAAATVDLFAFTLD
GGKR.I 4 05-08-2015_JRH_CP_PH_QE+.raw 23130 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 22995 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 9592 

 

E.TSEAAATVDLFAFTLDG
GK.R 4 05-08-2015_JRH_CP_PH_QE+.raw 24958 

 

E.ETSEAAATVDLFAFTLD
GGK.R 3 06-26-2015_CP_PH_15V_QE+.raw 12338 

 

E.ETSEAAATVDLFAFTLD
GGK.R 3 02-17-2015_WTD_QE+.raw 5986 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9758 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9797 

 
  

 
02-17-2015_WTD_QE+.raw 5986 

 
  

 
02-17-2015_WTD_QE+.raw 5975 

 
  

 
02-17-2015_WTD_QE+.raw 6007 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9640 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 7132 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9631 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9669 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9658 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24906 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9690 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 7129 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9720 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24928 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 25033 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 25160 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24772 

 
  

 
05-15-2015_cp_inter_QE+.raw 7327 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9918 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 7161 
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Protein Peptide #HexNAc Source File Scan# 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9757 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 10046 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8036 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8024 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 10038 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9867 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9865 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8050 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 10078 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8096 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 8062 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9901 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9825 

 
  

 
06-26-2015_CP_PH_15V_QE+.raw 12333 

Gp20 
K.EGEETDENTDETTTTTTT
ASPKPK.S 8 05-15-2015_wtd_7-2012-A_QE+.raw 2922 

 

K.EGEETDENTDETTTTTTT
ASPK.P 7 03-11-2015_WTD_120min_45V_QE+.raw 3385 

 

K.EGEETDENTDETTTTTTT
ASPKPK.S 7 05-15-2015_wtd_7-2012-A_QE+.raw 2962 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 2928 

 
  

 
02-17-2015_WTD_120min_QE+.raw 3246 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 2935 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 3380 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 3371 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 3403 

 

K.EGEETDENTDETTTTTTT
ASPKPK.S 6 02-17-2015_WTD_QE+.raw 2855 

 
  

 
02-17-2015_WTD_120min_QE+.raw 3329 

 
  

 
02-17-2015_WTD_120min_QE+.raw 3332 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 3001 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 3471 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 3504 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 3483 

 

K.SSTTTTTTTAPVSSEDNK
PEDSEDEK.E 8 02-17-2015_WTD_120min_QE+.raw 3513 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 3681 

Gp900 K.KPTTTTTTTTTTTTK.K 3 02-17-2015_WTD_120min_QE+.raw 3178 

 
Q.IADTSNLFPVQTHK.S 1 02-17-2015_WTD_120min_QE+.raw 6833 

 
  

 
02-17-2015_WTD_QE+.raw 4633 

 
K.TPTQTDSVTGK.P 1 02-17-2015_WTD_120min_QE+.raw 3403 

 
  

 
02-17-2015_WTD_QE+.raw 2939 
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Protein Peptide #HexNAc Source File Scan# 

 

K.TPTQTDSVTGKPIDPTTG
LPFNPPTGH.L 1 07-10-2015_ph_inter.raw 15875 

 

K.YAVSNGIKTDNVYGLPV
DEITGLPK.D 1 07-10-2015_ph_inter.raw 20433 

 

S.NGIKTDNVYGLPVDEITG
LPK.D 1 05-15-2015_wtd_7-2012-A_QE+.raw 6854 

 

N.GIKTDNVYGLPVDEITGL
PK.D 1 05-15-2015_wtd_7-2012-A_QE+.raw 6580 

 

K.TDNVYGLPVDEITGLPK.
D 1 02-17-2015_WTD_QE+.raw 5725 

 
  

 
05-15-2015_cp_inter_QE+.raw 6931 

 
  

 
02-17-2015_WTD_QE+.raw 5716 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9092 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9113 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 6736 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9124 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 22765 

 
  

 
07-10-2015_ph_inter.raw 21361 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9088 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 22798 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 9261 

 
  

 
02-17-2015_WTD_QE+.raw 5747 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 9523 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9342 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 7583 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 7609 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 7590 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 7620 

 
K.GKDGLIVPPTNSINK.D 1 05-08-2015_JRH_CP_PH_QE+.raw 26837 

 

K.VIPGSLPGSLNYPSFNTP
QQTDEITGK.P 1 02-17-2015_WTD_QE+.raw 5452 

 
  

 
02-17-2015_WTD_120min_QE+.raw 8622 

 
  

 
02-17-2015_WTD_120min_QE+.raw 8657 

 
  

 
02-17-2015_WTD_120min_QE+.raw 8641 

 

K.TIPGSAASVIHTALGTPT
QTDPTTGLPSDPSTGLPFIP
GFNVLVDPQTGEQIK.G 1 05-15-2015_cp_inter_QE+.raw 8634 

 
  

 
07-10-2015_ph_inter.raw 29236 

 
  

 
05-15-2015_cp_inter_QE+.raw 8663 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 8508 

 

T.ALGTPTQTDPTTGLPSDP
STGLPFIPGFNVLVDPQTGE
QIK.G 1 05-15-2015_wtd_7-2012-A_QE+.raw 8401 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 8411 

 

K.EKNIVTEAAYGLPVDPK.
T 1 07-10-2015_ph_inter.raw 13333 

 
  

 
07-10-2015_ph_inter.raw 13307 
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Protein Peptide #HexNAc Source File Scan# 

 
K.NIVTEAAYGLPVDPK.T 1 05-15-2015_cp_inter_QE+.raw 5719 

 
  

 
02-17-2015_WTD_QE+.raw 4891 

 
  

 
06-25-2015_CP_PH_15&45V_HCD_QE+.raw 7647 

 
  

 
02-17-2015_WTD_QE+.raw 4892 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 5552 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 5582 

 
  

 
02-17-2015_WTD_120min_QE+.raw 7409 

 
  

 
02-17-2015_WTD_120min_QE+.raw 7398 

 
  

 
02-17-2015_WTD_120min_QE+.raw 7430 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 16458 

 
  

 
02-17-2015_WTD_120min_QE+.raw 7400 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 16324 

 
  

 
07-10-2015_ph_inter.raw 15023 

 
  

 
07-10-2015_ph_inter.raw 15152 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 16333 

 
  

 
07-10-2015_ph_inter.raw 15144 

 
  

 
06-26-2015_CP_PH_15V_QE+.raw 9181 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 6427 

 
  

 
02-17-2015_WTD_120min_QE+.raw 7441 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 7855 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 6456 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 7648 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 6425 

 

K.LIDPESGIAIDNSVSGVFA
TVPGTAAPK.K 1 05-15-2015_cp_inter_QE+.raw 7219 

 
  

 
02-17-2015_WTD_QE+.raw 5895 

 
  

 
07-10-2015_ph_inter.raw 22759 

 
  

 
07-10-2015_ph_inter.raw 22613 

 
  

 
07-10-2015_ph_inter.raw 22820 

 
  

 
06-24-2015_CP_PH_15V&45V_QE+.raw 9803 

 
  

 
07-10-2015_ph_inter.raw 22656 

 
  

 
05-15-2015_cp_inter_QE+.raw 7219 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 7030 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9560 

 
  

 
02-17-2015_WTD_120min_QE+.raw 9539 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24449 

 
  

 
05-08-2015_JRH_CP_PH_QE+.raw 24324 

 
  

 
06-24-2015_CP_PH_45V_QE+.raw 9956 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 7956 

 
  

 
03-11-2015_WTD_120min_45V_QE+.raw 7926 
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Protein Peptide #HexNAc Source File Scan# 

 
  

 
07-10-2015_ph_inter.raw 22686 

 
  

 
07-10-2015_ph_inter.raw 22551 

 
F.ATVPGTAAPK.K 1 02-17-2015_WTD_120min_QE+.raw 3875 

 
  

 
02-17-2015_WTD_QE+.raw 3136 

 
  

 
02-17-2015_WTD_120min_QE+.raw 3846 

 
  

 
05-15-2015_wtd_7-2012-A_QE+.raw 3361 
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APPENDIX 4B: Ion Assignments for the Mass Spectra Annotated in Figs. 4.2 

to 4.7, and Fig.4.9. 

APPENDIX 4B.1: Ion Assignments for Fig 4.2. 

Meas. m/z Calc. m/z Δppm z Annotation 

147.1129 147.1128 0.7 1 y1  

261.1555 261.1557 -0.9 1 y2  

312.1558 312.1554 1.3 1 b3  

332.1927 332.1928 -0.4 1 y3  

411.2290 411.2238 12.6 1 b4  

429.2457 429.2456 0.2 1 y4  

500.2830 500.2827 0.6 1 y5  

540.2659 540.2664 -0.9 1 b5  

597.2912 597.2879 5.6 1 b6  

599.3525 599.3511 2.3 1 y6  

684.3196 684.3199 -0.4 1 b7  

700.3945 700.3988 -6.2 1 y7  

771.3490 771.3519 -3.8 1 b8  

787.4269 787.4308 -5.0 1 y8  

858.3825 858.3840 -1.7 1 b9  

888.4797 888.4785 1.3 1 y9  

903.4768 903.4782 -1.5 1 y7* 

945.4262 945.4160 10.8 1 b10  

975.5067 975.5106 -3.9 1 y10  

990.5093 990.5102 -0.9 1 y8* 

1032.4525 1032.4480 4.3 1 b11  

1062.5382 1062.5426 -4.1 1 y11  

1119.4705 1119.4800 -8.5 1 b12  

1149.5626 1149.5746 -10.4 1 y12  

1206.5244 1206.5121 10.2 1 b13  

1293.5364 1293.5441 -5.9 1 b14  

1352.6537 1352.6540 -0.2 1 y12* 

1375.5880 1375.6078 -14.4 2 y30  

1477.1340 1477.1474 -8.9 2 y30* 

1482.6445 1482.6554 -7.4 2 aglycon 

1578.6803 1578.6871 -4.3 2 y30**   

1584.1819 1584.1951 -8.3 2 [M - HexNAc19] 
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Meas. m/z Calc. m/z Δppm z Annotation 

1680.2161 1680.2268 -6.4 2 y30***   

1685.7175 1685.7348 -10.3 2 [M -HexNAc18] 

1729.7430 1729.7610 -10.4 2 y31***   

1758.7390 1758.7400 -0.5 2 b30*4   

1787.2545 1787.2745 -11.2 2 [M -HexNAc17] 

1888.7813 1888.8142 -17.4 2 [M -HexNAc16] 

1990.8346 1990.8935 -29.6 1 y17** 

 

APPENDIX 4B.2: Ion Assignments for Fig 4.3. 

Meas. m/z Calc. m/z Δppm z Annotation 

102.0554 102.0550 4.4 1 iE 

120.0807 120.0808 -0.6 1 iF 

129.1023 129.1022 0.5 1 y1 -H2O 

130.0866 130.0863 2.7 1 y1 -NH3 

147.1129 147.1128 0.7 1 y1 

187.1073 187.1077 -2.2 1 y2 -NH3 

213.0870 213.0870 0.1 1 b2 -H2O 

231.0970 231.0975 -2.4 1 b2 

243.1481 243.1452 12.1 1 y3 -H2O 

244.1289 244.1292 -1.2 1 y3 -NH3 

261.1557 261.1557 -0.1 1 y3 

300.1190 300.1190 0.0 1 b3 -H2O 

318.1292 318.1296 -1.2 1 b3 

358.1722 358.1721 0.3 1 y4 -H2O 

359.1556 359.1561 -1.5 1 y4 -NH3 

376.1831 376.1827 1.1 1 y4 

416.1723 416.1664 14.3 1 b2 -H2O* 

429.1616 429.1616 0.0 1 b4 -H2O 

447.1720 447.1722 -0.4 1 b4 

471.2566 471.2562 0.9 1 y5 -H2O 

489.2672 489.2667 0.9 1 y5 

500.1985 500.1987 -0.4 1 b5 -H2O 

504.1885 504.1824 12.1 1 b3 -NH3* 

518.2089 518.2093 -0.7 1 b5 

521.2120 521.2089 5.9 1 b3* 

571.2355 571.2358 -0.6 1 b6 -H2O 
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Meas. m/z Calc. m/z Δppm z Annotation 

572.3088 572.3039 8.6 1 y6 -H2O 

589.2458 589.2464 -1.0 1 b6 

590.3173 590.3144 4.9 1 y6 

642.2708 642.2729 -3.3 1 b7 -H2O 

660.2828 660.2835 -1.1 1 b7 

719.3768 719.3723 6.3 1 y7 -H2O 

737.3828 737.3828 0.0 1 y7 

743.3200 743.3206 -0.8 1 b8 -H2O 

761.3290 761.3312 -2.9 1 b8 

790.4130 790.4094 4.6 1 y8 -H2O 

793.3946 793.3938 1.0 1 y6* 

808.4201 808.4199 0.2 1 y8 

842.3888 842.3890 -0.3 1 b9 -H2O 

860.4027 860.3996 3.6 1 b9 

922.4427 922.4516 -9.7 1 y7 -H2O* 

937.4783 937.4778 0.5 1 y9 -H2O 

940.4599 940.4622 -2.4 1 y7* 

955.4885 955.4884 0.1 1 y9 

964.4237 964.4106 13.6 1 b8* 

975.4263 975.4265 -0.3 1 b10 

993.4783 993.4888 -10.5 1 y8 -H2O* 

1011.4979 1011.4993 -1.4 1 y8  * 

1050.5577 1050.5619 -4.0 1 y10 -H2O 

1068.5726 1068.5724 0.2 1 y10 

1088.5111 1088.5106 0.4 1 b11 

1158.5685 1158.5677 0.7 1 y9* 

1165.5850 1165.5888 -3.3 1 y11 -H2O 

1166.5791 1166.5728 5.4 1 y11 -NH3 

1183.6000 1183.5994 0.5 1 y11 

1217.5688 1217.5685 0.3 1 b12 -H2O 

1235.5837 1235.5790 3.8 1 b12 

1264.6603 1264.6572 2.4 1 y12 -H2O 

1265.6534 1265.6412 9.6 1 y12 -NH3 

1271.6377 1271.6518 -11.1 1 y10* 

1282.6694 1282.6678 1.3 1 y12 

1288.6049 1288.6056 -0.5 1 b13 -H2O 

1289.6074 1289.5896 13.8 1 b13 -NH3 

1306.6124 1306.6161 -2.9 1 b13 
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Meas. m/z Calc. m/z Δppm z Annotation 

1365.7001 1365.7049 -3.5 1 y13 -H2O 

1383.7183 1383.7155 2.1 1 y13 

1386.6980 1386.6787 13.9 1 y11* 

1435.6750 1435.6740 0.7 1 b14 -H2O 

1436.7368 1436.7420 -3.6 1 y14 -H2O 

1437.7405 1437.7260 10.1 1 y14 -NH3 

1453.6809 1453.6846 -2.5 1 b14 

1454.7539 1454.7526 0.9 1 y14 

1485.7531 1485.7472 4.0 1 y12* 

1507.7892 1507.7791 6.7 1 y15 -H2O 

1508.7775 1508.7631 9.5 1 y15 -NH3 

1525.7915 1525.7897 1.2 1 y15 

1536.7340 1536.7217 8.0 1 b15 -H2O 

1554.7372 1554.7322 3.2 1 b15 

1578.8134 1578.8162 -1.8 1 y16 -H2O 

1579.8070 1579.8003 4.3 1 y16 -NH3 

1586.8041 1586.7948 5.8 1 y13* 

1596.8306 1596.8268 2.4 1 y16 

1657.8325 1657.8319 0.3 1 y14* 

1725.8771 1725.8694 4.5 1 y17 

1728.8628 1728.8691 -3.6 1 y15* 

1782.8396 1782.8432 -2.0 1 b17 

1812.8967 1812.9014 -2.6 1 y18 

2025.0002 2024.9811 9.4 1 aglycon -H2O 

2025.9860 2025.9651 10.3 1 aglycon -NH3 

2043.0068 2042.9917 7.4 1 aglycon 

2228.0610 2228.0605 0.2 1 [M -HexNAc2] - H2O 

2229.0444 2229.0445 -0.1 1 [M -HexNAc2] -NH3 

2246.0623 2246.0711 -3.9 1 [M -HexNAc2] 

APPENDIX 4B.3: Ion Assignments for Fig 4.4. 

Meas. m/z Calc. m/z Δppm z Annotation 

147.1128 147.1128 0.0 1 y1 

187.0800 187.0713 46.3 1 b2 

244.1655 244.1656 -0.3 1 y2 

316.1138 316.1139 -0.4 1 b3 

372.2621 372.2605 4.2 1 y3 
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Meas. m/z Calc. m/z Δppm z Annotation 

445.1552 445.1565 -3.0 1 b4 

469.3134 469.3133 0.2 1 y4 

546.2021 546.2042 -3.8 1 b5 

554.1898 554.2017 -21.4 2 b8* 

556.3455 556.3453 0.3 1 y5 

625.2109 625.2206 -15.5 2 b11 

627.3827 627.3824 0.4 1 y6 

661.2324 661.2311 1.9 1 b6 

662.2327 662.2390 -9.5 2 b10* 

728.4303 728.4301 0.3 1 y7 

790.2740 790.2737 0.3 1 b7 

820.3894 820.4173 -34.0 2 y12** 

829.4747 829.4778 -3.7 1 y8 

830.4783 830.4618 19.9 1 y6* 

897.4425 897.4418 0.8 2 y17 

904.3199 904.3167 3.6 1 b8 

930.5262 930.5255 0.8 1 y9 

931.5182 931.5095 9.4 1 y7* 

961.9641 961.9631 1.0 2 y18 

1005.3602 1005.3643 -4.1 1 b9 

1019.4717 1019.4766 -4.8 2 y19 

1031.5757 1031.5732 2.5 1 y10 

1032.5691 1032.5572 11.6 1 y8* 

1070.0049 1070.0004 4.2 2 y20 

1120.3936 1120.3913 2.1 1 b10 

1132.6230 1132.6208 1.9 1 y11 

1133.6145 1133.6048 8.5 1 y9* 

1134.6238 1134.5889 30.8 1 y7** 

1199.0234 1199.0430 -16.3 2 y22 

1227.5383 1227.5537 -12.6 2 y23 

1233.4164 1233.4747 -47.2 2 b15**** 

1233.6708 1233.6685 1.9 1 y12 

1234.6638 1234.6525 9.1 1 y10* 

1235.6639 1235.6365 22.1 1 y8** 

1249.4330 1249.4339 -0.7 1 b11 

1261.0562 1261.0014 43.5 2 b20** 

1283.5702 1283.5065 49.6 2 b18*** 

1292.0851 1292.0750 7.8 2 ‡, aglycon 
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Meas. m/z Calc. m/z Δppm z Annotation 

1334.7292 1334.7162 9.8 1 y13 

1335.7175 1335.7002 13.0 1 y11* 

1336.7018 1336.6842 13.2 1 y9** 

1350.4850 1350.4816 2.6 1 b12 

1385.1116 1385.0462 47.2 2 b18**** 

1385.6013 1385.5382 45.5 2 b16***** 

1393.6224 1393.6147 5.5 2 ‡*, [M -HexNAc6] 

1436.7539 1436.7479 4.2 1 y12* 

1437.7378 1437.7319 4.1 1 y10** 

1438.7268 1438.7159 7.6 1 y8*** 

1452.4978 1452.5132 -10.6 1 b11* 

1463.7611 1463.7588 1.6 1 y14 

1495.1470 1495.1544 -5.0 2 ‡**, [M -HexNAc5] 

1537.7791 1537.7956 -10.7 1 y13* 

1538.8047 1538.7796 16.3 1 y11** 

1539.7823 1539.7636 12.2 1 y9*** 

1552.6135 1552.5769 23.6 1 b14 

1578.7858 1578.7857 0.0 1 y15 

1639.7932 1639.8273 -20.8 1 y12** 

1640.8153 1640.8113 2.5 1 y10*** 

1666.8049 1666.8382 -19.9 1 y14* 

1679.8464 1679.8334 7.7 1 y16 

1740.8336 1740.8749 -23.7 1 y13** 

1741.8633 1741.8589 2.5 1 y11*** 

1781.8101 1781.8651 -30.9 1 y15* 

1793.8458 1793.8763 -17.0 1 y17 

1882.8942 1882.9128 -9.9 1 y16* 

1922.9371 1922.9189 9.5 1 y18 
 

APPENDIX 4B.4: Ion Assignments for Fig 4.5. 

Meas. m/z Calc. m/z Δppm z Annotation 

147.1127 147.1128 -0.7 1 y1 

228.1342 228.1343 -0.3 1 b2 

244.1655 244.1656 -0.3 1 y2 

327.2024 327.2027 -0.9 1 b3 

359.1924 359.1925 -0.3 1 y3 
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Meas. m/z Calc. m/z Δppm z Annotation 

428.2535 428.2504 7.3 1 b4 

458.2605 458.2609 -0.9 1 y4 

555.3138 555.3137 0.2 1 y5 

628.3301 628.3301 0.1 1 b6 

631.3203 631.3297 -14.9 1 b4* 

668.3994 668.3978 2.5 1 y6 

699.3669 699.3672 -0.4 1 b7 

725.4193 725.4192 0.1 1 y7 

831.3948 831.4094 -17.6 1 b6* 

862.4299 862.4305 -0.7 1 b8 

888.4821 888.4825 -0.5 1 y8 

902.4320 902.4466 -16.1 1 b7* 

919.4526 919.4520 0.7 1 b9 

959.5201 959.5197 0.5 1 y9 

1030.5574 1030.5568 0.6 1 y10 

1032.5414 1032.5360 5.2 1 b10 

1129.5916 1129.5888 2.5 1 b11 

1159.6016 1159.5994 1.9 1 y11 

1260.6484 1260.6470 1.1 1 y12 

1343.6854 1343.6842 0.9 1 b13 

1359.7166 1359.7155 0.8 1 y13 

1586.8459 1586.8424 2.2 1 aglycon 
 

APPENDIX 4B.5: Ion Assignments for Fig 4.6 

Meas. m/z Calc. m/z Δppm z Annotation 

147.1129 147.1128 0.7 1 y1 

161.0380 161.0379 0.5 1 b2 (-palm, -myr) 

248.1607 248.1605 0.9 1 y2 

268.2271 268.2276 -1.8 1 b1 

371.2361 371.2363 -0.5 1 b2 (-palm) 

377.2036 377.2031 1.4 1 y3 

399.2685 399.2676 2.3 1 b2 (-myr) 

474.2563 474.2558 1.0 1 y4 

602.3519 602.3508 1.8 1 y5 

609.4655 609.4660 -0.7 1 b2 

689.3835 689.3828 1.0 1 y6 

776.4156 776.4149 1.0 1 y7 
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Meas. m/z Calc. m/z Δppm z Annotation 

863.4476 863.4469 0.8 1 y8 

927.6149 927.6125 2.6 1 y6 (+palm) 

966.4558 966.4561 -0.3 1 y9 (-palm) 

986.5160 986.5227 -6.8 1 b8 (-palm) 

1014.6516 1014.6445 7.0 1 y7 (+palm) 

1023.4797 1023.4775 2.1 1 [M (-palm, -myr)] 

1087.5614 1087.5704 -8.3 1 b9 (-palm) 

1095.7035 1095.7098 -5.7 1 b7 

1101.6763 1101.6766 -0.2 1 y8 (+palm) 

1204.6860 1204.6857 0.2 1 y9 

1224.7467 1224.7524 -4.6 1 b8 

1233.6782 1233.6759 1.9 1 [M (-palm)] 

1261.7001 1261.7072 -5.6 1 [M (-myr)] 

 

APPENDIX 4B.6: Ion Assignments for Fig 4.7 

Meas. m/z Calc. m/z Δppm z Annotation 

215.1029 215.1026 1.2 1 b2 

261.1558 261.1557 0.3 1 y2 

312.1548 312.1554 -1.9 1 b3 

332.1927 332.1928 -0.4 1 y3 

411.2356 411.2238 28.7 1 b4 

429.2459 429.2456 0.7 1 y4 

500.2832 500.2827 1.0 1 y5 

540.2582 540.2664 -15.2 1 b5 

597.2872 597.2879 -1.1 1 b6 

599.3541 599.3511 4.9 1 y6 

684.3178 684.3199 -3.1 1 b7 

700.4005 700.3988 2.4 1 y7 

787.4315 787.4308 0.8 1 y8 

888.4933 888.4785 16.6 1 y9 

974.4018 974.4313 -30.3 1 b8* 

975.5225 975.5106 12.2 1 y10 

1032.4451 1032.4480 -2.8 1 b11 

1061.4369 1061.4633 -24.9 1 b9* 

1062.5510 1062.5426 7.9 1 y11 

1148.4647 1148.4954 -26.7 1 b10* 
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Meas. m/z Calc. m/z Δppm z Annotation 

1149.5792 1149.5746 4.0 1 y12 

1235.4927 1235.5274 -28.1 1 b11* 

1236.6184 1236.6066 9.5 1 y13 

1322.5286 1322.5594 -23.3 1 b12* 

1323.6344 1323.6387 -3.2 1 y14 

1410.6708 1410.6707 0.1 1 y15 

1497.6858 1497.7166 -20.6 1 y9*** 

1497.6858 1497.7027 -11.3 1 y16 

1584.7395 1584.7487 -5.8 1 y10*** 

1584.7395 1584.7347 3.0 1 y17 

1671.7655 1671.7807 -9.1 1 y11*** 

1671.7655 1671.7668 -0.8 1 y18 

1758.7955 1758.8127 -9.8 1 y12*** 

1758.7955 1758.7988 -1.9 1 y19 

1845.7935 1845.8448 -27.8 1 y13*** 

1845.7935 1845.8308 -20.2 1 y20 

1932.8513 1932.8768 -13.2 1 y14*** 

1932.8513 1932.8629 -6.0 1 y21 

2019.8694 2019.9088 -19.5 1 y15*** 

2019.8694 2019.8949 -12.6 1 y22 

2106.8933 2106.9408 -22.6 1 y16*** 

2106.8933 2106.9269 -16.0 1 y23 

2193.9631 2193.9729 -4.5 1 y17*** 

2193.9631 2193.9589 1.9 1 y24 

2280.9612 2281.0049 -19.2 1 y18*** 

2280.9612 2280.9910 -13.1 1 y25 

2367.9712 2368.0508 -33.6 1 y12****** 

2367.9712 2368.0369 -27.8 1 y19*** 

2367.9712 2368.0230 -21.9 1 y26 

2424.9797 2425.0445 -26.7 1 y27 

2424.9797 2424.9883 -3.5 1 b13****** 

2424.9797 2424.9744 2.2 1 b20*** 

2426.0076 2426.0676 -24.7 1 y15***** 

2426.0076 2426.0536 -19.0 1 y22** 

2750.2222 2750.2082 5.1 1 y30 

2964.2405 2964.3036 -21.3 1 aglycon 
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APPENDIX 4B.7: Ion Assignments for Fig 4.9 

Meas. m/z Calc. m/z Δppm z Annotation 

147.1129 147.1128 0.7 1 y1 

226.1551 226.1550 0.4 1 b2 

248.1608 248.1605 1.3 1 y2 

327.2026 327.2027 -0.2 1 b3 

349.2083 349.2082 0.4 1 y3 

428.2478 428.2504 -6.0 1 b4 

450.2540 450.2558 -4.1 1 y4 

529.2964 529.2980 -3.1 1 b5 

551.3049 551.3035 2.5 1 y5 

630.3482 630.3457 3.9 1 b6 

652.3463 652.3512 -7.5 1 y6 

731.3980 731.3934 6.3 1 b7 

753.3929 753.3989 -7.9 1 y7 

754.3914 754.3829 11.3 1 y5* 

792.9193 792.9200 -0.9 2 M 

832.4316 832.4411 -11.4 1 b8 

854.4416 854.4466 -5.8 1 y8 

933.4857 933.4888 -3.3 1 b9 

955.4847 955.4942 -10.0 1 y9 

956.4911 956.4782 13.4 1 y7* 

1056.5314 1056.5419 -9.9 1 y10 

1057.5306 1057.5259 4.4 1 y8* 

1135.5800 1135.5841 -3.6 1 b11 

1157.5768 1157.5896 -11.0 1 y11 

1158.5791 1158.5736 4.7 1 y9* 

1236.6078 1236.6318 -19.4 1 b12 

1258.6224 1258.6373 -11.8 1 y12 

1259.6207 1259.6213 -0.5 1 y10* 

1337.6754 1337.6795 -3.0 1 b13 

1359.6737 1359.6849 -8.3 1 y13 

1360.6742 1360.6690 3.8 1 y11 

1361.6630 1361.6530 7.4 1 y9** 

1439.7150 1439.7112 2.7 1 b12* 

1456.7452 1456.7377 5.1 1 y14 

1584.8348 1584.8327 1.3 1 aglycon 
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APPENDIX 5: Complete Tables of the O-Fucosylated Peptides and 

Proteins 

APPENDIX 5A: O-Fucosylated Peptides Identified. 

aBetween square brackets are given the AA number immediately preceding and following the first and last AA in the 
given peptide sequence. bObserved neutral loss from MS spectra, are marked with a Y. In the cases where the neutral 
loss, m/z is consistent with more than one dHex, the number of dHex for which neutral loss was observed is indicated 
after the dash. 

Gene ID AA Sequencea NL-#b # dHex Glycosylation site 

TGGT1_203150 [348]SSPASNPLSSPSSPSGPGSSSASSPVHTPAAR
[381] 

Y 1   

TGGT1_203780 [597]LGDSGAQSLFGGTAAR[614]  1 T610 

  [628]EIAREPPAPFSFPAVGGGAGGTAPLFSSGK[
659] 

 1  

  [832]GASLFGGATFSAVSQPPSTNSK[855]  1   

  [1028]SSSSTGILGTGTQSQTVSSSAPPSLFVFGGG
GPAK[1064] 

Y 1 on SSSST 

  [1036]GTGTQSQTVSSSAPPSLFVFGGGGPAK[10
64] 

Y 1  

  [1145]TSGTCLFVFGSTVGASQTACASSGGSVK[1
174] 

Y-2 2  

  [1145]TSGTCLFVFGSTVGASQTACASSGGSVKR
[1175] 

Y 1  

  [1145]TSGTCLFVFGSTVGASQTACASSGGSVKR
[1175] 

Y-1 3  

  [1187]SVFGGTTSQGASTTGGLFGVS[1209]  1   

  [1259]GASPFGTQSSTPVFGGGTTATGSSSSLSSV
FGASK[1295] 

 1 T1266 or S1262 

  [1259]GASPFGTQSSTPVFGGGTTATGSSSSLSSV
FGASK[1295] 

 2   

TGGT1_206450 [532]RSTPVSGASTPQAR[547] Y 1   

TGGT1_211150 [1854]KRPFYQQAPSSSSSPSSSSSSASSSSSASSSS
SASAFRPSR[1896] 

Y-1 3  

  [1854]KRPFYQQAPSSSSSPSSSSSSASSSSSASSSS
SASAFRPSR[1896] 

Y-1 2  

TGGT1_211700 [17]SLPGTSSSLFGR[30] Y 1  

TGGT1_216030A [208]IRRPAPHPPSSSSFSSSSSPSSSSFSSSSSPSSS
SFSSSSR[250] 

Y-1 3  

  [208]IRRPAPHPPSSSSFSSSSSPSSSSFSSSSSPSSS
SFSSSSR[250] 

Y-1 4  

  [208]IRRPAPHPPSSSSFSSSSSPSSSSFSSSSSPSSS
SFSSSSR[250] 

Y-1 2  

  [210]RPAPHPPSSSSFSSSSSPSSSSFSSSSSPSSSSF
SSSSR[250] 

Y-1 3  

  [210]RPAPHPPSSSSFSSSSSPSSSSFSSSSSPSSSSF
SSSSR[250] 

Y-1 2  

TGGT1_216030A [914A/24B]LSAVPSLSPPPPSDAASSSSASSSSASS
TSSSISSSSCSASWGFLPPPEEAHR[968A/78B] 

Y-1 3  

TGGT1_216030A [914A/24B]LSAVPSLSPPPPSDAASSSSASSSSASS
TSSSISSSSCSASWGFLPPPEEAHR[968A/78B] 

Y-1 4  

TGGT1_218070 [1685]ARACSSPPSASSQPSVASPSSSSSTSSSSAS Y-1 2  
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Gene ID AA Sequencea NL-#b # dHex Glycosylation site 

SSSSPQLISR[1707] 

  [1687]ACSSPPSASSQPSVASPSSSSSTSSSSASSSS
SPQLISR[1707] 

Y-1 2  

  [1687]ACSSPPSASSQPSVASPSSSSSTSSSSASSSS
SPQLISR[1707] 

Y-2 3  

TGGT1_223880 [430]EAVPSTGATQPSFAPSSSVSVLLPSHNEEIK[
462] 

Y 1  

TGGT1_225890 [154]ASVAEPLSTTSSSSSSSAASAPASSSTR[183] Y-1 2  

TGGT1_226080A [4]TVASIHPLSASSASR[20] Y 1  

TGGT1_226950 [759]KSEEEARKTGWVVPTTHLK[779] Y-1 2  

  [64]NASSSSGCSSSPAAPTGSSLSPSSK[90] Y 1   

TGGT1_230890 [288]GRPCSVSSSPSTAASSR[306] Y 1 on one of S 

TGGT1_230940 [1083]LLGLGHQAATAGGSQPSSFSSYSHSQQR[1
112] 

Y 1 on one of S 

  [1083]LLGLGHQAATAGGSQPSSFSSYSHSQQR[1
112] 

Y-2 2  

  [1083]LLGLGHQAATAGGSQPSSFSSYSHSQQRE
APVGGQSSSAR[1125] 

Y 1   

TGGT1_233010 [418]SGSSSSSYTGSSSASHPTGASAQAPSHFGSS
HYASSHQMHR[460] 

Y 1 on SSSSS 

  [588]DRPAASGSSAGVSHAYYASQFFAPGSATHS
PQLSGSSR[647] 

Y 1  

TGGT1_234900 [329]APSSPAALLSAALSR[345] Y 1  

TGGT1_235550 [224]GSSSPSSPSSLSSSASSSASSSSSASASALSSA
R[259] 

Y-2 2  

TGGT1_244600 [258]SLSSSLSCASSSSR[273] Y 1  

TGGT1_254490 [1465]VSPPVAAVSWSTSGSAPVSDSTGSASSER[
1495] 

Y 1  

TGGT1_260240 [450]QVLGASGAAPGTSSATHLR[490] Y 1  

TGGT1_273850 [389]ATGGATGLLGSSSLFGDTK[409]  1  

TGGT1_277050 [459]LSFSPPVQADQAMCLPDGNSCGSPTSTLHP
RPHASSSPAACTQTST[506] 

Y 1  

TGGT1_285190 [27]PLGAPASSPANSQSSAAASGSPLR[52] Y 1  

  [431]GQTSNMSGQSERRPSPSPSANETAGSFSSSS
ASSSFSPSHR[473] 

Y-1 2   

TGGT1_285190 [443]RPSPSPSANETAGSFSSSSASSSFSPSHR[473] Y 1 likely T454 

  [443]RPSPSPSANETAGSFSSSSASSSFSPSHR[473] Y-2 2   

  [443]RPSPSPSANETAGSFSSSSASSSFSPSHR[473] Y-2 3  

  [472]SSSSSASSSSSSFPSSSSSDSVPPR[498] Y 1  

  [472]SSSSSASSSSSSFPSSSSSDSVPPR[498] Y-1 2   

  [497]STAYSWVASGPSASSSAR[516] Y 1 S512 or S513 

  [497]STAYSWVASGPSASSSAR[516] Y 2  

  [515]SSSSPVSAADSGGLPFSQSTASNSQSEPFQA
FSFSATSQPSSSGPR[562] 

 1  

TGGT1_291980 [1920]NGTESALLSSLVR[1934] Y 1  

TGGT1_292235 [1318]NLWTSSAALPSSPSSASSSSSSSPPSSSSAR[
1350] 

 1  

TGGT1_297520 [1139]HYTPTASALLPLAVSSSQTDASGANASLS
ASAK[1173] 

 1  
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Gene ID AA Sequencea NL-#b # dHex Glycosylation site 

TGGT1_300180 [258]IPSQSSSQSSSQSSSQFSSQSSSQFSSSSTASK
[292] 

Y-1 2  

TGGT1_301410 [649]SQSAPSAASSTAASSFFSGLVVKDDKQR[67
8] 

Y 1  

TGGT1_313430 [278]GANSSSSLFSGAGTASTGTSK[300]  1  

TGGT1_313580 [216]AATSSQLPPVAVASESHLSSSSSLSSSSLSSS
SLSSSSSVLPR[260] 

Y-1 3  

  [216]AATSSQLPPVAVASESHLSSSSSLSSSSLSSS
SLSSSSSVLPR[260] 

Y-1 4  

  [216]AATSSQLPPVAVASESHLSSSSSLSSSSLSSS
SLSSSSSVLPR[260] 

Y-2 5  

  [229]SESHLSSSSSLSSSSLSSSSLSSSSSVLPR[260] Y-1 3  

  [268]SQDPPGRLPVPGASASASPSVSVSPPPERGE
NEKTEGARPQSGSGGVER[318] 

Y 1  

TGGT1_318260 [20]ETVRPMGEPPPSDSSNSSVGDASKPLSSPSSS
SASSSASLSSSSSSSLSSSSSSSSVSPVDPR[84] 

Y-1 4  

TGGT1_321450 [3228]NLPSSSASSSSSASSSTASSSSSSSASSSSVA
SGESTETGVSSAKPAGSPLSVPLGVPGGR[3290] 

Y-2 6  

TGGT1_321540 [256]SSCLSSSSSSSLSSSR[273] Y 1  

  [814]LPSSLSSSSSSSLASSSSSSLSASR[840] Y-1 2  
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APPENDIX 5B: Serine Rich Proteins or Proteins with Observed O-

Fucosylated Peptides. 

Ser-rich proteins with no predicted signal peptide, for which glycopeptides and/or at least 10 unique peptides were 
identified. For the proteins with no observed glycopeptides, only the ones present in 4 out of 5 biological repeats were 
included. bThe name given on ToxoDB is in plain text. When a putative function could be assigned by homology 
searches, an updated name is proposed in italics. c Y=yes; N=no. dBased on annotation on ToxoDB and homology 
searches. eProteins for which we identified dHex-containing glycopeptides are marked with Y. The peptides can be 
found in APPENDIX 5A. fGiven as average of In gel and in solution replicates. 

Gene ID Full nameb NLSc Glycopetides 
observede 

Total 
spectraf 

Total 
unique 

peptidesf 
TGGT1_230940 hypothetical protein N Y 404 94 

TGGT1_203780 hypothetical protein FG repeat-containing  
protein 

N Y 269 86 

TGGT1_285190 zinc finger, C3HC4 type (RING finger) domain-
containing protein 

N Y 164 28 

TGGT1_229750 hypothetical protein Y Y 139 43 

TGGT1_216030A hypothetical protein N Y 133 3 

TGGT1_234230 hypothetical protein Y  117 49 

TGGT1_316650 hypothetical protein N  113 47 

TGGT1_313580 cytochrome b5 family heme/steroid binding 
domain-containing protein 

N Y 112 31 

TGGT1_240220 hypothetical protein SMC-domain protein Y  106 40 

TGGT1_273850 hypothetical protein FG repeat-containing protein 
Nup68 

N Y 96 28 

TGGT1_292200 RNA recognition motif (RRM) domain protein Y  96 40 

TGGT1_270770 PWI domain-containing protein RNA-binding 
motif (RRM) domain protein 

Y  93 33 

TGGT1_304650 histidine acid phosphatase superfamily protein N  93 56 

TGGT1_294630 hypothetical protein PHD domain-containing 
protein 

N  92 30 

TGGT1_234900 PHD zinc-finger domain-containing protein Y Y 89 47 

TGGT1_291620 hypothetical protein Y  87 41 

TGGT1_254490 Sel1 repeat-containing protein TPR repeat 
domain-containing  protein 

N Y 81 31 

TGGT1_321540 hypothetical protein Y Y 80 34 

TGGT1_233010 putative Ser-Thr kinase N Y 76 23 

TGGT1_297520 proteophosphoglycan PPG1 SMC-domain protein N Y 76 39 

TGGT1_257580 hypothetical protein N  73 23 

TGGT1_321450 Myb family DNA-binding domain-containing 
protein 

Y Y 73 32 

TGGT1_223880 zinc finger, C3HC4 type (RING finger) domain-
containing protein 

Y Y 64 30 

TGGT1_318260 transcription initiation factor TFIID subunit 
TAF5 

Y Y 59 24 

TGGT1_218070 hypothetical protein Y Y 58 16 

TGGT1_300180 hypothetical protein N Y 57 20 

TGGT1_272720 methyltransferase domain-containing protein Y  51 26 
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Gene ID Full nameb NLSc Glycopetides 
observede 

Total 
spectraf 

Total 
unique 

peptidesf 
TGGT1_226950 hypothetical protein N y 50 24 

TGGT1_293320 hypothetical protein Y  47 25 

TGGT1_258980 hypothetical protein RCD1 superfamily protein N  45 9 

TGGT1_310310 WD domain-containing protein N  45 16 

TGGT1_291980 HECT domain (ubiquitin-transferase)-containing 
protein 

Y y 41 24 

TGGT1_248500 hypothetical protein NUP54-like N  40 12 

TGGT1_212820 ubiquitin family protein N  37 20 

TGGT1_207370 hypothetical protein SMC-domain protein N  36 21 

TGGT1_239410 hypothetical protein putative CCR4-associated 
factor NOT4 

Y  36 26 

TGGT1_226900 hypothetical protein N  35 16 

TGGT1_315720 Smg-4/UPF3 family protein RRM domain protein N  34 13 

TGGT1_225890 hypothetical protein putative PWWP domain-
containing protein 

Y Y 33 15 

TGGT1_287170 hypothetical protein N  33 10 

TGGT1_206450 putative autophagy-related cysteine peptidase 
atg4 

Y Y 32 17 

TGGT1_210830 putative RIO1 kinase N  32 20 

TGGT1_296010 phosphatidylinositol 3- and 4-kinase Y  32 19 

TGGT1_213790 hypothetical protein Sec14p-like domain 
containing protein 

Y  30 16 

TGGT1_292235 RING Zn-finger domain-containing protein N Y 30 18 

TGGT1_289820 TBC domain-containing protein N  26 15 

TGGT1_313430 hypothetical protein FG repeat-containing protein Y Y 26 13 

TGGT1_211700 putative SAN3/GANP family protein Y Y 25 15 

TGGT1_230890 PHD zinc-finger domain-containing protein Y Y 23 14 

TGGT1_239400 hypothetical protein N  23 14 

TGGT1_285720 ATP binding domain protein GPN-loop GTPase 
superfamily 

N  23 10 

TGGT1_206540 hypothetical protein Y  22 12 

TGGT1_236240 Tyrosine kinase-like (TKL) protein N  22 11 

TGGT1_238400 endonuclease/exonuclease/phosphatase domain-
containing protein inositol-5' phosphatase 

Y  21 11 

TGGT1_235550 PHD zinc-finger domain-containing  protein Y Y 20 12 

TGGT1_211150 hypothetical protein Y Y 19 14 

TGGT1_202740 putative tRNA pseudouridine synthase Y  17 11 

TGGT1_260240 CCR4-associated factor family protein CAF1 
family ribonuclease (polyA specific) 

N Y 17 7 

TGGT1_280780 dihydrouridine synthase (dus) protein Y  16 9 

TGGT1_294730 hypothetical protein N  16 9 

TGGT1_244600 hypothetical protein N Y 15 4 

TGGT1_267710 CPSF A subunit protein Y  13 10 

TGGT1_310610 hypothetical protein FG repeat-containing protein N  13 8 
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Gene ID Full nameb NLSc Glycopetides 
observede 

Total 
spectraf 

Total 
unique 

peptidesf 
TGGT1_226080 putative polyA polymerase Y Y 11 5 

TGGT1_277050 hypothetical protein Y Y 10 7 

TGGT1_203150 hypothetical protein N Y 10 7 

TGGT1_301410 hypothetical protein N Y 10 8 

TGGT1_218830 hypothetical protein N  8 6 

TGGT1_289310 cullin family protein N  6 6 
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