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La neurologie cherche à comprendre l’homme lui-même. 

The problem of neurology is to understand man himself. 

-- Wilder Penfield 1891-1976 
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ABSTRACT 

 Prefrontal cortex (PFC) is critical to behavioral flexibility and, hence, the top-

down control over bottom-up sensory information. The mechanisms underlying this 

capacity have been hypothesized to involve the propagation of alpha/beta (8-30 Hz) 

oscillations via feedback connections to sensory regions. In contrast, gamma (30-160 Hz) 

oscillations are thought to arise as a function of bottom-up, feedforward stimulation.  To 

test the hypothesis that such oscillatory phenomena embody such functional roles, we 

assessed the performance of nine monkeys on tasks of learning, categorization, and 

working memory concurrent with recording of local field potentials (LFPs)  from PFC. 

The first set of tasks consisted of two classes of learning: one, explicit and, another, 

implicit. Explicit learning is a conscious process that demands top-down control, and in 

these tasks alpha/beta oscillations tracked learning. In contrast, implicit learning is an 

unconscious process that is automatic (i.e. bottom up), and in this task alpha/beta 



 

 viii 

oscillations did not track learning. We next looked at dot-pattern categorization. In this 

task, category exemplars were generated by jittering the dot locations of a prototype. By 

chance, some of these exemplars were similar to the prototype (low distortion), and 

others were not (high distortion). Behaviorally, the monkeys performed well on both 

distortion levels. However, alpha/beta band oscillations carried more category 

information at high distortions, while gamma-band category information was greatest on 

low distortions. Overall, the greater the need for top-down control (i.e. high distortion), 

the greater the beta, and the lesser the need (i.e. low distortion), the greater the gamma. 

Finally, laminar electrodes were used to record from animals trained on working memory 

tasks. Each laminar probe was lowered so that its set of contacts sampled all cortical 

layers. During these tasks, gamma oscillations peaked in superficial layers, while 

alpha/beta peaked in deep layers. Moreover, these deep-layer alpha/beta oscillations 

entrained superficial alpha/beta, and modulated the amplitude of superficial-layer gamma 

oscillations. These laminar distinctions are consistent with anatomy: feedback neurons 

originate in deep layers and feedforward neurons in superficial layers. In summary, 

alpha/beta oscillations reflect top-down control and feedback connectivity, while gamma 

oscillations reflect bottom-up processes and feedforward connectivity.  
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 
Neural Oscillations 

Neural oscillations are a ubiquitous phenomenon in the brain. They exist in all regions 

spanning from occipital to frontal lobes, and they vary with cortical layer, development, 

and cognitive state (learning, memory, attention, and categorization). A number of neuro-

psychiatric disorders, including, but not limited to, schizophrenia (Uhlhaas and Singer, 

2010), Parkinson’s (Schnitzler and Gross, 2005), and Alzheimer’s (Jeong, 2004), are 

characterized by abnormal patterns of neural oscillatory activity. Understanding the 

functional role and underlying circuitry producing neural oscillations, therefore, is both a 

question central to the understanding of human cognition and of neuropsychiatric disease. 

The goal of this thesis is to examine how different oscillations within the nonhuman 

primate brain are shared across a number of different tasks, serve distinct roles, and 

reflect the properties of the underlying microcircuit (i.e. the connectivity of different 

neurons across cortical layers).  

 

Neural oscillations are visible within the local field potentials (LFP) recorded from brain 

tissue. These continuous voltage recordings, known as LFPs, reflect the mean of the 

extracellular ionic currents from between 100µm to 6mm away, depending on the 

reference scheme (Kajikawa and Schroeder, 2011). Oscillatory activity found within 

these LFPs are often transient, sinusoidal-like rhythms with distinct frequencies that are 

thought to reflect the synchronization of post-synaptic currents from local populations of 

neurons (Nunez and Srinivasan, 2006).  
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Not only are they the product of synchronous neural activity, but neural oscillations exert 

their own influence on neural spiking (Fries, 2015). Rapid changes in extracellular 

voltage, as is observed during periods of oscillatory activity, can decrease the spiking 

threshold of neurons and promote excitable brain states.  Oscillatory activity that is 

shared or simultaneous across different brain regions, therefore, can coordinate excitable 

brain states and favor spike transmission and, hence, information transfers between them 

(Fries, 2015). These rhythmic changes also impact whether local neurons engage in long-

term potentiation or depression. Both of these processes thought to be central to learning 

are cellular mechanisms that increase or decrease synaptic efficacy, and, hence, how 

sensitive any post-synaptic neuron is to pre-synaptic inputs (Huerta and Lisman, 1995). 

This sensitivity can be reflected both in terms of the magnitude and the speed of post-

synaptic potential changes in response to pre-synaptic inputs. Moreover, neural 

oscillations, given their periodicity, may also serve as an internal clock, organizing the 

activity of groups of neurons with respect to its own phase. For example, spike timings of 

place cells within the hippocampal theta rhythm can predict the path an animal is about to 

take (O’Keefe and Reece, 1993).  

 

Neural oscillations have been observed across a wide frequency range (0.1 – 200 Hz), 

and different Greek letters are used to subdivide this frequency space into different 

rhythms. To this day, however, there is considerable debate about the appropriate sub-

division of these frequency bands, and their underlying mechanisms are largely unclear. 
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In general, delta rhythms refer to 1-4 Hz signals, theta 4-7 Hz, alpha 8-12 Hz, beta 13-30 

Hz, and gamma 30-140 Hz. After 200 Hz, observed signals are thought to reflect spectral 

bleed-through from impulse-like spiking and, as such, are often labeled as multi-unit 

activity. In this introduction, we will restrict our discussion to the alpha, beta, theta, and 

gamma bands. While these bands are spectrally defined, we will also attempt to classify 

them according to their presumed functional roles and comment on their mechanism.  

 

Different Oscillatory Frequencies: Functions and Mechanisms  

Alpha Oscillations (8-12 Hz) are rhythms which were first recorded in leads overlying 

occipital cortex when subjects closed their eyes (Berger, 1929), and their presence has 

been correlated with a number of inhibitory, feedback, top-down processes (Klimesch et 

al., 2006). In an attentional task, covert attention to one visual hemifield lead to a drop in 

alpha power in the relevant, contralateral hemisphere, while alpha power increased in the 

irrelevant, ipsilateral hemisphere (Jensen and Mazaheri, 2010). Using TMS to probe 

cortical excitability, others have found that in states of high alpha, TMS-induced 

phosphenes were perceptibly smaller (Thut and Miniussi, 2009). Similarly, in a dual-rule 

task, when a behaviorally dominant rule needed to be suppressed, there was an increase 

in alpha band synchrony (Buschman et al., 2012). These alpha oscillations are not only 

associated with an inhibitory process, but they are also thought to reflect feedback from 

higher to lower order cortical areas. For example, alpha oscillations were evoked in V1 

(lower order region) when V4 (higher order region) was stimulated; this did not occur in 

V4, when V1 was stimulated (van Kerkoerle et al., 2014). These alpha oscillations are 
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believed to exert feedback via pulsed inhibition, in which particular phases of alpha 

inhibit spiking and reduce gamma power (Klimesch et al., 2006; Jensen and Mazaheri, 

2010). Mechanistically, alpha is believed to arise from both circuits intrinsic to cortex 

(either by special pacemaker cells, or recurrently organized pyramidal neurons modulated 

by GABAergic interneurons), and those connecting thalamus and cortex.  

 

While the alpha oscillations reflect feedback control, so do beta oscillations (13-30 Hz). 

But their role has been more related to the maintenance of a default state (whether it is a 

current motor state or a cognitive rule). Historically, beta oscillations have been most 

studied in the context of the motor system and in their relationship to Parkinson’s disease. 

Beta band activity in motor cortex is increased with the successful suppression of a motor 

response. In the case of Parkinson’s disease, excess beta leads to excessive motor 

suppression and, hence, to Parkinson’s hallmark symptom: bradykinesia (Swann et al., 

2015). Beta oscillations, however, are not an exclusively motor signal. Increased beta 

band activity correlates with anticipations (Engel and Fries, 2010), changes in bistable 

perception (Engel and Fries, 2010; Hipp et al., 2011), and increased top-down control 

(Buschman and Miller, 2007). Likewise, beta oscillations increase with category learning 

(i.e. a new rule), organize category-selective spiking across distal brain regions 

(prefrontal cortex, striatum, and parietal cortex), and encode behaviorally dominant rules 

(Antzoulatos and Miller, 2011; Antzoulatos and Miller, 2016; Buschman et al., 2012). 

Beta oscillations, like alpha, are an important feedback signal, and predominate within 

infragranular layers of visual cortex. These deep cortical layers have been found to be the 
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source of feedback projections toward lower order cortical regions (Bastos et al, 2015; 

Michalareas et al., 2016). Modelling studies have subdivided the beta band into a low 

frequency beta (beta1) and a high frequency beta (beta2). Beta2 is believed to arise from 

interactions of intrinsically bursting pyramidal cells (due to a muscarinic receptor 

suppressed M-current), and beta1 is thought to arise in a period of lower cortical 

excitability through interactions with superficial gamma networks (Kopell et al., 2011). 

This dissertation will not attempt to dissociate physiologically these different beta bands. 

 

Unfortunately, dissociating alpha and beta oscillations consistently across subjects has 

been difficult due to the intrinsic variance of oscillatory phenomena, and their largely 

overlapping putative roles. Centered within a range of 7-14 Hz, peak alpha frequencies 

can extend up to 16 Hz (given an inter-subject variability of 2.8 Hz, and a mean of 10.4 

Hz) (Haegens et al., 2014). This high cut off overlaps with the beta band (13-30 Hz), 

which itself has a comparable variability (Haegens et al., 2014; Espenhahn et al., 2017). 

Making the situation more complicated, most electrophysiological studies have found 

that these oscillatory phenomena are transient and are, hence, non-stationary. Due to the 

short-lived nature of these oscillatory phenomena, the frequency resolution is limited. For 

example, when applying the discrete fast Fourier transform, a mathematical method to 

decompose any time series data into frequency content, on 1kHz sampled signal with 

oscillatory events lasting between 100ms to 1s, the frequency resolution ranges from 0.5 

to 5 Hz (Nyquist Frequency / (Number of Time Bins), i.e. 500 Hz / 100 samples). This is 

a limited resolution if one is attempting to separate a 12 Hz signal from 13 Hz one. Given 
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their spectral overlap, their shared sources within infragranular layers, and their common 

role as feedback signals, alpha and beta oscillations are often lumped together. While this 

is true in this thesis, these two phenomena are different, for they can be observed 

simultaneously within a single subject and, in at least one nonhuman primate study, both 

of these bands have been functionally dissociated (Buschman et al., 2007). However, for 

the sake of simplicity we will refer to these lower frequency oscillations as alpha/beta for 

the rest of this thesis.  

 

In contrast to both alpha and beta oscillations, those functional roles associated with theta 

oscillations (3-7 Hz) are somewhat broader: learning, memory, and neuronal 

coordination. These rhythms have been most studied within the hippocampus (Colgin, 

2013), where they organize spiking activity to encode an animal’s path through a maze 

(past and present) (Pfeiffer and Foster, 2013). In brain slices, electrical stimulation at the 

peaks and troughs of the ongoing theta have differential effects on long term potentiation 

and long term depression (Huerta et al., 1995; Hyman et al. 2003). Theta has also been 

shown to facilitate long-distance communication between both cortical and subcortical 

brains regions, such as between V4-FEF (Liebe et al., 2012), STR-HPC (DeCoteau et al., 

2007), FEF-ACC (Babapoor-Farrokhan et al., 2017), PFC-HPC (Benchenane et al. 2010), 

and PFC-STR-HPC (Herweg et al., 2016). This long-distance coordination between theta 

oscillations has noticeable impacts on behavior. For instance, when theta oscillations 

within V4 and FEF synchronized, working memory performance improved (Liebe et al., 

2012). Moreover, much like gamma, theta has been demonstrated to reflect feedforward 
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processes (Bastos et al., 2015). To date, theta within the hippocampus is believed to result 

from medial septal activation of weakly coupled, hippocampal theta oscillators (Colgin, 

2013). The origin of cortical theta oscillations, if different, remains largely unexplored. 

 

And finally, gamma oscillations (30 – 140 Hz) represent a class of higher frequency 

oscillations that are increasingly subdivided into low- (30-50), mid- (50-90), and high- 

(90-140 Hz) gamma bands. These different sub-bands are known to coexist, yet their 

different mechanisms and putative roles remain unclear. As a result, for the purposes 

here, gamma oscillations will be characterized as a whole.  

 

Gamma band oscillations are often local, transient, and correlated with neuronal spiking 

(Buzsáki et al., 2012). They are more dominant in superficial layers of visual cortex, and 

(Buffalo et al., 2011; Godlove et al., 2014), they are often coupled in time with lower 

frequency oscillations (theta, alpha, and beta). For example, in visual cortex, deep alpha 

or beta oscillations are known to modulate the amplitude of gamma oscillations (Spaak et 

al., 2012). Physiologically, gamma oscillations arise from feedforward processes, for 

gamma is elicited in higher cortical regions when lower cortical regions are stimulated 

and not vice versa (Michalareas et al., 2015; Bastos et al., 2015; van Kerkoerle et al., 

2014). In terms of its behavioral correlates, gamma band synchrony in hippocampus 

correlates with better recognition performance (Jutras et al., 2009) and, in visual regions, 

increases with attention (Fries et al., 2001). Similarly, gamma oscillations increase with 

perceptual binding (Gray et al., 1989) and improve working memory performance 
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(Pesaran et al., 2002; Fries et al., 2001). Moreover, in visual pop-out tasks, where salient 

visual features drive behavior and, hence, are bottom-up driven, gamma oscillations are 

increased (Buschman et al., 2007).  

 

Conceptually speaking, gamma oscillations are thought to organize neuronal spiking into 

functional ensembles. Lisman and others hypothesize that gamma-organized neuronal 

ensembles represent “letters”, while the lower frequency oscillations organize them into 

“words” (Lisman and Jensen, 2013).  Alternatively, Fries and colleagues proposed that 

when different populations of neurons synchronize within the gamma band, spike 

transmission is facilitated. This idea is known as the communication through coherence 

hypothesis (Fries, 2015). The mechanisms underlying gamma oscillations, unlike those of 

the other oscillations are more worked out. They are thought to arise, like many 

oscillations, from pyramidal and GABAergic interneuron interactions (PING model: 

Pyramidal-Interneuron-Network-Gamma). In particular, Parvalbumin neurons, which 

powerfully inhibit pyramidal neuron activity by targeting their soma, are necessary for 

these gamma rhythms (Kim et al., 2016; Sohal et al., 2009). 

 

Top-down control vs. bottom-up influence 

Overall, there is increasing evidence that despite differences in their putative functions,  

behavioral correlates, and exact mechanisms, neural oscillations can be grossly 

characterized into two classes: those reflecting bottom-up processes (gamma), and those 

reflecting top-down control (alpha and beta) (Buschman et al., 2007; Buschman et al., 
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2012; Antzoulatos and Miller, 2014; Antzoulatos and Miller, 2016). Bottom-up and top-

down signals were first introduced in the context of attention and visual perception 

(Desimone and Duncan, 1995). In this setting, different stimuli within the sensory world 

were understood to compete for neural representation, and that this competition was 

mediated by both top-down and bottom-up processes (biased competition model). 

Bottom-up processes are considered to be largely automatic processes that arise as a 

function of the intrinsic properties of neurons and neural circuits, and that are not actively 

dependent on any current set of cognitive demands (Desimone and Duncan, 1995). In 

contrast, top-down processes bias those neural representations that are relevant for 

behavior by modulating bottom-up neural responses. In simplest terms, bottom-up 

processes reflect exogenous inputs and are related to gamma, while top-down control 

reflects endogenous ones and are related to alpha/beta.  

 

In addition to their correlates with top-down and bottom-up processes, neural oscillations 

have also been found to correlate with different levels of feedback and feedforward 

connectivity across brain regions. As mentioned above, alpha/beta oscillations reflect 

feedback processes, and theta/gamma reflect feedforward processes. However, feedback 

and feedforward connections are also organized by cortical layer, and this laminar 

organization is most salient for neurons that connect distant brain regions (Felleman and 

Essen, 1991). For these neurons, feedback connections arise preferentially from 

infragranular layers, while feedforward connections arise preferentially from within 

supragranular layers (Felleman and Essen, 1991; Markov et al., 2014). Again, oscillations 
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within the LFPs match this anatomical organization of feedback and feedforward 

neurons. Alpha/beta oscillations are greatest in infragranular regions, while gamma 

oscillations are strongest in supragranular regions (Buffalo et al., 2011; Xing et al., 2012).  

 

Overall, alpha/beta oscillations reflect top-down control and feedback connectivity, while 

theta/gamma oscillations reflect bottom-up influences and feedforward connectivity. In 

this thesis, we sought to further corroborate these roles for gamma and alpha/beta within 

prefrontal cortex. Prefrontal cortex has long been an important source of top-down 

control (Miller and Cohen, 2001). For instance, lesions in prefrontal cortex lead to 

behavioral inflexibility and, hence, a failure to implement top-down control over 

contextually- and environmentally-driven habits (i.e. bottom-up signals). Anatomically, 

prefrontal cortex sits high up on the cortical hierarchy, suggesting much of its top-down 

control must arise from its feedback connectivity on lower cortical regions (Felleman and 

Essen, 1991). We sought to confirm whether feedback/forward and top-down/bottom-up 

signals in this cortical region (PFC) varied predictably with task demands and cortical 

layer. We made the following hypotheses: 

� More top-down control should result in an increase in alpha/beta 

� More bottom-up influences should result in more gamma 

� Alpha/beta should peak in infragranular layers in PFC 

� Gamma should peak in supragranular layers in PFC 
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Predictions 

Much of cognition can be summarized in the following way: learn, remember what you 

have learned (memory), and generalize what you have learned (categorization). In the 

following studies, we recorded LFPs from the prefrontal cortex of a cohort of monkeys to 

probe the oscillatory correlates of top-down/bottom-up and feedback/forward processes 

spanning the following cognitive tasks: learning, working memory, and categorization. 

We tested the hypothesis that alpha/beta oscillations reflect top-down, feedback signals, 

while theta/gamma oscillations reflect bottom-up, feedforward signals.  

 

Learning is thought to reflect at least two different processes, one more bottom-up 

(implicit), and another more top-down (explicit). Implicit learning is generally conceived 

as an unconscious learning process that is automatic, non-hippocampal dependent, and 

tied to metabolic changes in lower order cortices (Cleeremans et al, 1998; Ashby and 

Maddox, 2005; Reber et al., 2003). In contrast, explicit learning is thought to reflect top-

down, hypothesis-driven learning that is conscious, and hippocampal-dependent (Milner 

et al., 1968; Ashby and Maddox, 2005). If the above hypothesis is correct, we predict an 

increase in the relative prevalence of alpha/beta band oscillations in explicit compared to 

implicit learning.  

 

Categorization is the capacity to organize the sensory world into a set of classes (i.e. 

categories). Those rules governing the membership of objects to these categories can be 

made at fundamentally different levels of abstraction. At the low end, for example, 
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different chairs or tables can each be constitutive of their own category; however, at the 

high end, both chairs and tables can be constitutive of the furniture category. The 

different levels of abstractness should differentially engage top-down control with more 

abstract categories having an increase in alpha/beta band oscillations relative to less 

abstract categories, and less abstract categories having an increase in gamma oscillations 

relative to more abstract categories. 

 

Working memory is characterized by the maintenance of behaviorally-relevant 

information during a delay, and has been correlated with persistent modulation of 

prefrontal neuronal activity. We trained three monkeys on different versions of a working 

memory task, and we investigated the laminar organization of alpha/beta and gamma 

oscillations. While previous reports found that there are frequency asymmetries across 

the layers in visual cortex, we sought to confirm those same asymmetries in those 

prefrontal regions from which we recorded. We predicted that within those frontal 

regions sampled alpha/beta oscillations would be more prevalent in deep layers, and 

gamma oscillations superficially.  
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Abstract 

Learning can be explicit (hippocampus-dependent and conscious) or implicit 

(hippocampus-independent and unconscious).  A meta-analysis of three pairs of non-

human primates performing three different learning tasks (Object Match, Category 

Match, and Category-Saccade associations) revealed signatures of explicit and implicit 

learning.  Errors were used to improve performance in the explicit (Match) tasks, but not 

the implicit (Saccade) task.  Error-related negativity, an evoked potential indicating 

processing of negative feedback, was greater in both Match tasks. The Match (explicit) 

tasks vs Saccade (implicit) task also showed different patterns of local field potential 

synchrony within the prefrontal cortex (PFC) and other brain areas (hippocampus, 
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dorsomedial PFC, and striatum) following correct vs incorrect choices. All tasks showed 

an increase in alpha/beta (10-30 Hz) synchrony after correct choices.  However, while 

delta/theta (3-7 Hz) synchrony increased after correct choices in the Saccade (implicit) 

task, it did so only after incorrect choices in the Match (explicit) tasks.  Alpha/beta 

synchrony increased with, and decreased after, learning in the explicit (Match) tasks, but 

not the Saccade (implicit) task.  Instead the Saccade (implicit) task showed a decrease in 

theta synchrony with learning. In sum, our results suggest that explicit vs implicit 

learning not only engage different brain systems, but they may also engage different 

neural mechanisms that rely on different patterns of oscillatory synchrony.  

 

Introduction 

Learning was once believed to be a unitary process. As it turned out, however, patient 

HM and other amnesia patients have preserved skill learning despite an inability to retain 

and recall new facts and episodes (Scoville and Milner, 1957; Milner, 1962; Milner et al. 

1968; Cohen and Squire, 1980). This led to the notion that there are at least two major 

forms of learning: one, hippocampal-dependent and episodic in content (explicit 

learning), and another, non-hippocampal and largely unconscious (implicit learning).  

 

While it is clear that explicit and implicit learning engage distinct brain systems, 

differences in their neural mechanisms have been less clear.  For the most part, studies of 

the neural correlates of both types of learning report similar findings.  On the neuron 

level, tuning sharpens, signal-to-noise ratio improves and their activity becomes a better 
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predictor of task events (Antzoulatos and Miller, 2011; Asaad and Miller, 1998; Brincat 

and Miller, 2015; Chen and Wise, 1995; Sakai and Miyashita, 1991; Pasupathy and 

Miller, 2005; Williams and Eskandar, 2006; Wirth et al., 2003; Wirth et al., 2009).  On 

the network level, learning enhances oscillatory activity, improves synchrony between 

neurons, and even sculpts unique oscillatory ensembles (Antzoulatos and Miller, 2014; 

Brincat and Miller, 2015; Buschman et al., 2012; Hargreaves et al., 2012; Jutras et al., 

2009; Jutras et al. 2013).  Animal studies are generally agnostic as to whether this 

plasticity is related to explicit or implicit learning.  Assignment to one or the other is 

typically made by whether the brain area in question has been associated with explicit 

learning (e.g., the hippocampus) or implicit learning (e.g., the basal ganglia) and whether 

learning is fast (explicit) or slow (implicit).  There is no clear neural signature 

differentiating the two.  

   

This is due, in part, to practical considerations.  A typical experiment trains animals to 

learn one task.  That is difficult enough.  Training animals to learn two or more tasks is 

prohibitively time-consuming.  It occurred to us, however, that we had data from three 

experiments that differed in their formal demands in two ways: one, in the content of 

what was learned (paired associations between objects vs category membership), and, 

two, in how that learning was “read out” (via a match decision or visuomotor 

association). Fortuitously, there was enough overlap in the tasks for us to isolate these 

different factors. We found different patterns of post-choice synchrony that varied with 

the read-out, not with the content.  Examination of the animals’ behavior and neural 
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activity supported the conclusion that these different synchrony patterns were signatures 

of explicit and implicit learning.       

 

Results 

 

Tasks 

Six monkeys (three different pairs) performed three different learning tasks (Fig. 2.1A-

C). During each session of the Object Match task (OM; Fig. 2.1A), animals learned 

through trial-and-error four novel associations between pairs of objects (see Methods).  

They saw two objects in succession: first a sample and then a test.  If the test object was 

the pre-assigned paired associate of the sample, they were rewarded, with juice, for 

making a saccade to a subsequent, randomly positioned target.  If they responded to the 

wrong test object, they received negative feedback, i.e. there was no reward and a red 

screen flashed on. 

 

The other two tasks required animals to categorize dot patterns that were distortions of 

prototype patterns (Fig. 2.1B,C). These prototypes were jittered according to a set of 

statistical rules to produce a large number of exemplars for each category. For each 

recording session, two novel categories were generated, and the animals had to learn 

through trial-and-error which exemplars belonged to which categories. The animals were 

first presented with a sample exemplar from one of the categories, which was then 

followed by a short delay.  In the Category Match task (CM), two test exemplars 
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appeared side-by-side after this delay – one on the right side of the screen, and the other 

on the left (Fig. 2.1B). One of the exemplars was from the same category as the sample (a 

category match); the other was from the other category.  The left vs right location of the 

matching exemplar was random. The monkeys free-viewed the test exemplars and were 

rewarded for maintaining fixation on the correct one. If incorrect, the animals received 

negative feedback: there was no reward and the chosen stimulus turned red. In the 

Category Saccade task (CS), at the end of the delay, two green dots appeared on the right 

and left side of the screen. Each of the categories was arbitrarily associated with a 

saccade to the right or left dot. (Fig. 2.1C).  The monkeys learned by trial-and-error 

which saccade was associated with which category.  As before, an incorrect response was 

followed by negative feedback (no reward and a presentation of the sample exemplar at 

the correct location). 

 

In order to facilitate learning in the category tasks, each session was organized into a set 

of blocks. In the first block, the animals were presented with only two exemplars from 

each category. To move on from one block to the next, the animals had to perform at or 

above 70% correct. With every subsequent block, a greater number of novel exemplars 

from each category was used. In each block, there were a total of 2����� exemplars 

(Antzoulatos and Miller, 2011).  Thus, each time they reached criterion, the animals were 

challenged with more novel exemplars, facilitating their gradual acquisition of the 

categories.  
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For all three tasks, the animals were well trained on the formal demands of the tasks, but 

had to learn new stimuli for each recording session. In each task, animals started near, or 

at, chance and gradually reached a good level of performance (> 75% correct) within a 

single recording session (average 2-3 hours). Mean performance during Category-

Saccade and Category-Match learning was no different (CM, 79.3%; CS, 82.1%; p = 

0.1637), while performance during Object-Match learning was somewhat lower (69.1%, 

vs. CS p =   1 x 10-7; vs. CM, p = 2 x 10-24, two-sided t-test). Recordings were obtained 

from sites distributed evenly across dlPFC and vlPFC in the banks and gyri of the caudal 

third of the principal sulcus (Fig. 2.1D-E). Additional recordings were obtained in the 

Object Match task from the hippocampus (HPC), in the Category Saccade task from the 

anterior caudate (STR, striatum), and in the Category Match task from dorsomedial 

Prefrontal Cortex in the vicinity of the supplementary eye fields (dmPFC).  

 

For the sake of analysis, we divided learning into stages. In the Object-Match task, the 

animals gradually acquired the paired associations.  Thus, we evenly divided the session 

into Early (first third of trials), Middle (middle third) and Late (final third) learning 

stages. Because of the blocked structure of the category learning tasks, defining the 

learning stages was less straightforward. In order to do so, we focused on the acquisition 

of category information to determine learning stages, as we had in our prior work 

(Antzoulatos and Miller, 2015).  Category knowledge was assessed by performance to the 

novel exemplars.  Early in learning, the monkeys had not yet acquired any category 

information.  When novel exemplars were introduced at the start of a block of trials, 
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performance to novel exemplars was substantially diminished, if not at chance (i.e., they 

guessed).  By contrast, late in learning, they had acquired the categories and performance 

to novel exemplars was at a high level (75% correct) and stable (i.e. the animal’s 

performance to novel stimuli reached an asymptote). In order to characterize this 

asymptote, we tested sequentially whether or not novel performance in the first n trials 

differed from novel performance on trials n+1 to the end of the day. When the null 

hypothesis could no longer be rejected, we considered those trials as late learning. To 

reject this null hypothesis, we used a two-sided t-test and set a threshold of p < .05. In the 

Category-Saccade task, this plateau of novel exemplar performance occurred in block 5, 

and, in the Category-Match task, it occurred in block 2.   

 

As a result, in the Category-Saccade task, we identified an Early stage of learning (prior 

to acquisition of category information, i.e., chance performance to novel exemplars) as 

the first 80 trials (the first two blocks of trials, on average).   The Late learning stage 

occurred in blocks 5 to 8 (on average, trials 210-550), when performance to novel 

exemplars was high and stable (and thus the categories were learned).  We could also 

identify a Middle stage (around trials 81-209 and blocks 3-4, on average) in which 

performance to novel exemplars did not drop to chance, but was below criterion and 

improved over the block of trials (and thus categories were being acquired). Finally, in 

the Category-Match task, learning occurred more rapidly. Within the first 100 trials, and 

by block 2, the monkeys’ average performance to novel exemplars reached an asymptote. 

There was no clear middle stage.  Therefore, in the Category-Match task, the first 100 
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trials were classified as Early learning, and the following 100 trials were classified as 

Late.  

 

The idea in comparing these three tasks was that they overlapped in different ways.  Two 

of them shared the requirement to make a match decision (but to different types of stimuli 

- a paired associate object vs dot category exemplars).  The other two shared similar 

stimuli (dot category exemplars) but differed in response (match decision vs performing 

an associated visuomotor response).  

 

Positive feedback was emphasized during the visuomotor learning task 

An examination of the animals’ behavior suggested that match tasks relied on explicit 

learning while the visuomotor (saccade) task relied on implicit learning.  Prior studies 

have shown that implicit learning relies more on positive than negative feedback, while 

explicit learning utilizes both comparably.  For example, skill learning in amnesia 

patients is better when positive feedback is emphasized (Evans et al., 2000; Squires et al., 

1997; Roberts at al., 2016; Maxwell et al., 2001; Poolton et al., 2005). The different use 

of feedback information for learning seemed to divide our match and saccade tasks. 

 

We found that Category-Saccade learning improved more after correct choices (and 

positive feedback) than after incorrect choices (and negative feedback). In fact, negative 

feedback in this task appeared to be disruptive; performance worsened immediately after 

an incorrect trial and reaction times increased. Figure 2.1A shows performance on 
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Category-Saccade trials that were immediately preceded by either a correct response (and 

positive feedback) or an incorrect response (and negative feedback). Performance on the 

Category-Saccade task was significantly better if the preceding trial was correct (blue 

bars) than if the previous trial was incorrect (red bars) (+23.97% after correct choices, p < 

1 x 10-4, for all stages, bootstrap).  This performance advantage after correct trials held 

throughout learning, even as overall performance improved. Further, reaction times on 

those trials following an incorrect trial increased by 27.9ms (Fig. 2.3, p < 1 x 10-4). This 

increase in reaction times was not driven exclusively by a rise in the number of errors, for 

even correctly performed trials after an error had much higher reaction times (23.9ms, p < 

1 x 10-4). 

 

By contrast, during the two Match tasks (OM and CM), there was barely a difference in 

performance (+1.86% in Object-Match task, p < .005, Fig. 2.2B; +3.75%, in Category-

Match, p < 0.025, bootstrap, Fig. 2.2C) and in reaction times (Fig. 2.3: OM: 5.1ms, p < 1 

x 10-4; CM: 8.8ms, p < 1 x 10-4) on trials following correct trials vs incorrect trials. Only 

early in learning did both Match tasks differ marginally in their performance 

improvement after correct trials (Early, +2.86% CM > OM, p = 0.0524; Late, +2.32%, 

CM > OM, p = .1048). Moreover, this difference in performance was minor relative to 

those differences between both Match tasks and the Saccade task (CS vs. OM, +29.24% 

(early), +21.45% (late), p < 1 x 10-4; CS vs CM, +26.31% (early),+19.13% (late), p < 1 x 

10-4). In contrast, the differences in reaction times following an error were not 

statistically different between Match tasks (p = 0.171566), and were significantly smaller 
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than in the Saccade task (vs. OM. -22.8ms, vs. CM, -17.7ms, p < 1 x 10-4). We will see 

next that these task differences were also mirrored in differences in an evoked potential 

called the error-related negativity. 

 

Error-related negativity was stronger for match than saccade learning 

Error-related negativity (ERN) is an event-related potential observed after committing 

errors during learning.  It has been correlated with error awareness and the use of errors 

to improve learning (Frank et al., 2005; Gehring and Willoughby, 2002; Scheffers and 

Coles, 2000; Walsh and Anderson, 2012; Wessel et al., 2011; Wessel, 2012). The 

behavioral analysis described above suggested that Category-Saccade learning was less 

reliant on errors than the two match tasks. This was paralleled in a weaker error-related 

negativity (ERN) in the Category-Saccade task relative to the match tasks.  

 

Figure 2.4 shows the event-related potentials (ERPs) following positive (blue) or negative 

(red) feedback, averaged across all electrodes, for the Object-to-Match (left column), 

Category-to-Match (middle column), and Category-to-Saccade (right column) tasks.  In 

humans, the ERN typically peaks between 80-300ms after an error.  This time period is 

shaded grey in Figure 2.4A-F.  As predicted, during Category-Saccade learning, there 

was no prominent ERN in the expected time window in either the PFC (top right) or STR 

(bottom right) (Fig. 2.4C,F). In contrast, in that same time window, during both Object-

Match and Category-Match learning, there was a prominent negative potential, an ERN, 

following errors (Fig. 2.4A,D).  This sharp negative potential on error trials (red line) was 
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most clear when compared to its absence following a correct response (blue line). The 

ERNs in both Match tasks were seen in PFC, dmPFC, and HPC (Fig. 2.4A,B,D,E). In 

fact, the ERN in these Match tasks correlated with behavioral performance. This was not 

the case in the Saccade task.  

 

In order to account for any differences associated with different neural latencies across 

the tasks, we recomputed the ERN by z-scoring the raw voltage differences to a within 

trial mean and STD, and aligning each of the tasks to their maximal difference. We 

quantified these differences over a 50-ms window centered on the peak negativity for 

each of the 3 tasks (Fig. 2.4H). There was no significant difference between the match 

tasks (p = 0.911, bootstrap).  By contrast, the ERN in the match tasks was significantly 

greater than in the saccade task (p < .001).  This supported the conclusion that errors were 

of greater use in the match tasks and, thus, that they depended on explicit learning.  The 

lack of ERN during the saccade task supports its reliance on implicit learning. Next, we’ll 

show that feedback-period patterns of oscillatory synchrony also differed between the 

match vs saccade tasks. 

 

Neural synchrony differentiates learning styles 

In a previous report using the Object-Match task, Brincat and Miller (2015) found 

differences in LFP-LFP synchrony between and within the PFC and HPC during the 

feedback period.  After correct responses, there was long-latency, long-duration 

synchrony, mainly at 10-30 Hz (the alpha-2/beta band).  By contrast, after incorrect 
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responses, there was short-latency, short-duration synchrony at 3-7 Hz (i.e., delta/theta 

band).  This was interpreted as reflecting the network interactions that guide learning by 

signaling success or failure. The differences in how animals responded to success and 

failure between the Match tasks vs Category-Saccade task in this report raised the 

question of whether feedback-related network interactions also differed: they did. 

 

Figure 5 plots differences in synchrony (PPC) during the feedback period between correct 

and incorrect trials.  Because both the Category-Match and Category-Saccade tasks 

involved eye movement responses, we removed the potentials related to the saccade away 

from the response target.   Both of the Match tasks showed the same pattern: an increase 

in alpha-2/beta synchrony after a correct response and an increase in delta/theta 

synchrony after an incorrect response.  During the Object-Match task, there was an 

increase in alpha-2/beta synchrony on correct trials (red colors) both within the PFC (Fig. 

2.5A) and between the PFC and HPC (Fig. 2.5B).   On incorrect trials, there was an 

increase in delta/theta synchrony (blue colors), especially within the PFC (Fig. 2.5A). 

Note that the increase in alpha-2/beta on correct trials tended to be long in duration and 

peaked after a long latency (750-1000ms), whereas the increase in theta/delta synchrony 

on incorrect trials peaked earlier (400-500ms).  This is consistent with our prior report 

(Brincat and Miller, 2015).  Similar results were obtained from the Category-Match task 

(Fig. 2.5C, D), especially within the PFC (Fig. 2.5C).   

 

By contrast, the Category Saccade task produced a different pattern of results.  Like the 
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Match tasks, there was a modest increase in alpha-2/beta after correct responses (light red 

colors).  However, correct responses in the Category-Saccade produced a large increase 

in theta/delta (darker red colors), unlike the Match tasks in which delta/theta synchrony 

only increased after incorrect responses.  This was true both within the PFC (Fig. 2.5E) 

and especially between the PFC and STR (Fig. 2.5F).    

 

We quantified these differences by averaging over the 1.25 seconds after feedback was 

delivered (time zero in Fig. 2.5A-F).  The results are shown in Fig. 2.5G.  Positive values 

indicate greater synchrony after a correct response; negative values indicate greater 

synchrony after an incorrect response.  In the alpha-2/beta band, all three tasks showed a 

significant increase in synchrony after correct trials only, within the PFC (OM, +0.012; 

CM, +0.0186; CS, +0.0358; p < 2 x 10-4, bootstrap) and, albeit weaker, between PFC and 

other areas (OM, +0.0012, p = 0.002; CM, +0.0112, p < 2 x 10-4; CS, +0.0268, p < 2 x 

10-4).   In the delta/theta band, there was a marked difference between the Match tasks 

and the Category-Saccade task.  The Match tasks showed a significant increase in 

delta/theta synchrony after incorrect responses, especially within the PFC (OM, -0.0517; 

CM, -0.0129, p < 2 x 10-4) but also between PFC and HPC, and PFC and dmPFC (“PFC-

Other”, OM, -0.018, p < 2 x 10-4; CM, -0.0054, p = 0.0458).  By contrast, in the 

Category-Saccade task there was an increase in delta/theta synchrony after correct 

responses within the PFC (CS, +0.067, p < 2 x 10-4) and, more prominently, between 

PFC and STR (CS, +0.1057, p < 2 x 10-4). 
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To compare the relative differences in synchrony between tasks and frequency bands, we 

used correct trials to calculate a ratio of the alpha-2/beta synchrony relative to delta/theta 

synchrony. A value greater than 1 indicates that synchrony in the alpha-2/beta band was 

greater than that in the delta/theta band. Values less than one indicate stronger delta/theta 

synchrony relative to alpha-2/beta.  This is plotted in Figure 2.6H.  Both Match tasks had 

beta-theta ratios significantly above 1 (OM, ratio = 1.0641, p = 0.0034; CM, ration = 

1.2425, p < 2 x 10-4, bootstrap).  This shows that alpha-2/beta dominated over delta/theta 

synchrony on correct trials during the Match tasks.  By contrast, in the Category-Saccade 

task, the ratio was significantly less than 1 (ratio= 0.2759, p < 2 x 10-4), indicating the 

dominance of delta/theta over alpha-2/beta on correct trials.  Taking the absolute values 

of the ratio differences from 1 showed that the increase in delta/theta synchrony 

following correct Category-Saccade responses was greater than the increase in alpha-

2/beta synchrony following correct trials in the Object-Match (+0.66, p < 2 x 10-4) or 

Category-Match (+0.4816, p < 2 x 10-4) tasks. These results suggest explicit and implicit 

learning may be differentiated by distinct patterns of network synchrony in response to 

feedback. 

 

Neural synchrony changes with learning and learning style 

We next examined whether synchrony during the feedback period changed with learning 

and, if it did, whether it did so differently for the putative explicit vs implicit learning 

tasks.  To investigate these changes, we focused on correct trials, because, for one, in the 

Category-Match task, animals learned rapidly and we only had a small number of 
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incorrect trials. Two, longer duration synchrony (~1-2s) tended to be seen after correct 

trials in all three tasks (albeit at different frequencies), and these longer duration events 

helped reduce the noise in our synchrony estimates. And three, whether the task was 

implicit or explicit, performance levels following correct trials was comparable (Fig. 2.2). 

To compute a frequency profile of the changes with learning, we computed PPC values 

using the traditional frequency bands: theta (3-7 Hz), alpha-1 (8-9 Hz), alpha-2 (10-12 

Hz), beta-1 (13-17 Hz), and beta-2 (18-30 Hz).  We used the entire 1.7 second interval 

following delivery of feedback and compared the average values from early vs late in 

learning (as defined previously).  

 

Figure 2.6 shows the change in PPC from early to late in learning. Fig. 2.6A shows these 

changes within PFC alone and Fig. 2.6B shows them between the PFC and other areas 

(PFC-dmPFC, PFC-STR, and PFC-HPC).  Positive values indicate an increase with 

learning, and negative values, a decrease.  The largest effect was seen during Category-

Saccade learning.  There was a decrease in theta synchrony within PFC (Fig. 2.6A) and 

between PFC and STR (Fig. 2.6B) (PFC: -0.0472; PFC-STR: -0.0472, p < .005, 

bootstrap).  By contrast, there was little or no change in theta synchrony with learning 

during either Object-Match or Category-Match tasks.  Instead, Match learning showed a 

moderate, but significant, increase in synchrony in the higher frequencies, especially in 

the alpha-2/beta-1 band, within PFC (OM: alpha-2, +0.0097; beta-1, +0.0126, p<.005; 

CM: alpha-2, +0.0113, p <.005).   There was also a modest, but significant, drop in beta-2 

band synchrony across brain regions during the Match tasks, but not the Saccade task 
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(OM: PFC-HPC, beta-2, -0.0023, p<.005; CM: PFC-dmPFC, beta-2, -0.0046, p <.005). 

There were other increases and decreases in alpha-1, and beta-2 with learning in the 

Match tasks, but they were modest and not consistent across tasks (OM: PFC-HPC, 

alpha-1, +0.0012, p<.005; beta-2, -0.0023, p<.005; CM: PFC, beta-1, -0.0013, p<.005). 

Moreover, there were no shared changes in synchrony in any frequency band between 

any of the Match tasks and the Saccade task (CS: PFC, theta, -0.0472; alpha-1, -0.0213; 

alpha-2, -0.0172; beta-1; -0.009, p < .005; PFC-STR, theta -0.0513, alpha-1, -0.0183, p 

<.005; beta-1, +0.0026).  

 

During match learning, alpha-2/beta-1 synchrony increased then decreased 

Above, we showed a moderate increase in alpha-2/beta-1 synchrony with learning during 

the Match tasks.  A closer examination revealed something more complex. Alpha-2/beta-

1 first increased with learning, but then late in learning, after the animals reached 

criterion, it decreased.  Because the animals’ learning rate varied from task to task, from 

session to session, and even within a session itself, we could not simply relate PPC to an 

average learning curve. To better assess how alpha-2/beta-1 synchrony changed with 

performance, we computed PPC on correct trials over bins of 20 non-overlapping trials. 

We plotted average PPC values as a function of the animals’ level of behavioral 

performance over the trials bracketed by this same 20 correct-trial window. To maximize 

statistical power, we averaged across all electrodes both within and outside the PFC for 

each session.  
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Figure 2.7 shows the outcome of this analysis.  Figure 2.7A,B shows the results for the 

Match tasks in the 10-17 Hz (alpha-2/beta-1) band where we observed an increase with 

learning (Fig. 2.6).  This revealed that 10-17 Hz synchrony increased as task performance 

improved.  That is, until the animals had largely learned the tasks.  For both the Object-

Match (Fig. 2.7A) and Category-Match (Fig. 2.7B) tasks, alpha-2/beta-1 synchrony 

increased until the animals reached around 80% correct performance and after that, 

synchrony decreased.  This drop-off largely erased prior learning-related increases.  A 

piecewise linear model, made up of two linear models, LM1 and LM2, confirmed these 

changes with performance (Fig. 2.7A,B). Linear Model 1 estimated the changes in 

synchrony with performance increases from 50 to 80%, and Linear Model 2 estimated the 

changes in synchrony with performance increases from 80 to 100%. The coefficients for 

synchrony changes with performance were significant and opposite in sign around the 

80% performance mark (OM: LM1, β = 0.028449, p =0.0068933; LM2, β = -0.079505, p 

= 0.0013742; CM: LM1, β = +0.11223, p = 4.7148e-9; LM2, β = -0.09765, p = 

0.0087861, two-sided t-test). We applied this same analysis in the Category-Saccade task 

both to PFC pairs alone and PFC-STR pairs included (where we saw a decrease with 

learning, see Fig. 2.6A), and yet we still did not find any increase with performance (PFC 

alone: LM1,  β = -0.04015, p = 0.61026; PFC-STR included: LM1, β = -0.13447, p = 

0.067499). Instead, the observed drops in alpha-2/beta synchrony were restricted to after 

the learning criterion was reached (PFC alone: LM2, β = -0.20717, p = 0.0054737; PFC-

STR: LM2, LM2, β = -0.039018, p = 0.55914) (Fig. 2.7C).  
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During saccade learning, theta synchrony drops continuously 

In the Category-Saccade task, we found that theta synchrony dropped with learning (Fig. 

2.8A). Because alpha-2/beta changed differently before and after learning, we sought to 

identify whether theta synchrony changed at the same rate before and after performance 

levels reached 80%. This was the case. In Figure 2.8A, we found that theta synchrony 

dropped both early (LM1, β = -0.28891, p = 0.027735, two-sided t-test) and late (LM1, β 

= -0.27005, p = 0.015615).  In other words, we did not see any difference in the change in 

theta synchrony before and after learning, like we did for alpha-2/beta. 

 

Eye movements tend to be made in the theta range (3-7 Hz), and a concern was that these 

movements (and their correlates) could contribute to the observed changes in theta 

synchrony. However, we found little evidence that this was the case. We first sought to 

control for any timing differences in saccades made during the feedback period, both on 

correct and incorrect trials. To do so, we aligned all of the data on a trial-by-trial basis to 

the first saccade the animal made away from the target that was chosen. After this re-

alignment, we recomputed the PPC and we found that, despite this realignment, theta 

synchrony remained significantly higher on correct trials (-200 to 0ms prior to the 

saccade away, +0.1012, p < 2 x 10-4, bootstrap, Fig. 2.8B). In fact, it appeared that the 

rise in the theta synchrony preceded this eye movement away from the target and was 

more closely time locked to the delivery of the feedback. Specifically, we found that theta 

synchrony on correct trials peaked 81-119ms before the saccade and approximately 231-

269ms after the feedback (95%, CI). Alternatively, using the eye tracking data, we 
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assessed both saccade velocity and the average number of saccades made over the 

feedback period. We found that, while there was an increase in the number of saccades 

on incorrect trials (+4 saccades, p < 2 x 10-4), there were neither any changes with 

learning in the number of detectable saccades nor in the average saccade velocity over the 

entire feedback period analyzed (0-1.7s) (Fig. 2.8C,D). Finally, it was possible that the 

theta synchrony present in the Category-Saccade task may be tied to eye movements that 

do not occur in the match tasks. Again, this was not the case. We found that over the 1.7s 

feedback period there was a median number of 9 saccades in the Category-Match task, 

strikingly similar to the median number of 8 saccades found in the Category-Saccade task 

(Fig. 2.8E).  

 

Discussion 

We found evidence that two tasks involving match decisions engaged explicit learning, 

whereas a task involving a visuomotor (saccade) association engaged implicit learning. 

Further, we demonstrated that these putative explicit and implicit learning tasks had 

different patterns of neural synchrony following correct vs incorrect behavioral choices.  

During the explicit (Match) tasks, there was an increase in alpha-2/beta synchrony 

following a correct choice and an increase in delta/theta synchrony following an incorrect 

choice.  The implicit (Saccade) task showed a different pattern. Like the explicit (Match) 

tasks, alpha-2/beta synchrony increased after correct choices.  But unlike the Match tasks, 

which showed increases in delta/theta synchrony after incorrect choices, the implicit 

(Saccade) task showed increased delta/theta synchrony after correct choices.  The two 
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types of tasks also showed differences in how synchrony changed with learning.  Alpha-

2/beta-1 synchrony increased during explicit learning (both Match tasks) until the 

animals reached a high level of performance, then it dropped off.  By contrast, during the 

implicit (Saccade) task, alpha-2/beta-1 did not increase with learning and theta synchrony 

decreased. 

 

The evidence that the tasks engaged different learning systems came from how errors 

were treated. During the implicit (Saccade) task, performance was better immediately 

following a correct than following an incorrect trial.  By contrast, during the explicit 

(Match) tasks, performance was equally good following correct and incorrect trials. This 

is consistent with observations that amnesia patients (who rely on implicit learning) 

acquire new skills more rapidly, and retain them longer, with errorless learning (Squires 

et al., 1997; Evans et al., 2000; Maxwell et al., 2001; Poolton et al., 2005; Roberts et al. 

2016).  By contrast, explicit learning utilizes feedback about both correct and incorrect 

responses to improve behavior.  The greater error-related negativity (ERN) in the explicit 

(Match) tasks than in the implicit (Saccade) task further supports this conclusion.  In 

humans, the ERN is correlated with error awareness, conflict monitoring, and the use of 

errors to improve learning, all hallmarks of explicit learning (Frank et al., 2005; Scheffers 

and Coles, 2000; Walsh and Anderson, 2012; Wessel et al. 2011; Wessel et al. 2012).  

For example, explicit learners of a sensorimotor sequence task exhibited an enhanced 

ERN relative to implicit learners (Russeler et al. 2003). Our results are also consistent 
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with other reports that use of positive vs negative feedback differentiates implicit vs. 

explicit learning tasks (Morrison et al., 2015; Smith et al. 2013).  

 

Category learning, and more specifically the dot-category learning employed here, has 

been found to rely on either implicit or explicit learning systems, depending on the task 

structure and instructions (Ashby and O’Brien, 2005; Ashby and Maddox, 2011; 

Carpenter et al., 2016; Reber et al. 1998; Milton et al., 2011; Seger and Miller, 2010). If 

the dot learning was accompanied by motor instructions (such as point to center of dot 

pattern), or the task was an A-/not-A category distinction, implicit memory was used 

(Squire and Knowlton, 1995; Zeithmova et al., 2008).  If instead, participants were told 

that there were different patterns, explicit memory was used (Aizenstein et al.,2000; 

Reber et al.,2003).  Likewise, two of our tasks (Category-Match and Category-Saccade) 

required categorization of dot patterns, but had different behavioral requirements that 

seemed to engage explicit vs implicit learning, the latter based on a motor decision.  Our 

results are also in line with other observations that working memory tasks that seem 

formally equivalent (e.g., “remember objects”) can have different neural correlates 

depending on whether those memories are reported by actively choosing a match from 

alternatives or recognizing their match (Warden and Miller, 2011). 

 

During explicit learning, alpha-2/beta band synchrony increased on correct choices, 

increased over the course of learning, and decreased after learning.  Alpha-2/beta band 

synchrony has been tied to cognitive functions such as attention, top-down control, and 
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feedback processing.  This seems consistent with its role in explicit memory formation. 

Moreover, in a previous report, this feedback-period, alpha-2/beta band synchrony had 

been found to first arise from the hippocampus (Brincat and Miller, 2015). Together, all 

of this information suggests that the alpha-2/beta band synchrony found in the feedback 

period may reflect the activity of specialized neural circuits originating from the 

hippocampus responsible for explicit learning.  

 

Theta synchrony, on the other hand, has been linked with learning, memory, and conflict 

monitoring (Colgin, 2013). Theta oscillations and theta stimulation have been known to 

facilitate both long term potentiation (LTP) and long term depression (LTP) in brain 

slices (Huerta et al., 1995; Hyman et al. 2003). Theta synchrony has never been reported 

in non-human primates in response to positive feedback, nor has its decrease with 

learning. Our observations of theta synchrony within prefrontal cortex and between 

prefrontal cortex and striatum, in addition to the hippocampus, suggest that theta 

synchrony is a widespread plasticity signal. Implicit learning, therefore, may depend on 

global changes in LTD and LTP, rather than the activation of specific hippocampal-based 

networks. Alternatively, theta oscillations may act as a mechanism organizing neural 

activity between brain areas. Previous studies have suggested that low frequency 

synchronizations facilitate long-distance communication. For instance, theta synchrony 

has been reported to coordinate activity between regions, such as V4-FEF (Liebe et al., 

2012), STR-HPC (DeCouteau et al., 2007), FEF-ACC (Babapoor-Farrokhan et al., 2017), 

PFC-HPC (Benchenane et al. 2010), PFC-STR-HPC (Herweg et al., 2016), and LIP-
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TEO-V4-Pulvinar (Wang et al., 2012).  In particular, one study found that as animals 

learned a procedural task, theta oscillations within STR and HPC became anti-phasic 

(DeCouteau et al., 2007). The presence of theta synchrony, hence, between PFC and STR 

may facilitate the functional connectivity between PFC and STR over that of PFC and 

HPC. 

 

In sum, our results suggest that explicit vs implicit learning not only engages different 

brain systems, it may also engage different neural mechanisms that rely on different 

patterns of oscillatory synchrony. 

 

Methods 

 

Animals 

All experiments were performed in adult (~8–10 years old) rhesus macaques (Macaca 

mulatta), ranging from 5 to 13 kg. All procedures followed the guidelines of the MIT 

Animal Care and Use Committee and the US National Institutes of Health. In total, 4 

females and 2 males were trained in this study. In the Category-Saccade task, one of the 

animals had been previously trained on a conditional association task. In the Category-

Match task, one of the animals was being actively treated with cyclosporine daily. All 

animals spent approximately 1-2 years of training on their respective tasks.  
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Tasks 

Object-Match Task: The details of this task have been presented previously (Brincat 

and Miller, 2015). In each session, six novel objects were chosen from an image database 

(Hemera Photo-Objects). Four were randomly designated as cue objects and the 

remaining two as associate objects. In turn, each cue object was randomly paired with an 

associate object. The monkeys’ task throughout each session was to learn, through trial-

and-error, which associate was paired with each cue.  To initiate a trial, each monkey 

fixated on a central white dot for 0.5s. After this fixation period, a cue object (foveal, 3° 

DVA wide) was presented for 0.5s, followed by a blank delay of 0.75s. Two associate 

objects were then presented in a randomly-ordered series. Each object presentation lasted 

0.5s, and was then followed by another a brief delay of 0.6s. To indicate that an object 

was a match, the monkey had to saccade to a subsequently presented visual target, a 

white dot presented 7.5° to the left or right of fixation. And if it did so, the animal 

received juice and a new trial began within 3s. If incorrect, instead of juice, a red “error 

screen” flashed on for 1.5 s, and the animal had to wait 6s for the subsequent trial. The 

location (left versus right) of the response target after each associate was randomized and 

unrelated to task performance.  

 

Category-Saccade Task: The details of this task have also been presented previously 

(Antzoulatos and Miller, 2011 and 2014). In this task, animals had to learn to classify a 

number of category exemplars generated from two different prototypes into two 

categories. Each category was directly tied to a specific saccadic target (right or left). To 



 

 

37

start a trial, animals first fixated within 1.5-2° DVA of a red, central target (0.4° DVA in 

diameter) for 0.7s. After this fixation period, a randomly chosen category exemplar (6° 

by 6° DVA) from either category was presented for 0.6s. Trials from both categories 

were randomly interleaved throughout the session. One second after the end of the 

exemplar period, two saccade targets (a green dot, 0.6° DVA in diameter) appeared on 

the left and right of the center of fixation (5° DVA from the center). In order to indicate a 

response, the animals had to make a single, direct saccade within 1s of the saccade target 

presentation and maintain fixation on it for 0.2s. If the animal chose correctly, it was 

rewarded with drops of juice. If the animal did not, it was punished with a 5-s timeout, 

during which the cue was presented again, at the location of the corresponding target.  

 

Category-Match Task: In each session, animals had to classify a number of category 

exemplars generated from two novel different prototypes into two categories. Each 

category, however, was neither tied to any particular saccade nor saccade location. 

Instead at the test period, the animal had the opportunity to freely investigate two 

exemplars, one of which matched the category of the sample exemplar, and then had to 

choose by fixating on this match. To initiate each trial, each animal had to fixate within 

2.5° DVA of a centrally located, red dot (0.2° DVA in diameter) for 0.5s. After this 

fixation, an exemplar of one of the two categories was presented at the center of the 

screen (7° by 7° DVA) for 1s. If the animal continued to fixate through this sample 

period and a subsequent delay of 0.85s (with an additional jitter of max. 0.4s), then the 

central fixation dot disappeared and two new exemplars were presented on the left and 
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right side of the screen (9° DVA from the center of the screen). Once the test exemplars 

appeared, the animal had the opportunity to freely view both of the exemplars presented 

and make the correct choice. To indicate this choice, the animal had to fixate on one of 

the two peripherally presented exemplars for 0.7s. If it made the correct choice, the white 

dots of the chosen exemplar turned green and the animal received juice. If the animal did 

not make the correct choice, the chosen exemplar turned red and no juice was given. 

Depending on the animal, the length of timeout incurred on error trials varied from 5-16s. 

 

Neurophysiology and Hardware 

Category-Saccade Task & Object-Match Task: In both the Category-Saccade and 

Object-Match task stimulus presentation and reward delivery were controlled by Cortex 

(NIMH, Laboratory of Neuropsychology) and presented on a 100 Hz CRT monitor. Eye 

movements and pupil size were monitored and recorded using an infrared eye tracking 

system (Eyelink I & Eyelink II, SR Research @ 500 Hz). In these tasks, up to 16 

electrodes were lowered in PFC, HPC, or STR acutely. All recordings from PFC and 

STR, and most from HPC, were performed with epoxy-coated tungsten microelectrodes 

(FHC). On some HPC recordings, 24-channel linear probes with 300-um spacing 

between adjacent platinum iridium contacts were used (U-probes, Plexon). For targeting, 

the animals’ implanted chambers were co-registered with structural MRI images. For all 

of the PFC, STR, and some HPC recordings, these electrodes were lowered daily though 

the dura using custom-built, screw micro-drives. The exact location on the grid and 

orientation of the grid were varied to limit cortical damage and maximize coverage of the 
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intended regions. For the linear probes, electrodes were lowered through a 25-gauge 

transdural cannula using a motorized drive system (NAN-S4, NAN instruments). The 

electrodes would be lowered until spiking was detected, and then electrodes were allowed 

to sit for about an hour to limit apparent neural drift. Neural activity was amplified, 

filtered, digitized and stored using an integrated multichannel recording system 

(Multichannel Acquisition Processor, Plexon). The signal from each electrode was 

amplified by a high input–impedance, unitary gain headstage (HST/8o50-G1, Plexon), 

referenced to ground, filtered from 0.7–300 Hz, and amplified 1000-fold. LFPs were 

recorded continuously at 1 kHz. Only electrodes with cells present on them were included 

for these analyses, and after trial cutting, for all of the synchrony analyses, evoked 

potentials were subtracted out from each individual trial.  

 

Category-Match Task: In the Category-Match task, stimulus presentation and reward 

delivery were controlled by custom software written in Matlab using PsychToolbox. All 

stimuli were presented on a LCD screen at 144 Hz (ViewSonic VG2401mh 24" Gaming 

Monitor). Eye movements and pupil size were monitored using EyeLink II at 500 Hz 

sampling. Four 8x8 channel Blackrock Cereport arrays with 1mm long electrodes were 

implanted in dorsomedial prefrontal cortex (dmPFC), dorosolateral prefrontal cortex 

(dlPFC), and ventrolateral prefrontal cortex (vlPFC). Each electrode was separated by 

400 µm. vlPFC, dlPFC, and dmPFC were all defined by anatomical landmarks following 

the craniotomy. The vlPFC array was placed 1 mm ventral to the principal sulcus and was 

centered at 9-12 mm anterior to the genu of the arcuate sulcus. In contrast, the dlPFC 
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array was positioned slightly more rostral, 12-15 mm anterior to the genu of the arcuate 

and 1 mm dorsal to the principal sulcus. Finally, we placed the dmPFC (dorsomedial 

prefrontal cortex) array in the vicinity of where others have reported to identify the 

supplementary eye fields. The medial edge of the array was placed 5mm from the 

midline, and 5mm anterior to the genu of the arcuate sulcus. Signals were recorded 

through a headstage (Blackrock Cereplex M and Cereplex E), sampled at 30 kHz, band-

passed between 0.3 Hz and 7.5 kHz (1st order Butterworth high-pass and 3rd order 

Butterworth low-pass), and digitized at a 16-bit, 250 nV/bit. All LFPs were recorded with 

a low-pass 250 Hz Butterworth filter, referenced to ground, sampled at 1 kHz, and AC-

coupled. In Monkey G, an error in the design of the Cereplex E head-stage made the 

system susceptible to ground loops and to DC-drifts in the signal. This required us to 

apply a low-pass, 0.5 Hz FIR filter in both directions on the whole dataset to avoid any 

phase distortions. All arrays had units present on at least 5, if not typically a large 

proportion of channels. All channels were included in this analysis, and for all synchrony 

analyses the evoked potentials averaged across trials were subtracted from each 

individual trial.  

 

Prototype and exemplar generation 

In both the category-match and category-saccade tasks, the visual stimuli were composed 

of 7 randomly located dots on a black background. To construct the categories, we 

followed previously published procedures (Posner et al., 1967; Vogels et al., 2002, 

Antzoulatos and Miller, 2011). Every day, two novel prototypes were created at random. 
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These prototypes (as would be the exemplars) were generated as 7 arbitrarily positioned, 

7-pixel dots on a grid of 140 by 140 pixels. In order to control for difficulty and ease, 

these arbitrarily constructed prototypes had to obey a number of rules: (1) They had no 

dot centers that fell within 14 pixels of one another. (2) The average dot position of the 

prototype was at the center of the grid. (3) No dots from each exemplar fell within a 10-

dot margin on the edge. And, (4) the minimum Euclidean distance between all pairs of 

dots between each prototype was no greater than 200 pixels. Each of these 140 x 140 

pixel exemplars a subtended 6-7 degrees of visual angle.   

 

In order to generate the exemplars, the prototype dot patterns were jittered according to a 

procedure first established by Posner and colleagues (Posner et al., 1967). To determine 

this jitter, we first defined 5 concentric annular regions. These annuli were centered 

around each dot, and spaced apart radially by 7 pixels. Region 1 refers to the annulus 

immediately surrounding the dot center, 1 dot-diameter away, and region 5 refers to the 

annulus 5 dot-diameters away from this dot. Next, each dot from each prototype was 

shifted away from its prototypical location by at least 1 region; no exemplar was identical 

to the prototype. Whether any particular dot was moved to regions 2 to 5 depended on the 

distortion level desired. Each exemplar had to be unique, different from any other 

exemplar, and, to ensure such, no more than 2 dots from each exemplar could be less than 

10 pixels away from any other exemplar's dots. 
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Posner et al. defined 9 distinct levels of distortion, based on the probability of a dot to 

shift to each of these 5 concentric regions. Two of these 9 distortions were used in this 

task. At distortion level 1, 88% of dots were shifted to region 1, 10% to region 2, 1.5% to 

region 3, 0.4% to region 4, and 0.2% to region 5.  At distortion 2, 75% of dots were 

shifted to region 1, 15% to region 2, 5% to region 3, 3% to region 4, and 2% to region 5.  

In the Category-Saccade task, the generated exemplars were largely at distortion level 2. 

In the Category-Match task, which appeared more difficult for animals to acquire, 

distortion level 1 exemplars were used for both animals. As a side note, in order to rule 

out that any of the reported effects were a result of the level distortion, we repeated 3 

sessions in one of the two monkeys at distortion level 2. The results were similar; the 

monkey showed an enhancement of synchrony in the beta band on correct trials and theta 

band on incorrect trials.  

 

Overall, the use of these visual stimuli in both tasks provided for us a number of 

advantages: (1) These categories were not imbued with any overt meaning to the subject, 

for they held no apparent relationship to objects seen in daily life. (2) The exemplars 

which could, in fact, look distinctively different from one another were always 

perceptually related and averaged out to the original prototype. And, (3) these categories 

could not be distinguished by any simple rule.  
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Block design 

To facilitate learning, in both the category-match and category-saccade task, each 

learning session was organized into blocks. The blocks were defined by a progressively 

growing pool of available exemplars from each which any could be used for a given trial 

and any task period (sample or test exemplars). In any given block, with the exception of 

block 1 in the Category-Saccade task, there were a total of 2block number of exemplars for 

each category. In the Category-Saccade task, in the first block, there was a single 

exemplar per category. The pool of available exemplars grew by accretion, “new” 

exemplars were added to a bank of “familiar” ones, so that the total available exemplar 

was equal to 2block. The terms novel and familiar are not an indication for how familiar 

any exemplar was to an animal, but simply a reflection of when it became available in the 

pool of potentially usable exemplars. As the blocks progressed, the chances for only 

seeing novel exemplars increased substantially, and performance on these novel 

exemplars suggested successful categorization. In fact, block transition was not possible 

without successful categorization, and the overlap of available exemplars between blocks 

favored a smoother learning process.  

 

In order to pass from one block to another, each animal had to achieve a particular 

behavioral criterion. The criteria diverged somewhat between the two category tasks. In 

the Category-Saccade task, a block transition occurred when the animal had correctly 

responded to 80% of the previous 20 trials. In the Category-Match task, both animals had 

a tremendous capacity for being biased in either choosing a particular location and/or a 
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particular category. In order to limit these behavioral biases, each animal had to 

successfully complete 70% of the previous 10 trials for each potential condition 

(Category A – on left, Category A – on right, Category B – on left, and Category B – on 

right). Because of these behavioral criteria in both tasks, not all available exemplars were 

presented in each block. In the Category-Match task, an additional restraint was imposed 

on the pool of available exemplars presented in block 1. Because both animals struggled 

to pass block one, in which two exemplars from each category were presented, the 

exemplars from each category had to have a Euclidean distance of less than 20 pixels 

apart. This constraint reduced the difficulty of the first block, promoted rapid block 

passage, and ultimately favored category abstraction. Following block one, there was no 

limitation on the presented exemplars.  

 

Bias Correction 

As stated above, the Category-Match was a more difficult task to maintain high levels of 

performance and, as a result, if left to each of their own devices, each of the animals 

engaged in suboptimal strategies and would fail to learn to categorize stimuli. To avoid 

these aberrant behaviors, we detected the animals’ biases, and scaled the probability that 

any particular condition was shown to counteract these “easier,” inefficient strategies. In 

order to assess bias in any one of the four conditions enumerated above, we compared 

performance in each of the four conditions to one another, and computed the Mann 

Whitney U test statistic (U) for each of these comparisons. R1 represents the sum of ranks 

for condition 1 and the n1 represents the sample size for sample 1. From this test statistic, 
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we obtained the area under the curve, subtracted 0.5 to obtain a bias measure, and 

remapped this bias measure to a value between [0-1] by dividing it by 0.5. We then used 

this measure to scale the probability that any particular condition would be seen. We only 

implemented this bias correction algorithm after 20 trials were performed in each of the 

blocks.  

Eqn. 2.1  � = 	
 − �(��
)�  

Eqn. 2.2  ��� = ���� 

Eqn. 2.3 ���� = (�����. )�.  

 

Learning Stages 

Category-Saccade & Category-Match Tasks: In a previous report, which analyzed this 

same Category-Saccade task, block 5 similarly marked the transition towards a late stage 

of learning (Antzoulatos and Miller, 2011). In that study, early learning (alternatively 

called stimulus-response association) was defined as the first two blocks of the task, 

where novel exemplar performance was at chance. By contrast, late learning 

(alternatively called category-performance) was defined as those blocks when novel 

performance on each category in a 16-trial window was above 75% correct. This 

behavioral criterion was reached on average by block 5. The middle stage of learning 

(alternatively called category learning) was defined, therefore, as those blocks which 

remained, i.e. those blocks between the early and late stages of learning, and hence 

blocks 3 and 4. Due to the congruence of the sliding t-test first presented here and those 
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previously published behavioral results, we separated learning into the same learning 

stages.  

 

In the Category-Match task, novel performance had already plateaued by block 2 (on 

average, trial 89), and a division of learning stages by blocks was not appropriate. 

Because future analyses divided behavioral curves by 20 trial bins, we rounded the 89- 

trial criterion to the next multiple of 20, and defined early learning as the first 100 trials 

and late learning as the next 100. Moreover, because of the rapid learning particularly 

present in the Category-Match task, we restricted those analyses involving the learning 

stages in both the Category-Saccade and Category-Match tasks to those days in which 

learning was a bit more difficult and performance on all trials (not just novel) was less 

than or equal to 80% in the first 20 trials. In the Category-Match task, 39 days matched 

these criteria, evenly spread across both monkeys (23 days from Monkey P, 16 days from 

Monkey G). In the Category-Saccade task, 12 days matched these criteria (8 days from 

Monkey 1, 4 days from Monkey 2). Otherwise, all days from all monkeys in each task 

were pooled together. As we will see, learning in these analyses was assumed to be 

somewhat linear, and we expected to see physiological changes that correlated with 

average changes in performance in late vs. early trials. And while we did, we also showed 

(when binning trials from the entire session by performance) that none of these results 

depend on a particular learning stage classification nor an assumption that learning need 

be linear.  
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Object-Match Task: Because the Object-Match task was not blocked, unlike the 

category tasks, the behavioral criteria for learning stages differed as well. As previously 

reported, in the Object-Match task, only those sessions for which each of the final cue-

associate pairings were performed at 32 correct response over the final 50 trials (p  ≅ .01, 

binomial test) were included in this final analysis. 61 sessions met these criteria, and 

trials within them were simply divided into thirds. The first-third of the session was early 

learning, the second-third middle learning, and the last-third late learning. 

 

Behavioral analyses 

In all three tasks, we computed performance in the trial following a correct trial or an 

incorrect trial irrespective of the following category or cue-associate presented. A 

binomial distribution was fit to each of the post-correct and post-incorrect trial 

performances, and 95% confidence intervals were generated. During these same trials, we 

compared reaction times on trials following correct and incorrect trials. In both the 

Category-Saccade task and Object-Match task, we computed the differences in the time it 

took the animals to respond following target presentation between correct and incorrect 

trials. In the Category-Match task, because the task involved free viewing, we computed 

the differences in time between the presentation of the match exemplars and the chosen 

response after controlling for the number of saccades. To control for saccade number, we 

subtracted correct and incorrect trial times when the animal completed a single saccade, 

and the same for two saccades. All significance testing was done on a distribution 

generated through 10,000 bootstraps of correct-incorrect trial time differences over 
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sessions in each task. From these distributions, we computed 95% confidence intervals by 

finding the 2.5% and 97.5% quantiles of each distribution. 

 

Evoked potential analysis and error-related negativity 

In three tasks, we computed evoked potentials on correct and incorrect trials by averaging 

across trials on each electrode from each region. As in previous work, in both the Object-

Match and Category-Saccade tasks, recordings from each of these acute electrodes were 

considered independent (Brincat and Miller 2014, Antzoulatos and Miller 2011). In these 

two sets of recordings, pairs of electrodes were placed >1.5 mm apart across a large 

swath of ventrolateral and dorsolateral prefrontal cortex. Evoked potentials from all of 

these sites were averaged and plotted. For these analyses and others, we performed 

statistical testing by bootstrapping the trials and pairs to ensure that the reported findings 

were not dependent on any independence assumption. In the Category-Match task, 

evoked potentials were computed across an entire array and averaged across sessions. 

The error-related negativity is an evoked potential that arises more prominently on 

incorrect trials and occurs in epochs spanning 80-300 ms following feedback. In order to 

compute the error-related negativity, the evoked potential from incorrect trials was 

subtracted from correct trials. We aligned all of the tasks to their maximal peak (i.e. 

where the error-related negativity is greatest), and then normalized the entire signal by 

the mean and standard deviation of the differences across the entire trial and feedback (-

2s to 1.7s post-feedback).  This normalization step allowed us to eliminate those voltage 

differences related to impedance differences that varied between the arrays and the acute 
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electrodes (as can be observed in the different voltage scales on Figure 2.3). To compare 

the error-related negativity across the tasks, we computed the mean value of the 

normalized voltage differences for a 50ms period of time centered around the maximum 

difference from each task. We computed 10,000 bootstraps and found the empirical value 

for each comparison. In order to account for multiple comparisons, we applied a 

Bonferroni correction and multiplied all p-values by 3. 

 

Time-frequency analysis 

Spectrogram and coherograms were computed by applying the continuous wavelet 

transform to the trial-by-trial data. In order to compute the transform efficiently, for each 

complex-valued Morlet wavelet of wave number 6, we multiplied its Fourier transform 

by the Fourier transform of the trial data, and took the inverse Fourier transform of this 

product (Torrence and Compo, 1998). The 61 daughter wavelets sampled the frequency 

space exponentially (base of 2), starting at a max frequency of 80 Hz, and ending 6 

(numoctaves) exponential decreases later (here, 80/26 = 1.25 Hz). For every exponential 

decrease, here, for every halving, we sampled 10 frequencies (num_per_octave).  All of 

the sampled frequencies from this paper can be given by the following equation:  

Eqn. 2.4. !�"#$%& '(%)*%+,�%� = -./_123453��6
�(7: 9:;_<=>_?@ABC=:9:;?@ABC=D) 

 

In order to obtain the amplitude or power from the complex output of the wavelet 

transform, we took the complex modulus of wavelet coefficients. Alternatively, for phase 
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values, we took the inverse tangent of the ratio of the real and imaginary components of 

the wavelet coefficients.  

 

Synchrony analysis 

To estimate synchrony, we computed the pairwise phase consistency (PPC), an unbiased 

estimator of the magnitude squared resultant (Vinck et al., 2010). In other words, the 

pairwise phase consistency statistic is a measure equivalent on the population level to the 

square of the oft-used phase locking value (PLV) but which is uninfluenced in its average 

by trial number. In this study, differences in trial number were prominent, as there were 

both differences in the number of incorrect and correct trials for any given session, as 

well as differences in the number of correct trials in any given 20-trial window. In order 

to implement the PPC statistic, we used a simplification derived previously (Kornblith, 

Buschman, and Miller, 2016) 

Eqn. 2.5: 

PPC = 2E(E − 1) G G Hcos LM cos L� + sin LM sin L�QR
�SM�


R�

MS
  

= 1E(E − 1) TUG expH�LMQR
MS
 U� − EY 

= 1 − var(cos L) − var(sin L) 
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where L is the vector of angular differences between two channels at any given point in 

frequency and time. N is the number of trials. For every single channel-pair, we 

subtracted the phases (obtained from the wavelet-transformed data) of one channel from 

those of another, took the variance of the sine and cosine of these angle differences across 

trials, and subtracted both of these variances from 1. To compute changes in synchrony 

early and late in learning, we bootstrapped the channels or sessions 1,000 times and 

obtained an empirical distribution. We used this distribution to estimate p-values. 

Because we were looking for differences above or below 0, we applied both a two-way 

test as well as a Bonferroni correction. The Bonferroni correction was used, instead of a 

more statistically powerful multiple comparisons correction, because it is particularly 

effective at controlling the type I error when different tests are potentially correlated.  

 

Subtraction of eye movement  

Because one of the animals in the Category-Match task had some stereotyped eye 

movements after correct responses, we removed from both eye movement tasks (in this 

case, both Category tasks) the saccade related to the eye movement away from the 

response target. In order to do so, we identified the time of the saccade away by taking 

the derivative of the eye trace and setting a voltage threshold (+0.02V for the Category-

Saccade, +0.05V for the Category-Match). We determined each of these thresholds based 

on the threshold evoked by the saccade to the target. Once this threshold was reached, we 

cut the data prior to the threshold crossing (50 ms) and after (Category-Match, 450ms; 

Category-Saccade, 250 ms). These times were determined by the shape of the evoked 
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potentials in each of the tasks (i.e. when the mean saccade potential returned to 0V). 

Different time windows around the saccade were used, and none changed the results. 

After all of the saccadic periods were cut from each trial, we obtained a template for a 

saccade for each electrode by taking the mean across all of saccades. Once we obtained 

this template, we returned to the original data, and applied linear regression to obtain an 

optimal fit of the template to the saccade potential on each individual trial. Once we 

found the optimal fit of the template to the data, we subtracted the template from the 

original data. In order to avoid spurious edge effects, we re-filtered all of the data in both 

directions by two FIR equiripple filters. Filter 1 was a 106 order, low pass, equiripple FIR 

filter at 80 Hz (Fpass = 80 Hz, Fstop = 100, Apass = 1, Astop = 60). Filter 2 was a 1047 

order, high pass, equiripple FIR filter at 1.5 Hz (Fstop = 0.7, Fpass = 1.5, Astop = 20, 

Apass = 1).  

Linear regression 

To both better assess the synchrony changes across learning, and avoid particular 

assumptions regarding whether learning occurred linearly over time, we estimated 

synchrony using PPC across all electrode pairs over 20-trial window bins across each 

session. We computed the PPC only on correct trials, for we had previously found that 

most of the longer duration synchrony events occurred on correct trials. These 20-trial 

windows were non-overlapping, and hence independent. For every 20-trial bin, we had a 

single PPC value (averaged across all electrode pairs of interest) and an average 

performance value. We pooled all 20-trial PPC values across all sessions in each of the 3 

tasks, and performed linear regression to assess whether PPC varied directly with 
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performance.  Our design matrix was simply a column of 1s (our intercept) for each 20-

trial bin and another column for performance. After solving the normal equation and 

calculating the residuals, we computed a t-value and a corresponding p-value. In order to 

confirm that the assumptions underlying linear regression were met, we plotted how 

synchrony varied performance from chance (50%) to high performance (100%). We 

found that over the range of different performance level the variances at each level were 

largely equivalent with the exception at 100%.   To ensure that our results were resistant 

to this possible violation of heteroscedasticity, we performed both linear regression on a 

reduced performance range from 50% to 95% (where variances were equal), and robust 

regression using iteratively reweighted least squares with a bi-square weighting function 

and a tuning constant of 4.685. Robust regression, unlike ordinary least squares 

regression, minimizes the influence of data points that are outliers by penalizing their 

influence. Neither of these methods changed the results; and are unreported here.  

 

Category saccade controls 

Because eye movements tend to be rhythmic and occur in the 3-4 Hz range, we wanted to 

ensure that both correct-incorrect synchrony differences and learning-related synchrony 

decreases were unrelated to changes in eye movements. To address these concerns, we 

did two things: One, we controlled for the latency differences in the saccade away from 

the target that arose between correct and incorrect trials. Two, we examined whether eye 

movements, like theta synchrony, changed with learning. To control for the latency 

differences in the eye movement away from the target, we first estimated when saccades 
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were made following the initial saccade to the target using analog outputs from the eye 

monitoring system. After computing our wavelets and removing the evoked potentials 

related to the feedback, we aligned each individual trial to this saccade away from the 

target. Despite this procedure controlling for eye movements, theta synchrony differences 

emerged immediately following feedback, and did not appear influenced by the 

realignment procedure.  

 

In order to investigate eye movement changes with learning, we compared the mean 

saccade velocity and the number of saccades made in the feedback period (0-1.7s). To 

assess saccade velocity, we cut the raw eye signal into trials, computed the animal’s 

position on the screen relative to center (by taking the square root of the sum of squares 

of the X and Y eye position signals), and took the 1st derivative of the resulting position 

signal. Saccade velocity was averaged across the 1.7s of the feedback period, and the 

number of saccades identified was equal to the number of time points that exceeded a 

voltage threshold of .025V (~178 deg/s). The feedback period is a difficult time to 

capture behavioral events such as saccades, because the animal may move out of eye 

tracking limits. As a result, the values computed here may be underestimates of the true 

saccade count. Moreover, while visual inspection of the eye traces at the thresholds given 

above suggests that many of these events are saccades, we cannot preclude that some of 

the saccadic events are, in fact, eye blinks. Note that their inclusion here is conservative, 

and these flaws of behavioral observation are shared across tasks. To compute 

significance, we bootstrapped the trials and sessions 10,000 times. 
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Figure 2.1 A. In the Object-Match, task the animal was instructed to learn by trial- and error- 
whether a sample and test object were the correct pair. In each trial, the animal was first presented 
a sample object for 0.5s, and after a delay of 0.75s, a test object. The animal had to confirm 
whether the test object was the correct associate of the sample object (i.e. the correct match). In 
every session, each animal learned to associate 4 different sample objects with 2 test objects 
(Brincat and Miller, 2015). B. In the Category-Match task, each animal had to learn by trial-and-
error two different, de novo dot-pattern categories. In each trial, the animal was first presented 
with a sample exemplar from one of two possible and, then after a variable delay (.85-1.25s), test 
exemplars one from each of the two possible categories. In order to select the test exemplar 
corresponding to the category of the sample, the animal had to fixate on it for .7s. In this task, the 
animals were matching the category of the sample to the category of the test, hence Category-

Match learning. C. In the Category-Saccade task, each animal had to learn two different, de novo 
categories. In this task, the animal was presented with a sample exemplar for 0.6s, held fixation 
through a 1s delay, and had to indicate the category membership of this exemplar by making a 
saccade to the right or left target (Antzoulatos and Miller, 2011).  D. In the Object-Match task, we 
recorded from 617 pairs within prefrontal cortex (PFC) and 941 pairs between PFC and 
hippocampus (HPC). Electrodes within PFC were spread equally across ventrolateral and 
dorsolateral prefrontal cortex (vlPFC and dlPFC). E. In the Category-Match task, we recorded 
from 64 electrode arrays in each vLPFC, dLPFC, and dorsomedial PFC (dmPFC). For PFC, we 
combined vlPFC and dlPFC electrode pairs, and recorded from 4032 pairs. For PFC-dmPFC, we 
recorded from 8192 pairs of electrodes. F. In the Category-Saccade task, we recorded from 240 
PFC pairs (across both vl- and dlPFC), and 426 PFC-striatal (STR) electrode pairs.  
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Figure 2.2 In A, each bar represents performance separated out by monkey on trials following 
either an incorrect response (red bar) or a correct response (blue bar) during Category-Saccade 
learning. All trials were pooled across days for each stage of learning (presented as separate 
columns). Error bars show 95% confidence interval generated from a binomial distribution. In B, 

C we again plotted performance following a correct and incorrect trial for both the Object-Match 
and Category-Match tasks; however, both monkeys in each task were pooled.  
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Figure 2.3 Post-error slowing across the 3 different learning tasks: Object-Match (OM), 
Category-Match (CM), and Category-Saccade (CS). CM and OM post-error slowing were not 
significantly different (p = 0.171566). CS post-error slowing was significantly larger than both 
Match tasks (p < 1 x 10-4). Error bars represent the SEM.   
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Figure 2.4 A-C. Across all electrodes in prefrontal cortex, we computed the evoked potentials in 
each task separately. The blue line is the evoked potential averaged across correct trials, and the 
red line is the evoked averaged across the incorrect trials. The shaded grey region represents the 
time of an expected error-related negativity, between 80-300 ms after feedback. In the Object-
Match and Category-Saccade tasks, we averaged across 242 and 64 electrodes distributed across 
vl- and dlPFC, respectively. In the Category-Match task, we averaged across each array within vl- 
and dlPFC (n = 97 arrays). D. Evoked potentials within the hippocampus (n= 162 electrodes), E. 
the supplementary eye fields (n = 30 arrays), and F. the striatum (n=65 electrodes) during the 
Object-Match, Category-Match, and Category-Saccade tasks respectively. G. The error-related 
negativity is plotted here for each task. The error-related negativity was computed by subtracting 
the evoked potentials on correct and incorrect trials, and aligned to the maximal differences 
across tasks. We compared the peak negativity by averaging around this peak (+/- 25 ms). The 
error bars represent +1 SEM.   
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Figure 2.5 In panels A-F., plotted is the difference in pairwise phase consistency between correct 
and incorrect trials. Red means a greater synchrony value on correct trials, and blue means a 
greater synchrony value on incorrect trials. Note the difference in color scales among the 3 
panels. In G., we compared how the magnitude of these normalized synchrony values differed 
within the theta (3-7 Hz) and the alpha-2/beta bands (10-30 Hz) over time. In H, we computed 
that the ratio of beta-theta synchrony on correct trials varied for each task. We found that in both 
Match tasks the beta-theta ratio was greater than 1. This was not true in the Category-Saccade 
task (ratio = 0.2759).  
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Figure 2.6 We compared synchrony on correct trials early and late in learning. The bar plots 
represent a change from early to late learning, a positive value is associated with an increase in 
synchrony with learning and a negative value, a decrease. We computed synchrony at 5 different 
frequency bands: theta (3-7 Hz), alpha-1 (8-10 Hz), alpha-2 (10-12 Hz), beta-1 (13-17 Hz), and 
beta-2 (18 – 30 Hz).  Error bars represent the SEM, and the stars represent significance. In A., we 
compared synchrony increases within PFC. In B. we compared synchrony changes with learning 
across different brain regions (OM: PFC-HPC, CM: PFC-dmPFC, CS: PFC-STR).  
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Figure 2.7 Synchrony binned by non-overlapping, 20-trial window intervals. Error-bars represent 
the standard error of the mean. The dotted lines represent the fits of two different linear models, 
accounting for changes with learning. The mean synchrony at 50% performance level has been 
subtracted from each graph for visual purposes only. Linear Model 1 estimated the changes in 
synchrony with performance increases from 50% to 80%. Linear Model 2 estimated the changes 
in synchrony with performance increases from 80% to 100%. In A., all electrodes from within 
and between PFC and HPC in the OM task were used to obtain a single synchrony value for each 
performance bin. In B., we took all electrodes from within PFC and again obtained a single 
synchrony value for each 20-trial non-overlapping bin. C. We applied the same methods (as 
above) for all PFC electrodes within the Category-Saccade task. We repeated the same analysis 
with the PFC-STR electrodes (not shown), and still found no change before or after the criterion. 
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Figure 2.8 A, Theta band synchrony binned by non-overlapping, 20-trial window intervals in the 
Category-Saccade task. LM1 and LM2 estimate changes with learning from 50-80% learning, and 
80-100% learning respectively. B, Instead of aligning the LFPs to the feedback, all of the data 
was aligned to the saccade away from the target – which occurred on average 339ms after 
feedback. For the sake of visualization, this data has been normalized to the mean synchrony 
across the theta and beta bands. Here, theta synchrony increased on correct trials prior to the 
saccade away. C, Average saccade velocity early and late in learning (the mean of the first 
derivative of the eye position signal relative to the center of the screen). D, The number of 
saccades was taken as the number of threshold crossings of the eye signal during the entire 
feedback period (1.7s).  E, Probability distributions of the number of saccades for both the 
Category-Match and Category-Saccade tasks.  
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Abstract 

Categorization is a hallmark of cognition. Categories can be grouped either by shared 

sensory attributes (i.e. cats) or by a more abstract rule (i.e. animals). We aimed to explore 

the dynamic brain networks underlying categorization at different levels of abstractness. 

We recorded from multi-electrode arrays in prefrontal cortex (PFC) while monkeys 

performed a dot-pattern categorization task. We found that different oscillatory rhythms 

in different PFC regions process different levels of category abstractness. Gamma 

rhythms in ventral PFC built less abstract categories based on bottom-up sensory inputs, 



 

 

69

whereas beta rhythms in dorsal PFC extracted the category’s essence (top-down) for 

higher levels of abstractness. Our results suggest a two-stage, rhythm-based model in 

distinct anatomical brain regions for “the genesis of abstract ideas”. 

 

Results 

Categorization is the capacity to organize items based on shared characteristics. These 

characteristics can vary by level of abstractness. Sometimes category membership is 

more feature-based with members looking similar (e.g., housecats), and other times they 

can be more conceptual with members looking quite different (e.g., cats and elephants). 

But how are these different levels of abstractness achieved by the brain? Do different 

levels of abstractness engage different mechanisms and different networks? We used a 

dot-pattern categorization task (Posner and Keele, 1968), in which the level of 

abstractness is controlled by the degree of spatial distortion of each exemplar pattern 

from its category prototype. Low distortion exemplars look alike. High distortion 

exemplars require greater abstraction of the category’s “essence” (Figs. 3.1A and B). 

Monkeys distinguished two new categories in each session in a delayed-match-to-

category paradigm (Fig. 3.1C). We recorded local field potentials (LFPs) from 

chronically implanted multi-electrode arrays in dorsolateral and ventrolateral prefrontal 

cortex (dlPFC, vlPFC; Fig. 3.1D), where the neural correlates of categorization have been 

reported (Wallis et al., 2001; Cromer et al., 2010). We found that category abstractness 

was organized by area and oscillatory rhythm. vlPFC-gamma oscillations were more 
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engaged for lower-level category abstractness, whereas dlPFC-beta oscillations took over 

for higher levels of abstractness. 

 

 There was a task-related increase in LFP oscillatory power over baseline levels in 

different frequency bands in dlPFC vs vlPFC (Wilcoxon sign-rank z-score relative to -1 

to -.75 s before sample onset). In dlPFC, it was mainly in the beta band during the sample 

and memory delay epoch (Fig. 3.2A; 13-30 Hz for 0-1s and 13-28 Hz for 1-2 s).  By 

contrast, in the vlPFC (Fig. 3.2B), gamma power increased and beta power decreased 

during stimulus presentation (63-110 & 13-33 Hz for 0.1-0.3 s and 46-172 & 11-33 Hz 

for 2.5-2.7 s). The increase in gamma power after sample onset (0.1-0.3 s) was maximal 

between 80-120 Hz (Fig. 3.S2). Over time (between 0-3 s), beta (10-35 Hz) and gamma 

power (60-160 Hz) were negatively correlated within each area (dlPFC mean r ± SD: -.3 

± .4, t(29)= -4.1, p< 2.8x10-4; vlPFC: -.83 ± .1, t(29)= -36, p< 1.3x10-25) and across areas 

(dlPFC beta with vlPFC gamma: -.64 ± .2, t(29)= -20, p< 1.4x10-18).  
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We assessed category information in beta and gamma by computing the explained 

variance in the LFP signal by category (ω2-statistic, 0.5 to 1.5 s after sample onset). 

Figures 3.2C and D plot category information over time and frequency for electrodes 

with significant information in either beta or gamma (Fig. 3.S3; 25% electrodes in dlPFC 

beta, 49% in vlPFC beta, 71% in vlPFC gamma; p< .001, permutation test). There was 

significant category information in dlPFC beta (Fig 3.2C, 10-42 Hz for 0-1s and 14-27 

Hz for 1-2 s). In vlPFC (Fig. 3.2D), category information was found in both low and high 

frequencies (1-25 & 35-200 Hz for 0-1s and 12-200 Hz for 1-2 s) but it was maximally 

concentrated between 80-120 Hz (Fig. 3.S4). There was both greater power (Fig. 3.2E) 

and category information (Fig. 3.2F) for beta in dlPFC, and for gamma in vlPFC. This 

yielded highly significant interactions between frequency bands and areas (power: 

F(1,29)= 365, p< 1.1x10-16; information: F(1,29)= 31.8, p< 4.3x10-6). 

 

Gamma power has been associated with bottom-up, stimulus-evoked activity. Indeed, 

there was nearly a 3-fold stronger stimulus-evoked potential in vlPFC compared to dlPFC 

(t(29)= 14.9, p< 4.3x10-15, Fig. 3.2G). In vlPFC, there was a significant positive 

correlation between the time course of the evoked response and gamma power and a 

negative correlation with beta power (vlPFC beta mean r ± SD: -.19 ± .1, t(29)= -7.8, p< 

1.4x10-8; vlPFC gamma: .21 ± .2, t(29)= 6.9, p< 1.3x10-7). By contrast, in the dlPFC 

there was no significant correlation between the beta time course and the evoked 

response (-0.007 ± .2, t(29)= -0.2, p< .8). Furthermore, evoked activity in vlPFC carried 

significantly more category information compared to dlPFC (sample: t(29)= 3, p< .006; 
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delay: t(29)= 2.9, p< .008; Fig. 3.2H, also evident in the transient, low-frequency 

information in Fig. 3.2D). Thus, vlPFC (which had stronger gamma power) was more 

driven by stimulus-evoked activity than dlPFC.  

 

Monkeys learned new categories each day and often performed better on one. In 2/3 of 

the sessions, there was a difference by more than 5% between preferred and non-

preferred categories (Figs. 3.3A and B). This behavioral preference was reflected in each 

region’s dominant frequency. There was a significant positive correlation between the 

difference in behavioral performance and the difference in beta (dlPFC) or gamma 

(vlPFC) power between the categories. In order to calculate this correlation, we 

arbitrarily subtracted the performance and power for one category from those of the 

other, revealing changes in performance from about -20 to +20% and in power from -

10% to +10% (normalized to overall performance/ power). Figure 3.3C shows the 

significantly positive correlation between the differences in dlPFC beta power and 

performance (p< .002, see also Figs. 3.S5 and 3.S6). The correlation was based on 

stronger dlPFC beta power for the preferred category (Fig. 3.3D, p< .006). There was no 

significant correlation between dlPFC gamma power and performance (Fig. 3.S7). 

Conversely, in vlPFC there was a significant, positive correlation between gamma power 

and performance (p< .02, Figs. 3.3E, 3.S5 and 3.S6) because gamma was stronger for the 

preferred category (Fig 3F, p< .024). A further contrast with the dlPFC was that beta 

power in vlPFC negatively correlated with category preference during the delay epoch 
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(p< .016, Fig. 3.S7). Thus, the greater the difference in performance between categories, 

the greater the difference in power in each area’s dominant frequency. 

 

 Category abstractness had a greater effect on behavior for the preferred category. 

Performance for the preferred category as a function of abstractness (dot pattern 

distortion) was best fit with a decreasing sigmoid function with a sharp inflection point 

(R2= .87, inflection ± CI at 1.1 ± .0004° visual angle). This was less so for the non-

preferred category (R2= .5, inflection at 1.2 ± .008°; Fig. 3.4A). We used the inflection 

point for the preferred category to separate exemplars into high vs low abstractness. This 

revealed main effects for category preference and abstractness on performance (Fig. 

3.4B; preferred vs non-preferred, F(1,29)= 41.2, p< 5.1x10-7; low vs high abstractness, 

F(1,29)= 17.7, p< 2.2x10-4) and a significant interaction (F(1,29)= 4.6, p< .042). The 

performance difference between low and high abstractness levels was significant for the 

preferred category (t(29)= 4.2, p< 2.5x10-4) but not for the non-preferred category (t(29)= 

1, p< 0.33; Fig. 3.4B). Category information (ω2-statistic) was compared for the 10% of 

electrodes with the most category information (Fig. 3.S3). During the delay, dlPFC beta 

power only carried category information for high abstractness (p< .001, permutation test), 

which was significantly greater than that for low abstractness (low vs high: t(29)= -3.5, 

p< .002; Fig. 3.4C). By contrast, in vlPFC gamma showed significantly more category 

information for low than high abstractness during the sample epoch (t(29)= 2.2, p< .034; 

Fig. 3.4D). vlPFC beta showed no difference between the abstractness levels (Fig. 3.S8). 

The amount of category information (averaged between 0-2 s) on different levels of 
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abstractness interacted significantly between the frequency bands and PFC areas: vlPFC 

gamma had more category information for low abstractness, whereas dlPFC had more 

information for high abstractness (F(1,29)= 13.3, p< .001). 

 

Discussion 

 We found a dissociation between PFC sub-region (vlPFC and dlPFC), oscillatory 

frequency (gamma vs beta) and level of category abstractness. Gamma increased in 

vlPFC and beta did in dlPFC. Gamma has been associated with bottom-up and beta with 

top-down processing. For example, learned rules are expressed in beta (Engel and Fries, 

2010; Buschman et al., 2012; Antzoulatos and Miller, 2014) while gamma oscillations 

are involved in encoding bottom-up information in working memory (Buschman and 

Miller, 2007; Fries et al., 2001; Lundqvist at al., 2016). Correspondingly, we found 

stimulus-evoked (bottom-up) potentials in the vlPFC. There, gamma carried more 

information at low category abstractness. In contrast, dlPFC beta was less tied to stimulus 

onset and carried more information at high category abstractness. This suggests a two-

stage, rhythm-based model for category abstraction in PFC. Lower-level, feature-based 

categories are first extracted from ventral stream inputs via gamma network interactions 

in vlPFC. Then, dlPFC uses beta rhythms to encode more abstract categories that 

transcend appearance and depend more on top-down input. This model is also consistent 

with notions of feedforward and feedback connectivity. Gamma rhythms are thought to 

support the feedforward flow of cortical information while beta rhythms support 

feedback (Jensen et al., 2015; Bastos et al., 2015).  
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Animals could have divided exemplars in two categories (“A vs. B”) or used an 

alternative strategy in which one category was dominant (“A”) and, accordingly, all 

exemplars would be judged against it (“A vs not-A”). Our results suggest the latter. 

Behaviorally, one category was often preferred (“A”) and, on this category, performance 

varied between low and high abstractness levels. Physiologically, the power increases in 

the dominant frequency in each PFC region were greatest for the preferred category 

(“A”), supporting its special treatment. There was a negative correlation between vlPFC 

beta power changes and behavioral preference. However, vlPFC beta was suppressed 

during the task and this suppression was stronger for the preferred category.  

 

Disorders like autism are marked by a decreased capacity to categorize and those like 

schizophrenia by a confusion between bottom-up and top-down signaling (Gastgeb et al., 

2012; Uhlhaas and Singer, 2010). Our results support an anatomically distinct, rhythm-

based model for category abstraction in the PFC. They might guide the way to new key 

insights into the underlying pathology and therapy of psychiatric disorders, as well as into 

the creation of abstract ideas by the brain. 

 

Methods 

Prototype and exemplar generation 

The visual stimuli were composed of 7 randomly located dots on a black background. To 

generate the categories, we followed previously published procedures (Posner and Keele, 
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1968; Antzoulatos and Miller, 2011; Vogels et al., 2002). Figure 3.1A shows two 

example categories. Every day, two novel prototypes were created at random. These 

prototypes (as would be the exemplars) were generated as 7 arbitrarily positioned, 0.35° 

DVA dots on a grid of 7° by 7° DVA. In order to control for difficulty and ease, these 

arbitrarily constructed prototypes had to obey a number of rules: (1) They had no dot 

centers that fell within 0.7° DVA of one another. (2) The average position of the 

prototype was at the center of the grid. (3) No dots from each exemplar fell within a 0.5° 

DVA margin on the edge. And, (4) the maximum Euclidean distance (summed across all 

pairs of dots) between each exemplar and each prototype was 10° DVA.  

 

In order to generate the exemplars, the prototype dot patterns were distorted according to 

a procedure first established by Posner and colleagues (Posner and Keele, 1968). We first 

defined 5 concentric annular regions around each dot, which were spaced apart radially 

by 0.35° DVA. Region 1 refers to the annulus immediately surrounding the dot center, 1 

dot-diameter away, and region 5 refers to the annulus 5 dot-diameters away. Next, each 

dot was shifted away from its prototypical location by at least 1 region. Whether any 

particular dot was moved to regions 2 through 5 depended on the distortion level desired. 

Posner et al. defined different levels of distortion based on the probability of a dot-shift to 

each concentric region. Distortion level 1 was used in this task. At distortion level 1, 88% 

of dots were shifted to region 1, 10% to region 2, 1.5% to region 3, 0.4% to region 4, and 

0.2% to region 5. To ensure that each exemplar was unique no more than 2 dots from 

each exemplar could be less than 0.5° DVA away from any other exemplar's dots. Across 
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all trials used here, the minimum and maximum Euclidean distance summed over all 

pairs of dots between each exemplar and its corresponding prototype (distortion) was 

0.82° and 2.17° DVA, respectively. The minimum and maximum Euclidean distance 

summed over all pairs of dots between each exemplar and the nearest dots in the other 

prototype (distance between categories) was 3.15° and 5.94° DVA, respectively. Figure 

3.1B shows the distributions of all available trials as a function of distance between the 

presented exemplar and its own category prototype (distortion, yellow) and to the other 

category prototype (between-category distance, green).  

 

Overall, the use of these visual stimuli provided us with a number of advantages: (1) The 

categories were not imbued with any overt meaning to the animal, for they held no 

apparent relationship to objects seen in daily life. (2) The categories could not be 

distinguished by any simple rule. (3) The perceptual distance between categories was 

controlled over sessions and exemplars from different categories were different enough to 

ensure above chance performance. (4) The exemplars from each category, which could in 

fact look distinctively different from one another, were always perceptually related and 

averaged out to the original prototype. And (5), the stimuli provided parametric control 

over the similarity of sensory features between each exemplar and its prototype 

(distortion) and thus allowed us to vary the level of required abstraction.  
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Task 

In each session, animals had to classify numerous category exemplars into their 

respective categories (delayed match-to-category task, Fig. 3.1C). To initiate each trial, 

each animal had to fixate within 2.5° degrees of visual angle (DVA) of a centrally 

located, red dot (0.2° DVA in diameter) for 0.5 s. After this fixation, an exemplar of one 

of the two categories was presented at the center of the screen (7° by 7° DVA) for 1s. If 

the animal continued to fixate through this sample epoch, and a subsequent delay of at 

minimum 0.85 s (plus an additional jitter of max. 0.4s), then the central fixation dot 

disappeared and two new exemplars from either category (match vs. non-match) were 

presented on the left and right side of the screen (9° from the center of the screen). Once 

the test exemplars appeared, the animal had the opportunity to freely view both of the 

exemplars presented, and make the choice. The animal indicated its choice by fixating for 

0.7s on one of the two peripherally presented exemplars. Neither category was tied to any 

particular location. If the animal made the correct choice, the white dots of the chosen 

exemplar turned green and the animal received juice. If the animal made the wrong 

choice, the chosen exemplar turned red and no juice was given. Depending on the animal, 

the length of timeout incurred on error trials varied from 5-16 s. 

 

Block Design 

To facilitate category learning, each session was organized into blocks. The blocks were 

defined by a progressively growing pool of available exemplars. In block 1, there were 

two exemplars per category. The pool of available exemplars grew by accretion; “new” 
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exemplars were added to a bank of “familiar” ones, so that the total number of available 

exemplars for each category was equal to 2block. The terms novel and familiar are not an 

indication for how familiar any exemplar was to an animal, but simply a reflection of 

when it became available in the pool of potentially usable exemplars. As the blocks 

progressed, the chances for only seeing novel exemplars increased substantially, and 

above chance performance on these novel exemplars suggested successful categorization. 

In fact, block transition was not possible without successful categorization, and the 

overlap of available exemplars between blocks favored a smooth learning process. In 

order to pass from one block to another, each animal had to successfully complete 70% of 

the previous 10 trials for each potential condition (Category A – on left, Category A – on 

right, Category B – on left, and Category B – on right). This behavioral criterion ensured 

that the animals were able to categorize stimuli from an increasing pool of different 

exemplars and supposedly learned the underlying category rule by the end of the training 

blocks. We only used correct trials above training block 5 with a minimum of 64 different 

exemplars per category for the analysis of neurophysiological data presented here. In 

addition, the behavioral criterion limited idiosyncratic biases of the animals for either 

choosing a particular location and/or a particular category. Because of these behavioral 

criteria, not all available exemplars were presented in each block (see Bias correction 

below). An additional restraint was imposed on the pool of available exemplars presented 

in block 1. Because both animals struggled to pass block one, in which two exemplars 

from each category were presented, the two exemplars from each category had to have a 

summed Euclidean distance of less than 1° DVA apart. This constraint reduced the 
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difficulty of the first block, promoted rapid block passage, and ultimately favored 

category abstraction. Following block one, there was no limitation on the presented 

exemplars.  

 

Bias Correction 

As stated above, each of the animals attempted suboptimal strategies (i.e. exhibited 

biased behavioral choices) and, if left to their own devices, they would fail to learn to 

categorize stimuli. To avoid these aberrant behaviors, we detected the animals’ biases, 

and scaled the probability that any particular condition was shown to counteract these 

“easier,” inefficient strategies. In order to assess bias in any one of the four conditions 

enumerated above, we compared performance in each of the four conditions to one 

another, and computed a Mann Whitney U test statistic for each comparison. From this 

test statistic, we obtained the area under the curve, subtracted 0.5 to obtain a bias 

measure, and remapped this bias measure to a value between [0-1] by dividing it by 0.5. 

We then used this measure to scale the probability that any particular condition would be 

seen (i.e. we forced more choices for the non-preferred condition by showing it more 

often). We only implemented this bias correction algorithm after 20 trials were performed 

in each block. The bias correction ensured that the animals’ performance was above 

chance for exemplars from both categories. Despite this bias correction, the animals still 

maintained preferences for a particular category in each session.  
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Recordings 

Stimulus presentation and reward delivery were controlled by custom software written in 

Matlab (The MathWorks, Natick, MA) using PsychToolbox (Brainard, 1997; Pelli, 

1997). All stimuli were presented on an LCD screen at 144 Hz (ViewSonic VG2401mh 

24" Gaming Monitor). Eye movements and pupil size were monitored using EyeLink II 

at 1000 Hz sampling. Four 8x8 channel Blackrock Cereport arrays with 1mm long 

electrodes were placed within dorosolateral prefrontal cortex (dlPFC), and ventrolateral 

prefrontal cortex (vlPFC). Each electrode was separated by 400 μm. vlPFC and dlPFC 

were defined by anatomical landmarks following a large craniotomy. 3D MRI brain 

reconstructions and plastic models were used to guide the surgical implants of the array. 

The vlPFC array was placed 1 mm ventral to the principal sulcus and was centered at 9-

12 mm anterior to the genu of the arcuate sulcus. In contrast, the dlPFC array was 

positioned slightly more rostral, 12-15 mm anterior to the genu of the arcuate and 1 mm 

dorsal to the principal sulcus. Figure 3.1D shows the approximate anatomical locations. 

Signals were recorded through a headstage (Blackrock Cereplex M and Cereplex E), 

sampled at 30 kHz, band-passed between 0.3 Hz and 7.5 kHz (1st order Butterworth 

high-pass and 3rd order Butterworth low-pass), and digitized at a 16-bit, 250 nV/bit. All 

arrays had units present on at least 5, if not typically a large proportion of channels. Local 

field potentials (LFPs) were recorded with a sampling frequency of 1 kHz, referenced to 

ground and AC-coupled.  
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Data from 15 recording sessions was analyzed for each of the two monkeys. For the 

analysis of neurophysiological data, we used equal proportions of trials from the two 

categories in each session (by drawing a random sub-sample of trials equal to the 

minimum trial number across categories). Further, we used only correct trials above 

training block 5 (see section Block design). Across sessions, on average 269 trials were 

used from monkey P (min= 94, max= 520) and 293 trials for monkey G (min= 140, max= 

572). For the analysis on category information across different levels of distortion, we 

equated the trial numbers for each session between low and high distortion levels (see 

below for details), which reduced the number of available trials (monkey P: 185 trials, 

min= 48, max= 364; monkey G: 200 trials, min= 80, max= 360). 

 

Data analysis 

Behavioral data  

Data was analyzed using custom Matlab code (The MathWorks, Natick, MA) and the 

Fieldtrip toolbox (Oostenveld et al., 2001). Behavioral and neurophysiological results 

were very similar between monkeys and therefore pooled across animals. Unless 

indicated otherwise, all analytical measures were calculated for each recording session 

separately. This yielded repeated measures between the tested conditions in each session 

and, thus, the statistical contrasts were calculated for a dependent-samples design across 

sessions. For instance, all error bars reflect the standard error of the mean for repeated 

measures (Morey, 2008).  
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Behavioral performance (percent correct trials) was well above chance (50 %) in every 

session (mean ± SD: 78 ± 6 %, t-value vs. 50 %: t(29)= 27, p< 5.3x10-22, Fig. 3.3A). 

Performance was analyzed as a function of distortion level for preferred and non-

preferred categories. Category preference was based on the proportion of correct trials for 

each category on any given recording day. The better-performed category was defined as 

“preferred”. Performance was then pooled over preferred and non-preferred categories 

across recording days. Averaging across all sessions revealed a highly significant 

difference in performance between preferred vs non-preferred categories (t(29)= 7, p< 

1.1x10-7; Fig. 3.3B). For the effect of exemplar distortion on behavioral performance, we 

sorted all trials across all recording days by the summed Euclidean distance of the shown 

exemplar to its category prototype (distortion, see Prototype and exemplar generation 

above). Performance curves as a function of exemplar distortion were calculated by 

convolving the distortion-sorted performance vectors with a sliding-average window, 

encompassing 10% of the trials (width for preferred categories: 1243 trials; non-preferred 

categories: 1403 trials). Performance remained largely unchanged across a wide range of 

distortion levels but then decreased sharply at a critical distance from the prototype. 

Generalization across different exemplars and sharp distinctions with increasing category 

distance are hallmarks of categorization. Performance curves were fitted with a 

generalized logistic function (sigmoid S, Eqn. 1) with four free parameters (A = lower 

asymptote, B = upper – lower asymptote, C = steepness, x0 = mid-point) to estimate the 

inflection point (x0; see Fig. 3.4A).  

 Eqn. 3.1:  S = A + B / (1 + e(C * (x – x0)) 
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The coefficient of determination (R2) was used to determine the goodness of the fit, and 

the 95%-confidence intervals of the parameter estimates were calculated. In order to 

directly compare performance between low and high distortion levels and preferred and 

non-preferred categories, we split the data sets for each session at the estimated inflection 

point for preferred category trials (1.1° DVA). The effects of category preference and 

exemplar distortion (low vs. high split at the inflection point) across sessions were then 

tested with a two-way, repeated-measures analysis of variance (ANOVA) and the 

interaction effect explored with post-hoc dependent-samples t-tests (Fig. 3.4B). 

 

LFP pre-processing  

The continuous local field potential (LFP) for each of the 64 electrodes on each recording 

array (vlPFC, dlPFC) was cut into trials between -2 s to 4 s around the sample onset. For 

the evoked response analysis, the LFP signal from each area was referenced to the same 

common reference (ground) and band-pass filtered between 1 and 15 Hz with a zero-

phase Butterworth filter (4th order) applied in the forward and reverse direction. Before 

filtering, each trial was zero-padded to a length of 10 s to avoid edge artifacts. Stimulus-

evoked activity was derived by averaging the LFP signal at each electrode across trials 

and baseline correcting it to the pre-trial interval between -1 to -0.75 s relative to sample 

onset. For the analysis of oscillatory power, LFPs were re-referenced to the array 

average, subtracting out the common signal components across all electrodes. LFPs were 

then band-pass filtered between 1 and 250 Hz and band-stop filtered around line noise 
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frequencies (60, 120, 180, 240 ± 1 Hz, same filter settings as above). In order to obtain 

induced activity without the contribution from stimulus-evoked LFP components, the 

trial-average was subtracted from each single trial.  

Time-frequency representations were calculated using a Fourier transform applied to 

short sliding time windows in steps of 10 ms in the time interval between -1 to 3 s 

relative to sample onset and in the frequency range between 1 to 200 Hz. Fourier 

estimates were computed by means of a multi-taper transformation (discrete prolate 

spheroidal sequences (dpss), 3 tapers) applied to single trial data. The squared absolute 

value of the Fourier estimate gave the LFP signal power for each electrode across 

different frequencies and time points. For time-frequency representations and frequency 

spectra, we used a fixed 200 ms window width with a fixed amount of spectral smoothing 

(±10 Hz for frequencies between 1-200 Hz in steps of 1 Hz). This procedure yielded a 

good resolution in the frequency domain (see Figs. 3.2A-D, 3.S2, 3.S4). For the power 

time courses, we opted for a better temporal resolution (especially for higher frequencies) 

and used a frequency-dependent window width (5 cycles per frequency between 1-59 Hz 

in 1 Hz steps, between 60-99 Hz in 5 Hz steps, between 100-200 Hz in 10 Hz steps) and 

smoothing (0.4 times the frequency of interest). Subsequently, we averaged over the 

respective frequency bands to derive the time course of beta (10-35 Hz) and gamma 

power (60-160 Hz) and information (see Figs. 3.3D & F, 3.4C & D, 3.S5, 3.S7, 3.S8). 

The two methods yielded very similar results apart from the mentioned pay-off between 

spectral and temporal resolution. 
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Task-related changes in LFP power 

LFP signal power during the sample presentation (0-1 s), the memory delay epoch (on 

average 1-2 s, jittered between 1 to 1.85-2.25 s) and at the test epoch (>2.25 s) was 

compared to the pre-trial baseline epoch (-1 to -0.75 s relative to sample onset) by means 

of a Wilcoxon signed-rank test. This time epoch was chosen as baseline because it was 

free from stimulus-evoked and eye-movement related activity by the onset of the fixation 

dot and the associated saccade. Baseline activity for each trial was calculated by 

averaging power between -1 to -0.75 s for every frequency bin on each electrode. Single-

trial baseline values were then compared to each time-frequency bin during the task 

epoch. The sum of the signed rank difference across trials (Wilcoxon test statistic) was 

converted into a z-score for a standard normal distribution. The resulting time-frequency 

z-score maps for each electrode were averaged over sessions.  

 

For Figs. 2A and B, the time-frequency z-score maps were averaged over all electrodes in 

each area and masked at a conservative threshold of z = ± 3.29 (corresponding to p< .001, 

two-sided). For the array topographies (Fig. 3.S1) the z-score maps were averaged over 

the time interval between 0-3 s and either the beta (10-35 Hz) or the gamma band (60-160 

HZ). For the power spectra (Fig. 3.S2) the z-score maps were averaged over all 

electrodes in each area and over the time intervals between 0-1 s / 1-2 s for dlPFC and 

0.1-0.3 s / 2.5-2.7 s for vlPFC. Both z-score power spectra and topographies were 

Bonferroni corrected for multiple comparisons (200 frequency bins, 64 electrodes). The 

locus of maximal power changes in vlPFC was explored by separating the broadband 
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gamma spectrum into four equally spaced frequency ranges between 40 and 200 Hz (41-

80 Hz, 81-120 Hz, 121-160 Hz, 161-200 Hz). The average z-score over each of these 

frequency ranges was then tested between adjacent sub-bands with a dependent-samples 

t-test. The resulting r-coefficients for each session were compared against 0 with a t-test. 

In order to obtain a single value representing the power modulations relative to baseline 

in each session, as shown in Figure 3.2E, we averaged the z-scores over each frequency 

band, the time epoch from 0-3 s and all electrodes per area. This power modulation value 

was used to explore the interaction between the frequency bands across areas with a two-

way, repeated-measures ANOVA. 

 

The degree of correlation between the beta and gamma power time-courses within and 

across areas was tested by averaging power changes over all electrodes per area and in 

the respective frequency band (beta: 10-35 Hz, gamma: 60-160 Hz) and calculating the 

Pearson-correlation over the time interval between 0-3 s after sample onset. 

 

Category information in LFP power 

We assessed category selectivity in LFP power in vlPFC and dlPFC using a percentage of 

explained variance statistic (ω2-statistic). The ω2-statistic reflects how much variance in 

the LFP signal can be explained by the category membership of a particular presented 

exemplar in each trial (Eqn. 2, where SSbetween is the sum of squared residuals between 

categories SSbetween = ∑category Ncategory * (meancategory – meantotal)2, SStotal is the total sum of 

squared residuals across all trials SStotal = ∑trials (xexemplar -  meantotal)2, df1 is the degrees of 
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freedom between categories (i.e: 1, number of categories – 1), MSE is the mean squared 

error MSE = 1/df2 * ∑trials (xxexemplar - xZ meancategory)2, where df2 is the degrees of freedom 

of the error (i.e: number of trials – number of categories). 

Eqn. 3.2:   ω2 = (SSbetween - df1 * MSE) / (SStotal + MSE) 

   ω� = \\]^_`^^a–cd
*f\g\\_h_ij�f\g  

 

ω2 is an unbiased measure of explained variance (Olejnik et al., 2003) and results in a 

zero-mean statistic when there is no category information (see baseline interval from -0.5 

to 0 s in Figures 3.2C & D, 3.2H, 4C & D, 3.S8).  

 

Category information expressed in the ω2-statistic was calculated for each recording 

session, in each of which a new set of categories was presented, and then averaged over 

sessions. A permutation test was used to determine significant category information (ω2) 

in the LFP-signal. To this end, the association between neural activity and category 

membership was broken up by randomly shuffling the category labels across trials. The 

ω2-statistic was recorded after each permutation run, generating a reference distribution 

of ω2-statistics under the null hypothesis of no category information in the LFP signal 

(approximated with a Monte Carlo procedure of 1000 permutations). Akin to the analysis 

of the observed data, the reference distributions were generated for each session 

separately and subsequently averaged over sessions. The observed ω2-statistic was then 

compared with this null distribution. A given electrode, time- or frequency sample was 

defined as carrying category information, if its associated, observed ω2-statistic exceeded 
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the 99.9% - quantile of the corresponding reference distribution (p< .001). For example, 

we determined the percentage of category-informative electrodes (see Fig. 3.S3) in each 

area (vlPFC, dlPFC) for each frequency band (beta: 10-35 Hz; gamma: 60-160 Hz). To 

this end we averaged power across the respective frequency band and the time interval 

between 0.5 to 1.5 s after sample onset and calculated for each electrode the ω2-statistic 

(and its corresponding null-distribution). An electrode was then defined as carrying 

category information, if its associated, observed ω2-statistic exceeded the 99.9% - 

quantile of the corresponding reference distribution. 

 

 Figs. 3.2C and D show the time-frequency maps averaged over all category-informative 

electrodes in either frequency band in each area and masked at a conservative threshold 

of p< .001. Fig. 3.S4 shows category information as a function of frequency averaged 

over all category-informative electrodes and either the sample (0-1 s) or delay epoch (1-2 

s). Significant frequency ranges were defined for observed ω2-statistics with p< .001. The 

locus of maximal category information in vlPFC was explored by separating the 

broadband gamma spectrum into four equally spaced frequency ranges between 40 and 

200 Hz (41-80 Hz, 81-120 Hz, 121-160 Hz, 161-200 Hz). The average ω2-statistic over 

each of these frequency ranges was then tested between adjacent sub-bands with a 

dependent-samples t-test. For each array (vlPFC, dlPFC), we calculated a single value 

representing the category information in each frequency band (beta, gamma, averaged 

between 0.5-1.5 s, see above). We averaged the ω2-statistics for each frequency band 

across all electrodes per area and converted it into a z-score for each session relative to 
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the session’s permutation distribution (i.e. subtracting the mean of the distribution and 

dividing by its standard deviation, see Fig. 3.2F). This category information value was 

used a) to assess the amount of category information per frequency band and cortical area 

and b) to explore their interaction with a two-way, repeated-measures ANOVA and post-

hoc dependent-samples t-tests. 

 

Evoked activity 

The evoked potential was calculated as the trial-average LFP signal between 1-15 Hz (see 

above). The evoked potentials for each electrode were baseline corrected for the average 

amplitude in the baseline epoch (-1 to -0.75 s before sample onset) and then averaged 

over all electrodes per area. The absolute amplitude time-locked to sample onset 

(averaged between 0.1 to 0.3 s after sample onset) was compared between areas (vlPFC, 

dlPFC) with a dependent-samples t-test (Fig. 3.2G). Category information in the evoked 

activity (ω2-statistic) in each area was calculated for the band-bass filtered single trial 

data (averaged over all electrodes) and its statistical significance assessed with a 

permutation test (as described above for LFP power). The information time courses were 

smoothed with a Gaussian filter (width: 100 ms, sigma: 25 ms) for better illustration (Fig. 

3.2H). The results were identical between raw and smoothed time courses. Significant 

differences in information between areas were tested independently for the sample (0-1 s) 

and memory delay epoch (1-2 s) with a dependent-samples t-test for the average ω2-

statistic over the respective time interval. 
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Correlation between category performance and LFP power changes  

We tested the relationship between the behavioral preference for a particular category in 

a given session with the task-related change in LFP power in the beta and gamma bands. 

To this end, we computed an index of behavioral category preference as the difference in 

the proportion of correct trials (pcor) between the two categories divided by the overall 

proportion of correct trials per session (Eqn. 3). Likewise, the LFP power differences 

between categories in the beta (averaged between 10-35 Hz) and gamma band (60-160 

Hz) were quantified by the difference in the average LFP power (pow) between the two 

categories divided by the overall LFP power in that band per session (Eqn. 4).  

Eqn. 3.3:  (pcorA – pcorB) / pcorall 

Eqn. 3.4:  (powA – powB) / powall 

 

The performance and power differences were divided by overall performance/power, in 

order to bring the magnitude of the behavioral and neural effects onto the same scale. 

LFP power was averaged over all electrodes for each array (vlPFC, dlPFC) and the 

Pearson-correlation (Pearson-rsessions) between behavioral and power differences per 

frequency band was calculated for each time point between 0-2 s.  

 

In order to correct for multiple comparisons at multiple time samples, we used a 

nonparametric cluster-based permutation test (Maris and Oostenveld, 2007). First, 

clusters of temporally adjacent supra-threshold correlation (Pearson-correlation 

exceeding p < .05, two-sided) were identified. Within one cluster, r coefficients were 
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summed up to obtain a cluster-level test statistic. Then, random permutations of the data 

were drawn by exchanging the session labels and therefore breaking up the relationship 

between behavioral category preference and LFP power change between categories in 

each session. The maximum cluster level statistic was recorded after each permutation 

run, generating a reference distribution of cluster-level statistics (approximated with a 

Monte Carlo procedure of 1000 permutations). Cluster-level p-values were then 

estimated as the proportion of values in the corresponding reference distribution 

exceeding the cluster-level statistic obtained in the actual data. The cluster-level statistic 

represents the significant correlation over a time interval, which is effectively controlled 

for multiple comparisons at multiple time samples (see Figs. 3.S5 and 3.S7).  

 

Figures 3.3C and E show the power differences between categories, averaged over these 

significant time intervals, plotted against behavioral category preference. We estimated 

the percentage of electrodes in each array with a significant correlation during those 

significant time intervals. To this end, the LFP power change was averaged within the 

time intervals of interest (0.23-1.17 s for dlPFC beta; 0.1-0.3 s for vlPFC gamma) and the 

Pearson-correlation with behavioral preference was calculated for each electrode. The 

cluster-based permutation procedure (see above) was used for multiple comparison 

correction at multiple electrodes (Fig. 3.S6). In order to form sensor clusters, the 

electrode neighborhood on the array was defined by Delaunay triangulation. We tested 

the difference in power between preferred and non-preferred categories (defined based on 

behavior, see Behavioral data above) for the average power across the electrodes with a 
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significant correlation. Dependent-samples t-statistics (p < .05, two-sided) were 

calculated for the beta and gamma power difference between preferred and non-preferred 

categories for the time course between 0-2 s and the cluster-based permutation procedure 

(see above) was used for multiple comparison correction at multiple time samples (Figs. 

3.3D and F).  

 

Category information as a function of exemplar distortion 

In order to compare category information across different levels of exemplar distortion, 

we split the data sets for each recording day at the critical distortion level (1.1° DVA, 

based on the inflection point for behavioral performance on the preferred category, see 

Behavioral data). We calculated the ω2-statistic separately for each sub-sets of trials 

containing either exemplars on a low (< inflection point) or high distortion level (>= 

inflection point). Although the mean of ω2 is unbiased (around zero when there is no 

information), the distribution of observed values still varies with the number of 

observations (the skew of the distribution). Therefore, the data sub-sets (low vs. high 

distortion) were balanced in trial numbers for each session (by drawing a random sub-

sample of trials equal to the minimum trial number across conditions, see section 

Recordings above).  

The reduced number of trials for this part of the analysis (about one third less) led to less 

statistical power. For this reason, we restricted our analyses to the top 10% of electrodes 

that carried the most category information between 0.5 to 1.5 s after sample onset (see 

green dots in Fig. 3.S3). Category information (ω2-statistic) was averaged between the 
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balanced low and high distortion data sub-sets and then the six most informative 

electrodes in each area and each frequency band were selected. This ensured that we 

simultaneously captured effects in the sample and delay epoch on those informative 

electrodes without any bias to either low or high distortion levels. Category information 

over time in each data sub-set (low and high distortion levels) was determined with a 

permutation test (as described above in the section Category information in LFP power). 

The information time courses were smoothed with a Gaussian filter (width: 100 ms, 

sigma: 25 ms) for better illustration (Figs. 3.4C & D, 3.S8). The results were identical 

between raw and smoothed time courses. Significant differences in information between 

low and high distortion levels were tested independently for the sample (0-1 s) and 

memory delay epoch (1-2 s) with a dependent-samples t-test for the average ω2-statistic 

over the respective time interval. The interaction between low/high distortion levels and 

each frequency band (beta band in dlPFC, gamma band in vlPFC) was tested with a two-

way repeated-measures ANOVA for the average category information between 0-2 s.  
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Figure 3.1 Dot-pattern category stimuli, task and recording locations.  A. Two dot-pattern 
categories (left vs right) on low and high distortion (abstractness) levels (up vs down). B. 
Summed Euclidean distance (distortion) in degrees of visual angle between exemplars and 
prototypes (distance to same category in yellow; distance to other category in green). C. Trial 
sequence of the delayed match-to-category paradigm. D. Multi-electrode array locations in dlPFC 
(blue) and vlPFC (red). 
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Figure 3.2 LFP-power, category information and evoked activity. A, B. Power change (z-score) 
relative to baseline as a function of frequency and time in dlPFC (A) and vlPFC (B). Only z-
scores with p< .001 are shown. These effects appeared in a large proportion of electrodes (Fig. 
S1). C, D. Category information (ω2) in power as a function of frequency and time in dlPFC (C) 
and vlPFC (D). Only ω2 with p< .001 are shown. E, F. Power change (E) and information z-
scores (F) for the beta (light hue) and gamma band (dark hue) in dlPFC (blue) and vlPFC (red). 
Error bars show +/-1 SE. Asterisks indicate the significance level for each z-score (vs baseline (E) 
or random permutations (F)), between the z-scores per frequency in each area (F, beta vs gamma 
dlPFC: t(29)= 2.7, p< .013; vlPFC: t(29)= -4.8, p< 4.2x10-5) and for the interaction between 
frequency bands and areas (with * p< .05, *** p< .001). G, H.Evoked potential (G) and its 
category information (ω2) over time (H) in dlPFC (blue) and vlPFC (red). Shaded areas show +/-1 
SE. Horizontal lines show significant time intervals (p< .001). Asterisks indicate the significance 
level for the difference between areas averaged between 0.1-0.3 s ((G), gray area) and 0-1 s or 1-2 
s ((H), with ** p< .01, *** p< .001). 
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Figure 3.3 Category preference in behavior and LFP-power. A. Performance (percent correct 
trials) per category for each recording day (circles). One category was preferred on each day (A 
in black or B in green). B. Performance for preferred (yellow) and non-preferred categories 
(brown). Error bars show +/-1 SE. Asterisks indicate the significance level (with *** p< .001). C. 
dlPFC-beta power difference between categories, averaged over significant time intervals (0.23-
1.17 s, Fig. S5), plotted against the performance difference per session (circles). Straight lines 
show the linear fit. Asterisks indicate the significance level (with * p< .05, ** p< .01). (D) dlPFC-
beta power as a function of time (averaged over electrodes with a significant correlation, Fig. S6) 
for preferred (light hue) and non-preferred categories (dark hue). Shaded areas show +/-1 SE. 
Horizontal lines show significant time intervals (p< .05, time-cluster corrected). (E, F) The same 
as in (C, D) for gamma power in vlPFC with significant effects between 0.1-0.3 s. 
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Figure 3.4 Category abstractness in behavior and LFP-power A. Performance (percent correct 
trials) as a function of exemplar distortion for preferred (yellow) and non-preferred categories 
(brown). Shaded areas show +/-1 SE. Straight lines show the sigmoid fit and inset circles show 
the inflection point. B. Performance for preferred (yellow) and non-preferred categories (brown) 
for low (upward) and high distortion levels (down). Error bars show +/-1 SE. Asterisks indicate 
the significance level (with *** p< .001). C,D. Category information (ω2) in power as a function 
of time for low (light hue) and high distortion levels (dark hue) in beta in dlPFC (C, blue) and in 
gamma in vlPFC (D, red). Shaded areas show +/-1 SE. Horizontal lines show time intervals with 
significant ω2 (p< .001). Asterisks indicate the significance level between low vs. high distortion 
levels averaged between 0-1 s (D) or 1-2 s ((C), with * p< .05, ** p< .01). There was no 
significant difference for dlPFC beta between 0-1 s (t(29)= -0.2, p< .8) and for vlPFC gamma 
between 1-2 s (t(29)= 1.7, p< .11).  
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Figure 3.S1 LFP-power topographies relative to pre-trial baseline A,B. Array topographies for 
power changes (z-score) relative to baseline averaged over the time epoch from 0-3 s after sample 
onset and either the beta (10-35 Hz) or gamma frequency band (60-160 Hz) for dlPFC (A) or 
vlPFC (B). Non-significant z-scores are masked (p< .05, Bonferroni corrected). For monkey P 
(left column) 80% of the electrodes showed an increase in the beta band in dlPFC, 42% 
electrodes showed a decrease in the beta band in vlPFC and 34% electrodes showed an increase 
in the gamma band in vlPFC. For monkey G (right column) 23% of the electrodes showed an 
increase in the beta band in dlPFC, 95% electrodes showed a decrease in the beta band in vlPFC 
and 5% electrodes showed an increase in the gamma band in vlPFC. 
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Figure 3.S2 LFP-power over frequency relative to pre-trial baseline A,B. Power change (z-score) 
relative to baseline (-1 to -0.75 s) as a function of frequency averaged over time intervals of 
interest (light, dark hue) and all electrodes in dlPFC (blue, A) and vlPFC (red, B). Shaded areas 
show +/-1 SE. Horizontal lines show significant frequency ranges (p< .05, Bonferroni corrected). 
The change in vlPFC gamma power (B) after sample onset (0.1-0.3 s, light red) was maximal 
between 80-120 Hz and then decreased with increasing frequency (tested between four adjacent 
gamma sub-bands; 41-80 vs 81-120 Hz: t(29)= -9.5, p< 2.2x10-10; 81-120 vs 121-160 Hz: t(29)= 
9.7, p< 1.3x10-10; 121-160 vs 161-200 Hz: t(29)= 8, p< 7.7x10-9). 
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Figure 3.S3 Electrode topographies for category information A,B. Array topographies for 
category information (ω2) in LFP-power averaged over the time epoch from 0.5-1.5 s after sample 
onset and either the beta (10-35 Hz) or gamma frequency band (60-160 Hz) for dlPFC (A) or 
vlPFC (B). Non-significant effects are masked (p< .001). For monkey P (left column) 25% of the 
electrodes showed an effect in the beta band in dlPFC, 86% electrodes showed an effect in the 
beta band in vlPFC and 95% electrodes showed an effect in the gamma band in vlPFC. For 
monkey G (right column) 25% of the electrodes showed an effect in the beta band in dlPFC, 13% 
electrodes showed an effect in the beta band in vlPFC and 47% electrodes showed an effect in the 
gamma band in vlPFC. The green dots show the 6 electrodes (10%) with most category 
information in each frequency band and area, which were used as regions of interest for the 
distortion analysis.  
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Figure 3.S4 Category information over frequency A,B. Category information (ω2) in power as a 
function of frequency averaged over significant electrodes in dlPFC (blue, A) and vlPFC (red, B) 
separately for sample (0-1 s; light hue) and delay epochs (1-2 s; dark hue). Shaded areas show +/-
1 SE. Horizontal lines show significant frequency ranges (p< .001). Category information in 
vlPFC gamma power (B) during the sample epoch (0-1 s, light red) was maximal between 80-120 
Hz and then decreased with increasing frequency (tested between four adjacent gamma sub-
bands; 41-80 vs 81-120 Hz: t(29)= -2.7, p< .012; 81-120 vs 121-160 Hz: t(29)= 2.4, p< .025; 121-
160 vs 161-200 Hz: t(29)= 2.9, p< .007). 
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Figure 3.S5 Correlation between behavioral and power differences between categories in the 
dominant frequency bands per area A,B. Pearson-correlation coefficient (r) over time between 
behavioral performance and power differences between categories averaged in the beta band (10-
35 Hz) and all electrodes in dlPFC (A, blue) and the gamma band (60-160 Hz) in vlPFC (B, red). 
Horizontal lines show significant time intervals (time-cluster corrected; for dlPFC beta p< .002 
for 0.23-1.17 s; for vlPFC gamma p< .02 for 0.1-0.3 s). 
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Figure 3.S6 Electrode topographies for the correlation between behavioral and power differences 
between categories A,B. Array topographies for the correlation (Pearson-r) between behavioral 
and power differences between categories averaged over the beta band (10-35 Hz) in dlPFC (A) 
or the gamma band (60-160 Hz) in vlPFC (B) and over the time interval of interest (0.23-1.17 s 
for dlPFC beta; 0.1-0.3 s for vlPFC gamma). Non-significant Pearson-r coefficients are masked 
(p< .05, channel-cluster corrected). For monkey P (left column) 30% of the electrodes showed an 
effect in the beta band in dlPFC in two distinct clusters (p< .018 and p< .028) and 42% electrodes 
showed an effect in the gamma band in vlPFC (p< .006). For monkey G (right column) 92% of 
the electrodes showed an effect in the beta band in dlPFC (p< .002) and 14% electrodes showed 
an effect in the gamma band in vlPFC (p< .006). 
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Figure 3.S7 Correlation between behavioral and power differences between categories in the 
non-dominant frequency bands per area A,B. Left panels: Pearson-correlation coefficient (r) over 
time between behavioral performance and power differences between categories averaged in the 
gamma band (60-160 Hz) and all electrodes in dlPFC (A, yellow) and the beta band (10-35 Hz) in 
vlPFC (B, green). Horizontal lines show significant time intervals (time-cluster corrected; for 
vlPFC beta p< .016 for 1.13-1.52 s). Right panels: Power difference between categories, averaged 
over significant time intervals (see left panel), plotted against the performance difference per 
session (circles). Straight lines show the linear fit. Asterisks indicate the significance level (with * 
p< .05). For gamma in dlPFC (A, yellow), there was no significant correlation over time. For 
comparison, we show the correlation between behavioral and power differences averaged over 
the time interval, in which we found a significant correlation for gamma in vlPFC (0.1-0.3 s).  
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Figure 3.S8 Category information in vlPFC beta power Category information (ω2) in power as a 
function of time for low (light hue) and high distortion levels (dark hue) averaged over the 10% 
most informative electrodes in the beta band in vlPFC. Shaded areas show +/-1 SE. Horizontal 
lines show time intervals with significant ω2 (p< .001). There was no significant difference in 
category information between low and high distortion levels, neither in the sample (0-1 s; t(29)= 
0.5, p< .62) nor the delay epoch (1-2 s; t(29)= 0.9, p< .4).  
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Abstract 

 All of the cerebral cortex has some degree of laminar organization.  These 

different layers are composed of neurons with distinct connectivity patterns, embryonic 

origins, and molecular profiles.  But there is little data on the laminar specificity of 

cognitive functions in frontal cortex. We recorded neuronal spiking/local field potentials 

(LFPs) using laminar probes in frontal cortex (PMd, SEF, SMA, ACC, 46d/v, 8) of 

monkeys performing working memory (WM) tasks. LFP power in gamma (50-250 Hz) 

was strongest in superficial layers and in alpha/beta (4-22 Hz) in deep layers. Memory-

delay activity, including spiking and stimulus-specific gamma bursting, was 

predominately in superficial layers.  LFPs from superficial and deep layers synchronized 

in the alpha/beta bands. This was primarily unidirectional with alpha/beta in deep layers 

driving superficial-layer activity. The phase of deep-layer alpha/beta modulated 

superficial gamma bursting associated with working memory encoding. Thus, alpha/beta 
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rhythms in deep layers may regulate the superficial-layer gamma and hence the 

maintenance of the contents of working memory. 

 

Introduction 

Working memory has long been associated with neural activity bridging a memory delay. 

This has been proposed to be due to recurrent connections between columns of pyramidal 

neurons in superficial cortical layers (Goldman-Rakic et al., 1996).  Support for this has 

been mixed.  One study found that delay activity was shared across superficial and deep 

layer neurons (Sawaguchi et al., 1990). However, another reported delay-activity neurons 

(“late storage units”) at more superficial depths (Markowitz et al., 2015). This uncertainty 

may be due, in part, to the prior use of single-contact electrodes, which render it difficult 

to assess the depth of the recorded signals.  

 

Another related question is whether the frontal cortex would show similar layer-specific 

properties as those observed in visual cortex (Bollimunta et al., 2011; Buffalo et al., 

2011; van Kerkoerle et al., 2014; Maier et al., 2010). In visual cortex, multiple-contact 

“laminar” electrodes have revealed that gamma (> 30 Hz) oscillations are more 

prominent in superficial and middle layers while slower oscillations (alpha/beta, 10-30 

Hz) are prominent in deep layers (Maier et al., 2010; Buffalo et al., 2011). Moreover, it 

has been shown that deep layer alpha activity drives superficial alpha activity 

(Bollimunta et al., 2011; Kerkoerle et al., 2014), and the phase of deep layer alpha 

modulates the amplitude of the superficial layer gamma (Spaak et al., 2012). Similar tests 
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in one frontal area, the supplemental eye fields, have reported gamma LFP power in 

superficial layers (Godlove et al., 2014; Ninomiya, 2012). But one of these studies failed 

to find evidence that deep-layer low frequency oscillations coupled with superficial 

gamma (Ninomiya et al., 2012), leading to the conclusion that frontal cortex laminar 

dynamics might fundamentally differ from those of the rest of cortex.  Neither study has 

examined working memory-related activity in frontal cortex with laminar electrodes. 

 

To clarify this, we recorded both spiking and local field potential (LFP) activity with 

multi-laminar electrodes in five frontal cortex areas (PMd, SEF, SMA, ACC, 46d/v, 8) in 

three WM tasks.  This revealed layer-specific dynamics in frontal cortex that were similar 

to those in visual cortex, suggesting a layer-specific micro-circuit motif that is common 

across cortex.  Further, examining this in the context of a working memory task provided 

evidence that these dynamics may be used to control access to working memory. 

 

Results 

Gamma power peaks in superficial layers, and alpha/beta peaks in deep layers 

Three monkeys performed three different working memory tasks (Fig. 4.1A-C).  During 

these tasks, laminar probes with 100 to 200 µm spacing between contacts recorded local 

field potentials (LFPs) and neuronal spiking from all cortical layers (Figure 4.1D-F). 

These electrodes were lowered as perpendicular as possible to the cortex to ensure an 

even sampling of the different layers. We completed a total of 60 recordings in frontal 

cortex (Fig. 4.1G).  The middle cortical layer was identified, using current source density 
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(CSD) analysis, by the presence of a current sink in response to the presentation of a 

visual stimulus (see Methods). We aligned all of the data from all electrodes to the 

middle layer (i.e., the contact with the first significant CSD sink; see Figure 4.S1 for the 

average CSD profile), and pooled all of the data together.  

 

We found that high frequency oscillations peaked in superficial layers and low 

frequencies peaked in deep layers. Figure 4.1H plots examples of low- and high-passed 

LFPs from one laminar recording, and Fig 4.1I is a power spectrum, illustrating how low 

frequency (alpha/beta) vs high frequency (gamma) power became more apparent in deep 

vs superficial layers, respectively. To quantify these changes in power across each 

laminar probe, we normalized power at each frequency and each contact (1-500 Hz) by 

the maximal power at that frequency across contacts.  In other words, for each frequency 

and each session, the contact with maximal power had a value of 1 and other contacts had 

values relative to this maximum. For example, 0.8 means that the power at that contact 

was 80% of the maximal power observed at that frequency.  

 

Figure 4.2A shows the mean power profile across all electrodes.  The middle cortical 

layer (bottom of layer 3/layer 4) is at depth 0, negative depths are superficial layers 

(layers 1-3), and positive depths are deep layers (layers 5-6). At each frequency and 

cortical depth, red colors indicate the maximal power and blue the minimal. The 

superimposed black line represents the mean distance from the middle of the cortex at 

which the maximal power occurred.  It shows that lower frequencies (4 to 22 Hz) had 
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their maximal power below the sink (contact at depth zero), while a continuous band of 

higher frequencies (58-260 Hz) had their maximal power above the sink (sign test across 

sessions, Bonferroni corrected, p<0.05).   

 

To further illustrate this, we collapsed Figure 4.2A into two separate profiles by 

averaging across the alpha/beta (4-22 Hz) and gamma (58-260 Hz) frequency bands 

(Figure 4.2B).  The peak gamma power (blue line) occurred in superficial layers, 400 um 

above the sink, and the peak beta power (red line) occurred in deep layers, 800 um below 

the sink.  The cross-over point between the profiles (the intersection of the blue and red 

lines) occurred between -100 and -200um, nearly identical to the location of the CSD 

sink.  Thus, gamma power was prominent in superficial layers, and alpha/beta in deep. In 

middle layers (from 200um above to 300 um below the sink) there was a transition zone 

where neither gamma nor beta predominated. These results were present in each of the 

tasks (Figure 4.2C-E). 

 

Delay period multi-unit activity is modulated in superficial layers 

Working memory has long been correlated with the persistent modulation of delay-period 

spiking activity in frontal cortex, but whether or not this activity is laminar specific is 

unclear.  We found that delay period multi-unit activity was largely localized to 

superficial layers. To measure this multi-unit activity, we used rectified, high-passed 

signals greater than 500 Hz.  To assess the delay period modulation, we took the absolute 

value of the mean change in the multi-unit activity (MUA) between the delay and the 
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baseline, and z-scored it by the standard deviation of delay-period MUA across trials (see 

Methods). This normalization step ensured that differences in the overall level of MUA 

activity were de-emphasized and, instead, each session contributed with equal weight 

after pooling.  We used the absolute values because activity in working memory delays 

could increase or decrease relative to baseline (Miller et al., 1996)  

 

Figure 4.3 A-C shows the mean delay period MUA modulation averaged across 

electrodes and sessions for each task.  Red colors indicate a change in MUA from 

baseline; blue colors indicate no or little change.  In all three tasks, the largest change in 

MUA occurred in superficial layers.  Figure 4.3 D-F illustrates the average delay period 

modulation, and demonstrates that the greatest modulations occurred in the superficial 

layers.  Averaging across all three tasks, Figure 4.3G shows that delay MUA peaked 

400um above the sink and dropped in deeper cortical layers (Fig. 4.3G, P<0.002, sign test 

across sessions).  Moreover, the average modulation of delay-period MUA across layers 

was positively correlated (Spearman rank correlation, R=0.84, p=2E-6) with gamma 

power (compare to Figure 4.2B) and negatively correlated with beta power (Spearman 

rank correlation, R=-0.67, P=3E-4).  It was also seen in each task individually (Spearman 

rank correlation, Visual Search, gamma: rho = 0.79, p<1E-5, alpha/beta: rho = -0.57, 

p=0.003; Masked Delayed Saccade, gamma: rho = 0.80, p<1E-5, alpha/beta: rho = -0.66, 

p<0.001; Delayed Saccade, gamma: rho = 0.86, p<1E-5, alpha/beta: -0.68, p<0.001). 
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The rectified, high-passed signal we used to measure MUA was advantageous because it 

is thought to capture the mean of all spiking activity within the local vicinity of the 

recording contact (Siegel et al., 2015).  However, some spectral overlap between it and 

the gamma power was seen in superficial layers, raising the possibility that the greater 

MUA was merely due to the higher gamma power (or vice-versa). To address this, we 

used a thresholded signal to measure the spike rate.  This signal was more conservative 

than the MUA signal, capturing only small groups of units with large spikes near the 

contact (henceforth referred to as “units”).  Using this technique, we identified a total of 

420 units, and confirmed that delay-period modulation of spiking is higher in superficial 

layers, consistent with the analysis based on the more inclusive rectified, high-passed 

MUA signal. 

 

Figure 4.4A shows the number of units recorded at each depth (in green), summed across 

sessions, and the number of units that were modulated (in blue).  Modulation was 

determined by testing whether each unit’s firing rate during the delay was significantly 

different from its baseline firing rate by a two-tailed t-test at p<0.01. Figure 4.4B shows 

the proportion of units with delay activity (i.e., units modulated/units recorded), which 

was significantly different between superficial vs deep layers (Figure 4.4B inset, 53% vs. 

34%, Chi-squared proportion test, p=3E-4).  The proportion of modulated units by layer 

(Figure 4.4B) positively correlated with the gamma LFP profile and negatively correlated 

with the beta LFP profile (Spearman rank correlation, gamma, rho = 0.83, p<1E-6, 

alpha/beta, rho = -0.60, p=0.001).  Finally, the greater proportion of modulated units in 
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superficial layers was not the result of a poor signal to noise ratio or lack of units in deep 

layers. In fact, baseline firing rates were higher in the deep layers (Figure 4.4C), as was 

the unit yield (Figure 4.4D).  

 

Gamma bursts in superficial layers encode stimulus information during the delay 

Recent work has shown that gamma bursting in the PFC is associated with the encoding 

of stimulus information in working memory (Lundqvist et al., 2016). We tested for its 

layer-specificity. To distinguish this from the power analyses described above, we 

defined bursts as periods when the power in the alpha/beta (4-22Hz) and gamma (50-150 

Hz) bands exceeded the mean power at each frequency band by 2 SDs for three cycles 

(see Methods).  The gamma and beta burst rate during the delay and baseline periods 

matched the power profiles at their respective frequencies (Figure 4.5A, B). They were 

positively correlated to their respective power profiles (Spearman rank correlation, 

gamma: Rho=0.76, p<2E-5, beta: Rho: 0.8, P<4E-6).  The average gamma burst rate 

increased during the delay relative to the baseline (Figure 4.5A, t-test, p=0.002), and the 

beta burst rate decreased (Figure 4.5C, t-test, p<2E-9).  

 

We tested whether delay-period gamma and beta bursts carried information about which 

cue was held in WM by calculating the PEV between the burst rate and cued 

object/location during the delay (see Methods). Figure 4.5B shows the profile of 

information in gamma-bursts by layer, and 4.5D for beta-bursts. The red lines to the right 

of each plot represents statistical significance at p < .01, uncorrected for multiple 
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comparisons. Over sessions, gamma bursting in superficial layers was more informative 

than in deep (p=0.018, sign test over sessions, inset of Figure 4.5D). Furthermore, the 

amount of gamma-bursting information per layer was strongly correlated to gamma 

power (Spearman rank correlation, rho = 0.95, p<5E-6). Information in beta-bursting was 

weaker, as might be expected given its very low burst rate during the delay. Information 

in beta-bursting was not significantly different between deep and superficial layers 

(p=0.52, sign test over sessions), but trended towards an increase in deep layers (Figure 

4.5D). The amount of information in beta bursting strongly correlated with the beta 

power profile (Spearman rank correlation, rho = 0.84, p<5E-6). 

 

Alpha/beta oscillations in deep layers modulate superficial layers 

We next tested whether there were interactions between oscillatory activity and layers. 

To assess directed interactions, we applied nonparametric Granger causality (GC) 

analysis to LFPs within supragranular and infragranular layers. This analysis measures 

the extent to which the past values of time-series A can predict the present state of time-

series B, above and beyond what the past values of B already predict about its present 

state.  We performed this for every frequency using the phase and amplitude of past 

values to assess predictions about the present. 

 

We found that the GC spectrum had peaks in the alpha-beta range, and that directed 

interactions were asymmetric.  Deep layer alpha-beta drove superficial layer alpha-beta 

more than the other way around (4-22 Hz, p=0.002, sign test, Figure 4.6A).  We also 
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tested whether GC influences were stronger in the delay period compared to baseline. We 

found no significant differences in GC influences in the delay vs. baseline contrast (p > 

0.2). 

 

GC is a linear measurement of inter-laminar interactions, in the sense that interactions are 

only tested between different channels at the same frequency. To test for cross-frequency 

interactions, we next investigated whether there was Phase-Amplitude Coupling (PAC) 

between superficial and deep layers. To test whether the phase of the slower frequency 

band (alpha/beta band) coupled with the amplitude of the higher frequency band (gamma 

band) we used the modulation index (Tort et al., 2008). The modulation index is a 

measure of how non-uniformly distributed the amplitudes of one frequency band are 

across the phase space of another. We systematically calculated PAC at every possible 

combination of (alpha/beta) phase-providing channel and (gamma) amplitude providing 

channel. We found that deep alpha/beta phase modulates superficial gamma amplitude 

and that this ascending (deep to superficial) influence was stronger than in the reverse 

direction (Figure 4.6B).  

 

Figure 4.6C plots the modulation index value for each of the possible laminar 

interactions: superficial-deep, deep-superficial, deep-deep, and superficial-superficial. 

The solid black lines indicate significant differences in phase amplitude coupling 

between each condition (t-test, p < .001). We found that the modulation of superficial 

gamma was greatest by deep and superficial alpha/beta (Fig. 4.6C). In contrast, coupling 
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between deep gamma and both superficial and deep alpha/beta was significantly reduced 

(Fig. 4.6C). Moreover, PAC was significantly lower during the delay, relative to baseline 

(sign test over sessions, p<0.0005; Figure 4.6D, PAC during delay is shown in Figure 

4.S2). Taken together, these results suggest that deep-layer alpha-beta regulated 

superficial alpha-beta which, in turn, regulated superficial layer gamma. 

 

Discussion 

Shared Functional Motifs Across Cortex 

Superficial and deep layers of frontal cortex exhibited distinct dynamics. Gamma power 

peaked in superficial layers while alpha/beta power peaked in deep layers. Deep layer 

alpha/beta oscillations drove superficial alpha/beta. The phase of these deep-layer 

alpha/beta oscillations modulated the amplitude of superficial gamma. All of these 

dynamics were shared across a broad range of areas spanning from premotor to prefrontal 

cortex in our dataset and match closely with results from visual cortex (Bollimunta et al., 

2011; Buffalo et al., 2011; Spaak et al., 2013; van Kerkoerle et al., 2014). The global 

consistency and the specificity of these physiological effects argue in favor neuronal 

dynamics that are shared in many regions (Bastos et al., 2012; Douglas and Martin, 

1991).  
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Delay activity in superficial layers  

Delay-period activity, both spiking and gamma bursting, was most prominent in 

superficial layers. The co-occurrence of these two phenomena is consistent with reports 

that gamma bursts are associated with spiking that encodes stimulus information in 

working memory (Lundqvist et al., 2016). Indeed, those delay-period gamma bursts we 

observed also carried stimulus-related information within superficial layers. The broad-

band nature of the average power spectrum in the gamma range (which lacked a clear 

peak) does not necessarily imply the lack of an oscillatory phenomenon. Averaging of 

gamma bursts of varying frequency across individual trials could lead to this broad-band 

appearance (Buzsáki et al., 2012; Lundqvist et al, 2016).  

 

During the working memory delay, both alpha/beta bursts and coupling between deep-

layer alpha/beta and superficial layer oscillations decreased relative to baseline. 

Alpha/beta oscillations are purported to be an inhibitory rhythm responsible for 

suppressing behavioral dominant rules and disregarding distracting stimuli (Buschman 

and Miller, 2007; Buschman et al., 2012; Jensen et al., 2015; Haegens et al., 2011).  Low 

frequency coupling between deep and superficial layers, therefore, may serve a control 

function, gating information into superficial layers by regulating the gamma bursting 

associated with working memory encoding. A decrease in coupling might release 

inhibition from deep to superficial layers, and allow cue information to be maintained 

within superficial layers. There, this information could be stored through recurrent lateral 

connections that result, on average, in sustained neuronal activity but within a single trial 
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as short-lived gamma bursts and spiking (Lunqvist et al., 2016). This is consistent with 

known recurrent networks within supragranular layers of prefrontal cortex (Goldman-

Rakic, 1996; Luebke, 2017). Working memory activity, therefore, reflects the continuous 

reactivation of its contents in supragranular layers. 

 

In Figure 4.7, we summarize this model of working memory. In this diagram, we note 

that both superficial and deep layers are comprised of networks of deeply interconnected 

excitatory pyramidal (black) neurons and inhibitory (red) interneurons. Circuits in both 

layers are capable of oscillating within the alpha/beta range (the red sine wave below, the 

blue line above), but the drive is directional. Deep layers (as seen in the red arrows) drive 

superficial layers to resonate within the alpha/beta frequency. These alpha/beta 

oscillations are coupled with superficial layer gamma oscillations.  Increasing deep to 

superficial layer coupling and/or deep-layer alpha/beta suppresses gamma-related activity 

that stores bottom-up information in working memory (the small blue lines in superficial 

layers). This suppression in the default state allows for a number of different excitatory 

regimes (i.e. different networks responsible for cue information) to co-exist. However, in 

the memory delay, we propose that this default suppression of gamma band activity is 

released and, as a result, the recurrent connectivity of layer 3 neurons (as indicated by the 

loop arrow) is allowed to persist. This recurrent activity is not only responsible for the 

persistence of gamma activity, but also for the dominance of a particular excitatory 

circuit (i.e. one encoding the cue information).  
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Previously, we linked gamma-band dynamics with both feedforward and bottom-up 

mechanisms (Bastos et al., 2015; Buschman and Miller, 2007). In this prior work, gamma 

was found to signal sensory stimuli from lower to higher visual cortex (Bastos et al., 

2015; Michalareas et al., 2016; van Kerkoerle et al., 2014), and to drive stimulus-driven 

attention (Buschman and Miller, 2007). Here we find that gamma dynamics are 

associated with working memory maintenance, a cognitive function. In the visual system, 

the function of superficial layer cells, with gamma-band dynamics, is thought to involve 

feedforward information transmission (Bastos et al., 2015; van Kerkoerle et al., 2014; 

Roberts et al 2013). In prefrontal cortex, we find a preservation of this feature of the 

laminar circuit (superficial layer gamma-dominated dynamics). At the highest level of the 

cortical hierarchy, feedforward connections are by definition undefined (Markov et al., 

2013). We suggest that the preservation of these laminar patterns in PFC in the absence 

of further levels to the hierarchy gives rise to a new function for these superficial layers, 

namely, the maintenance of bottom-up stimulus information in working memory.  

 

Methods 

Tasks 

In order to investigate the mechanisms underlying working memory, we trained three 

monkeys on three different working memory tasks.  Task one (Fig 4.1A) required 

memory for a sample object over a variable delay (0.5-1.2s). The other two tasks engaged 

working memory for a spatial location; however, they differed in the presentation of a 

masking stimulus during the delay.  In task two (Fig 4.1B), after a location was cued by a 
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red dot, the animal had to maintain information as a visual mask (red dots at all possible 

cued locations) was presented through a variable delay (2.2 to 2.7s). In the third task, the 

monkey had to similarly maintain one of four possible cue locations after a short sample 

epoch (0.295s); however, during the subsequent 0.99s delay, there was no visual mask, 

only the fixation point was shown during the delay. The idea in comparing these tasks 

was to show that independent of both the content of the working memory and the 

presence or absence of distractors during the delay, the neural patterns were comparable. 

Those phenomena we observed, therefore, were general hallmarks of working memory, 

and for the purposes of this paper all of the data was pooled together (except for Figure 

4.2, where LFP power is shown for each individual task, and in Figure 4.3, where the 

time course of the delay activity are shown separately for each task). Behavioral 

performance was high for each of the tasks/monkeys (monkey C: 85%, monkey S: 77%, 

monkey P: 88%). Only correct trials are included in the present analysis. 

 

Recordings 

We acutely inserted between 1 and 3 laminar probes into cortex in every recording 

session. Our recordings included a large portion of the macaque frontal cortex, spanning 

dorsal premotor regions (area 6DR, SEF, area 9) to lateral prefrontal cortex (area 46, area 

8). In Figure 4.1G, the colored dots represent recording sites from each of the monkeys 

and their respective frontal areas. In addition to the areas that are depicted, we also 

performed several recording sessions from deeper midline structures, such as the 

supplementary motor area (SMA) and the anterior cingulate cortex (ACC).  
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We used linear laminar probes from Plexon (“U probes” and “V probes”) with a variety 

of inter-site spacing (100, 150, or 200um) and contact numbers (16, 24, or 32 contacts per 

probes).  Probe geometry (inter-site spacing, channel count or U/V type) had no 

qualitative impact on the data we report here. Because the contact spacing ranged 

between 100 to 200um, we used cubic spline interpolation to up-sample the data and 

organize it into the same depth coordinates. To do so, we up-sampled to 100um spacing 

(if the spacing was already 100um, no interpolation was performed). Each individual 

probe was considered a unit of observation for our analyses in Figures 4.2, 4.3, and 4.5. 

For the analysis of thresholded units (Figure 4.4), the unit of observation was thresholded 

spikes.  

 

In Figure 4.1C-E, MRIs are plotted with sample trajectories superimposed (red lines) in 

each of the monkeys. These trajectories were approximately perpendicular to the cortical 

sheet, allowing a relatively unbiased sampling of all cortical layers. All of the data was 

recorded through Blackrock headstages (Blackrock Cereplex M), sampled at 30 kHz, 

band-passed between 0.3 Hz and 7.5 kHz (1st order Butterworth high-pass and 3rd order 

Butterworth low-pass), and digitized at a 16-bit, 250 nV/bit. All LFPs were recorded with 

a low-pass 250 Hz Butterworth filter, sampled at 1 kHz, and AC-coupled. In monkey C, 

the reference was the headpost, in monkey S, the reference was internal to the metal shaft 

surrounding the probe itself. In monkey P the reference was a nearby guide tube sitting 

on the dura. Some U/V probes had noisy channels (average power greater than 2 standard 
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deviations above the mean of all channels, this occurred on less than 5% of all channels), 

which were removed prior to analysis.   

 

Lowering Procedure 

In order to place the contacts of the laminar electrode uniformly through the cortex, 

spanning from cerebrospinal fluid through the gray matter to the white matter, we used a 

number of physiologic indicators to guide our electrode placement. First, the presence of 

a slow 1-2 Hz signal, a heartbeat artifact, was often found as we pierced the pia mater and 

just as we entered the gray matter. Second, as the first contacts of the electrode entered 

the gray matter, the magnitude of the local field potential increased, and single units 

and/or neural hash became apparent, both audibly and visually with online spike 

thresholding. Once the tip of the electrode transitioned into the gray matter, electrodes 

were lowered slowly with minimal vibration an additional 1-2mm. At this point, the 

electrodes were allowed to settle for about 5 minutes, and then we began a visually 

evoked potential paradigm.  

 

During this paradigm, we flashed a white screen on for 50ms with 500ms pauses while 

the animal’s eye position was detected on the monitor. We repeated this about 200 times, 

and then calculated a power profile and Current Source Density (CSD) over the contacts 

of each of the implanted laminar probes. To compute the CSD, we cut the data into trials 

at the flash onset, obtained the evoked response to the flash across trials, and computed 

the evoked responses’ second spatial derivative (Mitzdorf, 1985; Buzsaki et al., 1986). 
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The CSD reflects regions where ionic currents are flowing into neurons (caused by a net 

depolarization of surrounding neurons), and an early sink (where the CSD goes negative 

within 100ms of stimulus presentation) in response to visual input has been mapped to 

layer 4 in visual and auditory cortex (van Kerkoerle et al., 2014; Schroeder et al, 2002). 

Layer 4 in these regions receives the bulk of thalamic or bottom-up sensory inputs. In 

frontal cortex for areas that are dysgranular (area 6 and 9), an early sink corresponds to 

the bottom of layer 3 (Godlove et al., 2014), which receives visual sensory inputs (Shipp 

et al., 2005). In the case of granular or eulaminate prefrontal cortex (areas 46d/v) we 

expect the early sink to correspond to layer 4, which receives thalamic input from 

mediodorsal nucleus of the thalamus as well as sensory cortical areas (Giguere and 

Goldman-Rakic, 1988; Zikopoulos and Barbas, 2007).  

 

We sought to position this current sink at approximately the middle contact of the probe. 

In addition to using the CSD for electrode alignment, which was more or less noisy, we 

also computed power across the alpha/beta (10-30 Hz), and gamma bands (30-80 Hz). 

We used these power estimates at each contact and normalized the power estimates by 

the maximal power within both of these bands. We found that the crossings of the 

normalized powers within the alpha/beta and gamma bands nearly always occurred 

within one or two sites of the earliest sink. Since these power profiles correlated strongly 

with the CSD results, we used these power profiles to also guide our decisions on 

whether or not we lowered the electrode any further. Finally, we were also careful not to 

penetrate by more than an electrode contact or two into the underlying white matter. The 
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white matter was characterized by the predominance of upward going spikes, and the 

absence of any CSD (i.e. there was markedly low LFP variability). Once the probe was 

fully lowered, we allowed it to settle for an hour, and then began a longer flashing 

sequence of 800-1000 trials for offline CSD analysis. 

 

We determined each session’s “zero point” (corresponding to layer 4/bottom of layer 3) 

as the site at which current sinks were detected within a time window of 40-180ms of 

flash onset. CSDs were calculated for each trial, taking a spatial integration of between 

350-400 um, to be as consistent as possible given our probe geometries (i.e., using 100um 

inter-electrode spacing, we integrated every 4th contact, for 200um spacing, every 2nd 

contact, and for 150um, every 3rd contact). We subtracted the CSD at the pre-flash 

baseline (50ms to flash onset), and then z-scored the CSD data over trials by dividing the 

raw CSD values by their standard error. We then assessed which CSD contact first 

achieved a z-score of less than -4 (negative CSD values correspond to current sinks), and 

which lasted at such a level for at least 6 ms. We assigned this contact as the first 

significant sink, and this provided the zero (the middle layer) for each penetration. 

 

Relative to this zero point, the average distance to the CSF outside of gray matter was 

0.9mm, estimated based on the total power of the LFP (when power across all 

frequencies decreased below 30% of the contact with maximal power, similar to Godlove 

et al., 2014). We also measured the cortical thickness for each of the 60 penetrations 

based on each individual monkey’s MRI. To visualize the specific electrode tracks, we 
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obtained an MRI of each animal with their respective recording chamber and recording 

grid in place. Filled with water, the grid lumens could be tracked, and electrode 

trajectories projected onto the cortex and its folds (Fig. 4.1D-F). The mean cortical 

thickness across the penetrations in this study was 2.4mm. Thus to span the full average 

cortical distance in our analyses, laminar profiles were plotted from 0.9mm above the 

sink (the corresponding depth of the average gray matter / CSF transition) to 1.5mm 

below the sink (average gray matter / white matter transition). Because our recordings 

span a number of frontal areas that are both dysgranular and granular, we chose not to 

classify particular contacts to specific layers, as the laminar widths and organization 

could be slightly different over areas. Instead, we chose a more general classification 

system that could be applied to all areas, grouping contacts above the sink as superficial 

layers (corresponding to layers 1-3) and contacts below the sink as deep (corresponding 

to layers 5-6). The distance from the sink was a proxy for laminar position.  

 

Analysis 

All analysis were performed with customized MATLAB scripts and with Fieldtrip 

software (Oostenveld et al., 2011). Given probe movements across a day, we smoothed 

across contacts on all analyses. This smoothing was symmetric, and across 200um above 

and below the contact of interest. This smoothing parameter equaled the distance between 

the contacts of the coarsest probe used in this study. Power was calculated based on 700 

ms segments of data (200 ms prior flash and 500 ms post flash), which were tapered with 

Hanning windows. After these steps, we applied a fast Fourier transform. To compute 
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phase amplitude coupling (also known as cross-frequency coupling) we applied the 

Hilbert transform on two sets of band-passed filtered data: one, band-passed for lower 

frequencies (4-22 Hz), and the other band-passed at higher frequencies (50-250 Hz). The 

modulation index (Tort et al., 2008) was used to quantify the extent to which the faster 

frequency power deviated from a flat distribution over different phases (taking 18 non-

overlapping equally spaced phase bins). We took the phase of the lower frequency 

Hilbert transform, and the amplitude of the higher frequency Hilbert transform.  

 

Power and cross-frequency coupling analysis were calculated on unipolar data. Granger 

causality (GC) was computed through a nonparametric spectral matrix factorization of 

the Fourier transforms of bipolar data (Dhamala et al., 2008). The nonparametric 

estimation of GC has certain advantages over parametric approaches in that it does not 

require the specification of a particular autoregressive model order. Bipolar derivation is 

a recommended pre-step prior to Granger causality analysis, as the presence of a common 

reference can lead to spurious results (Bastos and Schoffelen, 2016; Trongnetrpunya et 

al., 2016). However, when bipolar derivations are too close to one another and cortical 

sources are synchronous, the effect of bipolar derivations is to remove the oscillation of 

interest. Therefore, bipolar derivations were performed between adjacent probes, always 

taking the contacts that were aligned to the same depth (relative to the sink). This was 

only possible when two probes had been simultaneously lowered to adjacent cortical 

areas (between 2-4 mm apart). To control for possible contributions of signal-to-noise 

differences in driving GC, we performed time-reversed Granger testing (Vinck et al., 
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2015). In all cases, time-reversing the signals either reduced the dominant directionality 

or flipped it (from ascending to descending), confirming that signal-to-noise differences 

could not explain the ascending dominance of GC. 

 

For the analysis of gamma and alpha/beta bursts, we used wavelets to capture deviations 

in power over time that could change quickly in both time and frequency, reflecting the 

non-stationarities of interest. Power was computed at equally-spaced frequency bins 

between 4 and 150 Hz. For each frequency, we used wavelets with a width of 5 cycles, 

and estimated power every 10ms. Bursts were detected as epochs when power exceeded a 

threshold of mean +2 standard deviations for at least three cycles, given the center 

frequency of that burst. Bursts in the gamma-band were detected between 50 to 150 Hz, 

reflecting the fact that previous findings have shown this to be the upper bound for 

oscillatory gamma responses (Lundqvist et al., 2016). Bursts in the alpha/beta range were 

detected between 4-22 Hz, chosen according to frequencies which had peak power in the 

deep layers. To minimize the contribution of spikes to the gamma bursts, we removed 

bursts that contained significant increases in power across all gamma frequencies (50-

150Hz), reflecting the fact that spikes are expected to contribute power to this entire band 

(Ray and Maunsell, 2011). To calculate whether the delay-period bursting rate contained 

WM information, we summed the number of bursts around a sliding window (200ms for 

gamma and 400ms for alpha/beta), and assessed whether the burst rate reliably 

distinguished between the different cues using an unbiased measure of information, 
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percent explained variance (omega-squared; Olejnik and Algina, 2003). Information was 

then averaged across the delay period.  

 

For the analysis of the analog multi-unit activity (MUA, Figure 4.3) we band-pass filtered 

the raw, unfiltered, 30kHz sampled data into a wide band between 500-5,000Hz, the 

power range dominated by spikes. The signal was then low-pass filtered at 250Hz and re-

sampled to 1,000 kHz. For the analysis of thresholded spikes, we re-referenced each 

contact’s signal to the global mean across all contacts, applied a 6th order 250Hz, high-

pass Butterworth filter, and then z-scored each signal by its own mean and standard 

deviation. We next identified spiking by identifying those time periods when the z-scored 

signal fell below 5 standard deviations of the mean noise floor. In order to ensure that all 

of these spikes were appropriately captured in time, we further extracted 10 samples 

before and 24 samples after threshold crossing from the original non-thresholded, 30 kHz 

signal. This new data was up-sampled by 2 using cubic splines, and the global minimum 

of each of these snippets was identified. If any spike was counted twice, because of more 

than a single threshold crossing within this time interval, they were rejected. Finally, to 

rule out spurious thresholds due to random noise or unit drift, we included units for 

further analysis if they maintained a firing rate of at least 2 Hz for at least 25 trials. 
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Figure 4.1 (see caption on next page) 
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Figure 4.1 (see figure on previous page) A. Visual search task: A match between sample and test 
image was chosen after a variable delay (0.5-1.2s) by making a saccade to the same image 
amongst a panel of 3 presented peripherally. Each image was positioned randomly at any 1 of 4 
possible locations (upper right, lower right, upper left, and lower left). B. Masked delayed 
saccade: After a sample period, during which a single spatial location was cued (1 of 6 possible 
locations), the animal had to hold fixation through variable delay (2.2 to 2.7s) and the 
presentation of visual mask. After this delay, and when the fixation point color changed, the 
animal had to saccade to the previously cued location. C. Delayed saccade: After a sample period, 
during which a single spatial location was cued (1 of 4 possible locations), the animal had to hold 
fixation through a fixed delay (0.99s) and saccade to the cued location when the fixation dot 
disappeared. D-E. The small red lines indicate sample trajectories that were chosen to be as 
perpendicular as possible to cortex. F. The small red lines indicate sample trajectories that were 
possible given the recording hardware. Only the 3rd trajectory from the left was used for laminar 
recordings. G. We recorded across frontal cortex. The different colored dots indicate the task, and 
the letters the corresponding anatomical region. In addition to those labeled, we recorded from the 
anterior cingulate cortex (ACC) and the supplementary motor area (SMA). H. Sample LFP 
recordings were band-passed filtered using 3rd order Butterworth filters (on the left, 10-25 Hz; on 
the right, 40-160 Hz). The red line marks the location of the first significant CSD sink and the 
distinction between supra- and infragranular layers. I. A sample power spectrum with a clear 
alpha/beta bump (between 10 and 25 Hz) and broadband gamma (> 40 Hz). The variations across 
layers are plotted as a color gradient (black superficial, and red deep).   
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Figure 4.2 A. Normalized power averaged across laminar multi-contact probes across cortical 
depth and frequency. Red colors indicate greater power at a particular depth, and blue less. The 
black line is the average depth where the power at each frequency peaks. Error bars ± 1 SEM. 
The black stars indicate frequency bins at which the mean depth was significantly superficial or 
deep (Bonferroni corrected for multiple comparisons). B. Normalized power averaged across low 
frequencies (4-22 Hz, blue line), and high frequencies (50-250 Hz, red line). Error bars ± 1 SEM. 
C-E. Normalized power profiles across low and high frequencies for each task (Visual-Search, 
Masked Delayed-Saccade, Delayed-Saccade). Error bars ± 1 SEM. 
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Figure 4.3 A,C,E. Delay-period, MUA modulation across cortical depth and time. Plotted from 
150ms after sample offset until ~1s into the delay, for the visual search, masked delayed-saccade, 
and delayed saccade tasks. B,D,F. The mean delay-period MUA modulation across the entire 
delay and cortical depth for each task. Error bars ± 1 SEM. G. The delay-period MUA 
modulation averaged across all tasks and plotted across cortical depth. Error bars ± 1 SEM. H. 
The mean MUA modulation averaged across all tasks, and all superficial or deep contacts. Error 
bars ± 1 SEM. 
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Figure 4.4 A. Number of units recorded and the absolute number of units significantly modulated 
during the delay (t-test, p<.01) across laminar depths. B. The proportion of units that were 
significantly modulated during the delay. (inset) A bar graph comparing the proportion modulated 
in superficial vs. deep layers. Error bars ± 1 SEM. C. The mean baseline firing rates across 
laminar depths. D. The proportion of electrodes with detectable units.   
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Figure 4.5 A. Gamma burst rates at baseline (blue) and during the delay (red). B. The percent 
explained variance (omega-squared) of the gamma bursts across different cortical depths. (inset) 
The mean PEV across all superficial and deep contacts, respectively. Error bars ± 1 SEM. C. Beta 
burst rates at baseline (blue) and during the delay (red). D. The PEV of beta bursts across 
different cortical depths. Error bars ± 1 SEM. 
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Figure 4.6 A. The Granger causal influence across frequency during the delay period. The red 
line is the Granger influence of deep to superficial layers, and the blue is the reverse. Only 
sessions in which 2 laminar probes were placed within 2-4 mm of one another were used (see 
Methods). B. Phase amplitude coupling between the phase of alpha/beta oscillations and the 
amplitude of gamma oscillations. Plotted across both axes is the PAC between specific cortical 
depths. C. The mean PAC across all four possible conditions during the delay-period: superficial 
phase to superficial amplitude (left), deep phase to deep amplitude (middle-left), superficial phase 
to deep amplitude (middle-right), and deep phase to superficial amplitude (right). D. PAC 
between deep phase to superficial amplitude during the delay (left) and the baseline (right). 
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Figure 4.7 A model of working memory. Denoted by two rectangular, dashed boxes, two cortical 
compartments, superficial and deep, are made up of densely interconnected pyramidal (black) and 
inhibitory (red) neurons. Inhibitory connections are line segments with a red, rounded end, and 
excitatory connections are line segments with a black, arrow end. The looping arrow returning on 
itself is reflects the recurrent connectivity found within layer 3 pyramidal cell networks in 
prefrontal cortex. The sinusoidal red-line in deep layers reflects the predominance of alpha/beta 
oscillations deep and their driving influencing on superficial alpha/beta oscillations (the 
sinusoidal blue line). Both the superficial and deep alpha/beta oscillations are coupled with 
gamma oscillations (blue squiggly lines), and these gamma oscillations organize informative 
spiking (straight black marks). Over time, moving from left to right in the figure, the deep 
alpha/beta suppress both superficial gamma and spiking.  
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Figure 4.S1 The grand average current source density plot after flash onset and after alignment to 
the first significant sink on each electrode. The black contour reflects significance at p < 2.4E-5 
after Bonferroni correction. 
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Figure 4.S2 A. Phase amplitude coupling between the phase of alpha/beta oscillations and the 
amplitude of gamma oscillations during the baseline period. Plotted across both axes is the PAC 
between specific cortical depths. B. The mean PAC across all four possible conditions during the 
baseline period: superficial phase to superficial amplitude (left), deep phase to deep amplitude 
(middle-left), superficial phase to deep amplitude (middle-right), and deep phase to superficial 
amplitude (right). 
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CHAPTER 5: DISCUSSION 

Overall, we investigated how different neural oscillations varied within the context of 

learning, working memory, and categorization. Combining all three studies, we found 

evidence that alpha/beta oscillations reflected top-down, feedback control, and that 

gamma oscillations reflected bottom-up, feedforward influences.  

 

In learning, we found that 3 different tasks could be differentiated as a function of the 

animal’s capacity to respond to negative feedback (i.e. errors). In both Match tasks, CM 

and OM, animals continued to perform at a high level following an error, and their PFC 

exhibited a strong evoked response to the error. In contrast, in the CS task, the animal’s 

performance dropped substantially following an error, and there was no ERN in the PFC. 

We found that these dissociations between tasks qualified each of them separately as 

either explicit or implicit. Explicit learning is supervised, hypothesis-based, and 

hippocampal-dependent (Ashby and Maddox, 2011; Reber, 2013). This type of learning 

therefore requires the integration of errors in order to assess the accuracy of potential 

hypotheses.  In contrast, implicit learning is understood as unconscious and automatic 

(Reber, 2013). Errorless methods enhance the retention of implicit skills, and errors are 

generally believed to be more often disruptive in such skills (Poolton et al., 2005; 

Donaghey et al., 2010). In others words, explicit learning is a top-down feedback driven 

process, whereas implicit learning may be dominated by bottom-up, feedforward 

processes. As a result, we characterized the Match tasks as explicit and top-down, and the 

Saccade tasks as implicit and bottom-up.  
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Those differences we found in LFP synchrony during the feedback epoch, therefore, are 

likely attributable to these differences in top-down, feedback vs. bottom-up, feedforward 

processes. In both explicit tasks, there was a prevalence of alpha/beta oscillations that 

changed with learning (increasing and then decreasing). In the implicit task, there was a 

prevalence of theta oscillations that changed with learning (monotonically decreasing). 

Despite a comparable quantity of alpha/beta synchrony, there were no changes in 

alpha/beta synchrony with learning in the implicit task. Overall, the increase in alpha/beta 

synchrony with both learning stage and performance in the Match tasks strongly 

supported our predictions regarding alpha/beta oscillations as top-down control signals. 

In other words, we had thought that as concepts are learned, top-down control should 

increase, and there should be a concordant increase in alpha/beta synchrony. However, 

we observed that late in learning there was a drop in alpha/beta synchrony. We attributed 

this drop to the end (or winding down) of PFC-guided learning. At that point, there was a 

decreased need for PFC to exert control on the activity of cortices more closely tied to 

task execution.  

 

While this study did not examine how gamma oscillations varied across these three 

learning tasks, it did find a dissociation between alpha/beta and theta synchrony. In order 

to be consistent with our general interpretation of feedback vs. feedforward, theta 

synchrony should reflect a feedforward process. In a study examining the LFP correlates 

of feedforward vs feedback processes, Bastos et al. found that both the theta and gamma 
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bands carried feedforward signals across the different levels of the visual hierarchy 

(Bastos et al., 2015). A follow-up study confirmed that theta oscillations indeed reflect a 

feedforward process, and that they are down-regulated by top-down control (Spyropoulos 

et al., 2017).  

 

During categorization, we found two distinct patterns associated with alpha/beta and 

gamma oscillations. In the VLPFC, relative to baseline, there was both a drop in 

alpha/beta power and a coincident increase in gamma power. Gamma oscillations in this 

area carried significant category information, which correlated with behavioral 

performance, and this information was greatest for categories of low abstractness. There 

was also in VLPFC significant category information in both the evoked response and in 

the theta band. In contrast, in DLPFC, relative to baseline, there was a significant 

increase in alpha/beta power and a concurrent drop in gamma power. The alpha/beta 

power increase correlated with behavioral preference, and carried significant category 

information. There was a greater amount of category information for categories of high 

abstractness.  

 

Oscillatory activity in VLPFC and DLPFC corroborated our main hypotheses regarding 

alpha/beta and gamma oscillations in two different ways. One, alpha/beta oscillations 

occurred at moments requiring the greatest amount of top-down control, i.e. on high 

abstractness trials, while gamma oscillations occurred at moments requiring the least 

amount of top-down control, i.e. low abstractness trials. Two, gamma oscillations 
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appeared more tied to stimulus onset, occurring rapidly after stimulus presentation and 

arising in VLPFC where there was a large, short-latency evoked response that carried 

category information. In contrast, alpha/beta oscillations lasted throughout the delay in 

DLPFC, where there was an evoked response which did not carry significant category 

information. In short, bottom-up processes should arise rapidly in response to stimuli, and 

decrease in periods of greater cognitive demand. This was true here for gamma 

oscillations. In contrast, top-down processes should increase in periods of greater 

cognitive demand, and be less tied to the stimulus. This was true here but for alpha/beta 

oscillations. 

 

During working memory, we found that gamma and alpha/beta oscillations were 

localized to layers within frontal cortex that corresponded to layers associated with 

feedforward and feedback connectivity. Van Essen and others have previously found that 

feedforward neurons originate from supragranular regions, while feedback neurons 

originate from both infragranular regions and subcortical regions. Consistent with these 

findings, we found that gamma peaked within superficial layers and alpha/beta peaked 

deep. Moreover, consistent with the role of feedback connections in modifying bottom-up 

activity, according to the biased competition model, we found that feedback layers had a 

modulatory role on feedforward ones, and not vice versa. Specifically, we found that 

deep layer alpha/beta oscillations both entrained superficial alpha/beta, and coupled with 

superficial gamma. According to our working memory model, deep alpha/beta 

oscillations serve to inhibit superficial neuronal ensembles i.e. gamma oscillations, thus 
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restricting the dominance of any particular ensemble. However, during the working 

memory delay, a decrease in alpha/beta-mediated inhibition leads to an excitation-

inhibition imbalance. This imbalance allows for the persistent excitation of one cue-

specific ensemble. Working memory, therefore, reflects the careful pruning of 

feedforward signals by inhibitory, feedback layers.  

 

In summary, we found strong evidence to suggest that, within PFC, alpha/beta 

oscillations reflect top-down control mediated by feedback connections, while gamma 

(and possibly theta) oscillations reflect bottom-up influences via feedforward 

connections. These results are consistent with EEG findings in a number of psychiatric 

disorders. For instance, Alzheimer’s disease is characterized by a progressive dementia 

and the loss of explicit learning, despite the maintenance of implicit-based perceptual 

learning (Fleischman, 2005). In line with earlier findings of this thesis, the increasing 

reliance on implicit learning in Alzheimer’s patients leads to an increase in delta/theta 

oscillations and a reduction of alpha/beta (Jeong, 2004). Further, some hallmarks of 

schizophrenia include delusions and auditory hallucinations, where a patient can “lose 

touch” with reality. In these individuals, the most prominent finding is a reduction in 

gamma oscillations during cognitive tasks (Uhlhass and Singer, 2013). This reduction 

may lead to the relative prevalence of internally driven feedback processes and, hence, a 

confusion between top-down and bottom-up inputs. 
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Future Work 

Future work elucidating the cellular mechanisms underlying these rhythms will be 

necessary to better understand their functional role. An improved mechanistic 

understanding should lead to a more appropriate and biologically-based subdivision of 

those broad frequency bands hereto combined into the alpha/beta and gamma bands. 

Moreover, tracking these oscillations in vivo, and directly modulating them via external 

interventions may provide therapeutic relief for those psychiatric diseases associated with 

abnormal top-down/bottom-up control. In fact, preliminary evidence suggests that these 

oscillations are amenable to external intervention. For instance, we applied transcranial 

alternating current stimulation in phase with ongoing alpha oscillations within the frontal 

cortex of the monkeys studied here, and we found that we could enhance alpha/beta 

power in a period extending past the stimulation. This did not occur when stimulating 

using an arbitrarily-timed 12 Hz signal or a previously recorded brain signal. If 

successful, the external modulation of oscillations either through enhancement or 

suppression may allow us to better guide learning, store the contents of working memory, 

or generalize concepts. While providing potential therapeutic benefits, these 

electrophysiological interventions will also test the causal role these oscillations may 

have in cognitive functioning. Testing this causality is of tantamount importance, for 

most studies on neural oscillations are correlational in nature. Finally, a better 

appreciation of these oscillatory dynamics within the electroencephalogram (EEG) of 

humans could lead to the early identification of progressive neurological disorders, such 
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as schizophrenia and Alzheimer’s, or alternatively of those learning disabilities where 

explicit learning is impaired.  
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